

Normal form and Quasi-periodic solutions for the non-linear Schrödinger equation

Michela Procesi

Università di Roma La Sapienza

Roma 3-7-2012

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Nonlinear Schrödinger equation

Consider the Nonlinear Schrödinger equation on the torus \mathbb{T}^n .

$$iu_t - \Delta u = F(|u|^2)u \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $u := u(t, \varphi)$, $\varphi \in \mathbb{T}^n$, F(y) is an analytic function, F(0) = 0Note that we have no explicit space dependence. This means that we have constants of motion due to translation invariance.

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

A good model is the CUBIC NLS:

$$iu_t - \Delta u = F(|u|^2)u = |u|^2 u$$
 (2)

with $q \in \mathbb{N}$. Or more in general:

 $iu_t - \Delta u = |u|^{2q}u$

Quasi-periodic solutions

Main result, with C. Procesi

Consider the cubic NLS. For all $m \in \mathbb{N}$, there exist Cantor families of small quasi-periodic solutions of Equation (1) with mfrequencies $\omega_1, \ldots, \omega_m$. We also prove the existence of an reducible elliptic normal form close to the solution.

m is arbitrarily large but finite The solutions exist for all ω in a positive measure Cantor set. A quasi-periodic solution is a solution $u(t, \varphi)$ of Equation (1) such that

$$u(t, \varphi) = U(\omega t, \varphi)$$

where $\omega \in \mathbb{R}^n$ and $U : \mathbb{T}^m \times \mathbb{T}^n \to \mathbb{C}$. The solutions we find are analytic.

Our equation $iu_t - \Delta u = |u|^2 u$ does not have external parameters.

COMPLETELY RESONANT SYSTEM. For the linear equation

$$iu_t - \Delta u = 0$$

all the bounded solutions are periodic of period 2π .

$$u(t,\varphi) = \sum_{k} u_{k} e^{i(k \cdot \varphi + |k|^{2}t)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

quasi-periodic solutions are due to the Non-Linearity

Even if you add external parameters to avoid the resonance problem.

$$\mathrm{i}u_t - \Delta u + V(x)u = |u|^2 u$$

- DEGENERACY: the eigenvalues of $i\partial_t \Delta$ are highly degenerate (the multiplicity of the eigenvalues grows to infinity!)
- SMALL DIVISORS: The spectrum of the linear part $i\partial_t \Delta$ accumulates to zero on the space of quasi-periodic functions.

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

We do not expect quasi-periodic solutions to be typical

In the case of \mathbb{T}^2 , Colliander-Keel-Staffilani-Takaoka-Tao, Invent.(2010) use unstable solutions to prove diffusion.

There is no a-priori reason why the solutions should have an integrable elliptic normal form close to them.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

non-resonant PDEs in one dimension Kuksin, Craig, Wayne, Pöschel... resonant PDEs in one dimension

- Kuksin, Pöschel, Annals (96). (cubic NLS)
- Geng (quintic NLS)
- Magistrelli, P. (NLS of degree 7)

non-resonant PDEs on \mathbb{T}^n (with outer parameters)

- Bourgain, Annals Studies (2005): NLS on \mathbb{T}^n
- Geng-You, CMP (2005): smoothing NLS on Tⁿ, existence and stability.
- Eliasson-Kuksin, Annals (2010): NLS on Tⁿ, existence and stability.
- Xu P. (2011) NLS on Tⁿ, existence and stability (non-linearities which do not depend on the space variable)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

resonant PDEs on \mathbb{T}^n

- Bourgain, Annals (96) cubic NLS on \mathbb{T}^2 with two frequencies.
- Gentile-P., CMP (2009) periodic solutions on \mathbb{T}^n .
- Berti-P.: periodic solutions for NLS on Lie groups
- Geng-You-Xu Adv. Math.(11): quasi-periodic solutions on \mathbb{T}^2
- Wang(2009-2011) quasi-periodic solutions general analytic NLS
- C. Procesi, P. CMP (2012) (Normal form for the general analytic NLS)
- Nguyeng Bich V., C. Procesi, P. Preprint (non-degeneracy of the normal form)

• C. Procesi, P. (in preparation) (quasi-periodic solutions) Our result not only gives existence of solutions but also an integrable elliptic normal form close to the solutions

The construction of quasi-periodic solutions is performed in three steps:

The plan

 Construction of integrable normal forms (applying Birkhoff normal form)

- Proof of non-degeneracy of the normal form (algebraic argument)
- The KAM algorithm and quasi-Töpliz property.

Passing to the Fourier representation

$$u(t,\varphi) := \sum_{k\in\mathbb{Z}^n} u_k(t) e^{\mathrm{i}(k,\varphi)},$$

$$|u|_{a,p}^2 = \sum_{k \in \mathbb{Z}^n} |u_k|^2 e^{2a|k|} |k|^{2p} < \infty$$

Eq. (1) can be written as an

infinite dimensional Hamiltonian dynamical system:

$$H = \sum_{k \in \mathbb{Z}^n} |k|^2 u_k \bar{u}_k + \sum_{k_i \in \mathbb{Z}^n: k_1 + k_3 = k_2 + k_4} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4}$$
(3)

with respect to the complex symplectic form $i \sum_k du_k \wedge d\bar{u}_k$.

Passing to the Fourier representation

$$u(t, \varphi) := \sum_{k \in \mathbb{Z}^n} u_k(t) e^{\mathrm{i}(k, \varphi)},$$

Eq. (1) can be written as an

infinite dimensional Hamiltonian dynamical system:

$$H = \sum_{k \in \mathbb{Z}^n} |k|^2 u_k \bar{u}_k + \sum_{k_i \in \mathbb{Z}^n: k_1 + k_3 = k_2 + k_4} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4}$$
(3)

with respect to the complex symplectic form $i \sum_k du_k \wedge d\overline{u}_k$.

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

The system has the constants of motion:

$$L = \sum_{k \in \mathbb{Z}^n} u_k \bar{u}_k \,, \quad M = \sum_{k \in \mathbb{Z}^n} k u_k \bar{u}_k$$

the fact that M is preserved will be crucial to the proof!

NLS normal form KAM KAM Some ideas on the Proof geometry Birkhoff Normal Form For

$$H = K(u, \bar{u}) + H^{(4)}(u, \bar{u}), \quad K(u, \bar{u}) = \sum_{k} |k|^2 u_k \bar{u}_k$$

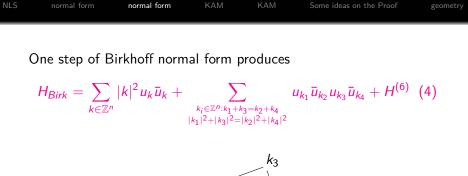
where $H^{(4)}$ is a polynomial of degree 4 and the linear frequencies (in our case $|k|^2$) are all rational.

With a sympletic change of variables we reduce the Hamiltonian H to

$$H_{Birk} = K(u, \bar{u}) + H_{res}^{(4)}(u, \bar{u}) + H^{(6)}$$

where $H^{(6)}$ is small while $H^{(4)}_{res}$ Poisson commutes with K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



 k_2 k_4 k_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Even if we ignore the term $H^{(6)}$, this equation is still very complicated but Has a lot of invariant subspaces where the equation is significantly easier!

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

One step of Birkhoff normal form produces

$$H_{Birk} = \sum_{k \in \mathbb{Z}^n} |k|^2 u_k \bar{u}_k + \sum_{\substack{k_i \in \mathbb{Z}^n: k_1 + k_3 = k_2 + k_4 \\ |k_1|^2 + |k_3|^2 = |k_2|^2 + |k_4|^2}} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4} + H^{(6)}$$
(4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Even if we ignore the term $H^{(6)}$, this equation is still very complicated but Has a lot of invariant subspaces where the equation is significantly easier!

NLS normal form NAM KAM Some ideas on the Proof geometry

Given a set $S \subset \mathbb{Z}^n$ consider the subspace

$$U_S := \{u = \{u_k\}_{k \in \mathbb{Z}^n} : u_k = 0, \text{ if } k \notin S\}$$

For generic choices of S the space U_S is invariant for the dynamics of

$$K + H_{Res}^{(4)} = \sum_{k \in \mathbb{Z}^n} |k|^2 u_k \bar{u}_k + \sum_{\substack{k_i \in \mathbb{Z}^n: k_1 + k_3 = k_2 + k_4 \\ |k_1|^2 + |k_3|^2 = |k_2|^2 + |k_4|^2}} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4}$$

the Hamiltonian $K + H_{Res}^{(4)}$ restricted on U_S is

$$\sum_{k \in S} |k|^2 |u_k|^2 - \sum_{k \in S} |u_k|^4$$

Generiticity condition on S:

There are no triples $k_1, k_2, k_3 \in S$ that form a right angle

 $\circ v_1 \circ v_4$

• *v*₂ • *v*₃

One can also construct invariant subspaces U_S where the dynamics is more complicated Colliander-Keel-Staffilani-Takaoka-Tao Grebert-Thomann

 U_S is not invariant for the NLS Hamiltonian

$$K + H_{Res}^{(4)} + H^{(6)}$$

so the dynamics restricted to U_S can give information on the solution only for finite times.

We have to study the dynamics of the normal modes u_k with $k \notin S$.

NLS normal form normal form KAM KAM Some ideas on the Proof geometry

Elliptic/action-angle variables.

Let us now partition

$$\mathbb{Z}^n = S \cup S^c$$
, $S := (v_1, \ldots, v_m)$.

where:

Let us now set

$$u_k := z_k \text{ for } k \in S^c$$
, $u_{v_i} := \sqrt{\xi_i + y_i} e^{ix_i} \text{ for } v_i \in S$

this puts the tangential sites in action angle variables

$$y := \{y_1, \ldots, y_m\}, \quad x := x_1, \ldots, x_m$$

the ξ are parameters.

$$\xi \in A_{\varepsilon^2} := \left\{ \xi : \frac{1}{2} \varepsilon^2 \le \xi_i \le \varepsilon^2 \right\},\,$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

Let us now set

$$u_k := z_k ext{ for } k \in S^c$$
, $u_{v_i} := \sqrt{\xi_i + y_i} e^{\mathrm{i} x_i} ext{ for } v_i \in S$,

For all $r \leq \varepsilon/2$ this is a well known analytic and symplectic change of variables in the domain

$$D_{a,p}(s,r) = D(s,r) :=$$

$$\{x, y, z : |Im(x)| < s, |y| \le r^2, ||z||_{a,p} \le r\} \subset \mathbb{T}_s^m \times \mathbb{C}^m \times \ell^{(a,p)} \times \ell^{(a,p)}.$$

$$||z||^{2}_{a,p} := |z_{0}|^{2} + \sum_{k \in S^{c}} |z_{k}|^{2} e^{2a|k|} |k|^{2p}$$

The normal form Hamiltonian

substitute

$$u_k := z_k ext{ for } k \in S^c$$
, $u_{v_i} := \sqrt{\xi_i + y_i} e^{ix_i} ext{ for } v_i \in S$,

in

$$\sum_{k\in\mathbb{Z}^n} |k|^2 u_k \bar{u}_k + \sum_{\substack{k_i\in\mathbb{Z}^n: k_1+k_3=k_2+k_4\\|k_1|^2+|k_3|^2=|k_2|^2+|k_4|^2}} u_{k_1} \bar{u}_{k_2} u_{k_3} \bar{u}_{k_4} + \mathcal{H}^{(6)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

We impose some simple constraints

After normalizing the NLS Hamiltonian is N + P where P is small and the leading term is:

$$N := \sum_{1 \le i \le m} (|v_i|^2 - 2\xi_i) y_i + \sum_{k \in S^c} |k|^2 |z_k|^2$$
(5)
+ $Q(x, z)$

set $\omega_i := |v_i|^2 - 2\xi_i$. $\mathcal{Q}(x, z)$ is a quadratic form in the normal variables zN has the quasi-periodic solutions

$$x = x_0 + \omega t, \quad y = 0, \quad z = 0$$

NLS normal form normal form KAM KAM Some ideas on the Proof geometry

The normal form Hamiltonian

$$\mathcal{Q}(x,z) = 4 \sum_{\substack{1 \le i \ne j \le m \\ h,k \in S^c}}^{*} \sqrt{\xi_i \xi_j} e^{i(x_i - x_j)} z_h \overline{z}_k +$$

$$2 \sum_{\substack{1 \le i < j \le m \\ h,k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{-i(x_i + x_j)} z_h z_k + 2 \sum_{\substack{1 \le i < j \le m \\ h,k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{i(x_i + x_j)} \overline{z}_h \overline{z}_k.$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

that the terms are *resonant with the quadratic part* K, that is:

Definition

• Here \sum^* denotes that (h, k, v_i, v_j) give a rectangle:

{
$$(h, k, v_i, v_j) | h + v_i = k + v_j, |h|^2 + |v_i|^2 = |k|^2 + |v_j|^2$$
}.

We say $h \in H_{i,j}$, $k \in H_{j,i}$.

• \sum^{**} means that (h, v_i, k, v_j) give a rectangle:

 $\{(h, v_i, k, v_j) \mid h + k = v_i + v_j, \ |h|^2 + |k|^2 = |v_i|^2 + |v_j|^2\}.$

We say $h, k \in S_{i,i}$

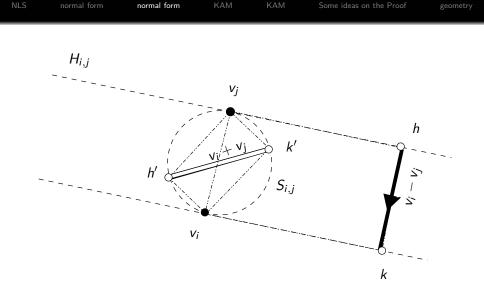


Figure: The plane $H_{i,j}$ and the sphere $S_{i,j}$. The points h, k, v_i, v_j form the vertices of a rectangle. Same for the points h', v_i, k', v_j

The Hamilton equations associated to N are linear with non-constant coefficients:

$$\mathrm{i}\dot{z}-Q^+(\omega t)z+Q^-(\omega t)ar{z}=0$$
 $Q=egin{bmatrix}Q^+&Q^-\-ar{Q}^-&-ar{Q}^+\end{bmatrix}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

is an infinite matrix.

Can we reduce to constant coefficients? Can we diagonalize? The answer is YES but the proof requires subtle arguments.

Consider a matrix of the form

 $D + \varepsilon Q$

Where *D* is diagonal. If *D* has distinct eigenvalues then one may diagonalize $D + \varepsilon Q$ by a perturbation scheme. If *D* has multiple eigenvalues we can only block diagonalize on the eigenspaces of distinct eigenvalues. To complete the diagonalization we need information on *Q*. In finite dimension: $I + \varepsilon Q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

a sufficient condition Q has distinct eigenvalues

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

In our case direct inspection shows that we have from the start a block diagonal matrix such that on each block D is proportional to the identity.

We cannot rely on perturbation theory we must study the matrix Q very attentively!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A first theorem for generic choices of $S = \{v_1, \ldots, v_m\}$.

Theorem

- For generic v_i's the quadratic Hamiltonian Q(x, w) is an infinite sum of independent (decoupled) terms each depending on a finite number of variables (at most n + 1 variables z_j together with their conjugates z_j).
- One can exhibit an explicit symplectic change of variables which integrates N, namely makes all the angles disappear from Q(x, w).

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

Theorem

There exists a map

$$S^c \ni k \to L(k) \in \mathbb{Z}^m, \quad |L(k)| < 2n$$

such that the analytic symplectic change of variables:

$$z_k = e^{-i\mathcal{L}(k).x} z'_k, \ y = y' + \sum_{k \in S^c} \mathcal{L}(k) |z'_k|^2, \ x = x'.$$

reduces N to costant coefficients

$$N = (\omega(\xi), y') + \sum_{k \in S^c} (|k|^2 + \sum_i L_i(k)|v_i|^2) |z'_k|^2 + \tilde{\mathcal{Q}}(w'), \quad (7)$$

◆□▶ ◆□▶ ◆三▼ ▲□▶ ▲□▼

The final Theorem and goal for the normal form

For the cubic NLS:

Theorem

- for generic values of the parameters ξ (outside some algebraic hyper surface) we can find a further symplectic change of coordinates so that
- N is diagonal (possibly with some complex terms)
- *N* is *non degenerate* in the sense that it satisfies the first and second Melnikov conditions.
- there exists a positive measure region of the parameters ξ in which N is elliptic (all real eigenvalues).

$$H_{\text{fin}} = (\omega(\xi), y) + \sum_{k \in S^{c}} \Omega_{k} |z_{k}|^{2} + P(\xi, x, y, z, \overline{z})$$
(8)
$$\omega_{i} = |v_{i}|^{2} - 2\xi_{i}$$

$$\Omega_{k} = |k|^{2} + \sum_{i} L_{i}(k)|v_{i}|^{2} + \theta_{k}(\xi), \quad \forall k \in S^{c}$$

The $L_i(k)$ are integers

$$\theta_k(\xi) \in \{\theta^{(1)}(\xi), \dots, \theta^{(K)}(\xi)\}, \quad K := K(n, m),$$
(9)

list different analytic homoeogeneous functions of ξ .

The Melnikov resonances:

$$\begin{aligned} \omega(\xi),\nu) &= 0, \quad (\omega(\xi),\nu) + \Omega_k(\xi) = 0, \\ (\omega(\xi),\nu) + \Omega_k(\xi) + \sigma \Omega_h(\xi) = 0 \end{aligned}$$
(10)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

hold on a zero measure subset of the parameters ξ . In order to prove this we must restrict to those indexes ν , h, k which satisfy momentum conservation.

Generiticity condition: Resonance polynomials

Definition

Given a list $\mathcal{R} := \{P_1(y), \ldots, P_N(y)\}$ of non-zero polynomials in k vector variables y_i , we say that a list of vectors $S = \{v_1, \ldots, v_m\}, v_i \in \mathbb{C}^n$ is **GENERIC** relative to \mathcal{R} if, for any list $A = \{u_1, \ldots, u_k\}$ such that $u_i \in S$, $\forall i$, the evaluation of the resonance polynomials at $y_i = u_i$ is non-zero.

If *m* is finite this condition is equivalent to requiring that *S* (considered as a point in \mathbb{C}^{nm}) does not belong to the algebraic variety where at least one of the resonance polynomials is zero.

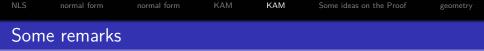
There is no a-priori reason why this change of variables should exist. If one does not impose *good* genericity conditions then this is false.

This change of variables that reduces *N* to constant coefficients exists for all analytic NLS

$$iu_t - \Delta u = F(|u|^2)u$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

provided that F does not explicitly depends on φ . Problem is proving the non-degeneracy! We can proceed in the same way also when S is an infinite set.



There is no a-priori reason why this change of variables should exist. If one does not impose *good* genericity conditions then this is false.

This change of variables that reduces N to constant coefficients exists for all analytic NLS

$$iu_t - \Delta u = F(|u|^2)u$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

provided that F does not explicitly depends on φ . Problem is proving the non-degeneracy! We can proceed in the same way also when S is an infinite set. NLS normal form normal form KAM KAM Some ideas on the Proof geometry Kam theorem: the cubic NLS

Under the hypotheses of the previous theorem

$$H_{\mathrm{fin}} = (\omega(\xi), y) + \sum_{k \in S^c} \Omega_k(\xi) |z_k|^2 + P(\xi, x, y, z, \overline{z})$$

Theorem

There exists a Cantor set C, such that: $\forall \xi \in C$ there exists an analytic sympectic change of variables under which the Hamiltonian $H_{\rm fin}$ becomes

$$(\omega^{\infty}(\xi), y) + \sum_{k \in S^{c}} \Omega^{\infty}_{k}(\xi) |z_{k}|^{2} + P^{\infty}(\xi, x, y, z, \overline{z})$$

with $X_{P^{\infty}}|_{y=0,z=0} = 0.$

The KAM algorithm is a rapidly convergent iterative scheme which produces a sequence of changes of variables

$$H^{(p)} = (\omega^{(p)}(\xi), y) + \sum_{k \in S^c} \Omega_k^{(p)}(\xi) |z_k|^2 + P^{(p)}(\xi, x, y, z, \bar{z}),$$

with $X_{P^{(p)}}|_{y=0,z=0} \to 0$. The main point is to impose the Melnikov conditions:

$$egin{aligned} |(\omega^{(p)}(\xi),
u)| &\geq rac{\gamma}{|
u|^{ au}}, \quad |(\omega^{(p)}(\xi),
u)+\Omega^{(p)}_k(\xi)| \geq rac{\gamma}{|
u|^{ au}} \ |(\omega^{(p)}(\xi),
u)+\Omega^{(p)}_k(\xi)\pm\Omega^{(p)}_h(\xi)| \geq rac{\gamma}{|
u|^{ au}}, \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

The last condition is quite tricky to verify!

The main idea is to prove some asymptotic for the normal frequencies.

One would like something like

$$\Omega_k^{(p)} = |k|^2 + c^{(p)}(k) + O(|k|^{-\delta})$$

where $c^{(p)}(k)$ assumes a finite number of values (possibly growing with p).

At step zero ok:

$$\Omega_k = |k|^2 + \sum_i L_i(k)|v_i|^2 + \theta_k(\xi)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

To prove the asymptotics for all steps

we use the properties of quasi-Töplitz functions introduced in Xu-P. (similar to the Töplitz-Lipschitz functions of Eliasson-Kuksin (2010))

we use the fact that our equation has no explicit dependence of the space variables so that the TOTAL MOMENTUM is preserved.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The quasi-Töplitz functions are closed with respect to:

Poisson Brackets

solving the Homological equation

For a quadratic function

$$\sum_k \Omega_k |z_k|^2$$

this means that for all N sufficiently large and for |k| > N

$$\Omega_k = |k|^2 + c_N(k) + O(1/N)$$

 c_N assumes a finite (N dependent) number of values.

In Xu-P. we use the conservation of momentum to define the quasi-Töplitz functions.

This restriction has been removed in Berti-Biasco-P. for the case of the one Derivative non-linear wave equation.

$$\mathbf{y}_{tt} - \mathbf{y}_{\mathbf{xx}} + \mathbf{my} = g(\mathbf{x}, \mathbf{y}, \mathbf{y}_{\mathbf{x}}, \mathbf{y}_{t}), \quad \mathbf{x} \in \mathbb{T},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where m > 0

Note this is not an Hamiltonian equation.

The reason why we restrict to the cubic case is that we do not know in general how to prove full non-degeneracy namely

$$(\omega(\xi),\nu)+\Omega_k(\xi)-\Omega_h(\xi)=0,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

holds true on a proper algebraic hypersurface for all non-trivial choices of $\nu \in \mathbb{Z}^m$ $h, k \in S^c$ (recall that $\mathbb{Z}^n = S \cup S^c$). In the cubic case we need subtle arguments combining algebra and combinatorics

Open problems:

1. May we impose the non-degeneracy conditions for all values of $q \in \mathbb{N}$? This is a possibly very difficult problem in algebra (results on \mathbb{T}^1 and \mathbb{T}^2)

2. What can we say on the stability with weaker non-degeneracy conditions?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

The normal form Hamiltonian

$$Q(x, z, \overline{z}) = 4 \sum_{\substack{1 \le i \ne j \le m \\ h, k \in S^c}}^{*} \sqrt{\xi_i \xi_j} e^{i(x_i - x_j)} z_h \overline{z}_k + 2 \sum_{\substack{1 \le i < j \le m \\ h, k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{-i(x_i + x_j)} z_h z_k + 2 \sum_{\substack{1 \le i < j \le m \\ h, k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{i(x_i + x_j)} \overline{z}_h \overline{z}_k.$$

4

Geometric graph

Definition

We construct the graph Γ_5 with vertices all the points of \mathbb{Z}^n by connecting with an edge all the Fourier indexes which contribute non-trivially to $\mathcal{Q}(x, z)$.

We want to study the connected components of the graph Γ_S , since they describe the blocks of Q!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

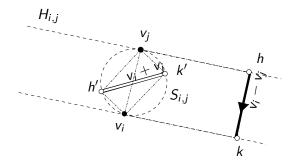


Figure: The plane $H_{i,j}$ and the sphere $S_{i,j}$. The points h, k, v_i, v_j form the vertices of a rectangle. Same for the points h', v_i, k', v_j

We can construct a graph which represents the matrix of Q by connecting all the h, k as above by an edge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A component as solution of a system of equations

A tree in the graph with e edges and e + 1 vertices is obtained by solving a system of e(n + 1) linear and quadratic equations (n + 1) for each edge), in (e + 1)n variables (the coordinates of the e + 1 vertices).

• We can expect that if $e(n+1) > (e+1)n \iff e > n$ these equations may be incompatible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• So we expect no tree with e > n edges.

A component as solution of a system of equations

The equations depend on the parameters v_i so the compatibility conditions are expressed by polynomial equations on the v_i which for us are the *resonances*.

We meet a substantial difficulty. Certain special systems of equations (Corresponding to trees with e > n edges) are never incompatible!

They have as solutions the vectors v_i and we have to make sure that no other big component appears.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

```
NLS normal form normal form KAM KAM Some ideas on the Proof geometry
```

```
It is relatively easy to give a uniform bound (depending on m and n)
on the dimension of the blocks of Q (a proof is for instance in Gentile P. (CMP 2009)).
```

Proving optimal bounds is much more subtle!

Proposition

For generic choices of S the connected components of Γ_S have at most n + 1 vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamical consequences

$$Q(x, z, \overline{z}) = 4 \sum_{\substack{1 \le i \ne j \le m \\ h, k \in S^c}}^* \sqrt{\xi_i \xi_j} e^{i(x_i - x_j)} z_h \overline{z}_k + 2 \sum_{\substack{1 \le i < j \le m \\ h, k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{-i(x_i + x_j)} z_h z_k + 2 \sum_{\substack{1 \le i < j \le m \\ h, k \in S^c}}^{**} \sqrt{\xi_i \xi_j} e^{i(x_i + x_j)} \overline{z}_h \overline{z}_k = (z, A(\xi, x)\overline{z}) + (z, B(\xi, x)z) + (\overline{z}, \overline{B}(\xi, x)\overline{z}),$$

where A is composed of blocks of dimension $\leq n + 1$; the blocks are described by a finite number of matrices B is a finite matrix.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

The change of variables which reduces to constant coefficients is: very simple

$$z_{k} = e^{-iL(k).x} z'_{k}, \ y = y' + \sum_{k \in S^{c}} L(k) |z'_{k}|^{2}, \ x = x'.$$
(11)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where $L(k) \in \mathbb{Z}^m$ and $|L(k)| \leq 2n + 2$.

We obtain the normal form Hamiltonian:

$$N = (\omega, y') + \sum_{k \in S^c} \tilde{\Omega}_k(\xi) |z'_k|^2 + Q(x = 0, z', \overline{z}')$$

where $ilde{\Omega}_k(\xi) = |k|^2 + (\omega, L(k)).$

This is a list of uncoupled finite dimensional systems! Let γ be a connected component of Γ_S we have the quadratic Hamiltonian

$$\sum_{k\in\gamma} ilde{\Omega}_k(\xi)|z_k'|^2+Q_\gamma(x=0,z',ar{z}')$$

We then apply the standard theory of quadratic Hamiltonians to diagonalize the matrices.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Write

$$\sum_{k\in\gamma}\tilde{\Omega}_k(\xi)|z_k'|^2+Q_\gamma(x=0,z',\bar{z}')=\frac{1}{2}(w,JM_\gamma w)$$

J is the symplectic matrix and $w = z, \overline{z}$.

We get the elliptic normal form if M is diagonable with real eigenvalues.

It turns out that

$$M_{\gamma} = scalar matrix + M'_{\gamma}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

 M'_{γ} is in a finite list of matrices.

NLS	normal form	normal form	KAM	KAM	Some ideas on the Proof	geometry

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶