Normal form and Quasi-periodic solutions for the non-linear Schrödinger equation

Michela Procesi
Università di Roma La Sapienza

Roma 3-7-2012

Nonlinear Schrödinger equation

Consider the Nonlinear Schrödinger equation on the torus \mathbb{T}^{n}.

$$
\begin{equation*}
i u_{t}-\Delta u=F\left(|u|^{2}\right) u \tag{1}
\end{equation*}
$$

where $u:=u(t, \varphi), \varphi \in \mathbb{T}^{n}$,
$F(y)$ is an analytic function, $F(0)=0$
Note that we have no explicit space dependence.
This means that we have constants of motion due to translation invariance.

A good model is the CUBIC NLS:

$$
\begin{equation*}
i u_{t}-\Delta u=F\left(|u|^{2}\right) u=|u|^{2} u \tag{2}
\end{equation*}
$$

with $q \in \mathbb{N}$. Or more in general:

$$
i u_{t}-\Delta u=|u|^{2 q} u
$$

Quasi-periodic solutions

Main result, with C. Procesi

Consider the cubic NLS. For all $m \in \mathbb{N}$, there exist Cantor families of small quasi-periodic solutions of Equation (1) with m frequencies $\omega_{1}, \ldots, \omega_{m}$.
We also prove the existence of an reducible elliptic normal form close to the solution.
m is arbitrarily large but finite
The solutions exist for all ω in a positive measure Cantor set. A quasi-periodic solution is a solution $u(t, \varphi)$ of Equation (1) such that

$$
u(t, \varphi)=U(\omega t, \varphi)
$$

where $\omega \in \mathbb{R}^{n}$ and $U: \mathbb{T}^{m} \times \mathbb{T}^{n} \rightarrow \mathbb{C}$. The solutions we find are analytic.

Main problems

Our equation $i u_{t}-\Delta u=|u|^{2} u$ does not have external parameters.

COMPLETELY RESONANT SYSTEM. For the linear equation

$$
i u_{t}-\Delta u=0
$$

all the bounded solutions are periodic of period 2π.

$$
u(t, \varphi)=\sum_{k} u_{k} e^{\mathrm{i}\left(k \cdot \varphi+|k|^{2} t\right)}
$$

quasi-periodic solutions are due to the Non-Linearity

Main problems

Even if you add external parameters to avoid the resonance problem.

$$
\mathrm{i} u_{t}-\Delta u+V(x) u=|u|^{2} u
$$

- DEGENERACY: the eigenvalues of $i \partial_{t}-\Delta$ are highly degenerate (the multiplicity of the eigenvalues grows to infinity!)
- SMALL DIVISORS: The spectrum of the linear part $i \partial_{t}-\Delta$ accumulates to zero on the space of quasi-periodic functions.

We do not expect quasi-periodic solutions to be typical
In the case of \mathbb{T}^{2}, Colliander-Keel-Staffilani-Takaoka-Tao, Invent.(2010) use unstable solutions to prove diffusion.

There is no a-priori reason why the solutions should have an integrable elliptic normal form close to them.

Some literature

non-resonant PDEs in one dimension

Kuksin, Craig, Wayne, Pöschel...
resonant PDEs in one dimension

- Kuksin, Pöschel, Annals (96). (cubic NLS)
- Geng (quintic NLS)
- Magistrelli, P. (NLS of degree 7)
non-resonant PDEs on \mathbb{T}^{n} (with outer parameters)
- Bourgain, Annals Studies (2005): NLS on \mathbb{T}^{n}
- Geng-You, CMP (2005): smoothing NLS on \mathbb{T}^{n}, existence and stability.
- Eliasson-Kuksin, Annals (2010): NLS on \mathbb{T}^{n}, existence and stability.
- Xu - P. (2011) NLS on \mathbb{T}^{n}, existence and stability (non-linearities which do not depend on the space variable)
- Bourgain, Annals (96) cubic NLS on \mathbb{T}^{2} with two frequencies.
- Gentile-P., CMP (2009) periodic solutions on \mathbb{T}^{n}.
- Berti-P.: periodic solutions for NLS on Lie groups
- Geng-You-Xu Adv. Math.(11): quasi-periodic solutions on \mathbb{T}^{2}
- Wang(2009-2011) quasi-periodic solutions general analytic NLS
- C. Procesi, P. CMP (2012) (Normal form for the general analytic NLS)
- Nguyeng Bich V., C. Procesi, P. Preprint (non-degeneracy of the normal form)
- C. Procesi, P. (in preparation) (quasi-periodic solutions)

Our result not only gives existence of solutions but also an integrable elliptic normal form close to the solutions

The plan

The construction of quasi-periodic solutions is performed in three steps:

The plan

(1) Construction of integrable normal forms (applying Birkhoff normal form)
(2) Proof of non-degeneracy of the normal form (algebraic argument)
(3) The KAM algorithm and quasi-Töpliz property.

Dynamical systems approach

Passing to the Fourier representation

$$
\begin{gathered}
u(t, \varphi):=\sum_{k \in \mathbb{Z}^{n}} u_{k}(t) e^{\mathrm{i}(k, \varphi)}, \\
|u|_{a, p}^{2}=\sum_{k \in \mathbb{Z}^{n}}\left|u_{k}\right|^{2} e^{2 a|k|}|k|^{2 p}<\infty
\end{gathered}
$$

Eq. (1) can be written as an

Dynamical systems approach

Passing to the Fourier representation

$$
u(t, \varphi):=\sum_{k \in \mathbb{Z}^{n}} u_{k}(t) e^{\mathrm{i}(k, \varphi)},
$$

Eq. (1) can be written as an infinite dimensional Hamiltonian dynamical system:

$$
\begin{equation*}
H=\sum_{k \in \mathbb{Z}^{n}}|k|^{2} u_{k} \bar{u}_{k}+\sum_{k_{i} \in \mathbb{Z}^{n}: k_{1}+k_{3}=k_{2}+k_{4}} u_{k_{1}} \bar{u}_{k_{2}} u_{k_{3}} \bar{u}_{k_{4}} \tag{3}
\end{equation*}
$$

with respect to the complex symplectic form $i \sum_{k} d u_{k} \wedge d \bar{u}_{k}$.

The system has the constants of motion:

$$
L=\sum_{k \in \mathbb{Z}^{n}} u_{k} \bar{u}_{k}, \quad M=\sum_{k \in \mathbb{Z}^{n}} k u_{k} \bar{u}_{k}
$$

the fact that M is preserved will be crucial to the proof!

Birkhoff Normal Form

$$
H=K(u, \bar{u})+H^{(4)}(u, \bar{u}), \quad K(u, \bar{u})=\sum_{k}|k|^{2} u_{k} \bar{u}_{k}
$$

where $H^{(4)}$ is a polynomial of degree 4 and the linear frequencies (in our case $|k|^{2}$) are all rational.
With a sympletic change of variables we reduce the Hamiltonian H to

$$
H_{\text {Birk }}=K(u, \bar{u})+H_{r e s}^{(4)}(u, \bar{u})+H^{(6)}
$$

where $H^{(6)}$ is small while $H_{\text {res }}^{(4)}$ Poisson commutes with K.

One step of Birkhoff normal form produces

$$
\begin{equation*}
H_{\text {Birk }}=\sum_{k \in \mathbb{Z}^{n}}|k|^{2} u_{k} \bar{u}_{k}+\sum_{\substack{k_{j} \in \mathbb{Z}^{n}: k_{1}+k_{3}=k_{2}+k_{4} \\\left|k_{1}\right|^{2}+\left|k_{3}\right|^{2}=\left|k_{2}\right|^{2}+\left|k_{4}\right|^{2}}} u_{k_{1}} \bar{u}_{k_{2}} u_{k_{3}} \bar{u}_{k_{4}}+H^{(6)} \tag{4}
\end{equation*}
$$

One step of Birkhoff normal form produces

$$
\begin{equation*}
H_{\text {Birk }}=\sum_{k \in \mathbb{Z}^{n}}|k|^{2} u_{k} \bar{u}_{k}+\sum_{\substack{k_{i} \in \mathbb{Z}^{n} k_{k_{1}}+k_{3}=k_{2}+k_{4} \\\left|k_{1}\right|^{2}\left|k_{3}\right|^{2}=\left|k_{2}\right|^{2}+\left|k_{4}\right|^{2}}} u_{k_{1}} \bar{u}_{k_{2}} u_{k_{3}} \bar{u}_{k_{4}}+H^{(6)} \tag{4}
\end{equation*}
$$

Even if we ignore the term $H^{(6)}$, this equation is still very complicated but Has a lot of invariant subspaces where the equation is significantly easier!

Given a set $S \subset \mathbb{Z}^{n}$ consider the subspace

$$
U_{S}:=\left\{u=\left\{u_{k}\right\}_{k \in \mathbb{Z}^{n}}: \quad u_{k}=0, \text { if } k \notin S\right\}
$$

For generic choices of S the space U_{S} is invariant for the dynamics of

$$
K+H_{R e s}^{(4)}=\sum_{k \in \mathbb{Z}^{n}}|k|^{2} u_{k} \bar{u}_{k}+\sum_{\substack{k_{i} \in \mathbb{Z}^{n} k_{1}+k_{3}=k_{2}+k_{4} \\\left|k_{1}\right|^{2}+\left|k_{3}\right|^{2}=\left|k_{2}\right|^{2}+\left|k_{4}\right|^{2}}} u_{k_{1}} \bar{u}_{k_{2}} u_{k_{3}} \bar{u}_{k_{4}}
$$

the Hamiltonian $K+H_{R e s}^{(4)}$ restricted on U_{S} is

$$
\sum_{k \in S}|k|^{2}\left|u_{k}\right|^{2}-\sum_{k \in S}\left|u_{k}\right|^{4}
$$

Invariant subspaces

Generiticity condition on S :

There are no triples $k_{1}, k_{2}, k_{3} \in S$ that form a right angle

$$
\circ v_{1} \quad \circ v_{4}
$$

○ V_{2}

- V3

One can also construct invariant subspaces U_{S} where the dynamics is more complicated
Colliander-Keel-Staffilani-Takaoka-Tao Grebert-Thomann
U_{S} is not invariant for the NLS Hamiltonian

$$
K+H_{R e s}^{(4)}+H^{(6)}
$$

so the dynamics restricted to U_{S} can give information on the solution only for finite times.
We have to study the dynamics of the normal modes u_{k} with $k \notin S$.

Elliptic/action-angle variables.

Let us now partition

$$
\mathbb{Z}^{n}=S \cup S^{c}, \quad S:=\left(v_{1}, \ldots, v_{m}\right)
$$

where:
Let us now set

$$
u_{k}:=z_{k} \text { for } k \in S^{c}, \quad u_{v_{i}}:=\sqrt{\xi_{i}+y_{i}} e^{\mathrm{i} x_{i}} \text { for } v_{i} \in S,
$$

this puts the tangential sites in action angle variables

$$
y:=\left\{y_{1}, \ldots, y_{m}\right\}, \quad x:=x_{1}, \ldots, x_{m}
$$

the ξ are parameters.

$$
\xi \in A_{\varepsilon^{2}}:=\left\{\xi: \frac{1}{2} \varepsilon^{2} \leq \xi_{i} \leq \varepsilon^{2}\right\}
$$

Let us now set

$$
u_{k}:=z_{k} \text { for } k \in S^{c}, \quad u_{v_{i}}:=\sqrt{\xi_{i}+y_{i}} e^{\mathrm{i} x_{i}} \text { for } v_{i} \in S
$$

For all $r \leq \varepsilon / 2$ this is a well known analytic and symplectic change of variables in the domain

$$
\begin{gathered}
D_{a, p}(s, r)=D(s, r):= \\
\left\{x, y, z:|I m(x)|<s,|y| \leq r^{2},\|z\|_{a, p} \leq r\right\} \subset \mathbb{T}_{s}^{m} \times \mathbb{C}^{m} \times \ell^{(a, p)} \times \ell^{(a, p)} . \\
\|z\|_{a, p}^{2}:=\left|z_{0}\right|^{2}+\sum_{k \in S^{c}}\left|z_{k}\right|^{2} e^{2 a|k|}|k|^{2 p}
\end{gathered}
$$

The normal form Hamiltonian

substitute

$$
u_{k}:=z_{k} \text { for } k \in S^{c}, \quad u_{v_{i}}:=\sqrt{\xi_{i}+y_{i}} e^{\mathrm{i} x_{i}} \text { for } v_{i} \in S,
$$

in

$$
\sum_{k \in \mathbb{Z}^{n}}|k|^{2} u_{k} \bar{u}_{k}+\sum_{\substack{k_{i} \in \mathbb{Z}^{n}: k_{1}+k_{3}=k_{2}+k_{4} \\\left|k_{1}\right|^{2}+\left|k_{3}\right|^{2}=\left|k_{2}\right|^{2}+\left|k_{4}\right|^{2}}} u_{k_{1}} \bar{u}_{k_{2}} u_{k_{3}} \bar{u}_{k_{4}}+H^{(6)}
$$

We impose some simple constraints
After normalizing the NLS Hamiltonian is $N+P$ where P is small and the leading term is:

$$
\begin{gather*}
N:=\sum_{1 \leq i \leq m}\left(\left|v_{i}\right|^{2}-2 \xi_{i}\right) y_{i}+\sum_{k \in S^{c}}|k|^{2}\left|z_{k}\right|^{2} \tag{5}\\
+\mathcal{Q}(x, z)
\end{gather*}
$$

set $\omega_{i}:=\left|v_{i}\right|^{2}-2 \xi_{i} . \mathcal{Q}(x, z)$ is a quadratic form in the normal variables z
N has the quasi-periodic solutions

$$
x=x_{0}+\omega t, \quad y=0, \quad z=0
$$

The normal form Hamiltonian

$$
\begin{gather*}
\mathcal{Q}(x, z)=4 \sum_{\substack{1 \leq i \neq j \leq m \\
h, k \in S c}}^{*} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}-x_{j}\right)} z_{h} \bar{z}_{k}+ \tag{6}\\
2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in S c}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{-\mathrm{i}\left(x_{i}+x_{j}\right)} z_{h} z_{k}+2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in \overline{S c}}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}+x_{j}\right)} \bar{z}_{h} \bar{z}_{k} .
\end{gather*}
$$

The constraints $\sum^{*}, \Sigma^{* *}$ mean

that the terms are resonant with the quadratic part K, that is:

Definition

- Here \sum^{*} denotes that $\left(h, k, v_{i}, v_{j}\right)$ give a rectangle:

$$
\left\{\left(h, k, v_{i}, v_{j}\right)\left|h+v_{i}=k+v_{j},|h|^{2}+\left|v_{i}\right|^{2}=|k|^{2}+\left|v_{j}\right|^{2}\right\} .\right.
$$

We say $h \in H_{i, j}, k \in H_{j, i}$.

- $\sum^{* *}$ means that $\left(h, v_{i}, k, v_{j}\right)$ give a rectangle:

$$
\left\{\left(h, v_{i}, k, v_{j}\right)\left|h+k=v_{i}+v_{j},|h|^{2}+|k|^{2}=\left|v_{i}\right|^{2}+\left|v_{j}\right|^{2}\right\} .\right.
$$

We say $h, k \in S_{i, j}$

Figure: The plane $H_{i, j}$ and the sphere $S_{i, j}$. The points h, k, v_{i}, v_{j} form the vertices of a rectangle. Same for the points $h^{\prime}, v_{i}, k^{\prime}, v_{j}$

The Hamilton equations associated to N are linear with non-constant coefficients:

$$
\begin{gathered}
\mathrm{i} \dot{z}-Q^{+}(\omega t) z+Q^{-}(\omega t) \bar{z}=0 \\
Q=\left|\begin{array}{cc}
Q^{+} & Q^{-} \\
-\bar{Q}^{-} & -\bar{Q}^{+}
\end{array}\right|
\end{gathered}
$$

is an infinite matrix.
Can we reduce to constant coefficients? Can we diagonalize? The answer is YES but the proof requires subtle arguments.

An idea of the method:

Consider a matrix of the form

$$
D+\varepsilon Q
$$

Where D is diagonal. If D has distinct eigenvalues then one may diagonalize $D+\varepsilon Q$ by a perturbation scheme. If D has multiple eigenvalues we can only block diagonalize on the eigenspaces of distinct eigenvalues. To complete the diagonalization we need information on Q .
In finite dimension: $I+\varepsilon Q$
a sufficient condition Q has distinct eigenvalues

In our case direct inspection shows that we have from the start a block diagonal matrix such that on each block D is proportional to the identity.
We cannot rely on perturbation theory we must study the matrix Q very attentively!

A first theorem for generic choices of $S=\left\{v_{1}, \ldots, v_{m}\right\}$.

Theorem

- For generic v_{i} 's the quadratic Hamiltonian $\mathcal{Q}(x, w)$ is an infinite sum of independent (decoupled) terms each depending on a finite number of variables (at most $n+1$ variables z_{j} together with their conjugates \bar{z}_{j}).
- One can exhibit an explicit symplectic change of variables which integrates N, namely makes all the angles disappear from $\mathcal{Q}(x, w)$.

Theorem

There exists a map

$$
S^{c} \ni k \rightarrow L(k) \in \mathbb{Z}^{m}, \quad|L(k)|<2 n
$$

such that the analytic symplectic change of variables:

$$
z_{k}=e^{-i L(k) \cdot x} z_{k}^{\prime}, \quad y=y^{\prime}+\sum_{k \in S^{c}} L(k)\left|z_{k}^{\prime}\right|^{2}, x=x^{\prime}
$$

reduces N to costant coefficients

$$
\begin{equation*}
N=\left(\omega(\xi), y^{\prime}\right)+\sum_{k \in S^{c}}\left(|k|^{2}+\sum_{i} L_{i}(k)\left|v_{i}\right|^{2}\right)\left|z_{k}^{\prime}\right|^{2}+\tilde{\mathcal{Q}}\left(w^{\prime}\right) \tag{7}
\end{equation*}
$$

The final Theorem and goal for the normal form

For the cubic NLS:

Theorem

- for generic values of the parameters ξ (outside some algebraic hyper surface) we can find a further symplectic change of coordinates so that
- N is diagonal (possibly with some complex terms)
- N is non degenerate in the sense that it satisfies the first and second Melnikov conditions.
- there exists a positive measure region of the parameters ξ in which N is elliptic (all real eigenvalues).

$$
\begin{gather*}
H_{\mathrm{fin}}=(\omega(\xi), y)+\sum_{k \in S^{c}} \Omega_{k}\left|z_{k}\right|^{2}+P(\xi, x, y, z, \bar{z}) \tag{8}\\
\omega_{i}=\left|v_{i}\right|^{2}-2 \xi_{i} \\
\Omega_{k}=|k|^{2}+\sum_{i} L_{i}(k)\left|v_{i}\right|^{2}+\theta_{k}(\xi), \quad \forall k \in S^{c}
\end{gather*}
$$

The $L_{i}(k)$ are integers

$$
\begin{equation*}
\theta_{k}(\xi) \in\left\{\theta^{(1)}(\xi), \ldots, \theta^{(K)}(\xi)\right\}, \quad K:=K(n, m) \tag{9}
\end{equation*}
$$

list different analytic homoeogeneous functions of ξ.

Non-Degeneracy

The Melnikov resonances:

$$
\begin{gather*}
(\omega(\xi), \nu)=0, \quad(\omega(\xi), \nu)+\Omega_{k}(\xi)=0, \tag{10}\\
(\omega(\xi), \nu)+\Omega_{k}(\xi)+\sigma \Omega_{h}(\xi)=0
\end{gather*}
$$

hold on a zero measure subset of the parameters ξ. In order to prove this we must restrict to those indexes ν, h, k which satisfy momentum conservation.

Generiticity condition: Resonance polynomials

Definition

Given a list $\mathcal{R}:=\left\{P_{1}(y), \ldots, P_{N}(y)\right\}$ of non-zero polynomials in k vector variables y_{i}, we say that a list of vectors $S=\left\{v_{1}, \ldots, v_{m}\right\}, v_{i} \in \mathbb{C}^{n}$ is GENERIC relative to \mathcal{R} if, for any list $A=\left\{u_{1}, \ldots, u_{k}\right\}$ such that $u_{i} \in S, \forall i$, the evaluation of the resonance polynomials at $y_{i}=u_{i}$ is non-zero.

If m is finite this condition is equivalent to requiring that S (considered as a point in $\mathbb{C}^{n m}$) does not belong to the algebraic variety where at least one of the resonance polynomials is zero.

Some remarks

There is no a-priori reason why this change of variables should exist. If one does not impose good genericity conditions then this is false.
 mann

Some remarks

There is no a-priori reason why this change of variables should exist. If one does not impose good genericity conditions then this is false.
This change of variables that reduces N to constant coefficients exists for all analytic NLS

$$
i u_{t}-\Delta u=F\left(|u|^{2}\right) u
$$

provided that F does not explicitly depends on φ.
Problem is proving the non-degeneracy!
We can proceed in the same way also when S is an infinite set.

Kam theorem: the cubic NLS

Under the hypotheses of the previous theorem

$$
H_{\mathrm{fin}}=(\omega(\xi), y)+\sum_{k \in S^{c}} \Omega_{k}(\xi)\left|z_{k}\right|^{2}+P(\xi, x, y, z, \bar{z})
$$

Theorem

There exists a Cantor set \mathcal{C}, such that: $\forall \xi \in \mathcal{C}$ there exists an analytic sympectic change of variables under which the Hamiltonian $H_{\text {fin }}$ becomes

$$
\left(\omega^{\infty}(\xi), y\right)+\sum_{k \in S^{c}} \Omega_{k}^{\infty}(\xi)\left|z_{k}\right|^{2}+P^{\infty}(\xi, x, y, z, \bar{z})
$$

with $\left.X_{P \infty}\right|_{y=0, z=0}=0$.

The KAM algorithm is a rapidly convergent iterative scheme which produces a sequence of changes of variables

$$
H^{(p)}=\left(\omega^{(p)}(\xi), y\right)+\sum_{k \in S^{c}} \Omega_{k}^{(p)}(\xi)\left|z_{k}\right|^{2}+P^{(p)}(\xi, x, y, z, \bar{z}),
$$

with $\left.X_{P(p)}\right|_{y=0, z=0} \rightarrow 0$.
The main point is to impose the Melnikov conditions:

$$
\begin{gathered}
\left|\left(\omega^{(p)}(\xi), \nu\right)\right| \geq \frac{\gamma}{|\nu|^{\tau}}, \quad\left|\left(\omega^{(p)}(\xi), \nu\right)+\Omega_{k}^{(p)}(\xi)\right| \geq \frac{\gamma}{|\nu|^{\tau}} \\
\left|\left(\omega^{(p)}(\xi), \nu\right)+\Omega_{k}^{(p)}(\xi) \pm \Omega_{h}^{(p)}(\xi)\right| \geq \frac{\gamma}{|\nu|^{\tau}}
\end{gathered}
$$

The last condition is quite tricky to verify!
The main idea is to prove some asymptotic for the normal frequencies.
One would like something like

$$
\Omega_{k}^{(p)}=|k|^{2}+c^{(p)}(k)+O\left(|k|^{-\delta}\right)
$$

where $c^{(p)}(k)$ assumes a finite number of values (possibly growing with p).
At step zero ok:

$$
\Omega_{k}=|k|^{2}+\sum_{i} L_{i}(k)\left|v_{i}\right|^{2}+\theta_{k}(\xi)
$$

To prove the asymptotics for all steps
we use the properties of quasi-Töplitz functions introduced in Xu-P. (similar to the Töplitz-Lipschitz functions of Eliasson-Kuksin (2010))
we use the fact that our equation has no explicit dependence of the space variables so that the TOTAL MOMENTUM is preserved.

The quasi-Töplitz functions are closed with respect to:

Poisson Brackets

solving the Homological equation

For a quadratic function

$$
\sum_{k} \Omega_{k}\left|z_{k}\right|^{2}
$$

this means that for all N sufficiently large and for $|k|>N$

$$
\Omega_{k}=|k|^{2}+c_{N}(k)+O(1 / N)
$$

c_{N} assumes a finite (N dependent) number of values.

In Xu-P. we use the conservation of momentum to define the quasi-Töplitz functions.
This restriction has been removed in Berti-Biasco-P. for the case of the one Derivative non-linear wave equation.

$$
\mathrm{y}_{t t}-\mathrm{y}_{\mathrm{xx}}+\mathrm{my}=g\left(\mathrm{x}, \mathrm{y}, \mathrm{y}_{\mathrm{x}}, \mathrm{y}_{t}\right), \quad \mathrm{x} \in \mathbb{T},
$$

where $m>0$
Note this is not an Hamiltonian equation.

The reason why we restrict to the cubic case is that we do not know in general how to prove full non-degeneracy namely

$$
(\omega(\xi), \nu)+\Omega_{k}(\xi)-\Omega_{h}(\xi)=0,
$$

holds true on a proper algebraic hypersurface for all non-trivial choices of $\nu \in \mathbb{Z}^{m} h, k \in S^{c}$ (recall that $\mathbb{Z}^{n}=S \cup S^{c}$). In the cubic case we need subtle arguments combining algebra and combinatorics

Open problems:

1. May we impose the non-degeneracy conditions for all values of $q \in \mathbb{N}$? This is a possibly very difficult problem in algebra (results on \mathbb{T}^{1} and \mathbb{T}^{2})
2. What can we say on the stability with weaker non-degeneracy conditions?

The normal form Hamiltonian

$$
\begin{gathered}
Q(x, z, \bar{z})=4 \sum_{\substack{1 \leq i \neq j \leq m \\
h, k \in \overline{S c}}}^{*} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}-x_{j}\right)} z_{h} \bar{z}_{k}+ \\
2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in S c}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{-\mathrm{i}\left(x_{i}+x_{j}\right)} z_{h} z_{k}+2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in S_{c}}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}+x_{j}\right)} \bar{z}_{h} \bar{z}_{k} .
\end{gathered}
$$

Geometric graph

Definition

We construct the graph Γ_{S} with vertices all the points of \mathbb{Z}^{n} by connecting with an edge all the Fourier indexes which contribute non-trivially to $\mathcal{Q}(x, z)$.

We want to study the connected components of the graph 「 ${ }_{S}$, since they describe the blocks of Q !

Figure: The plane $H_{i, j}$ and the sphere $S_{i, j}$. The points h, k, v_{i}, v_{j} form the vertices of a rectangle. Same for the points $h^{\prime}, v_{i}, k^{\prime}, v_{j}$

We can construct a graph which represents the matrix of Q by connecting all the h, k as above by an edge.

A component as solution of a system of equations

A tree in the graph with e edges and $e+1$ vertices is obtained by solving a system of $e(n+1)$ linear and quadratic equations $(n+1$ for each edge), in ($e+1$) n variables (the coordinates of the $e+1$ vertices).

- We can expect that if $e(n+1)>(e+1) n \Longleftrightarrow e>n$ these equations may be incompatible.
- So we expect no tree with $e>n$ edges.

A component as solution of a system of equations

The equations depend on the parameters v_{i} so the compatibility conditions are expressed by polynomial equations on the v_{i} which for us are the resonances.
We meet a substantial difficulty. Certain special systems of equations (Corresponding to trees with $e>n$ edges) are never incompatible!
They have as solutions the vectors v_{i} and we have to make sure that no other big component appears.

It is relatively easy to give a uniform bound (depending on m and n)
on the dimension of the blocks of Q (a proof is for instance in Gentile P. (CMP 2009)).

Proving optimal bounds is much more subtle!

Proposition

For generic choices of S the connected components of Γ_{S} have at most $n+1$ vertices.

Dynamical consequences

$$
\begin{gathered}
Q(x, z, \bar{z})=4 \sum_{\substack{1 \leq i \neq j \leq m \\
h, k \in \overline{S c}}}^{*} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}-x_{j}\right)} z_{h} \bar{z}_{k}+ \\
2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in \in c}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{-\mathrm{i}\left(x_{i}+x_{j}\right)} z_{h} z_{k}+2 \sum_{\substack{1 \leq i<j \leq m \\
h, k \in \overline{S c}}}^{* *} \sqrt{\xi_{i} \xi_{j}} e^{\mathrm{i}\left(x_{i}+x_{j}\right)} \bar{z}_{h} \bar{z}_{k}= \\
(z, A(\xi, x) \bar{z})+(z, B(\xi, x) z)+(\bar{z}, \bar{B}(\xi, x) \bar{z}),
\end{gathered}
$$

where A is composed of blocks of dimension $\leq n+1$; the blocks are described by a finite number of matrices B is a finite matrix.

Reduction

The change of variables which reduces to constant coefficients is: very simple

$$
\begin{equation*}
z_{k}=e^{-i L(k) \cdot x} z_{k}^{\prime}, \quad y=y^{\prime}+\sum_{k \in S^{c}} L(k)\left|z_{k}^{\prime}\right|^{2}, x=x^{\prime} \tag{11}
\end{equation*}
$$

where $L(k) \in \mathbb{Z}^{m}$ and $|L(k)| \leq 2 n+2$.

We obtain the normal form Hamiltonian:

$$
N=\left(\omega, y^{\prime}\right)+\sum_{k \in S^{c}} \tilde{\Omega}_{k}(\xi)\left|z_{k}^{\prime}\right|^{2}+Q\left(x=0, z^{\prime}, \bar{z}^{\prime}\right)
$$

where $\tilde{\Omega}_{k}(\xi)=|k|^{2}+(\omega, L(k))$.
This is a list of uncoupled finite dimensional systems!
Let γ be a connected component of Γ_{S} we have the quadratic Hamiltonian

$$
\sum_{k \in \gamma} \tilde{\Omega}_{k}(\xi)\left|z_{k}^{\prime}\right|^{2}+Q_{\gamma}\left(x=0, z^{\prime}, \bar{z}^{\prime}\right)
$$

We then apply the standard theory of quadratic Hamiltonians to diagonalize the matrices.

Write

$$
\sum_{k \in \gamma} \tilde{\Omega}_{k}(\xi)\left|z_{k}^{\prime}\right|^{2}+Q_{\gamma}\left(x=0, z^{\prime}, \bar{z}^{\prime}\right)=\frac{1}{2}\left(w, J M_{\gamma} w\right)
$$

J is the symplectic matrix and $w=z, \bar{z}$.
We get the elliptic normal form if M is diagonable with real eigenvalues.

It turns out that

$$
M_{\gamma}=\text { scalar matrix }+M_{\gamma}^{\prime}
$$

M_{γ}^{\prime} is in a finite list of matrices.

