Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres

Jean-Marc Delort

Université Paris-Nord

1. Quasi-linear perturbations of Hamiltonian systems

Let X be a Riemannian manifold, Δ the Laplace-Beltrami operator on $X, d \mu$ the Riemannian volume. On $L^{2}\left(X, \mathbb{R}^{2}\right)$ define the scalar product $\left\langle V, V^{\prime}\right\rangle=\int_{X} V \cdot V^{\prime} d \mu$ and the symplectic form $\omega\left(V, V^{\prime}\right)=\left\langle{ }^{t} J V, V^{\prime}\right\rangle$ with $J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. For $\left.m \in\right] 0,+\infty[$, set

$$
\Lambda_{m}=\sqrt{-\Delta+m^{2}}, \quad G_{0}(V)=\frac{1}{2} \int_{X} V \cdot\left(\Lambda_{m} V\right) d \mu
$$

Consider the Hamiltonian equation $\dot{V}=X_{G_{0}}$
$X_{G_{0}}(V)=J \nabla G_{0}(V)$. In terms of a scalar fur
$V=\left[\begin{array}{c}\Lambda_{m}^{-1 / 2} \partial_{t v} \\ \Lambda_{m}^{1 / 2} v\end{array}\right]$, this equation is equivalent t
$\left(\partial_{t}^{2}-\Delta+m^{2}\right) v=0$.

1. Quasi-linear perturbations of Hamiltonian

systems

Let X be a Riemannian manifold, Δ the Laplace-Beltrami operator on $X, d \mu$ the Riemannian volume. On $L^{2}\left(X, \mathbb{R}^{2}\right)$ define the scalar product $\left\langle V, V^{\prime}\right\rangle=\int_{X} V \cdot V^{\prime} d \mu$ and the symplectic form $\omega\left(V, V^{\prime}\right)=\left\langle{ }^{t} J V, V^{\prime}\right\rangle$ with $J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. For $\left.m \in\right] 0,+\infty[$, set

$$
\Lambda_{m}=\sqrt{-\Delta+m^{2}}, \quad G_{0}(V)=\frac{1}{2} \int_{X} V \cdot\left(\Lambda_{m} V\right) d \mu
$$

Consider the Hamiltonian equation $\dot{V}=X_{G_{0}}(V)$ with $X_{G_{0}}(V)=J \nabla G_{0}(V)$. In terms of a scalar function v, setting $V=\left[\begin{array}{c}\Lambda_{m}^{-1 / 2} \partial_{t} \vee \\ \Lambda_{m}^{1 / 2} v\end{array}\right]$, this equation is equivalent to

$$
\left(\partial_{t}^{2}-\Delta+m^{2}\right) v=0
$$

Problem: Study the stability of the zero solution under non-linear perturbations of the Hamiltonian: For Cauchy data of size $\epsilon \rightarrow 0+$ in a convenient space included in $H^{s}, s \gg 1$, show that the solution exists and remains of size $O(\epsilon)$ in H^{s} over a "long" time interval $]-T_{\epsilon}, T_{\epsilon}[$.
Set $G=\sum_{p=0}^{P_{0}} G_{p}$ with, for $p \geq 1$,

Then the perturbed Hamiltonian equation $\dot{V}=X_{G}(V)$ is equivalent to a quasi-linear scalar equation

Problem: Study the stability of the zero solution under non-linear perturbations of the Hamiltonian: For Cauchy data of size $\epsilon \rightarrow 0+$ in a convenient space included in $H^{s}, s \gg 1$, show that the solution exists and remains of size $O(\epsilon)$ in H^{s} over a "long" time interval $]-T_{\epsilon}, T_{\epsilon}[$.
Set $G=\sum_{p=0}^{P_{0}} G_{p}$ with, for $p \geq 1$,
$G_{0}(V)=\frac{1}{2} \int_{X}\left(\Lambda_{m}^{1 / 2} V\right) \cdot\left(\Lambda_{m}^{1 / 2} V\right) d \mu, G_{p}(V)=\int_{X} \underbrace{P_{p}\left(\Lambda_{m}^{1 / 2} V\right)}_{\text {pol. hom. of order } p+2} d \mu$.
Then the perturbed Hamiltonian equation $\dot{V}=X_{G}(V)$ is equivalent to a quasi-linear scalar equation

$$
\left(\partial_{t}^{2}-\Delta+m^{2}\right) v=N(v, \partial v) \partial^{2} v
$$

Dispersive case: $X=\mathbb{R}^{d},\left.v\right|_{t=0},\left.\partial_{t} v\right|_{t=0}=O(\epsilon)$ in $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, with a non-linearity that is not necessarily Hamiltonian.

- $d \geq 3, \epsilon \ll 1$: Global solutions of size ϵ (Klainerman - Vector fields methods; Shatah - Normal forms).
- $d=2, \epsilon \ll 1$: Same result (Ozawa, Tsutaya and Tsutsumi Vector fields and normal forms).
- $d=1, \epsilon \ll 1$: Stability in H^{s} for $|t| \leq c e^{c / \epsilon^{2}}$ (Tsutsumi) and for $t \in \mathbb{R}$ under a null condition (D.).

Relation with Germain-Masmoudi-Shatah method of space-time resonances:

- Space resonances \leftrightarrow dispersion \leftrightarrow time decay of linear

solutions.

- Time resonances \leftrightarrow "Usual" normal forms.

Here, we want to study the case of equations on compact manifolds (no dispersion, only normal forms available).

Dispersive case: $X=\mathbb{R}^{d},\left.v\right|_{t=0},\left.\partial_{t} v\right|_{t=0}=O(\epsilon)$ in $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, with a non-linearity that is not necessarily Hamiltonian.

- $d \geq 3, \epsilon \ll 1$: Global solutions of size ϵ (Klainerman - Vector fields methods; Shatah - Normal forms).
- $d=2, \epsilon \ll 1$: Same result (Ozawa, Tsutaya and Tsutsumi Vector fields and normal forms).
- $d=1, \epsilon \ll 1$: Stability in H^{s} for $|t| \leq c e^{c / \epsilon^{2}}$ (Tsutsumi) and for $t \in \mathbb{R}$ under a null condition (D.).

Relation with Germain-Masmoudi-Shatah method of space-time resonances:

- Space resonances \leftrightarrow dispersion \leftrightarrow time decay of linear solutions.
- Time resonances \leftrightarrow "Usual" normal forms.

Here, we want to study the case of equations on compact manifolds (no dispersion, only normal forms available).

Theorem
Assume $X=\mathbb{S}^{d}$. There is $\left.\mathcal{N} \subset\right] 0,+\infty[$ of zero measure and for any $m \in] 0,+\infty\left[-\mathcal{N}\right.$, any $P \in \mathbb{N}$, there is $s_{0}>0$ and for any $s \geq s_{0}$, there are $\epsilon_{0}>0, c>0, C>0$ so that $\dot{V}=X_{G}(V)$, $\left.V\right|_{t=0}=\epsilon V_{0}$, with $\left.\epsilon \in\right] 0, \epsilon_{0}\left[, V_{0} \in H^{s}\left(X, \mathbb{R}^{2}\right),\left\|V_{0}\right\|_{H^{s}} \leq 1\right.$, has a unique solution $V \in C^{0}(]-T_{\epsilon}, T_{\epsilon}\left[, H^{s}\left(X, \mathbb{R}^{2}\right)\right)$ with $T_{\epsilon} \geq c \epsilon^{-P}$. Moreover, $\sup _{|t| \leq T_{\epsilon}}\|V(t, \cdot)\|_{H^{s}} \leq C \epsilon$.
References: Semi-linear case $\left(G_{p}(V)=\int_{X} P_{p}\left(\wedge_{m}^{\theta} V\right) d \mu\right.$, with
$\theta \leq 0$)
Dimension $d=1\left(X=\mathbb{S}^{1}\right)$: Bourgain, Bambusi (see also
Bambusi-Grébert, Grébert)
Dimension $d \geq 2\left(X=\mathbb{S}^{d}\right)$: Bambusi-D.-Grébert-Szeftel.
Remarks on the proof: Use a Birkhoff normal forms method to
eliminate higher and higher degree terms in Sobolev energy.
Main problem: not lo lose derivatives in the process.
Two sources of potential losses of derivatives:

- Small divisors (see below)

Theorem

Assume $X=\mathbb{S}^{d}$. There is $\left.\mathcal{N} \subset\right] 0,+\infty[$ of zero measure and for any $m \in] 0,+\infty\left[-\mathcal{N}\right.$, any $P \in \mathbb{N}$, there is $s_{0}>0$ and for any
$s \geq s_{0}$, there are $\epsilon_{0}>0, c>0, C>0$ so that $\dot{V}=X_{G}(V)$,
$\left.V\right|_{t=0}=\epsilon V_{0}$, with $\left.\epsilon \in\right] 0, \epsilon_{0}\left[, V_{0} \in H^{s}\left(X, \mathbb{R}^{2}\right),\left\|V_{0}\right\|_{H^{s}} \leq 1\right.$, has a unique solution $V \in C^{0}(]-T_{\epsilon}, T_{\epsilon}\left[, H^{s}\left(X, \mathbb{R}^{2}\right)\right)$ with $T_{\epsilon} \geq c \epsilon^{-P}$. Moreover, $\sup _{|t| \leq \tau_{\epsilon}}\|V(t, \cdot)\|_{H^{s}} \leq C \epsilon$.
References: Semi-linear case $\left(G_{p}(V)=\int_{X} P_{p}\left(\Lambda_{m}^{\theta} V\right) d \mu\right.$, with $\theta \leq 0$):
Dimension $d=1\left(X=\mathbb{S}^{1}\right)$: Bourgain, Bambusi (see also Bambusi-Grébert, Grébert).
Dimension $d \geq 2\left(X=\mathbb{S}^{d}\right)$: Bambusi-D.-Grébert-Szeftel.
eliminate higher and higher degree terms in Sobolev energy.
Main problem: not lo lose derivatives in the process.
Two sources of potential losses of derivatives:

Theorem

Assume $X=\mathbb{S}^{d}$. There is $\left.\mathcal{N} \subset\right] 0,+\infty[$ of zero measure and for any $m \in] 0,+\infty\left[-\mathcal{N}\right.$, any $P \in \mathbb{N}$, there is $s_{0}>0$ and for any
$s \geq s_{0}$, there are $\epsilon_{0}>0, c>0, C>0$ so that $\dot{V}=X_{G}(V)$,
$\left.V\right|_{t=0}=\epsilon V_{0}$, with $\left.\epsilon \in\right] 0, \epsilon_{0}\left[, V_{0} \in H^{s}\left(X, \mathbb{R}^{2}\right),\left\|V_{0}\right\|_{H^{s}} \leq 1\right.$, has a unique solution $V \in C^{0}(]-T_{\epsilon}, T_{\epsilon}\left[, H^{s}\left(X, \mathbb{R}^{2}\right)\right)$ with $T_{\epsilon} \geq c \epsilon^{-P}$. Moreover, $\sup _{|t| \leq T_{\epsilon}}\|V(t, \cdot)\|_{H^{s}} \leq C \epsilon$.
References: Semi-linear case $\left(G_{p}(V)=\int_{X} P_{p}\left(\Lambda_{m}^{\theta} V\right) d \mu\right.$, with $\theta \leq 0$):
Dimension $d=1\left(X=\mathbb{S}^{1}\right)$: Bourgain, Bambusi (see also Bambusi-Grébert, Grébert).
Dimension $d \geq 2\left(X=\mathbb{S}^{d}\right)$: Bambusi-D.-Grébert-Szeftel.
Remarks on the proof: Use a Birkhoff normal forms method to eliminate higher and higher degree terms in Sobolev energy. Main problem: not lo lose derivatives in the process.
Two sources of potential losses of derivatives:

- Small divisors (see below)
- Quasi-linear character of the equation.

2. Birkhoff normal forms

Let G be a Hamiltonian, P an integer. Look for $\Theta_{s}: H^{s} \rightarrow \mathbb{R}$ so that $\Theta_{s}(V) \sim\|V\|_{H^{s}}^{2}, V \rightarrow 0$ and

$$
\frac{d}{d t} \Theta_{s}(V(t, \cdot))=O\left(\|V(t, \cdot)\|_{H^{s}}^{P+2}\right), \quad V \rightarrow 0
$$

for any V solution of $\dot{V}=X_{G}(V),\left.V\right|_{t=0}=O_{H^{s}}(\epsilon)$ (This implies the wanted result of almost global existence).
Take $\Theta_{s} \stackrel{\text { def }}{=} \Theta_{s}^{0} \circ \chi$ where $\Theta_{s}^{0}(V)=\frac{1}{2}\left\langle\Lambda_{m}^{2 s} V, V\right\rangle, \chi: H^{s} \rightarrow H^{s}$ local symplectomorphism at zero. Then

$$
\begin{aligned}
\frac{d}{d t} \Theta_{s}(V(t, \cdot))= & D \Theta_{s} \cdot X_{G}=\left\{\Theta_{s}, G\right\} \\
= & \left\{\Theta_{s}^{0} \circ \chi, G\right\}= \\
& =O\left(\|V\|_{H^{s}}^{P+2}\right), V \rightarrow 0 ?
\end{aligned}
$$

If $F: H^{s} \rightarrow \mathbb{R}$ is an auxiliary function, if χ is defined as
$\chi(V)=\Phi(-1, V)$ where $\dot{\Phi}=X_{F}(\Phi), \Phi(0, V)=V$,
$\left\{\Theta_{s}^{0}, G \circ \chi^{-1}\right\} \sim\left\{\Theta_{s}^{0}, \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!} \operatorname{Ad}^{k} F \cdot G\right\}=O\left(\|V\|_{H^{s}}^{P+2}\right), V \rightarrow 0$,
(with $\operatorname{AdF} \cdot G=\{F, G\}$).
degree $p+2$, sorting by homogeneity, one is reduced to solving the homological equation

where H_{p} depends only on $F_{p^{\prime}}$ for $p^{\prime}<p$ and is computed from expressions $\left\{F_{p^{\prime}}, G_{p^{\prime \prime}}\right\}$ with $p^{\prime}+p^{\prime \prime}=p$.

If $F: H^{s} \rightarrow \mathbb{R}$ is an auxiliary function, if χ is defined as
$\chi(V)=\Phi(-1, V)$ where $\dot{\Phi}=X_{F}(\Phi), \Phi(0, V)=V$,
$\left\{\Theta_{s}^{0}, G \circ \chi^{-1}\right\} \sim\left\{\Theta_{s}^{0}, \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!} \operatorname{Ad}^{k} F \cdot G\right\}=O\left(\|V\|_{H^{s}}^{P+2}\right), V \rightarrow 0$,
(with $\operatorname{AdF} \cdot G=\{F, G\}$).
If $G=\sum_{p=0}^{P_{0}} G_{p}, F=\sum_{p \geq 1} F_{p}$ with F_{p}, G_{p} homogeneous of degree $p+2$, sorting by homogeneity, one is reduced to solving the homological equation

$$
\left\{\Theta_{s}^{0},-\left\{F_{p}, G_{0}\right\}+H_{p}\right\}=0 \text { if } p<P
$$

where H_{p} depends only on $F_{p^{\prime}}$ for $p^{\prime}<p$ and is computed from expressions $\left\{F_{p^{\prime}}, G_{p^{\prime \prime}}\right\}$ with $p^{\prime}+p^{\prime \prime}=p$.

3. Solving the homological equation

Model problem: $\dot{u}=i \nabla_{\bar{u}} G(u, \bar{u})$ with $\left.u\right|_{t=0}=\epsilon u_{0}$, $u_{0} \in H^{s}(X, \mathbb{C})$ and $G(u, \bar{u})=\sum_{p=0}^{P_{0}} G_{p}(u, \bar{u})$, with

$$
G_{0}(u, \bar{u})=\int_{X}\left(\Lambda_{m} u\right) \bar{u} d \mu, G_{p}(u, \bar{u})=\int_{X}\left(A_{p}(U) u\right) \bar{u} d \mu
$$

where $\Lambda_{m}=\sqrt{-\Delta+m^{2}}$ and $U \rightarrow A_{p}(U)$ is a function homogeneous of degree p in $U=(u, \bar{u})$, defined on H^{s}, with values in the space of self-adjoint para-differential operators of order one.
be determined. Then

3. Solving the homological equation

Model problem: $\dot{u}=i \nabla_{\bar{u}} G(u, \bar{u})$ with $\left.u\right|_{t=0}=\epsilon u_{0}$, $u_{0} \in H^{s}(X, \mathbb{C})$ and $G(u, \bar{u})=\sum_{p=0}^{P_{0}} G_{p}(u, \bar{u})$, with

$$
G_{0}(u, \bar{u})=\int_{X}\left(\Lambda_{m} u\right) \bar{u} d \mu, G_{p}(u, \bar{u})=\int_{X}\left(A_{p}(U) u\right) \bar{u} d \mu,
$$

where $\Lambda_{m}=\sqrt{-\Delta+m^{2}}$ and $U \rightarrow A_{p}(U)$ is a function homogeneous of degree p in $U=(u, \bar{u})$, defined on H^{s}, with values in the space of self-adjoint para-differential operators of order one.
One looks for $F_{p}(U)=\int_{X}\left(B_{p}(U) u\right) \bar{u} d \mu$, with B_{p} of order one, to be determined. Then

$$
\left\{F_{p^{\prime}}, G_{p^{\prime \prime}}\right\}=i \int_{X}(\underbrace{\left[B_{p^{\prime}}(U), A_{p^{\prime \prime}}(U)\right]}_{\text {para-diff. op. of order } 1} u) \bar{u} d \mu+\cdots
$$

Because of that, in the homological equation $\left\{\Theta_{s}^{0},-\left\{F_{p}, G_{0}\right\}+H_{p}\right\}=0, H_{p}$ as the same structure as G_{p}.

Case p odd: In this case, one can solve the stronger equation $\left\{F_{p}, G_{0}\right\}=H_{p}$, with H_{p} given of the form $H_{p}(U)=\int_{X}\left(A_{p}(U) u\right) \bar{u} d \mu$ and F_{p} looked for as $F_{p}(U)=\int_{X}\left(B_{p}(U) u\right) \bar{u} d \mu$. This may be reduced to the following problem:

Set $\tilde{\Lambda}=\sqrt{-\Delta+\left(\frac{d-1}{2}\right)^{2}}$. Let $\mathcal{U}=\left(u_{1}, \ldots, u_{p}\right) \rightarrow A_{\ell}(\mathcal{U})$ be p-linear on $C^{\infty}(X)^{p}$ with values in para-differential operators of order one be given. Look for $\mathcal{U} \rightarrow B_{\ell}(\mathcal{U})$ of the same type so that

$$
\begin{aligned}
& {\left[B_{\ell}(\mathcal{U}), \tilde{\Lambda}\right]+\sum_{j=1}^{\ell} B_{\ell}\left(u_{1}, \ldots, \Lambda_{m} u_{j}, \ldots, u_{p}\right)} \\
& \quad-\sum_{j=\ell+1}^{p} B_{\ell}\left(u_{1}, \ldots, \Lambda_{m} u_{j}, \ldots, u_{p}\right)=-i A_{\ell}(\mathcal{U}) \bmod . O\left(\epsilon^{P}\right)
\end{aligned}
$$

Case p odd: In this case, one can solve the stronger equation $\left\{F_{p}, G_{0}\right\}=H_{p}$, with H_{p} given of the form $H_{p}(U)=\int_{X}\left(A_{p}(U) u\right) \bar{u} d \mu$ and F_{p} looked for as $F_{p}(U)=\int_{X}\left(B_{p}(U) u\right) \bar{u} d \mu$. This may be reduced to the following problem:

Set $\widetilde{\Lambda}=\sqrt{-\Delta+\left(\frac{d-1}{2}\right)^{2}}$. Let $\mathcal{U}=\left(u_{1}, \ldots, u_{p}\right) \rightarrow A_{\ell}(\mathcal{U})$ be p-linear on $C^{\infty}(X)^{p}$ with values in para-differential operators of order one be given. Look for $\mathcal{U} \rightarrow B_{\ell}(\mathcal{U})$ of the same type so that

$$
\begin{aligned}
& {\left[B_{\ell}(\mathcal{U}), \tilde{\Lambda}\right]+\sum_{j=1}^{\ell} B_{\ell}\left(u_{1}, \ldots, \Lambda_{m} u_{j}, \ldots, u_{p}\right)} \\
& \quad-\sum_{j=\ell+1}^{p} B_{\ell}\left(u_{1}, \ldots, \Lambda_{m} u_{j}, \ldots, u_{p}\right)=-i A_{\ell}(\mathcal{U}) \bmod . O\left(\epsilon^{P}\right)
\end{aligned}
$$

Denote $\operatorname{Spec}\left(\sqrt{-\Delta_{\mathbb{S}^{d}}}\right)=\left\{\lambda_{n} ; n \in \mathbb{N}^{*}\right\}, \lambda_{n}^{2}=(n-1)(n+d-2)$, Π_{n} the spectral projector associated to λ_{n}. Substitute $\Pi_{n_{j}} u_{j}$ to u_{j}.
Then $\Lambda_{m} \Pi_{n_{j}} u_{j}=\sqrt{-\Delta+m^{2}} \Pi_{n_{j}} u_{j}=\sqrt{m^{2}+\lambda_{n_{j}}^{2}} \Pi_{n_{j}} u_{j}$.

Equivalent equation:

$$
\left[B_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right), \widetilde{\Lambda}\right]+G_{m}\left(n^{\prime}\right) B_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right)=-i A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right)
$$

where $n^{\prime}=\left(n_{1}, \ldots, n_{p}\right), \Pi_{n^{\prime}} \mathcal{U}=\left(\Pi_{n_{1}} u_{1}, \ldots, \Pi_{n_{p}} u_{p}\right)$,
$G_{m}\left(n^{\prime}\right)=\sum_{j=1}^{\ell} \sqrt{m^{2}+\lambda_{n_{j}}^{2}}-\sum_{j=\ell+1}^{p} \sqrt{m^{2}+\lambda_{n_{j}}^{2}}$.
One may choose \mathcal{N} of zero measure such that, if $m \notin \mathcal{N}$, for any $n^{\prime} \in\left(\mathbb{N}^{*}\right)^{p}$, one has $d\left(G_{m}\left(n^{\prime}\right), \frac{1}{2} \mathbb{Z}\right) \geq c\left|n^{\prime}\right|^{-L_{0}}$ (for some $L_{0}>0$). (Does not use that $X=\mathbb{S}^{d}$, but only weak separation properties of eigenvalues).

Take $\theta \in C_{0}^{\infty}(\mathbb{R})$ with $\theta \equiv 1$ close to zero and define

$$
B_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right)=-\int_{0}^{+\infty} e^{-i t \tilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}} e^{i t G_{m}\left(n^{\prime}\right)} \theta(\epsilon t) d t
$$

Since $\operatorname{Spec}(\widetilde{\Lambda}) \subset \frac{1}{2} \mathbb{N}, t \rightarrow e^{-i t \tilde{\Lambda}}$ is 4π-periodic, so

$$
e^{-i t \widetilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}}=\sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \alpha / 2}
$$

Consequently,

$$
B_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right)=-\sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) \underbrace{\int_{0}^{+\infty} e^{i t\left[\frac{\alpha}{2}+G_{m}\left(n^{\prime}\right)\right]} \theta(\epsilon t) d t}_{=O\left(d\left(G_{m}\left(n^{\prime}\right), \frac{1}{2} \mathbb{Z}\right)^{-1}\right)=O\left(\left|n^{\prime}\right|^{L_{0}}\right)} .
$$

One shows that $C_{\alpha}(\mathcal{U})$ are para-differential operators of order one. The loss $\left|n^{\prime}\right|^{L_{0}}$ represents a loss of derivatives on the coefficients, so that B_{ℓ} is in the same class. Moreover, B_{ℓ} is a solution to the equation.

Take $\theta \in C_{0}^{\infty}(\mathbb{R})$ with $\theta \equiv 1$ close to zero and define

$$
\int_{0}^{+\infty} i \frac{d}{d t}\left(e^{-i t \tilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}} e^{i t G_{m}\left(n^{\prime}\right)}\right) \theta(\epsilon t) d t
$$

Since $\operatorname{Spec}(\widetilde{\Lambda}) \subset \frac{1}{2} \mathbb{N}, t \rightarrow e^{-i t \tilde{\Lambda}}$ is 4π-periodic, so

$$
e^{-i t \tilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}}=\sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \alpha / 2}
$$

Consequently,

$$
B_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right)=-\sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) \underbrace{\int_{0}^{+\infty} e^{i t\left[\frac{\alpha}{2}+G_{m}\left(n^{\prime}\right)\right]} \theta(\epsilon t) d t}_{=O\left(d\left(G_{m}\left(n^{\prime}\right), \frac{1}{2} \mathbb{Z}\right)^{-1}\right)=O\left(\left|n^{\prime}\right|^{L_{0}}\right)}
$$

One shows that $C_{\alpha}(\mathcal{U})$ are para-differential operators of order one. The loss $\left|n^{\prime}\right|^{L_{0}}$ represents a loss of derivatives on the coefficients, so that B_{ℓ} is in the same class. Moreover, B_{ℓ} is a solution to the equation.

Take $\theta \in C_{0}^{\infty}(\mathbb{R})$ with $\theta \equiv 1$ close to zero and define

$$
-i \int_{-\infty}^{+\infty} e^{-i t \tilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}} e^{i t G_{m}\left(n^{\prime}\right)} \epsilon \theta^{\prime}(\epsilon t) d t
$$

Since $\operatorname{Spec}(\widetilde{\Lambda}) \subset \frac{1}{2} \mathbb{N}$, $t \rightarrow e^{-i t \tilde{\Lambda}}$ is 4π-periodic, so

$$
e^{-i t \tilde{\Lambda}} A_{\ell}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \tilde{\Lambda}}=\sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) e^{i t \alpha / 2}
$$

Consequently,

$$
-i \sum_{\alpha} C_{\alpha}\left(\Pi_{n^{\prime}} \mathcal{U}\right) \underbrace{\int_{-\infty}^{+\infty} e^{i t\left[\frac{\alpha}{2}+G_{m}\left(n^{\prime}\right)\right]} \epsilon \theta^{\prime}(\epsilon t) d t} .
$$

One shows that $C_{\alpha}(\mathcal{U})$ are para-differential operators of order one. The loss $\left|n^{\prime}\right|^{L_{0}}$ represents a loss of derivatives on the coefficients, so that B_{ℓ} is in the same class. Moreover, B_{ℓ} is a solution to the equation.

