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KAM for PDEs

Goal: quasi-periodic solutions of PDEs like

Nonlinear wave equation (NLW), d ≥ 1
Nonlinear Schrödinger equation (NLS), d ≥ 1

1d-Derivative-NLW
Fully nonlinear perturbations of KdV
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KAM for PDEs

Nonlinear wave equation (NLW), d ≥ 1
Nonlinear Schrödinger equation (NLS), d ≥ 1

1 any space dimension x ∈ Td , d ≥ 1
2 Hamiltonian PDEs, semi-linear nonlinearities f (x , u)
3 existence of quasi-periodic solutions,
4 no-reducibility results, no informations on Lyapunov

exponents/stability

1d-Derivative-NLW
Fully nonlinear perturbations of KdV

1 1-space dimension x ∈ T1

2 not Hamiltonian, other algebraic structures: reversibililty, ...
3 quasi-linear/ fully-nonlinear
4 reducibility results, informations on Lyapunov

exponents/stability, ...
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Techniques:
Nash-Moser implicit function theorems
KAM (Kolmogorov-Arnold-Moser) theory

Key: new perturbative spectral analysis for the
linearized PDE on approximate solutions
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A model case: NLW on Td

(NLW) utt −∆u + V (x)u = εf (ωt, x , u)

x ∈ Td , d ≥ 1, periodic boundary conditions
ε > 0 is small
V (x) ∈ Ck(Td ; R) multiplicative potential
f ∈ Ck(Tν × Td × R; R) finitely differentiable
nonlinearities
ω ∈ Rν diophantine, forcing frequencies

Infinite dimensional Hamiltonian (Lagrangian) system
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The problem:

Question: ∃ quasi-periodic solutions of NLW for ε 6= 0?

Definition of Quasi-periodic solution:
u(ωt, x) where u(ϕ, x) : Tν × Td → R

The torus-manifold

Tν 3 ϕ 7→ u(ϕ, x) ∈ Infinite Dimensional Phase Space

is invariant under the flow evolution of NLW
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Linear wave equation

utt −∆u + V (x)u = 0

Solutions: (superposition principle)

u(t, x) =
∑

j
ajei
√
λj tψj(x) where (−∆ + V (x))ψj = λjψj

Eigenfunctions ψj(x) orthonormal in L2: "normal modes"
Eigenvalues λj → +∞:

√
λj = "normal frequencies"

Periodic, Quasi-Periodic, Almost Periodic solutions

Question: what happens for the nonlinear PDE for ε 6= 0 small?
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Functional setting

Look for quasi-periodic solutions

u(ωt, x) of NLW

=⇒ the embedding Tν 3 ϕ 7→ u(ϕ, x) solves

(NLW ) (ω · ∂ϕ)2u −∆u + V (x)u = εf (ϕ, x , u)

in the Sobolev space Hs(Tν × Td ; R) for some s ≤ k

Hs :=
{
u(ϕ, x) :=

∑
(`,j)∈Zν×Zd

u`,jei(`·ϕ+j·x) with

‖u‖2s :=
∑

(`,j)∈Zν×Zd

|u`,j |2(1 + |`|2s + |j |2s) < +∞
}
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Bifurcation problem: Let F : [0, ε0)× Hs → Hs−2 be

F (ε, u) := (ω · ∂ϕ)2u −∆u + V (x)u − εf (ϕ, x , u)

Look for zeros F (ε, u) = 0.
Small amplitude solutions:

F (0, 0) = 0

Compute the partial derivative with respect to u at (ε, u) = (0, 0),

DuF (0, 0) = (ω · ∂ϕ)2 −∆ + V (x)
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DuF (0, 0) = (ω · ∂ϕ)2 −∆ + V (x)

eigenvectors: ei`·ϕψj(x), normal modes: (−∆ + V (x))ψj = λjψj

eigenvalues: −(ω · `)2 + λj

Assumption: NON-RESONANT case: SMALL DIVISORS∣∣∣(ω · `)2 − λj
∣∣∣ ≥ γ

1 + |`|τ
, ∀(`, j) , τ > 0

=⇒ DuF (0, 0) is invertible, but the inverse is unbounded:

((ω · ∂ϕ)2 −∆ + V (x))−1 : Hs → Hs−τ

τ := ”LOSS OF DERIVATIVES”
=⇒ classical Implicit function theorem fails
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Nash-Moser IFT: Newton method + "Smoothing"

Newton tangent method for zeros of F (u) = 0 + "smoothing":

un+1 := un − Sn(DuF )−1(un)F (un)

where Sn are regularizing operators

Advantage: QUADRATIC scheme

‖un+1 − un‖s ≤ C(n)‖un − un−1‖2s

=⇒ convergent also if C(n)→ +∞
Difficulty: invert (DuF )(u) in a whole neighborhood of the
expected solution
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Example for NLW: linearized equation on an approximate solution

h→ (DuF )(u, ε)[h] := ((ω · ∂ϕ)2 −∆ + V (x))h + εp(ϕ, x)h

p(ϕ, x) := (∂uf )(ϕ, x , u(ϕ, x))

Linear differential operator with non-constant coefficients
not diagonal in Fourier basis
"singular" perturbation problem: L−1

ω T is unbounded
Lω := (ω · ∂ϕ)2 −∆ + V (x) , Th := p(ϕ, x)h

L−1
ω = order τ , T = order 0
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Literature d = 1

Kuksin ’89, Wayne ’90. KAM theory, analytic NLS, NLW with
Dirichlet boundary conditions:

Eigenvalues of −∂xx + V (x) are simple =⇒
2th order Melnikov of non-resonance conditions OK
V (x) are "parameters"

x ∈ T
Craig-Wayne ’93: periodic solutions
Bourgain ’94: quasi-periodic solutions

Lyapunov-Schmidt, Newton method, f analytic,
1th order Melnikov non-resonance conditions OK



KAM for PDEs NLW Literature Nash-Moser Ideas of proof KAM DNLW gKdV

dimension d ≥ 2

Main difficulties:

1) the eigenvalues of −∆ + V (x) appear in clusters of
increasing size

For example −∆eij·x = |j |2eij·x then |j |2 = |j0|2, j ∈ Zd

2) The eigenfunctions of −∆ + V (x) may be "NOT localized
with respect to exponentials"! (Feldman- Knörrer-Trubowitz)

=⇒ often used pseudo-PDE with Fourier multipliers

iut −∆u + Mσu = εf , Mσeij·x = mσeij·x

and mσ are used as parameters
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Literature: d ≥ 2: quasi-periodic solutions

Newton method, 1th order Melnikov
Bourgain, Annals ’98 (d = 2), Annals ’05
NLS and NLW with Fourier multipliers

Anderson localization theory: Bourgain, Goldstein, Schlag
Polynomial nonlinearities (analytic): semialgebraic and
subharmonicity theory for "measure and complexity" estimates

Wang, ’10- ’11 completely resonant NLS-NLW, no external
parameters,
Berti-Bolle, ’10-’12, NLS-NLW, finite regularity, V (x)
multiplicative potential

KAM theory: 2th order Melnikov
Kuksin-Eliasson, Annals ’10, NLS with Fourier multipliers
d = 2, Geng-You-Xu, cubic NLS, no external parameters, ’10
Procesi-Xu ’11, Procesi-Procesi ’11, any dimension, reducible
Birkhoff normal form for completely resonant NLS
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New results of quasi-periodic solutions in d ≥ 2

We look for quasi-periodic solutions of

(NLW ) (ω · ∂ϕ)2u −∆u + V (x)u = εf (ϕ, x , u)

with Ker(−∆ + V (x)) = 0, and

ω = λω̄ , λ ≈ 1

in a fixed diophantine direction

|ω̄ · `| ≥ γ0
|`|τ0 , ∀` ∈ Zν \ {0} ,

∣∣∣∑1≤i≤j≤ν ω̄i ω̄jpĳ
∣∣∣ ≥ γ0

1+|p|τ0

for all pĳ ∈ Z which are not all naught.
In finite dimension Eliasson ’89 and Bourgain ’94
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Theorem
(M.Berti, P.Bolle, ’11)
Existence: ∃s := s(d , ν), k := k(d , ν) ∈ N, such that:
∀V , f ∈ Ck , there exist ε0 > 0, such that ∀0 < ε < ε0, there exists
a map

u(ε, ·) ∈ C1([1/2, 3/2];Hs) with sup
λ∈[1/2,3/2]

‖u(ε, λ)‖s
ε→0→ 0 ,

and a Cantor like set Cε ⊂ [1/2, 3/2] of asymptotically full
Lebesgue measure, i.e.

|Cε| → 1 as ε→ 0,

such that, ∀λ ∈ Cε, u(ε, λ) is a solution of NLW with ω = λω̄.
Regularity: If V , f ∈ C∞ then u ∈ C∞ in space and time.

Smoothness: for ν = 1 (periodic sol.), d = 1, we got k = 6
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Remarks

A similar result holds for the Hamiltonian NLS

iut −∆u + V (x)u = εf (ωt, x , u, ū)

M. Berti, P. Bolle, to appear on Journal Eur. Math Soc.

The restriction of Cε is not technical! Outside: "Chaos",
"homoclinc/heteroclinics solutions", "Arnold Diffusion", ....
"Growth of Sobolev norms in 2-d cubic NLS"

iut −∆u = |u|2u , x ∈ T2

Colliander-Keel-Staffilani-Takaoka-Tao, Invent. Math. 2010.

For Differentiable nonlinearities f ∈ Ck the "chaotic effects"
are stronger... and KAM theory more difficult

Delort ’10, f ∈ C∞, periodic sol. of NLS, paradiff. calculus,
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Pre-assigned direction of tangential frequencies
- for NLW in Geng-Ren, ’10,
- Berti-Biasco, CMP ’11.
Use just 1 parameter. See "Degenerate KAM theory"
-Bambusi-Berti-Magistrelli, JDE ’11,
For "measure and complexity" estimates we use simple
eigenvalue variation arguments not sub-harmonicity theory
(not available in Ck)
Many of these results should carry over spheres, Zoll
manifolds, Lie groups, homogeneous spaces

symmetries and properties of eigenfunctions and eigenvalues
For periodic solutions proved in Berti-Procesi, DUKE ’11
related to Birkhoff normal form results by Bambusi, Delort,
Grebert, Szeftel for spheres and Zoll manifolds
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About the Proof

Key step: For "most" parameters λ ∈ [1/2, 3/2] the linearized
operator

Lε(λ) := (λω̄ · ∂ϕ)2 −∆ + V (x) + ε(∂uf )(ϕ, x , u(ϕ, x))

is invertible and TAME estimate in HIGHER Sobolev norms, i.e.

‖L−1
ε (λ)h‖s ≤ ‖h‖s+τ‖u‖s0 + ‖h‖s0‖u‖s , ∀s0 ≤ s ≤ k

Step 1) L2-estimates: lower bounds for the eigenvalues of the
self adjoint operator Lε(λ): eigenvalues are smooth in
λ ∈ [1/2, 3/2]

Step 2) Tame-estimates in high norm
Key observation: many eigenvalues are not small !
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Separation properties of singular sites

Singular sites : (`, j) ∈ Zν × Zd such that

| − (ω · `)2 + |j |2 + m| ≤ ρ

must be more and more "rare" as ρ→ 0. Integer points near a
"cone": the slope ω must be "irrational"∣∣∣ ∑

1≤i≤j≤ν
ω̄i ω̄jpĳ

∣∣∣ ≥ γ0
1 + |p|τ0

(this should be the optimal -minimal- condition)

NLS | − ω · `+ |j |2 + m| << 1

near a "paraboloid": more torsion =⇒ less integers nearby
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Two different approaches to KAM theory for PDEs

Solve the linearized equations on approximate solutions using:
"1th-Melnikov conditions" (Nash-Moser)

|ω · `− µj(ε)| ≥ γ
1+|`|τ minimal assumption (µj(ε) are the

perturbed frequencies of the linearized equations at each
iterative step),
=⇒ works well in case of multiple eigenvalues
Drawback: linearized eq. with non-constant coefficients

"2th-Melnikov conditions"
|ω · `− µj(ε) + µi (ε)| ≥ γ

1+|`|τ

Advantage: linearized equation with constant coefficients
Advantage: ∃ torus + reducible normal form =⇒
stability results
the linearized eq. with non-constant coefficients of case 1, can
be conjugated to a constant coefficient eq.
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KAM for 1-d unbounded perturbations

Kuksin ’98 for KdV, Kappeler-Pöschel ’03

ut + uxxx + uux + ε∂x f (x , u) = 0

Liu-Yuan ’10 for Hamiltonian DNLS (and Benjamin-Ono)

iut − uxx + Mσu + iε f (u, ū)ux = 0

1 Main difficulty: the vector field whose flow defines usual KAM
changes of variables is unbounded

2 no stability result, non constant coefficients KAM normal form
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2th order Melnikov-non-resonance conditions

KdV |ω · `+ j3 − i3| ≥ γ j2 + i2
1 + |`|τ

, j 6= i ,

=⇒ gains 2 derivatives

DNLS |ω · `+ j2 − i2| ≥ γ |j |+ |i |1 + |`|τ
, j 6= i ,

=⇒ gains 1 derivative
DNLS is less dispersive than KdV
(solutions in Liu-Yuan are C∞)

The derivative wave equation is not dispersive =⇒ is excluded



KAM for PDEs NLW Literature Nash-Moser Ideas of proof KAM DNLW gKdV

Derivative NLW

ytt − yxx + my + f (x , y , yx , yt) = 0, x ∈ T

not Hamiltonian. For example: there are no non-trivial
periodic/quasi-periodic solutions of

ytt − yxx + my + y3
t = 0 , ytt − yxx + my + y3

x + f (y) = 0 ,

ytt − yxx + my + ∂x (y3) + f (y) = 0

But: all solutions of

ytt − yxx = y2
t − y2

x are y = − ln(p(t + x) + q(t − x))

2π-periodic ("null-condition" of Klainerman)
∃ periodic solutions of

ytt − yxx + my + y2
t = 0 , m 6= 0 , Bourgain ′96 ,
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The above equations are NOT Hamiltonian but Reversible PDE

y(t, x) 7→ y(−t, x)

Reversible KAM theory:
Finite dimension: Moser ’67, Arnold, Sevryuk, ...
Infinite dimension:
1-d-NLS reversible, Zhang-Gao-Yuan ’11

iut + uxx = |ux |2u
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Derivative NLW

ytt − yxx + my + f (x , y , yx , yt) = 0

"reversibility condition"
f (x , y , yx ,−v) = f (x , y , yx , v)

it rules out nonlinearities like y3
t

d
dt

(
y
v

)
=

(
v

yxx −my − f (x , y , yx , v)

)
=: F (y , v)

SF = −FS S(y , v) := (y ,−v) , S2 = I ,

"parity condition"
f (−x , y ,−yx , v) = f (x , y , yx , v)

it rules out nonlinearities like y3
x



KAM for PDEs NLW Literature Nash-Moser Ideas of proof KAM DNLW gKdV

Theorem
(M.Berti, L. Biasco, M. Procesi ’12)
For all m > 0, for every choice of the "tangential sites"

I := {j1 , . . . , jn} ⊂ N \ {0} ,

the DNLW eq. satisfying "reversibility"+"parity" conditions, ex.

ytt − yxx + my + yy2
x = 0 ,

possesses small amplitude, analytic, quasi-periodic solutions, with
zero Lyapunov exponents, of the form

y =
∑
j∈I

√
ξj cos(ω∞j (ξ) t) cos(jx) + o(

√
ξ), ω∞j (ξ)

ξ→0
≈
√
j2 + m

for a "Cantor-like" set of parameters ξ ∈ Rn with asymptotically
density 1 at ξ = 0. The linearized equations on these
quasi-periodic solutions are reduced to constant coefficients.
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Some ideas of proofs

1 KAM theory is not an Hamiltonian theory: work at level of
vector fields (not Hamiltonian), commutators (not
Poisson brackets),

2 "reversibility" and "parity" give purely real corrections to
the eigenvalues, i.e. frequencies, which avoids "friction terms"
and "secular terms"

3 KEY: Verify the 2th-Melnikov non resonance conditions

|ω · `+ µj(ε)− µi (ε)| ≥ γ/|`|τ , ∀i , j , `

Usual perturbation theory implies the estimate

µj(ε) =
√
j2 + m + O(ε) , j → +∞

which is not sufficient... semi-linear nonlinearities:

µj(ξ) =
√
j2 + m + O(ε/j)
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KEY: First order asymptotic expansion

µj(ε) =
√
j2 + m + cε + O(ε/j) = j + cε + O(m

j )

where cε = O(ε) is independent of j
=⇒ in the 2th-Melnikov conditions

|ω · `+ µj(ε)− µi (ε)| ≥ γ/|`|τ , ∀i , j , `

the difference of cε cancels out =⇒ OK
Proof by quasi-Töplitz vector field (related to Procesi-Xu
’11, Eliasson-Kuksin for NLS, see also Grebert-Thomann ’11 for
harmonic oscillators) Stable under KAM operations:

1 Poisson brackets
2 Lie transform
3 Solution of homological equation
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Open problem: quasi-linear NLW (Klein-Gordon)?

ytt − yxx + my + εf (x , y , yx , yxx ) = 0

Difficulty: 2-derivatives in the nonlinearity!

Lax, Zabusky ’64, Klainemann-Majda ’82

ytt − (1 + εσ(yx ))yxx = 0 , σ(yx ) = yp
x + ....

have no smooth solutions for all times:

∃Tcrit > 0 such that yxx becomes discontinuous

Rabinowitz ’71: periodic solutions of

ytt − yxx + αyt = εF (x , t, y , yt , yx , ytx , yxx , ytt)

The small dissipation yt allows the existence of periodic solutions!
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Quasi-linear perturbations of g-Kdv

ut + uxxx + ε∂xx (f (ωt, x , ux )) = 0 , x ∈ T , ω ∈ Rν

Hamiltonian:

ut = ∂x∇L2H(u) , H(u) =

∫
T

u2
x
2 + εF (ωt, x , ux )dx

Physically important for perturbative derivation from water-waves,
ex. Craig
Reversible f : Tν × T× R→ R:

−f (ϕ, x , ux ) = f (−ϕ,−x ,−ux )

Involution
(Su)(x) := u(−x) , S2 = I ,
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Theorem
(Baldi, Berti, Montalto , ’12) Let ω̄ ∈ Rν diophantine.
∃k := k(ν) ∈ N such that:
∀f ∈ Ck , f reversible, ∀0 < ε < ε0 (small enough), for all λ in a
Cantor like set Cε ⊂ [1, 2/3/2] of asymptotically full Lebesgue
measure, i.e.

|Cε| → 0 as ε→ 0,

there is a quasi-periodic solution u(ε, λ) ∈ Hs , s ≤ k, even in
(t, x), with frequency ω = λω̄, of the gKdV equation

ut + uxxx + ε∂xx (f (ωt, x , ux )) = 0 , x ∈ T .

The solution ‖u(ε, λ)‖s → 0 as ε→ 0. The linearized equations
on these quasi-periodic solutions are reduced to constant
coefficients and they have zero Lyapunov exponents.
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Linearized operator for quasi-linear KdV

L := ω · ∂ϕ + ∂xxx + ε∂xx (p(x , ϕ)∂x )

= ω · ∂ϕ + (1 + εp(ϕ, x))∂xxx + 2εpx∂xx + εpxx∂x

Main difficulty: the non constant coefficients term εp(ϕ, x)∂xxx !

Usual perturbation theory implies the estimate for eigenvalues

µj(ε) = ω · `+ j3 + O(εj3)

Not sufficient!
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Theorem
Conjugate L to a diagonal (constant coefficients) linear operator:

Φ−1 ◦ L ◦ Φ = diag{iµj(ε, ω)}

where

µj(ε, ω) = ω · `− (1 + εc0(ε, ω))j3 + εc1(ε, ω)j + rj(ε) ,

supj∈Z |rj(ε)| = O(ε)

The functions c0(ε, ω), c1(ε, ω) are independent of j

=⇒ we may verify II Melnikov conditions
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Higher order operator: L := ω · ∂ϕ − ∂xxx + εp(ϕ, x)∂xxx

STEP 1) Under a change of variables

(Au) := u(ϕ, x + β(ϕ, x))

we get

L1 := A−1LA = ω · ∂ϕ + cε(ϕ)∂xxx + O(∂xx )

STEP 2) Rescaling time

(Bu)(ϕ, x) = u(ϕ+ ωq(ϕ), x) ,

we get

L2 = ω · ∂ϕ + λ(ε)∂xxx + O(∂xx ), λ(ε) = 1 + O(ε)

which has the leading order with constant coefficients
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STEP 3) Descent method. Goal: Conjugate

L2 := ω · ∂ϕ + λ(ε, ω)∂xxx + b2(ϕ, x)∂xx + b1(ϕ, x)∂x

with b1, b2 = O(ε), to

L3 := Φ−1L2Φ = D3 + R0 , R0 = order 0

D3 := ω · ∂ϕ + λ(ε, ω)∂xxx + m(ε, ω)∂x

via
Φ(h) := (1 + d(ϕ, x))h + f (ϕ, x)∂−1

x h

STEP 4) Super-quadratic reducibility scheme...
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Remarks

The transformation

(Au) := u(x + βε(x))

1 NOT symplectic for ∂x
=⇒ does not preserves Hamiltonian structure
Anti-reversible
=⇒ preserves reversible structure
Hamiltonian structure used to eliminate b(t)∂xx

2 "A not very close to identity":
A tends to 0 as ε→ 0 pointwise, ∀u(x), not in operatorial
norm.
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Free vibrations

In preparation
Autonomous g-KdV: free quasi-periodic vibrations

ut + uxxx + ∂xu3 + ∂xx f (ux ) = 0 , x ∈ T ,

f (ux ) = u5
x + h.o.t.

Further difficulties:
add-reversibility
no external parameters
Birkhoff normal form
amplitude-frequency relation
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Open problem: quasi-periodic solutions of water wawes

Euler equations of hydrodynamics: water waves

(WW)

∂tη = G(η)ξ

∂tξ = −gη − ξ2
x
2 + 1

2(1+η2
x )

(
G(η)ξ + ηxξx

)2

G(η) = Dirichlet-Neumann operator: pseudo-diff. operator

Even less dispersive + derivatives in the dominant operator, ...
Periodic solutions: Iooss, Plotnikov, Toland, ’02-’10
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