Blow up for the L^2 critical gKdV equation

Yvan Martel⁽¹⁾, Frank Merle⁽²⁾, Pierre Raphaël⁽³⁾

- (1) Univ. Versailles St-Quentin and Institut Universitaire de France
- (2) Univ. Cergy-Pontoise and Institut des Hautes Etudes Scientifiques
 - (3) Univ. Toulouse and Institut Universitaire de France

Introduction

We consider the L^2 critical (gKdV) equation

$$(\mathsf{gKdV}) \quad \left\{ \begin{array}{ll} u_t + (u_{xx} + u^5)_x = 0, & \quad (t,x) \in [0,T) \times \mathbb{R}, \\ u(0,x) = u_0(x), & \quad x \in \mathbb{R}. \end{array} \right.$$

Recall the following important facts:

- The Cauchy problem is locally well-posed in H^1 [Kenig-Ponce-Vega, 92] ([Kato, 83])
- Mass and energy conservation

$$M_0 = \int u^2(t), \qquad E_0 = \frac{1}{2} \int u_x^2(t) - \frac{1}{6} \int u^6(t)$$

• Scaling invariance $(\lambda > 0)$

$$u^{\lambda}(t,x) = \frac{1}{\lambda^{\frac{1}{2}}} u\left(\frac{t}{\lambda^{3}}, \frac{x}{\lambda}\right), \quad \|u^{\lambda}\|_{L^{2}} = \|u\|_{L^{2}}, \quad E(u^{\lambda}) = \frac{1}{\lambda^{2}} E(u)$$

• Solitons are special solutions defined by $(\lambda > 0, x_0 \in \mathbb{R})$

$$R^{\lambda,x_0}(t,x) = \frac{1}{\lambda^{\frac{1}{2}}} Q\left(\frac{1}{\lambda}(x-x_0) - \frac{1}{\lambda^3}t\right)$$

$$Q(x) = \left(\frac{3}{\cosh^2(2x)}\right)^{1/4}, \quad Q'' - Q + Q^5 = 0, \quad E(Q) = 0$$

• Global existence for "small" L² norm: [Weinstein, 83]

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \Rightarrow$$
 the solution is global in H^1

Main questions of this talk:

• Blow up problem for initial data:

$$u_0 \in H^1$$
, $\|Q\|_{L^2} \le \|u_0\|_{L^2} \le \|Q\|_{L^2} + \alpha_0$, $\alpha_0 \ll 1$

ullet Classification of all possible behaviors for $\|u_0-Q\|_{H^1}\ll 1$

First results on blow up for L^2 critical gKdV

[YM-Merle, 00-02]

Assume

$$u_0 \in H^1$$
, $\|Q\|_{L^2} \le \|u_0\|_{L^2} < \|Q\|_{L^2} + \alpha_0$, $\alpha_0 \ll 1$

Then:

- (i) Blow up in finite or infinite time if $E_0 < 0$. No information on the blow up regime.
- (ii) Assuming blow up, Q is the universal blow up profile.
- (iii) Blow up in finite time if $E_0<0$ and $\int_{x>1}x^6u_0^2(x)dx<\infty$. Moreover, for a sequence $t_n\to T$,

$$||u_{x}(t_{n})||_{L^{2}} \leq \frac{C(u_{0})}{T-t_{n}}$$

(iv) Global existence for minimal mass initial data with decay.

Blow up for L^2 critical NLS

$$\begin{split} \text{(NLS)} & \left\{ \begin{array}{l} i\partial_t u + \Delta u + |u|^{\frac{4}{N}} u = 0, \\[0.2cm] u_{|t=0} = u_0 \end{array} \right. \quad (t,x) \in [0,T) \times \mathbb{R}^N \\ \\ \Delta Q_{\text{NLS}} - Q_{\text{NLS}} + Q_{\text{NLS}}^{1+\frac{4}{N}} = 0, \quad Q_{\text{NLS}} > 0 \text{ even} \end{split}$$

• [Merle, 93]

The only H^1 blow up solution of (NLS) with minimal mass $\|u_0\|_{L^2} = \|Q_{\rm NLS}\|_{L^2}$ is (up to symmetries)

$$S_{\mathrm{NLS}}(t,x) = \frac{1}{t^{N/2}} e^{-i(\frac{|x|^2}{4t} - \frac{1}{t})} Q_{\mathrm{NLS}}\left(\frac{x}{t}\right)$$

• Existence of unstable nontrivial $\frac{1}{(T-t)}$ blow up solutions. [Bourgain-Wang, 98], [Krieger-Schlag, 09], [Merle-Raphaël-Szeftel, 11]

"log-log" blow up for (NLS)

- [Landman-Papanicolaou-Sulem-Sulem, 88], etc. log-log conjecture
- [Perelman, 01]

Construction of a large class of log-log blow up solutions close to $Q_{\mathrm{NLS}}.$

- [Merle-Raphaël, 03-06]
- (i) Construction of an open set in H^1 of log-log blow up solutions close to $Q_{\rm NLS}$ (including all H^1 data with $E_0 \leq 0$ close to $Q_{\rm NLS}$)

$$\|\nabla u_{\mathrm{NLS}}(t)\|_{L^2} \sim C^* \sqrt{\frac{\log|\log(T-t)|}{T-t}}$$

(ii) Quantization of the focused mass at the blow up point x(T):

$$|u_{\text{NLS}}(t)|^2 \rightharpoonup ||Q_{\text{NLS}}||_{L^2}^2 \delta_{x=x(T)} + |u^*|^2, \quad u^* \in L^2.$$

Statement of new results for critical gKdV

[YM-Merle-Raphaël, 12]

Define ($\alpha_0 \ll 1$)

$$\mathcal{A} = \left\{ u_0 = Q + \varepsilon_0 \text{ with } \|\varepsilon_0\|_{H^1} < \alpha_0 \text{ and } \int_{x>1} x^{10} \varepsilon_0^2(x) dx < 1 \right\}$$

THM 1 (Negative or zero energy data close to Q)

Let $u_0 \in \mathcal{A}$. If $E(u_0) \leq 0$ and u(t) is not a soliton, then u(t) blows up in finite time T with

$$||u_{x}(t)||_{L^{2}} \underset{t \sim T}{\sim} \frac{||Q'||_{L^{2}}}{\ell_{0}(T-t)} \quad \text{for } \ell_{0}(u_{0}) > 0$$

$$u(t) - \frac{1}{\lambda^{\frac{1}{2}}(t)} Q\left(\frac{\cdot - x(t)}{\lambda(t)}\right) \underset{t \rightarrow T}{\rightarrow} u^{*} \quad \text{in } L^{2}$$

$$\lambda(t) \underset{t \sim T}{\sim} \ell_{0}(T-t), \quad x(t) \underset{t \sim T}{\sim} \frac{1}{\ell_{0}^{2}(T-t)}$$

See [Rodnianski-Sterbenz, 10], [Raphaël-Rodnianski, 12], [Merle-Raphaël-Rodnianski, 11]

THM 2 (Existence and uniqueness of minimal mass blow up sol.)

(i) There exists a solution $S \in \mathcal{C}((0,+\infty),H^1)$ with minimal mass

$$||S(t)||_{L^2} = ||Q||_{L^2}$$

such that

$$\|S_{\mathsf{x}}(t)\|_{L^2}\sim rac{\|Q'\|_{L^2}}{t} ext{ as } t\downarrow 0,$$
 $S(t)-rac{1}{t^{rac{1}{2}}}Q\left(rac{\cdot+rac{1}{t}+ar{c}t}{t}
ight)
ightarrow 0 ext{ in } L^2 ext{ as } t\downarrow 0,$

where \bar{c} is a universal constant.

(ii) Let u(t) be a solution with minimal mass which blows up in finite time. Then, u = S up to invariances.

THM 3 (Classification and universality of S(t))

Let $0 < \alpha_0 \ll \alpha^* \ll 1$. Only three scenarios are possible for $u_0 \in \mathcal{A}$

(Blow up) u(t) blows up in finite time with blow up rate $\frac{1}{T-t}$.

(Soliton) u(t) is global, bounded and locally converges to a soliton as $t \to +\infty$.

(Exit) there exists $t^* > 0$ such that u(t) exits at $t = t^*$ the L^2 neighborhood of size α^* of the family of solitons.

Moreover, for some τ^* , $u(t^*)$ is L^2 close (related to α_0) to $S(\tau^*)$ (up to symmetries).

Consequence: Assume that S(t) scatters at $+\infty$. Then, the (Exit) scenario implies scattering.

Classification results for NLKG, NLW [Nakanishi-Schlag, 10], [Krieger-Nakanishi-Schlag, 10] ([Duyckaerts-Kenig-Merle, 06-09]) Stable manifold: [Krieger-Schlag, 05], [Beceanu, 07]

Blow up rates for initial data with slow decay $u_0 \not\in \mathcal{A}$

THM 4 (Unstable blow up rates)

There exist blow up solutions with the following blow up rates:

(i) Blow up in finite time: for any $\nu>\frac{11}{13}$,

$$||u_x(t)||_{L^2} \sim t^{-\nu} \text{ as } t \to 0^+.$$

(ii) Blow up in infinite time:

$$\|u_{\mathsf{x}}(t)\|_{L^2}\sim e^t$$
 as $t\to +\infty$.

For any $\nu > 0$,

$$\|u_{\mathsf{x}}(t)\|_{L^2} \sim t^{\nu} \ \ \mathsf{as} \ \ t \to +\infty.$$

Moreover, such solutions can be taken arbitrarily close to solitons.

See [Krieger-Schlag-Tataru, 08], [Bejenaru-Tataru, 09], [Donninger-Krieger, 12], [Perelman, 12]

Formal derivation of the dynamics in ${\cal A}$

$$u(t,x) = \frac{1}{\lambda^{\frac{1}{2}}(t)} Q_{b(t)} \left(\frac{x - x(t)}{\lambda(t)} \right), \quad Q_b = Q + bP$$

$$u_t = -\frac{\lambda_t}{\lambda} (\Lambda Q_b)^{\lambda} - \frac{x_t}{\lambda} (Q_b')^{\lambda} + b_t P^{\lambda}, \quad \Lambda Q_b = \frac{1}{2} Q_b + y(Q_b)_y,$$

$$\Rightarrow \quad -\lambda^2 \lambda_t \Lambda Q_b + (Q_b'' - \lambda^2 x_t Q_b + Q_b^5)' + \lambda^3 b_t P = 0$$
Fix $\lambda^2 x_t = 1$ and $-\lambda^2 \lambda_t = b$. At first order in b ,
$$b \Lambda Q + b(LP)' + \lambda^3 b_t P + O(b^2) = 0$$
where $LP = -P'' + P - 5Q^4 P$. We fix
$$(LP)' = -\Lambda Q \quad \text{and} \quad \lambda^3 b_t = -2b^2$$

Combining the equations of λ_t and b_t , one gets

$$\frac{d}{dt}\left(\frac{b}{\lambda^2}\right) = \frac{1}{\lambda^2}\left(b_t - 2\frac{\lambda_t}{\lambda}b\right) = 0$$

and

$$-\lambda_t = \frac{b}{\lambda^2} = \ell_0$$
 (scaling law)

Three scenarios:

• $\ell_0 > 0$:

$$\lambda_t = -\ell_0 < 0 \quad \Rightarrow \quad \text{blow up and } \lambda(t) = \ell_0(T-t)$$

Example: $E_0 < 0$ but also $E_0 = 0$ (rigidity argument)

• $\ell_0 = 0$:

$$\lambda(t) = \mathsf{Cte} \implies \mathsf{soliton}$$

• $\ell_0 < 0$:

$$\lambda_t = -\ell_0 > 0 \implies \text{defocusing and then (Exit)}$$

Full ansatz - control of the remainder term

We decompose the solution u(t,x) as

$$u(t,x) = \frac{1}{\lambda^{\frac{1}{2}}(t)} Q_{b(t)} \left(\frac{x - x(t)}{\lambda(t)} \right) + \frac{1}{\lambda^{\frac{1}{2}}(t)} \varepsilon \left(t, \frac{x - x(t)}{\lambda(t)} \right)$$

where (b, λ, x) are adjusted to obtain orthogonality conditions on ε .

The function $\varepsilon(s,y)$ and (b,λ,x) are governed by

$$\varepsilon_s - (L\varepsilon)_y = \left(\frac{\lambda_s}{\lambda} + b\right) \Lambda Q + \left(\frac{\kappa_s}{\lambda} - 1\right) Q' + \frac{\lambda_s}{\lambda} \Lambda \varepsilon + O(b^2 + |b_s| + |\varepsilon|^2)$$

and
$$\int \varepsilon Q = \int \varepsilon \Lambda Q = \int \varepsilon y \Lambda Q = 0$$
 (s is the rescaled time $\frac{ds}{dt} = \frac{1}{\lambda^3}$)

The uniform control of some norm of ε is a fundamental point in all the regimes to justify the dynamics of the parameters.

Tools for a simplified linear model (with orthogonality)

$$\varepsilon_s - (L\varepsilon)_y = \alpha(s)\Lambda Q + \beta(s)Q'$$

• Energy conservation at the level of ε :

$$\forall s, (L\varepsilon(s), \varepsilon(s)) = Cte$$

▶ Monotonicity argument: for $A \gg 1$,

$$\frac{d}{ds} \int_{"v>-A"} (\varepsilon_y^2 + \varepsilon^2 - 5Q^4 \varepsilon^2)(s, y) dy \le e^{-\frac{A}{10}} \|\varepsilon(s)\|_{H^1}^2$$

Viriel type argument (under orthogonality conditions):

$$-\frac{d}{ds}\int y\varepsilon^2 = H(\varepsilon,\varepsilon) \ge \mu_0 \|\varepsilon(s)\|_{H^1}^2$$

Main estimate on ε

Definition of a Liapunov functional for $\varepsilon(s)$

$$\mathcal{F}(s) \sim \int \left[\varepsilon_y^2 \psi_1 + \varepsilon^2 \psi_2 - 5 Q^4 \varepsilon^2 \psi_1 \right] (s, y) dy$$

where

- $\psi_1(y) = 0$ for y < -A, $\psi_1(y) = 1$ for $y > -\frac{1}{2}A$,
- $\psi_2(y) = 0$ for y < -A, $\psi_2(y) = 1 + y$ for $y > -\frac{1}{2}A$.

 $\mathcal{F}(t)$ is a mixed **energy monotonicity** and **Viriel** quantity

PROP. Under a suitable assumption on space decay of $\varepsilon(s, y)$ on the right (which requires decay on the initial data), it holds

$$\frac{d}{ds}\left(\frac{\mathcal{F}}{\lambda^2}\right) + \frac{\|\varepsilon\|_{\mathcal{H}^1_{loc}}^2}{\lambda^2} \lesssim \frac{b^4}{\lambda^2}$$

The blue term is reminiscent of the "Kato smoothing effect". The term $\frac{b^4}{\lambda^2}$ is due to the equation of Q_b (order b only).

Full estimates

• Control of $\frac{b}{\lambda^2}$

$$\left| \frac{b(t_2)}{\lambda^2(t_2)} - \frac{b(t_1)}{\lambda^2(t_1)} \right| \lesssim \frac{b^2(t_1)}{\lambda^2(t_1)} + \frac{b^2(t_2)}{\lambda^2(t_2)} + \frac{\mathcal{F}(t_1)}{\lambda^2(t_1)}$$

ullet Equation of λ

$$\left|\lambda^2 \lambda_t + b\right| \lesssim \|\varepsilon(t)\|_{H^1_{loc}}^2 + |b|^2$$

ullet Control of arepsilon

$$\frac{\mathcal{F}(t_2)}{\lambda^2(t_2)} + \int_{t_1}^{t_2} \frac{\|\varepsilon(t)\|_{H^1_{\rm loc}}^2}{\lambda^5} dt \lesssim \frac{\mathcal{F}(t_1)}{\lambda^2(t_1)} + \frac{b^3(t_1)}{\lambda^2(t_1)} + \frac{b^3(t_2)}{\lambda^2(t_2)}$$

Analysis of the (Exit) case

Definition of the L^2 (Exit) time (α^* small but fixed) :

$$t^* = \sup\{0 < t < T, \text{ such that } \forall t' \in [0, t], \ \mathit{u}(t) \in \mathcal{T}_{\alpha^*}\}$$

where \mathcal{T}_{α^*} is an L^2 tube around the family of solitons:

$$\mathcal{T}_{\alpha^*} = \left\{ u \in H^1 \text{ with } \inf_{\lambda_0 > 0, \ x_0 \in \mathbf{R}} \left\| u - \frac{1}{\lambda_0^{\frac{1}{2}}} Q\left(\frac{\cdot - x_0}{\lambda_0}\right) \right\|_{L^2} < \alpha^* \right\}$$

New and general approach to:

- 1. Construct the minimal mass solution S
- 2. Prove universality of the **(Exit)** case and a "no-return lemma" based on the properties of S

Existence of a minimal mass solution

Choose a sequence of well-prepared initial data, for example:

$$u_n(0) = Q_{b_n(0)}, \ b_n(0) = -\frac{1}{n}, \ \|u_n(0)\|_{L^2} - \|Q\|_{L^2} \sim -\frac{c}{n}, \ \varepsilon_n(0) = 0$$

(Blowup) and (Soliton) are not possible ⇒ (Exit) regime

$$u_n(t,x) = \frac{1}{\lambda_n^{\frac{1}{2}}(t)} (Q_{b_n(t)} + \varepsilon_n) \left(t, \frac{x - x_n(t)}{\lambda_n(t)} \right)$$

$$(\lambda_n)_t \sim -b_n(0), \quad \lambda_n(t) \sim 1 - b_n(0)t, \quad b_n(t) = b_n(0)\lambda_n^2(t).$$

At the (Exit) time t_n^* : $b_n(t_n^*) = -\alpha^*$, $\lambda_n^2(t_n^*) \sim \frac{b_n(t_n^*)}{b_n(0)} \sim n\alpha^*$ (defocalisation)

Renormalize the solution at t_n^* :

$$v_{n}(\tau,x) = \lambda_{n}^{\frac{1}{2}}(t_{n}^{*})u_{n}(t_{n}^{*} + \tau\lambda_{n}^{3}(t_{n}^{*}), \lambda_{n}(t_{n}^{*})x + x_{n}(t_{n}^{*})).$$

$$v_{n}(\tau,x) = \frac{1}{\lambda_{v_{n}}^{\frac{1}{2}}(\tau)}(Q_{b_{v_{n}}} + \varepsilon_{v_{n}})\left(\tau, \frac{x - x_{v_{n}(\tau)}}{\lambda_{v_{n}(\tau)}}\right)$$

$$egin{aligned} \lambda_{
u_n}(au) &\sim rac{1}{\lambda_n(t_n^*)} \left[1-b_n(0)(t_n^*+ au\lambda_n^3(t_n^*))
ight] \ &\sim rac{1}{\lambda_n(t_n^*)} \left[\lambda_n(t_n^*)- au b_n(0)\lambda_n^3(t_n^*)
ight] = 1- au b_n(t_n^*) = 1+ aulpha^*. \end{aligned}$$

Mass, energy conservation and $\varepsilon_n(0) = 0 \Rightarrow \sup_{\tau} \|\varepsilon_{\nu_n}\|_{H^1} \leq \delta(\alpha^*)$.

Extract a weak limit $v_n(0) \rightarrow v(0)$ in H^1 weak such that the corresponding solution $v(\tau)$ blows up backwards at $\tau^* \sim -\frac{1}{\alpha^*}$. Moreover, $\|v(0)\|_{L^2} \leq \|Q\|_{L^2}$ by weak limit and blow up yields

$$||v(0)||_{L^2} = ||Q||_{L^2}.$$

Description of the general (Exit) scenario

PROP Let $(u_n(0))$ be a sequence in H^1 satisfying:

- 1. $u_n(0) \in \mathcal{A}$;
- 2. $||u_n(0)-Q||_{H^1}\leq \frac{1}{n};$
- 3. the solution u_n satisfies the **(Exit)** scenario

Then, there exists $\tau^* = \tau^*(\alpha^*)$ such that

$$\lambda_n^{\frac{1}{2}}(t_n^*)u_n(t_n^*,\lambda_n(t_n^*)\cdot+x_n(t_n^*))\to\lambda_S^{\frac{1}{2}}(\tau^*)S(\tau^*,\lambda_S(\tau^*)\cdot+x_S(\tau^*))$$

in L^2 as $n \to +\infty$.

The idea of the proof is similar as before, except that the H^1 bound is lost for general (not well-prepared) initial data.

The uniqueness of S is decisive.