The Bounded L^{2} curvature "conjecture" in general relativity

Jérémie Szeftel

Département de Mathématiques et Applications, Ecole Normale Supérieure
(Joint work with Sergiu Klainerman and Igor Rodnianski)

Cauchy Problem for EE

$(\mathcal{M}, \mathbf{g})$ Lorentzian, \mathbf{R} curvature tensor of \mathbf{g}

Einstein Vacuum equations: $\operatorname{Ric}_{\alpha \beta}=0$

Wave coordinates: $\square_{\mathbf{g}} x^{\alpha}=\frac{1}{\sqrt{|\mathbf{g}|}} \partial_{\beta}\left(\mathbf{g}^{\beta \gamma} \sqrt{|\mathbf{g}|} \partial_{\gamma}\right) x^{\alpha}=0, \alpha=0,1,2,3$
$\square_{\mathbf{g}} \mathbf{g}_{\alpha \beta}=\mathcal{N}_{\alpha \beta}(\mathbf{g}, \partial \mathbf{g}), \alpha, \beta=0,1,2,3$, with $\mathcal{N}_{\alpha \beta}$ quadratic w.r.t $\partial \mathbf{g}$

Cauchy data: $\left(\Sigma_{0}, g_{0}, k\right)$ where $\Sigma_{0}=\{t=0\}, \mathbf{g}(0,)=.g_{0}$, $\partial_{t} \mathbf{g}(0,)=$.

Question: Under which regularity do we have local existence for EE?

Semilinear Wave Equations

$$
\left\{\begin{array}{l}
\square \phi=\mathcal{N}(\phi, \partial \phi),(t, x) \in \mathbb{R}^{1+3} \\
\phi(0, .)=\phi_{0} \in H^{s}\left(\mathbb{R}^{3}\right), \partial_{t} \phi(0, .)=\phi_{1} \in H^{s-1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

where \mathcal{N} is quadratic w.r.t $\partial \phi$

$$
\left\|\left(\phi(t), \partial_{t} \phi(t)\right)\right\|_{H^{s} \times H^{s-1}} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{s} \times H^{s-1}} \exp \left(\int_{0}^{t}\|\partial \phi(\tau)\|_{L^{\infty}} d \tau\right)
$$

Sobolev embedding in \mathbb{R}^{3} : WP for $s>5 / 2$
Strichartz for $\square \phi=0 \Rightarrow$ WP for $s>2$ (Ponce-Sideris)
Ill-posed for $s=2$ in general (Cex of Lindblad)
If $\mathcal{N}=Q_{i j}$ with $Q_{i j}(\phi, \psi)=\partial_{i} \phi \partial_{j} \psi-\partial_{i} \psi \partial_{j} \phi$
Bilinear estimates for $Q_{i j} \Rightarrow$ WP for $s>3 / 2$ (Klainerman-Machedon)

Quasilinear Wave Equations

$$
\left\{\begin{array}{l}
\square_{\mathrm{g}(\phi)} \phi=\mathcal{N}(\phi, \partial \phi),(t, x) \in \mathbb{R}^{1+3} \\
\phi(0, .)=\phi_{0} \in H^{s}\left(\mathbb{R}^{3}\right), \partial_{t} \phi(0, .)=\phi_{1} \in H^{s-1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

Using Sobolev embedding: WP for $s>5 / 2$
Strichartz for $\square_{\mathbf{g}} \phi=0$ requires $\mathbf{g} \in C^{1,1}$ (Smith)
Strichartz with loss enough: WP for $\mathrm{s}>2+1 / 4$ (Bahouri-Chemin)
WP for $\mathrm{s}>2$ (Klainerman-Rodnianski for EE, Smith-Tataru for general quasilinear wave equations)

Interesting geometrical hyperbolic equations satisfy the null structure

Goal: prove that EE are WP in H^{2}

Bounded L^{2} curvature "conjecture"

Conjecture. Let $\left(\Sigma_{0}, g_{0}, k\right)$ with $R \in L^{2}\left(\Sigma_{0}\right), \nabla k \in L^{2}\left(\Sigma_{0}\right)$. Then, $E E$ are WP

Motivations:

- First WP result for a quasilinear wave equation below $H^{2+\epsilon}$
- The assumptions $R \in L^{2}\left(\Sigma_{0}\right), \nabla k \in L^{2}\left(\Sigma_{0}\right)$ are natural from the point of view of geometry
- Rather than a WP result, it can be viewed as a breakdown criterion. In particular, $\mathbf{R} \in L^{2}$ is a fundamental quantity controlling singularity formation
- Sharp result with respect to a "null scaling": the control of the Eikonal equation $\mathbf{g}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0$ requires $\mathbf{R} \in L^{2}$

Strategy of the proof

A Recast the EE as a quasilinear Yang-Mills theory
B Prove appropriate bilinear estimates for solutions to $\square_{\mathbf{g}} \phi=0$
C Construct a parametrix for $\square_{\mathbf{g}} \phi=0$, and obtain the control of the parametrix and of its error term

D Prove a sharp $L^{4}(\mathcal{M})$ Strichartz estimate for the parametrix

Goal: take inspiration from the proof of Klainerman-Machedon for the WP of Yang-Mills in $H^{1}\left(\mathbb{R}^{3}\right)$

Achieve Steps B, C and D only assuming L^{2} bounds on \mathbf{R}

WP of Yang-Mills in $H^{1}\left(\mathbb{R}^{3}\right)$ (Klainerman-Machedon)

$$
\square \mathbf{A}+\nabla_{t, x}\left(\nabla_{t, x} \cdot \mathbf{A}\right)=\left[\mathbf{A}, \nabla_{t, x} \mathbf{A}\right]+\mathbf{A}^{3}, \quad \mathbf{A}=\left(A_{0}, A_{1}, A_{2}, A_{3}\right)
$$

Gauge freedom. Choosing the Coulomb gauge $\partial_{i} A_{i}=0$:

$$
\square \mathbf{A}+\nabla_{t, x}\left(\partial_{0} A_{0}\right)=\left[\mathbf{A}, \nabla_{t, x} \mathbf{A}\right]+\mathbf{A}^{3}
$$

$\mathcal{P}=$ projector on divergence free vectofields:

$$
\begin{aligned}
\Delta\left(A_{0}\right) & =\text { l.o.t } \\
\square\left(A_{i}\right) & =\left(\mathcal{P}\left(Q_{j l}\left(\nabla^{-1} A, A\right)+\nabla^{-1}\left(Q_{j l}(A, A)\right)\right)\right)_{i}+\text { l.o.t } \\
\|\boldsymbol{\partial} A\|_{L_{t}^{\infty} L^{2}\left(\mathbb{R}^{3}\right)} & \lesssim\left\|Q_{j l}\left(\nabla^{-1} A, A\right)\right\|_{L_{t}^{2} L^{2}\left(\mathbb{R}^{3}\right)}+\left\|\nabla^{-1}\left(Q_{j l}(A, A)\right)\right\|_{L_{t}^{2} L^{2}\left(\mathbb{R}^{3}\right)}+\text { l.o.t. }
\end{aligned}
$$

Prove two bilinear estimates to conclude

Step A: EE as a quasilinear Yang-Mills theory

Let e_{α} an orthonormal frame on \mathcal{M}, i.e. $\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}$
Let $\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}:=(\mathbf{A})_{\alpha \beta}\left(\partial_{\mu}\right)=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)$

The definition of \mathbf{R} yields:
$\mathbf{R}\left(e_{\alpha}, e_{\beta}, \partial_{\mu}, \partial_{\nu}\right)=\partial_{\mu}\left(\mathbf{A}_{\nu}\right)_{\alpha \beta}-\partial_{\nu}\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}+\left(\mathbf{A}_{\nu}\right)_{\alpha}{ }^{\lambda}\left(\mathbf{A}_{\mu}\right)_{\lambda \beta}-\left(\mathbf{A}_{\mu}\right)_{\alpha}{ }^{\lambda}\left(\mathbf{A}_{\nu}\right)_{\lambda \beta}$
$\mathbf{D}^{\mu} \mathbf{R}_{\alpha \beta \mu \nu}=0$ yields the tensorial wave equation:

$$
\left(\square_{\mathrm{g}} \mathbf{A}\right)_{\nu}-\mathbf{D}_{\nu}\left(\mathbf{D}^{\mu} \mathbf{A}_{\mu}\right)=\mathbf{D}^{\mu}\left(\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)+\left[\mathbf{A}^{\mu}, \mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}\right]+\mathbf{A}^{3}
$$

In view of the Klainerman-Machedon proof, we need in particular a procedure to scalarize the tensorial wave equation and to project on divergence free vectorfields without destroying the null strucure

Scalarization and projection procedure

Scalarization: compute $\left[X, \square_{\mathrm{g}}\right.$] for any vectorfield X and use it with $X=e_{\alpha}, \alpha=0,1,2,3$

Projection: compute $\left[\mathcal{P}, \square_{\mathrm{g}}\right]$ where $\mathcal{P}=$ projector on divergence free vectofields

These commutators generate numerous dangerous terms which need to satisfy the null structure

We check this using the symmetries of \mathbf{R}, the Bianchi identities, the link between \mathbf{A} and \mathbf{R}, the fact that A_{0} is better than A_{1}, A_{2}, A_{3}, and the Coulomb gauge

The energy estimate for the wave equation

The proof reduces to the control of a scalar function ϕ satisfying

$$
\square_{\mathbf{g}}(\phi)=\text { null forms }+ \text { l.o. } t
$$

Let ϕ a scalar function and $Q_{\alpha \beta}$ its energy momentum tensor:

$$
\begin{gathered}
Q_{\alpha \beta}=Q_{\alpha \beta}[\phi]=\partial_{\alpha} \phi \partial_{\beta} \phi-\frac{1}{2} \mathbf{g}_{\alpha \beta}\left(\mathbf{g}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right) \\
\int_{\Sigma_{t}} Q_{T T}=\int_{\Sigma_{0}} Q_{T T}+\int_{\mathcal{R}} \square_{\mathbf{g}} \phi T(\phi)+\int_{\mathcal{R}} Q^{\alpha \beta} \mathbf{D}_{\alpha} T_{\beta}
\end{gathered}
$$

Last term in RHS is dangerous \Rightarrow needs to display the null structure and requires to prove the corresponding trilinear estimate

Step B: the bilinear estimates

We need to estimate the following null forms

$$
\left\|Q_{i j}(\phi, A)\right\|_{L^{2}(\mathcal{M})} \text { and }\left\|\left(-\Delta_{g}\right)^{-\frac{1}{2}}\left(Q_{i j}(\partial \phi, A)\right)\right\|_{L^{2}(\mathcal{M})}
$$

where ϕ is a scalar function ϕ satisfying

$$
\square_{\mathrm{g}}(\phi)=\text { null forms }+ \text { l.o.t }
$$

To prove these bilinear estimates in a quasilinear setting:

- write ϕ by iterating the basic parametrix of step C (construction and control of the parametrix)
- Rethink the proof of bilinear estimates in the quasilinear setting
- For the second type of bilinear estimate, rely on the structure of $Q_{i j}$ and a $\operatorname{sharp} L^{4}(\mathcal{M})$ Strichartz estimate for the parametrix

Step C: construction and control of the parametrix

$$
S(t, x)=\sum_{ \pm} \int_{\mathbb{S}^{2}} \int_{0}^{+\infty} e^{i \lambda u_{ \pm}(t, x, \omega)} f_{ \pm}(\lambda \omega) \lambda^{2} d \lambda d \omega
$$

where $\mathbf{g}^{\alpha \beta} \partial_{\alpha} u_{ \pm} \partial_{\beta} u_{ \pm}=0$ on \mathcal{M} such that $u_{ \pm}(0, x, \omega) \sim x . \omega$ when $|x| \rightarrow+\infty$ on Σ_{0}

Construction: for any $\left(\phi_{0}, \phi_{1}\right)$ there exists $f_{ \pm}$such that

$$
\begin{aligned}
& S(0, .)=\phi_{0}, \mathbf{D}_{T} S(0, .)=\phi_{1} \text { and }\left\|\lambda f_{ \pm}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \lesssim\left\|\nabla \phi_{0}\right\|_{L^{2}\left(\Sigma_{0}\right)}+\left\|\phi_{1}\right\|_{L^{2}\left(\Sigma_{0}\right)} \\
& E(t, x)=\square_{\mathbf{g}} S(t, x)=i \sum_{ \pm} \int_{\mathbb{S}^{2}} \int_{0}^{+\infty} e^{i \lambda u_{ \pm}(t, x, \omega)} \square_{\mathbf{g}} u_{ \pm}(t, x, \omega) f_{ \pm}(\lambda \omega) \lambda^{3} d \lambda d \omega
\end{aligned}
$$

Control of the error term: $\|E f\|_{L^{2}(\mathcal{M})} \lesssim\left\|\lambda f_{+}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}+\left\|\lambda f_{-}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}$

Step C: construction and control of the parametrix

- Goal: Achieve Step \mathbf{C} only assuming L^{2} bounds on \mathbf{R}. This requires to exploit the full structure of Einstein equations
- The regularity in ω of u obtained in Step \mathbf{C} is limited
- A careful choice of $u(0, x, \omega)$ (related to the mean curvature flow) allows us to "squeeze" as much regularity in x and ω as possible
- $\mathbf{R} \in L^{2}$ is minimal to obtain a lower bound on the radius of injectivity of level surfaces of the phase u
- Step \mathbf{C} requires L^{2} bounds for Fourier integral operators, and in turn several integration by parts. Classical proofs (T^{*} and $T^{*} T$ arguments) would fail by far

