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Abstract

Single-cell RNA sequencing (scRNA-seq) is increasingly used for the characterization of
cells. The characterization of the composition of cell types in a sample is one of the most
common aims for scRNA-seq data. In recent years, several methods have been developed
for the clustering of scRNA-seq data but so far, there has been no comparison study
that has independently tested the various methods. The aim of this study is to evaluate
the performance of the various clustering methods for scRNA-seq data, using publicly
available datasets and simulations. Due to the high dimensionality and large technical
variation of scRNA-seq data, filtering and normalisation are crucial steps in the clustering
workflow. Here, we want to investigate the effect of filtering on performance using gene-
wise filtered and unfiltered datasets. Another aim is to test the various methods in their
default mode by using the default settings of the methods. Additionally, this study will
investigate the stability and runtime. Several well-performing methods have been found
such as SC3, Seurat, pcaReduce, CIDR, and SIMLR. pcaReduce suffers from instability,
while CIDR is not as flexible regarding the type of expression values.
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1 Introduction

Cells are one of the fundamental units of life. They show an immense complexity and
diversity. Their identity and function is determined by environmental stimuli, the physical
environment, the cell cycle and neighbouring cells (Wagner et al., 2016). Only recently
has it been possible to investigate the full transcriptome of a single cell. Single-cell RNA
sequencing (scRNA-seq) was first published by Tang et al. (2009). This method addresses
new biological issues, such as the identification of rare cell populations, and allows us to
measure the frequency of cell types in tissues, characterise differences in similar cell types
and investigate the heterogeneity of cell states or cell lineages (Andrews and Hemberg,
2017).

A typical scRNA-seq workflow consists of the isolation of single cells, the extraction
of RNA, cDNA library preparation, and the amplification and sequencing of the libraries
(see Figure 1). A wide variety of scRNA-seq protocols exists, differing in throughput, full
transcript or 3’ sequencing, costs and automatisation. Small-scale protocols are standard
PCR plate-based methods or methods in which cell isolation and library preparation
are combined into one protocol. A typical small-scale method is the PCR plate-based
SMART-seq2 (Picelli et al., 2013). Full transcripts are sequenced using a standard Illu-
mina approach. Typically, hundreds of cells are processed and spike-ins from the External
RNA Control Consortium (ERCC) are used for normalisation. On the other side of the
spectrum are droplet-based methods such as Drop-seq and 10xChromium, which allow
the processing of thousands of cells.

The differences between scRNA-seq and bulk experiments are the lower sequencing
depth (100’000 - 5 million reads per cell) compared to bulk experiments, higher variabil-
ity and more outliers in the scRNAseq data. scRNA-seq data suffers from technical noise,
batch effects and low capture efficiency. Confounding occurs when different biological
conditions are processed in different batches, making the deconvolution of technical noise
and biological effect impossible. This should be avoided by an appropriate experimen-
tal design that allows for the statistical deconvolution between unwanted and wanted
variation. In scRNA-seq the single experimental unit is the cell, making it not always
possible to use this approach. Different cells in an experiment may need different sample
processing, or their biological differences may affect the downstream analyses.

The starting amounts of the library preparation can be as low as ten picogrammes
of total RNA (Picelli et al., 2013). Two main issues arising due to the low starting
amount are overamplification and low capture efficiency. Low and moderate expressed
genes are not captured during the reverse transcription, which leads to dropouts of genes
and a zero-inflated gene expression. scRNA-seq data has a large number of zero counts,
which can be split into systematic, semi-systematic and stochastic zeros (Lun et al.,
2016a). Systematic zeros and semi-systematic zeros come from genes that are silent in a
subpopulation or across all cells, respectively. Stochastic zeros are zero counts that have
been obtained due to a low capture efficiency during the library preparation. They affect
genes with a count distribution near zero and have to be dealt with in the normalisation
steps.

To deal with technical noise Unique Molecular Identifiers (UMI) or spike-ins are used.
UMI are short random barcodes attached to the single-stranded cDNA in the reverse
transcriptase process. By counting the unique UMI reads aligned to the genome an
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estimated tag count is obtained. Spike-in are added before amplification. Under the
assumption that the amplification of the endogenous and exogenous RNA is similar, they
can be used for library size normalisation and to remove technical noise.

In general, scRNA-seq experiments consist of high-dimensional data. High-dimensional
data suffers from the curse of dimensionality (Wagner et al., 2016), which means the dis-
tances in high-dimensional data become unstable and subpopulations cannot be separated
(Andrews and Hemberg, 2017). Additionally, computational requirements are high. Re-
duction of the dimension is made by two approaches. Using linear or non-linear projections
of the data from the original high-dimensional to a lower-dimensional space, or by feature
selection, in which uninformative genes are removed.

The characterizing of the composition of cell types in a sample is one of the most
common aims for scRNA-seq data. Lately, a broad spectrum of clustering methods have
been specifically developed for the clustering of single cells, but up to now no comparison
study testing the methods independently is known. The aim of the study is the comparison
of clustering methods for scRNA-seq data. For the evaluation, publicly available datasets
are used, providing a range of the sequencing depth, dropout fractions, type of expression
values, number of subpopulations and difficulty of the dataset. Whereas these datasets
provide the means to test the clustering methods on realistic data it has the disadvantage
of unknown ground truth. To circumvent this, simulated datasets will be considered,
enabling the evaluation of the clustering results on a secured ground truth of the clusters
labels. Due to the high dimensionality and large technical variation of scRNA-seq data,
filtering and normalisation are crucial steps in the clustering workflow. Here we want
to investigate the effect on clustering using gene-wise filtered and unfiltered datasets.
Another aim is to test the methods in the default mode by using the default settings of
the methods with a minimum required user effort. This is considered as important as
many users will use the methods without any fine-tuning of the methods. Finally, also
the run time and the stability of the methods are investigated.
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Figure 1: Single-cell RNA sequencing workflow. The workflow consists of the following steps: the isolation
of the single cells and RNA, reverse transcription of the RNA to cDNA and the subsequent amplification,
library preparation and sequencing. Taken from Wikipedia (https://en.wikipedia.org/wiki/Single_
cell_sequencing).
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2 Methods

2.1 Dimension reduction

All methods require a dimension reduction step before clustering. Commonly used meth-
ods are either Principal Component Analysis (PCA) (Hotelling, 1933) or t-distributed
Stochastic Neighbour Embedding (tSNE, (van der Maaten and Hinton, 2008)). Given
a data matrix X(n × p) with n measurements and p random variables, the aim is the
reduction of dimension from p to q random variables. Then, PCA finds the linear combi-
nations a1x

T , a2x
T , . . . , aqx

T which have the successive maximum variance, subject to the
constraint that its sample correlations with previous akx

T equal zero. Or in other words,
PCA finds an orthogonal rotation of the original data in which the newly obtained first
coordinates have the highest possible variance, the second coordinates the second-greatest
variance etc. The linear combinations are the so-called principal components. Practically,
PCA is computed by spectral decomposition of the correlation matrix R or covariance
matrix S. The vectors a1, a2, . . . , aq are the eigenvectors of S or R corresponding to the
q largest eigenvalues (Jolliffe, 1986). Dimension reduction is achieved either by select-
ing only the first few PCs whose eigenvalues are above the average, or by determining
the number graphically by plotting the eigenvalues (the so-called scree plot). PCA is
deterministic and relatively fast but restricted to linear spaces.

In contrast, tSNE is a non-linear mapping (van der Maaten, 2013). Stochastic neigh-
bour embedding (SNE) transforms Euclidean distances to conditional probabilities pj|i.
That is the probability that xj is the nearest neighbour of xi under a Gaussian centered
at xi. The low-dimensional counterpart qi|j is similar with a Gaussian centered at yi and
variance of 1√

2
. SNE minimises the divergence between pj|i and qj|i using the Kullback-

Leibler divergence. tSNE implements a Student’s t-distribution for the low dimensional
space and a symmetric version of the cost function to simplify optimisation and to over-
come the crowding problem. In tSNE, the cost function uses the joint probabilities pij
and qij instead of conditional probabilities. To deal with large datasets, the Barnes-Hut
implementation uses random walks on the nearest neighbour network with a PCA step
to reduce the dimensionality of the high-dimensional data. tSNE is stochastic, depends
on a perplexity parameter and distances between clusters are not preserved.
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2.2 Clustering methods

Identifying unknown cell populations is one of the main uses of scRNA-seq data (An-
drews and Hemberg, 2017). Ten clustering methods have been evaluated for this study.
These methods and algorithms can be roughly classified into three groups: K-means,
graph-clustering and hierarchical-based clustering. SC3, SIMLR, Linnorm, tSNEkmeans
and RaceID use k-means in different fashions, while pcaReduce and CIDR are based on
hierarchical clustering. The graph-based methods are TSCAN and Seurat. An overview
of the methods is given in Table 1.

Table 1: Overview of the methods used in the study. Included in the table is a short description of the
methods, the method for dimension reduction and clustering, if the method accounts for zero-inflation
and if functions for normalisation and the auto-detection of the number of clusters are included.

Method Description dimension reduction clustering dropout normalization autodetection

tSNEkmeans tSNE dimension reduction and kmeans clus-
tering

tSNE k-means no no no

pcaReduce PCA dimension reduction and k-means clus-
tering through an iterative process. Step wise
merging of cluster by joint probabilities and
reducing the number of dimension by PC with
lowest variance.

PCA k-means, hierarchical clustering no no no

SC3 PCA dimension reduction or Laplacian graph.
k-means clustering on different dimensions.
Hierarchical clustering on consensus matrix
obtained by k-means

PCA
repeated k-means, hierarchical
clustering on similarity matrix of
k-means

no no yes

ZINBWaVE zero-inflated negative binomial model ZINB model k-means yes yes no
SIMLR Learning of a distance metric via multiple ker-

nel learning
tSNE k-means yes no yes

CIDR PCA dimension reduction based on zero im-
puted similarities. Hierarchical clustering on
a number of PC determined by variation of
scree method.

PCA hierarchical clustering yes no yes

Seurat Nearest neighbor graph based on PCA latent
space

HVG and PCA graph based no yes yes

TSCAN Ordering of cells by the use of a TSP algo-
rithm.

PCA graph based no yes no

Linnorm Normalisation using a subset of genes and clus-
tering through tSNE/PCA and k-means

tSNE k-means yes yes yes

RaceID Filtering and normalisation of cells and clus-
tering with k-means.

- k-means no yes yes

K-means K-means clustering finds a predefined number of centers k and cell assign-
ments, such that their within-group sum of squares is minimised (Hartigan and Wong,
1979). k cluster centers are randomly assigned. Each data point is then assigned to the
nearest center using Euclidean distances. The centers are then recomputed using the
average of the data points that are assigned to each of the k centers. This procedure is
iterated until the algorithm converges. The initial assignment of the centers is random.
Also, it’s not guaranteed to find the global minimum. The drawbacks of the method are
that it assumes spherical clusters and the sensitivity to scaling.

pcaReduce pcaReduce uses k-means clustering to find the number of clusters in the
reduced dimension given by PCA (Žurauskienė and Yau, 2016). The main assumption
is that large classes of cells are contained in low-dimension PC representation and more
refined subsets of these cells types are contained in higher-dimensional PC representations.
Given a gene expression matrix, the clustering algorithm starts with a k-means clustering
on the PCA projections Yn×q with q+ 1 clusters, where n is the number of cells and q are
the number of PCs. The number of initial clusters k is typically around 30, guaranteeing
that most cell types are captured. For all pairs of clusters, the joint probabilities are
computed. Two clusters are merged by selecting the pair with the highest joint probability
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or by sampling proportionally by the joint probabilities. The number of clusters is now
decreased to k − 1. Next, the PC with the lowest variance is deleted and a k-means
clustering with k − 2 centers is performed. This process is repeated until only one single
cluster remains. When using pcaReduce q cluster partitions with k − 1 clusters are
obtained. The user can then choose the clustering with the desired number of clusters.

SC3 Implemented in the SC3 method is gene- and cell-filtering, as well as a log transfor-
mation step of the expression matrix (Kiselev et al., 2017). The filtered expression matrix
is then used to compute Euclidean, Pearson and Spearman dissimilarity measures. By
PCA or Laplacian graphs a lower-dimensional representation of the data is obtained. K-
means clustering is then performed on the different dimensions. Next, a consensus matrix
of the different clustering results is computed. The consensus matrix is a binary similarity
matrix with entry one if two cells belong to the same cluster and zero otherwise. The
consensus matrix is obtained by averaging the individual clusterings. The last step is a
hierarchical clustering step with complete linkage. The cluster is inferred by the k level of
hierarchy, where k can be supplied by the user. The method allows for the estimation of
k. To reduce run time, SC3 changes the clustering method when supplied with more than
5’000 cells. Randomly selected cells are then used for the clustering approach described
above. These subpopulations are then used to train a support vector machine to infer the
cluster labels of the remaining cells.

SIMLR Most clustering methods rely on standard similarity metrics like Euclidean
distances (Wang et al., 2017). SIMLR uses a weighted function of multiple kernels to
compute a distance matrix. The assumptions is that the matrix has a block-diagonal
structure, where the blocks represent the clusters c. The kernels are Gaussian kernels
with a range of hyperparameters defining the variance of each kernel. The similarities
are then used for data visualisation with tSNE or clustering using k-means on the latent
space representations of the similarities.

CIDR Clustering through Imputation and Dimensionality Reduction (CIDR) takes the
high dropout rate in scRNA-seq data into account (Lin et al., 2017). The method splits the
squared Euclidean distance into three terms. These consist of one term in which a given
gene is non-zero for a given cell pair, a second term in which one gene is zero and a third
where both are zero. The authors state that only the cases where one gene is zero have a
strong influence on the distances and the subsequent dimension reduction and clustering.
To reduce the dropout-induced zero inflation, the method imputes the third term by its
expected value given the distribution of the dropouts. The algorithm works basically
in five steps: (i) Find features that are dropout candidates. That is genes that show an
expression level below a threshold T . (ii) Find the empirical dropout probability using the
whole data set. (iii) Calculate the dissimilarity using Euclidean distances together with a
pairwise imputation process. Features that fall below the threshold T are imputed using
a weighting function. The weighting is based on the probability of being a dropout. (iv)
Perform dimension reduction using PCA on the imputed distance matrix. (v) Perform
hierarchical clustering using the first few PCs. The number of PCs can be determined by
several methods. Here, we use an implemented variation of the scree method.
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Linnorm Linnorm is a normalisation and transformation method for count data (Yip
et al., 2017). The main assumption is that a homogeneously expressed gene set exists.
Using this gene subset, and by ignoring zero counts, the normalisation and transformation
parameters are calculated. After normalisation, the expression values should show both
homoscedasticity and normality. Linnorm includes functions for subpopulation analysis
by t-SNE or PCA dimension reduction and subsequent k-means or hierarchical clustering.

First, the values are scaled according to the library size. Low count genes and genes
that show high technical noise are filtered out. By default, genes showing a non-zero
expression in at least 75 % of the cells are retained. Note that this threshold is set to
maintain at least three non-zero cells per gene, in order to calculate the skewness of
the gene distributions. By gradually increasing this threshold only genes that show a
negative correlation between the mean and the standard deviation (SD) is assured. A
locally weighted scatter plot smoothing (LOWESS) curve is fitted on the mean versus SD
relationship. The SD is scaled and outliers based on the SD are removed. Next, genes
that show a high skewness are filtered out. The data is then transformed using a modified
log transformation. The dimensions are reduced by PCA or tSNE and clustering using
the k-means algorithm. The R packages fpc, vegan, mclust and apcluster are used to
determine the number of clusters.

TSCAN TSCAN uses a pseudo-time algorithm for cell ordering (Ji and Ji, 2015). PCA
dimension reduction on the preprocessed gene expression data is performed. Preprocessing
is done by adding a pseudo-count and log transformation. Low expressed genes are filtered
out based on the zero-proportion and their covariance. Clustering is done by model-based
clustering.

RaceID Rare Cell Type IDentification (RaceID) is a method developed for the data
preprocessing, detection of outlier cells, k-means clustering and the inference of rare
subpopulations (Grün et al., 2015). Cells are filtered based on a minimum number of
transcripts. The expression matrix is normalised by scaling by the library size. To ensure
non-zero values, a pseudo-count of 0.1 is added to the expression data. Using a gene filter,
genes with a high zero-proportion are filtered out as well. The implemented clustering
function uses k–means and the clusterboot function from the R package fpc for cluster-
ing. In contrast to the original k-means clustering in clusterboot, the newly developed
function can use not only euclidean distances. The number of clusters is determined by
the use of the gap statistic implemented in the clusterboot function.

The authors state that the algorithm is based on absolute transcript counts and is not
tested for datasets containing other expression values than counts. With respect datasets
other than the Zheng data the results should be interpreted carefully.

Seurat Seurat uses raw counts, where filtering is both done gene- and cell-wise. A
user-specified threshold for the minimum number of expressed features per cell and the
minimum number of the gene-wise expression per cell has to be defined. The counts
from each cell are normalised by their total counts, scaled by a factor of 10’000 and
log-transformed. A set of high-variable genes (HVG) is found by calculating the average
expression and dispersion for each gene. Based on the average expression the genes are
divided into bins. Within each bin z-scores for the dispersion are calculated. The HVG
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are then selected by their standard deviation. Dimension reduction is done by PCA.
The number of PCs is determined by a permutation test or graphically by plotting the
eigenvalues of the PCs. Clustering is graph-based using a KNN-graph of the Euclidean
distances in the PCA space. Clustering of cells is done by the Louvain algorithm (Butler
and Satija, 2017).

ZINBWaVE Zero-inflated Negative Binomial-based Wanted Variation Extraction (ZINB-
WaVE) uses zero-inflated negative binomial distribution to model the count data (Risso
et al., 2017). By the use of a ZINB distribution, dropouts and over-dispersion are taken
into account. The model allows for the inclusion of cell-level and gene-level covariates,
such as batch effects or quality control measures. Included are also unobserved sample-
level covariates, these are inferred from the data and can represent the unwanted variation
or the biological effects of interest. The parameter estimation is done through a penalised
likelihood approach. ZINBWaVE can be used for a low-dimensional representation of the
data and in this study, clustering is done by the use of k-means.

2.3 Datasets

The datasets Kumar, Trapnell and Koh were downloaded from the conquer repository
http://imlspenticton.uzh.ch:3838/conquer. The Zheng data was downloaded from
the 10xGenomics repository:
https://support.10xgenomics.com/single-cell-gene-expression/datasets. For the
Kumar, Trapnell and Koh data Transcripts Per Million (TPM) on the count-scale which
were independent of differences in the transcript usage between samples are used (Soneson
et al., 2015). The Zheng data consists of UMI counts. Figure 2 shows the datasets in the
tSNE space. Table 2 shows several summary statistics of the datasets. To have a measure
of the compactness and difficulty of the datasets the silhouette widths were computed.
Reported are the average silhouette widths for each dataset.

Kumar et al. (2014) The Kumar dataset consists of Dgcr8-knockout and V6.5 vari-
otypes from mouse embryonic stem cells (mESCs). Cells were cultured on a serum with
a Leukaemia Inhibitory Factor (LIF) or under Erk and GSK3 signalling inhibition (2Li).
The authors investigated the expression of pluripotency factors and their involvement in
the heterogeneity of pluripotent stem cells. Sample preparation and whole transcriptome
amplification was done using a Fluidigm C1 system and following a SMARTer protocol.
Sequencing was done using the Illumina system with paired-end reads. Sequencing depth
was 1 million reads per cell.

Trapnell et al. (2014) Trapnell et al. (2014) used human skeletal muscle myoblast
cells to investigate temporal differentiation. Cells were expanded under high–mitogen
conditions. Differentiation was induced by switching to low-serum medium. Cells were
captured before switching to low-serum medium (T0), after 24 h (T24) and 48h (T48).
Between 49 and 77 cells were isolated at each time point and used for single mRNA-
Seq library preparation by the use of a Fluidigm C1 system and following a SMARTer
protocol. Libraries were sequenced with paired-end sequencing on a HiSeq 2500 (Illumina)
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platform. Sequencing depth was 4 million reads per library. The authors excluded libraries
that contained fewer than 1 million reads.

Koh et al. (2016) H7 human embryonic stem cells (hESCs) were used to study
human mesoderm development. Starting from undifferentiated stem cells, several differ-
entiation stages, sorted by time point and further refined by fluorescence-activated cell
sorting (FACS) were isolated. Finally, ten different cell lines were obtained: undiffer-
entiated H7 hESCs (H7hESC), anterior primitive streak populations (APS), mid primi-
tive streak populations (MPS), lateral mesoderm (D2LtM), FACS-purified DLL1+ parax-
ial mesoderm populations (DLL1pPXM), early somite progenitor populations (ESMT),
PDGFR+ sclerotome populations (Sclrtm) and two different dermomyotome populations
(D5CntrlDRmmtm). In total, ten different cell types were then sequenced on a Fluidigm
C1 system and following a SMARTer protocol. Libraries were sequenced through paired-
end sequencing on a HiSeq 2500 (Illumina) platform. Sequencing depth was 1 - 2 million
reads per cell.

Zheng et al. (2017) FACS-purified fresh peripheral blood mononuclear cells (PBMCs)
were used to assess the performance of the 10xGenomics Chromium system. Sample
preparation and library construction were done with a 10xGenomics Chromium system.
The libraries were sequenced using an Illumina system. For this study, the datasets for
CD19+B, CD8+CD45RA+ naive cytotoxic, CD14+ monocytes and CD4+/CD25+ regula-
tory T cells were used to construct an artificial population. From each library, 500 cells
were sampled before being merged to obtain a single expression matrix.

Simulated datasets Using the Splatter package, expression data were simulated (Zap-
pia et al., 2017). Parameters for the simulation were estimated from a subpopulation of
the Kumar dataset. Embryonic stem cell variotypes V6.5 with signalling inhibition and
LIF were used for the estimation. SimDataKumar consists of 500 cells with four subpop-
ulations. The fractions per subpopulations were 0.1, 0.15, 0.5 and 0.25 of the total cell
population. The probability that a gene is differentially expressed is 0.05, 0.1, 0.2 and 0.4
in the four different groups. Similarly, SimDataKumar2 consists of four subgroups with
fractions of 0.2, 0.15, 0.4 and 0.25 of a total of 500 cells. The fractions of differentially-
expressed genes were lower, with a probability of 0.01, 0.05, 0.05 and 0.08. The spike-in
RNA is excluded before the parameter estimation.

Table 2: Summary statistics of the datasets. Shown are the number of cells, the number of subpopulations,
the median number of genes, the median total read counts in millions, the average silhouette widths and
the scRNA-seq protocols.

Dataset Sequencing
Method

No of
cells

Median no.
of genes

Median total
counts (mio)

Avg. silhou-
ette

No of sub-
populations

Ref.

Kumar SMARTer 268 25,894 1.67 0.53 3 Kumar et. al (2014)
Trapnell SMARTer 288 13,616 1.86 0.04 3 Trapnell et. al (2014)
Zheng 10xChromium 2000 489 < 0.01 0.1 4 Zheng et al. (2017)
Koh SMARTer 651 13,765 1.3 -0.04 10 Koh et al. (2016)
simDataKumar - 500 29,861 1.78 0.15 4 Simulation
simDataKumar 2 - 500 29,974 1.78 0.03 4 Simulation
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Figure 2: tSNE representation of the datasets (a) Kumar , (b) Trapnell, (c) Zheng, (d) Koh, (e) sim-
DataKumar and (f) simDataKumar2 . The subpopulations in the datasets are color coded.
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2.4 Data transformation and normalisation

Data transformation RNA-seq read counts may suffer from heteroscedasticity and
skewness (Zwiener et al., 2014). Genes with higher mean have on average a higher vari-
ance across cells leading to unequal variances between different genes. To handle this
property different transformation were considered. Namely, a binary logarithmic transfor-
mation with a pseudo-count of one, arcus sinus transformations and a variance-stabilising
transformation (VST) from the DESeq package (Anders and Huber, 2010).

Log transformations are often used when dealing with skewed data and are a standard
approach for normalising RNA-seq data. A pseudo-count of one is added to avoid taking
the log of zero, and the transformation is defined as:

xlogij = log2(xij + 1) (1)

where xij are the counts of gene i and cell j. Log transformations will have an impact
on extreme values. However, they will not address the problem of heteroscedasticity.
Additionally, arcus sinus transformation were considered

xarcsinij = arcsin

√
xij

c
(2)

After transformation, the mean and the variances should be independent. VST addresses
the problem of extreme values and unequal variances across genes. The counts are assumed
to follow a Negative Binomial Distribution. The gene wise variances are then given by
the relationship ν(µj) := σj = µj + φµ2

j . The dispersion parameter φ is is defined as
φ = a0 + a1

µj
with two constants a0 and a1 estimated using a generalized linear model. The

transformed expressions are then derived by the variance-mean relation by

xvstij =

∫ xij

0

1

ν(µj)
dµj (3)

After such transformation, the mean and the variances of the genes should be independent,
especially the high variances for low mean counts. For the study, a binary logarithmic
transformation plus a pseudo-count of one is used. The mean-SD dependence for different
transformations is shown in Figure 3.
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Filtering and normalisation The quality control of the data sets follows Lun et al.
(2016b). In the first step, genes that are not expressed in any cell (systematic–zeros) are
removed in order to reduce the size of the expression matrix. Cells were filtered based
on the library size and the total number of genes. Cells with log10 library sizes that are
more than three median absolute deviations (MADs) below the median log-library size
were filtered out (see Appendix A.2, Figures 16, 17, 18, 19, 20 and 21; a and b ). The
same filter was used with respect to the total number of genes per cell. For the Kumar
and the Zheng dataset, ERCCs and mitochondrial counts were available. Cells with large
proportions of ERCC or mitochondrial RNA are seen as low-quality cells. In the Kumar
dataset, cells with a median ERCC proportion above three MADs are as well removed.
The same filter was used for mitochondrial RNA in the Zheng data.

The metadata for the Trapnell dataset contained information about the cell quality.
In this dataset, cells that were marked as debris and any single libraries consisting of
more than one cell were filtered out. After filtering of the Kumar, Trapnell, Koh, Zheng,
simDataKumar and simDataKumar2 datasets, 496, 222, 531, 1996, 496 and 496 cells were
retained, respectively. The filtering was less strict in the Koh dataset compared to the
original analysis where they retained 498 cells.

Low-abundance genes influence the mean-variance trend. Here low-abundance genes
are filtered by their average counts (see Appendix A.2, Figures 16, 17, 18, 19, 20 and 21;
d ). For the Kumar, Trapnell data and the simulations, genes with average counts less
than one are removed. The Zheng data set had a shallower sequencing depth. A different
filter is used, and features which are not expressed in at least two cells are excluded.

Another examination of the technical variation was done using the marginal variances
(Lun et al., 2016b). For that, a linear model with the expression values per gene as
response variables and a chosen explanatory variable is fitted. The correlation coefficient
can then be seen as the marginal explained variance for the explanatory variables.

A wide variety of normalisation methods exist based on bulk RNA methods. These
methods are usually not designed for dealing with the zero-inflated nature of scRNA-seq
data (Lun et al., 2016a). Methods for normalisation of scRNA-seq data are based on spike-
ins or RNA counts. Spike-in RNA is added before the library preparation. Any changes
in the spike-in coverage are assumed to be due to technical factors. The normalisation is
done by scaling the counts to level the spike-in. However, this approach is not feasible as
none or only a limited number of spike-in counts were present in the datasets.

Here, normalisation through pooled cells is used, where the problem of excess zero
counts is reduced by the pooling of multiple cells (Lun et al., 2016a). The normalisation
procedure can briefly be described as follows: (i) Different pools of cells are defined. (ii)
The expression values are summed across the cell pools. (iii) The cell pool is normalised
against an average of the summed expression values. (iv) This step is repeated several
times to construct a linear system. The summed count size is then used to estimate the
corrected size factor. The size factors for the pooled cells are then ”deconvoluted” into
cell-based factors.

12
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(a) Kumar dataset
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(b) Koh dataset
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(c) Trapnell dataset
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(d) Zheng dataset

Figure 3: Shown is the gene-wise standard deviation versus the mean for the datasets Kumar (a), Koh
(b), Trapnell (c) and Zheng (d). Different transformations were considered; log, arcus sin and VST
transformations.
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2.5 Evaluation of the clustering methods using different run
modes

Using filtered and normalised data, the methods were operated in the default mode,
with the number of clusters given by the ground truth and under a range of parameters.
Additionally, the methods were also run with the unfiltered datasets. Many users will
use these methods in the default mode, hence it was seen as important that the results
were provided without any fine-tuning of the parameters. The run parameters in the
default mode were given either according to the packages default settings or by using
examples from the package vignettes. If the method was able to detect the number of
subpopulations, this auto-detection function was used to infer the number of clusters.
When the number of clusters had to be provided, the number of clusters given by the
authors of the datasets were used. Clustering results have to be evaluated using some
sort of ”ground truth”. Here, the cell annotation provided by the authors of the datasets
or the given truth from the simulations were used. Seurat, TSCAN, RaceID, ZINBWaVE
and Linnorm each have their own filtering and normalisation procedures. In order to test
these methods preprocessing capabilities, the methods were tested with the unprocessed
raw counts. The methods SC3, tSNEkmeans, pcaReduce, SIMLR and CIDR do not
include filtering and normalisation steps. For these methods filtered, normalised and log-
transformed counts, detailed in section 2.4, were used. An overview of the filtering and
normalisation steps used by the methods is given in Table 4.

In a further analysis, the clustering methods were tested for different values of the
number of clusters k. Seurat does not allow the number of clusters to be set. Hence,
Seurat was run under a range of the parameters of the number of neighbours and the
resolution parameter.

To assess the stability of the clustering methods, a random subsample of cells without
replacement was drawn from the Kumar dataset. The size of the subsample was 100
and the subsampling was repeated 30 times. The clusterings for each method were then
compared using the overlapping samples and the ARI scores.
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Table 3: The table summarizes the parameter settings for the different run modes. Shown are the
parameters for the datasets Kumar, Trapnell, Zheng, Koh, simDataKumar and simDataKumar2.

Method Parameter default unfiltered filtered

CIDR k NULL 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
nPC 4 5, 10, 8, 8, 3, 3 5, 10, 8, 8, 3, 3
cMethod Ward.D2 Ward.D2 Ward.D2

tSNEkmeans k 3, 3, 4, 9, 4, 4 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
perplexity 30 30 30
nPC 50 20 20

pcaReduce k 3, 3, 4, 9, 4, 4 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4 ,4
nbt 100 100 100
method S S S

Linnorm k range 1 to 20 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
minNonZeroPortion 0.75, 0.75, 0.1, 0.75, 0.75, 0.75 0.75, 0.75, 0.1, 0.75,

0.75, 0.75
0.75, 0.75, 0.1, 0.75
,0.75, 0.75

BE strength 0.5 0.5 0.5

SIMLR k 3, 3, 4, 9, 4, 4 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
normalize FALSE TRUE TRUE

SIMLRlarge k 3, 3, 4, 9, 4, 4 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4

SC3 ks range from 2 to 15 NULL NULL
k NULL 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
pct dropout max 90 90, 90, 99, 99, 90, 90 90, 90, 99, 99, 90, 90

TSCAN k range from 2 to 10 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
minexpr percent 0.5 0.5, 0.5, 0.1, 0.5, 0.1,

0.1
0

Seurat resolution 0.6, 0.6, 0.6, 0.7, 0.6, 0.6 0.6, 0.6, 0.6, 0.7, 0.6,
0.6

0.6, 0.6, 0.6, 0.7, 0.6,
0.6

neighbors 30 10 percent of dataset 10 percent of dataset
mincell 0 2 0
mingenes 0 0 0
dimsuse NULL 9, 12, 10, 15, 10, 10 9, 12, 10, 15, 10,10

ZINBWaVE k 3, 3, 4, 9, 4, 4 3, 3, 4, 10, 4, 4 3, 3, 4, 9, 4, 4
number of HVG genes 1000, except Zheng =200 1000, except Zheng = 200 1000 , except Zheng = 200
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2.6 Parameter settings

The number of clusters k is the main parameter used for most of the methods. Except
for Seurat, the clustering functions for each of the methods allow for the number of
subpopulations to be directly controlled. Seurat allows the setting of k only indirectly
through a resolution parameter. The other important parameters were the number of
kNN, the number or the type of latent space dimensions used for the clustering algorithms
and the settings of the filtering and normalisation steps. The methods pcaReduce, SC3,
Linnorm, RaceID and TSCAN, can be run in an unsupervised mode, and no parameters
have to be provided. Although it is possible to run these the methods unsupervised, fine-
tuning of the parameters is often recommended by the authors of the methods. CIDR,
tSNEkmeans and SIMLR need the specification of the number of clusters k. For Seurat,
the number of PCs or the number of the kNN have to be defined. An overview of the
chosen parameter settings is given in Table 3. Next, a brief overview of the chosen
parameter setting and the rationale behind it is given.

tSNEkmeans To reduce the run time the Barnes-Hut tSNE implementation from the
R package Rtsne was used. Different values of the perplexity parameter can give different
tSNE representations; however, here the default setting with the perplexity parameter set
to 30 was chosen. tSNE is performed on the first 50 dimensions in the PCA latent space
in the default mode. Otherwise, 30 dimensions were chosen.

pcaReduce For pcaReduce, the range of clusters cannot be specified. Instead, the
number of dimension q in the PCA latent space are to be specified. The results are
q − 1 different clustering solutions, with k − 2 clusters. For all data sets, 30 dimensions
were chosen, and the evaluation was based on the respective number of clusters in the
subsequent analysis. The method is stochastic and has to be run several times in order
to give stable results. Here, 100 samples were chosen, and the merging of clusters was
done by sampling that was proportional to the joint probabilities. In order to obtain a
consensus from the 100 clusterings, the ensemble clustering methods implemented in the
R package clue were used.

SC3 A gene-filtering step is implemented in this method. Based on the dropout dis-
tribution, genes that are below the 10th and above the 90th percentile are filtered out.
However, for the Koh and Zheng datasets, the upper threshold is set to the 99th per-
centile. Due to the high dropout rate in these datasets, it was otherwise not possible to
run the method. When running under the default mode, a range of clusters from 2 to
10 are given, and the number of subpopulations is automatically inferred by the method.
Otherwise, k is set to the number of annotated subpopulations.

SIMLR A gene-wise mean normalisation step is implemented by the method. When
running in the default mode, no normalisation was used. However, in the other run modes
normalisation was included. Without normalisation, the method fails in the spectral
decomposition of the similarity matrix. The tuning parameter was set to the default
value of 10 on all runs. The number of clusters is set according to the run mode that is
being used.
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CIDR CIDR uses three parameter settings: the number of clusters, the number of PCs
(nPCs) and the method for hierarchical clustering. By default, Ward linkage is used in
the hierarchical clustering. CIDR is able to automatically detect the number of clusters
n. By default, n is set to nPC ∗2+2 and the parameter nPC is set to 4 by default. When
running in a mode other than the default, the parameter nPC was chosen by a variation
of the scree-plot, and the number of clusters was set accordingly to the respective dataset.
The number of PCs used for the datasets Kumar, Trapnell, Koh, Zheng, simDataKumar
and simDataKumar2 is 5, 10, 8, 8, 3, and 3, respectively.

Seurat Implemented in the method is a normalisation and a gene-filtering step. The
filtering criteria are based on how many cells show an expression of a certain gene and
the number of total features per cell. By default, no cell-filtering step is included when
preprocessed datasets are used.

When running with unfiltered data, genes that are expressed in less than two cells
were filtered out. When using the Zheng data, the threshold is set to one, according to
the filtering detailed in section 2.4.

The default log normalisation is used, which is currently the only option. The scale
factor for cell-level normalisation was set to the default of 10’000. As a default, no
explanatory variables were chosen to be regressed out. The experimental batch would
be a natural choice as a covariate, but it cannot be used as the datasets containing this
information are completely confounded.

The clustering parameters to be defined were a resolution parameter and the number
of PCs. The resolution parameter was set to 0.7 for the Koh dataset and 0.6 for the other
datasets. The number of PCs was determined according to the methods recommended
by the authors. Namely, through the use of a scree plot and a jackknife permutation test
the number of PCs was determined. In terms of the datasets, Kumar, Trapnell, Zheng,
Koh, simDataKumar and simDataKumar2 were used, with the number of PCs being 9,
12, 10, 15, 10, and 10, respectively. Ten percent of the total cells were used as the number
of neighbours in the k-nearest neighbour algorithm.

TSCAN TSCAN adds a pseudo-count of one with the data being log-transformed;
this setting is used for all run modes. In the default run-mode, genes that show zero
expression in at least half of the cells are filtered out. To be able to run the method using
the unfiltered data, this threshold was changed to 0.1 for the Zheng, simDataKumar and
simDataKumar2 data.

This filter was switched off when working with the prefiltered datasets. By default,
the method infers the number of clusters from a range of 2 to 9 clusters. Here, a range
from 2 to 10 was used in the default mode. If run semi-supervised, the respective number
of clusters is given. By default, ”ellipsoidal, varying volume, shape, and orientation” is
used for the model.

RaceID In default mode, cells with a minimum total library size of 3’000 are retained.
The gene filter is set to filter out all genes with less than five transcripts in at least one
cell. Over-saturated genes, which have over 500 transcripts per cell, are also filtered out.
Here, we only use this filter with the Zheng data, as it is the only set that contains UMI
counts. Otherwise, the filter is turned off. The gap statistic is used to determine the
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number of clusters. The default setting from the clusterboot function is set to a range
from 2 to 20 clusters.

When using the run mode with unfiltered datasets, the minimum total library size was
set to 1’000, 500, 400, 420, 1’200 and 1’200 for the datasets Kumar, Trapnell, Koh, Zheng,
simDataKumar, and simDataKumar2, respectively. These thresholds were chosen so that
they corresponded with the thresholds based on the MADs. The filters for over-saturated
genes and minimum gene expression were turned off as well, corresponding to the filtering
steps in section 2.4. Filtering, based on the original analysis, was done using mean counts.
To set the gene filter, we retained those genes that showed at least one transcript for two
cells in the count-based datasets. The exception to this was the Zheng dataset, where
genes which show at least five counts in two cells are retained.

When the method is run with prefiltered datasets, the filters are turned off, and the
appropriate number of clusters is provided. In all run modes, the Pearson metric is used
as the distance measure.

Linnorm Except for the Zheng data, the filtering thresholds are set to the default in
all run methods. Due to the low sequencing depth of the Zheng dataset, the minimum
non-zero expression had to be set to a proportion of 0.1. tSNE and k-means are used for
dimension reduction and clustering, respectively. In the default run mode, a range of k
from 2 to 20 was provided in order to allow us to infer k.

ZINBWaVE Lowly expressed genes are removed by removing genes that do not show
at least five reads in at least five cells. Following the recommendations by the authors
only 1’000 highly variable genes are retained, mainly because of computational reasons.
The number of dimensions for the low-dimensional space K is set to two and a subsequent
clustering on the latent space is done by the use of the k-means algorithm.
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2.7 Evaluation metrics

One of the evaluation criteria used was the Hubert-Arabje Adjusted Rand Index (ARI),
which is used to compare two partitions (Hubert and Arabie, 1985). The metric is adjusted
for chance by subtracting the uncorrected index by its expectation, and divided by a scale
factor. Independent clusterings have an expected value of zero and are one if there is full
agreement between the partitions. The index can take on negative values. Given there
are two partitions X and Y of n elements, they can be summarized in a contingency table
with i rows and j columns. The ARI is then defined as
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∑
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where nij are the number of elements in agreement between the partitions and ai and bj
are the row sums and column sums, respectively. Another metric is the F1 score. It is
the weighted average mean between precision and recall. The weights are defined as the
inverse of the precision and recall. The F1 score is defined as

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5)

F1 scores can take on values between zero and one. The predicted clusters and the ”ground
truth” were matched by the Hungarian algorithm. Some of the clustering methods are
unsupervised and the partitions do not need to have the same sizes (non-bipartite). This
causes problems with the Hungarian algorithm. As a solution to this issue, the assignment
matrix was augmented with dummy columns that had the maximum matrix value as their
entries.

2.8 Software and environment

All analyses were performed in R (version 3.4.2 (2017-09-28)) (R Core Team, 2013),
a free software environment for statistical computing and graphics which is available
at http://www.r-project.org/. The following method-specific R packages were used:
Rtsne (version 0.13), ClusterR (version 1.0.8), pcaReduce (version 1.0), cidr (version
0.1.5), Linnorm (version 2.2.0), Seurat (version 2.1.0), SIMLR (version 1.4.0 ), TSCAN
(version 1.16.0), zinbwave (version 1.0.0). These can be downloaded from the Biocon-
ductor repository https://bioconductor.org. The package RaceID can be downloaded
from the repository https://github.com/dgrun/RaceID. In addition the base packages
scater (version 1.6.0), ggplot2 (2.2.1), cluster (version 2.0.6), pheatmap (version
1.0.8), clValid (version 0.6-6), clue (version 0.3-54) and splatter (version 1.2.0)
were used in the analysis. The computing environment had the following specifications:
macOS Sierra (Version 10.12.6) and 2.7 GHz Intel Core i5 Processor with 8 GB RAM.
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Table 4: Overview of filtering and normalisation steps by method.

Method Cell filter-
ing

Gene filter-
ing

NormalisationAutodetectExpression
values

CIDR no no no yes log-norm counts
Linnorm no yes yes no counts
pcaReduce no yes no no log-norm counts
RaceID yes yes yes yes counts
SC3 no yes no yes log-norm counts
Seurat yes yes yes no counts
SIMLR no no no no log-norm counts
TSCAN no yes yes no counts
tSNEkmeans no no no no log-norm counts
ZINBWaVE no yes yes no counts

20



Figure 4: Comparison of the datasets and the simulations. Shown are the gene means (a), variances (b),
the mean-variance relationship (c), library size (d), the distribution of zeros per gene (e) and per cell (f)
and the relationship between the mean expression of a gene and the percentage of zeros (g). The plots
are based on the compareSCEs function from the R-package Splatter.
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3 Results

3.1 Evaluation of the performances of the methods

For this study, the methods were evaluated using six different datasets and three different
run modes. By running the clustering methods using the unfiltered and filtered datasets,
we can (to some extent) investigate the effect of the filtering and normalisation steps on
the clustering. RaceID, Linnorm, TSCAN and Seurat each have their cell or gene-wise
filters implemented; these were included when the unfiltered datasets were used.

By running the methods under the default mode, we can investigate the performance
with a minimum user effort. Also, some methods are able to auto-detect the number of
clusters, and this setting was included when running in the default mode. The methods
were then run with a refined parameter setting and the annotated number of clusters.
Note that the number of parameters varied considerably between the methods; in this
study, we chose only the parameter that is regarded as the most important.

The clusterings of the methods were assessed by the use of the ARI and F1 metrics.
The ARI scores for the different run modes are shown in Figure 5 and 6. According to
the dataset used, Figure 8 shows the differences in ARI scores between the method with
the highest ARI score and the other methods. The differences between the ARI scores
of the different run modes are shown in Figure 7. The comparison of the different run
modes is strictly speaking, only possible for deterministic methods such as CIDR, and is
not possible for stochastic methods (e.g. tSNEkmeans). The F1 scores for the filtered
dataset are shown in Figure 9. The results for the run mode with the default setting and
the unfiltered data are shown in the Appendix (see Figure 14, 15).

The datasets and simulations varied in the number of cells, the library sizes, the
number of subpopulations, the zero-fractions per gene and the type of the expression
values (see Table 2 and Figure 4). The datasets Kumar, Trapnell and Koh show a similar
distribution in the gene means, variances and the library sizes. The Zheng dataset had
a lower sequencing depth and shows a high dropout rate. The parameter estimation for
the simulated dataset is based on the Kumar dataset. When comparing the simulations
with the Kumar datasets they are comparable by their mean, variance and library size
distributions, but their gene and cell-wise zero fractions are lower. In order to assess the
accuracies of the methods, some ground truth of the type of subpopulations is needed.
Here, we used the annotation given by the authors of the datasets. This may not be
correct; the cell types could be wrongly annotated, or the annotated clusters might consist
of more refined unknown subpopulations. However, here we used this annotation because
it was seen as the best information available. The datasets were chosen such that there
was a range in clustering difficulty. As an objective measure of the clustering difficulty,
the average silhouette coefficient is used.

The average silhouette width of the Kumar dataset is with 0.53 the highest for all
datasets. It consists of three distinct cell populations and is the simplest of all the datasets.
A high proportion of the variances are explained by the treatment or the batch effect, as
these two are not separable (see Figure 16, e). This dataset can be seen as a benchmark
for the dataset as no method should have problems in clustering this dataset. Using the
filtered datasets, SC3, pcaReduce, SIMLR, CIDR and ZINBWaVE, all achieved a correct
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partition of the cells. The other methods also achieved high accuracies with ARI scores
between 0.97 and 0.99. The F1 scores give a more in-depth view of the actual partitioning,
and for the filtered data we have similarly high F1 scores for each of the subpopulations,
showing that no method failed to cluster one of the subpopulations. In contrast to the
uniform results with the filtered datasets, the results were more variable when running
in default mode and with the unfiltered datasets. Running with the default setting,
and automatically detecting the clusters, methods RaceID, SC3 and TSCAN failed to
detect the correct number of clusters. RaceID and TSCAN partitioned the cells into four
clusters and SC3 into five clusters. Additionally, TSCAN failed to correctly partition the
cells into three subgroups. Note that for SC3 and TSCAN, the extra cluster consisted
only of a few cells and had only a marginal effect on the final clustering. ZINBWaVE,
tSNEkmeans, pcaReduce and Linnorm failed in clustering the three populations correctly.
With the unfiltered datasets, the methods show similar results where most of the methods
again achieved ARI scores close to one. There are two exceptions that had a drop in the
performance: Linnorm and ZINBWaVE. These two methods failed by clustering one
particular subpopulation.

The simDataKumar simulation has an average silhouette width of 0.15 and is one of
the simpler datasets for clustering. Three out of four subpopulations in the dataset are
distinct, with a high proportion of DE genes. Only 5 % of the subpopulation Group 1 are
DE genes and based on the tSNE representation of the dataset, the two subpopulations
Group1 and Group2 are not distinguishable (see Figure 2). For the filtered data and run
with the annotated number of clusters, the methods SC3, Seurat, pcaReduce, SIMLR
and CIDR had high ARI scores between 0.95 and 1.00. Also, Linnorm and TSCAN
showed a somewhat lower performance with an ARI score of 0.87 and 0.90, respectively.
However, tSNEkmeans, TSCAN and RaceID failed to correctly cluster the dataset with
ARI scores between 0.31 and 0.65. The low ARI scores are due to failing to partition the
subpopulation Group 1. TSCAN failed in clustering the results due to the high threshold
for the zero expression. CIDR, RaceID, SC3 and Seurat, the methods with an auto-detect
function, were all able to correctly identify the number of clusters. Running the data in
default mode had no impact on the clusterings for pcaReduce, SC3, CIDR, RaceID,
tSNEkmeans and SIMLR. However, Seurat and ZINBWaVE had a different partition.
Using unfiltered data affected the methods Linnorm, RaceID and TSCAN. Note that for
Linnorm and RaceID this could be due to the stochasticity of the method. For the other
methods, it had no impact, and the ARI scores were stable.

The Zheng dataset is a mixture of four populations of PBMCs. The two subpopulations
CD19+B and CD14+monocytes are distinct cell populations, whereas the naive cytotoxic
and regulatory T cells are overlapping populations. The tSNE representations show that
CD19+B and CD14+monocytes form two separate clusters, with a third cluster that
consists of the two nested populations naive cytotoxic and regulatory T cells. The dataset
has a medium difficulty with an average silhouette width of 0.1. The dataset has a low
sequencing depth and a high dropout rate. The performances given by the methods were
highly variable on the different run modes. With the filtered data SC3, pcaReduce and
tSNEkmeans had ARI scores near one. Also, Seurat, Linnorm and SIMLR had high
accuracies with ARI scores between 0.88 and 0.92. CIDR dropped in performance when
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compared to its performance for other datasets. The Zheng datasets consist of UMI
counts, for which CIDR is not designed. When running in the default mode CIDR, SC3
and Seurat detected an extra cluster, which explains the lower performance for Seurat and
SC3 in the default run mode. With the exception of method SIMLR (for large-scale data)
and ZINBWaVE, using filtered data had no impact on the performance of the methods.

The more difficult simulation simDataKumar2 has an average silhouette width of 0.03.
For this dataset, all the proportions of DE genes are relatively low with five to eight
percent. The subpopulation Group 3 is distinguishable from the other three in the tSNE
representations. Group 1, Group 2 and Group 4 form a single non-separable cluster in
the tSNE representation. SC3, SIMLR, Seurat, CIDR and pcaReduce were mostly able
to correctly cluster the cells when using the filtered datasets and run with the annotated
number of clusters. The ARI scores were between 0.9 and 1.00. The other methods
showed profoundly lower performances. When running under the default mode, SC3
and RaceID detected only three of the clusters when using the auto-detect function of the
methods, explaining the drop in the ARI scores for these methods. The methods Linnorm,
tSNEkmeans, TSCAN and to a lesser extent SIMLR (large scale) showed a decrease in
the ARI scores. For the other methods using the unfiltered did not affect the clusterings.

The Trapnell dataset is not a mixture of distinct cell populations, and the develop-
ment of the populations followed a time-dependent trajectory. In tSNE space, the non-
differentiated cells form a distinct cell cluster. However, the more differentiated cells later
on the time axis are, at least in tSNE space, non-separable. It is also notable that the
batch explains a higher proportion of the variance than the cell type (see Appendix: Fig-
ure 17). The average silhouette width is 0.04, and it is one of the more difficult datasets.

The methods showed the lowest ARI scores for this dataset, and the maximum ARI
score achieved SC3 with 0.55, showing the difficulty to cluster this dataset. The other
methods all had ARI scores below 0.5. TSCAN is specially developed for this scenario (Ji
and Ji, 2015). However, the method did not perform any better than the other methods.
To improve the clustering results for TSCAN, it is possible to provide a starting point
for the trajectory. However, this was not done in this study. By running the dataset in
the default mode, the ARI scores varied considerably compared to the run mode with
the filtered and annotated number of clusters. Indeed, depending on the method, the
scores were better or worse or stable. SC3 detected an additional three clusters. RaceID
detected only one single cluster. CIDR and Seurat found three subpopulations but failed
to correctly label the cells. Except for TSCAN, the filtering led to an increase in the ARI
scores. Without filtering, most of the methods failed to cluster the dataset as they had
scores around zero.

Koh was the dataset that had the highest number of subpopulations; ten clusters were
annotated by the authors of the original study. During the cell filtering of the Koh
dataset, one subpopulation was wrongly detected as outlier cells and was removed during
the filtering steps (D3GARPpCrdcM). The average silhouette width is -0.04 and the
dataset is one with the highest difficulty. In the tSNE representation, some cell types
are easily distinguishable, whereas other are mixed. On average, 10 % of the variance
is explained by the cell type. Similar to the Zheng dataset, the Koh data has a low
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sequencing depth and a high dropout rate. For the filtered data, only SC3 and pcaReduce
were able to correctly identify all nine subpopulations with the highest ARI score of 0.96.
CIDR, SIMLR, pcaReduce and Seurat also showed good performances with ARI scores
between 0.88 and 0.92. In the middle field are the methods tSNEkmeans, Linnorm and
ZINBWaVE with ARI scores between 0.62 and 0.8. RaceID failed for this data with an
ARI score of 0.26. Compared to other run modes, the clustering was the overall worst
for each method when running with the unfiltered dataset, indicating the importance for
pre-filtering this dataset. Except for the unstable methods, Linnorm and tSNEkmeans,
running the methods in default mode only had a small impact on the ARI scores. However,
the number of detected clusters varied greatly between the methods with an auto detect
function. CIDR, TSCAN and RaceID missed one or more clusters, and SC3 detected an
additional three clusters.

Overall, Kumar provided no difficulties for most of the methods. Most methods also
achieved high scores for the SimDataKumar2 and the Zheng datasets. The Trapnell
dataset was a challenge for the methods, and only low accuracies were achieved. When
looking at the F1 scores and the size of the clusters, wrongly assigned clusters tend to
be smaller in size. The investigated methods either used PCA or tSNE for dimension
reduction. For the clustering, either graph-based, K-means, hierarchical clustering or
combinations of these are used. No connection between the performance and the type of
the dimension reduction or clustering approach can easily be seen.
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3.2 Evaluation of the clustering results

Based on the average scores, SC3 was the best performing method when running with the
filtered datasets. Exceptions are seen in the default and unfiltered setting when using the
Trapnell and the Zheng datasets. A pre-filtering step and a fine-tuning of the parameters
for this method is recommended, as this improved the accuracy of the method. It is
noteworthy that the method was able to correctly classify more than 95% percent of the
cells for the Kumar, Koh, simDataKumar, simDataKumar2 and Zheng datasets. Even if
it had low scores for the Trapnell data, it achieved the highest accuracies of all methods
in this dataset. SC3 can detect the numbers of clusters automatically and did so correctly
for the simulated datasets. For the other datasets, the number of clusters was higher than
in the annotation. It is unknown whether this is due to the existence of more refined
subpopulations. The method pcaReduce achieved the highest average ARI scores in the
default mode and when run with the unfiltered datasets. Filtering of the Koh and Trapnell
datasets lead to an improvement of the performance. Although pcaReduce showed a high
performance, a drawback is the instability of the method.
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Figure 5: ARI scores for the datasets Koh, Kumar, Trapnell, Zheng and the simulations simDataKumar
and simDataKumar2. Shown are the ARI scores for the run mode (a) default, (b) filtered and (c)
unfiltered. The methods are ordered by their average ARI score.
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Figure 7: Differences in ARI scores for the datasets Kumar, Trapnell, Zheng, Koh, simDataKumar and
simDataKumar2 for the run mode default versus annotated k and filtered versus unfiltered. Note that
there were no differences in the parameter setting in the default and filtered run mode for pcaReduce.

Similar to SC3, Seurat achieved high accuracies. The method had the highest average
ARI score when running under the default settings. This is particularly interesting if the
number of clusters is unknown, as Seurat determines the number of clusters automatically
(albeit, it is possible to adjust the granularity of the clusterings). However, Seurat’s
performance levels dropped when used with the Koh and Zheng datasets. The filtering
of the Koh dataset led to an improvement in the accuracies, but otherwise, when using
the filtered datasets, only small changes were detected. According to Butler and Satija
(2017), the resolution parameter for the function is crucial to the ability to determine
the number of clusters, and it is recommended that the method is tested using different
values of this parameter. In this study, we were only able to run the methods on a small
range of values in the parameter, as else it was not possible to run the method. However,
Seurat was able to detect the correct number of subpopulations in most of the datasets
and run modes. The exceptions are in the Zheng data, where an additional cluster was
detected, and the Koh datasets were the method missed one subpopulation. The default
for the number of neighbours for the kNN is set to 30, and no or only small differences in
the clustering are achieved when this parameter was set to 10 percent of the dataset (see
Figure 7).
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difference to maximum ARI score: filtered

0.00

0.00

0.00

−0.04

0.00

0.00

−0.01

0.00

0.00

−0.01

−0.25

−0.00

−0.06

−0.01

−0.05

0.00

−0.25

−0.14

−0.10

0.00

0.00

0.00

−0.42

−0.10

−0.29

−0.01

−0.13

−0.34

−0.13

−0.06

−0.12

0.00

0.00

0.00

−0.25

−0.69

−0.18

−0.01

−0.35

−0.46

−0.14

−0.00

−0.22

0.00

−0.35

−0.53

−0.28

−0.07

−0.36

−0.01

−0.03

−0.77

−0.46

−0.06

−0.32

−0.03

−0.10

−0.91

−0.45

−0.32

−0.71

−0.04

−0.69

−0.81

−0.30

−0.67

S
C

3

pcaR
educe

S
eurat

S
IM

LR

linnorm

cidr

R
tS

N
E

km
eans

zinbw
ave

S
IM

LR
largescale

tscan

raceid

koh2016

kumar2015

simDataKumar

simDataKumar2

trapnell2014

zhengmix

−0.8

−0.6

−0.4

−0.2

0
a difference to maximum ARI score: unfiltered

0.00

0.00

0.00

−0.07

−0.29

−0.00

−0.08

0.00

0.00

−0.02

−0.33

0.00

−0.04

−0.02

0.00

−0.01

−0.34

−0.10

−0.29

−0.01

−0.05

0.00

−0.11

−0.13

−0.27

−0.01

−0.35

−0.03

0.00

−0.00

−0.09

0.00

0.00

0.00

−0.28

−0.69

−0.09

−0.57

−0.35

−0.01

−0.06

−0.05

−0.30

−0.02

−0.05

−0.70

−0.33

−0.29

−0.43

−0.01

−0.16

−0.74

−0.14

−0.33

−0.24

−0.52

−0.35

−0.54

−0.34

−0.38

−0.64

−0.06

−0.33

−0.78

−0.32

−0.71

pcaR
educe

S
C

3

S
IM

LR

S
eurat

R
tS

N
E

km
eans

cidr

linnorm

S
IM

LR
largescale

tscan

zinbw
ave

raceid

koh2016

kumar2015

simDataKumar

simDataKumar2

trapnell2014

zhengmix

−0.6

−0.4

−0.2

0
b

difference to maximum ARI score: default

0.00

0.00

0.00

−0.01

−0.13

0.00

−0.04

−0.01

0.00

0.00

−0.13

−0.16

−0.09

0.00

0.00

0.00

−0.29

−0.10

−0.03

−0.02

−0.05

−0.13

−0.16

−0.22

−0.09

0.00

0.00

0.00

−0.13

−0.58

−0.01

−0.58

−0.35

0.00

−0.02

−0.01

−0.10

−0.54

−0.35

0.00

0.00

−0.35

−0.32

−0.01

−0.03

−0.69

−0.19

−0.29

−0.36

−0.55

−0.13

−0.54

−0.15

−0.38

−0.73

−0.22

−0.69

−0.81

−0.42

−0.06

−0.40

−0.02

NA

NA

−0.14

NA

pcaR
educe

S
eurat

S
IM

LR

S
C

3

cidr

R
tS

N
E

km
eans

linnorm

S
IM

LR
largescale

zinbw
ave

raceid

tscan

koh2016

kumar2015

simDataKumar

simDataKumar2

trapnell2014

zhengmix

−0.8

−0.6

−0.4

−0.2

0
c

Figure 8: Differences between the method with the maximum ARI scores and the other methods. Shown
are the differences in ARI scores for the run mode (a) default, (b) filtered and (c) unfiltered.

Although CIDR showed an overall high level of accuracy, it had one of the lowest
performances for the Zheng dataset of all the tested methods. A possible reason for its
low performance is that the expression values are UMI counts and the data has a low
sequencing depth, leading to a poor model fit in the imputation procedure. Filtering
improved this method’s performance for two out of the six different datasets; otherwise,
it had no impact on the performance of the method. It was attempted to further improve
CIDR performance by selecting an appropriate number of PCs; however, no improvements
in accuracy were achieved. Except for the Koh and Zheng dataset, the method was able
to identify the correct number of subpopulations.

In comparison to the other well-performing methods, SIMLR had similar or higher
scores for Koh, Kumar, and the simulated datasets. It dropped in performance for the
Trapnell and Zheng data. Filtering the datasets led to an improvement for the Trapnell
and Koh datasets. Mean scaling of the dataset, one of the parameter settings, had no
impact on the performances. However, it is necessary to do so as else the method is not
able to perform the eigenvalue decomposition of the learned similarity matrix.

The method tSNEkmeans achieved similar accuracies compared to the high-performing
methods when used with the simple Kumar, simDataKumar, and Zheng datasets, but it
showed consistently low accuracies for the Koh dataset. The k-means algorithm assumes
spherical clusters which, in the tSNE representation of the dataset Koh, are not given.
The influence of a reduced number of PCs as input for the tSNE dimension reduction
was dependent on the datasets. However, though this improved the performance of the
Kumar data, it had a negative impact on the Koh dataset. Nevertheless, no changes in
ARI scores were detected for the other datasets. It is unclear whether gene filtering had a
positive or negative influence on the clustering, as it varied highly between the datasets.
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The method is unstable, and the changes in the performances could also be due to the
stochasticity of the method.

Linnorm’s performance is in the medium range. It was able to cluster the Kumar and
the Zheng datasets correctly, but was in medium range for the other dataset when com-
pared to well-performing methods as SC3 and Seurat. Changes in the filtered parameters
seemed crucial and led to an improvement in the clustering results for the Zheng, Kumar
and simDataKumar datasets. However, the score for the Koh dataset was worse. The
minimum zero fraction was set to 0.75, which is probably too high if the high dropout rate
in the Koh data is considered. However, note that the method was highly unstable, and
the results for the different run modes may not be comparable. Linnorm had relatively
high accuracies for the unfiltered Trapnell and Zheng datasets. This could be due to the
filtering functions that are implemented in the method.

The methods ZINBWaVE and TSCAN only had high accuracies for the Kumar datasets.
Filtering of the data improved the accuracies for ZINBWaVE, whereas for TSCAN it only
improved the performance for the Koh dataset. The method TSCAN is designed to find
trajectories. This type of data is given in the Trapnell data. Here, the method achieved
ARI scores between 0.6 and 0.7, which is not better than other methods. In this study,
a start and end point of the trajectory could be given which, according to the authors,
could improve the results. In this study, however, this was not done. It was not possible
to run TSCAN in the default mode for the Zheng and the simulated datasets.

RaceID had the lowest performance and returned only a high ARI score run modes
when used with the simple Kumar data. It performed well for the Zheng dataset with the
default setting but failed for the other two run modes. If this is due to a poor choice of the
parameter settings, or it was due to the stochasticity of the method remains unclear. The
method is based on absolute transcript counts which can explain the bad performance in
the non-UMI based datasets.

Overall, SC3, pcaReduce, Seurat and SIMLR are the methods with high accuracies.
Also, CIDR performed comparable to the before mentioned methods, except when run-
ning with UMI counts. Due to the stochasticity of pcaReduce and tSNEkmeans, the
results are unstable, and the performance was dependent on the actual run. Linnorm,
TSCAN, ZINBWaVE and, in particular, RaceID showed overall low ARI scores. Using
filtered data improved the results for the Koh and the Trapnell dataset, with only two
exceptions, namely TSCAN and Linnorm. For the other datasets, the gene-wise filter-
ing had different effects on the clustering results. Mostly the ARI scores were stable.
The methods Linnorm, RaceID, tSNEkmeans, TSCAN and ZINBWaVE showed strong
changes in the ARI scores in at least one of these datasets. Whether these changes are
due to the stochasticity of the methods, is unclear.

All methods showed differing ARI scores for at least one dataset when comparing the
default mode and when run with the annotated number of clusters. It is not clear whether
the methods perform better under the default settings or with a changed parameter
setting. As stated above, especially for tSNEkmeans, RaceID and Linnorm, any changes
in the clustering could be due to the stochasticity of the methods. It was also highly
dependent on the dataset, and for most methods, it only had a slight impact, negative or
positive, on the ARI score. However, we note that for SC3, the ARI scores were higher
when the number of clusters is given.
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Figure 9: F1 scores for the filtered datasets and the annotated number of clusters. Shown are the datasets
Kumar (a), Trapnell (b), Zheng (c), Koh (d), simDataKumar (e) and simDataKumar (f). Each method
has a dot for a cluster. The number of cells is indicated by the size of the dots.
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3.3 Range of clusters
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Figure 10: ARI scores for range of parameters for the datasets Kumar (a), Trapnell (b), Zheng (c), Koh
(d), simDataKumar (e) and simDataKumar (f). Shown are the methods where the number of cluster
could be defined. Seurat didn’t allow the direct control of the number of clusters. The Kumar, Trapnell,
Zheng, Koh and simDataKumar and simDataKumar2 had 3, 3, 4, 10, 4 and 4 clusters, respectively. The
vertical line indicates the annotated number of clusters.

The methods were run under a range of the number of clusters, and for each clustering
result, the ARI score was computed. Seurat did not allow for direct control of the number
of clusters. Instead, the resolution parameter was used. However, it was only possible to
run the method on a small range of the resolution parameter. The results are shown in
Figure 10. The methods behaved differently depending on the difficulty of the datasets
and the number of subpopulations. For example, most of the methods had clear max-
imums when used with the simple Kumar dataset, whereas, when used with the more
difficult Koh dataset, the methods showed a monotonic increase in the ARI and reached
a plateau within five to ten clusters. For the Trapnell data, SC3, Linnorm, TSCAN and
tSNEkmeans had clear maximum values with two clusters and then had a decrease in
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the scores for a higher number of clusters. The methods CIDR, pcaReduce, RaceID and
SIMLR had no clear maximums, and all had a plateau between two to five clusters. For
the Zheng dataset, tSNEkmeans, SC3, Linnorm, ZINBWaVE and SIMLR showed a sim-
ilar behavior with a clear maximum with four clusters. The other methods had no such
clear maximum values, or the maximum score is not at the annotated four clusters. The
methods tSNEkmeans and SC3 showed a similar behavior for the six different datasets.

3.4 Stability analysis
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Figure 11: Stability analysis results with 20 subsamples (n=100) for the Kumar dataset. The method
SC3 is missing as it was not possible to run the method due to the high run time.

Subsampling without replacement was used to assess the stability of the methods. Based
on the wide range of algorithms for the methods, the methods showed results with varying
levels of stability (see Figure 11). The deterministic method CIDR is stable. Seurat and
TSCAN were mostly stable and showed some outlying runs with a slight decrease in
the ARI scores. This is in contrast to RaceID and tSNEkmeans which had some strong
outlying runs. pcaReduce and Linnorm are both very unstable, and the assignment of the
cells to the respective cluster varied greatly. Also, ZINBWaVE is unstable, notably not
because of the method itself, but due to the use of the k-means algorithm for clustering.
For this study, the simple Kumar dataset is used, and it can be expected that the methods
will behave even more unstable with a more difficult dataset.
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3.5 Runtime
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Figure 12: Runtime (s) on a log-scale for the methods on the datasets. Shown are the datasets Kumar,
Trapnell, Zheng, Koh, simDataKumar and simDataKumar2 ordered by the number of cells in each
dataset. The datasets are filtered and the number of clusters based on the ground truth is used.

The run times for each method can be seen in Figure 12. They were highly different,
ranging across two magnitudes for the studied methods. The fastest methods were Seurat,
CIDR, and SIMLR (large-scale), whereas the methods pcaReduce, SIMLR, RaceID, and
SC3 showed the highest run times. It is notable that SC3 and SIMLR both have a non-
linear increase in run time, making their use unfeasible with a larger dataset consisting of
thousands of cells. For an improved run time, Kiselev et al. (2017) recommend the use of
support vector machines when using SC3 and bigger data sets (> 5’000 cells). For small-
scale datasets, Seurat is one of the fastest methods. However, when used with the larger
Zheng dataset (with 2’000 cells), its run time lies in the middle ground. Figure 13 shows
the average run time and ARI scores for the datasets. SC3 and pcaReduce showed high
accuracies, but suffered from high run times. If the run time is included as an evaluation
criterion, Seurat shows a good combination of high accuracies and a fast run time.
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Figure 13: Average runtime and ARI scores for the filtered datasets. Shown is the average runtime and
average ARI score for the datasets Kumar, Koh, Trapnell, Zheng and the simulated datasets.
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4 Conclusion and Outlook

SC3 showed, on average, one of the best performance in clustering scRNA-seq data, but
also the highest run time. Despite this, the method is still well suited for datasets with
hundreds of cells. For bigger datasets, it is possible to improve runtime with an alter-
native approach. However, this was not tested in this study, and the investigation of its
performance would be interesting. Seurat reached similar performance levels to SC3 and
had the advantage of a faster run time. It is not possible to define the number of clusters,
which, depending on the research question, can be disadvantageous. Other high perform-
ing methods were pcaReduce, SIMLR and CIDR. CIDR is not as flexible regarding the
transcript counts and fails if UMI counts are used, whereas pcaReduce suffers from insta-
bility. Gene filtering can have an impact on performance and is recommended, especially
for datasets with more complex clustering structures. This also applies to methods that
already include gene filtering functions (i.e. SC3 and Seurat).

In this study, the high-performing methods achieved almost perfect results for many
of the datasets. This hinders a more rigorous comparison of these methods. For future
analysis, the inclusion of more difficult datasets could give a better insight into the per-
formance of these methods. The simulations included in the study used non-overlapping
differentially expressed gene populations. More realistic simulations could include sub-
populations with overlapping DE genes between the populations. Of possible interest is
also the impact of different types of expression values.

The instability of tSNEkmeans, pcaReduce, ZINBWaVE, and Linnorm is an obstacle
for the comparison of the methods. When used in a comparison study and the annota-
tion of the cells is known, it is suggested to rerun the method several times and report
the average as the evaluation metric. Also, note that, for tSNEkmeans and ZINBWaVE,
clustering via k-means was used; for future evaluation studies, a different clustering ap-
proach should be considered. For example, Perraudeau et al. (2017) recently suggested
k-means clustering with resampling for the method ZINBWaVE. The field of scRNA-seq
is a rapidly developing discipline, and there remain several promising clustering methods
worth investigating (van Dijk et al., 2017; Sinha et al., 2018; Sun et al., 2017; Yang et al.,
2017).
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A

Additional information

A.1 F1 scores for the for the run modes with the unfiltered
datasets and in the default mode
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Figure 14: F1 scores for the unfiltered datasets and the annotated number of clusters. Shown are the
datasets Kumar (a), Trapnell (b), Zheng (c), Koh (d), simDataKumar (e) and simDataKumar2 (f). Each
method has a dot for a cluster. The number of cells is indicated by the size of the dots.
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Figure 15: F1 scores for the datasets run in the default mode. Shown are the datasets Kumar (a),
Trapnell (b), Zheng (c), Koh (d), simDataKumar (e) and simDataKumar2 (f). Each method has a dot
for a cluster. The number of cells is indicated by the size of the dots.

41



A.2 QC plots for the datasets

Figure 16: QC summary of Kumar. Shown are the histograms of library size (a) and the number of
expressed genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram of the
average counts per gene on a log-scale. (e) Density plot of the percentage of variance explained by
different factors. (f) t-SNE plots of the log-normalised counts, indicated are the total counts and total
features. The vertical lines are the filter thresholds.
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Figure 17: QC summary of Trapnell. Shown are the histograms of library size (a) and the number
of expressed genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram of
the average counts per gene on a log-scale. (e) Density plot of the percentage of variance explained by
different factors. (f) t-SNE plots of the log-normalised counts, indicated are the total counts and total
features. The vertical lines are the filter thresholds.
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Figure 18: QC summary of Koh. Shown are the histograms of library size (a) and the number of expressed
genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram of the average counts
per gene on a log-scale. (e) Density plot of the percentage of variance explained by different factors. (f)
t-SNE plots of the log-normalised counts, indicated are the total counts and total features. The vertical
lines are the filter thresholds.
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Figure 19: QC summary of Zheng. Shown are the histograms of library size (a) and the number of
expressed genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram of the
average counts per gene on a log-scale. (e) Density plot of the percentage of variance explained by
different factors. (f) t-SNE plots of the log-normalised counts, indicated are the total counts and total
features. The vertical lines are the filter thresholds.
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Figure 20: QC summary of simDataKumar. Shown are the histograms of library size (a) and the number
of expressed genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram of
the average counts per gene on a log-scale. (e) Density plot of the percentage of variance explained by
different factors. (f) t-SNE plots of the log-normalised counts, indicated are the total counts and total
features. The vertical lines are the filter thresholds.
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Figure 21: QC summary of simDataKumar2. Shown are the histograms of library size (a) and the
number of expressed genes (b). (c) Percent of total counts of the highest expressed genes. (d) Histogram
of the average counts per gene on a log-scale. (e) Density plot of the percentage of variance explained by
different factors. (f) t-SNE plots of the log-normalised counts, indicated are the total counts and total
features. The vertical lines are the filter thresholds.
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