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Abstract

The faecal egg count reduction test described in Coles et al. (1992) is the most common
technique to asses anthelmintic resistance of parasites in horses. In the past years new
statistical models have been proposed to find a solution to the limitiations of the FECRT.
One of the latest is the zero-inflated Bayesian hierarchical model from Wang et al. (2017b)
which is characterized by the ability to capture the high number of zero counts coming
from unexposed livestocks. All these models though require a minimum number of 10–15
animals per stock which might often not be reached in practice.

In this thesis we focus on the problem of very small sample size using, for our analysis,
the Bayesian hierarchical model from Wang et al. (2017b). We start with some considera-
tions regarding point estimates and dilution factors showing that if the number of samples
collected is less than 10, a dilution factor of maximum 20 should be used. We sequently
discuss the influence and importance of an informative prior distribution for the reduction
and implement two functions for the computation of the hyperparameters. A simple ver-
sion of the hierarchical model is then proposed. With a simulation study we show how, for
very small samples, the simple model performs better in terms of both bias and variance
compared to the zero-inflated model. Final considerations are then made regarding the
interpretation of the output where we suggest the use of posterior distributions to draw
more reliable conclusions. Furthermore this thesis offers a schematical flowchart and a
guide which we believe can help practitioners perform their analysis autonomously.
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Chapter 1

Introduction

1.1 Gastrointestinal nematodes and the

McMaster technique

Gastrointestinal nematodes are one of the major types of livestock parasites infecting
cattle, sheep and horses. These infections are a major cause in reduction of the profitabil-
ity due to weight loss, reduction in milk and wool production. For example, a study in
Australia has reported an estimated cost of 1 billion (Australian) dollars associated with
parasitic diseases in sheep and cattle (McLeod, 1995).

The life cycle of gastrointestinal nematodes begins with adult female parasites laying
thousands of eggs which then pass out in the feaces of infected animals. These eggs then
develop to a first stage larva which hatches out of the egg in several hours. The process
continues with the larvae feeding on bacteria and, by undergoing two molts, it finally
reaches the third stage larva, which is infective to horses. These infective larvae migrate
up wet blades of grass where they are most likely to be eaten by some animals, including
horses (for a more detailed description see Boehringer Ingelheim (2017)).

Currently on the market we can distinguish three classes of anthelmintic drugs for
horses: benzimidazoles (fenbendazole, oxibendazole), tetrahydropyrimidines (pyrantel)
and macrocyclic lactones (ivermectin, moxidectin). The latter ones are the most effective
compounds against cyathostomins (group of small strongyles), while resistance to tetrahy-
dropyrimidines and specially benzimidazoles is quite common and increasingly reported
(Sanna et al., 2016).

The most used and efficient method to diagnose parasitic gastroenteritis and determine
the efficacy of anthelmintic treatments is faecal examination. There are several technique
to count the number of eggs in feaces but the most common one is the modified McMaster
method by Coles et al. (1992), which follows the following steps:

1. a small amount of feaces is collected and diluted with a chosen flotation fluid;

2. the solution is stirred to ensure homogeneous distribution of the eggs and filtered;

3. a Pasteur pipette is used to withdraw 2 sub-samples (one for each chamber of the
McMaster slide);

4. the chamber is let stand to allow the eggs to float to the surface;
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5. with the use of a microscope, the number of eggs inside the grid area of the chamber
are counted.

To obtain the faecal egg count (FEC), the number of eggs observed in the McMaster
chamber is multiplied by analytical sensitivity f , which is calculated as the dilution factor
divided by the volume of the McMaster chambers and the grams of feaces analysed (we
will talk about it in more detail in Section 2.4).

1.2 The faecal egg count reduction test

The first evidence-based method to detect a reduction in faecal egg counts (FEC) is the
so called “faecal egg count reduction test” (FECRT). It was suggested in the The World
Association for the Advancement of Veterinary Parasitology (WAAVP) and because of its
simplicity and easy interpretation it is the most common method used worldwide. The
FECRT can be performed on both paired and unpaired data, but throughout the thesis
we will only consider the paired case where the same horses are tested twice, once before
starting the treatment (day 0) and once after (usually 7, 14 or 21 days later, depending
on the drug). The egg count reduction percentage (FECR%) after 14 days of treatment
is then obtained from the following expression:(

FEC0 − FEC14

FEC0

)
· 100

where FEC0 and FEC14 are the arithmetic means of FEC of all animals at days 0 and 14
respectively.

Furthermore, to give a more accurate indication of the range of the data (Lester et al.,
2013), 95% confidence limits were included by using bootstrapping from the observed
FECR% and then taking the upper and lower 2.5-quantiles of N simulations as the 95%
confidence limits (Torgerson et al. (2005), Vidyashankar et al. (2007)).

The classification of FECRT
According to Coles et al. (1992), there are three possible outputs for the

FECRT when studying sheep and goats:

• resistance is present: the FECR% in egg counts is less than 95% and
the 95% lower confidence level (LCL) is less than 90%

• resistance is suspected: if only one of the two criteria mentioned above
is met

• inconclusive: neither of the above criteria are met

Unfortunately no such defined guidelines regarding the cut-off values
are present for horses. Coles et al. (1992) only reported that a reduction
of 90% or less is indicative for benzimidazole (BZD) resistance. Further
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cut-off limits were suggested by Kaplan and Nielsen (2010) as 90% for
pyrantel (PYR) and fenbendazole (FBZ) and 95% for ivermectin (IVM)
and moxidectin (MOX). In their paper however Kaplan and Nielsen (2010)
use a binary classification for the output of the reduction test (resistant
or suspected) without considering confidence intervals. In recent studies
such as Relf et al. (2014), Lester et al. (2013) and Fischer et al. (2015) the
threshold for the 95% lower confidence level was set to 80% for FBZ and
PYR and 90% for IVM and MOX. The upmentioned trichotomization have
several limitations, not only it is easier to misclassify the outcome when it
is closer to the thresholds, but it also does not provide a complete picture
of the output, which may bring to misleading conclusions. In Chapter 2 we
will see how the posterior probabilities from Bayesian models can provide a
more accurate interpretation of the outcome, specially when working with
small samples.

1.3 From the FECRT to the ZIP model

In the past years, several limitations of the FECRT have been identified.
The FECRT does not account for the variability of FEC data and aggre-
gation or overdispersion of the egg counts distribution. A first attempted
solution for the latter problem was proposed by Torgerson et al. (2005) by
assuming a negative-binomial distribution for the counts and by using a
bootstrap method to compute confidence intervals of FEC reduction. A
second idea came from Vidyashankar et al. (2007) who proposed a non-
parametric bootstrapping method, which re-samples and summarises the
observed data without making assumptions regarding the underlying dis-
tribution. The limitation of this method though, is the assumption that the
observed data is fully representative of the population, which is most likely
not the case when working with small sample sizes. The third method,
proposed by Denwood et al. (2010), makes use of the Markov Chain Monte
Carlo and assumes two different gamma-Poisson (negative binomial) dis-
tributions for pre- and post-treatment data. This model accounts for FEC
data variability but still ignores the high frequency of zero observations,
which are due to unexposed animals. Wang et al. (2017b) presented a
zero-inflated hierarchical model based on the work from Paul et al. (2014).
The zero-inflated Poisson model (ZIP) described in the paper not only
performs better than all the upmentioned techniques, but also presents ad-
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ditional advantages such as density distributions of the model parameters
and flexibility in model formulation (such as adjustments to animal-specific
reductions).

1.4 Thesis motivation and contribution

All the methods mentioned in the provious section are based on a sample
size of 10 or more animals raising the question on how to deal with smaller
livestocks.

In this thesis we make some considerations on such small samples and
try to define a set of guidelines which can be followed by practitioners.
More specifically, we will work with some of the options available in the
eggCounts package (Wang et al., 2017a) such as analytical sensitivity, prior
distributions, etc. to reduce the inevitable uncertainty that arises when
analyzing very small datasets. Further improvements are tried to achieve
by simplifying the Bayesian hierarchical model and by restricting the data
to a paired design and including only observations with initial FEC higher
than 200 eggs per gram (measurement unit used in anthelmintic resistance
tests).

For a better overview, the thesis contributions are split into three parts.

Theoretical considerations:

• analysed the effect of the analytical sensitivity f on the output;

• highlighted considerations regarding the McMaster, FLOTAC and
mini-FLOTAC techniques;

• discussed the influence of an informative prior for the reduction dis-
tribution δ;

• pointed out the differences of working with and without truncated
data to raise awarness;

• proposed new simple model for small samples;

• recommended the use of the posterior distribution to interpret the
output.
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Shiny web interface:

• implemented options for the use of an informative prior for the reduc-
tion parameter;

• added options regarding samples size to allow the use of the simple
model.

eggCounts package:

• added function getPrior_delta to compute the hyperparameters of
the prior distribution for reduction;

• added a new fecr_stanSimple function for the analysis of small sam-
ples.

13
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Chapter 2

The eggCount package for small
samples

2.1 Considerations on small sample size

It is well known that in statistics, and specially in frequentist inference,
most of the key concepts as the power, confidence interval and effect size
are all affected by the number of samples included in the study. A very
small sample size, as in our case, produces high variance and low repro-
ducibility. A better approach to such problem is Bayesian inference, where
information from prior experiments can be incorporated in the analysis of
current datasets. Of course we recognize that Bayesian inference is not go-
ing to solve all our problems and that it is inevitable that a small dataset
with four to ten subjects is still going to produce high uncertainty.

When the eggCounts package was first developed (version 0.2) by Torg-
erson et al. (2014), a sample size of ten animals was used in the simulation
study. The results showed insufficient evidence to conclude that resistance
was present and this might have been due to a low pre-treatment egg counts
or a too small sample size. In this thesis we will use the latest version of
the eggCounts (Wang et al. (2017a)) which still recommands a minimum
sample size of 10–15 animals. We will simulate and analyse datasets con-
taining a very low number of subjects (from four to ten animals) and make
considerations on the outputs. Because of such a small sample, throughout
the thesis we will only work with the non-zero-inflated paired model. The
goal of this chapter is to try to reduce the large uncertainty of the outcome
by using the numerous variables available in the package.
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2.2 The Bayesian hierarchical model

The version of the eggCounts package described in Wang et al. (2017b) is
based on the Bayesian hierarchical model suggested by Paul et al. (2014).
Intuitively, the word “hierarchical” indicates that the Bayesian model is in
a hierarchical form, meaning that the parameters of the prior distributions
are not fixed but dependent, in turn, on additional parameters. These last
parameters take the name of hyperparameters. The hierarchical model for
the paired design proposed by Paul et al. (2014), given the true number
of eggs per gram (epg) of faeces Y b

i , considers a binomial distribution for
the observed number of epg Y ∗bi with probability p and size Y b

i . The p
is the proportion of diluted faecal suspension that is put on a McMaster
slide and it is obtained from the expression 1/f , where f is the analytical
sensitivity used in the McMaster method. Given then the mean number of
epg of feaces µbi , the Y b

i are assumed to follow a Poisson distribution with
mean µbi . In turn, µbi is left variable in order to account for heterogeneity
between animals, hence a Gamma distribution with shape parameter φ
and rate parameter φ/µ is assumed. What we just described is the pre-
treatment model (the letter b stands for ”before”). In formula this leads
to:

Y ∗bi |Y b
i ∼ Bin(Y b

i , p)

Y b
i |µbi ∼ Po(µbi)

µbi |φ, µ ∼ Gamma(φ, φ/µ).

After the treatment period (7, 14 or 21 days) the number of eggs are
counted again and the epg rate is reduced by a factor 1 − δ. The model
after the treatment is then

Y ∗ai |Y a
i ∼ Bin(Y a

i , p)

Y a
i |µbi , δ ∼ Po(δµbi).

Notice that the mean µbi is the same in both models. This is to indicate
that the pre and post treatment epg Y b

i and Y a
i belong to the same animal.

The µ, φ and δ are hyperparameters and appropriate distributions must
be assigned. The parameter µ is the global mean epg for infected horses
and Paul et al. (2014) proposed a Gamma(1, 0.001) distribution where
90% of the prior probability mass lies essentially between 50 and 3000. For
the dispersion parameter φ a prior distribution Gamma(1, 0.7) is assumed.
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Here 90% of the prior probability mass lies between 0.1 and 4.3. Finally,
the reduction parameter δ follows a Beta(1, 1) which is equivalent to the
Unif(0, 1) distribution.

2.3 Simulation and analysis of small datasets with

the eggCounts package

In this section we will see how the eggCounts package performs when
analysing small datasets. We will simulate a paired design dataset with
4 subjects by using the function simData2s(). This function takes into
account several parameters including the true number of epg before treat-
ment, the proportion of epg after treatment, the dispersion parameter, the
pre- and post-treatment prevalences and the analytical sensitivity. The
FECs reduction is then modeled by the function fecr_stan() which uses
the Stan modelling language.

counts <- simData2s(n = 4, # number of samples

preMean = 150, # samples mean

delta = 0.1, # 1-delta=reduction

# -> reduction = 90%

kappa = 1, # dispersion parameter

phiPre=1, # prevalence

f=50) # analytical sensitivity

resultsP <- fecr_stan(counts[,"obsPre"], counts[, "obsPost"],

zeroInflation = FALSE)

The fecr object in the output is the reduction we are interested in.
We know that the true reduction is 90% and want to check if the results
obtained from the model correspond.

Since the fecr_stan() performs Bayesian statistical inference, the out-
put will not be a single reduction value but rather a table including the
mean, median and mode together with the most important quantiles and
the high and low 95% highest posterior density (HPD) from the 4000 it-
erations (the default number of iterations in fecr_stan()). Because each
simulation produces a different dataset (hence a different output from the
model), it is important to have an overview of the behaviour of the point
estimates and see how well the model performs. We here simulate 1000
datasets and analyse the outcome.
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round(resultsP$posterior.summary, 2)

## mean sd 2.5% 25% 50% 75%

## fecr 0.78 0.14 0.41 0.71 0.81 0.89

## meanEPG.untreated 270.64 191.74 85.72 158.31 218.88 315.36

## meanEPG.treated 56.29 63.74 7.78 24.67 40.47 64.43

## 97.5% HPDLow95 mode HPDHigh95

## fecr 0.96 0.50 0.88 0.99

## meanEPG.untreated 818.05 54.05 165.81 652.15

## meanEPG.treated 192.54 1.53 28.91 148.46
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Figure 2.1: Distribution of 1000 simulations of epg reduction after treatment. The red
dashed line represents the true reduction of 90% and the black cross indicates the mean.

Figure 2.1 gives a graphical representation of the three point estimates
for the reduction mean obtained after repeating the analysis 1000 times.
Each black point rfnot only represents an iteration and the red dashed
dashed line indicates the true reduction which was specified in the simula-
tion process.
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We can observe that the posterior mean point estimate underestimates
the reduction, hence we will not be considering it anymore. As analysed
in Wang et al. (2017b), also here we observe a lower bias for the mode
estimate compared to the median but since the latter might sometimes be
prefered (i.e., when the distribution for the data is skewed), in the next
section we will still report both quantities.

2.4 What can be done?

In this section we will make some considerations regarding the parameters
involved in the hierarchical model used in the eggCounts package. By
simulating datasets we will observe that appropriate modifications of some
parameters will lead to a lower variance of the FECs reduction.

2.4.1 The analytical sensitivity f

The first and most natural thing to do is to improve the sensitivity of the
test. The analytical sensitivity, expressed by f , is calculated by dividing
the dilution factor by the volume of the McMaster chambers and the grams
of feaces analysed. Hence a test with a two-chambered slide and a dilution
factor of 75ml that analyses 5 grams of feaces would give a sensitivity of
f = 75/(5 · 2 · 0.15) = 50. This value is then used to compute the number
of eggs per gram of faeces (epg):

epg = observed number of eggs · f.

In the expression for the analytical sensitivity the only parameters we can
vary are the dilution factor and the grams of feaces, since the volume of the
McMaster chamber is fixed to 0.15ml. A higher sensitivity, typically f =
15, provides a better approximation of the true number of eggs, although,
because of the random distribution of eggs within a faecal sample, there is
inevitable variability in evaluating the true number of eggs.

Figure 2.2 and Figure 2.3 give an overview of the estimated FECs re-
duction with different values for the analytical sensitivity f . For a baseline
mean count of 150 epg, it can be seen that, when choosing the median as
point estimate, a higher sensitivity (smaller f) performs better in terms
of bias and slighlty better in terms of variance. On the other hand, such
improvement is not as evident when working with the mode point estimate.
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Figure 2.2: Two boxplots of the estimated FECs reduction with an initial true number
of epg of 150 and an analytical sensitivity f of 15, 20, 30, 50. The one on the left uses
the median as point estimate, while the one on the right uses the mode. Each black point
represents one of the 1000 iterations while the red dashed line is the true reduction 90%
specified when simulating the datasets. The black crosses indicate the mean.

Except for two outliers for f=50, we cannot see considerable improvements
with higher sensitivities. A slightly different conclusion can be seen when
the initial true number of epg is increased to 500. For both estimates, the
estimated reduction is almost never less than 50%, meaning less variance
compared to the case with initial epg of 150. Here the difference between
the two point estimates is more evident. The mode performs better for
all four cases in terms of bias, although such improvement is not so pro-
nounced in terms of variance.

To summarize, when dealing with a small sample (here 4 subjects),
we suggest to work with an analytical sensitivity of 20 or less. For these
sensitivities, the mode point estimate performs better than the median in
both cases of low and high number of epg before treatment. In the case of a
higher number of epg before treatment (here 500) the mode point estimate
provides lower bias and variability compared to the case were µ is small.
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Figure 2.3: Two boxplots of the estimated FECs reduction with an initial true number
of epg of 500 and an analytical sensitivity f of 15, 20, 30, 50. The one on the left uses
the median as point estimate, while the one on the right uses the mode. Each black point
represents one of the 1000 iterations while the red dashed line is the true reduction 90%
specified when simulating the datasets. The black cross indicates the mean.

2.4.2 FLOTAC and Mini-FLOTAC

Until now, we have analyzed the model with different values for the ana-
lytical sensitivity when using the McMaster technique. This technique is
the most widely known and used because of its simplicity and affordabil-
ity, but it lacks in sensitivity. When using the McMaster technique the
highest analytical sensitivity we can reach is approximately 10–15 epg. In
Cringoli (2006) the FLOTAC technique was introduced to overcome the
low sensitivity issue. FLOTAC is based on the centrifugal flotation of the
sample and translation of the floating suspension on the top layer. Un-
fortunately, despite the accuracy and high analytical sensitivity of 1 epg,
this new apparatus introduces complexity due to centrifugation, which re-
quires specific laboratory equipment. The new Mini-FLOTAC technique
described in Cringoli et al. (2013) is a simplified technique which can be
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more easily carried out in laboratories with limited facilities. The analyti-
cal sensitivity of the Mini-FLOTAC is 5 epg.

150epg 500epg
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Figure 2.4: Comparison in terms of sensitivity between FLOTAC, mini-FLOTAC and
McMaster (with f=20) techniques. In the left plot we used an initial true mean of 150epg
to simulate the data, while for the right plot the number of eggs was raised to 500.

We now simulate 1000 datasets with a sensitivity of 20 (McMaster), 5
(Mini-FLOTAC) and 1 (FLOTAC). The comparison is meant to briefly
show the significant difference between the techniques and arise awarness
on the importance of the technique choice (for a more detailed analysis see
Noel et al. (2017)). Figure 2.4 shows the 1000 mode point estimates from
the posterior distribution of the reduction parameter. It is evident that
as the analytical sensitivity increases (smaller f), the uncertainty reduces
drastically, providing more accurate estimates of the true reduction. The
effect is particularly strong when the initial mean number of epg is low
(left panel of Figure 2.4)

We realize that the FLOTAC technique might be complex and expen-
sive, but we strongly recommand practitioners to consider using the simpler
Mini-FLOTAC technique which nevertheless provides lower uncertainty
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compared to the McMaster technique in both cases of low and high num-
ber of epg before treatment.

2.4.3 The reduction parameter

At the beginning of this chapter we briefly pointed out the advantage of
performing Bayesian analysis when working with small sample size. An in-
formative prior distribution might solve the issues of low power and biased
parameter values. The question that arises is: how to choose an informa-
tive prior? In van de Schoot et al. (2015) they listed three steps to specify
a prior distribution:

• research and background knowledge (such as meta-analysis or previous
comparable studies),

• choice of the type of distribution (normal, Poisson, etc.) and

• choice of values for the hyperparameters (shape and rate, mean and
variance, etc.).

In this thesis we are interested in the reduction of epg, for which a
non-informative prior distribution Beta(1,1) is specified in the eggCounts

package. Because the Beta distribution is defined on the interval [0,1] and
allows for different probabilities for each value in the interval (contrarily
to the uniform distribution), there is no need for background knowledge to
agree that the Beta is the right type of distribution for our scenario. The
previous question would now become: how to choose appropriate hyperpa-
rameters? The answer is heavily dependent on background knowledge and
must be assesed by performing a so called ”sensitivity analysis”.

Sensitivity analysis

As discussed by van de Schoot et al. (2015), the choice of specific hyper-
parameters for the prior distribution might affect the final output. When
working with small datasets where more weight is given to the prior distri-
bution, it is particularly important to analyse how sensitive the conclusions
are with respect to the specified values of the hyperparameters. In this sec-
tion we will perform a sensitivity analysis on the prior distribution of the
reduction parameter δ. The choice of shape and rate parameters for a beta
distribution is not as intuitive as it could be for the mean and variance of
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a normal distribution. For this reason we decided to allow for two differ-
ent methods for the computation of the Beta parameters. The first one is
the reparametrization from Kruschke (2014) where shape a and rate b are
replaced by mode ω and concentration k using the equations below:

a = ω · (k − 2) + 1 and b = (1− ω)(k − 2) + 1,

where k and ω are real numbers with domains [2,∞) and [0, 1] respectively.

The function in R to compute the parameters using this reparametriza-
tion is reported below.

shapes_Beta_OK <- function(omega, k){
alpha <- omega*(k-2)+1

beta <- (1-omega)*(k-2)+1

param <- cbind(alpha, beta)

colnames(param) <- c("alpha", "beta")

return(param)

}

While the concept of mode is of general knowledge and widely used, the
concentration value can be very abstract and subjective. It can be seen as
a type of variance specifying how certain we are that our mode is the true
population mode and where a low k indicates uncertainty. A mode of 0.5
and concentration of 2 (the lowest value k can take) correspond to the non
informative prior Beta(1, 1).

The second method to compute the parameters of the Beta distribution
is based on the values of a suggested confidence interval for the reduction
parameter, i.e. a practitioner believes the true reduction lies between 0.5
and 0.9 with a probability of 95%. In this case a and b can be computed in
R using the function below, where x and y are respectively the lower and
upper limits of the 95% confidence interval.

library(rootSolve)

shapes_Beta_CI <- function(x, y, p=0.95){
# x = 2.5% quantile

# y = 97.5% quantile

# p = probability, area "most likely"

f <- function(k){c(F1 = qbeta((1-p)/2, k[1], k[2])-x,
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F2 = qbeta((1-p)/2, k[1], k[2],

lower.tail = FALSE)-y)}
ss <- multiroot(f = f, start = c(1, 1))

param <- rbind(ss$root)

colnames(param) <- c("alpha", "beta")

return(param)

}

To conduct the sensitivity analysis we work with the reparametrization
mode/concentration. We choose 4 different modes (ω = 0.05, 0.2, 0.35, 0.5)
and 4 different concentration (k = 5, 10, 15, 20) for the prior distribution
of the reduction parameter δ. Figure 2.5 gives a graphical overview of such
distribution for each of the 16 combinations.
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Figure 2.5: Graphical representation of the prior Beta distribution for each of the 16
combinations of mode and concentration. From top to bottom we observe the distribution
shifting towards its mode while from left to right, as the concentration increases, the
distribution tends to concentrate more around its mode.

The next step is to run the model for each combination of mode and
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concentration on the same simulated datasets. Here, as before, we simulate
and analyse 1000 datasets to have a more accurate picture of the behaviour
of the model. The datasets are simulated using the simData2s function
and consist of four observations (animals). For the parameters we choose
an initial true number of epg of 250, a true reduction of 0.7 (meaning a δ
of 0.3), a dispersion value of 1 and a dilution factor of 20. Furthermore we
assume all animals are infected before treatment hence the pre-treatment
prevalence is 1.

set.seed( 12)

counts <- simData2s(n = 4, # number of samples

preMean = 250, # samples mean

delta = 0.3, # 1-delta=reduction = 70%

kappa = 1, # dispersion parameter

phiPre=1, # prevalence

f=20) # dilution factor

counts

## obsPre masterPre truePre obsPost masterPost truePost

## [1,] 240 12 225 100 5 84

## [2,] 100 5 75 20 1 28

## [3,] 140 7 99 20 1 30

## [4,] 0 0 4 0 0 0

The results of this sensitivity analysis are displayed in Figure 2.6. The
figure shows the 1000 posterior reductions δ for each of the 16 combina-
tions of mode and concentration. It can be seen that, as the concentration
increases, the variance decreases and there is a shift of the distribution
towards the true mode ω. Overall we can observe that the model is quite
sensitive with respect to the prior distribution for reduction, which makes
sense given the small sample analysed. We therefore recommand prac-
titioners to carefully choose appropriate hyperparameters based on their
knowledge and prior information. Alternatively, if no background is avail-
able, the non informative prior Beta(1, 1) should be used.

2.4.4 Truncated data

Another aspect worth talking about is the tendency of truncating data. In
real life, many practitioners consider an initial number of eggs of less than
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Figure 2.6: Boxplots of the 1000 posterior reductions (left) and widths of HPDIs (right)
for each of the 16 combinations of mode ω and concentration k. The single boxplot with a
concentration of 2 represents the distribution of the posterior reduction and HPDI width
using a non informative prior Beta(1, 1).

200epg to be low and would exclude the animal from the study. In this
section we look at the difference when analysis only data with an initial
epg of 200 or more and when instead all animals are treated, regardless
of the number of epg before-treatment. The goal of this section is not to
conclude which case is the best, but rather to raise awarness about the
interpretation of the outcome of truncated data.

For each case (truncation/no truncation) we simulate 1000 datasets with
a before-treatment mean of 250epg, a reduction of 70% and an analytical
sensitivity of 20. Furthermore we consider no overdispersion (κ = 1) and
a prevalence of 100%. For the non-truncated case we simply simulate
datasets with 4 observations as we did up to now. To simulate the trun-
cated data we instead generate 1000 datasets with 10 observations and then
work with only the first 4 that have an epg larger than 200. The default
model from the eggCounts package is then fitted to both cases of simulated
datasets. The 1000 mode point estimates from the posterior distributions
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of the reduction parameter are plotted on the left side of Figure 2.7. It can
be seen that the truncated data produced more stable results, meaning
that the mode point estimate was closer to the true reduction 0.7 more
often than the not truncated data. In terms of uncertainty we can analyse
the right part of Figure 2.7. This plot shows the width of every highest
posterior density interval (HPDI: interval with limits the HPDLow95 and
HPDHigh95 as seen in Section 2.3) and it is evident that the truncated
data has more narrow intervals.
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Figure 2.7: The left figure shows the 1000 mode point estimates for the mean FEC
reduction together with the true reduction (red dashed line). The right figure reports the
1000 HPDI widths for each type of data.

These plots may lead a person to erroneously think that working with
truncated data brings to more accurate results. The correct way of inter-
preting the output is to simply stress the difference between the datasets.
If a study is conducted using only observations with initial epg larger than
200, then it is important to report this information. Generalizing the re-
sults from the truncated data to a non truncated case would underestimate
the effect and lead to misleading results. In conclusion, truncated and non
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truncated data should not be compared and, when conducting a study, all
informations should be reported.

2.4.5 The dispersion and global mean parameters

In this section we work on the two hyperparameters that define the dis-
tribution of the individual-specific mean µbi . As seen in section 2.2 the
gamma distribution of µbi has shape parameter k and rate parameter k

µ ,
where k and µ are respectively the dispersion and global mean parameters.
In the eggCounts package these hyperparameters were given specific dis-
tributions based on background knowledge of sheep and cattle. Because
in this thesis we are studying the FECR for horses, appropriate consider-
ations should be made. We start with the dispersion parameter k. Most
papers about FEC and FECRT, including the paper from Torgerson et al.
(2014) introducing the first version of the eggCounts package, agreee that
within an observation group there is usually considerable overdispersion of
FEC. Although the current version of the package does take overdispersion
into account, we argue that the prior distribution Gamma(1, 0.7) assigned
to the dispersion parameter k might not be the most appropriate. The rea-
son is that the median of such distribution is 1, assigning a 50-50 chance
for the data to be under- or over- dispersed, which does not reflect the
hypothesis of overdispersed data just mentioned above. We hence propose
a Gamma distribution with shape 1 and rate 0.35, which corresponds to
an approximate 70% chance for overdispersion. Figure 2.8 illustrates the
two distributions with respective probability for overdispersion.

Gamma(1, 0.7)

50%

0 5 10

Gamma(1, 0.35)

70%

0 5 10

Figure 2.8: The prior distribution for the dispersion parameter. On the left side the
current prior distribution as described in the eggCounts package and on the right side the
proposed prior with a probability for overdispersion of approximately 70%.
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Regarding the global mean µ, here as well we propose a different prior
distribution based on the informations from Kaplan and Nielsen (2010),
where 261 horses from 12 farms were studied. The article provides an es-
timate distribution for the adult equine population, recognizing that the
actual distribution varies among farms and depends on multiple factors.
The population is split into three groups: low, moderate and high contami-
nators (number of EPG). Table 2.1 gives the estimate numbers as reported
in the article.

Number of EPG
(before treatment)

Percentage of adult
population

Low 0–200 EPG 55
Moderate 200–500 EPG 18
High >500 EPG 27

Table 2.1: Estimated population distribution of number of epg before treatment based on
261 horses from 12 farms (Kaplan and Nielsen (2010)).

We observe that most of the horses have an estimated number of EPG
less than 200, while the prior distribution for the global mean defined in
the eggCounts package assumes a prior global mean with much less weight
for the interval 0–200 epg (see Figure 2.9). For this reason we propose a
gamma distribution which reflects the distribution of the data of Table 2.1.
Using the multiroot function included in the rootSolve in R (Soetaert
(2009)) we compute the shape and rate values of the gamma distribution
such that the probabilities for each category are as reported in Table 2.1.
The distribution that satisfies the conditions is the Gamma(0.379, 0.00085)
which is illustrated on the right side of Figure 2.9.

Although the prior distributions of both dispersion and global mean pa-
rameters are quite different to the original priors of the eggCounts package,
we can observe on the left part of Figure 2.10 that the output of the reduc-
tion parameter is not sensible to the choice of these priors. What indeed is
affected is the posterior distribution of the mean epg before treatment. On
the right side of the same figure we can infact see that the original prior
distributions from the package tend to “pull” the distribution of the mean
epg before treatments towards higher values. This is a result of the larger
weight given to higher epg values in the eggCounts prior. It is important
to stress that the right side of Figure 2.10 is simply a sensitivity analysis
and cannot state which is the “right” prior. Prior distributions are based
on previous information and can vary from country to country or from
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Figure 2.9: The prior distribution for the global mean parameter. On the left side the
current prior distribution as described in the eggCounts package and on the right side
the proposed prior based on the work of Kaplan and Nielsen (2010).
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Figure 2.10: Boxplots of the estimated posterior reduction (left side) and posterior means
(right side) using the eggCounts prior and the new prior Gamma(0.379,0.00085).

animal to animal.

One interesting aspect to point out is that until now the choice of these
two priors was based on past papers and on the type of animal studied.
We can further investigate the distributions of these priors by introduc-
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ing the effect of truncated data described in Section 2.4.4. In particular
we will study the distribution of the global mean µ when the counts be-
fore treatment are larger than 200 epg. As seen in Figure 2.9 the chosen
prior for µ when conducting an equine analysis is a Gamma(0.379, 0.00085)
which assignes a 55% probability to values between 0 and 200 epg. But
what happens if we now exclude from the study animals with an initial epg
lower than 200? We would expect the distribution of µ to shift towards
higher numbers allowing for higher probabilities when the epg is higher
than 200. How to compute the hyperparameters of this new ”truncated”
global mean distribution? We start by generating 100,000 numbers from
the Gamma(0.379, 0.00085) and then only select the numbers higher than
200. This let us with a total of 44,856 numbers for which a gamma dis-
tribution is then fitted (see left side of Figure 2.11). This fitted Gamma
distribution is then used as the new prior in the model. We can observe
on the right side of Figure 2.11 that the shape of the curve has changed
considerately compared to the Gamma(0.379, 0.00085) used previously but
is now quite similar to the original Gamma(1, 0.001) from the eggCounts

package. Although the probability for numbers between 200 and 500 has
only slightly increased, the situation is almost inverted for datapoints lower
than 200 and higher than 500.

0 1000 2000 3000 4000 5000

Gamma(1.725, 0.00186)

9%

23%

68%

0 1000 2000 3000 4000 5000

Figure 2.11: On the left side, the histogram of the 44,856 data points larger than 200. The
shaded blue line is the fitted Gamma(1.725, 0.00186) distribution. On the right side the
same Gamma(1.725, 0.00186) with highlighted probabilities for each group of epg (0-200,
200-500, >500).

To analyse the effect of this new fitted distribution we simulate 1000
datasets with truncated data (epg≥200) varying µ=200epg, 700epg and
k =0.25, 0.5 for both cases of 4 and 10 observations. The model is then
fitted to each case using once the eggCounts prior and once the ”truncated”
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prior. The results are shown in Figure 2.12. Again we observe no significant
difference in the output of the reduction parameter δ in any scenario. The
widths of the HPDIs bring to the same conclusion of no difference (plot
not shown).
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Figure 2.12: Boxplots of the estimated FECs reduction using the eggCounts and ”trun-
cated” priors for each of the 4 combinations of pre mean epg and dispersion value.

The fact that the parameter δ is not sensible to the priors of µ and k
does not mean there is no difference in the output of other parameters.
Infact, if we look at the plot of the mean epg before treatment (right part
of Figure 2.12) it can be seen that here again there is some variation.
Compared to Figure 2.10 the two distributions are now closer. The reason
is that, as pointed out prevoiusly, the two prior distributions for the global
mean µ are very similar.

2.4.6 Simple model

The eggCounts model used until now involves numerous parameters which
despite increasing the robustness of the model they also raise complexity.
In our context of very small samples a simpler model with less parameters
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could be beneficial. In the previous section we have studied in detail the
effect of the prior distributions of the global mean µ and dispersion param-
eter k on the output of the reduction parameter δ. In every case we have
observed that the latter parameter was not affected. In this section we
conduct a simulation study comparing the original eggCounts model with
the simpler model where the two parameters µ and k are not taken into
account. From a practical point of view this means we assume all animals
come from a population with the same mean before tratment.
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Figure 2.13: Boxplots of the estimated FECs reduction comparing the original model from
the eggCounts package to the simpler model. The red dashed line is the true reduction
used in the simulation.

The study, as before, is conducted by simulating 1000 datasets for 4
different scenarios varying the initial mean (200 epg and 700 epg) and the
dispersion parameter (0.25 and 0.5). In the simple model a prior for the
mean before treatment needs to be defined. In our analysis we choose
to use the same prior Gamma(1, 0.001) used for the global mean in the
original model. The results comparing the point estimates of the posterior
distribution of the reduction parameter are shown in Figure 2.13. The
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difference between the two models is quite evident in the case of n = 4
and specially when the number of epg is low. The simpler model seems to
perform better in terms of both bias and variance. The conclusions when
the sample size is larger (n = 10 in our case) are not the same. In this
case we cannot observe a clear distinction between the two models, which
is not necessarily a bad result. In fact, we can argue that the simple model
performs as good as the more complex one, meaning that using this model
which has less computation time and is easier to interpret we obtain similar
results. We hence recommand practitioners to use the simple model when
the number of animals studied is ≤ 10.

2.4.7 Interpreting the output

Now that we have listed some small sample considerations and finally run
our model, all that remains is the interpretation of the output. In Sec-
tion 1.2 we talked about the trichotomization of Coles et al. (1992), the
different thresholds introduced for the different types of drug and the reason
why this interpretation might not be the best choice. Here, we talk about
posterior distributions and, based on the work of Wang et al. (2017b), give
a more appropriate interpretation of the output.
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Figure 2.14: Density plot of the posterior ditribution for the reduction parameter with
highlighted 95% HPDI (highest probability density interval).

Consider Figure 2.14 which shows the posterior distribution of the FEC
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mean reduction after treatment with FECR mode of 0.86 and limits of the
HPDI of 0.83 and 0.89. If we were to use the trichotomization from Coles
et al. (1992) with thresholds 0.9 and 0.8 for FECR and LCL respectively,
we would conclude there is suspected resistance because the LCL is larger
that 0.8. Such conclusion can be misleading since we can observe that
almost the whole distribution is less than 0.9. We hence propose to work
with posterior distributions and compute the probability for the reduction
to be lower than the thresholds defined in Coles et al. (1992) (0.9 for PYR
and FBZ or 0.95 for IVM and MOX), which is equivalent to computing
the probability that resistance is present. In our example the probability
of resistance is 0.88.

For easier interpretation these probabilities can also be categorized. A
possible classification could be:

• 0–20% very strong evidence of resistance,

• 20–40% strong evidence of resistance,

• 40–60% moderate evidence of resistance,

• 60–80% weak evidence of resistance,

• 80–100% no evidence of resistance.

In any case, we recommend to always report the value of the probability
since practitioners may use different thresholds for their own classification.

This type of interpretation of the output is particularly beneficial when
working with small samples since there is higher variability and the tri-
chotomization from Coles et al. (1992) could lead to more frequent mis-
classifications.
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Chapter 3

Case study: Anthelmintic Resistance
in German horses

In this chapter we conduct a case study on anthelmintic resistance of Ger-
man horses. The data, consisting of 14 horses in farm 1 and 6 horses in
farm 2, was collected and analysed using the FECRT. The horses were
treated with pyrantel (PYR) and the samples of epg were computed fol-
lowing the modified McMaster technique with an analytical sensitivity of
20. Here we re-analyze the data using the eggCounts package and includ-
ing the considerations on small samples studied in the provious chapter.
Furthermore, to help practitioners, we created a self explanatory flowchart
(see Appendix A) that we follow step by step to illustrate its usage. The
data from the two farms will be studied separately: we start with Farm 1.

3.1 Farm one: 14 observations

Following the flowchart, the first thing to check is if the number of animals
tested is larger than 10. In this first case we have data from 14 horses
hence the standard eggCounts will be used. The standard arguments in
the function should be used except for the ones we will mention here be-
low. Sequently it is required that the analytical sensitivity is ≤ 20. The
practitioner reported a sensitivity of exactly 20 so we can specify this in-
formation in the function (preCF=20) and proceed to the next step. Notice
that if a sensitivity larger than 20 would have been used, the model could
have produced biased results, as the difference between an f = 20 and 30
is quite significant.

The following step is to specify if there is any prior information regard-
ing the reduction parameter δ. This information could come from past
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papers, general knowledge or from past results analysing the same sam-
ple. Such information should be chosen carefully since the output can be
significantly affected. In our case the practitioner reported that “most of
the times a reduction between 50% and 80% is observed”. In our opin-
ion, “most of the times” could translate to “7 times out of 10”, but of
course it is a very subjective statement and other analysts may interpret
this information differently. Since we do have prior knowledge about the
reduction and the extremes of a confidence interval are given, we use the
getPrior_delta function (included in the eggCounts package) to com-
pute the hyperparameters for the beta distribution. The function returns
values of 5 and 2.38 for shape and rate respectively. This information is
then included in the fecr_stan function by specifying
deltaPrior = list(priorDist="beta", hyperpars=c(5,2.38)).
The final code is shown below. The model can now finally be run.

fecr_stan(preFEC = FEC_Before,

postFEC = FEC_After,

rawCounts = FALSE,

preCF = 20,

paired = TRUE,

zeroInflation=TRUE,

deltaPrior = list(priorDist="beta",

hyperpars=c(5, 2.38)))

The results show a posterior mode of 0.75 with the limits of the 95%HDI
of 0.68 and 0.8. Furthermore, as mentioned in the previous chapter, the
advantage of working with Bayesian models is that we also obtain whole
distributions we can use to draw conclusions. In the left part of Figure 3.1
such posterior distribution of the reduction parameter δ is plotted. We here
enter the last step of the flowchart which is to interpret the output. Since
the horses were treated with pyrantel, the cut-off value used to determine
resistance is set to 90%. As can be seen in the figure, the whole distribution
is below such threshold, indicating no evidence of resistance for Farm 1.
Furthermore, the results from the FECRT produced a higher mode (0.83)
and a much wider confidence interval: [0.38, 0.95] confirming the better
performance of the hierarchical model described in Wang et al. (2017b).
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Figure 3.1: Posterior density distribution of the EPG reduction for each farm.

3.2 Farm two: 6 observations

The analysis for the data of the second farm is slightly different due to
the small sample. The number of horses studied is 6 which, following the
first step of the flowchart, suggests the simple model should be used. The
new function fecr_stanSimple implements such model and, compared to
the original fecr_stan model, it involves less parameters (no paired or
zeroInflation). Next in the flowchart is the constraint regarding the
analytical sensitivity. Here again we use an f of 20, meaning we can jump
directly to the 3rd decision point concerning the prior distribution of δ.
Since the data of the 2 farms come from the same practitioner, as before
we use the information which assumes that 70% of the times the reduction
will be between 50% and 80%. The R code in this case is reported below.

fecr_stanSimple(preFEC = FEC_Before,

postFEC = FEC_After,

rawCounts = FALSE,

preCF = 20,

deltaPrior = list(priorDist="beta",

hyperpars=c(5, 2.38)))

The model is then finally run using the same hyperparameters for beta
as above: 5 for shape and 2.38 for rate (obtained using the getPrior_delta
function). The posterior distribution of δ is plotted on the right side of
Figure 3.1. In this case the model produced a mode of 0.74 and a 95% HDI
of [0.66, 0.79]. Since the whole distribution is below 90% the conclusion,
as in farm 1, is that there is no evidence of resistance. In this case, using
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the FECRT whould have produced a very similar mode (0.73) but a very
wide confidence interval [0, 0.94] which would have brought to inconclusive
results.
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Chapter 4

Summary and conclusions

In this thesis we focused on the problem of very small sample size when
analyzing the resistance of gastrointestinal nematodes in horses. Some of
the numerous options available in the eggCounts package were used to
partially reduce the high uncertainty resulting from small samples. Most
of the work consisted in simulation studies comparing priors for different
parameters.

We started by analysing datasets with different sensitivities and by com-
paring the techniques for faecal egg count reduction currently available on
the market. The thesis then continued with more technical aspects regard-
ing prior distributions for reduction, global mean and dispersion parame-
ters. In particular, we proposed a simpler version of the fecr_stan func-
tion to use when analysing small samples. The fecr_stanSimple function
is included in the eggCounts package version 2.0. All these considerations
were then put into practice with a case study on the anthelmintic efficacy
of German horses.

This thesis offers a detailed overview of the model of the eggCounts

package when working with small samples. It provides an in depth study
of the priors for equine analysis and an exhaustive explanation for practi-
tioners of the several options included in the eggCounts package, includ-
ing a guide and a flowchart which can be followed when conducting an
anthelmintic efficacy study (see Appendix A and B).

We believe the analysed eggCounts model can be improved by intro-
ducing an animal specific reduction, meaning the hierarchical model would
be further extended with two additional parameters. Moreover, we suggest
to study in more detail the choice of the prior mean distribution of the new
simple model suggested in Section 2.4.6 to verify if there is an influence of
the type of animal analysed.
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Appendix A

Flowchart

In this appendix the flowachart mentioned in Chapter 3 can be found. The
steps are built for the analysis of anthelmintic resistance in horses but we
believe they can be generalized to other animals such as sheep, cattle etc..
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Figure A.1: Flowchart representing the steps to follow when performing an analysis of
anthelmintic resistance in horses. At the start point it is assumed that the paired data
(before/after treatment) has already been collected.
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Appendix B

Guide for practitioners

When conducting an anthelmintic resistance drug test we recommand prac-
titioners to use the hierarchical bayesian model described in the eggCounts
package. This model provides more accurate estimates and lower uncer-
tainty compared to the faecal egg counts reduction test from Coles et al.
(1992) (see Wang et al. (2017b) for more detailed information). We here
describe how an analysis in R is conducted, following the steps which
are schematically represented in the flowchart. This guide is meant to
help practitioners with very little R experience to analyse their data au-
tonomously.

The steps to follow when analysing anthelmintic resistance drug tests
are the following:

1. the data is first collected using the modified McMaster technique with
the same analytical sensitivity, before and after treatment, of maxi-
mum 20 (eventually consider using the FLOTAC or mini-FLOTAC
techniques which provide higher sensitivity)

2. the data should include at least two columns with number of egg
counts before and after treatment (or treated and untreated groups)

3. if RStudio is being used, the data can be imported in R by clicking on
”Import Dataset” located in the upper right corner

4. it should be checked that the data has been imported successfully
(right number of rows and columns)

5. the analysis of the data can now start by loading the eggCounts pack-
age using the command library(eggCounts)
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6. the first step requires the choice of the function: if n≤ 10,
fecr_stanSimple should be used, otherwise fecr_stan

7. if, i.e., the data is named mydata, then the options in both functions
should be specified as follows:

(a) preFEC=mydata[,1] if the data before treatment is located in the
first column (otherwise replace 1 with 2)

(b) postFEC=mydata[,2] if the data after treatment is located in the
second column (otherwise replace 2 with 1)

(c) preCF=20 if a sensitivity of 20 was used (otherwise replace 20 with
your factor)

the name of the dataset can be seen in the upper right panel of
RStudio

8. if any prior information regarding the reduction is available, the
getPrior_delta function should be used to compute the hyperpa-
rameters, i.e. if 70% of the times the reduction is expected to be
between 40% and 80%, the function should be specified as
getPrior_delta(lower=0.4, upper=0.8, p=0.7)

WARNING: for small samples, the output is heavily dependant on the
specified prior distribution; the numbers should be chosen carefully

9. the getPrior_delta returns values of alpha and beta which can be
included in the fecr_stan or fecr_stanSimple functions by specify-
ing deltaPrior=list(priorDist="beta", hyperpars=c(alpha,beta))

10. after running the fecr_stanSimple (or fecr_stan) function, the out-
put for the reduction can be found in the first line: ”fecr”

11. we recommand to draw conclusions based on the probability of reduc-
tion, which can be computed using the function fecr_probability;
the threshold should be specified based on the type of animal analysed
and the type of drug used in the study
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Appendix C

Shiny web interface

In the shiny web interface (Applied Statistics Group (2017)) we have imple-
mented two options. The first one is related to the sample size, where the
practitioner can specify the number of animal analysed and if such number
is lower than ten then the new simple model described in Section 2.4.6 is
used. The second implementation gives the possibility to specify a prior
distribution for the reduction parameter by specifying either the lower and
upper values of the confidence interval or the mode and concentration as
described in Section 2.4.3.
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Figure C.1: The sample size option incorperated in the interface. In this figure the non
informative beta prior is selected.
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Figure C.2: The prior ditribution for beta is now set as informative and the user can
specify either the lower and upper value of a confidence interval or the mode and concen-
tration.
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