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Vortex filaments inR3

» one vortex filamentwith uniform vortex strengthy = 1is

stationary
b(s) = (0,0,s)
It generates a flow field it described by
u= aywv a)(wv
where

¢ = 3log(x¥* +y?) = 3log(|2)

is a stream function, arml= x + iy complex horizontal
coordinates.



Vortex filament pairs

Two exactly parallel (vertical) vortex filaments evolve as described by
point vortices ink?

» Opposite vorticityy; = 1 = —~, initial configuration
bl(s> = (%av 0, S) ) b2(5> = (_%a'/ Oa S)

then ballistic linear evolution

t 1

bi(s,t) = (3, ?,s) , ba(s,t) = (—3a, =, 9)

» Same vorticityy; = 1 = ~» with the above initial configuration
have circular orbits with frequency = a2

bi(st) = (Rad/® s),  by(st) = (Rad¥/FHm g



» Question: Consider two near-vertical vortex filaments, slightly
perturbed from exactly vertical. Do there persist similar orbital
motions, whose time evolution is periodic or quasi-periodic.

Fix the configuration to b&r periodic in the verticat variables.

» In ‘center of vorticity’ coordinates, describe the horizontal
separation of the two vortex filaments by

w(s,t) = X(s,t) +iy(s t)
In a frame rotating with angular frequengy

. w
I(?tW+(9§W—wW+W =0 1)

» NB: For configurations which are greatly deformed from
vertical, this is not an accurate approximation



Hamiltonian PDE

» Setw = a+ v(s t) with a € R andv(s, t) a perturbation term,

at+v
la+v2

IOV + 92V — w(@a+v) + 2)

by the choices = a—? thenv = 0O is stationary
» This is a PDE in Hamiltonian form

2w
1
H:/o L1007 + 5 la+ v — logla-+viZds  (3)

Writing v(s,t) = X(s,t) +iY(s,t) the dynamics are given by the
Hamiltonian PDE

X = gradyH
&Y = —gradyH



Linearized equations

» The linearized equations at equilibriurd, Y) = 0 come from
the quadratic Hamiltonian

2m 2
H@ — /0 $[(0X0% + (0Y)? + 537 ds

» Linearized equations

X = gradyH® = -2y
2

AY = —gradyH® = 92y — X



Linear flow

» Writing in a Fourier ba§is_and using Plancherel
X(8) = (1/V27) Yy %€
Y(s) = (1/V27) Yjer, i€

2. - N
H(Z) — Z %((kZ + ¥)|Xk’2 + k2|Yk‘2)
kez

An infinte series of uncoupled harmonic oscillators, with
frequenciesy = ky/k? + (2/a2)

» The solution operator, or the linear flow

e cog(wit) K2 sin(wit) /wic) (X
- Zelk (—wkSin(wkkt)/kz Cos(ulf(kt) k> (YE)

kezZ



Elementary facts

1. All solutions arePeriodig or Quasi-Periodigcor in general
Almost Periodidunctions of time

2. More specifically, for initial dataX®, Y°) the active
wavenumbers aré := {k : (X2, Y0) # 0}
The dimension of the frequency basis is

m:= dimg (span{wk : ke K})

3. Orbit space consists of tori

orbit(X°, Y%) = {®(1)(X0,Y0) : te R} =T™

Periodic (P)m=1
Quasi-Periodic (QPY < m < 40
Almost Periodic (AP)m = +o0

NB: For generia thenwy(a) satisfyl < m < 4o



Elementary facts

4. Energy is conserved
2 _ne 1 X\ (K + 5

5. Indeed eaclaction variablds conserved

VL rIE) X2 + K|

2
L emeraihl

St <<1>k( )T <k2 : 2 |?2> cI>k(t)> ~0

Hence all Sobolev energy norms are preserved

H® =3 " wd

keZ

(X, V)| := Z\k\%k



Natural general questions

1. Whetheranysolutions of the nonlinear problem are Periodic,
Quasi Periodic or Almost Periodic

This refers to the KAM theory for PDEs

2. Whether theaction variables$y(z) are approximately conserved
(averaging theory), giving upper bounds on growth of action
variables, or on higher Sobolev norms

This is in the realm of averaging theory for PDES, including
Birkhoff normal forms and Nekhoroshev stability

3. Whether there existomesolutions which exhibit a growing
lower bound on the growth of the action variables

These would beascade orbitigelated to the question of Arnold
diffusion



Results

Theorem (C. Garcia & WC (2012))
There exist Cantor families of periodic (i.e. = 1) solutions of the

vortex filament equation®) near the uniformly rotating solution
v=20

Theorem (C. Garcia & WC (in progress))

Given wavenumbels, . . . ky there issg = eo(ky, . . . k) such that
for a Cantor set of amplitude®y, . .. by) € B., € C™ there exist QP
solutions of(2) with m-manyQ independent frequenciég(b), of the
form

m
V(s,t) = bkl Oty O(?)
j=1

Actually, these two theorems hold for aogntral configuratioiof
vortices. The case of more complex configurations of near-vertical
vortices is part of our future research program.



Small divisors

» This is a small divisor problem. The frequencies are
wk = ky/k2 + (2/a2).
The eigenvalues associated with the linearized operator for a
solution with temporal quasi-periods= ({21, ...Qy) € R™

1 1
+ .2 :
Ak =k +a2i (Q-J)2+a4

Proposition (small divisors)

For generic(2 the eigenvaluesj; accumulate at = 0.
For a set of full measure &b the eigenvalues satisfy a diophantine

estimate
v

i+ K272




Hamiltonian PDEs

» Flow in phase spacevherez € H a Hilbert space with inner
product(X, Y)y,,

dz=Jgrad,H(z), z(x,0) =2(x), (4)

» Symplectic form

wX,Y) = (X, I7Y)y, IT=-J.

» Theflow  z(xt) = ¢ (Z(x)), defined forz € Ho C H

» Theorem
The flow of(4) preserves the Hamiltonian function:

H(w(2) =H(@),  zeHo

Proof: $H(41(2)) = (grad,H, 2) = (grad,H, Jgrad,H(2)) = 0.



Invariant tori

» Equations for an invariant KAM torus

Q- 0pS= Jgrad,H(9)

» Linearize atS, setéS= Z and place in self adjoint form
Q-J3719y2 - 02H(S9Z=F
Eigenvalues of the RHS are the small divisors

» A symplectic version okigenvalue perturbation theogyven
e-function/e-value pair&Z, \)

(Q - 38 + OZZH(S)>Z —\Z



» Proposition (eigenvalue perturbation theory
(a version of the Feynman — Hellmann formula))

B\ = —(Z|30,Z)

» Proof: Normalize(Z|Z) = 1 so that(Z|0nZ) = 0

(223099 + 0ZH(9))90Z + IOZ = (IoN)Z + A0oZ  (5)
Taking inner products witll
(Z)(2-30 + O2H(9))0aZ) + (Z|I0yZ) = doN(Z|Z) + N (Z]0aZ)
By the normalization this implies

o\ = (Z|90,2Z)
When\ = 0itis furthermore
Do\ = (Z|9?H(9)Z)

which has a definite sign if the Hamiltonidhis definite on the
eigenspace ofZ, \).



Examples of Hamiltonian PDEs

» Nonlinear Schrodinger equation
DomainT? = RY/T, for period latticel

iou — %Axu +Q(x,u,u) =0, xe€ T¢ (6)
Hamiltonian
His(u) = / VU +G(x,uu)dx, 9%G=Q.
Td

Rewritten
oru = i grad;Hnis

» In many cases the Sdtdlinger equation admits a phase
translational gauge symmetry, whese= G(x, |u|?)



Nonlinear wave equation
» DomainD = T9 = RY/T
d9Pu— Au+g(x,u) =0 7)

(Alternately,u = 0 on the boundary of a domainh C RY).
» Energy

H(up) = [+ T2+ Glx vy o,

» Equation (7) can be rewritten

du = gragH(u,p) =p
op = —gragH(u,p) = Au—9yG(xu),

in Darboux coordinates, whetgx, -) = 9,G(X, ).



Generalized KdV

» Korteweg — de Vries equation
1
or = éafr — (O G(x 1)), xeT?! (8)
Hamiltonian

1
Hiav(r) = /Tl 1—2(8xr)2 + G(x, 1) dx

Rewritten

or =JgradHkqy, where J= —0y

» Completely integrable cases ake= r3 andG = r*.



Euler's equations for free surface water waves

» Fluid domain{x € R4 y e (~h,n(x))},d =23
» Incompressibility and irrotationality

V-u=0, VAu=0
thereforeu = V¢ where

Ap=0

» On the solid bottom boundary
N-u=0

» Euler’s equationsfor the free surfacgy = 7(x)}

omn = Oyp— Okn - Oxp
O = —0gn-— %\VSD\Za



kinetic and potential energy
» TheenergyH

77(><)1 5 n(x)
H = K+V:= /]R“/h 5|ul dyder/RM/h gy dydx

n(x)
— /Rdlfh 1| Vo|? dydx-+ /R“ In?dx—C,

where the constarit can be neglected.
» Rewriting the kinetic energy

n(x) N 5 n(x) N
K = /]Rdl/h 5| V|~ dydx= _/Rdl/h 50 Ap dydx

+ /Rdl %(’QN - Vo dSpottom + /]Rdl %‘PN - Vo dSree surface

» Thekinetic energybecomes
K= /Rdl %SN - Vo dSree surface= /Rdl %fG(n)SdX

whereG(n) is theDirichlet — Neumann operator



Dirichlet — Neumann operator

» TheDirichlet — Neumann operatdior £(x) = ¢(X, (X))

G(n)€(X) = (9y — Oxn(X) - D)ep(%, (X)) = RIN - Vo) (%, 7(X))

with R = /1 + |dxn|? a normalization factor so thé&i(n) is
self-adjoint on_?(dx).
» TheHamiltonian

H=K+V= /R‘“ 36G(n)€ + I dx

Theorem (Zakharov (1968))

Canonical variables for the water waves problem &réx), £(x)),
written in Darboux coordinates, with Hamiltoniat.



\ortex sheets
» Hamiltonian H =K +V

Hy.p) = 3 / pp1G1 + pG] 1 p dx
+3 [ YlpGs ~ pGllpsGa + G| aup i

4 [ oG+ pGlyaxs S22 [ 2 ox

» The canonical conjugate variables are
(¥, 3xp) = (¥, 3[01G1 + pGJ(¥ + V1) — [p1G1 — pGly)

The equations of evolution for a vortex sheet can be written as
follows:
oy = grad,H , op = —grad H . (9)

» \ortex sheet equations exhibit thelvin-Helmholtz instability



A variational formulation for resonant invariant tori

v

Mapping of a torusy(#) : T} — H
Flow invarianceS(0 + t€2) = ¢ (S(6))
Frequency vecton € R™

This implies that both

v

v

hS=Q-0S, and 0S=JgradH (9 (20)

v

Problemof KAM tori: Solve (10) for(S(6), €2).
This is generally a small divisor problem.

Rewrite (10) in self-adjoint form

J10 . 9,S—gradH(S) = 0. (11)



Space of torus mappings

Consider the space of mappings X := {S(0) : T — H}

» Defineaverage action functionals

i 1
(S = 2/ (5,919, 9) do
’I['m

55“ = J‘lang

The moment map fomappings
» Theaverage Hamiltonian

A = [ R
dsH = gradH(S)



A variational formulation

Consider the subvariety of defined by fixed actions

Ma:{SeX:Tl(S):al,...lm(S):am}QX

Variational principle:critical points ofH(S) on M, correspond to
solutions of equation (11), with Lagrange multiplier

NB: All of H(S), I;(S) and.M, are invariant under the action of the
torusT™; thatis7, : S(0) — S0 + «) , v € T™.



Two questions

» Two questions.
1. Do critical points exist on\1,?
Note that the following operators are degenerate on thessplac
mappingsx:

Q-J3719,S, Q- J3719,S— §3H(0)

2. How to understand questions of multiplicity of solutions?
» Answers — proposal in some cases:

1. Use infinite dimensional KAM theory or the Nash — Moser
method, with parameters
The latter relies on solutions of the linearized equatioiss,
resolvant expansions (@hlich — Spencer estimates)

2. Morse — Bott theory of critical™ orbits.



The linearized vortex flament equations
Illustrate this with the linearized vortex filament equations
» The quadratic Hamiltonian

27
2
H — / $[(0X)% + (0% + 5X7] ds
0
with frequenciesvx = ky/k? + (2/a2)
» Linearized equations for an invariant torus

Q- 9pX = gradyH® = -2y
2

Q- 9pY = —gradyH® = 92Y — X

» Fourier representation of torus mappirgg) : T" — M

Sx0) =) SOee= ) gl

keR keR jezm

Eigenvalues\, = k? + % + \/(2-])? + %



Null space

» Choosgwy,, . .. wy,) linear frequencies, and a frequency vector
09 = (09,...0QQ) solving the resonance relations

A (2% =0.

» This identifies anull eigenspacin the space of mappings

Xp CX.

Proposition
X3 € Xis even dimensionaljim(X;) = 2M > 2m. Itis possibly
infinite dimensional

» Nonresonant casé = m.
» Resonant casé > m.



Lyapunov - Schmidt decomposition

» Decompos&X = {S: T"+— M} = X3 & Xp = QX @ PX.
» Equation (11) is equivalent to

: (12)
(13)

QI 'Q-0S — gradH(9)

0
P(J7'Q-0,S — gradH(S)) =0

» Decompose the mappin@s= S + S as well.

» Small divisor problem fof5, = S;(S;, €2), which one solves for
(S1,62) € € aCantor set.



Variational problem reduced to a link

It remains to solve the Q-equation (12). This can be posed
variationally (with analogy to Weinstein - Moser theory).

» Define

(S) = T(S+S(S,9)
HY (S) = H(S+S(S,9)

ME = {SieXa:T[(S)=g,j=1...m}

» Critical points ofﬁl(sl) on M} are solutions of (12) with action
vectora.



equivariant Morse — Bott theory

The groupI™ acts onM L leavingH ™ (S,) invariant.
One seeks critical™ orbits.

Question: How many critical orbits 1" on ML?
Depends upon its topology.

Conjecture (a reasonable guess)
For givena there exist integerpy, . . . pm such thatzj pj = M and

M~ @ o



Morse — Bott theory

Check this fact, in endpoint cases.

» Periodic orbitsn = 1, resonant caskl > 1.
MM LT~ CPy(M - 1)
This restates the estimate of Weinstein and Moser

#{critical T* orbits} > M



Morse — Bott theory

» Nonresonant quasi-periodic orbits= M.
Mz~ eMst,  Mg/T™~ apoint

This corresponds to a KAM torus.

» The casan = 2 < M occurs in the problem of doubly periodic
traveling wave patterns on the surface of water.

M= 1 SM-P-1



topology of links

Theorem (Chaperon, Bosio & Meersmann (2006))
The topology of links\1% can be complex. There are cases in which

M; ~ #?:l<szpz1—l R ® gJEk—l) ’ Z Py =M
j
Furthermore, there are more complex quantities than this.
Proof. combinatorics and cohomolological calculations.

Conjecture (revised opinion)

The number of distinct critical™ orbits of H' on Mt is bounded
below:

#{critical orbits of - on M1} > (M — m+ 1) .



Thank you
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