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Nonlinear Schrödinger equation

Consider the Nonlinear Schrödinger equation on the torus T
n.

iut − ∆u = F (|u|2)u (1)

where u := u(t, ϕ), ϕ ∈ T
n,

F (y) is an analytic function, F (0) = 0
Note that we have no explicit space dependence.
This means that we have constants of motion due to translation
invariance.
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A good model is the CUBIC NLS:

iut − ∆u = F (|u|2)u = |u|2u (2)

with q ∈ N. Or more in general:

iut − ∆u = |u|2qu
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Quasi-periodic solutions

Main result, with C. Procesi

Consider the cubic NLS. For all m ∈ N, there exist Cantor families
of small quasi–periodic solutions of Equation (1) with m
frequencies ω1, . . . , ωm.
We also prove the existence of an reducible elliptic normal form
close to the solution.

m is arbitrarily large but finite
The solutions exist for all ω in a positive measure Cantor set. A
quasi–periodic solution is a solution u(t, ϕ) of Equation (1) such
that

u(t, ϕ) = U(ωt, ϕ)

where ω ∈ R
n and U : Tm × T

n → C. The solutions we find are
analytic.
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Main problems

Our equation iut − ∆u = |u|2u does not have external
parameters.

COMPLETELY RESONANT SYSTEM. For the linear equation

iut − ∆u = 0

all the bounded solutions are periodic of period 2π.

u(t, ϕ) =
∑

k

ukei(k·ϕ+|k|2t)

quasi-periodic solutions are due to the Non-Linearity
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Main problems

Even if you add external parameters to avoid the resonance
problem.

iut − ∆u + V (x)u = |u|2u

DEGENERACY: the eigenvalues of i∂t − ∆ are highly
degenerate (the multiplicity of the eigenvalues grows to
infinity!)

SMALL DIVISORS: The spectrum of the linear part i∂t − ∆
accumulates to zero on the space of quasi–periodic functions.
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We do not expect quasi-periodic solutions to be typical

In the case of T2, Colliander-Keel-Staffilani-Takaoka-Tao,
Invent.(2010) use unstable solutions to prove diffusion.

There is no a-priori reason why the solutions should have an
integrable elliptic normal form close to them.
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Some literature

non-resonant PDEs in one dimension
Kuksin, Craig, Wayne, Pöschel...
resonant PDEs in one dimension

Kuksin, Pöschel, Annals (96). (cubic NLS)

Geng (quintic NLS)

Magistrelli, P. ( NLS of degree 7)

non-resonant PDEs on T
n(with outer parameters)

Bourgain, Annals Studies (2005): NLS on T
n

Geng-You, CMP (2005): smoothing NLS on T
n, existence and

stability.

Eliasson-Kuksin, Annals (2010): NLS on T
n, existence and

stability.

Xu – P. (2011) NLS on T
n, existence and stability

(non–linearities which do not depend on the space variable)
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resonant PDEs on T
n

Bourgain, Annals (96) cubic NLS on T
2 with two frequencies.

Gentile-P., CMP (2009) periodic solutions on T
n.

Berti-P.: periodic solutions for NLS on Lie groups

Geng-You-Xu Adv. Math.(11): quasi–periodic solutions on T
2

Wang( 2009-2011) quasi-periodic solutions general analytic
NLS

C. Procesi, P. CMP (2012) (Normal form for the general
analytic NLS)

Nguyeng Bich V., C. Procesi, P. Preprint (non-degeneracy of
the normal form)

C. Procesi, P. (in preparation) (quasi–periodic solutions)

Our result not only gives existence of solutions but also an
integrable elliptic normal form close to the solutions
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The plan

The construction of quasi–periodic solutions is performed in three
steps:

The plan

1 Construction of integrable normal forms (applying Birkhoff
normal form)

2 Proof of non–degeneracy of the normal form (algebraic
argument)

3 The KAM algorithm and quasi–Töpliz property.
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Dynamical systems approach

Passing to the Fourier representation

u(t, ϕ) :=
∑

k∈Zn

uk(t)e
i(k,ϕ) ,

|u|2a,p =
∑

k∈Zn

|uk |2e2a|k||k|2p < ∞

Eq. (1) can be written as an

infinite dimensional Hamiltonian dynamical system:

H =
∑

k∈Zn

|k|2uk ūk +
∑

ki ∈Zn:k1+k3=k2+k4

uk1
ūk2

uk3
ūk4

(3)

with respect to the complex symplectic form i
∑

k duk ∧ dūk .
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The system has the constants of motion:

L =
∑

k∈Zn

uk ūk , M =
∑

k∈Zn

kuk ūk

the fact that M is preserved will be crucial to the proof!



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

Birkhoff Normal Form

H = K (u, ū) + H(4)(u, ū) , K (u, ū) =
∑

k

|k|2uk ūk

where H(4) is a polynomial of degree 4 and the linear frequencies
(in our case |k|2) are all rational.
With a sympletic change of variables we reduce the Hamiltonian H
to

HBirk = K (u, ū) + H(4)
res (u, ū) + H(6)

where H(6) is small while H
(4)
res Poisson commutes with K .
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One step of Birkhoff normal form produces

HBirk =
∑

k∈Zn

|k|2uk ūk +
∑

ki ∈Zn :k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1
ūk2

uk3
ūk4

+ H(6) (4)

k1

k2

k3

k4

Even if we ignore the term H(6), this equation is still very
complicated but Has a lot of invariant subspaces where the
equation is significantly easier!
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Given a set S ⊂ Z
n consider the subspace

US := {u = {uk}k∈Zn : uk = 0 , if k /∈ S}

For generic choices of S the space US is invariant for the dynamics
of

K + H
(4)
Res =

∑

k∈Zn

|k|2uk ūk +
∑

ki ∈Zn :k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1
ūk2

uk3
ūk4

the Hamiltonian K + H
(4)
Res restricted on US is

∑

k∈S

|k|2|uk |2 −
∑

k∈S

|uk |4
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Invariant subspaces

Generiticity condition on S:

There are no triples k1, k2, k3 ∈ S that form a right angle

◦ v1 ◦ v4

◦ v2 ◦ v3

One can also construct invariant subspaces US where the dynamics
is more complicated
Colliander–Keel–Staffilani–Takaoka–Tao
Grebert-Thomann
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US is not invariant for the NLS Hamiltonian

K + H
(4)
Res + H(6)

so the dynamics restricted to US can give information on the
solution only for finite times.
We have to study the dynamics of the normal modes uk with
k /∈ S.
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Elliptic/action-angle variables.

Let us now partition

Z
n = S ∪ Sc , S := (v1, . . . , vm).

where:

Let us now set

uk := zk for k ∈ Sc , uvi
:=

√

ξi + yie
ixi for vi ∈ S,

this puts the tangential sites in action angle variables

y := {y1, . . . , ym}, x := x1, . . . , xm

the ξ are parameters.

ξ ∈ Aε2 := {ξ :
1

2
ε2 ≤ ξi ≤ ε2 } ,
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Let us now set

uk := zk for k ∈ Sc , uvi
:=

√

ξi + yie
ixi for vi ∈ S,

For all r ≤ ε/2 this is a well known analytic and symplectic change
of variables in the domain

Da,p(s, r) = D(s, r) :=

{x , y , z : |Im(x)| < s , |y | ≤ r2 , ‖z‖a,p ≤ r} ⊂ T
m
s ×C

m×ℓ(a,p)×ℓ(a,p).

||z ||2a,p := |z0|2 +
∑

k∈Sc

|zk |2e2a|k||k|2p
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The normal form Hamiltonian

substitute

uk := zk for k ∈ Sc , uvi
:=

√

ξi + yie
ixi for vi ∈ S,

in

∑

k∈Zn

|k|2uk ūk +
∑

ki ∈Zn :k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1
ūk2

uk3
ūk4

+ H(6)
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We impose some simple constraints

After normalizing the NLS Hamiltonian is N + P where P is small
and the leading term is:

N :=
∑

1≤i≤m

(|vi |
2 − 2ξi)yi +

∑

k∈Sc

|k|2|zk |2 (5)

+Q(x , z)

set ωi := |vi |
2 − 2ξi . Q(x , z) is a quadratic form in the normal

variables z
N has the quasi-periodic solutions

x = x0 + ωt , y = 0 , z = 0
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The normal form Hamiltonian

Q(x , z) = 4
∗

∑

1≤i 6=j≤m
h,k∈Sc

√

ξiξje
i(xi −xj)zhz̄k+ (6)

2
∗∗

∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
−i(xi+xj)zhzk + 2

∗∗
∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
i(xi+xj)z̄hz̄k .



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

The constraints
∑∗

,

∑∗∗ mean

that the terms are resonant with the quadratic part K, that is:

Definition

Here
∑∗ denotes that (h, k, vi , vj) give a rectangle:

{(h, k, vi , vj) | h + vi = k + vj , |h|2 + |vi |
2 = |k|2 + |vj |

2}.

We say h ∈ Hi ,j , k ∈ Hj,i .
∑∗∗ means that (h, vi , k, vj ) give a rectangle:

{(h, vi , k, vj) | h + k = vi + vj , |h|2 + |k|2 = |vi |
2 + |vj |

2}.

We say h, k ∈ Si ,j
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vi

vj

h′

k ′

h

k

Hi ,j

Si ,j

v i
−

v j

v i +
vj

Figure: The plane Hi,j and the sphere Si,j . The points h, k , vi , vj form the

vertices of a rectangle. Same for the points h
′
, vi , k

′
, vj



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

The Hamilton equations associated to N are linear with
non-constant coefficients:

iż − Q+(ωt)z + Q−(ωt)z̄ = 0

Q =

∣

∣

∣

∣

∣

Q+ Q−

−Q̄− −Q̄+

∣

∣

∣

∣

∣

is an infinite matrix.
Can we reduce to constant coefficients? Can we diagonalize?
The answer is YES but the proof requires subtle arguments.
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An idea of the method:

Consider a matrix of the form

D + εQ

Where D is diagonal. If D has distinct eigenvalues then one may
diagonalize D + εQ by a perturbation scheme. If D has multiple
eigenvalues we can only block diagonalize on the eigenspaces of
distinct eigenvalues. To complete the diagonalization we need
information on Q.
In finite dimension: I + εQ
a sufficient condition Q has distinct eigenvalues
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In our case direct inspection shows that we have from the start a
block diagonal matrix such that on each block D is proportional to
the identity.
We cannot rely on perturbation theory we must study the matrix
Q very attentively!
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A first theorem for generic choices of S = {v1, . . . , vm}.

Theorem

For generic vi ’s the quadratic Hamiltonian Q(x , w) is an
infinite sum of independent (decoupled) terms each depending
on a finite number of variables (at most n + 1 variables zj

together with their conjugates z̄j).

One can exhibit an explicit symplectic change of variables
which integrates N, namely makes all the angles disappear
from Q(x , w).
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Theorem

There exists a map

Sc ∋ k → L(k) ∈ Z
m , |L(k)| < 2n

such that the analytic symplectic change of variables:

zk = e−iL(k).x z ′
k , y = y ′ +

∑

k∈Sc

L(k)|z ′
k |2, x = x ′.

reduces N to costant coefficients

N = (ω(ξ), y ′) +
∑

k∈Sc

(|k|2 +
∑

i

Li(k)|vi |
2)|z ′

k |2 + Q̃(w ′) , (7)



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

The final Theorem and goal for the normal form

For the cubic NLS:

Theorem

for generic values of the parameters ξ (outside some algebraic
hyper surface) we can find a further symplectic change of
coordinates so that

N is diagonal (possibly with some complex terms)

N is non degenerate in the sense that it satisfies the first and
second Melnikov conditions.

there exists a positive measure region of the parameters ξ in
which N is elliptic (all real eigenvalues).
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Hfin = (ω(ξ), y) +
∑

k∈Sc

Ωk |zk |2 + P(ξ, x , y , z , z̄) (8)

ωi = |vi |
2 − 2ξi

Ωk = |k|2 +
∑

i

Li(k)|vi |
2 + θk(ξ) , ∀k ∈ Sc

The Li(k) are integers

θk(ξ) ∈ {θ(1)(ξ), . . . , θ(K)(ξ)} , K := K (n, m), (9)

list different analytic homoeogeneous functions of ξ.
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Non-Degeneracy

The Melnikov resonances:

(ω(ξ), ν) = 0 , (ω(ξ), ν) + Ωk(ξ) = 0 , (10)

(ω(ξ), ν) + Ωk(ξ) + σΩh(ξ) = 0

hold on a zero measure subset of the parameters ξ.
In order to prove this we must restrict to those indexes ν, h, k
which satisfy momentum conservation.
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Generiticity condition: Resonance polynomials

Definition

Given a list R := {P1(y), . . . , PN(y)} of non–zero polynomials in k
vector variables yi , we say that a list of vectors
S = {v1, . . . , vm}, vi ∈ C

n is GENERIC relative to R if, for any
list A = {u1, . . . , uk} such that ui ∈ S, ∀i , the evaluation of the
resonance polynomials at yi = ui is non–zero.

If m is finite this condition is equivalent to requiring that S
(considered as a point in C

nm) does not belong to the algebraic
variety where at least one of the resonance polynomials is zero.
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Some remarks

There is no a-priori reason why this change of variables should
exist. If one does not impose good genericity conditions then this
is false.
This change of variables that reduces N to constant coefficients
exists for all analytic NLS

iut − ∆u = F (|u|2)u

provided that F does not explicitly depends on ϕ.
Problem is proving the non-degeneracy!
We can proceed in the same way also when S is an infinite set.
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Kam theorem: the cubic NLS

Under the hypotheses of the previous theorem

Hfin = (ω(ξ), y) +
∑

k∈Sc

Ωk(ξ)|zk |2 + P(ξ, x , y , z , z̄)

Theorem

There exists a Cantor set C, such that: ∀ξ ∈ C there exists an
analytic sympectic change of variables under which the
Hamiltonian Hfin becomes

(ω∞(ξ), y) +
∑

k∈Sc

Ω∞
k (ξ)|zk |2 + P∞(ξ, x , y , z , z̄)

with XP∞ |y=0,z=0 = 0.



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

The KAM algorithm is a rapidly convergent iterative scheme which
produces a sequence of changes of variables

H(p) = (ω(p)(ξ), y) +
∑

k∈Sc

Ω
(p)
k (ξ)|zk |2 + P(p)(ξ, x , y , z , z̄) ,

with XP(p) |y=0,z=0 → 0.
The main point is to impose the Melnikov conditions:

|(ω(p)(ξ), ν)| ≥
γ

|ν|τ
, |(ω(p)(ξ), ν) + Ω

(p)
k (ξ)| ≥

γ

|ν|τ

|(ω(p)(ξ), ν) + Ω
(p)
k (ξ) ± Ω

(p)
h (ξ)| ≥

γ

|ν|τ
,
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The last condition is quite tricky to verify!

The main idea is to prove some asymptotic for the normal
frequencies.
One would like something like

Ω
(p)
k = |k|2 + c(p)(k) + O(|k|−δ)

where c(p)(k) assumes a finite number of values (possibly growing
with p).
At step zero ok:

Ωk = |k|2 +
∑

i

Li(k)|vi |
2 + θk(ξ)
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To prove the asymptotics for all steps

we use the properties of quasi-Töplitz functions introduced in
Xu-P. (similar to the Töplitz-Lipschitz functions of Eliasson-Kuksin
(2010))

we use the fact that our equation has no explicit dependence of
the space variables so that the TOTAL MOMENTUM is preserved.
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The quasi-Töplitz functions are closed with respect to:

Poisson Brackets

solving the Homological equation

For a quadratic function

∑

k

Ωk |zk |2

this means that for all N sufficiently large and for |k| > N

Ωk = |k|2 + cN(k) + O(1/N)

cN assumes a finite (N dependent) number of values.
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In Xu-P. we use the conservation of momentum to define the
quasi-Töplitz functions.
This restriction has been removed in Berti-Biasco-P. for the case of
the one Derivative non-linear wave equation.

ytt − yxx + my = g(x, y, yx, yt) , x ∈ T ,

where m > 0
Note this is not an Hamiltonian equation.
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The reason why we restrict to the cubic case is that we do not
know in general how to prove full non–degeneracy namely

(ω(ξ), ν) + Ωk(ξ) − Ωh(ξ) = 0,

holds true on a proper algebraic hypersurface for all non–trivial
choices of ν ∈ Zm h, k ∈ Sc (recall that Zn = S ∪ Sc). In the
cubic case we need subtle arguments combining algebra and
combinatorics
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Open problems:

1. May we impose the non–degeneracy conditions for all values of
q ∈ N? This is a possibly very difficult problem in algebra .... (
results on T

1 and T
2 )

2. What can we say on the stability with weaker non–degeneracy
conditions?
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The normal form Hamiltonian

Q(x , z , z̄) = 4
∗

∑

1≤i 6=j≤m
h,k∈Sc

√

ξiξje
i(xi −xj)zhz̄k+

2
∗∗

∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
−i(xi+xj)zhzk + 2

∗∗
∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
i(xi+xj)z̄hz̄k .
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Geometric graph

Definition

We construct the graph ΓS with vertices all the points of Zn by
connecting with an edge all the Fourier indexes which contribute
non–trivially to Q(x , z).

We want to study the connected components of the graph ΓS ,
since they describe the blocks of Q!



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

vi

vj

h′
k ′

h

k

Hi ,j

Si ,j

v i
−

v jv i +
vj

Figure: The plane Hi,j and the sphere Si,j . The points h, k , vi , vj form the

vertices of a rectangle. Same for the points h
′
, vi , k

′
, vj

We can construct a graph which represents the matrix of Q by
connecting all the h, k as above by an edge.
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A component as solution of a system of equations

A tree in the graph with e edges and e + 1 vertices is obtained by
solving a system of e(n + 1) linear and quadratic equations (n + 1
for each edge), in (e + 1)n variables (the coordinates of the e + 1
vertices).

We can expect that if e(n + 1) > (e + 1)n ⇐⇒ e > n these
equations may be incompatible.

So we expect no tree with e > n edges.
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A component as solution of a system of equations

The equations depend on the parameters vi so the compatibility
conditions are expressed by polynomial equations on the vi which
for us are the resonances.
We meet a substantial difficulty. Certain special systems of
equations ( Corresponding to trees with e > n edges) are never
incompatible!
They have as solutions the vectors vi and we have to make sure
that no other big component appears.
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It is relatively easy to give a uniform bound
(depending on m and n)
on the dimension of the blocks of Q (a proof is for instance in
Gentile P. (CMP 2009)).

Proving optimal bounds is much more subtle!

Proposition

For generic choices of S the connected components of ΓS have at
most n + 1 vertices.



NLS normal form normal form KAM KAM Some ideas on the Proof geometry

Dynamical consequences

Q(x , z , z̄) = 4
∗

∑

1≤i 6=j≤m
h,k∈Sc

√

ξiξje
i(xi −xj)zhz̄k+

2
∗∗

∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
−i(xi+xj)zhzk + 2

∗∗
∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
i(xi+xj)z̄hz̄k =

(z , A(ξ, x)z̄) + (z , B(ξ, x)z) + (z̄ , B̄(ξ, x)z̄),

where A is composed of blocks of dimension ≤ n + 1; the blocks
are described by a finite number of matrices B is a finite matrix.
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Reduction

The change of variables which reduces to constant coefficients is:
very simple

zk = e−iL(k).x z ′
k , y = y ′ +

∑

k∈Sc

L(k)|z ′
k |2, x = x ′. (11)

where L(k) ∈ Z
m and |L(k)| ≤ 2n + 2.
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We obtain the normal form Hamiltonian:

N = (ω, y ′) +
∑

k∈Sc

Ω̃k(ξ)|z
′
k |2 + Q(x = 0, z ′, z̄ ′)

where Ω̃k(ξ) = |k|2 + (ω, L(k)).
This is a list of uncoupled finite dimensional systems!
Let γ be a connected component of ΓS we have the quadratic
Hamiltonian

∑

k∈γ

Ω̃k(ξ)|z
′
k |2 + Qγ(x = 0, z ′, z̄ ′)

We then apply the standard theory of quadratic Hamiltonians to
diagonalize the matrices.
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Write

∑

k∈γ

Ω̃k(ξ)|z
′
k |2 + Qγ(x = 0, z ′, z̄ ′) =

1

2
(w , JMγw)

J is the symplectic matrix and w = z , z̄.

We get the elliptic normal form if M is diagonable with real
eigenvalues.

It turns out that

Mγ = scalar matrix + M ′
γ

M ′
γ is in a finite list of matrices.
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