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Abstract

A common view within the statistical field of time series forecasting is that there
is a single model at the origin of the data generating process and that the job of
the forecaster is to find it (R. Hyndman, 2018). However, many scientists agree
that reality is probably too complex to be described by a single model and growing
evidence suggest that the use of ensemble models can improve predictions.
The purpose of this thesis is to implement and assess the use of ensemble models
within the HHH4 framework designed for the analysis of spatially and temporally ag-
gregated infectious disease surveillance data. We investigate model averaging (MA)
according to AIC and BIC criteria as described by Claeskens and Hjort (2008) and
a form of stacking inspired by Yao et al. (2017), who developed a procedure for the
combination of predictive distributions - as compared to point estimation.
We present the methods with an univariate example, discuss the stability of the
hereby introduced stacking procedure and assess the impact of changes to the hy-
perparameters. We also study the reproducibility of our results and extend our
analysis to multivariate models.
We find that ensemble models perform relatively well in both univariate and multi-
variate time series analysis. Although they do not beat the best individual model,
they never perform the worse. We find that MA is more straightforward to imple-
ment than stacking because weights are calculated directly and are not the result
of an optimization. The optimization may not always have a clearly defined output
meaning that the whole stacking procedure is not perfectly stable. We also ob-
serve an important variation in the performance of individual and ensemble models
depending on both the year under study and the values of the hyperparameters.
Although ensemble models show promising results, more research will be needed to
better understand how to control these variations to ultimately improve predictions.

Notation

The notation for this thesis closely follows that of Held et al. (2017). Scalar param-
eters, such as wj , are represented by lowercase letters. Vectors and matrices are
printed in bold, with matrices also represented by uppercase letters as in ΣP .
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Chapter 1

Introduction

Predictions of infectious diseases incidence and quantification of the uncertainty
related to those predictions are essential for policymakers and health care specialists
to prepare and control upcoming epidemics. Many national surveillance systems
routinely collect surveillance data on notifiable diseases in the form of daily, weekly
or monthly counts possibly stratified by geographical area and/or age groups. These
univariate or multivariate time series are then analysed to provide probabilistic
forecasts for the future.

A well developed statistical framework designed to work with such space-time counts
of infectious diseases is the ”HHH4” model proposed by Held et al. (2005), Held
et al. (2006) and Paul et al. (2008) and made available in the R package surveillance
(Meyer et al., 2017). The model was later extended to incorporate non-linear random
effects (Paul and Held, 2011), appropriate seasonal variations parameters (Held and
Paul, 2012), power-law decay of spatial interaction (Meyer and Held, 2014), an
age-structured social contact matrix (Meyer and Held, 2017), and, most recently,
distributed lags (Bracher and Held, 2017). Additionally, Held et al. (2017) provide
the analytical derivations for the first and second moments of long-term multivariate
forecast.

Although much effort has been invested into improving specific models, the impact
of combining different models within the ”HHH4” framework has not yet been in-
vestigated. So far, the best model is selected based on a selection criterion (e.g,
AIC, Log-Score, RPS or DSS score). However, it is known that model selection
is often unstable and may ignore model uncertainty which in turns leads to over-
confident inferences and unnecessary high variability in the final prediction (Zou
and Yang, 2004). A solution consists in combining many possible models. Since
the seminal paper of Newbold and Granger (1974), substantial and ever growing
evidence supports that combining multiple forecasts often improves accuracy (see
Clemen 1989 for an annotated bibliography). Variations of model combination (also
called “ensemble techniques”, “ensemble learning”, or “meta-learning”) are used in
fields such as economics (Geweke and Amisano, 2012), weather forecasting (Raftery
et al. 2005,Sloughter et al. 2010) and disease forecasting (Yamana et al., 2016). The
organizers of the M3-competition Makridakis and Hibon (2000) conclude that “the
accuracy when various methods are being combined outperforms, on average, the
individual methods and does very well in comparison to other methods”. In the field
of machine learning, many popular methods such as bagging, boosting and random
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forest are ensemble methods and it is common knowledge that top-performers in
machine learning contests such as Kaggle use ensemble methods to win competi-
tions.
In its most efficient form, ensemble methods are able to capture the best aspect
of each model which is the reason why they perform better than the base models
individually. Base models should therefore be very diverse, ideally from different
techniques so that they seize the data from different angles. When they are very
similar, model combination rarely performs better than the best single model. As
stated by Newbold and Granger (1974) “If [the critics] are saying that combination
is not a valid proposition if one of the individual forecasts does not differ significantly
from the optimum, we must of course agree”. However we share the view of Zou
and Yang (2004) who state that combining forecasts from very similar models is
also important. Model combination avoids model uncertainty and hence combining
has the great potential to reduce the variability that arises in the forced action of
selecting a single model. The forecasting accuracy can be improved relative to the
use of a selection criterion.
There are many different methods to combine models, potential approaches range
from simple averaging to more complex schemes designed to give optimal combi-
nation of weights. In the Bayesian framework, model combination is performed by
Bayesian model averaging (BMA) or a variation thereof. BMA weights are posterior
probabilities. If we assume equal prior probabilities for each model, BMA weights
are proportional to BIC and it is a small leap to consider using AIC and other crite-
ria. Weights can also be estimated to optimize some criterion on a hold-out sample
within the training data before being validated on an out-of-sample set. This is
the idea behind “stacking” or “stacked generalization” that originated with Wolpert
(1992). A simple version of stacking, introduced by the Netflix Grand Prize winners
as “blending”, splits the data into 3 parts: fitting, weighing, and testing (Töscher
and Jahrer, 2009; Koren, 2009). Fitting and weighing form the training dataset and
models are validated on the testing set. However, this can be viewed as an inefficient
use of the data. What people commonly call stacking always involves some kind of
cross-validation to fully exploit the entire data set. Stacking is not widely used in
Bayesian model combination because it only works with point estimates, not the
entire posterior distribution. Based on the recent work by Yao et al. (2017), we use
a form of stacking which gives a probabilistic forecast by minimizing proper scores.
The purpose of this thesis is to assess whether three methods of model combination
- namely model averaging, blending and stacking - perform better on average than
the best base model.
Chapter 2 will describe the HHH4 framework as well as the theory behind model
averaging and stacking. We will also introduce two univariate time series and one
multivariate time series which will be analysed in further chapters. In Chapter
3, we will walk through an example of long-term and one-step-ahead univariate
predictions and compare results across base and ensemble models. Chapter 4 will
explain in more detail the optimization process taking place in the stacking and
blending procedure and assess its stability and uniqueness of solutions. We will
evaluate the impact of various parameters on the findings in Chapter 5. Finally,
Chapter 6 will extend findings to the multivariate case.
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Chapter 2

Methods

2.1 HHH4 Framework

The HHH4 multivariate time series framework is designed for spatially and tem-
porally aggregated surveillance data. The formulation of the HHH4 framework is
built upon an additive decomposition of disease incidence into an endemic and an
epidemic component. The epidemic (or autoregressive) component represents an
autoregression on the number of cases from the previous week. The endemic com-
ponent captures the residual variation in incidence which cannot be explained by
previous cases, such as seasonal trends.
Let Yt denote the number of reported infections at week t = 1,. . .,T . Conditional
on past observations Yt−1, counts Yt are assumed to follow a negative binomial
distribution

Yt|Yt−1 ∼ NBin(µt, ψ) (2.1)

with conditional mean

E(Yt|Yt−1) = µt = νt + λyt−1, (2.2)

and overdispersion parameter ψ > 0. In this formulation, the unknown endemic and
epidemic log-linear predictors are νt and λt respectively. Note that an identity link
is used in place of a log-link to let the counts act directly on the conditional mean.
The aforementioned formulation implies that the conditional variance of Yt can be
written as

Var(Yt|Yt−1) = µt(1 + ψµt). (2.3)

As described in Held and Paul (2012), seasonal variation can be accounted for in
both the endemic and epidemic component as follows:

log(λt) = α(λ) + β(λ)t+
S∑
s=1

{γ(λ)s sin(ωst) + δ(λ)s cos(ωst)}, ωs =
2πs

52
, (2.4)

log(νt) = α(ν) + β(ν)t+
S∑
s=1

{γ(ν)s sin(ωst) + δ(ν)s cos(ωst)}, ωs =
2πs

52
, (2.5)
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where α(·) is an intercept, β(·) is a trend parameter and the terms in the curly brackets
are used to model seasonal variation with γ

(·)
s and δ

(·)
s as unknown parameters. S

denotes the number of harmonics to include and ws = 2πs/52 for weekly data. We
obtain more flexibility in describing the seasonal pattern by increasing the number
of S. Seasonal terms can also be formulated as:

γs sin(wst) + δs cos(wst) = As sin(wst+ κs) (2.6)

where the amplitude As =
√
γ2s + δ2s and the phase shift κ = arctan(δs/γs) are

directly identifiable.
All unknown parameters ν, λ, δ, γ and ψ are estimated directly by maximizing
the negative binomial log-likelihood using numerical optimization routines (see Paul
et al. (2008)).
This model was extended further by Bracher and Held (2017) in the package hhh4addon
to allow for distributed lags. The conditional mean becomes:

E(Yt|Yt−D:t−1) = µt = νt + λ

D∑
d=1

udYt−d, (2.7)

where D is the maximum lag considered (in this thesis D = 5) and weights are
normalized such that

∑D
d=1 ud = 1. Currently only an exponentially decaying lag

structure is implemented:

ud = p(1− p)(d−1), (2.8)

where p is estimated via a profile likelihood approach.

2.1.1 Age-Structured Multivariate Model Extension

Often, information about the number of cases in different geographical regions or
age groups is available. Equations (2.1) – (2.8) can be extended to fit multivariate
time series. For simplicity, we only consider data stratified by age-group similar to
model 6 in Held et al. (2017). The interested reader is referred to Held et al. (2017)
and Meyer and Held (2017) for a more exhaustive formulation of multivariate time
series models also including geographical regions.
We assume g = 1, . . . , G “units” and denote with Ygt the number of cases in unit g
at time t. The symbol “·” indicates that all units are considered. Ygt still follows a
negative binomial distribution with conditional mean

E(Ygt|Y·,t−1) = µgt = νgt + φgt
∑
g′

bcg′gcyg′,t−1. (2.9)

The contact matrix C = (cg′g) quantifies the average number of contacts of an
individual of group g′ with individuals of group g with each entry cg′g ≥ 0. The
original formulation by Held et al. (2005) would include both autoregressive param-
eters λgt and φgt to estimate separate dynamics for the reproduction of the disease
within a unit on the one hand, and transmission from other units on the other hand.
However, Meyer and Held (2017) argue that the contact matrix offers an appealing
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alternative to reflect predominant local autoregression and hence one log-predictor,
φ, would suffice.
The autoregressive parameters are themselves modeled in a log-linear fashion:

log(νgt) = α(ν)
g + β(ν)xt + γ(ν)g sin(ωt) + δ(ν)g cos(ωt), (2.10)

log(φt) = α(φ)
g + γ(φ) sin(ωt) + δ(φ) cos(ωt), (2.11)

in the simple case where seasonality of the first order is considered and no trend.
Here xt is an Christmas break indicator (calendar weeks 1 and 52 of each year).

2.2 Predictive Model Assessment

For each model mentioned in the previous section, one-step-ahead predictions, where
the model is re-fitted after the addition of every new observation, and long-term pre-
dictions can be made. All one-step-ahead predictions follow negative binomial dis-
tributions, hence their predictive probability mass function is known in closed form.
The same cannot be said for long-term prediction. Nevertheless, using iterative ex-
pectations Held et al. (2017) derived the first and second moments analytically .
The function to derive predictive moments predictive moments is included in the
hhh4addon package.

The evaluation of predictive performance is based on the paradigm of maximizing
the sharpness of the predictive distributions subject to calibration (Gneiting et al.,
2007), where sharpness refers to the concentration of the predictive distribution and
calibration refers to the statistical consistency between the probabilistic forecasts
and the realizations.
The use of strictly proper scoring rules has been advocated to evaluate model per-
formances and rank competing forecast procedures (Gneiting et al., 2007; Gneiting
and Raftery, 2007; Czado et al., 2009). Scoring rules provide summary measures by
assigning a numerical score S(P,yobs) based on the predictive distribution P and
the later observed value yobs. They are typically negatively oriented, i.e. the smaller
the better. A scoring rule is proper if the expected value of the penalty S(P,yobs)
for an observation drawn from any other distribution G is minimized if P = G . It is
strictly proper if the minimum is unique. A proper scoring rule is designed such that
quoting the true distribution as the forecast distribution is an optimal strategy in
expectation. Therefore, proper scoring rules encourage honest and sharp forecasts
(Gneiting and Raftery, 2007). Propriety is essential to ensure that a scoring rule
simultaneously addresses sharpness and calibration (Winkler et al., 1996).
Czado et al. (2009) provide a description of proper scoring rules suitable for count
data. For a more general list of proper scoring rules see Gneiting et al. (2007).
The logarithmic score (LogS) defined as

LogS(P,yobs) = −log(pyobs). (2.12)

is a commonly used score where pyobs is the probability mass at the observed realiza-
tion. The logarithmic score has been linked to Bayes factors. Indeed the log Bayes
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factor is the difference between the logarithmic scores of two models.
Another score of interest is the ranked probability score (RPS) defined as

RPS(P,yobs) =
∞∑
k=0

(
Pk − 1(yobs ≤ k)

)2
, (2.13)

or

RPS(P,yobs) = Ep|Y − yobs| −
1

2
Ep|Y − Y ′|. (2.14)

where Y and Y ′ are independent copies of a random variable with distribution P .
The RPS has the particularity to provide a direct way of comparing point forecasts
and predictive distributions.
Finally, we consider the Dawid Sebastiani score (DSS)

DSS(P,yobs) =
(yobs − µP

σP

)2
+ log σP , (2.15)

DSS(P,yobs) = log(|ΣP |) + (yobs − µp)TΣ−1P (yobs − µP ), (2.16)

where the second equation represents a multivariate extension of the first equation,
which is necessary when more than one timepoint is considered. In this analysis will
report the scaled DSS

sDSS(P,yobs) =
DSS(P,yobs)

2d
,

where d is the dimension of the forecasting target. The DSS has the advantage of
relying solely on the first two moments µp and ΣP of the predictive distribution.
Therefore, we can only rely on the DSS to evaluate long-term forecasts, but on all
three scores for one-step-ahead forecasts.
As previously mentioned, proper scoring rules take into account both calibration and
sharpness. To have a better idea of which element affects a score more substantially,
we will provide a measure of sharpness. Gneiting et al. (2008) suggest using the
determinant sharpness (DS) which is a generalization of the standard deviation and
defined as follow:

DS = (|ΣP |)1/(2d),

We will report

log(DS) = log(|ΣP |)/(2d),

as used by (Meyer et al., 2017) in the Surveillance package which has the advantage
of avoiding unnecessarily large numbers.
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2.3 Model Averaging

Instinctively, it makes sense to aim for and select the model which best approxi-
mates the true underlying data generation process. Statistical software packages
have conveniently included popular model selection criteria such as AIC and BIC
making it straightforward for users to rank competing models and find the best one.
Nowadays, the “standard practice” has apparently become to pick a best model and
carry out inference, conveniently “forgetting” that a selection process took place.
Ignoring model uncertainty leads to over-optimistic testing, confidence intervals,
and biased inference. A Bayesian solution to this problem, called Bayesian model
averaging, is to compute posterior probabilities that the given model is the data
generating process model, conditional on the data and given that one of the models
considered is true. Those probabilities are then used as weights, the final solution
being a weighted average of all models.

In a broader formulation, the mean and covariance of the ensemble prediction Y of
models M1, . . . ,MJ can be calculated as follows

E(Y ) =
J∑
j=1

wjE(Y |Mj) (2.17)

Var(Y ) =
J∑
j=1

{wjσ2
j + wj(E(Y |Mj)− E(Y ))2} (2.18)

where wj are the weights and must thus be positive and sum up to 1, and σj is the
standard deviation for a variable drawn from model Mj.
The function MAMeanCov that we implemented performs model averaging in R. It
requires a list of predictions (listmodel.pred) and the weights (weights) to assign to
each prediction. First, we extract the vector containing the means of each prediction
(mu vector) and store them in a list.

MAMeanCov <- function(listmodel.pred, weights){

### Calculate the ensemble model mean:

# Extract means

list.muvec <- lapply(listmodel.pred,

FUN = function(pred){unname(unlist(pred$mu_vector))})

We then multiply the mean prediction of each base models M by the corresponding
weight and obtain J weighted mean vectors. Finally we sum all vectors to obtain
the ensemble mean mean.av.

# Multiply each element of the list (mu_vectors) by the corresponding weights

mu.weight <- Map('*', list.muvec, weights)

# Sum elements of the list element wise.

mean.av <- Reduce('+',mu.weight)
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Notice that as soon as we predict more than one timepoint, we work with vectors
of predictions, y, and matrices operations must apply. The Equation 2.19 and 2.18
can respectively be rewritten as:

E(y) =
J∑
j=1

wjE(y|Mj) (2.19)

Cov(y) =
J∑
j=1

{
wj

[
Cov(y|Mj)︸ ︷︷ ︸

Term 1

+
((

E(y|Mj)− E(y)
)(

E(y|Mj)− E(y)
)ᵀ)︸ ︷︷ ︸

Term 2

]}
(2.20)

To calculate the ensemble variance, we first perform the operation inside “Term 2”
in Equation 2.20 where we subtract the mean of each model M with the ensemble
mean, convert the vector to a matrix and multiply it by its transpose. The resulting
matrices for each M models is stored in a list.

### Calculate the ensemble model variance.

# substract ensemble mean to model means + transpose

SubTrans <- function(muvec){
std <- muvec - mean.av

mat.std <- as.matrix(std) %*% t(as.matrix(std))

return(mat.std)

}

list.mat <- lapply(list.muvec, SubTrans)

We continue by extracting the covariance matrix for each M model (“Term 1”) and
adding it to “Term 2”. Finally we multiply the term in brackets (“Term 1”+“Term
2”) by the appropriate weights to obtain the covariance matrix of the ensemble
model.

# Extract covariance matrix for each model

list.Sigma <- lapply(listmodel.pred, FUN= function(x)x$Sigma)

# Add the covariance matrix to the "transpose" element

list.Sigma.mu <- Map('+', list.Sigma, list.mat)

# Multiply each element of the list by the corresponding weight

list.Sigma.mu.w <- Map('*', list.Sigma.mu, weights)

# Sum elements of the list element wise.

cov.av <- Reduce('+',list.Sigma.mu.w)

MAlist <- list(MAmean= mean.av, MAcov= cov.av)

return(MAlist)

}

The function returns the mean and covariance matrix of the ensemble model.
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In Bayesian model averaging, issues arise from setting posterior probabilities as
weights. As often with Bayesian statistics, the question of how to define the priors
has to be solved and the computation of posterior probabilities forces the user to use
computer-intensive methods. Moreover, this procedure would require the knowledge
of the full probability distribution, which is not known for long-term forecasts within
the HHH4 framework.
Claeskens and Hjort (2008, chapter 3.2) demonstrate that the posterior distribution
for equally likely models can be approximated by a “smooth BIC”

ωj =
exp(1

2
BICj)∑J

i=1 exp(1
2
BICi)

, (2.21)

with BIC defined by Schwarz (1978) as

BICj = dim(Mj)log(n)− 2log-likelihood(Mj) (2.22)

with dim(Mj) being the number of parameters estimated in the model, and n the
sample size of the data which in our case translates to the length of the time series
used to fit the model.
Formulated as here above, the best model has the smallest BIC. For numerical
stability reasons, we use

∆BICj = BICj −max
i

BICi (2.23)

instead of BICj. The BIC estimator has interesting properties, among them the fact
that it is consistent in the sense that if the true model is among the candidates, the
probability of selecting the true model approaches 1 as the sample size, n, approaches
infinity (Nishii, 1984). However, if the true model does not belong to the sample of
models suggested, BIC may fail to find the best model. Since AIC asymptotically
selects the model that minimizes mean squared error of a prediction or estimation,
Burnham et al. (1994) suggest to use it instead of BIC. Sakamoto et al. (1986) note
that “AIC is not a criterion for the estimation of the true order but the one for
the best model fit” and Vrieze (2012) shows in a simulation study that the risk of
selecting a bad model is minimized with the use of AIC compared to BIC. Buckland
et al. (1997) suggest the use of smoothed AIC in model averaging. Weights are
calculated as

ωj =
exp(1

2
AICj)∑J

i=1 exp(1
2
AICi)

, (2.24)

with AIC defined by Sakamoto et al. (1986) as

AICj = 2dim(Mj)− 2log-likelihood(Mj), (2.25)

again, for numerical stability reasons, we use

∆AICj = AICj −max
i

AICi (2.26)

instead of AICj. The penalty still increases with increasing model complexity but
does not depend on the number n of observations, hence AIC often penalizes model
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complexity to a lesser extent than BIC. AIC has been criticized for its tendency to
select complex models. The merits of these two approaches are discussed in more
detail in Kass and Raftery (1995). In our analysis, we will use and compare both
methods.

2.4 Stacking

The basic idea behind “Stacking” as originally described by Wolpert (1992) is to
define a pool of base models and use another second level model, the “super-learner”
or “meta-learner”, to combine their predictions, with the aim of reducing the mean
squared forecast error. Popular meta-learners are, but not limited to, linear and
logistic regression. The fact that predictions of the base models are used as covari-
ates (or “features”) for the meta-learner means that, in theory, the meta-learner is
able to highlight each base model where it performs best and discredit each base
model where it performs poorly. For this reason stacking is most effective when the
base models are somewhat different (Wolpert, 1992). Other covariates, engineered
or not such as the performance rank of the base models, can be introduced in the
second level combination with the hope of improving the predictions. Moreover,
there are numerous ways a user can extend the stacking model to more than two
levels, increasing the complexity of the overall ensemble model.
Although the concept of stacking was developed early on, its benefits were only
demonstrated empirically. The theoretical guarantees for stacking were not proven
until the publication of the ”super learner” paper by van der Laan et al. (2007)
which shows that the “Super Learner ensemble” represents an asymptotically opti-
mal system for learning.

Most of the early literature limits stacking to averaging point estimates. As a
result, the method was quickly adopted by the machine learning community but
did not convince other fields where entire predictive distributions or probabilistic
forecasts are required. Moreover, the traditional stacking procedure is designed to
minimize the mean squared predictive error, but most predictions are not evaluated
based on this criterion. In a recent paper, Yao et al. (2017) extend the use of
stacking to the combination of predictive distributions. Instead of minimizing the
mean square forecast errors, the authors optimize the log-score in examples based
on simulated and real data. The authors argue that any proper scoring rule can be
used.
This approach fits the need of probabilistic forecasts and gives the possibility to
optimize the same criterion as used to validate the results. The authors compute
leave-one-out posterior distributions which are not applicable in our time series
setting. We will adapt their idea to our conditions and define two different stacking
approaches: blending and what we will call stacking.

2.4.1 Blending & Stacking

A simple form of stacking, called “blending” was used by the winning teams of the
Netflix Grand Prize (Töscher and Jahrer, 2009; Koren, 2009). Blending splits the
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data into 3 parts as shown in Figure 2.1. The first subset is used to fit the base
models. We use these fitted models to draw predictions for a second subset called
stack weight subset and for the test data. Finally, the meta-learner assigns weights
to the base models based on their performance in predicting the stack weight subset.
Logically, the meta-learner assesses the performance using the same criterion as later
to evaluate the test set. The appropriately weighted combination of predictions
of the test set results in the final forecast for the test set which can be in turns
evaluated. When blending, two strategies are possible: (i) weights can be optimized
to minimize the score of the overall blending periods (Blend-Sum) or (ii) they could
optimize each year of the blending period individually and then be combined by
simply averaging the weights (Blend-Ind). To the best of our knowledge, there is
no recommended method. The choice between the two could rely on how heavily
bad predictions should be penalized. Poor predictions will not penalize a model
too badly if we follow a Blend-Ind strategy because a poor score will be diluted
in an average, whereas it could remove a model completely from the ensemble if
we consider Blend-Sum. The decision on which strategy to favor should therefore
be taken after considering the purpose of the model and together with healthcare
professionals. We will show both scenarios in Chapter 3 but will then focus on
Blend-Sum in Chapter 5.
Besides its relative simplicity, blending has the advantage of preventing any data
leakage (i.e. when the data used to train the models happens to have information
from the test data) since each level of the model uses different parts of the data.
However, it can be viewed as an inefficient use of the data, especially if the number
of levels in the model is high.

To overcome these drawbacks, the commonly called “stacking” procedure always
involves some form of cross-validation (CV), usually a K-fold CV. In our application
however, the use of K-fold CV is somehow limited by the autocorrelated nature
of the data and the intuition that we should not use the future to predict the
past. When dealing with time series, practitioners usually resort to out-of-sample
evaluation (which would result in blending) or some time series cross-validation
techniques. In the paper by Bergmeir et al. (2017), authors demonstrate that for
purely autoregressive models, the use of standard K-fold CV is possible provided
the models considered have uncorrelated errors. They use simulation studies to
show that the performance of the K-fold cross-validation outperforms other forms
of validation in time series. However, because the surveillance package was not
designed for K-fold CV it would be very tedious to adapt all the necessary functions
and is beyond the scope of this thesis.
Instead, we will use a procedure inspired by the “evaluation on a rolling forecasting
origin” as described by R. Hyndman (2016) in his blog, which we will more simply
call “rolling CV” (Figure 2.2). Adapted to stacking, the idea is to use multiple
series of fitting and stack weight sets, each one containing one more time unit than
the previous one until we reach the test year. Please note that in our illustration a
time unit is defined as a full disease cycle equivalent to a year. We hence re-fit the
models with an extra full year in the following series and predict an entire year. In
the case of one-step-ahead predictions we still use the concept of stacking years to
stack weights, but re-fit the models before every single observation. The concept of
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Figure 2.1: Schematic Representation of Blending. Blending relies on
the splitting of the data into 3 parts: a fit, stack weights and test data.
Base models are fitted on the fit data. Predictions are made for the stack
weights data and the test data. Note that the models are not re-fitted to
the entire training data. A meta-learner evaluates the predictions made on
the stack weights data to assign weights to each base model. The weighted
combination of the predictions for the test data results in the final forecast.
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blending is thus ill fitted for this use and we will only discuss of stacking for one-step-
ahead predictions. In both cases, the training window can be extendable (Figure
2.2, panel A) or of fixed length (Figure 2.2, panel B) so that early observations are
progressively dropped. In the HHH4 framework many years are required to build a
stable model, we will thus not implement such a “moving window” approach in this
thesis. However, it is not an uncommon practice, the reason being that the model
can forget old data and adapt faster to new conditions. We can easily imagine
different ways of using the predictions to stack weights as shown in (Figure 2.2,
panel C). The options would be to use all the data available, only the season of
interest, or the most recent observations. There are arguments in favor of each of
them and we believe it is up to the researcher, based on his best judgement, to
decide what is more appropriate. Regardless of whether the training data is fixed
or extendable, the length of the stacking/blending period are open parameters and
likely open to discussion.
Figure 2.3 shows a global view of the stacking process. The rolling CV is used in
the first stage of the process to build a set of predictions within the training set.
Similar to blending, a meta-learner uses predictions and realizations of the training
data set to estimate weights for each model. However, due to the nature of the
rolling-CV procedure we now consider each prediction individually and average the
weights obtained from each optimization. Finally, all models are fitted on the entire
training data set and predictions are made for the test set. The predictions from
each model are appropriately weighted to give the final predictions which can then
be evaluated by proper scoring rules against the realizations of the test data.

Top Kagglers talk about the “art” rather than the “science” of stacking. With
experience and much trial and error, top-performers get an intuition of which models
to use and how to structure their stacking.
The aim of this work is not to deliver the best predictions or the best stacking
model, but rather a proof-of-concept that ensemble methods work within the HHH4
framework. We will introduce this procedure with real data examples and discuss
its limitations and complexity.

2.5 Data

This section describes the three different datasets used in this thesis. Two uni-
variate time series are studied in Chapters 3, and 5 and Chapter 6 will focus on a
multivariate case.

2.5.1 Univariate Time Series

The first data set (CHILI) consists of weekly counts of influenza like illness (ILI)
cases in Switzerland from 2000/01 to 2016/01 1, estimated from the Swiss Sentinella
Reporting System and integrated in the HIDDA.forecasting package.
ILI is a medical diagnosis of possible influenza or other illness causing a set of

1year/week
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Figure 2.2: Schematic representation of time series cross-validation
technique “rolling CV” in the context of stacking. In order to make a
prediction for the test year with the stacking procedure, a number of years
prior to the test year are selected as the stacking period. For each year of the
stacking period, base models are fitted on previous data and a prediction is
made. The predictions for the stacking period are then used to define weights
for each base model. Panel A shows an adaptive rolling CV procedure where
the number of years to fit the base models increases with each year of the
stacking period. In panel B the number of fit years stays constant. Panel C
shows what information can be used within each stacking year.
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Figure 2.3: Schematic representation of Stacking. Stacking splits the
data in only two parts and relies on cross-validation. The base models are
successively fitted an predictions are made within the training data according
to a rolling CV. A meta-learner assign weights to each base model by eval-
uating the predictions made on the training data individually, averaging the
results of each unit. The base models are finally re-fitted on the entire train-
ing dataset and used to make predictions on the test set and the weighted
combination of these predictions results in the final forecast.
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common symptoms, namely fever and coughs within the last 10 days. ILI can be
caused by a variety of microbial agents other than influenza viruses, and the range of
symptoms observed with influenza virus infections is nonspecific and resembles the
clinical picture of a variety of other pathogens (Monto et al., 2000). This uncertainty
poses challenges when diagnosing influenza and for influenza surveillance. However,
the case definition for ILI is not necessarily intended to capture all cases but to
describe trends over time (WHO, 2007). Cases follow a seasonal cycle, peaking in
winter in the northern hemisphere as can be seen in Figure 2.4. The prediction
targets are highlighted in the figure. Chapter 3 will use the last year as test data
whereas chapter 5 will require the last 5 years to assess reproducibility. We consider
the season of interest for ILI to be 30 weeks long starting on week 1 of each year.
We have defined the ILI season in this manner so as to predict the period with high
incidence, the 30th week having on average the lowest incidence, as can be seen in
Figure 2.5.

The second time series is a weekly count of reported cases of dengue fever in San
Juan, Puerto Rico from 1990/18 to 2013/35 as provided by the Puerto Rico Depart-
ment of Health and Centers for Disease Control and Prevention (US Department of
Commerce, n.d.). The data was part of a forecasting competition but complete data
can be found at https://predict.phiresearchlab.org/
Dengue is a viral mosquito-borne disease which is widespread in tropical and sub-
tropical countries. Symptoms may include a high fever, headaches, vomiting, muscle
and joint pains, and a characteristic skin rash. There is no specific treatment for
dengue nor vaccine. The best prevention remains effective vector control (WHO,
2017). Incidence of dengue fever usually reaches a peak during the wet season in
the summer months as seen in Figure 2.6. The prediction targets are highlighted
in the figure and will be used similarly as for the ILI dataset. Regarding prediction
length and onset for dengue, we have decided to follow the forecasting competition
guidelines and define a dengue season as 52 weeks starting at week 18 of each year.
Historically this has been the week of the year with lowest dengue incidence.

Both of these time series exhibit fairly regular seasonal trends. However, within
these general trends there is variation in the timing and severity of the disease sea-
sons, with more variability across different seasons for dengue than for ILI. Studying
both time series should allow us to observe whether models’ performances vary ac-
cording to the regularity of the time series.

2.5.2 Multivariate Time Series

We use BNV, an age-stratified norovirus surveillance dataset from Berlin , Germany,
together with an age-structured social contact matrix from the POLYMOD survey
(Mossong et al., 2008), as provided in the R package hhh4contacts. This data has
been analyzed by Held et al. (2017) and Meyer and Held (2017). The code we used
to display this dataset is largely inspired by the yet to be published book chapter
by Held and Meyer (n.d., chapter 6) which also analyses this dataset.
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and will be used as test data in chapter 5. The last year will be used as an
example in chapter 3.
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and will be used as test data in chapter 5. The last year will be used as an
example in chapter 3.

These counts cover five norovirus seasons, from week 27, 2011 to week 26, 2016, and
are stratified by the 12 city districts and six age groups: 0–4, 5–14, 15–24, 25–44,
45–64, and 65+ years of age. Here we only consider models for spatially aggregated
counts, i.e. stratified by age-group only. The last year (2015/27 to 2016/26) has
been used to assess model predictions (test data). Figure 2.7 shows the age-specific
time series.
Noroviruses are the most common cause of acute gastroenteritis, which is charac-
terized by vomiting, diarrhea and stomach pain. The virus is transmitted directly
from person to person but also via contaminated surfaces or food. In the northern
hemisphere, norovirus incidence consistently peaks during wintertime (Ahmed et al.,
2013).
The reported incidence in our data is higher in pre-school children and the retired
population than in the other age groups. Comparing seasonality between the age
groups, the peak incidence in pre-school children seems to precede the peak in the
highest age group. This phenomenon has previously been observed (Bernard et al.,
2014). This underlines the potential of incorporating social information to better
model the incidence of this pathogen.
On a more general note, this time series can be considered as fairly regular.

We will consider four different contact matrices to quantify the relation between
the different age groups which are displayed in Figure 2.8.

The Homogeneous contact matrix has identical rows which implies all groups mix
with each other equally. Since φgt will incorporate any group specific effects (in
Equation 2.9 we sum over g′ not g, any group effect will thus be extracted from
the sum into φ), a matrix of ones (C = 1) will induce the same contact structure.
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Figure 2.7: Age-stratified time series of norovirus gastroenteritis inci-
dence (per 100 000 inhabitants) in Berlin, 2011-W27 to 2015-W26.
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Figure 2.8: Age-structured contact matrices. The entries refer to the
mean number of contact persons per participant per day.

The No mixing contact matrix is a diagonal matrix (C = I). In this case there is
no mixing between the different age groups. These are two special cases of contact
structures. A more plausible contact matrix is the contact matrix estimated from the
POLYMOD survey in Germany (Mossong et al., 2008) and used in Held et al. (2017)
and Meyer and Held (2017). The original contact matrix was aggregated to match
the age groups of the surveillance data and further improved to ensure reciprocity on
the population level (Wallinga et al., 2006). The result is the Reciprocal contact
matrix. The last matrix, Power-Adjusted, is specified using a power transformation
for the contact matrix:

Ck := EΛkE−1, (2.27)

where Λ is the diagonal matrix of eigenvalues and E is the corresponding matrix of
eigenvectors of C. The exponent k adjusts the amount of transmission between the
age groups and is to be estimated as part of the epidemic model component via a
profile likelihood approach.
These different models will be used in chapter 6.
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Chapter 3

Univariate Analysis: an Example

In this chapter, we apply the various ensemble methods to make long-term and
one-step-ahead predictions on the CHILI dataset. We study five different ensembles
models for long-term forecasts: model averaging according to AIC and BIC scores
(MA-AIC & MA-BIC), two types of blending (Blend-Ind & Blend-Sum) and stacking
(Stack). For one-step-ahead predictions we will look at model averaging (MA) and
stacking (Stack).
We use the last year (2016) as the test data and all previous information (1990-2015)
as training data.

We consider the following base models:

1. No Seasonality (No S),

2. Seasonality in endemic component (End),

3. Seasonality in autoregressive component (AR),

4. Seasonality in endemic and autoregressive component (End+AR),

5. Seasonality in endemic and autoregressive component
+ trend parameter (End+AR+t),

6. Seasonality of second order in endemic and autoregressive component
+ trend parameter(S2 + t),

7. Seasonality of third order in endemic and autoregressive component
+ trend parameter(S3 + t),

8. Seasonality of first order in endemic and autoregressive component
+ exponentially decaying lags (Exp),

9. Seasonality of first order in endemic and autoregressive component
+ exponentially decaying lags + trend parameter (Exp+t),

10. Seasonality of second order in endemic and autoregressive component
+ exponentially decaying lags + trend parameter (Exp+t+S2),

11. Seasonality of third order in endemic and autoregressive component
+ exponentially decaying lags + trend parameter (Exp+t+S3).

Appendix A, Section A.2.1 shows the code used to build these base models. There
are, of course, many other possible models we could include within the HHH4 frame-
work, but we consider this list to be a good mix between very simple models (1-4)
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Figure 3.1: Data analysis representation. The CHILI dataset contains 17
years of influenza-like-illness counts in Switzerland (1990-2016) represented
by 17 dots in the illustration. Years 1990-2015 are used as training data to
predict year 2016. For base models and model averaging the entire training
data is used to fit the models, no extra data is required to set weights. When
blending, a period of 4 years (2012-2015) is used as a hold-out set to stack
weights. Base models are never fitted on this hold-out set at all as opposed
to stacking which gradually extends the fitting data.

and more complex models involving higher orders of seasonality (6, 7), exponentially
decaying lags (8-9) or both (10, 11).
We performed the analysis twice, first on a pool of nine models (1-9) and then adding
models 10 and 11 to the pool for reasons we will disclose further.
We also included a baseline model in the score analysis (but not in the pool of base
models). The baseline model uses the mean and variance of the corresponding weeks
in previous years. For example, to predict week 1 of 2016, this model will average
the values of the weeks 1 in years 1990-2015 and use the variance of these counts.

3.1 CHILI Analysis

Figure 3.1 shows how the data is split for each type of model. For base models and
model averaging the entire training data is used to fit the models, no extra data is
required to set weights. When blending, a period of 4 years (2012-2015) is used as a
hold-out set to blend weights. The models will not be fitted on this hold-out set at
all as opposed to stacking which gradually extends the fitting data. There are two
strategies possible to calculate the weights assigned to each base model: Blend-Sum
and Blend-Ind. In this chapter, we show both. When stacking, the weights are
optimized for each roll and then averaged (simple average).
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Figure 3.2: Base model weights in ensemble models issue from a pool of
9 (left panel) and 11 (right panel) base models.

3.1.1 Long-Term Predictions

Table 3.1: Base model weights in ensembles, 9 models.

MA-AIC MA-BIC Blend-Ind Blend-Sum Stack

NO-S 0.00 0.00 0.00 0.00 0.00
AR 0.00 0.00 0.00 0.00 0.00
End 0.00 0.00 0.17 0.00 0.17

AR+End 0.00 0.00 0.00 0.00 0.00
AR+End+t 0.00 0.00 0.35 0.84 0.16

S2+t 0.10 1.00 0.08 0.16 0.05
S3+t 0.90 0.00 0.12 0.00 0.36
Exp 0.00 0.00 0.15 0.00 0.03

Exp+t 0.00 0.00 0.11 0.00 0.23

We start by analyzing the weights of individual base models in each ensemble
model for the pool of 9 and 11 base models as shown in Figure 3.2 and detailed in
Tables 3.1 and 3.2.
When 9 base models are present, MA-AIC favors the S3+t but also includes the S2+t

model whereas the MA-BIC model exclusively takes after the S2+t model. This is
not surprising as AIC based selection can favor models with greater complexity.
Blend-Ind and Stack models have a wider distribution of weights and include sim-
pler base models.
Both methods are closely related as the only difference between the two is that Stack
refits the base models after predicting a stacking period whereas Blend-Ind does
not. This can be seen in the weight distribution which is relatively similar between
both methods yet distinct, indicating that including an extra year at each roll to
refit the base models plays a role. Finally, Blend-Sum only include base models
Ar+End+t and S2+t. It is likely that the base models present in Blend-Ind but
not in Blend-Sum were less efficient in one blending period and were more heavily
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Table 3.2: Base Model Weights in Ensembles, 11 models

MA-AIC MA-BIC Blend-Ind Blend-Sum Stack

NO-S 0.00 0.00 0.00 0.00 0.00
AR 0.00 0.00 0.00 0.00 0.00
End 0.00 0.00 0.20 0.00 0.20

AR+End 0.00 0.00 0.07 0.00 0.00
AR+End+t 0.00 0.00 0.20 0.00 0.01

S2+t 0.00 0.01 0.05 0.00 0.05
S3+t 0.00 0.00 0.00 0.00 0.11
Exp 0.00 0.00 0.00 0.45 0.00

Exp+t 0.00 0.00 0.14 0.00 0.33
Exp+t+S2 0.12 0.99 0.09 0.55 0.07
Exp+t+S3 0.88 0.00 0.25 0.00 0.23

penalized.
Noteworthy is the fact that exponentially decaying models contribute very little to
the ensemble models. Based on preliminary work on other datasets (not included),
we expected considerable weight on models including exponentially decaying lags.
As this first analysis indicated that seasonality may be of more importance than
structured lags, we repeated the analysis including two extra base models with both
components: Exp+t+S2 and Exp+t+S3.
The weights of base models in ensemble models when using the pool of 11 base
models is shown in the right panel of Figure 3.2. We observe a similar weight
pattern in model averages but now clearly favoring models Exp+t+S3 and Exp+t+S2.
In blending and stacking we also see a similar pattern as with the pool of 9 models,
except that more complex models are now present in the mix. We note that simple
models are still present however it seems that models including seasonality without
structured lags are less present.
In conclusion, this indicates that for this dataset, seasonality plays a more important
role in model performance than exponentially decaying lags. We chose to further
analyse the test year only considering the pool of 11 models.

3.1.2 Test Year & Scores

We move to the analysis of the performance of each model on the test year. Figure
3.3 shows the predicted mean counts and standard deviation for the test period.
We observe that the predicted counts are correlated with the variance, models pre-
dicting higher counts having a larger variance. This is a direct consequence of the
model formulation with a negative binomial distribution.
There is a lot of variance between the predictions of each model. Ensemble models
do not predict the most extreme values. We also observe that all predictions under-
estimate the disease incidence. Interestingly, the baseline models seems to perform
relatively well in this situation.
Figure(3.4) shows the fitted counts for the last four years of the training data and
the predictive distribution for the test year for Exp+t+S3 base model (See Appendix
A, Section A.3 for all base models). This Figure illustrates how the model is closely
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Figure 3.3: Predicted mean counts and standard deviation for the test
year 2016 of the CHILI dataset for all 11 base models and 5 ensemble models.

fitted to the training data to then make predictions. We observe that the endemic
component does not contribute much to the model compared to the autoregressive
part for the CHILI dataset. We notice that the mean prediction for the test year is
particularly low, lower than any year in the test data. This is likely due to a low
conditioning value. This issue is discussed in more detail by Reeve (2017).

Figure 3.5 shows the predictive distribution of counts for the ensemble models (See
Appendix A, Section A.4 for all base models). We observe that MA-AIC and MA-BIC

seem to have mean predictions closer to actual observations but they also have higher
variability as the prediction interval is wider.

Table 3.3 shows the sDSS and log(DS) for each model. We first notice that the
ensemble models perform neither best nor worst. The best ensemble model is
Blend-Sum whereas model averages perform worse. Sharper does not mean bet-
ter in terms of sDSS. Actually the best model is one of the least sharp, which makes
sense if since all models are “off target”. We notice that our simple baseline model,
although not sharp, performs surprisingly well. However, we would not draw too
many conclusions on only one test data since the impact of the test year (high or
low incidence year) probably plays an important role. In Chapter 5 we analyse more
than one test year to assess the robustness of these results.

3.1.3 One-Step-Ahead Predictions

In this section we perform one-step-ahead predictions on the same test data (first
30 observation of year 2016).
Again, we start by looking at base model weights in ensemble models (Figure 3.6).
We observe a similar pattern as for long-term forecasts, that is, model averages
mainly favor one single model (Exp+t+S3 for MA-AIC and Exp+t+S2 for MA-BIC)
whereas Stack shows a little more diversity. It is surprising that the addition of one
observation to the stacking period induces such changes in weights composition but
not impossible. This could be an indication that model Stack can adapt faster to
new trends in the data.
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Figure 3.4: Fitted values and predictions for base model Exp+t+S3.
Fitted values for the last 4 years of training data of the CHILI dataset and
predicted values for the test data (year 2016).

Figure 3.7 shows the predicted mean counts and standard deviation for the test
year 2016 of the CHILI dataset for all 11 base models and 5 ensemble models.
Compared to long-term forecasts, the predictions are closer to the realizations which
is expected, as we condition our forecast on t−1. We also notice that the variance is
a lot smaller and increases with the value of the forecast which is normal behavior.

With one-step-ahead forecasts, we could evaluate the calibration of the forecast
using probability integral transform (PIT). PIT methods for count data are de-
scribed in Czado et al. (2009). In short, if the data generating process is the studied
model, the PIT has a standard uniform distribution. U-shaped histograms indicate
underdispersion, inverse-U shaped histograms point at overdispersion, and skewed
histograms occur when central tendencies are biased. The PIT are shown in Ap-
pendix A Section A.5 but are not very informative since we only have a small sample
of 30 forecasted timepoints.
Figure 3.8 shows the sDSS for each model in function of the week index of the test
year. Globally the scores are very close to each other and we observe some severe
fluctuations from week 20 onwards. We see in Figure 3.7 that the incidence between
week 20 and 30 is very low and so is the associated standard deviation. The bad
scores in this period could be due to wrong predictions which are heavily penalized
by the small variance. However, this begs the question should these data points be
included in the analysis or not? Let’s remember that we chose a period of interest of
30 days so as to include the high season. In this context, the choice of a model should
rely solely on its performance during periods of high incidence therefore discarding
timepoints 20 to 30 would make sense. Moreover, Figure 2.5 in Chapter 2 shows
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Figure 3.5: Ensemble models predictions for test year 2016 of the CHILI
dataset.
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Table 3.3: DSS and log(DS) values. sDSS and log(DS) values on test
data are shown along with the ranks for log(DS) values. Models are ranked
in order of increasing sDSS.

End AR+End Baseline Exp Blend-Sum Blend-Ind AR Stack
DSS 7.560 7.734 7.767 7.815 7.887 8.039 8.126 8.253
DS 6.596 6.385 7.044 6.317 6.503 6.468 6.899 6.509

DS rank 14 6 16 3 10 9 15 11

AR+End+t Exp+t Exp+t+S2 MA-BIC NO-S S2+t MA-AIC Exp+t+S3
DSS 8.817 8.904 8.994 8.998 9.119 9.293 9.335 9.399
DS 6.288 6.223 6.402 6.407 8.431 6.582 6.346 6.335

DS rank 2 1 7 8 17 13 5 4
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Figure 3.7: Predicted mean counts and standard deviation for one-
step-ahead predictions for the test year 2016 of the CHILI dataset for all 11
base models and 5 ensemble models.

that the seasons are fairly regular with no high incidence in weeks 20 to 30 for the
CHILI dataset.
Figure 3.9 shows the sDSS of all 30 weeks according to the model as well as the mean
score for each model when considering 30 and 20 timepoints and the minimum mean
score. We observe that the high scores are all linked meaning that in this case two
specific weeks (weeks 24 and 29) are responsible for these bad results as was also
observed in Figure 3.8. It is interesting to see that apart from these two weeks, all
models have a fairly similar score distribution. If we look at the mean score of all 30
predictions, we notice some differences with models End, AR+End and Exp performing
better than the others.
If we narrow down the set of predictions to 20 timepoints and calculate the mean,
we observe that the differences in mean scores are less obvious.

Table 3.4 shows the mean sDSS when all 30 or only the first 20 timepoints are
considered. The best performing models are different in both cases. With all 30
timepoints, the best model is End and the best ensemble model, Stack is ranked
fourth. With only 20 timepoints, Exp+t+S2 is the best model, the second best is
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Table 3.4: One-step-ahead prediction sDSS. Scores when all 30 or only
the first 20 timepoints are considered are shown along with the ranks for
sDSS(20). Models are ranked in order of increasing sDSS(30).

End Exp AR+End Stack NO-S Exp+t+S3 MA-AIC
Mean sDSS (30) 15.744 15.790 15.931 16.001 16.467 16.636 16.653
Mean sDSS (20) 16.012 16.038 15.989 15.903 16.806 15.922 15.915

Rank Mean sDSS 20 11 12 10 3 14 6 5

Exp+t+S2 MA-BIC Exp+t AR AR+End+t S3+t S2+t
Mean sDSS (30) 16.699 16.701 17.123 17.238 17.499 17.600 17.680
Mean sDSS (20) 15.881 15.882 15.989 16.479 15.956 15.914 15.937

Rank Mean sDSS 20 1 2 9 13 8 4 7

ensemble model MA-BIC followed by Stack.
Figure 3.10 shows the distribution of the ranks over 30 predictions for the three
ensemble models and End. Models End, MA-AIC and MA-BIC have a relatively flat
distribution with fewer bad ranks for End and quite a few ranks, between 2 and 4,
for MA-AIC.
Stack has a narrower distribution with fewer very good ranks but less very bad
ranks too.

Conclusion This chapter showed how to analyse a univariate time series with
ensemble model techniques. We have performed long-term and one-step-ahead fore-
casts of one test year (2016) on the CHILI dataset. We have seen that each ensemble
model combines base models differently and that the composition of the pool of base
models has a great influence on the weight composition. Moreover, we have observed
that Blend performs relatively well as does Stack but not MA-AIC and MA-BIC. En-
semble models do not perform better than the best base model.
Regarding one-step-ahead predictions, we noticed that the results, including the
performance of ensemble models, depend greatly on the number of timepoints con-
sidered in the test set.
It is very delicate to draw any general conclusions. The most obvious next step
would be to repeat this analysis over more test years which will be covered in Chap-
ter 5. We will also analyse the dengue dataset which is less regular. Moreover, we
have seen that parameters such as the composition of the pool of base models and
the length of the season considered can influence our finding. It is likely that en-
semble hyperparameters such as the length of the stacking or blending period plays
a role. We will also investigate this aspect in Chapter 5.
First however, it is critical that we make sure that the weight optimization process
used in our functions to stack and blend is stable, i.e. that we indeed find the weights
that optimize the sDSS in the stacking/blending periods. This will be discussed in
the next chapter.
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Chapter 4

Weight Optimization: Stability

In this chapter, we test the stability of the blending and stacking procedure i.e. the
stability of the weight optimization process. We use the function optimr from the
package optimr with default settings. This package is a replacement and extension
of the best known optim function. According to its authors, all the optimizers
included in the package are local minimizers, meaning that they attempt to find a
local minimum. Global optimization is a much bigger problem, especially in non-
convex spaces, but one that we must address if we want our functions to be stable
and to be able to trust our results. This chapter will give a little more insight
into the optimization code and will suggest some strategies to systematically obtain
solutions as close as possible to the global solution without having to explore the
entire search-space. These strategies will be tested on multiple years of the CHILI
dataset.

4.1 The Optimizer

An optimizer aims to maximize or minimize an objective function. In our case, we
aim to find the best combination of 11 different models as measured by the sDSS
of the training data. The default settings of optimr cause an appropriate set of
optimization methods to be automatically used depending on the presence or absence
of bounds on the parameters. For more details on which methods are used under
which conditions see the vignette and manual of this package which are available on
CRAN at https://cran.r-project.org/web/packages/optimr/index.html.

As we are dealing with weights, we have two constraints on the initial set of param-
eters and on the solutions: (i) the weights cannot be negative and (ii) they have to
sum up to 1.
Considering the non-quadratic nature of our function, imposing these two constraints
is impossible with optimr and any other optimization package/function to the best
of our knowledge. An elegant way around this is to feed real numbers to the opti-
mizer and re-parametrize the weights inside the objective function as the output of
the softmax function (see Equation 4.1). Let x1, x2, . . . , xJ be any real numbers
and w1, w2, . . . , wJ denote the weights satisfying both conditions mentioned above
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where J is the number of base models. We define

wj = exp(xj)/(
J∑
j=1

exp(xj)). (4.1)

As the weights have to sum up to 1, this means that we only need to solve for
nmod-1 parameters. We do this by setting xj = 0 (the softmax function normalizes
the weights).
The objective function is likely to be non-convex and include several local minima.
Ideally, we would like to cover the whole search-space by performing the optimiza-
tion with many different initial parameters and then pick the best solution (weight
combination) to predict the test year. However, there is a trade-off between the
number of initial combination tested and the time required.

In order to assess the quality and stability of the optimization, we repeat the
optimization procedure for each test year 100 times, each time starting with a dif-
ferent set of random initial parameters. We also assess the influence of the number
of initial parameters on the results by limiting the number of optimizations to re-
spectively 10 and 50 runs. We also test another method consisting in setting the
initial parameters in an informed way.

This is a summary of the three strategies:

1. Run 10: Randomly sample initial weights 10 times and pick the solution which
performs the best on the training data.

2. Run 50: Similar but with 50 runs.

3. Best base: Set the initial parameters corresponding to using only the best
base model, i.e. weight of the best base model close to 1 and weights of all
other base models close to 0.

The last algorithm should run faster than the others since it only performs the
optimization once. The first and second strategies should be more robust but slower.

We perform the stability analysis for the blending procedure (Blend-Sum). Any
findings should be directly applicable to stacking. We now show in more detail the
code for the function Weightoptim related to weight optimization.
The Weightoptim function has the following arguments:

• listmodel.pred is the list of base model predictions for the blending period.

• OSA is a length-one logical vector indicating whether we are performing a one-
step-ahead analysis.

• score.type indicates which score should be minimized, in long-term predic-
tions this argument is set to ’dss’.

• If total.stack is TRUE, we are performing Blend-Sum otherwise Blend-Ind.

• optim.type can be set to best.base or best.run according to the strategy
we use to optimize the weights.
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• nrun indicates the number of times we perform the optimization when optim.type

is set to best.run.

• best.base.ind is a number between 1 and J indicating the best performing
base model when optim.type is set to best.base .

We also need to load the optimr library and source the function to optimize MinDssSum.
Depending on OSA and total.stack the function to be minimized will change
slightly (not shown). nmod is the equivalent to J and indicates the number of base
models.

WeightOptim<- function(listmodel.pred,

OSA = FALSE,

score.type = NULL,

stack.length = NULL,

total.stack = NULL,

optim.type = NULL,

nrun= NULL,

seed= NULL,

best.base.ind = NULL){

########### inital settings

library(optimr)

source("functions/MinDssSum.R")

nmod <- length(listmodel.pred)

namemod <- vector()

for (i in 1:nmod){
namemod[i] <- paste ("model", i, sep="")

}

In the next lines the initial parameters are set according to optim.type. Remember
that we feed real numbers which will then be reparameterized to weights according
to Equation 4.1.
In the Best base case we want to assign a weight close to 1 to the best model. This
is achieved by setting the initial parameter x to 0 or 10 for the best model and -10
or 0 for the other models depending on whether the last model is the best model or
not respectively.
In the Run 10 or Run 50 case we sample initial parameters from a uniform distri-
bution between 0 and 1.
Whether these are the most appropriate initial conditions is debatable. For instance
we could argue that values too close to 1 for Best base would be likely to get us
stuck in a local minimum or that sampling only between 0 and 1 will seldom give
heavy weights to one particular model. We are aware of these issues but consider this
topic to be beyond the scope of this thesis and regard these conditions as acceptable.

if(optim.type=="best.base"){
if(best.base.ind == nmod){
parini <- rep(-10, nmod-1)

} else {
parini <- rep(0, nmod-1)

parini[best.base.ind] <- 10
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}
parini.mat <- matrix(parini, nrow=1)

}

if(optim.type=="best.run"){
set.seed(seed)

parini.mat <- matrix(runif( n = nrun * (nmod - 1)), ncol = nmod-1)

}

The following code chunk shows the optimr set-up within the Stab function and
how we convert the output back to weights according to Equation 4.1.

########### optimr function

Stab <- function(parini){
x.dss.r <- optimr(par = parini,

fn = MinDssSum,

listmodel.pred = listmodel.pred,

nmod = nmod,

univar=univar,

score.type = score.type)

# convert x to weights

x <- x.dss.r$par # extract the parameters

xfull <- c(x, 0) # we are missing the last value which was set to 0.

w.dss.r <- exp(xfull)/(sum(exp(xfull))) # convert to weights

dssr <- x.dss.r$value # extract the minimized score

names(w.dss.r) <- namemod

listw <- list(score.optim = dssr,

weights = vec.r)

return(listw)

}

short, the function MinDssSum converts the parameters x to weights, combines the
base models according to those weights with MAMeanCov, and then calculates the
score with Dssval (which is an extension of the ds score hhh4 from the surveil-
lance package).

MinDssSum <- function(x, listmodel.pred,

nmod) {

source("functions/Dssval.R")

source("functions/MAMeanCov.R")

# Empty list and vector

pred <- list()

vec.score <- vector()

### calculate Score for each blending period.

xfull <- c(x, 0)

weights <- exp(xfull)/(sum(exp(xfull)))

for (i in 1: length(listmodel.pred)){
### Calculate MA mean and covariance
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meancov.av <- MAMeanCov(listmodel.pred[[i]], weights)

pred$mu_vector <- meancov.av[["MAmean"]]

pred$Sigma <- meancov.av[["MAcov"]]

vec.score[i]<- Dssval(pred = pred,

realizations = listmodel.pred[[i]][[1]]$realizations,

detailed = FALSE,

scaled = FALSE,

univar= univar)

}
return(sum(vec.score))# not scaled

}

We now apply the Stab function to the matrix containing the single or multiple
initial parameters. In Run 10 or Run 50 we then extract the weights that gave the
best solution.

########### optimr execution

listw <- apply(parini.mat, 1, FUN = Stab)

w <- t(sapply(listw, FUN = function(x) x$weights))

s <- t(sapply(listw, FUN = function(x) x$score.optim))

list.return <- list(weights = w,

score.optim = s)

if(optim.type=="best.run"){
best.index<- which.min(s)

list.return <- list(weights = w[best.index, ],

score.optim = s[best.index])

}
return(list.return)

}

4.2 Stability Analysis

We perform blending five times, using one of the last 5 years of the CHILI dataset
(2012-2016) for test data each time. As previously, we set the blending period to
4 years and adapt the number of fitting years accordingly so as to always use all
available data (see Figure 4.1).
Figure 4.2 shows the weights and score distribution for all 100 runs for blending
period 2008-2011 ordered by best sDSS in the training data. We can observe some
clusters of identical scores and weight distributions but also many different combi-
nations and results. Interestingly, it seems that some identical weight combinations
result in different training scores. For example the “green” combination where base
model Exp has a weight close to 1 and appears in the 8.02 and 8.05 score sections.
The reason is that the difference in weight combination is so small that it is not
visible by eye but still impacts the scores.
Figure 4.3 shows the sDSS for the test year according to the sDSS in training data.
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Figure 4.1: Stability analysis representation. We use the last 5 years
of the CHILI dataset as test years (2012-2016) and adapt the number of
training years so as to always use all available data and 4 years as blending
period.

Figure 4.3 panel A shows the results for the 100 runs, the three optimized algorithms
and the base models. Figure 4.3 panel B shows an enlargement of the bottom left
box in Figure 4.3 panel A.

First, we observe that the results from the base models are a lot more scattered than
the results from the blending procedure regarding both scores from the training and
testing data. Second, the results from blending are located in the bottom left area of
the plot indicating both better training and testing scores than other base models.
In this case there is a correlation between the scores in the training data and those in
the test data which is encouraging because it justifies the use of blending to improve
the performance of the predictions.

Looking at Figure 4.3B we observe that the correlation between the results in the
training data and test data is less obvious but this can be expected since the dif-
ference in scores is reduced. Run 10 and Run 50 yield the same results indicating
that 10 runs may be sufficient. Regarding the training scores, Run 10 and Run 50

perform better than Best base although all three algorithms perform relatively well
when considering all 100 runs and base models. Best base performs better than
the best model which is a good indication that the optimization is working well as
we would expect Best base to perform equally well or better than the best base
model.

Figure 4.4 shows the weight distribution and sDSS for four blending periods. As
we can see, blending period 2010-2013 has a simpler search-space with three major
combinations, two of them resulting in identical scores. However, this seems to be
an exception rather than the rule.

We could be concerned by the multiplicity of the model combinations observed
when changing initial parameter values. In our opinion, this reflects the fact that
many combinations achieve good training scores but could also arise due to the fact
that the models are quite similar to each other by nature meaning that replacing one
model by another in the ensemble does not change the predictions fundamentally. In
our opinion this could be of concern if the resulting training and testing scores were
very different from one another. However, Figure 4.5 shows that the distribution of
the blending scores for training and testing are systematically narrower than that
of the base models. Moreover the majority of the scores in the training data are
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better or as good as the best base model and more importantly this is true for the
three algorithms tested. However, this does not automatically translate to the best
score for the test data. The variation between the test score for the best and worst
blending solution varies according to the tested year and is particularly bad for test
year 2016.
The results of the three tested algorithms are always very similar with no clear best
option in terms of test score. However, Best base is much faster compared to Run

10 and Run 50, the full algorithms taking on average 50, 140 and 600 seconds to
run respectively.

Conclusion Even though the blending procedure - and by extension the stacking
procedure - are not completely stable due to the non-convex search-space spanned by
11 base models, the results of our stability test show that by using one of the three
strategies to deal with instability we obtain, on average, good results. We constantly
obtain the best optimized value in the training data which often translates to better
scores in the test data and justifies the use of this procedure.
Setting initial optimization parameters by finding the best base models and assigning
a weight close to 1 to the respective initial parameter as we did in the Best base

procedure is the fastest option and the one chosen to run all the analyses in this
thesis.
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Chapter 5

Reproducibility & Hyper
Parameter Tuning

In this chapter, we extend the long-term analysis done previously on the CHILI
dataset to five test years (2011-2016). We do this in the same manner as in Chapter
4 by adding an extra year to the training data for each additional test year. We also
perform the same analysis on the Dengue dataset. Finally, we modify hyperparam-
eters of ensemble models such as the length of the blending and stacking period to
assess the impact of this “fine-tuning” on our results.

Globally, this chapter helps us understand how confident we can be when assess-
ing model performances.

5.1 CHILI: Five Test Years (2012-2016)

As a reminder, results for year 2016 are identical to those of Chapter 3. We do not
aim to do an in depth analysis of each individual test year, but rather to explore
possible general trends amongst the results and to consider the global performance
of each model.
We start by looking at the weights of the base models composing Blend-Sum and
Stacking for long-term predictions. Table 5.1 shows that base models NO-S and AR

are never included and could be removed from the pool of base models to make the
process faster. Weights vary according to the year tested with no clear patterns.

Table 5.2 shows the score for each model including Baseline for each year along
with the mean over five years (2012-2016) and the mean over four years (2012-2015).
We also included three more “Baseline results”: Best.AIC, Best.BIC and Best.Stack.
They show the sDSS of the base model with respectively the best AIC, BIC or sDSS
score 1 on the training data. The idea behind this is that a possible strategy when
making predictions would be to always consider the model that performs the best
on the training data. The performance can be evaluated by these three criteria.
All years considered, we observe that two “simple” models End and AR+End perform
best followed by the best ensemble model Blend-Sum. The second best ensemble
model is Stack followed by MA-BIC and MA-AIC. It is also worth noting that nearly

1as calculated in the stacking procedure
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all models perform on average better than the baseline model, which is reassuring.
Both simple models perform particularly well in 2016. we wondered whether the
results would be greatly changed if we repeated the analysis excluding year 2016.
Indeed, the best model is then ensemble model MA-BIC. The fact that an ensemble
model can perform better than base models on average is encouraging, however,
one must be very cautious when interpreting results of selected data. For instance,
ensemble model Stack goes from rank 5 to 12. Thus, we cannot say that 2016 was
a “bad” year for all ensemble models.
If we compare the results of the ensemble models to Best.AIC, Best.BIC and
Best.Stack, we observe that performance of the ensemble models (except MA-AIC)
are very encouraging as they are ranked 6th, 5th and 3rd as opposed to 13th, 11th

and 9th. The results are completely different if we do not consider the results of test
year 2016.
These results are a little disappointing as we had hoped that ensemble models could
improve forecasts more systematically. The fact that removing a year from the
dataset causes such changes in the ranks is disturbing. A solution to this would
be to study more test years and thus longer time series or average the results over
many different time series.
The second important factor is that comparing the results with sDSS in general is
complicated. The scores allow us to easily rank the models but deciding whether
differences in scores are actually relevant is problematic. A method to do so would
be helpful. It is thus not straightforward to evaluate whether the difference in score
between the models ranking first and last is important or not.
Moreover, it is likely that some other parameters play a role in ensemble model
performances such as the values of the hyperparameters for Stack and Blend as we
discuss later in this chapter. First, though, we were curious to see whether we would
obtain different results on another, less regular dataset: Dengue.
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Table 5.1: CHILI: base model weights in ensemble models over test periods 2012-2016. Yearly maxima are highlighted in bold.

MA-AIC MA-BIC

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

NO-S 0 0 0 0 0 0 0 0 0 0
AR 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0.58 0.69 0.04 0 0
AR+End 0 0 0 0 0 0.14 0.13 0.03 0 0
AR+End+t 0 0 0 0 0 0.04 0.01 0 0 0

S2+t 0.06 0.01 0.02 0 0 0.16 0.05 0.28 0.03 0.01
S3+t 0.35 0.04 0.06 0 0 0 0 0 0 0
Exp 0 0 0 0 0 0.01 0.01 0 0 0
Exp+t 0 0 0 0 0 0 0 0 0 0
Exp+t+S2 0.21 0.22 0.54 0.51 0.12 0.06 0.12 0.64 0.97 0.99
Exp+t+S3 0.37 0.73 0.37 0.48 0.88 0 0 0 0 0

Blend Stack

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

NO-S 0 0 0 0 0 0 0 0 0 0
AR 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0 0.2 0.2 0.2 0.2
AR+End 1 0.92 1 0 0 0.25 0.25 0.25 0 0
AR+End+t 0 0.07 0 0 0 0 0 0 0 0.01

S2+t 0 0 0 0 0 0.25 0.29 0.05 0.05 0.05
S3+t 0 0 0 0.01 0 0 0 0.11 0.11 0.11
Exp 0 0 0 0.49 0.45 0.25 0.25 0.25 0.25 0
Exp+t 0 0 0 0.49 0 0.25 0 0.14 0.32 0.33
Exp+t+S2 0 0 0 0 0.55 0 0 0 0.07 0.07
Exp+t+S3 0 0 0 0 0 0 0 0 0 0.23
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5.2 Dengue: Five Test Years (2008/2009 - 2012/2013)

We perform a similar analysis on the Dengue dataset. We use the last five years
as test data, increasing the training data accordingly. The blending and stacking
periods are set to 4 years as previously. As the dengue dataset is 23 years long versus
17 years long for the CHILI dataset, the number of fitting years is greater. Note
that a forecast year overlaps over two historical year. To make tables clearer, test
years are only indicated by the last historical year. For example test year 2008/2009
will be indicated as 2009.
We start by looking at the weights of the base models composing ensemble models.
This time Table 5.3 shows that base models S2+t and S3+t are never included.
Globally, unlike for CHILI, seasonality does not seems to play an important role in
the modelling of the Dengue dataset, exponentially decaying lags on the other hand
appear essential.

Table 5.4 shows the score for each model including Baseline, Best.AIC, Best.BIC
and Best.Stack for each year along with the mean over five years and excluding
2009/2010.
To our surprise, we observe that, all years considered, the simplest model NO-S per-
forms best, followed by ensemble model Stack. 2009/2010 is particular in the sense
that the conditioning observation is high but the peak is not. Most models thus
overestimated the future disease incidence giving an advantage to model NO-S as its
estimations are consistently low.
If we take that year out, ensemble model Stack performs best. Again we must be
very cautious with such interpretations but we will note that this time the rank of
ensemble models is not greatly disrupted by this modification. This could be an
indication that ensemble models are beneficial in more unpredictable environments
but again, we remain cautious. More data would be necessary to confirm this hy-
pothesis.
If we compare ensemble models, we notice again that MA-AIC does not perform very
well. Compared to Best.AIC, Best.BIC and Best.Stack, ensemble models (except
MA-AIC) perform better, ranking at the 8th, 5th and 2nd places as opposed to the
12th, 6th and 15th. Again, these results are very different if we exclude year 2010
from the analysis.
In addition we note that the Baseline model performs very poorly. Indeed it shows
a disastrous score for test year 2011. This is due to the fact that disease incidence
in 2011 started exceptionally high, and that it was on average a year with a high
number of cases. HHH4 models pick this up with the conditioning value but not the
baseline model.
The same limitations as for the CHILI dataset apply here namely the need of more
data and the issue when it comes to comparing absolute score values.
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Table 5.2: CHILI: sDSS over test periods 2012-2016. Yearly minima are
highlighted in bold (Best.AIC, Best.BIC and Best.Stack not included).

Mean Rank

2012 2013 2014 2015 2016 All -2016 All -2016

NO-S 8.67 9.97 8.52 12.16 9.12 9.69 9.83 19 19
AR 7.41 9.08 7.07 9.18 8.13 8.17 8.19 18 18
End 6.84 7.1 6.66 7.25 7.56 7.08 6.96 1 15
AR+End 6.91 7.05 6.6 7.26 7.73 7.11 6.96 2 14
AR+End+t 6.95 6.9 6.58 7.07 8.82 7.26 6.87 8 7

S2+t 7 7 6.67 6.94 9.29 7.38 6.9 15 10
S3+t 7.03 6.88 6.71 6.89 9.55 7.41 6.88 16 8
Exp 6.94 7.09 6.59 7.37 7.82 7.16 7 4 16
Exp+t 6.97 6.92 6.57 7.13 8.9 7.3 6.9 10 9
Exp+t+S2 6.92 6.94 6.59 6.87 8.99 7.26 6.83 7 2

Exp+t+S3 6.93 6.93 6.63 6.86 9.4 7.35 6.84 14 4
MA-AIC 6.96 6.93 6.61 6.86 9.33 7.34 6.84 12 5
MA-BIC 6.78 7.04 6.61 6.87 9 7.26 6.82 6 1
Blend-Sum 6.86 7.16 6.63 7.12 7.89 7.13 6.94 3 13
Stack 6.81 7.3 6.58 7.02 8.25 7.19 6.93 5 12

Baseline 7.41 7.42 7.4 7.72 7.77 7.54 7.49 17 17
Best.AIC 6.93 6.93 6.59 6.87 9.4 7.34 6.83 13 3
Best.BIC 6.84 7.1 6.59 6.87 8.99 7.28 6.85 9 6
Best.Stack 6.91 7 6.6 7.13 8.9 7.31 6.91 11 11
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Table 5.3: Dengue: Base model weights in ensemble models. Yearly maxima are highlighted in bold.

MA-AIC MA-BIC

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

NO-S 0 0 0 0 0 0 0 0 0 0
AR 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0 0 0 0 0
AR+End 0 0 0 0 0 0 0 0 0 0
AR+End+t 0 0 0 0 0 0 0 0 0 0

S2+t 0 0 0 0 0 0 0 0 0 0
S3+t 0 0 0 0 0 0 0 0 0 0
Exp 0 0.02 0.01 0.04 0.03 0.07 0.85 0.86 0.95 0.97
Exp+t 0.63 0.52 0.24 0.27 0.14 0.93 0.15 0.14 0.05 0.03
Exp+t+S2 0.16 0.11 0.44 0.45 0.56 0 0 0 0 0
Exp+t+S3 0.2 0.35 0.3 0.24 0.27 0 0 0 0 0

Blend Stack

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

NO-S 0 0 0 0.28 0.44 0.02 0.07 0.3 0.27 0.27
AR 0 0 0.09 0 0 0 0 0 0 0
End 0 0 0.03 0 0 0.25 0.25 0.25 0.25 0
AR+End 0.79 0.57 0.19 0.13 0 0.25 0.25 0 0.07 0.07
AR+End+t 0 0 0 0 0 0 0 0 0 0

S2+t 0 0 0 0 0 0 0 0 0 0
S3+t 0 0 0 0 0 0 0 0 0 0
Exp 0 0.43 0.69 0.59 0.37 0.23 0.29 0.31 0.27 0.27
Exp+t 0.21 0 0 0 0.19 0.25 0 0 0 0
Exp+t+S2 0 0 0 0 0 0 0.14 0.14 0.14 0.14
Exp+t+S3 0 0 0 0 0 0 0 0 0 0.25
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5.3 Fine-Tuning Influence

In this section, we modify the hyperparameters “length of blending period” and
“length of stacking period” to assess their impact on the respective ensemble models.
We study the last five years of the CHILI dataset and vary this parameter from 1
to 6 years adapting the fitting period accordingly. “Fine-tuned” models are named
B-1 to B-6 and S-1 to S-6 for blending and stacking respectively. Note that in this
context, B-1 and S-1 are the same model.
Table 5.5 and 5.6 show the weight of base models according to the fine-tuned model.
We can say that in general, the fine-tuning impacts blending weight more than
stacking weights, which could be explained by the “averaged” nature of stacking
weights compared to the “sum” of blending.
This tendency is confirmed by sDSS results in Tables 5.8 and 5.7. There is more
variance in the scores between the different fine-tuned models in blending than
stacking. Indeed, the difference between the best and worse score for blending and
stacking is 0.22, 0.17, 0.08, 0.57, 1.26 and 0.14, 0.27, 0.06, 0.21, 1.18 for years 2012
to 2016 respectively.

This is very troubling because it is of the same order as the differences between
models.
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Table 5.4: Dengue: sDSS over test periods 2008-2012. Yearly minima are
highlighted in bold (Best.AIC, Best.BIC and Best.Stack not included).

Mean Rank

2009 2010 2011 2012 2013 All -2010 All -2010

NO-S 2.47 3.02 3.86 2.61 4.04 3.2 3.25 1 8
AR 2.45 3.12 4.36 2.57 3.9 3.28 3.32 4 14
End 2.6 3.84 4.09 2.59 3.57 3.34 3.21 7 5
AR+End 2.57 4.06 3.71 2.49 4.26 3.42 3.26 9 9
AR+End+t 2.91 6.79 3.77 2.41 5.52 4.28 3.65 16 16

S2+t 2.87 6.79 4.55 2.42 5.48 4.42 3.83 17 18
S3+t 2.89 7.01 4.31 2.41 5.53 4.43 3.78 18 17
Exp 2.39 3.64 3.64 2.37 4.31 3.27 3.18 3 2
Exp+t 3.13 5.73 3.8 2.33 4.45 3.89 3.43 14 15
Exp+t+S2 2.85 6.03 3.91 2.32 3.99 3.82 3.27 13 11

Exp+t+S3 2.88 5.98 3.81 2.31 3.83 3.76 3.21 11 4
MA-AIC 2.98 5.6 3.83 2.32 3.95 3.73 3.27 10 12
MA-BIC 2.79 3.74 3.66 2.36 4.31 3.37 3.28 8 13
Blend-Sum 2.49 3.64 3.93 2.46 4.09 3.32 3.24 5 7
Stack 2.48 3.58 3.74 2.52 3.81 3.23 3.14 2 1

Baseline 3.74 4.23 63.63 5.23 10.29 17.43 20.73 19 19
Best.AIC 2.88 5.98 3.91 2.32 3.83 3.78 3.23 12 6
Best.BIC 2.6 3.84 3.91 2.32 3.99 3.33 3.2 6 3
Best.Stack 2.57 6.79 3.71 2.33 4.45 3.97 3.26 15 10

54



Table 5.5: Fine-tuning CHILI: base model weights in variations of ensemble model Blend. Yearly maxima are highlighted in
bold.

2012 2013 2014

B-1 B-2 B-3 B-4 B-5 B-6 B-1 B-2 B-3 B-4 B-5 B-6 B-1 B-2 B-3 B-4 B-5 B-6

NO-S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0.01 0.8 0 0 0 0 0 0 0 0 0 0 0
AR+End 0 1 1 1 0 0.22 0 0.92 1 0.92 1 0 0 0 0 1 0.98 1
AR+End+t 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0.86 0.51 0 0 0

S2+t 0 0 0 0 0 0.2 0.18 0 0 0 0 0.01 0 0.14 0 0 0 0
S3+t 0 0 0 0 0 0 0 0.08 0 0 0 0 0.42 0 0 0 0 0
Exp 1 0 0 0 1 0 0 0 0 0 0 0.99 0 0 0.48 0 0 0
Exp+t 0 0 0 0 0 0 0 0 0 0 0 0 0.58 0 0 0 0 0
Exp+t+S2 0 0 0 0 0 0.57 0.01 0 0 0 0 0 0 0 0.01 0 0.02 0
Exp+t+S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2015 2016

B-1 B-2 B-3 B-4 B-5 B-6 B-1 B-2 B-3 B-4 B-5 B-6

NO-S 0 0 0 0 0 0 0 0 0 0 0 0
AR 0.01 0 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0 0 0 0 0 0 0
AR+End 0 0 0.01 0 1 0.98 0 0 0 0 0 1
AR+End+t 0 0.86 0.66 0 0 0 0.04 0 0 0 0 0

S2+t 0 0 0.09 0 0 0 0 0 0 0 0 0
S3+t 0 0 0 0.01 0 0 0 0 0 0 0 0
Exp 0 0 0.24 0.49 0 0 0 0 0.14 0.45 0.24 0
Exp+t 0.71 0 0 0.49 0 0 0.04 0.26 0.23 0 0.76 0
Exp+t+S2 0.27 0.14 0 0 0 0.02 0 0.74 0.12 0.55 0 0
Exp+t+S3 0 0 0 0 0 0 0.9 0 0.51 0 0 0
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Table 5.6: Fine-tuning CHILI: base model weights in variations of ensemble model Stack. Yearly maxima are highlighted in
bold.

2012 2013 2014

S-1 S-2 S-3 S-4 S-5 S-6 S-1 S-2 S-3 S-4 S-5 S-6 S-1 S-2 S-3 S-4 S-5 S-6

NO-S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
End 0 0 0 0 0 0.13 0.8 0.4 0.27 0.2 0.16 0.13 0 0.4 0.27 0.2 0.16 0.13
AR+End 0 0.5 0.33 0.25 0.2 0.17 0 0 0.33 0.25 0.2 0.17 0 0 0 0.25 0.2 0.17
AR+End+t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2+t 0 0 0.33 0.25 0.2 0.17 0.18 0.09 0.06 0.29 0.24 0.2 0 0.09 0.06 0.05 0.24 0.2
S3+t 0 0 0 0 0 0.03 0 0 0 0 0 0 0.42 0.21 0.14 0.11 0.08 0.07
Exp 1 0.5 0.33 0.25 0.2 0.17 0 0.5 0.33 0.25 0.2 0.17 0 0 0.33 0.25 0.2 0.17
Exp+t 0 0 0 0.25 0.2 0.17 0 0 0 0 0.2 0.17 0.58 0.29 0.19 0.14 0.12 0.26
Exp+t+S2 0 0 0 0 0.2 0.17 0.01 0.01 0 0 0 0.17 0 0.01 0 0 0 0
Exp+t+S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2015 2016

S-1 S-2 S-3 S-4 S-5 S-6 S-1 S-2 S-3 S-4 S-5 S-6

NO-S 0 0 0 0 0 0 0 0 0 0 0 0
AR 0.01 0.01 0 0 0 0 0 0.01 0.01 0 0 0
End 0 0 0.27 0.2 0.16 0.13 0 0 0 0.2 0.16 0.13
AR+End 0 0 0 0 0.2 0.17 0 0 0 0 0 0.17
AR+End+t 0 0 0 0 0 0 0.04 0.02 0.01 0.01 0.01 0.01

S2+t 0 0 0.06 0.05 0.04 0.2 0 0 0 0.05 0.04 0.03
S3+t 0 0.21 0.14 0.11 0.08 0.07 0 0 0.14 0.11 0.08 0.07
Exp 0 0 0 0.25 0.2 0.17 0 0 0 0 0.2 0.17
Exp+t 0.71 0.65 0.43 0.32 0.26 0.22 0.04 0.38 0.45 0.33 0.27 0.22
Exp+t+S2 0.27 0.14 0.1 0.07 0.06 0.05 0 0.14 0.09 0.07 0.06 0.05
Exp+t+S3 0 0 0 0 0 0 0.9 0.45 0.3 0.23 0.18 0.15
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Table 5.7: Fine-tuning CHILI: Blend sDSS over test periods 2012-2016.
Yearly minima are highlighted in bold.

2012 2013 2014 2015 2016 Mean Mean Rank

Blend-1 6.94 7.04 6.64 6.97 8.63 7.24 5
Blend-2 6.89 7.04 6.61 7.00 8.26 7.16 4
Blend-3 6.87 7.10 6.56 7.02 8.22 7.16 3
Blend-4 6.86 7.16 6.63 7.12 7.89 7.13 2
Blend-5 6.89 7.11 6.59 7.54 8.37 7.30 6
Blend-6 7.08 7.21 6.62 7.32 7.38 7.12 1

Table 5.8: Fine-tuning CHILI: Stack sDSS over test periods 2012-2016.
Yearly minima are highlighted in bold.

2012 2013 2014 2015 2016 Mean Mean Rank

Stack-1 6.94 7.06 6.63 6.95 9.14 7.34 6
Stack-2 6.92 7.04 6.62 6.92 8.77 7.25 4
Stack-3 6.82 7.03 6.58 6.97 8.86 7.26 5
Stack-4 6.81 7.30 6.58 7.02 8.25 7.19 3
Stack-5 6.81 7.26 6.64 7.05 8.05 7.16 2
Stack-6 6.80 7.23 6.63 7.13 7.96 7.15 1

Conclusion We obtain results both in favor of and against the use of ensemble
models for infectious disease predictions. On the bright side, analysis over multiple
test years show that ensemble models perform well and sometimes better than base
models on average. They perform better than the strategies only considering the
base model that performs best on the training data according to the AIC, BIC or
sDSS 2. Globally, MA-AIC is the worst ensemble model followed by MA-BIC but it is
not always obvious which ensemble models performs best. It would be interesting
to repeat the exercise on longer time series or on many other short time series and
average the results. That way we may have a better picture.
A major disadvantage of our methods consists in the high impact of the tuning
of hyperparameters on the predictions. Indeed, results depend on the number of
blending or stacking years and also what information is used within each of these
years (for a reminder, see Figure 2.2). Part of this issue could be avoided with
a K-fold cross-validation rather than a rolling-CV. This approach might be worth
the try since we have witnessed a considerable impact when changing the blending
or stacking period length. Another suggestion would be to discuss with a health
specialist what kind of stacking period would make sense. However, we feel that a
systematic approach is easier to justify.
To conclude, we would argue that ensemble models may have some potential but that
their use for forecasting predictive distributions of time series is not as evident as
we thought. Further studies will be necessary help assert the usefulness of ensemble
models in the field of disease forecasting.

2as calculated in the stacking procedure
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Chapter 6

Multivariate Analysis

In this final chapter, we demonstrate that our ensemble model methods also extend
to multivariate time series defined in Section 2.5.2. We study the BNV dataset
stratified by age group with different contact matrices described in Chapter 2, Sub-
section 2.5.2. As a reminder, we analyse four different contact matrices (and base
models): Homogeneous, No mixing, Reciprocal and Power-Adjusted. The code
used to generate these models is shown in Appendix A, Section A.2.2 and most
of the code used for graphical illustrations are largely inspired by Held and Meyer
(n.d., chapter 6).

The BNV dataset contains only 5 years of data (2011-2015), meaning a maximum
of 4 years of training data and one test year. We are therefore quite restricted with
the different length possibilities of the blending and stacking periods. Moreover, the
Power-Adjusted model requires at least 3 years of data to be fitted. Hence, only
1 year can be used to stack weights. In this case, there is no difference between
Blend-Sum and Blend-Ind. We will therefore refer to the process simply as Blend.
Furthermore, the only difference between Blend and Stack is that Blend is fitted
on 3 years to make predictions on the 5th test year, whereas Stack is fitted on all 4
years. Whether this is reasonable is beyond the point of this chapter as its aim is
only to demonstrate the applicability of the ensemble functions.

6.1 Long-Term Predictions

The weights of the four base models in each ensemble model are displayed in Table
6.1. The Power-Adjusted model has a weight of exactly 1 except in MA-BIC where
it is 0.995.

Table 6.1: : Base Model weights in ensemble models.

MA-AIC MA-BIC Blend Stack

Reciprocal 0 0.004 0 0
Homogeneous 0 0.000 0 0

No mixing 0 0.001 0 0
Power-Adjusted 1 0.995 1 1
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Figure 6.1: Long-term predictions of norovirus for age group 00-04.

Figure A.12 shows the predictions for the 4 base models for age group 00-04. En-
semble models would be indistinguishable from model Power-Adjusted. The sudden
drop is characteristic of the Christmas period which suffers from under reporting.
The plot for all age groups is available in Appendix A, Section A.6 . The predictions
differ mainly for age groups 05-14 and 65+.

Table 6.2: SS for test year and related ranks.

Reci Homo No mixing Power-Adj MA-AIC MA-BIC Blend Stack
DSS 1.539 1.564 1.521 1.527 1.527 1.527 1.547 1.527
DS 1.067 1.096 1.078 1.065 1.065 1.065 1.088 1.065

Score Rank 6 8 1 2 2 2 7 2

Table 6.2 shows the sDSS for the predictions of the test year. The model with the
best performance is No mixing followed by Power-Adjusted and all the ensemble
models. We suspect that the choice of the test year is of great influence. Indeed,
the fact that Blend and Stack are entirely composed by Power-Adjusted indicates
that this model performed the best on year 4 (the blending/stacking periods).
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6.2 One-Step-Ahead Predictions

This section shows the results of 52 one-step-ahead predictions for the same dataset
and test year.
Figure A.5 shows the probability integral transform (PIT) for 6 ∗ 52 = 312 one-
step-ahead forecasts (6 groups and 52 timepoints). We could argue that the data is
slightly shaped as an inverse-U indicating that the data is overdispersed although
nothing alarming.
Figure 6.4 and 6.5 shows the predictive distribution and the corresponding scores
on test year for base model No mixing and ensemble model Stack. Similar plots
for all models are found in Appendix A.7. We observe that the predictions and the
scores are very similar between the two models which is not surprising since Stack

is mostly made up by the base model No mixing.
The mean sDSS and the model score rank are shown in Table 6.3. No mixing model
preforms the best followed by Stack. Again, it is delicate to draw conclusions on
only one validation year, but it seems that stacking may adapt faster than MA-AIC

and MA-BIC. We could try to improve this by shortening the stacking period. As
a reminder, the stacking period used was 1 year and increases by one observation
after each forecast. Maybe shortening this period would allow the model to adapt
faster. We would then enter some fine-tuning analysis which is beyond the scope of
this thesis.

Conclusion We have shown through this simple example that our methods can
be extended to multivariate time series analysis. The methods are subject to the
same limitations as univariate time series analysis namely: dependency to the base
model pool and to fine tuning of ensemble model open parameters. Moreover, results
are very likely subject to the test year, the observation we condition our long-term
forecast on and the length of the period under study.

Table 6.3: sDSS for test year and related ranks based on 6*52 one-step-ahead
forecasts.

Reci Homo No mixing Power-Adj MA-AIC MA-BIC Stack
DSS 3.031 3.093 3.003 3.011 3.014 3.015 3.006

Score Rank 6 7 1 3 4 5 2
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Figure 6.2: Base Model weights in ensemble models for one-step-ahead
predictions.
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Figure 6.3: Probability Integral Transform (PIT) of 6*52 one-step-ahead
forecasts.
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Figure 6.4: One-step-ahead predictive distribution and sDSS for No

Mixing base model for test year 2015 of BNV dataset.
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Figure 6.5: One-step-ahead predictive distribution and sDSS for
Stack base model for test year 2016 of BNV dataset.
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Chapter 7

Discussion

Nowadays, theory and practice indicate that ensemble models improve predictions on
average. For a long time restricted to point forecasts, this idea is spreading outside
of the field of machine learning as methods are adapted to predictive distributions.
In this thesis, we have implemented ensemble models techniques - specifically, model
averaging according to the AIC or BIC criteria, blending and stacking - within the
HHH4 framework. We adapted the stacking procedure described by Yao et al. (2017)
to a time series settings which led to the distinction between blending and what we
called stacking depending on the use or not of a rolling cross-validation.
Tested over 5 years on both the CHILI and Dengue dataset, ensemble methods
showed promising results, performing well on average but more importantly, per-
forming better than the strategies Best.AIC, Best.BIC and Best.Stack which con-
sider the model that performs the best on the training data according to the AIC,
BIC or sDSS scores1 respectively. Globally, Blend and Stack perform better than
MA-AIC and often better than MA-BIC.
However, the benefit of ensemble models is not straightforward to ascertain for two
reasons.
First, we evaluate the performance of the models according the to sDSS. This en-
ables us to easily rank and compare models but does not inform us whether the
difference in scores is relevant or not. Therefore, is it possible that many models
with similar scores but far apart in ranks are actually equally valuable.
The second reason is that many parameters influence the results. Some of these
parameters affect all predictive models and others affect only the ensemble models
presented here.
We raised the issue of the influence of tested year and the length of the tested period
on the results of both the ensemble models but also the base models. In her master
thesis Reeve (2017) shows that the week on which we condition the forecast also
plays an important role. These three variables influence the forecasts. This issue
probably concerns predictions from all types of models - also outside of the HHH4
framework - and will be difficult to solve. An approach to reduce the variability
induced by the test year under study and give a better picture of the benefit of
ensemble models would be to analyze more data: longer or more time series. In the
meantime, we also believe that better communication with healthcare specialists

1as calculated in the stacking procedure
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may help create some guidelines for specific diseases and eventually help statistical
analyses better target specific needs. For instance, with ILI diseases, we can imag-
ine that due to the time needed to perform the biological measurements and report
the number of weekly cases, it would not be possible to condition on the first week
of the year and already make predictions for the second week. Furthermore, it is
likely that predictions of an entire year are not necessary for dengue. Although this
does not solve the main issue of the variation resulting from the above mentioned
parameters, it could help narrow down what is feasible in practice and what is not.
Regrading our ensemble model procedures specifically, this thesis revealed two main
limitations. First, we have noticed that hyperparameters specific to ensemble mod-
els - namely the length of the blending or stacking period - also highly influence
the results. It is likely that other hyperparameters such as the type of information
used to stack weights (reminder: Figure 2.2, panel C) play an important role as
well. Regarding the latter, we see no other option than testing multiple options and
see what works best in each case. With respect to the length of the blending and
stacking period, we believe that a K-fold cross validation would be a good approach
to solve this matter. Regardless of this issue, we would recommend to test a K-fold
cross-validation based on the paper from Bergmeir et al. (2017) who showed that the
performance of the K-fold cross-validation outperforms other forms of validation in
time series.
Second, the stability of the stacking procedure is not optimal. The output of the
optimization procedure (i.e. the weights) varies depending on the initial parameters
and many different weight combinations yield very similar sDSS scores. It is possible
that our optimization suffers from multicollinearity which arises when one (or more)
models may be expressed as a linear combination of the other models and is known
to produce unreliable estimates. Because all our models are very similar to one an-
other (they are all built within the HHH4 framework and some are nested) this could
be an issue and our procedure may benefit from adding completely different mod-
els. In the point estimation literature, Merz and Pazzani (1999) describes a method
based on principal component regression to address the issue of multicollinearity
while identifying the unique contributions of each base model. Yao et al. (2017)
state that when combining predictive distributions, there is no need to worry about
multicollinearity except in degenerate cases and advice to use stronger priors on the
weights when the dimension of model space is high. We have shown that by setting
the initial parameters corresponding to using only the best base model in training,
we obtain good solutions. An extensive review of the literature will be necessary to
find whether there is a more robust way to improve the stability of our optimization
procedure.
Finally, we would like to point out that all the one-step-ahead analyses were eval-
uated with sDSS but are not limited to this score. As explained in the methods,
other proper scoring rules can be used in this case. Inferences about ensemble mod-
els would benefit greatly from another “point of view”. In theory, our code allows
to calculate and minimize the Log-Score and the RPS in addition to the sDSS. In
practice, changing the score type considerably slows our code down. Due to time re-
strictions, we have not been able to address this issue but it is an important element
to consider for further research.
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Appendix A

Appendix

A.1 Software

R version and packages used to generate this report:
R (version: R version 3.3.1 (2016-06-21)), A foundation for statistical computing,

Vienna, Austria available at http://www.R-project.org/.

Base packages stats, graphics, grDevices, utils, datasets, methods, base

Other packages

nlme; Version 3.1.131, plotrix; Version 3.7, biostatUZH; Version 1.7.0, survival;
Version 2.41.2, ggrepel; Version 0.7.0, zoo; Version 1.8.1, gridExtra; Version 2.2.1,
latticeExtra; Version 0.6.28, cowplot; Version 0.9.2, kableExtra; Version 0.8.0, lat-
tice; Version 0.20.34, tidyr; Version 0.6.1, RColorBrewer; Version 1.1.2, colorspace;
Version 1.3.2, reshape2; Version 1.4.1, ggplot2; Version 2.2.1, gplots; Version
3.0.1, HIDDA.forecasting; Version 0.5.1, hhh4addon; Version 0.0.0.0.9004, poly-
Cub; Version 0.6.1, hhh4contacts; Version 0.13.0, surveillance; Version 1.16.0,
xtable; Version 1.8.2, sp; Version 1.2.7, knitr; Version 1.20

This document was generated on 30.04.2018 at 17:33.

A.2 Base Model Code

A.2.1 CHILI & Dengue

We upload both datasets. The CHILI dataset is contained in the HIDDA.forecasting
package whereas the Dengue dataset was downloaded from
https://predict.phiresearchlab.org/ and converted to a .csv file.
We then show the code for the model controls (not the fitted objects) which are
necessary for our functions. Note that the controls for the models does not contain
a subset= argument in the list. This is not necessary when using our ensemble
model functions. The subset will be calculated automatically.

library(surveillance)

library(HIDDA.forecasting)
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### Data

# CHILI

chili <- CHILI

chili <- sts(observed = chili,

epoch = as.integer(index(CHILI)), epochAsDate = TRUE)

# Dengue

dengue.csv <- read.csv("data/san_juan_testing_data.csv")

dengue <- sts(observed = dengue.csv$total_cases,

start= c(1990, 18),

frequency = 52,

population = NULL)

### Model Controls:

# Model 1: NO S

set.m1.lt <- list(

end = list(f = ~ 1),

ar = list(f = ~ 1),

family = "NegBinM")

# Model 2: End

set.m2.lt <- list(

end = list(f = addSeason2formula(~ 1, S=1)),

ar = list(f =~ 1),

family = "NegBinM")

# Model 3: AR

set.m3.lt <- list(

end = list(f =~ 1),

ar = list(f = addSeason2formula(~ 1, S=1)),

family = "NegBinM")

# Model 4: AR + End

set.m4.lt <- list(

end = list(f = addSeason2formula(~ 1, S=1)),

ar = list(f = addSeason2formula(~ 1, S=1)),

family = "NegBinM")

# Model 5: AR + End + t

set.m5.lt <- list(

end = list(f = addSeason2formula(~ 1 +I(t), S=1)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=1)),

family = "NegBinM")

# Model 6: S2 + t

set.m6.lt <- list(

end = list(f = addSeason2formula(~ 1 +I(t), S=2)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=2)),

family = "NegBinM")

# Model 7: S3 + t

set.m7.lt <- list(

end = list(f = addSeason2formula(~ 1 +I(t), S=3)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=3)),
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family = "NegBinM")

# Model 8: Exp

set.m8.lt <- list(

end = list(f = addSeason2formula(~ 1, S=1)),

ar = list(f = addSeason2formula(~ 1, S=1),

use_distr_lag = TRUE,

max_lag = 5),

family = "NegBinM")

# Model 9: Exp + t

set.m9.lt <- list(

end = list(f = addSeason2formula(~ 1+ I(t), S=1)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=1),

use_distr_lag = TRUE,

max_lag = 5),

family = "NegBinM")

# Model 10: Exp + t + S2

set.m10.lt <- list(

end = list(f = addSeason2formula(~ 1+ I(t), S=2)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=2),

use_distr_lag = TRUE,

max_lag = 5),

family = "NegBinM")

# Model 11: Exp + t + S3

set.m11.lt <- list(

end = list(f = addSeason2formula(~ 1+ I(t), S=3)),

ar = list(f = addSeason2formula(~ 1+ I(t), S=3),

use_distr_lag = TRUE,

max_lag = 5),

family = "NegBinM")

A.2.2 Base Model Code: BNV

The BNV data is available in the hhh4contacts package by calling noroBE and stratify-
ing by age group. Note that we again need the model controls rather than the fitted
objects. However, this is not possible for the Power-Adjusted model which is build
on a fitted object. In our ensemble functions, we can specify if a Power-Adjusted
is required and define which model should be used to build it and which contact
matrix. We show you here how such a model is fitted outside our functions.

library(surveillance)

library(hhh4contacts)

### Data

BNV <- noroBE(by = "agegroup", agegroups = c(1, 2, 2, 4, 4, 2),

timeRange = c("2011-w27", "2016-w26"))

# Other settings

NGROUPS <- ncol(BNV)

TRAIN <- 2:(4*52) # The training data is 4 years long

DATAt <- list(t = epoch(BNV) - 1,
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christmas = as.integer(epochInYear(BNV) %in% c(52, 1)))

# Reciprocal contact matrix

C_reci <- contactmatrix(which = "reciprocal", grouping = c(1, 2, 2, 4, 4, 2))

### Model controls:

# Homogenous

set_Chom <- list(

end = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE) + christmas,

S = rep(1, NGROUPS))),

ne = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE)),

weights = matrix(1, NGROUPS, NGROUPS),

scale = NULL, normalize = TRUE),

family = "NegBinM", data = DATAt, subset = TRAIN)

# No Mixing

set_Cdiag <- list(

end = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE) + christmas,

S = rep(1, NGROUPS))),

ne = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE)),

weights = matrix(1, NGROUPS, NGROUPS),

scale = diag(NGROUPS), normalize = TRUE),

family = "NegBinM", data = DATAt, subset = TRAIN)

# Reciprocal

set_Creci <-list(

end = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE) + christmas,

S = rep(1, NGROUPS))),

ne = list(f = addSeason2formula(~0 + fe(1, unitSpecific = TRUE)),

weights = matrix(1, NGROUPS, NGROUPS),

scale = C_reci, normalize = TRUE),

family = "NegBinM", data = DATAt, subset = TRAIN)

### Fitted object: Power-Adjusted

# We first need to fit the Reciprocal model

fit_Creci<- hhh4(BNV, set_Creci)

# We then fit the Power-Adjusted model

fit_Cpower <- fitC(fit_Creci, C_reci, normalize = TRUE, truncate = TRUE)
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A.3 Fitted and Long-Term Predictions of Test Year

2016 (CHILI)
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Figure A.1: Fitted values and predictions for base model NO S, End,
AR, End + AR, End + AR + t and S2+ t. Fitted values for the last 4
years of training data of the CHILI dataset and predicted values for the test
data (year 2016).
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Figure A.2: Fitted values and predictions for base model S3 + t, Exp,
Exp + t, Exp + t + S2 and Exp + t + S3. Fitted values for the last
4 years of training data of the CHILI dataset and predicted values for the
test data (year 2016).
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A.4 Long-Term Predictions of Test Year 2016 (CHILI)
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Figure A.3: Base models predictions for test year 2016 of the CHILI
dataset.
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Figure A.4: Base models predictions for test year 2016 of the CHILI
dataset.
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A.5 Probability Integral Transform: 30 Observa-

tions of Test Year 2016 (CHILI)
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Figure A.5: Probability Integral Transform (PIT) of 30 one-step-ahead
forecasts of the CHILI test year (2016).
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Figure A.6: Probability Integral Transform (PIT) of 30 one-step-ahead
forecasts of the CHILI test year (2016).
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A.6 Long-Term Predictions of Test Year 2016 (BNV)
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Figure A.7: Long-term predictions of norovirus for age group 00-04.
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Figure A.8: Long-term predictions of norovirus for age group 05-14.
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Figure A.9: Long-term predictions of norovirus for age group 15-24.
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Figure A.10: Long-term predictions of norovirus for age group 25-44.
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Figure A.11: Long-term predictions of norovirus for age group 45-64.
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Figure A.12: Long-term predictions of norovirus for age group 65+.
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A.7 One-Step-Ahead Predictions of Test Year 2016
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Figure A.13: Predictive distribution and sDSS for No Mixing base
model for one-step-ahead-predictions of test year 2015 of BNV dataset.
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Figure A.14: Predictive distribution and sDSS for Homogeneous base
model for one-step-ahead-predictions of test year 2015 of BNV dataset.
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Figure A.15: Predictive distribution and sDSS for Reciprocal base
model for one-step-ahead-predictions of test year 2015 of BNV dataset.
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Figure A.16: Predictive distribution and sDSS for Power-Adjusted

base model for one-step-ahead-predictions of test year 2015 of BNV dataset.
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