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1. Quasi-linear perturbations of Hamiltonian
systems

Let X be a Riemannian manifold, ∆ the Laplace-Beltrami operator
on X , dµ the Riemannian volume. On L2(X ,R2) define the scalar
product 〈V ,V ′〉 =

∫
X V · V ′ dµ and the symplectic form

ω(V ,V ′) = 〈tJV ,V ′〉 with J =
[ 0 −1

1 0

]
. For m ∈]0,+∞[, set

Λm =
√
−∆ + m2, G0(V ) =

1
2

∫
X

V · (ΛmV ) dµ.

Consider the Hamiltonian equation V̇ = XG0(V ) with
XG0(V ) = J∇G0(V ). In terms of a scalar function v , setting

V =
[

Λ
−1/2
m ∂tv
Λ

1/2
m v

]
, this equation is equivalent to

(∂2
t −∆ + m2)v = 0.
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Problem: Study the stability of the zero solution under non-linear
perturbations of the Hamiltonian: For Cauchy data of size ε→ 0+
in a convenient space included in Hs , s � 1, show that the solution
exists and remains of size O(ε) in Hs over a “long” time interval
]− Tε,Tε[.

Set G =
∑P0

p=0 Gp with, for p ≥ 1,

G0(V ) =
1
2

∫
X

(Λ1/2
m V ) · (Λ1/2

m V ) dµ,Gp(V ) =

∫
X

Pp(Λ1/2
m V )︸ ︷︷ ︸

pol. hom. of order p+2

dµ.

Then the perturbed Hamiltonian equation V̇ = XG (V ) is equivalent
to a quasi-linear scalar equation

(∂2
t −∆ + m2)v = N(v , ∂v)∂2v .
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Dispersive case: X = Rd , v |t=0, ∂tv |t=0 = O(ε) in C∞0 (Rd ), with
a non-linearity that is not necessarily Hamiltonian.
• d ≥ 3, ε� 1: Global solutions of size ε (Klainerman – Vector
fields methods; Shatah – Normal forms).
• d = 2, ε� 1: Same result (Ozawa, Tsutaya and Tsutsumi –
Vector fields and normal forms).
• d = 1, ε� 1: Stability in Hs for |t| ≤ cec/ε2 (Tsutsumi) and for
t ∈ R under a null condition (D.).

Relation with Germain-Masmoudi-Shatah method of
space-time resonances:

• Space resonances ↔ dispersion ↔ time decay of linear
solutions.

• Time resonances ↔ “Usual” normal forms.
Here, we want to study the case of equations on compact manifolds
(no dispersion, only normal forms available).
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Theorem
Assume X = Sd . There is N ⊂]0,+∞[ of zero measure and for
any m ∈]0,+∞[−N , any P ∈ N, there is s0 > 0 and for any
s ≥ s0, there are ε0 > 0, c > 0,C > 0 so that V̇ = XG (V ),
V |t=0 = εV0, with ε ∈]0, ε0[, V0 ∈ Hs(X ,R2), ‖V0‖Hs ≤ 1, has a
unique solution V ∈ C 0(]− Tε,Tε[,Hs(X ,R2)) with Tε ≥ cε−P .
Moreover, sup|t|≤Tε‖V (t, ·)‖Hs ≤ Cε.

References: Semi-linear case (Gp(V ) =
∫
X Pp(ΛθmV ) dµ, with

θ ≤ 0):
Dimension d = 1 (X = S1): Bourgain, Bambusi (see also
Bambusi-Grébert, Grébert).
Dimension d ≥ 2 (X = Sd ): Bambusi-D.-Grébert-Szeftel.
Remarks on the proof: Use a Birkhoff normal forms method to
eliminate higher and higher degree terms in Sobolev energy.
Main problem: not lo lose derivatives in the process.
Two sources of potential losses of derivatives:

• Small divisors (see below)
• Quasi-linear character of the equation.
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2. Birkhoff normal forms

Let G be a Hamiltonian, P an integer. Look for Θs : Hs → R so
that Θs(V ) ∼ ‖V ‖2Hs ,V → 0 and

d
dt

Θs(V (t, ·)) = O(‖V (t, ·)‖P+2
Hs ), V → 0

for any V solution of V̇ = XG (V ),V |t=0 = OHs (ε) (This implies
the wanted result of almost global existence).
Take Θs

def
= Θ0

s ◦ χ where Θ0
s (V ) = 1

2〈Λ
2s
m V ,V 〉, χ : Hs → Hs local

symplectomorphism at zero. Then

d
dt

Θs(V (t, ·)) = DΘs · XG = {Θs ,G}

= {Θ0
s ◦ χ,G} = {Θ0

s ,G ◦ χ−1}︸ ︷︷ ︸
=O(‖V ‖P+2

Hs ), V→0?

◦χ.



If F : Hs → R is an auxiliary function, if χ is defined as
χ(V ) = Φ(−1,V ) where Φ̇ = XF (Φ), Φ(0,V ) = V ,

{Θ0
s ,G ◦ χ−1} ∼

{
Θ0

s ,

+∞∑
k=0

(−1)k

k!
AdkF · G

}
= O(‖V ‖P+2

Hs ), V → 0,

(with AdF · G = {F ,G}).
If G =

∑P0
p=0 Gp, F =

∑
p≥1 Fp with Fp,Gp homogeneous of

degree p + 2, sorting by homogeneity, one is reduced to solving the
homological equation

{Θ0
s ,−{Fp,G0}+ Hp} = 0 if p < P,

where Hp depends only on Fp′ for p′ < p and is computed from
expressions {Fp′ ,Gp′′} with p′ + p′′ = p.
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3. Solving the homological equation

Model problem: u̇ = i∇ūG (u, ū) with u|t=0 = εu0,
u0 ∈ Hs(X ,C) and G (u, ū) =

∑P0
p=0 Gp(u, ū), with

G0(u, ū) =

∫
X

(Λmu)ū dµ, Gp(u, ū) =

∫
X

(Ap(U)u)ū dµ,

where Λm =
√
−∆ + m2 and U → Ap(U) is a function

homogeneous of degree p in U = (u, ū), defined on Hs , with values
in the space of self-adjoint para-differential operators of order one.
One looks for Fp(U) =

∫
X (Bp(U)u)ū dµ, with Bp of order one, to

be determined. Then

{Fp′ ,Gp′′} = i
∫

X
( [Bp′(U),Ap′′(U)]︸ ︷︷ ︸
para-diff. op. of order 1

u)ū dµ+ · · ·

Because of that, in the homological equation
{Θ0

s ,−{Fp,G0}+ Hp} = 0, Hp as the same structure as Gp.
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Case p odd: In this case, one can solve the stronger equation
{Fp,G0} = Hp, with Hp given of the form Hp(U) =

∫
X (Ap(U)u)ū dµ

and Fp looked for as Fp(U) =
∫
X (Bp(U)u)ū dµ. This may be

reduced to the following problem:

Set Λ̃ =
√
−∆ +

(d−1
2

)2. Let U = (u1, . . . , up)→ A`(U) be
p-linear on C∞(X )p with values in para-differential operators of
order one be given. Look for U → B`(U) of the same type so that

[B`(U), Λ̃] +
∑̀
j=1

B`(u1, . . . ,Λmuj , . . . , up)

−
p∑

j=`+1

B`(u1, . . . ,Λmuj , . . . , up) = −iA`(U) mod. O(εP).

Denote Spec
(√
−∆Sd

)
= {λn; n ∈ N∗}, λ2

n = (n − 1)(n + d − 2),
Πn the spectral projector associated to λn. Substitute Πnj uj to uj .

Then ΛmΠnj uj =
√
−∆ + m2Πnj uj =

√
m2 + λ2

nj
Πnj uj .
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Equivalent equation:

[B`(Πn′U), Λ̃] + Gm(n′)B`(Πn′U) = −iA`(Πn′U),

where n′ = (n1, . . . , np), Πn′U = (Πn1u1, . . . ,Πnpup),

Gm(n′) =
∑`

j=1

√
m2 + λ2

nj
−
∑p

j=`+1

√
m2 + λ2

nj
.

One may choose N of zero measure such that, if m 6∈ N , for any
n′ ∈ (N∗)p, one has d(Gm(n′), 1

2Z) ≥ c |n′|−L0 (for some L0 > 0).
(Does not use that X = Sd , but only weak separation properties of
eigenvalues).



Take θ ∈ C∞0 (R) with θ ≡ 1 close to zero and define

B`(Πn′U) = −
∫ +∞

0
e−itΛ̃A`(Πn′U)e itΛ̃e itGm(n′)θ(εt) dt.

Since Spec(Λ̃) ⊂ 1
2N, t → e−itΛ̃ is 4π-periodic, so

e−itΛ̃A`(Πn′U)e itΛ̃ =
∑
α

Cα(Πn′U)e itα/2.

Consequently,

B`(Πn′U) = −
∑
α

Cα(Πn′U)

∫ +∞

0
e it[α2 +Gm(n′)]θ(εt) dt︸ ︷︷ ︸

=O
(
d
(
Gm(n′), 12Z

)−1)
=O(|n′|L0 )

.

One shows that Cα(U) are para-differential operators of order one.
The loss |n′|L0 represents a loss of derivatives on the coefficients, so
that B` is in the same class. Moreover, B` is a solution to the
equation.
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Take θ ∈ C∞0 (R) with θ ≡ 1 close to zero and define

− i
∫ +∞

−∞
e−itΛ̃A`(Πn′U)e itΛ̃e itGm(n′)εθ′(εt) dt.
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− i
∑
α

Cα(Πn′U)

∫ +∞

−∞
e it[α2 +Gm(n′)]εθ′(εt) dt︸ ︷︷ ︸

=O
(
εPd
(
Gm(n′), 12Z

)−P)
=O(εP |n′|PL0 )

.
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