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Abstract

Quantifying the importance of predictors in regression has been an active area of research for a
long time (Grömping, 2015). The variance decomposition metric LMG (named after the authors
Lindeman, Merenda, and Gold) provides useful information about possible associations between
variables (Grömping, 2007). The LMG metric is implemented in the R packages hier.part
(Walsh and Nally, 2015) and relaimpo (Grömping, 2006) for models fitted in the frequentist
framework. Bayesian methods gained high popularity in many applied research areas in recent
years.

This master thesis shows how the LMG metric can be applied to a linear regression model that
is fitted in the Bayesian framework. The LMG metric requires calculation of R2 for all possible
combinations of predictors. The conditional variance formula can be applied to calculate the R2

values of these models containing only a subset of the predictors (sub-models) from the posterior
samples of the model containing all predictors. The mutual interdependence of the sub-models
is then respected for each posterior sample. The implementation of the LMG metric in the
Bayesian framework is presented on simulated and on empirical data. Using weakly informative
priors resulted in very similar LMG values as the values obtained by using bootstrap in relaimpo.

There are certain difficulties involved in quantifying the R2 in longitudinal data. In this
master thesis, some possible extensions of the LMG formula for the simple random intercept
model as well as for marginal models, where the covariance structure of the error term is modeled,
are sketched.
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Chapter 1

Introduction

The objective of this master thesis is to implement the variable importance measure LMG (named
after the authors Lindeman, Merenda, and Gold (Grömping, 2007)) in linear models estimated
with Bayesian methods. Bayesian methods have gained popularity because they allow to quantify
the uncertainty about parameters and they allow to include prior information.

Regression models are popular in many applied research areas (e.g. Nimon and Oswald, 2013).
These models provide a tool to find an association between a response variable y and a set of
explanatory variables X (Jackman, 2009). The explanatory variables are also called predictors or
covariates. The conditional mean of a continuous response variable y = (y1, . . . , yn)> is related
to a n× k predictor matrix X via a linear model,

E(y | X,β) = Xβ,

where β is a k × 1 vector of unknown regression coefficients.
Under some assumptions about the density, conditional independence, and homoscedastic

variances, the regression setting can be written as

y | X,β, σ2 ∼ N (Xβ, σ2In).

Regression parameters provide information to what extent the response variable is expected
to change when one predictor changes by one unit, given all other predictors in the model remain
the same. Being aware of this last remark is very important for the correct interpretation of the
regression parameters, because it implies that the parameter value of a predictor is dependent
on the other predictors in the model.

Because predictors are often correlated in real-world data to some degree to each other, it is
obviously not an easy task to find the most important predictors in a model. The first question is
what is meant by the importance of a predictor. There is no easy answer to this question and it
is depending on the research issue. Grömping (2015) concludes that there may never be a unique
definition of variable importance when predictors are correlated. There exist different metrics
to quantify the importance of predictors. These metrics focus on different aspects and with
correlated predictors they may lead to different conclusions. An overview of variable importance
metrics can be found in Grömping (2015).

A distinction should be made between the importance of predictors in regression models that
are used to predict future data and in regression models applied to find an association between
predictors and the response variable. In the first case, the aim is only to reduce the error between
the predicted values and the observable values. The underlying association between predictors is
of minor importance. In the second case, the focus is on the strength of the relationship between
the predictors and the response variable. A predictor may explain little of the response variable,
given two other correlated predictors are already included in a regression model. However, this
predictor, that is unimportant from the regression output, may be the main cause of the other
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two predictors. Therefore, it may be the most important predictor of this regression model
(Grömping, 2007).

The causal relationship between the variables is missing in standard regression models. Study-
ing a predictor, given other variables are already included or using models that contain only the
predictor itself, provide only some parts of the bigger picture about the predictor in a model.
Which are the most useful variable importance metrics is still an open debate. A convincing
theoretical basis is still lacking for all of those metrics. Grömping (2015) recommends to use the
existing best practices until a more profound solution will be found. For variance (or generally
goodness-of-fit) decomposition based importance, Grömping (2015) recommends to use LMG
enhanced with joint contributions or dominance analysis.

The LMG metric is implemented for models fitted in the frequentist framework in the R
packages hier.part (Walsh and Nally, 2015) and relaimpo (Grömping, 2006). Bayesian meth-
ods have gained high popularity in many applied sciences in recent years (e.g. van de Schoot
et al., 2017). A major advantage of Bayesian inference is that the posterior distributions of the
parameters and the transformations of these parameters (like R2 and the LMG metric) can be
obtained. These posterior distributions allow to quantify the uncertainty about parameters and
their transformations in an easily interpretable manner. This master thesis shows how the LMG
metric can be applied to linear regression models fitted in the Bayesian framework. The LMG
metric requires calculation of R2 for all possible subsets of predictors. It shows that the R2 of
the models containing only a subset of predictors (sub-model) can be calculated from the model
containing all predictors (full-model). Although this master thesis focuses on the LMG metric,
the same approach could be used for other variance decomposition metrics that are based on the
R2 of the full-model and on the R2 of the sub-models (e.g. commonality analysis (Nimon et al.,
2008) or dominance analysis (Grömping, 2015)).

The necessary background information is provided in chapter 2. Afterwards, the implemen-
tation of the LMG metric applied to Bayesian regression models is presented on simulated and
on empirical data in chapter 3. Some difficulties and possible extensions of the LMG metric to
longitudinal data are discussed in chapter 4. A general conclusion can be found in chapter 5.
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Chapter 2

Theory

2.1 LMG variable importance metric

The LMG is a metric that is based on variance decomposition. The total R2 of a model is decom-
posed onto the predictors. Marginal information (the association between a predictor and the
dependent variable) and conditional information (the association of a predictor and the depen-
dent variable given other predictors are already included) are incorporated (Grömping, 2015).
The formulas in this section are taken from Grömping (2015), using the same mathematical
notation.

The following notation for the explained variance (2.1) and sequentially added variance (2.2)
of the predictors simplifies the notation of the LMG formula:

evar(S) = Var(Y )−Var(Y | Xj , j ∈ S), (2.1)

svar(M | S) = evar(M ∪ S)− evar(S), (2.2)

where S andM denote disjoint sets of the predictor indices andXj represents the set of predictors
with indices from S. R2(S) can be written as evar(S)/Var(Y ) (Grömping, 2015).

The LMG formula is given below for the first predictor only. Because of exchangeable pre-
dictors, this is no loss of generality.

LMG(1) =
1

p!

∑
πpermutation

svar({1} | S1(π)), (2.3)

=
1

p!

∑
S⊆{2,...,p}

n(S)! (p− n(S)− 1)! svar({1} | S) (2.4)

=
1

p

p−1∑
i=0

( ∑
S⊆{2,...,p}
n(S)=i

svar({1} | S)

)/(
p− 1

i

)
(2.5)

where S1(π) is the set of predecessors of predictor 1 in permutation π (Grömping, 2015).
The different formula writings help to better understand what the calculation is about in

the LMG metric. The R2 of the model including all predictors is decomposed. In the formula
on the top (2.3), the LMG value of predictor 1 is represented as an unweighted average over
all orderings of the sequential added variance contribution of predictor 1. The formula in the
center (2.4) shows that the calculation can be done more efficiently. The orderings with the
same set of predecessors S are combined into one summand. Instead of p! summands, only 2p−1

summands need to be calculated (Grömping, 2007). The formula on the bottom (2.5) shows that
the LMG metric can also be seen as the unweighted average over the average explained variance
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improvements when adding predictor 1 to a model of size i without predictor 1 (Grömping, 2015).
The LMG metric is implemented in the R package relaimpo (Grömping, 2006).

Several authors formulated requirements that a variable importance metric should fulfill
(Grömping, 2015). The following listed requirements are the two most important ones for vari-
ance decomposition metrics. The complete collection can be found in Grömping (2015).

a Proper decomposition of the model variance: the sum of all shares is the model variance (or
R2, depending on normalization). This is the defining criterion for variance decomposition
metrics.

b Non-negativity: all allocated shares are always non-negative. This criterion is requested by
many authors for variance decomposition metrics.

The LMG metric fulfills both requirements in the frequentist setting. There are some diffi-
culties involved with the non-negativity property in the Bayesian framework that are considered
in section 2.3.

Chevan and Sutherland (1991) propose that, instead of only usingR2, an appropriate goodness-
of-fit metric can as well be used in the LMG formula. They name their proposal hierarchical
partitioning. The requirements are simply: an initial measure of fit when no predictor variable is
present, a final measure of fit when p predictor variables are present, and a measure of fit of all
sub-models when various combinations of predictor variables are present. When R2 is chosen as
the goodness-of-fit measure, the standard LMG values are calculated. The LMG value of each
variable is named independent component (I). The sum of the independent components (I) re-
sults in the overall goodness-of-fit metric of the model. The difference between the goodness-of-fit
value of a model containing only the predictor itself to the value of its independent component
(I) is named the joint contribution (J) (Grömping, 2015). As an example, a model containing
only predictor X1 results in an R2 of 0.3 and an LMG value of 0.2 (I). The joint contribution
(J) is obtained by calculating 0.3 − 0.2 = 0.1. Hierarchical partitioning is implemented in the
hier.part package (Walsh and Nally, 2015). This function of hier.part is used in this master
thesis. The hierarchical partitioning function accepts a data frame with the R2 values of all
sub-models as input. Of note, the partitioning function of hier.part is only guaranteed to work
for up to nine predictors and it does not work at all for more than twelve predictors.

2.2 Appropriate R2 definitions in the Bayesian framework

The focus of this master thesis is on the standard linear model. The most widely used goodness-
of-fit metric for this model is R2. There exist different formulas for R2 (Kvalseth, 1985), all
leading to the same value when an intercept is included and the model is fitted by maximum
likelihood.

Two commonly used R2 definitions are:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(2.6)

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

, i = 1, . . . , n, (2.7)

where yi are the observations with indexes i = 1, . . . , n, of sample size n, ȳ represents the mean
of the observations, ŷi = E(yi | Xi, θ̂), and θ̂ is the maximum likelihood estimate of the regression
coefficients.

When other estimation methods than maximum likelihood are used, definition (2.6) can be
< 0 and definition (2.7) can be > 1. This is not uncommon in a Bayesian regression setting
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when samples of the posterior parameter distribution are employed (Gelman et al., 2017). A
model that explains more than 100% of the variance is nonsense. A negative R2 is also difficult
to interpret, although it may imply that the fit is worse than the mean of the observed sample.
This can make sense for predictive purposes, e.g. when data from a test set is predicted by leave-
one-out crossvalidation (Alexander et al., 2015). It is then possible that the predicted values
are in total further away (squared distance) from the test set observations than the mean of the
test set observations. For non-predicting purposes, a negative R2 does not make sense. The aim
of the LMG formula is to gain some more information about the possible association between
variables, and a predictor cannot explain less than zero variance in the population. To respect
the non-negative share property of the LMG formula, the R2 of sub-models should not decrease
when adding predictors. Therefore, both classical R2 definitions seem not to be well suited for
the LMG metric in the Bayesian framework.

A useful R2 definition for the LMG formula in the Bayesian framework can be found by
noting that the variance of the linear model can also be written as

Var(y) = Var(Xβ) + σ2 = β>ΣXXβ + σ2, (2.8)

where β = (β1, . . . , βp) represents the regression parameters without the intercept of size p× 1,
X represents the predictor matrix of size n × p with corresponding covariance matrix ΣXX of
size p× p, and σ2 represents the variance parameter.

In the Bayesian setting Gelman et al. (2017) propose to use

R2
s =

∑n
i=1(ŷ

s
i − ȳs)2∑n

i=1(ŷ
s
i − ȳs)2 +

∑n
i=1(e

s
i − ēs)2

, i = 1, . . . , n, (2.9)

where ŷsi = E (y | Xi,β
s) with corresponding mean ȳs, the errors esi = yi− ŷsi with corresponding

mean ēs, βs represents the vector of regression parameters of size p × 1 of draws, s = 1, . . . , S,
from the joint posterior parameter distribution. The R2 is then guaranteed to be between 0 and
1. It can be interpreted as a data-based estimate of the proportion of variance explained for new
data under the assumption that the predictors are held fixed (Gelman et al., 2017).

In the Bayesian framework, the σ2 parameter is explicitly modeled in the standard linear
regression setting. Therefore, it is possible to sample the σ2 parameter from its posterior dis-
tribution instead of defining the error as in definition (2.9), which would lead to the following
definition:

R2
s =

∑n
i=1(ŷ

s
i − ȳs)2∑n

i=1(ŷ
s
i − ȳs)2 + σ2s

=
β>s ΣXXβs

β>s ΣXXβs + σ2s
, i = 1, . . . , n, (2.10)

where the same notation as in (2.9) is used for the explained variance term and σ2s represents the
variance of the error term of draws, s = 1, . . . , S, sampled from the joint posterior distribution.

In practice, definition (2.10) and definition (2.9) should lead to similar values in the standard
linear model. In my opinion, it is more reasonable to take the full Bayesian route by sampling σ2

of its posterior distribution. This approach provides the opportunity to include prior information
about σ2. The LMG calculations of the examples in this master thesis are therefore based on
definition (2.10). However, a benefit of definition (2.9) is that it also works for generalized linear
models where there is often no separate variance parameter.

2.3 Use of conditional variance formula to obtain R2 of sub-models

The denominator of R2 is no longer fixed in definition (2.9) and in definition (2.10). We can
therefore no longer interpret an increase in R2 as an improved fit to a fixed target (Gelman et al.,
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2017). The unfixed denominator seems to be problematic for the LMG formula in the Bayesian
framework. However, it is possible in the linear model to calculate the R2 of all sub-models from
the parameters of the full-model and the covariance matrix of the predictors. All sub-models of a
posterior sample are then compared to the same fixed total variance value of a posterior sample
(denominator in (2.10)). The mutual interdependence of the sub-models and the important non-
negativity criterion is then respected for each posterior sample. How it is possible to obtain the
R2 of the sub-models from the full-model is shown in the following section.

Before the general case with p regressors is presented, a simple model with only two predictors
is considered. For two predictors, X1,2 = (X1, X2), the covariance matrix can be written as

Cov(X1,2) =

(
Var(X1) Cov(X1, X2)

Cov(X1, X2) Var(X2)

)
,

Definition (2.8) simplifies then to

Var(y) = β21 Var(X1) + 2β1β2 Cov(X1, X2) + β22 Var(X2) + σ2. (2.11)

It can be shown that if only X1 is included in the model, the explained variance includes the vari-
ance of the predictor itself, the whole covariance term, and additionally some of the contribution
of the variance of X2 in equation (2.11). In mathematical notation, that is

evar(X1) = β21 Var(X1) + 2β1β2 Cov(X1, X2) + β22 Var(X2)ρ
2
12, (2.12)

where

ρ12 =
Cov(X1, X2)√

Var(X1)
√

Var(X2)

represents the correlation between predictors X1 and X2. The contribution of the second regres-
sor is then simply the difference to the total explained variance (Grömping, 2007).

An alternative to obtain equation (2.12) is to subtract the conditional variance of predictor
X2 given predictor X1 from the total explained variance of the full-model, in mathematical
notation that is

evar(X1) = β21 Var(X1) + 2β1β2 Cov(X1, X2) + β22 Var(X2)− β2 Var(X2 | x1)β2, (2.13)

where

Var(X2 | x1) = Var(X2)−
Cov(X1, X2)

2

Var(X1)
.

Equation (2.13) can easily be implemented for the general case with p regressors. The aim is
to calculate R2 of a sub-model containing the predictors Xq,··· ,p and the regression coefficients
β = (β1, . . . , βp) without the intercept of size p × 1. The regression coefficients are further
separated in β1,...,q−1 = (β1, . . . , βq−1) and βq,...,p = (βq, . . . , βp).

The covariance matrix of p predictors is written as

Cov(X) = ΣXX =

(
Σ11 Σ12

Σ21 Σ22

)p×p
,

where Σ11 = Cov(X1,...,q−1,X1,...,q−1),

Σ12 = Cov(X1,...,q−1,Xq,...,p) = Σ>21,

Σ22 = Cov(Xq,...,p,Xq,...,p).
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The conditional variance of the predictors X1,...,q−1, given the predictors Xq,...,p, is then

Cov(X1,...,q−1 | x q,...,p) = Σ11 − Σ12Σ
−1
22 Σ21. (2.14)

The total explained variance of the full-model containing X1,...,p omits simply the σ2 param-
eter in equation (2.8) , which is

evar(X1,...,p) = β>ΣXXβ.

The explained variance of a sub-model can be calculated by subtracting the explained vari-
ance of the not-in-the-model-included predictors that is not explained by in-the-model-included
predictors from the total explained variance. The variance that is not explained by in-the-
model-included predictors is given by the variance of the not-in-the-model-included predictors
conditional on the in-the-model-included predictors. The explained variance of a sub-model
containing predictors Xq,...,p can therefore be written as

evar(Xq,...,p) = β>ΣXXβ − β>1,...,q−1 Cov(X1,...,q−1 | x q,...,p)β1,...,q−1. (2.15)

To gain the the R2 value of the sub-model, it is necessary to divide the explained variance
by the total variance, which is

evar(Xq,...,p)/Var(y),

where Var(y) is defined as β>ΣXXβ + σ2.
A posterior density distribution is obtained for the regression parameters in the Bayesian

regression setting. The LMG formula requires calculation of the R2 values for all 2p − 1 sub-
models. Samples from the joint posterior parameters of the full-model are used to calculate the
explained variance of the sub-models. For each sample, the conditional variance formula is used
to obtain the R2 of the 2p − 1 sub-models. The non-negative property and the dependence of
the parameters from the sub-models to each other is then respected for each sample.

Instead of using the conditional variance formula (2.14) to get the R2 of the sub-models, it
would have been possible to fit a separate Bayesian model for each sub-model. An R2 distribution
can easily be built for each sub-model by using definition (2.9) or definition (2.10). However,
the problem is how to calculate the LMG values out of these R2 distributions. If we just sample
independently from the R2 distributions, the dependence of the parameter values of the sub-
models to each other is ignored. We would have many possibly true parameter values of a
predictor in the same LMG comparison. It would then also be possible that the R2 decreases
when adding predictors. Another drawback is that it would be much more time-consuming to
fit a separate Bayesian model for each sub-model. I therefore do not follow this path here.
Using the conditional variance formula on the full-model allows to calculate LMG values in the
Bayesian framework in a reasonable time exposure. Depending on the number of predictors and
the number of posterior samples, the calculations still take some time in the Bayesian framework.

2.4 Bayesian regression

The following section provides a brief introduction to Bayesian regression. It further shows
that assuming stochastic predictors (predictors treated as random variables) or non-stochastic
predictors (predictors treated as fixed quantities) results in the same posteriors for the regres-
sion parameters under the assumption of weak exogeneity and conditional independence. It is
summarized from the book Bayesian Analysis for the Social Sciences (Jackman, 2009). This
is an important finding because it is often more appropriate to assume stochastic continuous
predictors.
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The assumption of weak exogeneity is introduced first. The joint probability density of
p(yi, x i) can be factored as

p(yi, x i | θ) = p(yi | x i,θ) p(x i | θ),

where both y = (y1, . . . , yn)> and predictor matrix X of size n × k are considered random
variables depending on parameter vector θ with observations i = 1, . . . , n.

The parameter vector θ can be decomposed into two components θy|x and θx. The assump-
tion of weak exogeneity consists of the two restrictions:

p(yi | x i θ) = p(yi | x i,θy|x)

and

p(x i | θ) = p(x i | θx ).

The weak exogeneity assumption implicates that the whole information about y i is contained
in x i and θy|x. Knowledge of the parameters θx provides no additional information about y i.
Whether or not considering x i as a random variable is of no consequence for learning about θy|x.
When these requirements are fulfilled, x i is said to be weakly exogenous for θy|x.

Under the assumption of conditional independence, the joint density of the data can further
be written as

p(y ,X | θ) = p(y | X,θy|x) p(X | θx),

where θ = (θy|x,θx)>.
The interest of regression is mostly on the posterior parameters θy|x. These posterior densities

are proportional to the likelihood of the data multiplied by the prior density. The joint density
p(y ,X | θ) is used to learn about the posterior parameters, via Bayes rule

p(θ | y ,X) ∝ p(y ,X | θ) p(θ).

The dependence of y on X is captured in the parameters θy|x = (β, σ2). Under the assump-
tion of independent prior densities about θy|x and θx, the posterior distribution of the parameters
can be written as

p(β, σ2,θx | y ,X) =
p(y | X,β, σ2) p(β, σ2)

p(y | X)
× p(X | θx) p(θx)

p(X)

= p(β, σ2 | y , X) p(θx | X). (2.16)

The factorization in equation 2.16 shows that, under the above mentioned assumptions, the
posterior inference about the parameters θy|x = (β, σ2) is independent from the inference about
θx given data X. This also means that the assumption about X being non-stochastic or stochastic
results in the same posterior density of θy|x. In the case of non-stochastic regressors, p(X) and
θx drop out of the calculations. For stochastic predictors, it means that, given X, nothing more
can be gained about θy|x = (β, σ2) from knowing θx.

2.5 Stochastic or non-stochastic predictors

The focus of regression is on θy|x = (β, σ2), for which it does not matter whether we assume
non-stochastic or stochastic predictors under the assumptions mentioned in section 2.4. However,
assuming stochastic or non-stochastic predictors influences the uncertainty of the LMG values
because the variance of the predictors is also incorporated in the LMG formula. The LMG
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formula may be especially interesting for continuous predictors, which often are of stochastic
nature. Grömping (2006) recommends to use in most cases bootstraping for stochastic predictors
when calculating bootstrap confidence intervals.

For non-stochastic predictors, the covariance of the predictors X is given and does not need to
be estimated. The population variance, which divides the sum of squares by n and not by n− 1,
should therefore be used in definition (2.10) for non-stochastic predictors. In the frequentist
setting, it does not matter by which denominator the sum of squares is divided. As long as the
residual sum of squares is divided by the same denominator value as the total variance , the
denominator values cancel out each other and the R2 in definition (2.6) does not change. To
directly incorporate the sample variance estimate of the σ2 parameter in definition (2.6), both
sum of squares can be divided by n− 1. In the Bayesian framework, the σ parameter is sampled
from its posterior distribution. Therefore, it makes a small difference, whether the explained
sum of squares is divided by n or by n− 1 in the Bayesian framework.

For stochastic predictors, the covariance of the predictors X needs to be additionally esti-
mated. The sample covariance estimator (sum of squares dividing by n−1) provides an unbiased
estimate of the covariance structure. However, it is just a point estimate of the covariance struc-
ture. With stochastic predictors, there is an additional uncertainty in the R2 formula (2.10)
that can have a large influence on the R2 and the LMG values. Therefore, the information
about θx is also relevant for stochastic regressors. As seen in equation (2.16), inference about
θx is independent from inference about θy|x. If there are stochastic predictors and we only use
the sample estimate of the covariance matrix, we do not incorporate the uncertainty of the es-
timate. Because the explained variance is calculated by β>ΣXXβ, inference about θx seems
to be equally important as inference about θy|x for stochastic predictors. Even when the ex-
act regression parameters were known, there would be a lot of uncertainty in the LMG values
caused by the uncertainty about the covariance matrix. If the distribution of the p(X) is known,
the θx could be estimated. However, the computation time is then much higher, because the
whole LMG calculation needs to be done for each posterior covariance sample of the predictors.
Depending on the number of predictors this would be very time-consuming. In most cases, the
problem is that the distribution of the X is unknown. As a practical solution, nonparametric
bootstrapping of the covariance matrix could be used to include the uncertainty of the stochastic
predictors in the LMG calculations. Again, it would be necessary to do the LMG calculations for
each bootstrap sample of the covariance matrix. There exist also different covariance estimators.
The shrinkage method may be an interesting estimator with some nice properties (Schäfer and
Strimmer, 2005).
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Chapter 3

Examples

The Bayesian LMG implementation is presented with two examples in the following chapter.
The implementation code to get the R2 values of the sub-models from the posterior distributions
of the full-model can be found in Appendix A.1. Simulated data were used for the first example.
Empirical data were used for the second example.

3.1 Simulated data

A simple model is assumed for the first example:

Yi | x i ∼ N (β0 + β1x1,i + β2x2,i + β3x3,i + β4x4,i, σ
2), i = 1, . . . , 50,

(β1, β2, β3, β4) = (1, 1, 1, 1), σ2 = 1,

Xm = (xm,1, . . . , xm,50) ∼ N (0, 1), m = 1, 2, 3, 4,

where i = 1, . . . , 50 indexes the observations and m = 1, 2, 3, 4 represents the four predictor
variables. The data generating R-code can be found in Appendix A.2.

The model is fitted using the rstanarm package (Stan Development Team, 2016) with the
default priors for the slope and the σ2 parameters. These default priors are called ’weakly
informative priors’ because they take into account the order of magnitude of the variables by
using the variance of the observed data. Information about these priors can be found in Stan
Development Team (2017). The automatic scale adjustments of the default priors resulted in
the following priors for the regression parameters: β0 ∼ N (0, 21.849), β1 ∼ N (0, 6.530), β2 ∼
N (0, 5.691), β3 ∼ N (0, 5.776), β4 ∼ N (0, 5.620), and σ, the error standard deviation, had an
Exp(2.185) distribution. A burn-in period of 20 000, a sample size of 20 000, and a thinning of 20
were chosen, resulting in a posterior sample size of 1 000. The exact command can be found in
R-code A.3. The posterior distributions of the parameters are shown in Figure 3.1.

For each joint posterior sample of the parameters, the R2 value was calculated. The R2 of
the sub-models was then calculated by the conditional variance formula (2.15) for each posterior
sample. The resulting R2 values of the posterior samples are shown in Figure 3.2. The thinning
is reasonable in this case to reduce the computational burden and to still obtain an appropriate
posterior of the R2 values (Link and Eaton, 2012).

The hier.part package was used to calculate the LMG value for each posterior sample. The
independent component (I) represents the LMG value. The joint contribution (J) represents the
difference from the independent component to the explained variance of the model containing
only the predictor itself (T). At first, non-stochastic regressors were assumed. The resulting
LMG values and joint contributions with a 95% credible interval are shown in Table 3.1.

An option to display the resulting LMG distribution is shown in Figure 3.3. Using the default
weakly informative priors, the LMG distributions obtained from the Bayesian framework were
very similar to the bootstrap confidence intervals, assuming non-stochastic predictors of the LMG
estimates, obtained from the relaimpo package, as shown in Table 3.2.
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Figure 3.1: Posterior distributions of the slope and sigma parameters of the simulated
data example. β = (β1, β2, β3, β4) represents the regression coefficients of predictors
X1,X2,X3,X4 and σ represents the standard deviation of the conditional dependent
variable distribution. The shaded area represents the 95% credible interval. The thick
vertical line shows the median.

Table 3.1: Variance decomposition of the simulated data set assuming non-stochastic
predictors with 95% credible interval. I = LMG value, J = joint contribution, To-
tal = total explained variance in one-predictor-only model.

Variable I J Total
X1 0.188 (0.097, 0.292) -0.004 (-0.011, 0.004) 0.183 (0.095, 0.285)
X2 0.186 (0.101, 0.292) 0.003 (-0.002, 0.008) 0.189 (0.104, 0.298)
X3 0.172 (0.087, 0.270) 0.000 (-0.008, 0.009) 0.172 (0.086, 0.268)
X4 0.248 (0.149, 0.352) 0.028 (0.019, 0.036) 0.276 (0.173, 0.380)
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Figure 3.2: R2 values for each posterior sample of the simulated data example con-
taining predictors X1,X2,X3,X4. A connected line represents the R2 for the full-model
and for all the sub-models of these predictors for one of 1 000 posterior joint parameter
samples.

Table 3.2: Comparison of Bayesian framework to frequentist framework (relaimpo)
assuming non-stochastic predictors for the simulated data set. CI = credible interval
for Bayesian approach, confidence interval for classical approach.

LMG value (95%-CI)
Variable Relaimpo Bayesian framework

X1 0.191 (0.111, 0.291) 0.188 (0.097, 0.292)
X2 0.195 (0.111, 0.294) 0.186 (0.101, 0.292)
X3 0.178 (0.105, 0.275) 0.172 (0.087, 0.270)
X4 0.257 (0.166, 0.358) 0.248 (0.149, 0.352)
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Figure 3.3: LMG distributions of the four predictors X1,X2,X3, and X4 of the
simulated data set assuming non-stochastic predictors. Corr. = correlation between
LMG distributions.
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In this example with simulated data, we know that the predictor values were sampled from
a normal distribution. It would therefore be more realistic to assume stochastic predictors.
As described in the theory section 2.4 and 2.5, the posterior distributions of the regression
parameters β are valid for non-stochastic and stochastic predictors under the assumption of
weak exogeinity and conditional independence. However, the uncertainty about the LMG values
needs to include the uncertainty about the covariance matrix. If we know that the distribution of
the predictors X is a multivariate normal distribution with covariance matrix Σ, we can obtain
the posterior distribution of its covariance matrix Σ. This information can then be incorporated
in the R2 calculations as described in the theory section. The package JAGS (Plummer, 2017)
was used for inference about the covariance matrix in a Bayesian way. It was assumed that the
predictor values Xi from each observation i were distributed as N (µ,Σ) with mean vector µ
and covariance matrix Σ. For each element of µ a N (0, 4) prior distribution was chosen. For
the inverse covariance matrix Σ−1, a Wishart distribution prior, W(I, n), where I is the identity
matrix of size 4×4 and n = 50, was chosen. The R-code of the covariance inference can be found
in Appendix A.4. As an alternative, non-parametric bootstrap was used for inference about the
covariance matrix. The R-code of the bootstrap implementation can be found in Appendix A.5.

In contrast to non-stochastic predictors, the uncertainty about the covariance matrix is re-
flected in the larger credible intervals for stochastic predictors. Table 3.3 shows the LMG values
of the different approaches. Either using the bootstrap samples of the covariance matrix or
using samples from the posterior covariance matrix produced very similar LMG distributions.
Bootstrap seems to be a valuable option for stochastic predictors when the distribution of the
predictors is unknown. Even when the distribution is known, the difference seems to be tiny. A
benefit of going the full Bayesian way is that prior knowledge about the covariance matrix can
also be included. Using the default priors further produced very similar LMG distribution as
using the non-parametric bootstrap option of the relaimpo package.

Table 3.3: LMG values of different approaches assuming stochastic predictors for the
simulated data set with 95% CI (credible intervals for Bayesian approaches, confidence
interval for frequentist approach (relaimpo)).

Frequentist framework Bayesian framework

Variable non-parametric bootstrap covariance inference

X1 0.191 (0.061, 0.353) 0.186 (0.072, 0.331) 0.187 (0.075, 0.331)
X2 0.195 (0.075, 0.338) 0.184 (0.073, 0.327) 0.187 (0.075, 0.335)
X3 0.178 (0.079, 0.298) 0.169 (0.060, 0.310) 0.171 (0.067, 0.309)
X4 0.257 (0.135, 0.424) 0.243 (0.121, 0.377) 0.244 (0.116, 0.384)
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3.2 Empirical data

In the following section, the Bayesian LMG implementation is applied on an empirical dataset
containing test scores of pupils (N = 301) from a study by Holzinger and Swineford (1939)
available in the R package MBESS (Kelley, 2017). This dataset was used in Nimon et al. (2008)
to present commonality analysis, which is another variance decomposition technique. Scores
from a paragraph comprehension test (paragrap) were predicted by four verbal tests: general-
information (general), sentence-comprehension (sentence) , word-classification (wordc), and word-
meaning (wordm) (Table 3.4).
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Figure 3.4: Empirical data set. Test scores from Holzinger and Swineford (1939)
Study. N=301. The variable description can be found in Table 3.4.

The aim of the regression analysis was to determine the association between verbal ability
and paragraph comprehension. An overview of the data is shown in Figure 3.4. The regres-
sion results from a simple linear regression model including all four predictors are shown in
Table 3.5. A novice researcher may wrongly conclude, that there is little association between the
"non-significant" predictors (general information and word-classification) and paragraph com-
prehension. Given the other predictors are already included in the model, the predictors seem
not to provide much information about the expected paragraph comprehension ability. However,
it should not be concluded from this regression table that there is no association between any
of these "non-significant" predictors and the dependent variable. As shown in Figure 3.4, the
correlations between the predictors are rather high. The LMG metric may therefore provide new
information about the importance of each predictor.
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Table 3.4: Variable description of the empirical data set.

Variable Description

paragrap scores on paragraph comprehension test
general scores on general information test
sentence scores on sentence completion test
wordc scores on word classification test
wordm scores on word meaning test

The Bayesian regression model was fitted in rstanarm. The default priors were used for
the slope coefficients and the σ2 parameter. The automatic scale adjustments of the default
priors resulted in the following priors for the regression parameters: β0 ∼ N (0, 34.923), β1 ∼
N (0, 0.700), β2 ∼ N (0, 1.691), β3 ∼ N (0, 1.538), β4 ∼ N (0, 1.138), and σ, the error standard
deviation, has an Exp(3.492) prior distribution. A burn-in period of 20 000, a sample size of
20 000, and a thinning of 20 resulted in a posterior sample size of 1 000. The exact commands
can be found in R-code A.6. The posterior distribution of the slope regression parameters are
shown in Figure 3.5. The resulting R2 of these posterior samples are shown in Figure 3.6. The
LMG values were calculated by using hier.part. The independent component (I), the joint
contribution (J), and the total explained variance in a one-predictor-only model (T) are shown
in Table 3.6. The LMG distributions are displayed in Figure 3.7. Sentence-comprehension and
word-meaning seem to be the most important predictors by applying the LMG metric. However,
none of the predictors seem to be unimportant. The joint contributions of each predictor were
quite large.

For comparison purposes, the LMG metric was additionally calculated with the relaimpo
package using parametric bootstrapping. The confidence intervals of relaimpo were almost
identical to the credible intervals of the Bayesian framework (Table 3.7). Assuming stochastic
or non-stochastic predictors resulted also in almost identical uncertainty estimates with such a
large sample size (N = 301) because the covariance matrix was estimated with high precision for
the stochastic predictors (Table 3.8). Because the computation time is much larger for stochastic
predictors, it can be much more efficient for large sample sizes to use the sample point estimate of
the covariance matrix (in contrast to incorporating a distribution of possible covariance values)
in the LMG calculations even when stochastic predictors are assumed.

Table 3.5: Regression output of paragraph comprehension on verbal tests. The vari-
able description of the predictors can be found in Table 3.4.

Coefficient 95%-confidence interval p-value
Intercept 0.071 from -1.17 to 1.31 0.91
general 0.03 from -0.00 to 0.06 0.084

sentence 0.26 from 0.18 to 0.34 < 0.0001
wordc 0.047 from -0.01 to 0.11 0.14
wordm 0.14 from 0.08 to 0.19 < 0.0001
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Figure 3.5: Posterior distributions of the slope parameters of the different verbal
ability predictors. β = (β1, β2, β3, β4) represents the regression coefficients of the four
predictors general, sentence, wordc, wordm. The variable description of the predictors
can be found in Table 3.4. The shaded area represents the 95% credible interval. The
thick vertical line shows the median.

Table 3.6: Variance decomposition of the empirical data set assuming non-stochastic
predictors with 95% credible intervals. I = LMG values, J = joint contribution, To-
tal = total explained variance in one-predictor-only model.

Variable I J Total
general 0.130 (0.104, 0.160) 0.298 (0.259, 0.332) 0.429 (0.364, 0.488)
sentence 0.203 (0.162, 0.245) 0.327 (0.292, 0.358) 0.530 (0.463, 0.588)
wordc 0.095 (0.074, 0.122) 0.238 (0.202, 0.274) 0.334 (0.276, 0.394)
wordm 0.178 (0.142, 0.216) 0.315 (0.281, 0.345) 0.492 (0.430, 0.554)
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Figure 3.6: R2 values for each posterior sample of the empirical data example. The
variable description of the four predictors general, sentence, wordc, wordm can be found
in Table 3.4. A connected line represents the R2 for the full-model and for all the sub-
models of these predictors for one of 1 000 posterior joint parameter samples.

Table 3.7: Comparison of Bayesian framework to frequentist framework (relaimpo)
assuming non-stochastic predictors for the empirical data set. CI = credible interval
for Bayesian framework and confidence interval for frequentist approach.

LMG value (95%-CI)
Variable Frequentist framework Bayesian framework
general 0.131 (0.104, 0.162) 0.130 (0.104, 0.160)
sentence 0.206 (0.168, 0.247) 0.203 (0.162, 0.245)
wordc 0.097 (0.074, 0.127) 0.095 (0.074, 0.122)
wordm 0.178 (0.142, 0.219) 0.178 (0.142, 0.216)
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Figure 3.7: LMG distributions of the different verbal ability predictors. The variable
description of the predictors can be found in Table 3.4. Corr. = correlation between
LMG distributions.

Table 3.8: Comparison of Bayesian framework to frequentist framework (relaimpo)
assuming stochastic predictors for the empirical data set. CI = credible interval for
Bayesian framework and confidence interval for frequentist approach.

LMG value (95%-CI)
Variable Frequentist framework Bayesian framework
general 0.131 (0.106, 0.160) 0.130 (0.099, 0.163)
sentence 0.206 (0.170, 0.250) 0.202 (0.161, 0.245)
wordc 0.097 (0.074, 0.127) 0.095 (0.067, 0.126)
wordm 0.178 (0.141, 0.221) 0.177 (0.140, 0.218)
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Chapter 4

Extension to longitudinal data

Some extensions of the LMG formula beyond the simple linear regression model are shown in the
following chapter. The focus is on repeated measures models. These models extend the simple
linear regression by allowing intra-subject correlation between repeated measures.

The dependence of within-subject measurements can be modeled by including random effects
(mixed model) or by assuming correlated errors within a subject (marginal model). A mixed
model can be extended by including a random slope per subject, allowing for more general
longitudinal shapes. Different covariance matrices of the error terms allow for more general
longitudinal shapes in the marginal approach. An unstructured covariance matrix, where no
restriction is imposed, allows for the most freedom in the error term. However, depending on the
number of repeated measurements and the sample size, the covariance matrix can get too large
to make feasible inference (Fitzmaurice et al., 2011).

The extension of the LMG formula in the Bayesian framework applied to longitudinal models
in this master thesis is restricted to models where the conditional variance formula can be applied
to obtain the explained variance of the sub-model from the regression parameters of the full-
model. Therefore, the focus of this thesis is on the relative importance of the fixed effects, but
not on the relative importance of the random effects. The conditional variance formula can be
used in the marginal models, because only the fixed effects are modeled anyway. In the mixed
model framework, the conditional variance formula is applicable to random intercept models.
For random-slope models, there are at least some difficulties involved – if it is possible at all –
to obtain the explained variance of the sub-models.

In this chapter, the Bayesian LMG implementation is shown on a random intercept model
and on a repeated measures model with an unstructured covariance matrix.

4.1 Random intercept model

The first example concerns a simple random intercept model with time-varying predictors. There
exist different R2 metrics for linear mixed models (Nakagawa and Schielzeth, 2013). The variance
of a random intercept model with regression parameter β can be written as

Var(y) = σ2f + σ2α + σ2ε , (4.1)

where σ2α is the variance of the random intercept, σ2ε represents the error variance and σ2f =

Var(Xβ) = β>ΣXXβ with regression parameters β = (β1, . . . , βp) without the intercept of size
p × 1 and predictor matrix X of size n × p with corresponding covariance matrix ΣXX of size
p× p. An R2 that is guaranteed to be positive is defined in Nakagawa and Schielzeth (2013) as

R2
LMM =

σ2f
σ2f + σ2α + σ2ε

. (4.2)
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Theoretically, it is possible that the R2
LMM decreases when adding predictors (Nakagawa

and Schielzeth, 2013). However, by adding predictors, σ2f should always increase but σ2ε or σ2α
may also increase and the total R2 may then be lower. The R2 cannot decrease by using the
conditional variance formula (2.15) on the full-model to calculate the R2 of the sub-models,
because the total variance is fixed. In the maximum likelihood framework, use of the conditional
variance formula on the maximum likelihood parameter estimates of the full-model should lead to
equal results that would be obtained by first fitting a new model by maximum likelihood for each
subset of predictors and afterwards comparing the explained variance of the fixed effects of these
sub-models to the total variance of the full-model. In the Bayesian framework, the conditional
variance formula is necessary to account for the mutual interdependence of the sub-models. The
total variance of the full-model can be calculated as Var(y) = Var(Xβ + Zb) + σ2 or by using
samples of σ2α as in definition (4.1). The error term could again be sampled or calculated as in
definition (2.9). In the following examples, definition (4.1) was used, σ2α, σ2ε , and β were sampled
from their posterior distribution.

In repeated measures studies, the focus is often on within-subject changes. The between-
subject variance, estimated with the random intercept term, is of minor importance. The im-
portant question often is how much variance do the fixed predictors explain, compared to the
variance of the within-subject error, which is

R2
repeated =

σ2f
σ2f + σ2ε

, (4.3)

The square root of this term is known under the name correlation within subjects in Bland
and Altman (1995). Often, there are between-subject and within-subject predictors in a model.
If the interest lies in the within-subject effects, a model including only the between-subject
predictors can be used as the null-model.

The following example shows a simple random intercept model with time-varying predictors.
The main question was which within-subject predictors were the most important ones. The
between-subject variance was of minor importance. The data were simulated from the following
regression setting with m = 4 timepoints and n = 20 number of subjects (see Appendix A.7 for
R-code),

Yi,j ∼ N (β0 + β1x1i,j + β2x2i,j + β3x3i,j + β4x4i,j + αi, σ
2), i = 1, . . . , n,

j = 1, . . . ,m,

where (β1, β2, β3, β4) = (1, 1, 2, 2) , σ2 = 1 , αi ∼ N (0, σ2α) with σ2α = 16 , and X ∼ N (0,Σ) with

Σ =


1 0.3 0.4 0.4

0.3 1 0.4 0.4
0.4 0.4 1 0.9
0.4 0.4 0.9 1

 .

The individual trajectories are shown in Figure 4.1. The random intercept effect was of minor
interest. The Bayesian R2 of the models was calculated according to the formula of repeated
measure correlation (4.3) using the conditional variance formula (2.15). The R-code of the
model can be found in Appendix A.8. Most of the within-subject variance was explained by the
predictors (Table 4.1). The credible intervals were very small because non-stochastic predictors
were assumed and because the within subject error σ2ε was very small compared to the explained
variance of the predictors. For information about the between-subject variance term, we can
look at the posterior distribution of the random intercept variance term σ2α.

Next, the random intercept was directly included in the total variance calculation of the
R2 values. The R-code can be found in the Appendix A.9. There was a large between-subject
variance (σ2α = 16) in this simulated data set. Therefore, the LMG values including the between
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Figure 4.1: Individual trajectories of simulated random intercept model.

subject variance were much lower (Table 4.2). The credible intervals were also much larger,
because the uncertainty about the between-subject variance was included.

In my opinion, we can obtain more useful information from separating the between-subject
variance from the within-subject variance in this simple case. This makes it possible to quantify
the uncertainty of the between-subject variance and the within-subject variance. Definition (4.2)
and definition (4.3) do not exclude each other. Both can provide useful information. Note that
we assumed non-stochastic predictors. Otherwise, the credible intervals would again be larger
(results not shown). In general, it seems more reasonable to assume stochastic time-varying
continuous predictors because we only have a sample of the population. The exact predictor
values vary from person to person. In the case of stochastic predictors, the variance could be
estimated by non-parametric bootstrap, resampling whole subjects (all repeated measurements
of a subject).

Table 4.1: Variance decomposition with focus on whithin-subject explained variance
of simulated random intercept data with 95% credible intervals. I = LMG values,
J = joint contribution, Total = total explained variance in one-predictor model.

Variable I J Total
0.204 (0.203, 0.206) 0.515 (0.514, 0.517) 0.720 (0.716, 0.723)
0.190 (0.189, 0.192) 0.491 (0.489, 0.493) 0.682 (0.678, 0.685)
0.299 (0.297, 0.300) 0.628 (0.627, 0.628) 0.927 (0.925, 0.928)
0.306 (0.305, 0.308) 0.638 (0.638, 0.638) 0.944 (0.943, 0.946)

Table 4.2: Variance decomposition with focus on total explained variance of simulated
random intercept data with 95% credible intervals. I = LMG values, J = joint contri-
bution, Total = total explained variance in one-predictor model.

Variable I J Total
0.149 (0.112, 0.175) 0.377 (0.282, 0.443) 0.527 (0.394, 0.618)
0.139 (0.104, 0.163) 0.360 (0.269, 0.422) 0.499 (0.373, 0.585)
0.219 (0.163, 0.256) 0.460 (0.343, 0.539) 0.679 (0.507, 0.794)
0.224 (0.168, 0.263) 0.467 (0.349, 0.547) 0.692 (0.516, 0.810)
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4.2 Marginal model

The next example is about a repeated measurement model with time-varying predictors and an
unstructured error covariance matrix. The data were generated from the following model

Yi ∼ N (Xiβ,Σ), i = 1, . . . , 50, (4.4)

where β = (β1, β2, β3, β4) = (1, 1, 2, 2), Xi represents the predictor matrix of size 4×4 of subject
i generated from X ∼ N (0,ΣX) with

ΣX =


1 0.3 0.4 0.4

0.3 1 0.4 0.4
0.4 0.4 1 0.9
0.4 0.4 0.9 1

 , and Σ =


5 4 3 3
4 7 3 3
3 3 10 8
3 3 8 10


represents an unstructured error covariance matrix, and i = 1, . . . , 50 indexes the observations.

The R-code of the data generation can be found in Appendix A.10. In the variance calcula-
tion, it is necessary to take into account that there is not just one σ2 parameter but a covariance
matrix Σ. The diagonal elements of Σ represent the variance of each timepoint. The trace of
the covariance matrix provides the residual sum of squares per subject. In other words, the trace
of Σ divided by the number of timepoints multiplied by the number of timepoints provides the
residual sum of squares per subject. Therefore, the trace of Σ divided by the number of time-
points m can be taken to make the formula compatible with the β>ΣXXβ of (2.10), resulting
in the total variance term

Var(y) = σ2f +
tr(Σ)

m
, (4.5)

where m represents the number of timepoints, Σ represents the unstructured covariance matrix
of size m × m, and σ2f = Var(Xβ) = β>ΣXXβ with regression parameters β = (β1, . . . , βp)
without the intercept of size p × 1 and predictor matrix X of size n × p with corresponding
covariance matrix ΣXX of size p× p.
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y

Figure 4.2: Individual trajectories of simulated marginal model data with unstruc-
tured error covariance matrix.

The individual trajectories are shown in Figure 4.2. The R-code for the model can be found
in Appendix A.11. The resulting LMG values of the predictors are shown in Table 4.3.
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Table 4.3: Variance decomposition for predictors of marginal model data with 95%
credible intervals. I = LMG values, J = joint contribution, Total = total explained
variance in one-predictor model.

Variable I J Total
X1 0.077 (0.035, 0.124) 0.186 (0.084, 0.296) 0.263 (0.120, 0.420)
X2 0.074 (0.034, 0.117) 0.183 (0.082, 0.286) 0.257 (0.116, 0.403)
X3 0.115 (0.052, 0.180) 0.243 (0.110, 0.382) 0.358 (0.162, 0.563)
X4 0.117 (0.052, 0.184) 0.242 (0.110, 0.382) 0.358 (0.163, 0.567)

25



26



Chapter 5

Conclusion

The Bayesian framework provides the option to include prior information about parameters.
Using the conditional variance formula allows to calculate the R2 of all the sub-models from the
posterior parameter distributions of the full-model. Instead of fitting 2p−1 models, only the full-
model needs to be fitted. The mutual interdependence of the sub-models is then automatically
respected. The R2 of the sub-models do not decrease when adding predictors. The important
property of non-negativity shares is then respected in the Bayesian framework.

A disadvantage about calculating the R2 of all the sub-models with the conditional variance
formula seems to be the restriction to the linear model. Although, this may be a topic of
further research. Another disadvantage of the Bayesian framework (compared to the classical
LMG implementation) are higher computational costs. The calculations are still possible in
a reasonable time period for non-stochastic predictors when parallel computing is used. For
stochastic predictors, the computation time is much higher than in the classical framework.

Assuming non-stochastic or stochastic predictors can have a big impact in small samples
on the uncertainty of the explained variance and on the LMG values. Although the posterior
regression parameter distributions are the same in both cases (under the assumptions described
in section 2.4), the explained variance of a model is directly dependent on the covariance matrix.
Inference about the covariance of the predictors X is therefore an important part when stochastic
predictors are assumed. However, this does not seem to be an easy problem in general. If the
distribution of the predictors is known, the posterior distribution of the predictor covariance
matrix can be obtained in a Bayesian way. The uncertainty about the covariance matrix can
then be incorporated in the LMG calculations. However, the distribution of the predictors is
often unknown in real-world data. Non-parametric bootstrap of the covariance matrix provides
a practical solution in the Bayesian framework.

When the sample size is large enough, the classical and the Bayesian framework should lead
to very similar values. The Bayesian framework allows including prior information, that may
especially be relevant for small sample sizes. The credible interval of the Bayesian framework,
in contrast to the confidence intervals, may further be easier to interpret in the mathematically
correct way.

A lot of studies are concerned with within-subject changes. The extension of the LMG
formula to those kinds of problems is not straightforward. It is depending on the complexity
of the data. However, the extension seems to be easily possible when the focus is on the fixed
effects for the simple random intercept model. When the focus is on within-subject effects, it
seems reasonable to compare only the explained variance of the fixed effects of the sub-models
against the variance components σ2f + σ2ε obtained with the full-model. When the focus is on
the total explained variance, the explained variance of the fixed effects of the sub-models can
be compared against the total variance (σ2f + σ2α + σ2ε ) obtained with the full-model. Otherwise,
there may be problems with the non-negativity property of the shares.

27



28



Appendix A

R-codes

A.1 Implementation to calculate R2 of sub-models from posterior
samples

R-Code A.1: Function to obtain R2 from posterior samples of the full-model

#' An all-subset Rtwo function for the linear Bayesian regression model
#'
#' This function calculates R^2 values for all sub-models for each posterior sample
#' with the option to include the uncertainty about the covariance matrix
#' for stochastic predictors by incorporating samples from the covariance matrix.
#' @param df Predictor data as data frame
#' @param post.betas posterior samples of regression parameters as matrix
#' @param post.sigmas posterior samples of sigma parameters (standard deviation) as matrix
#' @param boot.M option to provide samples of predictor covariance matrix (bootstrap or Bayesian inference)
#' matrix of size m x m x boot.n, where m = number of predictors
#' @keywords LMG
#' @export
#' @examples
#' allSubsetRtows()

allSubsetRtwos <- function(df, post.betas, post.sigmas, boot.M = NULL) {

#------- Prepare dataframe and rownames of submodels-----------------------------------------------------

X <- cov(df) * (nrow(df) - 1) / nrow(df) # used vor variable names and as covariance of predictors for non-stochastic predictors

lst <- list()
pcan <- dim(df)[2] # number of predictors
n <- (2^pcan) - 1 # number of different subsets

for (i in 1:pcan) {
lst[[i]] <- combn(pcan, i) # indices of all possible subsets of predictors

}

var.names <- character(length = 0) # create vector to fill later with variable names
v <- rownames(X) # names of predictors

# create variable names of all possible subsets of predictors
for (i in 1:length(lst))
{

for (j in 1:ncol(lst[[i]])) {
cur <- lst[[i]][, j]
name <- paste0(v[-cur])
name <- paste(name, collapse = " ")
var.names <- c(var.names, name)

}
}

var.names <- c(rev(var.names), "all") # reverse order such that the full-model is at the bottom
var.names[1] <- "none"
size <- nrow(post.betas) # number of parameter samples
df.Rtwos <- matrix(0, n + 1, 1) # prepare matrix to save R^2
rownames(df.Rtwos) <- var.names
# data frame preparation finished

#-----------------Calculate R2 of all sub-models-----------------------------------------------
# conditional variance formula:The explained variance of a sub-model can be calculated by
# subtracting the explained variance of the not-in-the-model-included predictors that
# is not explained by in-the-model-included predictors from the total explained variance.

v <- 1:dim(X)[2] # need later in the loop
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post.sigmas <- as.matrix(post.sigmas) #to make sure that the sigma parameters are in matrix format
post.betas <- as.matrix(post.betas) # to make sure that the slope parameters are in matrix format

#-----------------For non-stochastic predictors--------------------------------------------------
# If non-stochastic predictor are assumed uncertainty of the covariance matrix does not need to be included
# This part gets excecuted if no covariance samples are given.
if (missing(boot.M) || is.na(dim(boot.M)[3])) { #check for covariance samples

foreach(s = 1:size, .combine = cbind) %dopar% { #for each joint posterior parameter sample
sample.s <- post.betas[s, ]
tot.var.explain <- sample.s %*% X %*% sample.s # total explained variance of the predictors
count <- n # indices of the sub-models

# calculate R^2 values of all sub-models
for (i in 1:(length(lst) - 1)) # iterate over the list of sub-models
{

for (j in 1:ncol(lst[[i]])) {
cur <- lst[[i]][, j] # indices of the not-in-the-model-included predictors
set <- v[-cur] # indices of the in-the-model-included predictors
matr <- X[cur, cur] - X[cur, set] %*% solve(X[set, set]) %*% X[set, cur] # conditional variance formula
# multiply covariance matrix by parameter sample to obtain
# variance not explained by in-the-model-included predictors but that can be
# explained by not-in-the-model included predictors
var.not.explain <- sample.s[cur] %*% matr %*% sample.s[cur]
# explained variance of sub-model: total explained variance minus explained variance that can
# only be explained by not in-the-model included predictors
df.Rtwos[count] <- tot.var.explain - var.not.explain

count <- count - 1
}

}
df.Rtwos[n + 1] <- tot.var.explain
df.Rtwos <- df.Rtwos / c(sum(c(tot.var.explain, post.sigmas[s, ]^2))) # normalize by total variance of y

}
}

#------------------ For stochastic predictors--------------------------------------------------------
#(include uncertainty about covariance infernce by incorporating samples from the covariance matrix)
#---------------------------------------------------------------------------------------------
else {

boot.n <- dim(boot.M)[3] # number of covariance samples (need to iterate over each covariance sample)
foreach(b = 1:boot.n, .combine = cbind) %:% # iterate over each covariance sample

foreach(s = 1:size, .combine = cbind) %dopar% { # iterate over each joint posterior parameter sample
# same as code for non-stochastic predictors for each covariance sample
X <- boot.M[, , b]
sample.s <- post.betas[s, ]
tot.var.explain <- sample.s %*% X %*% sample.s # total explained variance of the predictors
count <- n # indices of the sub-model

# calculate R^2 values of all sub-models
for (i in 1:(length(lst) - 1)) #iterate over the list of sub-models
{

for (j in 1:ncol(lst[[i]])) {
cur <- lst[[i]][, j] # indices of the not-in-the-model-included predictors
set <- v[-cur] # indices of the in-the-model-included predictors
matr <- X[cur, cur] - X[cur, set] %*% solve(X[set, set]) %*% X[set, cur] # conditional variance
# multiply covariance matrix by parameter sample to obtain
# variance not explained by in the model included predictors that
# can be explained by not-in-the-model included predictors
var.not.explain <- sample.s[cur] %*% matr %*% sample.s[cur]
# explained variance of sub-model: total explained variance - explained variance that
# can only be explained by not in-the-model included predictors
df.Rtwos[count] <- tot.var.explain - var.not.explain

count <- count - 1
}

}
df.Rtwos[n + 1] <- tot.var.explain
df.Rtwos <- df.Rtwos / c(sum(c(tot.var.explain, post.sigmas[s, ]^2))) # normalize by total variance of y

}
}

}
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A.2 Code used in chapter 3

A.2.1 Simulated data example

R-Code A.2: Data generation of simulated data example

# Data generation of simulated data example

# predictor values
x1 <- rnorm(50, 0, 1)
x2 <- rnorm(50, 0, 1)
x3 <- rnorm(50, 0, 1)
x4 <- rnorm(50, 0, 1)

# regression parameters
b1 <- 1
b2 <- 1
b3 <- 1
b4 <- 1

# dependent variable
y <- b1 * x1 + x2 * b2 + b3 * x3 + b4 * x4 + rnorm(50, 0, 1)

df <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3, x4 = x4)

R-Code A.3: LMG calculations for non-stochastic predictors

# run regression model in rstanarm with default priors
post2 <- stan_glm(y ~ 1 + x1 + x2 + x3 + x4,

data = df,
chains = 1, cores =1, iter=40000, thin=20)

prior<-prior_summary(post2)

# posterior sample
post.sample <- as.matrix(post2)

#no need for the intercept, last parameter is sigma
post.sample <- post.sample[,-1]

# plots

color_scheme_set("blue")

sample.plot.ex1 <- mcmc_areas(
post.sample,
prob = 0.95, # 95% credible intervals
prob_outer = 1, # whole distribution
point_est = "median"

)
sample.plot.ex1 <- sample.plot.ex1 +

scale_y_discrete(labels = c(expression(beta*'1'),expression(beta*'2'),expression(beta*'3'), expression(beta*'4'), expression(sigma)))

# calculate R^2 of submodels post.sample[,5] represents the sigma parameter samples
df.rtwos <- allSubsetRtwos(df[,2:5], post.sample[,1:4], post.sample[,5])
df.rtwos <- data.frame(df.rtwos)

# option to display the resulting R^2 values of all sub-models for each posterior sample
color_scheme_set("red")
df.rtwos.t <- t(df.rtwos)
r2plot.ex1 <- mcmc_parcoord(df.rtwos.t) #plot from bayesplot package
r2plot.ex1 <- r2plot.ex1 + scale_y_continuous(breaks=seq(0,1,0.1), limits=c(0,1))+ ylab(expression( ~ R^2)) +
xlab('Model containing subset of predictors')+ theme(axis.text.x = element_text(angle=90, vjust = 1))+

theme(axis.title.y = element_text(margin = margin(t = 0, r = 20, b = 0, l = 0)))

# Prepare matrix
LMG.Vals.I<-matrix(0, 4, dim(df.rtwos)[2]) #LMG values (Independent component)
LMG.Vals.J<-matrix(0, 4, dim(df.rtwos)[2]) #Joint contributions
LMG.Vals.T<-matrix(0, 4, dim(df.rtwos)[2]) # Total

# Calculate the LMG and joint contribution values for each posterior joint parameter sample
for(i in 1:dim(df.rtwos)[2]){

gofn<-df.rtwos[,i]

#LMG calculation (needs as input dataframe with R^2 values of all sub-models)
obj.Gelman<-partition(gofn, pcan = 4, var.names = names(df[,2:5]))

LMG.Vals.I[,i]=obj.Gelman$IJ[,1]
LMG.Vals.J[,i]=obj.Gelman$IJ[,2]

LMG.Vals.T[,i]=obj.Gelman$IJ[,3]
}
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varinames <- row.names(obj.Gelman$IJ)

# posterior LMG distribution of each variable
quantile(LMG.Vals.I[1,], c(0.025, 0.5, 0.975))
quantile(LMG.Vals.I[2,], c(0.025, 0.5, 0.975))
quantile(LMG.Vals.I[3,], c(0.025, 0.5, 0.975))
quantile(LMG.Vals.I[4,], c(0.025, 0.5, 0.975))

# some example how the LMG distributions could be displayed
dat <- data.frame(t(LMG.Vals.I))

pairs.chart <- ggpairs(dat, lower = list(continuous = "density"), upper = list(continuous = "cor")) +
ggplot2::theme(axis.text = element_text(size = 6))

R-Code A.4: LMG calculations assuming stochastic predictors (Bayesian covariance
estimation in JAGS)

#----------------------------------------------------------------------------
# In the following example we know that the predictors are coming from a normal distribution.
# The covariance matrix of the predictors can therefore be estimated in a Bayesian way.
# The package JAGS is used. The uncertainty of the predictors can therefore be included
# in the LMG calculations.
# Code adopted from http://doingbayesiandataanalysis.blogspot.com/2017/06/bayesian-estimation-of-correlations-and.html
#----------------------------------------------------------------------------

# Assemble data for sending to JAGS:
zy = df[,2:5]

dataList = list(
zy = zy , # data
Ntotal = nrow(zy) , # number of individual observations
Nvar = ncol(zy) , # number of timepoints
zRscal = ncol(zy) , # scale for Wishart prior
zRmat = diag(x=1,nrow=ncol(zy)) # identity matrix for Wishart prior

)

# Define the model:

# likelihood multivariate normal distribution,
# Wishart prior for covariance matrix (dwish)
# Normal distribution for means

modelString = "
model {
for ( i in 1:Ntotal ) {
zy[i,1:Nvar] ~ dmnorm( zMu[1:Nvar] , zInvCovMat[1:Nvar,1:Nvar] )
}
for ( varIdx in 1:Nvar ) { zMu[varIdx] ~ dnorm( 0 , 1/2^2 ) }
zInvCovMat ~ dwish( zRmat[1:Nvar,1:Nvar] , zRscal )
# Convert invCovMat to sd and correlation:
zCovMat <- inverse( zInvCovMat )

}
" # close quote for modelString
writeLines( modelString , con="Jags-MultivariateNormal-model.txt" )

# Run the chains:
nChain = 3
nAdapt = 500
nBurnIn = 500
nThin = 10
nStepToSave = 20000

# run the model
jagsModel = jags.model( file="Jags-MultivariateNormal-model.txt", data=dataList , n.chains=nChain, n.adapt=nAdapt)
update( jagsModel , n.iter=nBurnIn )
codaSamples = coda.samples( jagsModel , variable.names=c('zCovMat'), n.iter=nStepToSave/nChain*nThin , thin=nThin )

parameterNames = varnames(codaSamples) # get all parameter names

# Posterior distribution of predictor covariance matrix
mcmcMat = as.matrix(codaSamples)
chainLength = nrow(mcmcMat)
covMat <- array(NA, c(4,4,chainLength))

# reshape covariance matrix samples
for (i in 1:chainLength){
covMat[1:4,1:4,i]<-matrix(mcmcMat[i,], 4, 4) # covariance matrix sample for each i
}

#random sample from the distribution, no time for all samples (see next step)
covMat <- covMat[1:4,1:4,sample(1:20000, replace=F)]

n.boot = 1000 # number of covariance samples that we draw for the LMG calculations
covMat <- covMat[,,1:n.boot]

# use allSubsetRtwos() function to calculate explained variance of all sub-models for each posterior joint parameter sample
# for each posterior covariance sample
df.rtwos.covm <- allSubsetRtwos(df[,2:5], post.sample[,1:4], post.sample[,5], covMat)
df.rtwos.covm <- data.frame(df.rtwos.covm)
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# use hier.part package to calculate the LMG values for each posterior joint parameter sample
LMG.Vals.I.covm <- foreach(i = 1:dim(df.rtwos.covm)[2], .combine = cbind, .packages = c('hier.part')) %dopar%{

gofn<-df.rtwos.covm[,i]

partition(gofn, pcan = 4, var.names = names(df[,2:5]))$IJ[,1]

}

R-Code A.5: LMG calculations assuming stochastic predictors with bootstrapped
covariance matrix

# Code to calculate LMG values for stochastic predictors by using bootstrapped predictor covariance samples.

# for parallel computing
myCluster <- makeCluster(7, # number of cores to use

type = "PSOCK")
registerDoParallel(myCluster)

#----------------------------------------------------------------------------------------

boot.M <- bootcov(df[,2:5], 1000) # non-parametric bootstrapping

# bootcov <- function(df, boot.n){
# len <- nrow(df)
# cov.m <- cov(df)
# l <- dim(cov.m)[1]
# M.boot <- array(NA, c(l,l,boot.n))
# M.boot[,,1] <- cov(df)
# for (i in 2 :boot.n){
# dfs <- df[sample(1:len, replace=T),]
# M.boot[,,i] <- cov(dfs)
# }
#
# return(M.boot)
# }

# Calculate LMG values for all sub-models for each posterior joint parameter sample for each predictor covariance sample
df.rtwos.boot <- allSubsetRtwos(df[,2:5], post.sample[,1:4], post.sample[,5], boot.M)
df.rtwos.boot <- data.frame(df.rtwos.boot)

# LMG calculations using the hier.part package
LMG.Vals.I.boot <- foreach(i = 1:dim(df.rtwos.boot)[2], .combine = cbind, .packages = c('hier.part')) %dopar%{

gofn<-df.rtwos.boot[,i]

partition(gofn, pcan = 4, var.names = names(df[,2:5]))$IJ[,1]
}
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A.2.2 Empirical data example

R-Code A.6: LMG calculations assuming non-stochastic predictors

# fit model in rstanarm using default priors
bayes.hs <- stan_glm(paragrap ~ . ,

data = hs.data,
chains = 1, cores = 1, iter=40000, thin=20) # This results in a posterior sample size of 1000

prior <- prior_summary(bayes.hs)

post.sample <- as.matrix(bayes.hs)

dt <- data.frame(post.sample[1:10,2:6]) #put in data frame for easier plotting

# no need for the intercept, last parameter is sigma
post.sample <- post.sample[,-1]

# Plots of posteriors
color_scheme_set("green")

sample.plot.empi <- mcmc_areas(
post.sample,
prob = 0.95, # 95% credible intervals
prob_outer = 0.995, # 99%
point_est = "median",
pars=c("general", "sentence", "wordc" ,"wordm")

)

sample.plot.empi <- sample.plot.empi +
scale_y_discrete(labels = c(expression(beta*'1'),expression(beta*'2'),expression(beta*'3'), expression(beta*'4')))

# Calculate R2 of all sub-models from posterior joint parameter samples
df.rtwos <- allSubsetRtwos(hs.data[,2:5], post.sample[,1:4], post.sample[,5])
df.rtwos <- data.frame(df.rtwos)

# Plot of R2 values for all sub-models for each posterior joint parameter sample
color_scheme_set("purple")
df.rtwos.t <- t(df.rtwos)
r2plot.ex1 <- mcmc_parcoord(df.rtwos.t)
r2plot.ex1 <- r2plot.ex1 + scale_y_continuous(breaks=seq(0,1,0.1), limits=c(0,1))+ ylab(expression( ~ R^2)) +

xlab('Model containing subset of predictors')+ theme(axis.text.x = element_text(angle=90, vjust = 1))+
theme(axis.title.y = element_text(margin = margin(t = 0, r = 20, b = 0, l = 0)))

# Prepare matrix to fill with LMG (I), Joint Contribution (J), and Total (T) values
LMG.Vals.I<-matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.J<-matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.T<-matrix(0, 4, dim(df.rtwos)[2])

# Calculation of LMG values for each posterior joint parameter sample
for(i in 1:dim(df.rtwos)[2]){

gofn<-df.rtwos[,i]

obj.Gelman<-partition(gofn, pcan = 4, var.names = names(hs.data[,2:5]))

LMG.Vals.I[,i]=obj.Gelman$IJ[,1]
LMG.Vals.J[,i]=obj.Gelman$IJ[,2]

LMG.Vals.T[,i]=obj.Gelman$IJ[,3]
}
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A.3 Code used in chapter 4

R-Code A.7: Data generating code for random intercept model

# Simulate data for random intercept model

sub <- 1:20 # number of subjects
subi <- rnorm(20, 0, 4) # random intercept variance = 4^2
subi <- rep(subi, 4)
t <- c(0, 1, 2, 3)
t <- c(rep(0, 20), rep(1, 20), rep(2, 20), rep(3, 20)) # 4 timepoints

mu <- rep(0, 4)

# Predictors are assumed to come from a multivariate normal distribution

# Predictor covariance matrix
sig <- matrix(0.4, 4, 4)
diag(sig) <- 1
sig[3, 4] <- 0.9
sig[4, 3] <- 0.9
sig[1, 2] <- 0.3
sig[2, 1] <- 0.3

# draw predictor values from multivariate normal distribution
rawvars <- mvrnorm(n = 80, mu = mu, Sigma = sig)

x1 <- t + rawvars[, 1]
x2 <- t + rawvars[, 2]
x3 <- t + rawvars[, 3]
x4 <- t + rawvars[, 4]

# regression parameters
b1 <- b2 <- 1
b3 <- b4 <- 2

y <- x1 * b1 + x2 * b2 + x3 * b3 + x4 * b4 + subi + rnorm(80, 0, 0.1) # dependent variable
df <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3, x4 = x4, sub = rep(sub,

4))

R-Code A.8: LMG calculations with focus on within-subject variances

# calculate LMG values with focus on within subject variance components

# fit random intercept model in rstanarm with default priors
fit <- stan_glmer(y ~ x1 + x2 + x3 + x4 + (1 | sub), data = df, chains = 4,

cores = 4)

post.sample <- as.matrix(fit)

post.betas <- post.sample[, 2:5] # the four regression parameters
post.sigmas <- post.sample[, (ncol(post.sample) - 1)] # within subject error

# Calculate R^2 values for all sub-models for each posterior joint
# parameter sample
df.rtwos <- allSubsetRtwos(df[, 2:5], post.betas, post.sigmas)
df.rtwos <- data.frame(df.rtwos)

LMG.Vals.I <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.J <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.T <- matrix(0, 4, dim(df.rtwos)[2])

# Calculate LMG values for each joint parameter sample by using the
# hier.part package
for (i in 1:dim(df.rtwos)[2]) {

gofn <- df.rtwos[, i]

obj.Gelman <- partition(gofn, pcan = 4, var.names = names(df[, 2:5]))

LMG.Vals.I[, i] = obj.Gelman$IJ[, 1]
LMG.Vals.J[, i] = obj.Gelman$IJ[, 2]
LMG.Vals.T[, i] = obj.Gelman$IJ[, 3]

}

varnames <- row.names(obj.Gelman$IJ)
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R-Code A.9: LMG calculations with focus on total variance

# calculate LMG values with focus on total variance components

# post sigmas includes now within subject error and random intercept
# variance term
post.sigmas <- post.sample[, (ncol(post.sample) - 1):ncol(post.sample)]

# post betas same as in within-subject focus code

# Calculate R^2 values for all sub-models for each posterior joint
# parameter sample
df.rtwos <- allSubsetRtwos(df[, 2:5], post.betas, post.sigmas)
df.rtwos <- data.frame(df.rtwos)

LMG.Vals.I <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.J <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.T <- matrix(0, 4, dim(df.rtwos)[2])

# Calculate LMG values for each joint parameter sample by using the
# hier.part package
for (i in 1:dim(df.rtwos)[2]) {

gofn <- df.rtwos[, i]

obj.Gelman <- partition(gofn, pcan = 4, var.names = names(df[, 2:5]))

LMG.Vals.I[, i] = obj.Gelman$IJ[, 1]
LMG.Vals.J[, i] = obj.Gelman$IJ[, 2]
LMG.Vals.T[, i] = obj.Gelman$IJ[, 3]

}

R-Code A.10: Data generation for marginal model

# data generation of marginal model

# Predictor generation Predictors assumed to come from a multivariate
# normal distribution
sub <- 1:20 # number of subjects
subi <- rnorm(20, 0, 1)
subi <- rep(subi, 4)
mu <- rep(0, 4)
sig <- matrix(0.4, 4, 4) # covariance matrix of predictors
diag(sig) <- 1
sig[3, 4] <- 0.9
sig[4, 3] <- 0.9
sig[1, 2] <- 0.3
sig[2, 1] <- 0.3
rawvars <- mvrnorm(n = 80, mu = mu, Sigma = sig)
cov(rawvars)
t <- c(rep(1, 20), rep(2, 20), rep(3, 20), rep(4, 20))
x1 <- t + rawvars[, 1]
x2 <- t + rawvars[, 2]
x3 <- t + rawvars[, 3]
x4 <- t + rawvars[, 4]

# unstructured covariance matrix of error term per subject
Sig <- matrix(3, 4, 4)
diag(Sig) <- 10
u <- rep(0, 4)
Sig[1, 1] <- 5
Sig[2, 2] <- 7
Sig[3, 4] <- 8
Sig[4, 3] <- 8
Sig[1, 2] <- 4
Sig[2, 1] <- 4
error <- mvrnorm(20, u, Sig)

# regression parameters
b1 <- b2 <- 1
b3 <- b4 <- 2

# dependent variable
y <- x1 * b1 + x2 * b2 + x3 * b3 + x4 * b4 + c(error)
df <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3, x4 = x4, sub = rep(sub,

4), t = t)

# Prepare for Bayesian framework

Y <- matrix(df[, "y"], 20, 4, byrow = F)
x1 <- matrix(df[, "x1"], 20, 4, byrow = F)
x2 <- matrix(df[, "x2"], 20, 4, byrow = F)
x3 <- matrix(df[, "x3"], 20, 4, byrow = F)
x4 <- matrix(df[, "x4"], 20, 4, byrow = F)

N = 20 # subjects
M = 4 # repeated measures
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R-Code A.11: LMG calculations for the marginal model

#--------------------------------------------

# Inference about marginal model data with unstructured error covariance
# matrix likelihood: multivariate normal distribution with Wishart prior
# for error covariance matrix and Normal distribution prior for means

modelString <- "model{

# Likelihood
for(i in 1:N){
Y[i,1:M] ~ dmnorm(mu[i,1:M],Omega[1:M,1:M])
for(j in 1:M){
mu[i,j] <- beta0 + beta1*x1[i,j]+ beta2*x2[i,j]+ beta3*x3[i,j] + beta4*x4[i,j]
}}

# Priors

Omega[1:M, 1:M] ~dwish(zRmat[1:M,1:M] , zRscal)
Sigma[1:M, 1:M] <- inverse(Omega)

beta0 ~ dnorm(0,0.001)
beta1 ~ dnorm(0,0.001)
beta2 ~ dnorm(0,0.001)
beta3 ~ dnorm(0,0.001)
beta4 ~ dnorm(0,0.001)

}"

writeLines(modelString, con = "Jags-MultivariateNormal-model.txt")

# run model
model <- jags.model(textConnection(modelString), data = list(Y = Y, N = N,

M = M, x1 = x1, x2 = x2, x3 = x3, x4 = x4, zRscal = ncol(Y), zRmat = diag(x = 1,
nrow = ncol(Y))), n.chains = 3)

samp <- coda.samples(model, variable.names = c("beta1", "beta2", "beta3", "beta4",
"Sigma"), n.iter = 20000, progress.bar = "none")

# posterior parameter distribution (interested in regression parameters and
# covariance matrix of the error term)

samp <- coda.samples(model, variable.names = c("beta1", "beta2", "beta3", "beta4",
"Sigma[1,1]", "Sigma[2,2]", "Sigma[3,3]", "Sigma[4,4]"), n.iter = 20000,
thin = 20, progress.bar = "none")

post.betas <- as.matrix(samp[[1]][, 5:8]) # regression parameters
post.sigmas <- as.matrix(samp[[1]][, 1:4]) # diagonal elements of covariance matrix

# only need mean of post.sigmas per joint parameter sample
post.sigmas.mean <- apply(post.sigmas, 1, mean)

# Calculate R^2 values for each posterior joint parameter sample
df.rtwos <- allSubsetRtwos(df[, 2:5], post.betas, post.sigmas.mean)
df.rtwos <- data.frame(df.rtwos)

# Calculate LMG values

# Prepare matrix to fill with LMG (I), Joint contribution (J) and Total (T)
# values
LMG.Vals.I <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.J <- matrix(0, 4, dim(df.rtwos)[2])
LMG.Vals.T <- matrix(0, 4, dim(df.rtwos)[2])

# Calculate LMG (I), Joint contribution (J) and Total (T) values for each
# joint posterior parameter sample
for (i in 1:dim(df.rtwos)[2]) {

gofn <- df.rtwos[, i]
obj.Gelman <- partition(gofn, pcan = 4, var.names = names(df[, 2:5]))
LMG.Vals.I[, i] = obj.Gelman$IJ[, 1]
LMG.Vals.J[, i] = obj.Gelman$IJ[, 2]
LMG.Vals.T[, i] = obj.Gelman$IJ[, 3]

}
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A.4 Software

Figure 3.1, Figure 3.2, Figure 3.5, and Figure 3.6 of chapter 3 were plotted with the bayesplot
package (Gabry, 2017). Figure 3.3 and Figure 3.7 of chapter 3 were plotted with the GGally
package which is an extension to the ggplot2 (Wickham, 2016) package.

sessionInfo()

## R version 3.4.3 (2017-11-30)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
## [1] de_CH.UTF-8/de_CH.UTF-8/de_CH.UTF-8/C/de_CH.UTF-8/de_CH.UTF-8
##
## attached base packages:
## [1] parallel grid stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] bindrcpp_0.2 bayesplot_1.6.0 brelimp_0.0.0.9000
## [4] doParallel_1.0.11 iterators_1.0.10 foreach_1.4.4
## [7] biostatUZH_1.8.0 MBESS_4.4.3 kableExtra_0.9.0
## [10] xtable_1.8-2 stargazer_5.2.2 brinla_0.1.0
## [13] INLA_17.06.20 sp_1.2-7 corpcor_1.6.9
## [16] rjags_4-6 coda_0.19-1 relaimpo_2.2-2
## [19] mitools_2.3 survey_3.32-1 survival_2.41-3
## [22] Matrix_1.2-12 boot_1.3-20 MASS_7.3-47
## [25] GGally_1.4.0 ggplot2_2.2.1 rstanarm_2.17.2
## [28] Rcpp_0.12.18 hier.part_1.0-4 gtools_3.5.0
## [31] knitr_1.19
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-131 matrixStats_0.53.1 xts_0.10-1
## [4] RColorBrewer_1.1-2 threejs_0.3.1 httr_1.3.1
## [7] rprojroot_1.3-2 rstan_2.17.3 tools_3.4.3
## [10] backports_1.1.2 R6_2.2.2 DT_0.4
## [13] lazyeval_0.2.0 colorspace_1.3-2 gridExtra_2.3
## [16] compiler_3.4.3 rvest_0.3.2 formatR_1.5
## [19] xml2_1.2.0 shinyjs_1.0 labeling_0.3
## [22] colourpicker_1.0 scales_0.5.0 dygraphs_1.1.1.4
## [25] readr_1.1.1 ggridges_0.5.0 stringr_1.3.1
## [28] digest_0.6.15 StanHeaders_2.17.2 minqa_1.2.4
## [31] rmarkdown_1.8 base64enc_0.1-3 pkgconfig_2.0.1
## [34] htmltools_0.3.6 lme4_1.1-15 highr_0.6
## [37] htmlwidgets_1.0 rlang_0.2.1 rstudioapi_0.7
## [40] shiny_1.0.5 bindr_0.1 zoo_1.8-0
## [43] crosstalk_1.0.0 dplyr_0.7.4 inline_0.3.14
## [46] magrittr_1.5 loo_1.1.0 munsell_0.4.3
## [49] stringi_1.2.4 plyr_1.8.4 miniUI_0.1.1
## [52] lattice_0.20-35 splines_3.4.3 hms_0.3
## [55] pillar_1.2.3 igraph_1.1.2 markdown_0.8
## [58] shinystan_2.4.0 reshape2_1.4.2 codetools_0.2-15
## [61] stats4_3.4.3 rstantools_1.4.0 glue_1.3.0
## [64] evaluate_0.10.1 nloptr_1.0.4 httpuv_1.3.5
## [67] gtable_0.2.0 reshape_0.8.7 assertthat_0.2.0
## [70] mime_0.5 rsconnect_0.8.8 viridisLite_0.2.0
## [73] tibble_1.4.2 shinythemes_1.1.1
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