
Dynamics of vortex filament interactions and
Hamiltonian PDEs

Walter Craig

Department of Mathematics & Statistics

July 1 - 6, 2012
Nonlinear Hamiltonian PDEs

Monte Verit̀a, Ascona



Work in collaboration with
Carlos Garcia – Azpeitia McMaster University and UNAM

Acknowledgements:
NSERC, Canada Research Chairs Program,
Killam Research Fellows Program, Fields Institute



Outline

Vortex filaments

Natural questions in Hamiltonian dynamics

Hamiltonian PDEs

A variational formulation for invariant tori



Vortex filaments inR3

◮ one vortex filamentwith uniform vortex strengthγ = 1 is
stationary

b(s) = (0, 0, s)

It generates a flow field inR3 described by

u = (∂yψ,−∂xψ, 0)

where
ψ = 1

2 log(x2 + y2) = 1
2 log(|z|2)

is a stream function, andz= x+ iy complex horizontal
coordinates.



Vortex filament pairs

Two exactly parallel (vertical) vortex filaments evolve as described by
point vortices inR2

◮ Opposite vorticityγ1 = 1 = −γ2, initial configuration

b1(s) = (1
2a, 0, s) , b2(s) = (−1

2a, 0, s)

then ballistic linear evolution

b1(s, t) = (1
2a,

t
a2 , s) , b2(s, t) = (−1

2a,
t

a2 , s)

◮ Same vorticityγ1 = 1 = γ2 with the above initial configuration
have circular orbits with frequencyω = a−2

b1(s, t) = (1
2aeit/a2

, s) , b2(s, t) = (1
2aei(t/a2+π), s)



◮ Question: Consider two near-vertical vortex filaments, slightly
perturbed from exactly vertical. Do there persist similar orbital
motions, whose time evolution is periodic or quasi-periodic.

Fix the configuration to be2π periodic in the verticalz variables.

◮ In ‘center of vorticity’ coordinates, describe the horizontal
separation of the two vortex filaments by

w(s, t) = x(s, t) + iy(s, t)

In a frame rotating with angular frequencyω

i∂tw+ ∂2
sw− ωw+

w
|w|2 = 0 (1)

◮ NB: For configurations which are greatly deformed from
vertical, this is not an accurate approximation



Hamiltonian PDE

◮ Setw = a+ v(s, t) with a ∈ R andv(s, t) a perturbation term,

i∂tv+ ∂2
sv− ω(a+ v) +

a+ v
|a+ v|2 = 0 (2)

by the choiceω = a−2 thenv = 0 is stationary

◮ This is a PDE in Hamiltonian form

H =

∫ 2π

0

1
2|∂sv|2 +

1
2a2 |a+ v|2 − 1

2 log |a+ v|2 ds (3)

Writing v(s, t) = X(s, t) + iY(s, t) the dynamics are given by the
Hamiltonian PDE

∂tX = gradYH

∂tY = −gradXH



Linearized equations

◮ The linearized equations at equilibrium(X,Y) = 0 come from
the quadratic Hamiltonian

H(2) =

∫ 2π

0

1
2

[

(∂sX)
2 + (∂sY)

2 +
2
a2X2] ds

◮ Linearized equations

∂tX = gradYH(2) = −∂2
sY

∂tY = −gradXH(2) = ∂2
sY− 2

a2X



Linear flow

◮ Writing in a Fourier basis and using Plancherel
X(s) = (1/

√
2π)

∑

k∈Z X̂keiks

Y(s) = (1/
√

2π)
∑

k∈Z Ŷkeiks

H(2) =
∑

k∈Z

1
2

(

(k2 +
2
a2)|X̂k|2 + k2|Ŷk|2

)

An infinte series of uncoupled harmonic oscillators, with
frequenciesωk = k

√

k2 ± (2/a2)

◮ The solution operator, or the linear flow
(

X(s, t)
Y(s, t)

)

= Φ(t)

(

X(s, 0)
Y(s, 0)

)

=
∑

k∈Z

eiks
(

cos(ωkt) k2 sin(ωkt)/ωk

−ωk sin(ωkt)/k2 cos(ωkt)

)(

X̂k

Ŷk

)



Elementary facts

1. All solutions arePeriodic, or Quasi-Periodic, or in general
Almost Periodicfunctions of time

2. More specifically, for initial data(X0,Y0) the active
wavenumbers areK := {k : (X̂0

k , Ŷ
0
k ) 6= 0}

The dimension of the frequency basis is

m := dimQ

(

spanQ{ωk : k ∈ K}
)

3. Orbit space consists of tori

orbit(X0,Y0) = {Φ(t)(X0,Y0) : t ∈ R} = Tm

Periodic (P):m= 1
Quasi-Periodic (QP):1< m< +∞
Almost Periodic (AP):m= +∞
NB: For generica thenωk(a) satisfy1 ≤ m≤ +∞



Elementary facts
4. Energy is conserved

H(2)(Φ(t)(X,Y)) = H(2)(X,Y) = 1
2

∑

k∈Z

(

X̂k

Ŷk

)(

k2 + 2
a2 0

0 k2

)(

X̂k

Ŷk

)

5. Indeed eachaction variableis conserved

Ik =

√
k2+(2/a2)

2|k| |Xk|2 + |k|

2
√

k2+(2/a2)
|Yk|2

d
dt

(

Φk(t)
T
(

k2 + 2
a2 0

0 k2

)

Φk(t)

)

= 0

Hence all Sobolev energy norms are preserved

H(2) =
∑

k∈Z

ωkI

‖(X,Y)‖2
r :=

∑

k

|k|2r Ik



Natural general questions

1. Whetheranysolutions of the nonlinear problem are Periodic,
Quasi Periodic or Almost Periodic

This refers to the KAM theory for PDEs

2. Whether theaction variablesIk(z) are approximately conserved
(averaging theory), giving upper bounds on growth of action
variables, or on higher Sobolev norms

This is in the realm of averaging theory for PDEs, including
Birkhoff normal forms and Nekhoroshev stability

3. Whether there existsomesolutions which exhibit a growing
lower bound on the growth of the action variables

These would becascade orbits, related to the question of Arnold
diffusion



Results

Theorem (C. Garcia & WC (2012))
There exist Cantor families of periodic (i.e.m= 1) solutions of the
vortex filament equations(2) near the uniformly rotating solution
v = 0

Theorem (C. Garcia & WC (in progress))
Given wavenumbersk1, . . . km there isε0 = ε0(k1, . . . km) such that
for a Cantor set of amplitudes(b1, . . .bm) ∈ Bε0 ⊆ Cm there exist QP
solutions of(2) with m-manyQ independent frequenciesΩj(b), of the
form

v(s, t) =
m
∑

j=1

bje
ikjseiΩj(b)t +O(ε2)

Actually, these two theorems hold for anycentral configurationof
vortices. The case of more complex configurations of near-vertical
vortices is part of our future research program.



Small divisors

◮ This is a small divisor problem. The frequencies are
ωk = k

√

k2 ± (2/a2).
The eigenvalues associated with the linearized operator for a
solution with temporal quasi-periodsΩ = (Ω1, . . .Ωm) ∈ Rm

λ±jk := k2 +
1
a2 ±

√

(Ω · j)2 +
1
a4

Proposition (small divisors)
For genericΩ the eigenvaluesλ−jk accumulate atλ = 0.
For a set of full measure ofΩ the eigenvalues satisfy a diophantine
estimate

|λ−jk | ≥
γ

(|j|+ |k|2)m+1/2+



Hamiltonian PDEs
◮ Flow in phase space, wherez∈ H a Hilbert space with inner

product〈X,Y〉H,

∂tz= JgradzH(z) , z(x, 0) = z0(x) , (4)

◮ Symplectic form

ω(X,Y) = 〈X, J−1Y〉H , JT = −J .

◮ The flow z(x, t) = ϕt(z0(x)), defined forz∈ H0 ⊆ H
◮ Theorem

The flow of(4) preserves the Hamiltonian function:

H(ϕt(z)) = H(z) , z∈ H0

Proof: d
dtH(ϕt(z)) = 〈gradzH, ż〉 = 〈gradzH, JgradzH(z)〉 = 0 .



Invariant tori

◮ Equations for an invariant KAM torus

Ω · ∂θS= JgradzH(S)

◮ Linearize atS, setδS= Z and place in self adjoint form

Ω · J−1∂θZ − ∂2
zH(S)Z = F

Eigenvalues of the RHS are the small divisors

◮ A symplectic version ofeigenvalue perturbation theorygiven
e-function/e-value pairs(Z, λ)

(

Ω · J∂θ + ∂2
zH(S)

)

Z = λZ



◮ Proposition (eigenvalue perturbation theory
(a version of the Feynman – Hellmann formula))

∂Ωλ = −〈Z|J∂θZ〉

◮ Proof: Normalize〈Z|Z〉 = 1 so that〈Z|∂ΩZ〉 = 0
(

Ω · J∂θ + ∂2
zH(S)

)

∂ΩZ + J∂θZ = (∂Ωλ)Z + λ∂ΩZ (5)

Taking inner products withZ

〈Z|(Ω ·J∂θ+∂2
zH(S))∂ΩZ〉+ 〈Z|J∂θZ〉 = ∂Ωλ〈Z|Z〉+λ〈Z|∂ΩZ〉

By the normalization this implies

∂Ωλ = 〈Z|J∂θZ〉
Whenλ = 0 it is furthermore

∂Ωλ = 〈Z|∂2
zH(S)Z〉

which has a definite sign if the HamiltonianH is definite on the
eigenspace of(Z, λ).



Examples of Hamiltonian PDEs

◮ Nonlinear Schrödinger equation
DomainTd = Rd/Γ, for period latticeΓ

i∂tu− 1
2
∆xu+ Q(x, u, u) = 0 , x ∈ Td (6)

Hamiltonian

HNLS(u) =
∫

Td

1
2|∇u|2 + G(x, u, u) dx , ∂uG = Q .

Rewritten
∂tu = i graduHNLS

◮ In many cases the Schrödinger equation admits a phase
translational gauge symmetry, whereG = G(x, |u|2)



Nonlinear wave equation

◮ DomainD = Td = Rd/Γ

∂2
t u−∆u+ g(x, u) = 0 (7)

(Alternately,u = 0 on the boundary of a domainD ⊆ Rd).

◮ Energy

H(u, p) =
∫

Td

1
2p2 + 1

2|∇u|2 + G(x, u) dx ,

◮ Equation (7) can be rewritten

∂tu = gradpH(u, p) = p

∂tp = −graduH(u, p) = ∆u− ∂uG(x, u) ,

in Darboux coordinates, whereg(x, ·) = ∂uG(x, ·).



Generalized KdV

◮ Korteweg – de Vries equation

∂tr =
1
6
∂3

x r − ∂x(∂rG(x, r)) , x ∈ T1 (8)

Hamiltonian

HKdV(r) =
∫

T1

1
12

(∂xr)
2 + G(x, r) dx

Rewritten

∂tr = J gradrHKdV , where J = −∂x

◮ Completely integrable cases areG = r3 andG = r4.



Euler’s equations for free surface water waves
◮ Fluid domain{x ∈ Rd−1, y ∈ (−h, η(x))}, d = 2, 3
◮ Incompressibility and irrotationality

∇ · u = 0 , ∇∧ u = 0

thereforeu = ∇ϕ where

∆ϕ = 0

◮ On the solid bottom boundary

N · u = 0

◮ Euler’s equationsfor the free surface{y = η(x)}

∂tη = ∂yϕ− ∂xη · ∂xϕ

∂tϕ = −gη − 1
2|∇ϕ|

2 ,



kinetic and potential energy
◮ TheenergyH

H = K + V :=

∫

R
d−1

∫ η(x)

h

1
2|u|

2 dydx+
∫

R
d−1

∫ η(x)

h
gy dydx

=

∫

R
d−1

∫ η(x)

h

1
2|∇ϕ|

2 dydx+
∫

R
d−1

g
2η

2 dx− C ,

where the constantC can be neglected.
◮ Rewriting the kinetic energy

K =

∫

R
d−1

∫ η(x)

h

1
2|∇ϕ|

2 dydx= −
∫

R
d−1

∫ η(x)

h

1
2ϕ∆ϕ dydx

+

∫

R
d−1

1
2ϕN · ∇ϕ dSbottom+

∫

R
d−1

1
2ϕN · ∇ϕ dSfree surface.

◮ Thekinetic energybecomes

K =

∫

R
d−1

1
2ξN · ∇ϕ dSfree surface=

∫

R
d−1

1
2ξG(η)ξ dx

whereG(η) is theDirichlet – Neumann operator.



Dirichlet – Neumann operator

◮ TheDirichlet – Neumann operatorFor ξ(x) = ϕ(x, η(x))

G(η)ξ(x) = (∂y − ∂xη(x) · ∂x)ϕ(x, η(x)) = R(N · ∇ϕ)(x, η(x))

with R=
√

1+ |∂xη|2 a normalization factor so thatG(η) is
self-adjoint onL2(dx).

◮ TheHamiltonian

H = K + V =

∫

R
d−1

1
2ξG(η)ξ + g

2η
2 dx

Theorem (Zakharov (1968))
Canonical variables for the water waves problem are(η(x), ξ(x)),
written in Darboux coordinates, with HamiltonianH.



Vortex sheets
◮ Hamiltonian H = K + V

H(y, p) = 1
2

∫

∂xp[ρ1G1 + ρG]−1∂xp dx

+1
2

∫

y[ρ1G1 − ρG][ρ1G1 + ρG]−1∂xp dx

−1
2

∫

1
4

y[ρ1G1 + ρG]y dx+
g(ρ− ρ1)

2

∫

y2(x) dx

◮ The canonical conjugate variables are

(y, ∂xp) = (y, 1
2[ρ1G1 + ρG](Ψ + Ψ1)− [ρ1G1 − ρG]y)

The equations of evolution for a vortex sheet can be written as
follows:

∂ty = gradpH , ∂tp = −gradyH . (9)

◮ Vortex sheet equations exhibit theKelvin-Helmholtz instability.



A variational formulation for resonant invariant tori

◮ Mapping of a torusS(θ) : Tm
θ 7→ H

◮ Flow invarianceS(θ + tΩ) = ϕt(S(θ))
Frequency vectorΩ ∈ Rm

◮ This implies that both

∂tS= Ω · ∂θS , and ∂tS= J gradzH(S) (10)

◮ Problemof KAM tori: Solve (10) for(S(θ),Ω).
This is generally a small divisor problem.

Rewrite (10) in self-adjoint form

J−1Ω · ∂θS− gradzH(S) = 0 . (11)



Space of torus mappings

Consider the space of mappingsS∈ X := {S(θ) : Tm 7→ H}
◮ Defineaverage action functionals

I j(S) =
1
2

∫

Tm
〈S, J−1∂θj S〉 dθ

δSI j = J−1∂θj S

The moment map formappings

◮ Theaverage Hamiltonian

H(S) =

∫

Tm
H(S(θ)) dθ

δSH = gradzH(S)



A variational formulation

Consider the subvariety ofX defined by fixed actions

Ma = {S∈ X : I1(S) = a1, . . . Im(S) = am} ⊆ X

Variational principle:critical points ofH(S) onMa correspond to
solutions of equation (11), with Lagrange multiplierΩ.

NB: All of H(S), I j(S) andMa are invariant under the action of the
torusTm; that isτα : S(θ) 7→ S(θ + α) , α ∈ Tm.



Two questions

◮ Two questions.
1. Do critical points exist onMa?

Note that the following operators are degenerate on the space of
mappingsX:

Ω · J−1∂θS , Ω · J−1∂θS− δ2
SH(0)

2. How to understand questions of multiplicity of solutions?

◮ Answers – proposal in some cases:

1. Use infinite dimensional KAM theory or the Nash – Moser
method, with parameters
The latter relies on solutions of the linearized equations,via
resolvant expansions (Fröhlich – Spencer estimates)

2. Morse – Bott theory of criticalTm orbits.



The linearized vortex filament equations
Illustrate this with the linearized vortex filament equations

◮ The quadratic Hamiltonian

H(2) =

∫ 2π

0

1
2

[

(∂sX)
2 + (∂sY)

2 +
2
a2X2] ds

with frequenciesωk = k
√

k2 ± (2/a2)
◮ Linearized equations for an invariant torus

Ω · ∂θX = gradYH(2) = −∂2
sY

Ω · ∂θY = −gradXH(2) = ∂2
sY− 2

a2X

◮ Fourier representation of torus mappingsS(θ) : Tm 7→ M

S(x, θ) =
∑

k∈R

Sk(θ)e
iks =

∑

k∈R,j∈Zm

Sjkeij ·θeiks

Eigenvaluesλ±jk = k2 + 1
a2 ±

√

(Ω · j)2 + 1
a4



Null space

◮ Choose(ωk1, . . . ωkm) linear frequencies, and a frequency vector
Ω0 = (Ω0

1, . . .Ω
0
m) solving the resonance relations

λ−jk (Ω
0) = 0 .

◮ This identifies anull eigenspacein the space of mappings

X1 ⊆ X .

Proposition
X1 ⊆ X is even dimensional;dim(X1) = 2M ≥ 2m. It is possibly
infinite dimensional

◮ Nonresonant case: M = m.

◮ Resonant case: M > m.



Lyapunov - Schmidt decomposition

◮ DecomposeX = {S : Tm 7→ M} = X1 ⊕ X2 = QX⊕ PX.

◮ Equation (11) is equivalent to

Q
(

J−1Ω · ∂θS − gradzH(S)
)

= 0 , (12)

P
(

J−1Ω · ∂θS − gradzH(S)
)

= 0 . (13)

◮ Decompose the mappingsS= S1 + S2 as well.

◮ Small divisor problem forS2 = S2(S1,Ω), which one solves for
(S1,Ω) ∈ E a Cantor set.



Variational problem reduced to a link

It remains to solve the Q-equation (12). This can be posed
variationally (with analogy to Weinstein - Moser theory).

◮ Define

I
1
j (S1) = I j(S1 + S2(S1,Ω))

H
1
(S1) = H(S1 + S2(S1,Ω))

M1
a = {S1 ∈ X1 : I

1
j (S1) = aj , j = 1 . . .m}

◮ Critical points ofH
1
(S1) onM1

a are solutions of (12) with action
vectora.



equivariant Morse – Bott theory

The groupTm acts onM1
a leavingH

1
(S1) invariant.

One seeks criticalTm orbits.

Question: How many critical orbits ofH
1

onM1
a?

Depends upon its topology.

Conjecture (a reasonable guess)
For givena there exist integersp1, . . .pm such that

∑

j pj = M and

M1
a ≃ ⊗m

j=1S2pj−1



Morse – Bott theory

Check this fact, in endpoint cases.

◮ Periodic orbitsm= 1, resonant caseM > 1.

M1
a ≃ S2M−1 , M1

a/T
1 ≃ CPw(M − 1)

This restates the estimate of Weinstein and Moser

#{criticalT1 orbits} ≥ M



Morse – Bott theory

◮ Nonresonant quasi-periodic orbitsm= M.

M1
a ≃ ⊗M

j=1S1 , M1
a/T

m ≃ a point

This corresponds to a KAM torus.

◮ The casem= 2 ≤ M occurs in the problem of doubly periodic
traveling wave patterns on the surface of water.

M1
a ≃ S2p−1 ⊗ S2(M−p)−1



topology of links

Theorem (Chaperon, Bosio & Meersmann (2006))
The topology of linksM1

a can be complex. There are cases in which

M1
a ≃ #q

ℓ=1(S
2pℓ1−1 ⊗ · · · ⊗ Spℓk−1) ,

∑

j

pℓj = M

Furthermore, there are more complex quantities than this.

Proof: combinatorics and cohomolological calculations.

Conjecture (revised opinion)
The number of distinct criticalTm orbits ofH

1
onM1

a is bounded
below:

#{critical orbits ofH
1

on M1
a} ≥ (M − m+ 1) .



Thank you
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