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Abstract. We concentrate on higher space dimensions with pe-
riodic boundary conditions and the basic model is the non-linear
Schrödinger equation. We discuss some questions which are mostely
open and we illustratete these problems by a list of partial results.
We’ve tried to cite most people who has made important contri-
butions to the field, but the list does not claim to be in any sense
exhaustive.

This is a survey lecture given at the conference in “Non-linear
hamiltonian PDE’s” in Ascona, July 1-6, 2012.

1. Quasi-periodic solutions and KAM-tori

We consider the d-dimensional nonlinear Schrödinger equation

(NLS)
1

i
u̇ = ∆u+ V (x) ∗ u+ ε

∂F

∂ū
(x, u, ū)

under the periodic boundary condition x ∈ Td. The convolution poten-
tial V : Td → C is analytic with real Fourier coefficients V̂ (a), a ∈ Zd.
F is an analytic function in <u, =u and x.

When ε = 0, then

(∗) u(t, x) =
∑
a∈A

û(a)ei(|a|
2+V̂ (a))tei<a,x>

is a quasi-periodic solution of (NLS) with frequencies

ωa = |a|2 + V̂ (a)

– here A is a finite subset of Zd and the amplitudes û(a) 6= 0, a ∈ A.
When ε 6= 0?
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1.1. A Hamiltonian system. Let

Ys = Hs(Td,C)×Hs(Td,C) ≈ Hs(Td,C2) = {(u, v = ū)},

s > d
2
, and consider the symplectic 2-form

((u, v), (ũ, ṽ)) 7→
∫

Td
uṽ − ũvdx.

By contraction on the first variable, the symplectic form defines a map-
ping Ys → Y∗s with inverse

JΩ : Y∗s → Y−s.

For any smooth function H on Ys, JΩdH is the Hamiltonian“vector
field” associated to H.

Let

H(u, v) = i

∫
Td
∇u∇v + ......+ εF (x, u, v)dx.

Then the Hamiltonian vectorfield associated to the 1-form dH(u,v) is{
i(∆u+ V (x) ∗ u+ ε∂F

∂v
(x, u, v)

−i(∆v + V (x) ∗ v + ε∂F
∂u

(x, u, v))

which preserves the subspace {(u, ū)}. On this subspace the Hamilton-
ian equations becomes

u̇ = i(∆u+ V (x) ∗ u+ ε
∂F

∂ū
(x, u, ū)

and it’s complex conjugate.

1.2. The Fourier transform. By the Fourier transform

Hs(Td,C2) 3 (u, v)←→ (û, v̂) ∈ l2s(Zd,C2)

the symplectic form becomes∑
a∈Zd

dû(a) ∧ dv̂(a)

and the Hamiltonian becomes

H = i[
∑
a∈Zd

(|a|2 + V̂ (a))û(a)v̂(a) + εF ].
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1.3. Action angle variables. Define for a ∈ A ⊂ Zd{
û(a) =

√
2(r0

a + ra)e
iϕa

v̂(a) =
√

2(r0
a + ra)e

−iϕa ,

and for a ∈ L = Zd \ A {
ua = û(a)
va = v̂(a).

The symplectic form now becomes∑
a∈A

dϕa ∧ dra +
∑
a∈L

dua ∧ dva

and the Hamiltonian becomes

H =
∑
a∈A

ωara +
∑
a∈L

Ωauava + εF,

Ωa = |a|2 + V̂ (a).

H is areal holomorphic on some complex domain D(ρ, σ):

‖(ϕ, r, u, v)‖ρ,σ =
1

ρ
|=ϕ|+ 1

σ2
|r|+ 1

σ
‖(u, v)‖s < 1.

Then H + εF is analytic and the Hamiltonian equations have a well-
defined local flow.

When ε = 0, this system has an invariant torus

Γ = Td × {r = 0} × {u = v = 0}
with induced flow ϕ 7→ ϕ+ tω. This corresponds to the quasi-periodic
solution (∗) of the (linear) Schrödinger equation when

û0
a =

√
2r0

ae
iϕa , a ∈ A.

The ωa’s are the (basic or tangential) frequencies and the Ωa’s are the
normal frequencies of the torus (solution).

1.4. External parameters. This is a standard form for the pertur-
bation theory of lower-dimensional (isotropic) tori with one exception:
it is strongly degenerate. We therefore need external parameters to
control the basic frequencies and the simplest choice is to let the ba-
sic frequencies (i.e. the potential itself) be our free parameters. The
parameters will belong to a set

U ⊂ {ω ∈ RA : |ω| ≤ C}
and the Hamiltonian Hω depend on ω.
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1.5. Results. The normal frequencies will be assumed to verify

|Ωa|, |Ωa + Ωb| ≥ C ′ ∀ a, b ∈ L ,
|Ωa − Ωb| ≥ C ′ ∀ a, b ∈ L, |a| 6= |b|.

This will be fulfilled, for example, if A is sufficiently “large”, or if V is
small and A 3 0.

Theorem-QP. Under the above assumptions, for ε sufficiently small
there exist a subset U ′ε ⊂ U , which is large in the sense that

lim
ε→0

Leb (U \ U ′ε) = 0,

and for each ω ∈ U ′, a real holomorphic symplectic diffeomorphism

Φ : D(
ρ

2
,
σ

2
)→ D(ρ, σ)

and a vector ω′ ∈ RA such that

(Hω′ + εF ) ◦ Φ(ϕ, r, u, v) =<ω, r> +O2(r − r0, u, v)

Moreover
‖Φ− id‖ ρ

2
,σ
2

. ε,

and the mapping ω 7→ ω′(ω) verifies

|ω′ − id|C1(U ′) . ε.

Then (Hω′ + εF ) ◦Φ has an invariant torus Γ(r0) with induced flow
ϕ 7→ ϕ + tω. The linearized equation of (Hω′ + εF ) ◦ Φ on this torus
becomes, in the (u, v) direction

(∗∗) d

dt

(
û
v̂

)
=

(
+i 0
0 −i

)[( Ω 0
0 Ω

)
+ εA(ϕ)

]( û
v̂

)
.

Theorem-KAM. Under the above assumptions, for ε sufficiently small
there exist a subset U ′ε ⊂ U , which is large in the sense that

lim
ε→0

Leb (U \ U ′ε) = 0,

and for each ω ∈ U ′, a real holomorphic symplectic diffeomorphism

Φ = Φω : D(
ρ

2
,
σ

2
)→ D(ρ, σ)

and a vector ω′ ∈ RA such that (Hω′ + εF ) ◦ Φ equals

<ω, r> + <u,Qv> +O3(r − r0, u, v)

where and Q is a Hermitian and block-diagonal matrix with finite-
dimensional blocks.



KAM FOR HAMILTONIAN PDE’S 5

Moreover
‖Φ− id‖ ρ

2
,σ
2

. ε,

and the mapping ω 7→ ω′(ω) verifies

|ω′ − id|C1(U ′) . ε.

Now the linearized equation of (Hω′ + εF ) ◦ Φ on the torus Γ(r0)
becomes, in the (u, v) direction

(∗∗) d

dt

(
û
v̂

)
=

(
+i 0
0 −i

)(
Ω + εQ 0

0 Ω + εQ

)(
û
v̂

)
.

Since Q is Hermitian and block diagonal the eigenvalues of equation
are purely imaginary

±iΩ′a = Ωa +O(ε), a ∈ L
– the normal frequencies of the perturbed torus.

1.6. Reducibility. Hence, what the KAM-theorem achieves more than
the QP-theorem is the reducibility of the variational equation of the
torus. Reducibility is a common phenomena for finite-dimensional lin-
ear quasi-periodic co-cycles near constant coefficients, but in infinite
dimension the results are more sparse.

Consider

(QPS)ω
1

i
u̇ = ∆u+ εV (tω, x)u

where V : Tn × Td → R is real analytic.

Theorem-RED. For ε sufficiently small there exist a subset U ′ε ⊂ U ,
which is large in the sense that

lim
ε→0

Leb (U \ U ′ε) = 0,

and for each ω ∈ U ′, a real holomorphic mapping

Φ : {|=ϕ| < ρ

2
} → B(H0(Td))

and a bounded Hermitian operator Q on H0(Td) such that v(t) =
Φ(tω)u(t) solves

1

i
v̇ = ∆v + εQv

if, and only if, u(t) solves (QPS)ω.
Moreover Q is “block diagonal” and

‖Q‖Hs,Hs = ‖Q‖H0,H0 , ∀s
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and

‖Φ(ϕ)− id‖Hs,Hs . ε, ∀ϕ, ∀s.

1.7. Some references. In finite dimension contributions during the
last fifty years, starting with the seminal works of Kolmogorov, Arnold
and Moser, have produced a fairly complete picture of the perturbative
situation for non-linear Hamiltonian systems. Results for isotropic tori
was claimed by Melnikov in the late 60’s but the first proof was provided
in Eliasson ’85.

For PDE’s in one space dimension (d = 1) the theory is also fairly
well developed by Kuksin ’89, Craig, Wayne, Pöschel and others – see
the books by Kuksin and Craig and references therein.

In higher space dimension (d ≥ 2) , Theorem-QP is due to Bourgain
’04 (at least when F is idependent of x) and Theorem-KAM is due to
Eliasson&Kuksin ’10.

In d ≥ 2 the results are more sparse than in d = 1. For example, for
the non-linear wave equation

(NLW ) ü = ∆u+ V (x) ∗ u+ εF (u)

Theorem-QP holds (Bourgain ’04), but a statement like Theorem-KAM
has not been proven.

The reducibility theory is also very well developped for quasi-periodic
co-cycles in finite dimension (see for example Chavaudret ’09 for a
recent result) but for PDE’s the situation is less well understood.
Theorem-RED is due to Eliasson&Kuksin ’09 and similar results for
some versions of the harmonic oscillartor have been obtained by Bam-
busi&Graffi ’01, Liu&Yuan ’09 and Grebert&Thomann ’10.

2. Variants and questions

2.1. One external parameter. In the proof of theorem KAM one
needs conditions on the small divisors of the type (for example)

|<k, ω> +(Ωb − Ωa)| ≥ κ |k|−τ e−(log |a−b|)2 , ∀k ∈ Zn \ 0, ∀a, b ∈ L

for the normal frequencies

Ωa = |a|2 + V̂ (a)

and for (certain) perturbations of them. The role of the parameters is
to assure such conditions.

In Theorem-QP/KAM the number of external parameters ω is the
same as the dimension of the torus. In finite dimension it is known
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(Eliasson ’85) that one parameter

ω = λω0, λ ∈ interval ⊂ R
is sufficient, if ω0 is a Diophantine vector. (Under an appropriate non-
degeneracy condition one may even allow Ω to depend on ω.)

Is the same true in theorem QP and/or KAM? There are certain
results to this effect: Geng&Ren ’10 and Berti&Biasco ’11 for NLW in
one dimension; Berti&Bolle ’12 for a version of the NLS any dimension
–

1

i
u̇ = ∆u+ V (x)u+ εF (tω, x, |u|2)u+ εG(tω, x)

2.2. Internal parameters - “non-degenerate” systems. Let

H = H2 +H4 +O(ε) =<ω0, r> + <u,Ωv> +
1

2
<r,Mr> +O(ε).

Then the change of variables

r 7→ r0 + r,

transforms H to

H =<ω0 +Mr0, r> + <u,Ωv> +
1

2
<r,Mr> +O(ε).

If detM 6= 0, then
r0 7→ ω = ω0 +Mr0

is a local diffeomorphism.

2.3. Internal parameters - Birkhoff normal form. Let H = H2 +
O3(r, u, v).

By a Birkhoff normal form, we can transform H to

H2(r, uv) +H4(r, uv) +O3(u, v) +O5(r, u, v) + h(ϕ, r, u, v),

where h is of order ≤ 4.
If there are no low-order resonances between the frequencies, then

h = 0, and H2 +H4 will be (generically) non-degenerate.
But, frequently in PDE’s there are low-order resonances between the

frequencies, and h is non-zero and depend on ϕ.

Example (B. Grébert) Consider

(Beam) ü = ∆2u+mu+ u3, m ∈ [1, 2].

For a.e. m

h(ϕ, r, u, v) =
∑
a′,b′∈A

|a|=|a′|, |b|=|b′|

(. . . )
√
ra′eiϕa′√rb′eiϕb′vavb + . . .
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In general, there is not much one can do now! However, if A has the
property

a′ 6= b′ ∈ A =⇒ |a′| 6= |b′| ,

then

a′ = l(a), b′ = l(b)

and the “rotations”

ua 7→ e−il(a)ua, va 7→ eil(a)va,

completed to a symplectic transformation in (ϕ, r, u, v) , transforms H
to

H2(r, uv) +H4(r, uv) + h(r, u, v) +O3(u, v) +O5(u, v).

OBS! this transformation changes the normal frequencies.

The use of such “rotations” is a frequent tool in the theory of re-
ducibility for linear quasi-periodic co-cycles since more than twenty
years and it has recently been applied to PDE’s: Geng&You ’06, Beam;
Geng&You ’11, 2d-NLS; Procesi&Procesi ’11, NLS.

By chosing different sets A one can violate integrability in different
(controlled?) ways and perhaps find interesting new dynamics.

2.4. Multiplicative potential.

(NLS ′)
1

i
u̇ = ∆u+ V (x)u+ ε

∂F

∂ū
(x, u, ū)

A theorem-KAM requires an analysis and a good control of the
Fourier-support of the eigenfunction of the operator

−∆ + V (x) : L2(Td)→ L2(Td),

at least high up in the spectrum. This control is quite good in dimen-
sion d = 1 and there are results for this model: Chierchia&You ’00 and
Yuan ’06 (1d-NLW).

But for d ≥ 2 the situation is much more complicated and not well
enough understood.

Berti&Bolle ’11 proves quasi-periodic solutions for a model of NLS
in any space dimension without any information on the eigenfunction...
but no reducibility
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2.5. Almost periodic solution. Perturbations of solutions

(∗) u(t, x) =
∑
a∈A

û(a)ei(|a|
2+V̂ (a))tei<a,x>

with
#A =∞

and
|û(a)| ≥ C1e

−C2|a|, ∀a.
There exists only one result of this type, Bourgain ’05, for a par-

ticular model of NLS. There are more general results but with much
stronger decay like in Geng ’12. Very slow decay is obtained in Pöschel
’02 but with non-local non-linearities.
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Partielles, Société Mathématique de France, Panoramas et Synthéses,
9, 2000
Bourgain J.: Green’s function estimates for lattice Schrödinger Op-
erators and applications, Annals of Mathematical Studies, Princeton
University Press, Princeton, 2004
Eliasson, L.H., Kuksin S.B.: KAM for the nonlinear Schrödinger equa-
tion, Ann. of Math. (2) 172, 371–435 (2010)
Chavaudret, C.: Strong almost reducibility for analytic and Gevrey
quasi-periodic cocycles, arXiv0912.4814
Eliasson, L.H., Kuksin S.B.: On reducibility of Schrödinger equations
with quasiperiodic in time potentials, Comm. Math. Phys. 286, 125–
135 (2009)
Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations
of quasi-periodic Schrödinger operators and KAM method, Commun.
Math. Phys. 219, 465–480 (2001)
Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small
divisor equation with large variable coefficient, Comm. Pure Appl.
Math. 63, 1145–1172 (2010)



10 L. H. ELIASSON
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