
Global dynamics of energy critical focusing
nonlinear wave equations

Frank Merle
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In this lecture we will discuss the energy critical nonlinear wave equation
in 3 space dimensions.

We start by a review of the linear wave equation

(LW)


∂2

t w − ∆w = h
w |t= 0 = w0
∂tw |t= 0 = w1

We write the solution:

w(t) = S(t)(w0,w1) + D(t)(h) ,

where S(t) denotes the solution of the homogeneous problem (h = 0)

and D(t) the solution of the inhomogeneous one ((w0,w1) = (0,0)).
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One of the main properties of the linear wave equation is the finite speed
of propagation:

If supp(w0,w1) ∩ B(x0,a) = φ, supp h ∩

( ⋃
0≤t≤a

B(x0,a − t)× {t}

)
= φ,

then w ≡ 0 on
⋃

0≤t≤a
B(x0,a − t)× {t}.

��
��

��
�

??
??

??
?

w≡0 ∞
x0

An important estimate (Strichartz estimate) is:

‖w‖L8
x,t
≤ C

{
‖(w0,w1)‖Ḣ1×L2 + ‖D1/2h‖

L4/3
x,t

}
.
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The energy critical nonlinear wave equation, in the focusing case is:

(NLW)


∂2

t u − ∆u = u5

u |t= 0 = u0 ∈ Ḣ1
(R3) , x ∈ R3 , t ∈ R

∂tu |t= 0 = u1 ∈ L2(R3)

The defocusing case has −u5.

(NLW) is called energy critical because 1
λ1/2 u

( x
λ ,

t
λ

)
is also a solution

and this leaves unchanged the Ḣ1 × L2 norm.
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Small data theory for (NLW): If ‖(u0,u1)‖Ḣ1×L2 is small ∃ ! solution u,

defined for all time, such that u ∈ C((−∞,+∞); Ḣ1 × L2) ∩ L8
xt , which

scatters i.e.

‖(u(t), ∂tu(t)) − S(t)(u±0 ,u
±
1 )‖

Ḣ1×L2 −−−−→
t→±∞ 0 .

Moreover, for any data (u0,u1) ∈ Ḣ1 × L2, we have short time exis-
tence and hence there exists a maximal interval of existence I =

(−T−(u),T+(u)).

The energy E(u) = 1
2

∫
|∇u(t)|2 + 1

2

∫
|∂tu(t)|2 − 1

6

∫
|u(t)|6 is constant for

t ∈ I. In the defocusing case, −1
6 becomes 1/6.
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In the defocusing case work of Struwe, Grillakis, Shatah-Struwe,
Bahouri-Shatah (80’s-90’s) proves that for any (u0,u1) ∈ Ḣ1 × L2, the
solution exists globally and scatters.

In the focusing case this fails. Levine (74) showed that if E(u0,u1) ≤ 0,
then T−,T+ < ∞. (This is done by obstruction). Recently, Krieger-
Schag-Tataru 09 constructed solutions for which T+ < ∞. Also, in the
focusing case, the elliptic equation admits a non-negative solution W
(ground-state), which solves ∆u + u5 = 0.

Frank Merle (Univ. Cergy-Pontoise & IHÉS) Titre court ici 15/06/2012 6 / 27



This elliptic equation has been much studied in connection with the
Yamabe problem in differential geometry. W has the explicit form

W (x) =
1

(1 + W 2/3)1/2

W is the unique non-negative solution of the elliptic equation (Gidas-Ni-
Nirenberg 79) and the only Ḣ1 solution (Pohozaev 65). W is a global
in time solution of (NLW), which we call a soliton. It does not scatter to
a linear solution “non-dispersive” solution. Recently (2012) Donninger-
Krieger have constructed global in time solutions, which are bounded in
Ḣ1 × L2, are radial, and don’t scatter to either a linear solution or to W .
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We now recall some results for (NLW) in the last few years.

Thm 1: (KM 08) If E(u) < E(W ) then:
i) If ‖∇u0‖ < ‖∇W‖, we have global existence, scattering
ii) If ‖∇u0‖ > ‖∇W‖, we have T+,T− <∞.

The case ‖∇u0‖ = ‖∇W‖ is impossible.

A strengthening of this result is:

Thm 2: (DKM 09) If sup
0<t<T+

‖∇u(t)‖2 + 1
2‖∂tu(t)‖2 < ‖∇W‖2 (or

sup
0<t<1

‖∇u(t)‖2 +ε‖∂tu(t)‖2 < ‖∇W‖2 in the radial case) we have global

existence and scattering.
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The next result deals with the case E(u) = E(W ).

Thm 3: (DM 08) There exist W−,W+ radial, with E(W−) = E(W+) =

E(W ) s.t. if E(u) = E(W ), then:

i) If ‖∇u0‖ < ‖∇W‖, then u is globally defined, and u scatters to
linear solution at ±∞, or u = W−, which has: W− scatters at −∞
to W and at +∞ to a linear solution.

ii) If ‖∇u0‖ = ‖∇W‖, u = W .
iii) If ‖∇u0‖ > ‖∇W‖, then, either T+,T− <∞, or u = W+, which

has: W+ scatters at −∞ to W and T+(W+) <∞. (DKM 11, KNS
11).
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Next we turn to the existence of type II blow-up solutions, i.e. s.t.
T+ <∞ and supp

0<t<T+

‖∇u(t)‖+ ‖∂tu(t)‖ <∞.

Thm 4: (Krieger-Schlag-Tataru 09) ∀η0 > 0 ∃ radial solution s.t. T+ = 1,
sup

0<t<1
‖∇u(t)‖+ ‖∂tu(t)‖ <∞, sup

0<t<1
‖∇u(t)‖ ≤ ‖∇W‖+ η0 and

(u(t), ∂tu(t)) =

(
1

λ(t)1/2 W
(

x
λ(t)

)
,0
)

+ η(x , t) ,

with η continuous in Ḣ1× L2 up to t = 1 and λ(t) = (1 − t)1+ν, ν > 1/2.
(It is believed that ν > 0 works).

Frank Merle (Univ. Cergy-Pontoise & IHÉS) Titre court ici 15/06/2012 10 / 27



We next show that this is a “universal” phenomenon:

Thm 5: (DKM 09, 10) Assume that u is a solution so that T+ = 1,
sup

0<t<1
‖∇u(t)‖+ ‖∂tu(t)‖ <∞. (Type II solution)

i) Assume that u is radial and

sup
0<t<T+

‖∇u(t)‖ ≤ ‖∇W‖+ η0 , η0 small > 0 .

The ∃ (v0, v1) ∈ Ḣ1 × L2, λ(t) > 0, i0 ∈ {±1} s.t.

(u(t), ∂tu(t)) = (v0, v1)+

(
i0

λ(t)1/2 W
(

x
λ(t)

)
,0
)

+o(1) in Ḣ1×L2

where λ(t) = o(1 − t).
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ii) Non-radial case. Assume that

sup
0<t<T+

‖∇u(t)‖2 +
1
2
‖∂tu(t)‖2 ≤ ‖∇W‖2 + η0 , η0 small.

Then, after rotation and translation of R3, ∃ (v0, v1) ∈ Ḣ1 × L2,
i0 ∈ {±1}, ` small, x(t) ∈ R3, λ(t) > 0 s.t.

(u(t), ∂tu(t)) = (v0, v1) +

(
i0

λ(t)1/2 W`

(
x − x(t)
λ(t)

,0
)
,

i0
λ(t)3/2∂t W`

(
x − x(t)
λ(t)

,0
))

+o(1) in Ḣ1 × L2 ,

where λ(t) = o(1−t) , lim
t ↑1

x(t)
1 − t

= `~e1 , ~e1 = (1,0,0) , |`| ≤ Cη1/4
0 ,

and W`(x , t) = W
(

x1−t`√
1−`2

, x2, x3

)
is the Lorentz transform of W .
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Remark: Note that (3/4)1/4(1− t)−1/2 is a solution. Using this and finite
speed of propagation it is easy to construct type I solutions, i.e. T+ = 1
and lim

t ↑1
‖(u(t), ∂tu(t))‖

Ḣ1×L2 = +∞. Note that type I and type II solutions

need not be mutually exclusive.

Thm 5 (DKM 11) W+ (from Theorem 3) is type I.
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Next, I will turn to the main new topic in this lecture, namely soliton
resolution for radial solutions of (NL).

For a long time there has been a widespread belief that global in time
solutions of dispersive equations, asymptotically in time, decouple into
a sum of finitely many modulated solitons, a free radiation term and a
term that goes to 0 at infinity. Such a result should hold for globally
well-posed equations, or in general, with the additional condition that
the solution does not blow-up. When blow-up may occur such decom-
positions are always expected to be unstable. So far the only cases
where a result of this type has been proved is for the integrable KdV
and NLS equations in Id .
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For ∂tu + ∂3
xu + u∂xu = 0, for data with regularity and decay, this has

been established by Eckhaus and Schuur. Corresponding results for the
other integrable KdV equation, the modified KdV ∂tu +∂3

xu +u2∂xu = 0
were also obtained by the same authors (Miura transform). Heuristic
arguments for this conjecture, in the case of the cubic NLS in 1 − d ,
i∂tu +∂2

xu + |u|2u = 0 in 1 − d , another integrable model, were given by
Ablowitz-Segur 76 and Zakharov-Shabat 71.

These are all globally well-posed equations, for which one expects that
these decompositions are stable, unlike in the case of equations where
blow-up may occur.
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For more general equations, so far, results have been found for data
close to the soliton, in subcritical nonlinearities, due to several authors.
(Buslaev-Perelman 92 for NLS with specific nonlinearities in Id , Soffer-
Weinstein 90 in higher d , Martel-Merle for gKdV 2001 . . .).

For corresponding results near the soliton, in the case of finite time
blow-up, for critical problems, besides the ones of DKM mentioned ear-
lier, there has been work of Martel-Merle gKdV 2002, Merle-Raphael
04,04 for the mass critial NLS, etc.
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There have also been large solution results for critical equivariant wave
maps into the sphere due to Christodoulou-Tahvildar-Zadeh, Shatah-T-
Z and Struwe. They show convergence along some sequence of times
converging to the blow-up time, locally in space, to a soliton (harmonic
map).

In the finite time blow-up case, for the 1 − d nonlinear wave equation,
Merle-Zaag have obtained results of this kind through the use of a global
Lyapunov function in self-similar variables.
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In critical elliptic problems, such as the ones mentioned earlier, in do-
mains excluding a small ball, considering radial solutions, there have
been obtained results on decompositions into “towering bubbles” (the
analog of a finite sum of modulated solitons), as the size of the ball
goes to 0. (Musso-Pistoia 2006).

The first general results for radial solutions of (NLW), were for type II
solutions, and held only for a sequence of times (DKM 11).

We now have the full soliton resolution for radial solutions of (NLW),
in the two asymptotic regimes, finite time blow-up and global in time.
(Work of Duyckaerts-K-Merle 12).

Frank Merle (Univ. Cergy-Pontoise & IHÉS) Titre court ici 15/06/2012 18 / 27



Theorem: Let u be a radial solution of (NLW). Then, one of the following
holds:

a) Type I blow-up: T+ <∞ and

lim
t ↑T+

‖(u(t), ∂tu(t))‖
Ḣ1×L2 =∞

b) Type II blow-up: T+ <∞ and ∃ (v0, v1) ∈ Ḣ1 × L2

J ∈ N\{0} and ∀ j ∈ {1, . . . , J} , ij ∈ {±1}

and a positive λj(t) s.t.

λ1(t)� λ2(t)� . . .� λJ(t)� T+ − t ,

and (u(t), ∂tu(t)) = (v0, v1) +

 J∑
j=1

ij
λj(t)1/2 W

(
x
λj(t)

)
,0

+ o(1)

in Ḣ1 × L2.
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c) T+ = +∞ and ∃ a solution vL of the (LW), J ∈ N and for all
j ∈ {1, . . . , J}, ij ∈ {±1} and a positive λj(t) s.t.

λ1(t)� λ2(t)� . . .� λJ(t)� t ,

and

(u(t), ∂tu(t)) = (vL(t), ∂tvL(t))+

 J∑
j=1

ij
λj(t)1/2 W

(
x
λj(t)

)
,0

+o(1)

in Ḣ1 × L2 .
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Remark 1: When T+ <∞, a), b) imply that lim
t ↑T +
‖(u(t), ∂tu(t))‖

Ḣ1×L2 = `

exists, ` ∈
[
‖∇W‖,+∞], i.e. no mixed asymptotics. Also, solutions split

into type I, type II. Note that by previous results, both type I, type II exist.
We expect that solutions as in b) with J > 1 exist. For the 1 − d non-
linear wave equation situation mentioned earlier, this has been shown
by Côte-Zaag 11, while in the elliptic setting this is in the work of Mussi-
Pistoia mentioned earlier, also in the radial case.
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Remark 2: When T+ = ∞, c) in particular implies that
sup
t> 0
‖(u(t), ∂tu(t))‖

Ḣ1×L2 <∞.

More precisely, lim
t ↑∞‖(u(t), ∂tu(t))‖2

Ḣ1×L2
= `, and 2 E(u) ≤ ` ≤ 3 E(u).

Also J ≤ E(u)/E(W ). In this case we also expect that solutions with
J > 1 exist.
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Remark 3: It is known that the set S1 of initial data such that the cor-
responding solution scatters to a linear solution is open. It is believed
that the set S2 of initial data leading to type I blow-up is also open. Our
theorem gives a description of solutions whose data is in S3, the com-
plementary set to S1 ∪ S2. We believe that from our Theorem one can
show that S3 is the boundary of S1∪S2. In particular we conjecture that
the asymptotic behavior of solutions with data in S3 is unstable.

Frank Merle (Univ. Cergy-Pontoise & IHÉS) Titre court ici 15/06/2012 23 / 27



Ideas for the proof (global case): The fundamental new ingredient of
the proof is the following dispersive property that all radial solutions to
(NLW) (other than 0 and ±W up to scaling) must have:

∃R > 0 , η > 0 s.t. for all t ≥ 0 or all t ≤ 0

(∗)
∫
|x |>R+|t |

|∇x ,t u(x , t)|2 dx ≥ η .
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We establish this only using the behavior of u in outside regions, |x | >

R + |t |, without using any global integral identity of virial (Pohozaev)
type. In fact, this approach gives a new proof, without integral identities,
of Pohozaev’s result that 0,±W are the only radial Ḣ1 solutions of ∆u +

u5 = 0 and also of the result of DKM 09, which characterizes “compact”
radial solutions of (NLW) as 0,±W .
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Next, we show that a global radial solution must be bounded for at least
one sequence of times going to infinity. This uses an adaptation of
Levine’s blow-up argument. Then we show that an expansion as in the
conclusion in c) must hold on any sequence of times going to infinity
along which the sequence is bounded. In order to show this we first
show that if a solution is bounded for a sequence times, then the solu-
tion has linear behavior in the region outside a finite distance from the
boundary of the light cone |x | = |t |. This constructs the free radiation
term vL.
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Then we use the profile decomposition of Bahouri-Gérard (99). We
combine this with the finite speed of propagation to see that (∗) (with
R > 0) decouples the dynamics of different profiles in regions |x | >

R + |t |. This is accomplished through a “perturbation theorem”. If {tu}

is the sequence of times on which the solution is bounded, we apply
the profile decomposition to (u(tu), ∂tu(tu)) − (vL(tu), ∂tvL(tu)) and use
the above argument. Assuming that there is a non-zero profile which
is not ±W , using (∗) we can see that this profile sends an “energy
charmel” into the future, which contradicts the fact that outside finite
distance from the boundary of the light cone u(tu) − vL(tu) is small, or
into the past, which eventually contradicts the uniform Ḣ1 × L2 bound
on (u(tu), ∂tu(tu)). Finally, once this is done, continuity arguments give
the general statement.
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