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Abstract

In scientific applications one often meets eigenvalue problems of matrices with large dimensions,
but with most entries equal to zero. Such matrices are accurately called sparse matrices. The
non zero entries of a sparse matrix are typically not distributed randomly across the matrix,
but they lay on the diagonal and on several higher order diagonals. Instead of calculating the
eigenvalues of such sparse matrices with a common approach, algorithms which utilize its sparse
structure are more efficient.

For this master thesis, the implicitly restarted Arnoldi method, was implemented in the
statistical software R, or more specifically in the R package spam. The algorithm provides the
functionality to efficiently determine a set of eigenvalues with the largest or smallest absolute
values. The implementation consists basically of wrapper functions of Fortran routines from the
ARPACK library, which is well tested and integrated in various scientific procedures.

As an application, a statistical method to decompose random signals into multiple resolu-
tions, was chosen. This method is in particular applicable, since current implementations do
rely on eigenvalue calculations, based on fast Fourier transformation. By changing the under-
neath structure, to a sparse matrix based one, the method could be freed of limitations in its
applicability for signals containing missing values and signals distributed on non regular lattices.
To account for possible missing values in the input signal, different models were developed to
resample the input signal. Furthermore, to sustain efficiently the whole spectrum of eigenvalues
of specific precision matrices, an approximation by circulant matrices was developed.

Statistical applications do typically use data to calculate estimates and corresponding confi-
dence or credibility intervals, therefore also suitable data is preluded and discussed proportion-
ately.

All computations, visualizations as well as simulations were done with the statistical pro-
gramming language R by the R Development Core Team (2017) and its additional packages,
fields, mrbsizeR and spam.
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Chapter 1

Motivation

In this chapter the scale space multiresolution analysis of random signals, proposed by Holm-
ström et al. (2011), is introduced and demonstrated on a simple and intuitive example. Along
this thesis, this scale space multiresolution analysis is also referred to as multiresolution de-
composition. This method poses the statistical application of sparse matrix calculus or more
precisely a statistical method for which it can be reasonable to use sparse structure based arith-
metic and corresponding eigendecompositions. To motivate an extension and generalization
of this, it is emphasized where in current implementations, efficient calculations do limit the
applicability of the method, to regular and complete lattice data.

1.1 Scale space multiresolution analysis of random signals

Holmström et al. (2011) proposed this method to capture scale dependent features in a random
signal, e.g. a spatial field defined on a regular lattice or an image. It smooths the field on
multiple scales and considers differences of the smooths to identify eminent features of the data.
Credible features are inferred in a Bayesian framework and statistically significant determined
for the corresponding smoothing levels. The method can basically be divided in the following
three steps.

i Bayesian signal reconstruction.

ii Forming of scale-dependent details using differences of smooths at neighboring scales.

iii Posterior credibility analysis of the different smooths.

This work was originally implemented in Matlab, the language of technical computing, by
Holmström and Pasanen (2011) and transferred by Schuster (2017) into the statistical program-
ming language R, namely in the package mrbsizeR, whereupon the latter is used exclusively
throughout this thesis.

1.1.1 Bayesian signal reconstruction

In a realistic scenario, the random signal, i.e. the observed data contains noise due to measure-
ment uncertainties or inaccuracies. To account for those, one assumes that the observed signal

1



2 CHAPTER 1. MOTIVATION

y comprises the true unobserved underlying signal x and the noise ε. In this sense, the model
can be stated as

y = x+ ε. (1.1)

Furthermore, it is assumed that the errors ε are non systematic and normally distributed, with
zero mean and an unknown variance ε = (ε1, . . . , εn)T ∼ N

(
0, σ2I

)
. The observed data y is

assumed to be normal, with y|x, σ2 ∼ N
(
x, Iσ2). The resulting likelihood function of the model

corresponds then to

π
(
y|x, σ2

)
∝ σ−n exp

(
− 1

2σ2 ||y − x||
2
)
.

For the positive valued unknown variance σ2, a Scaled-Inv-χ2 (ν0, σ
2
0
)

prior is used, with the
corresponding probability density function (Gelman et al., 1995),

π(x) = 1
Γ
(ν0

2
) (ν0σ

2
0

2

)ν0/2

x−(ν0/2+1) exp
(
−ν0σ

2
0

2x

)
.

The prior of the underlying signal x, is an IGMRF (Rue and Held, 2005) of the form

π(x|λ0, σ
2) ∝

(
λ0
σ2

)(n−1)/2
exp

(
− λ0

2σ2x
TQx

)
, (1.2)

where Q is a precision matrix and defined by

xTQx =
∑
t

(∑
s∼t

xs − 4xt

)2

. (1.3)

If two lattice locations s and t are neighbors, one writes s ∼ t.
The resulting marginal posterior π(x|y) follows then a multivariate t-distribution

π (x|y) ∝
(
λ0x

TQx+ ||y − x||2 + ν0σ
2
0

)−((2n+ν0−1)/2)
, (1.4)

for a more detailed derivation see Erästö and Holmström (2005).

Graph G Levels Distributions

y|x, σ2 likelihood Normal

x|λ0, σ
2 smoothing prior IGMRF

σ2|ν0, σ
2
0 variance prior Scaled-Inv-χ2

λ0 ν0 σ2
0 hyper parameter fixed

Figure 1.1: Summary of the discussed Bayesian hierarchical model.
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Since, the marginal posterior is of closed form tν (µ,Σ), one can easily sample from it. It is
only necessary to know the parameters µ, Σ and ν,

µ = (I + λ0Q)−1 y, (1.5)

Σ = (I + λ0Q)−1
(
yTy − yTµ+ ν0σ

2
0

ν

)
, (1.6)

ν = ν0 + n− 1,

see Appendix A.3 for a detailed derivation.

Precision matrix Q Through equation (1.3) follows, that for an interior lattice location t,
the sum over s in xTQx is the discrete Laplace operator computed at t. The discrete Laplacian
is calculated as sum of differences over the nearest neighbors of a lattice location (Reuter et al.,
2009). This operator is often used in image procession, for instance in edge detection and
motion estimation applications. To assure that there are four neighbors at boundary locations,
the boundary values of x are extended beyond the original lattice (Holmström and Pasanen,
2012). The matrix Q is therefore modified by Neumann boundary conditions and thus the
rank of the precision matrix is rank (Q) = n− 1, which is also reflected in equation (1.2). This
construction can be written in terms of matrix operators xTQx = ||Cx||2, such that Q = CTC,
where the matrix C can be interpreted as the discrete Laplace operator. Under the assumptions
that the data is distributed across a regular lattice and moreover, no location on the lattice
has missing values, the Laplacian operator can be calculated. According to the construction of
xTQx.

One notes further, that the parameters of the marginal posterior distribution are determined
through the precision matrix Q. If the eigendecomposition of Q exists, then one can write

Q =
n∑
j=1

γjvjv
T
j . (1.7)

Such that 0 ≤ γ1 ≤ . . . ≤ γn are the eigenvalues of Q and v1, . . . ,vn are the corresponding
orthonormal eigenvectors. The Laplacian operator provides the advantage, that its eigendecom-
position can be drastically speed up, with the help of discrete cosine transformations (Strang,
1999). Henceforth, it is for large dimensional problems more efficient, to implement the param-
eters (1.5) and (1.6) with this approach, instead of calculating matrix vector multiplications
naively. Accordingly, it is used in the implementation of Schuster (2017) and as well as in
Holmström and Pasanen (2011).

To Illustrate the scale space multiresolution analysis, a simple example is used here. From a
standard normal distribution 100 samples are drawn, arranged in a 10 × 10 matrix and values
of some points in the upper left are increased, to create an artificial feature in the sample, as
shown in Figure 1.2. This example signal is reconstructed, as discussed above and its resulting
mean is displayed in Figure 1.3.
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Figure 1.2: Random sample from a
standard normal distribution with an
artificial feature in the upper left.

Figure 1.3: Sample mean of the
reconstructed signal, in the standard
normal signal.

1.1.2 Forming of scale-dependent details

The next step in the multiresolution decomposition is the decomposition itself. Therefore, Sλ
shall be, for now, an arbitrary smoother, which can be represented by an n × n matrix. It is
supposed that λ > 0 is the smoothing parameter and the random signal x is interpreted as an
n dimensional random vector. Moreover, let

0 = λ1 < λ2 < . . . < λL−1 < λL =∞,

such that Sλ1x = x is the identity mapping and SλL
x = S∞x the mean of the random vector

x. With the help of those preliminaries, the random signal x can be written as differences of
consecutive smooths,

x =
L−1∑
i=1

(
Sλi
− Sλi+1

)
x+ S∞x =

L−1∑
i=1

zi + zL.

Then, the scale-dependent details are defined as

zi =
(
Sλi
− Sλi+1

)
x, for i = 1, . . . , L− 1, (1.8)

zL = S∞x. (1.9)

The smoother in use, is a roughness penalty smoother

Sλ = (I + λQ)−1, (1.10)

which minimizes the penalized loss defined by Q, which can be expressed as

Sλx = argmin
u
{||x− u||2 + λuTQu}.
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As the attentive reader already recognized in the definition (1.10) of the smoother, one can
replace the precision Q by its eigendecompostion (1.7). Furthermore, one supposes that Q has
a null space of dimension n0, such that 1 ≤ n0 < n, hence

rank (Q) = n− n0 and then 0 = γ1 = . . . = γn0 < γn0+1 ≤ . . . ≤ γn.

The composition of the smoothing matrix Sλ is, as suggested above, depicted as

Sλx =
n0∑
j=1

(
vTj x

)
vj +

n∑
i=n0+1

(1 + λγj)−1
(
vTj x

)
vi. (1.11)

The L− 2 first details zi can be rewritten also as

zi =
(
Sλi
− Sλi+1

)
x =

n∑
j=n0+1

[
(1 + λiγj)−1 − (1 + λi+1γj)−1

] (
vTj xvj

)
. (1.12)

The L− 1th detail is

zL−1 =
(
SλL−1 − SλL

)
x =

n∑
j=n0+1

(1 + λL−1γj)−1
(
vTj x

)
vj (1.13)

and the Lth detail zL writes it as

zL = SλL
x =

n0∑
j=1

(
vTj x

)
vj . (1.14)

The smoothing effect of Sλ on x can be interpreted, such that, if λ is increasing, it suppresses
most of the projections of x onto the vj ’s with the respective largest eigenvalues.

Selection of smooths The question, which in this context remains, is how should one choose
the smoothing levels, such that the decomposition will capture the scale-dependent features of x
as precise as possible? Avoiding experimenting brute force with different choices of the smoothing
levels λi’s, whereupon i ∈ N+ is the number of choices. The answer to this question are so-called
tapering functions. To construct those, one rewrites first the equations (1.12), (1.13) and (1.14)
as

zi =
n∑
j=1

α
(i)
j

(
vTj x

)
vj ,

where for i = 1, . . . , L− 2

α
(i)
j =

0, 1 ≤ j ≤ n0

(1 + λiγj)−1 − (1 + λi+1γj)−1 , n0 < j ≤ n
, (1.15)

for i = L− 1

α
(L−1)
j =

0, 1 ≤ j ≤ n0

(1 + λL−1γj)−1 , n0 < j ≤ n
(1.16)

and for i = L

α
(i)
j =

1, 1 ≤ j ≤ n0

0, n0 < j ≤ n
. (1.17)
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The L sequences αi =
[
α

(i)
j

]n
j=1

are henceforth referred to as tapering functions. The set
0 = λ1 < λ2 < . . . < λL−1 < λL = ∞ is now chosen, such that the supports of the tapering
functions are approximately disjoint, i.e. consisting of roughly non-overlapping segments of the
integers 1, . . . , n. This will produce details that are in an extended sense orthogonal and therefore
it can be assumed that the corresponding features consists of non similar characteristics.

One notes, that for the tapering functions, defined like in equations (1.15), (1.16) and (1.17),
the eigenvalues of the precision matrix Q are absolutely essential.

Signal-dependent tapering functions The smoothing level selection method with tapering
functions depends, so far, only on the eigenvalues of the matrixQ and therefore on the particular
smoother Sλ in use, as well as the dimensions of the analyzed signal. It seems reasonable that
better results could be obtained, by taking into account also the structure of the underlying
signal x. This can be accomplished by considering signal-dependent tapering functions, to
derive them one starts with [

α
(i)
j (vjx)

]n
j=1

.

However, as the underlying signal is unknown, it is replaced by the posterior mean E(x|y) and
therefore the signal-dependent tapering functions are defined as

α̃i =
[
α̃

(i)
j

]n
j=1

, α̃
(i)
j = α

(i)
j

(
vTj E(x|y)

)
, i = 1, . . . , L.

The tapering functions of the standard normal example are shown in the Figures 1.4 and 1.5.
One notes, that the x-axis of the tapering functions are on a logarithmic scale. Where Figure 1.4
shows the tapering function, which is only dependent on the dimension of the precisionQ and the
corresponding eigenvalues. On the other hand shows Figure 1.5 the signal-dependent tapering
functions for the same set of smoothing levels. As expected, do the signal-dependent tapering
functions involve more scatter and are more irregular than the other ones, but show also the
desired disjoint supports.

Optimization The optimization procedure is mentioned here for completeness. Since the
following work does not consider changes or improvements for this step, it is omitted in the
following chapters. The signal-dependent tapering functions are irregular and a visual selection
of fitting smoothing levels is not appropriate. Therefore an analytically selection is needed. The
proposed method uses optimization of a suitable objective function, with respect to the λi’s
to achieve rough orthogonality of the tapering functions. To optimize a signal multiresolution
decomposition consisting of just four terms corresponding to a smoothing parameter sequence
[0, λ2, λ3,∞], minimize the objective function

G(λ2, λ3) =
∑

i,j=1,2,3
s.t. |i<j|

|α̃Ti α̃j |
||α̃i||||α̃j ||

,

with respect to λ2 and λ3. It is possible to carry out the optimization, by simply evaluating
G(λ2, λ3) on a grid.

The expected, scale dependent details of the data above, are shown in Figure 1.6. The
smoothing levels are chosen with the aforementioned optimization procedure and the corre-
sponding details are briefly discussed. Detail z1 is the most narrow one, which can be compared
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Figure 1.4: Signal-independent ta-
pering functions of the standard nor-
mal signal.

Figure 1.5: Signal-dependent taper-
ing functions of the standard normal
signal.

to a very close zoom level, accordingly very specific and small features of the data are recogniz-
able. Otherwise in the details z2 and z3, the artificial feature in the upper left corner is salient
and outshines the small features. The mean is illustrated in detail z4, respectively corresponds
to z∞, with only one single color.

1.1.3 Posterior credibility analysis

During the Bayesian signal reconstruction step a specific amount of posterior samples was gen-
erated, those samples are not only used to calculate the expected scale dependent details, but
also to infer the credible features in the detail components. Inference on credible features is
proposed in three different ways by Holmström et al. (2011).

Pointwise maps In the pointwise maps (PW) credibility analysis, a detail zi is considered as
a vectorization of an array [zs]s∈I . For every location s, zs is divided in three disjoint subsets
of I in which the components zs differ jointly credibly from zero.

Ib = {s|P(zs > 0|data) ≥ α},

Ir = {s|P(zs < 0|data) ≥ α},

Ig = I \
(
Ib ∪ Ir

)
.

The common choice for the credibility level α is 95%. In pointwise maps, the subset allocation
is done for each location independently over all samples. A point is colored blue if s ∈ Ib, red
if s ∈ Ir or gray if s ∈ Ig. Since pointwise maps treat every location independently, those
can exhibit only very small islands of credibility. Simultaneous approaches, on the other hand,
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Figure 1.6: Scale dependent details of the standard normal signal, summa-
rized by their posterior means.

assign credibility more conservatively to locations, but maximize the connectedness of credible
locations.

Highest pointwise probability maps In simultaneous maps, the index subsets Jb, Jr and
Jg = I \ (Jb ∪ Jr) are used. For highest pointwise probability maps (HPW), the division into
subsets is according to the

P(zs > 0 for s ∈ Jb and zs < 0 for s ∈ Jr|y) ≥ α.

Not all of the locations s in sets Ib and Ir are also marked as credible in simultaneous maps,
Jb ⊂ Ib, Jr ⊂ Ir and Jg ⊃ Ig. This leads to more non-credible locations than with pointwise
maps, but on the other hand, a stronger connectedness of credible locations can be observed
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(Erästö and Holmström, 2005). If S is a set and |S| the number of elements in this set, then
N = |Ib|+ |Ir| is the number of credible locations using PW maps. The events (zs > 0|y)|s ∈ Ib

and (zs < 0|y)|s ∈ Ir are denoted with Es. For the permutations s1, . . . , sN of the locations
s ∈ Ib ∪ Ir for which

P(Es1) ≥ P(Es2) ≥ . . . ≥ P(EsN ) ≥ α,

is valid and let k = max (l|P(Es1 ∪ . . . ∪ Esl
) ≥ α). If then, l ∈ {1, . . . k} sl is marked blue or

red, depending whether sl ∈ Ib or sl ∈ Ir and the rest is colored in gray.

Simultaneous credible intervals The third way to infer credible features proposed in the
same paper, are simultaneous credible intervals. Therefore, let ∆ > 0 such that

P
(

max
s∈l

∣∣∣∣zs − E(zs| data)
Std(zs| data)

∣∣∣∣ ≤ ∆| data
)

= α

and define

Jb = {s|E(zs| data)−∆SD(zs|data) > 0},

Jr = {s|E(zs| data) + ∆SD(zs|data) < 0}.

In Figure 1.7 the pointwise probability maps for the standard normal example are separately
shown for the different details. Blue points denote low draws from the standard normal example
and red ones high draws, which are mostly dominated by the artificial feature in the upper
left. The probability maps for the scale-dependent detail z1 includes features, which are more
specific, for instance are the borders of the artifact in the upper left clearly credible. On larger
scales almost all locations become credible.

1.2 Summary

The discussed method poses a exiting statistical method to decompose a spatial field into scale
dependent features. Since the method is embedded in a Bayesian framework, it is possible to
put probabilities on the different locations of the computed details. This is in particular useful
and revolutionary, for making probabilistic statements about the appearance of specific features
in spatial fields.

This method does rely on several assumptions, most importantly it is applicable for complete
and regular lattice data only. To deal with this matter, imputation approaches are typically used,
but current research covers only few information about its applicability. Imputation procedures
replace missing values, with exact values, i.e in the signal reconstruction step the range of
possible samples is close around the imputed value. If one thinks two steps ahead and considers
also the credibility analysis, it would be of advantage if missing values are replaced, in the signal
reconstruction step, such that a certain uncertainty is propagated for the respective locations.
Especially, if the data to analyze consists of large areas with missing values and an imputation
method is used, then is in addition the normal assumption violated. Those circumstances
motivate for an enhancement of the outlined multiresolution decomposition method.
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Figure 1.7: Pointwise probability maps of the standard normal signal.



Chapter 2

Data

In data collection, one often deals with missing measurements or with obvious errors thereof.
Both cases lead to missing values in the data or in terms of multiresolution decomposition, to
an incomplete signal. The introduced multiresolution decomposition method in Chapter 1 does
rely on the assumption, that the observed signal is complete. Therefore, this chapter introduces
second, the Lägeren mountain data set, which is then used to illustrate how the model in the
introduced method does not give fully satisfying results. This motivates for new sampling models
to deal with missing values, which are henceforth detailed derived in Chapter 3. Moreover, data
is presented which is distributed on an irregular lattice. This data consists of standardized
mortality ratios of oral cavity cancer counts in German districts.

2.1 Lägeren mountain

The example data originates from testing highly sensitive measuring devices in aircraft, to
measure the diversity of vegetation. A team from the University Zurich, led by the head of
the Remote Sensoring Laboratories Prof. Dr. Michael Schaepman, is using for instance a laser
scanner (lidar) to determine the height, density and form of all the trees in a scanned area. The
purpose of this measurements, is developing highly precise methods for remote sensing data, to
systematically monitor changes in biodiversity. For more details about those projects and lidar,
see Schneider et al. (2014) and Morsdorf et al. (2009).

The data in use was obtained from the Lägeren mountain, which is situated approximately
15 km northwest of Zurich, Switzerland. It stretches from Baden to Dielsdorf and its south slope
marks the north boundary of the Swiss Plateau, which is bordered by the Jura and the alps.
The natural vegetation is a productive and managed beech forest. According to Eugster et al.
(2007), the forest stand has a relatively high diversity concerning species, age, and diameter
distribution. In the eastern part, the common beech (Fagus sylvatica L.) and norway spruce
(Picea abies L.) are prevalent. Where in the western part, broad-leaved trees such as european
ash (Fraxinus excelsior L.), sycamore maple (Acer pseudoplatanus L.) and common beech are
dominating. The size of the covered area is about 1.5 × 3 kilometers. The specific measurement
for the further use, are “Canopy Heights” of trees in meters (m), see Figure 2.1 for an illustration.

11
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Figure 2.1: “Canopy Heights” measurements in meters, across the observed
area of the Lägeren mountain. On the axis are the respective consecutive
marginal means displayed.

Figure 2.2: “Canopy Heights” measurements in meters, across the observed
area of the Lägeren mountain. The white areas represent measurements
treated as missing values.
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Figure 2.3: Google maps satellite image of the Lägeren mountain.

2.1.1 Data distribution

The data is observed on a regular lattice, consisting of 400 × 1’100 points. Figure 2.1 shows
canopy heights measurements between 0 and 50 meters. Red locations signify the highest values
and blue ones the smallest. Eminent features, which are already recognizable through the raw
data, is the mountain ridge, located in the middle of the forest. The ridge contains only few
trees and is therefore depicted as a blue line. On the south slope are pattern of the highest trees
visible, and accordingly colored in red. Also other smaller areas of high measurements as well
as of low ones are salient.

Of the corresponding locations are 160’820 equal to zero and are interpreted as missing
values. Figure 2.2 visualizes those, with respective white areas. One notices in this context, the
differences of the corresponding row and column means in Figure 2.1 and 2.2, which become
more uniform in the latter case.

Moreover, one can recognize relatively straight borders in the upper left as in the lower
right area, between missing and non missing data. This implies, that in the areas above and
respectively below, the measurements are truly missing, since there no measurements have been
taken. This can be easily verified by comparing Figure 2.3, which shows a Google Maps satellite
image of the Lägeren mountain and its environment, with the former figures. In this sense
there are two types of missing values, locations with measurements close or equal to zero and
locations, for which no measurements were taken. Since there is no clear distinction from the
data possible, both cases are treated equally. Nevertheless, to assure that the data is normally
distributed, the data is transformed with the third radical.
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2.2 Oral cavity cancer

A second considered data,is distributed on a irregular lattice. Oral cavity cancer counts yi were
collected for each of the 544 districts of Germany over a five year period, from 1986-1990 (Knorr-
Held and Raßer, 2000). To explore the spatial distribution of the relative risk, the expected
number of cases ei was derived using demographical data, that allows to display the standardized
mortality ratios (SMRs) yi/ei, see also Figure 2.4. Those SMRs vary between between 0.15 and
2.40 and moreover, the data is assumed to be normally distributed, as Figure 2.6 shows. One
recognizes a pattern of high SMRs in the south-west of Germany and an area of smaller values
in the north-east. Otherwise, there are individual districts salient, with relative high values
compared to their neighbor districts.

To model the neighboring structure of the German districts, one considers for every district
its neighbors, which ultimately border on the respective district, i.e. its nearest neighbors. The
adjacency matrix (Biggs, 1993) for the districts in Figure 2.5 determines for every district its
nearest neighbors. This matrix and the data as well, are available in the spam package.

Figure 2.4: Standardized
oral cavity cancer mortality ra-
tios across Germany.

Figure 2.5: Adjacency matrix of all
544 districts in Germany, according to
their neighboring relation.

Figure 2.6: Histogram of standardized oral cavity cancer mortality ratios
across Germany.



Chapter 3

Methods

In this chapter, first the scale space multiresolution analysis by Holmström et al. (2011) is put
in a more general framework, to loose the dependency of the model specific precision matrix.
Of main interest are then, two approaches to improve the aforementioned method for missing
values, which are derived in this chapter. Due to this generalization, the fast eigendecompostion
procedure through the discrete cosine transformation is lost. Hence, in possible steps, sparse
structure based arithmetic is used to assure that large dimensional problems can be dealt with.
For the implementation in the statistical Software R, the sparse matrices are of compressed
sparse row format (Buluç et al., 2009), which is available through the spam package (Furrer and
Sain, 2010). Since tapering functions rely solely on the eigenvalues of the precision matrix, a
method to approximate eigenvalues for precision matrices in use, is derived as well.

3.1 Multiresolution decomposition of an incomplete signal

3.1.1 Signal reconstruction

The first step to lose the requirement of a complete signal, is to make the sampling model more
flexible, and independent of the specific precision matrix from equation (1.3). Therefore again
a normal response model is chosen, but with a Gamma prior for the precision κ instead of a
Scaled-Inv-χ2 for σ2. Those changes in the model lead to full conditional distributions of closed
form, i.e. one can use a Gibbs sampling approach (Casella and George, 1992) to reconstruct
the underlying signal. Since the Bayesian sample does not originate from a closed distribution
anymore, but from a sampling procedure, one has to consider the diagnostics of it to assure the
convergence of the sampling process.

Assumptions The observed signal y is again understood as composition of the true underlying
signal x and an error ε, as in equation (1.1). The error is assumed to be normal, with zero mean
and constant unknown variance, i.e. εi

iid∼ N
(
0, σ2).

The likelihood function If one sets σ2 to 1/κy, then the likelihood function is proportional
to

π(y|x, κy) ∝ κn/2
y × exp

(
−κy2

(
yT − xT

)
(y − x)

)
.

15



16 CHAPTER 3. METHODS

The process It is assumed, that xr − xs for all r ∼ s, are independent normals with zero
mean, precision κx and spatial weight matrix Qx, i.e. an intrinsic random Walk model of order
one, then

π(x|κx) ∝ κ(n−2)/2
x × exp

(
−κx2 x

TQxx

)
.

The priors For the normal response model, with known mean and unknown precision, the con-
jugate prior distribution is an independent Gamma prior distribution (Held and Sabanés Bové,
2013), which is used here,

π(κy) ∝ καy−1
y × exp (−κyβy) ,

π(κx) ∝ καx−1
x × exp (−κxβx) .

Whereupon, the according shape and rate parameters αx, αy, βx, βy are strictly positive.

Joint density Let κ denote the vector of the precisions κy and κx. Then the corresponding
joint density is

π (x,y,κ) = π (y|x, κy)π (x|κx)π(κx)π(κy),

an intrinsic GMRF with precision matrix κxQx (see Appendix A.1). Which is proportional to

καx+(n−2)/2−1
x καy+n/2−1

y × exp (−κxβx − κyβy)

× exp
(
−κy2

(
yT − xT

)
(y − x)

)
× exp

(
−κx2 x

TQxx

)
.

Full conditional distributions The Gibbs sampler is based on the following full conditional
distributions. Thereby NC denotes the canonical parametrization of a normal distribution (see
Appendix A.2).
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π(x|κ,y) ∝ exp
(
−κy2

(
yT − xT

)
(y − x)− κx

2 x
TQxx

)
∝ exp

(
−1

2x
T (κxQx + κyIn)x+ κyy

Tx

)
,

x|κ,y ∼ NC (κyy, κxQx + κyIn) ,

π(κx|x,y) ∝ καx−1
x exp (−κxβx)κ(n−2)/2

x exp
(
−κx2 x

TQxx

)
∝ καx+(n−2)/2−1

x exp
(
−κx

(
βx + 1

2x
TQxx

))
,

κx|x,y ∼ Gamma
(
αx + n− 2

2 , βx + 1
2x

TQxx

)
,

π(κy|x,y) ∝ καy−1
y exp (−κyβy)κn/2

y exp
(
−κy2

(
yT − xT

)
(y − x)

)
∝ καy+n/2−1

y exp
(
−κy

(∑
i

(yi − xi)2 + βy

))
,

κy|x,y ∼ Gamma
(
αy + n

2 , βy +
∑
i

(yi − xi)2
)
.

Graph G Levels Distributions

y|x, κy likelihood Normal

x|κx process IGMRF

κy|αy, βy κx|αx, βx priors Gamma

αy βy αx βx hyper parameters fix

Figure 3.1: Summary of the extended Bayesian hierarchical model, for arbitrary
precision matrices.

Scale-dependent details Through its more general from, the fast eigendecomposition, by the
discrete cosine transformation of the precision matrix Q can not be applied anymore. Hence, the
scale dependent details, as defined in equations (1.8) and (1.9), can not be computed efficiently
for large dimensional problems though their eigendecomposition expression in equation (1.11).
But, while still using the roughness penalty smoother from equation (1.10), one can use the
Cholesky factorization to solve (I+λQ)−1x, instead of calculating the inverse directly. Therefore
one computes the details zi for i = 1, . . . , L− 1 from

zi = (I + λiQ)−1x− (I + λi+1Q)−1x
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and detail L from

zL = (I + λLQ)−1x.

Tapering functions The tapering functions defined in equations (1.15), (1.16) and (1.17)
rely on the eigenvalues of the precision matrix Q and the smoothing levels λi only, therefore an
approximation approach is used to calculate efficiently its eigenvalues. This approximation is
explained and derived in Section 3.2 below.

Posteriori credibility analysis The posteriori credibility analysis remains as outlined for
the the original model in Chapter 1.

3.1.2 Model to sample missing values

Under the same assumptions as in the previous section and under the circumstances that the
true underlying signal x contains k missing values. One denotes H as a matrix operator from
Rn → Rm, such that m = n − k, where n is the number of locations on the lattice. Hence the
observed signal y ∈ Rm Then H shall map the m non-missing values of the field, identically to
the corresponding entries of y. With the help of H one can transform the likelihood function of
the model to y|Hx,κ ∼ N

(
Hx, 1

κy
Im
)
. In this sense only the data, which is not missing has

an influence on the posterior sample. The missing values are sampled, based on the neighbor
values and the prior influence. According to this transformation, the hierarchical model depicted
in Figure 3.1, is modified to

Graph G Levels Distributions

y|Hx, κy likelihood Normal

x|κx process IGMRF

κy|αy, βy κx|αx, βx prior Gamma

αy βy αx βx hyper parameter fix

Figure 3.2: Summary of the modified Bayesian hierarchical model, to sample missing
values.
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Full conditional distributions The full conditional distributions, used for the modified
Gibbs sampler become,

π(x|y,κ) ∝ exp
(
−κy2

(
yT − xTHT

)
(y −Hx)− κx

2 x
TQxx

)
∝ exp

(
κyy

THx− 1
2x

T (κy + κxQx)x
)
,

x|y,κ ∼ NC
(
κyH

Ty, κy + κxQx

)
,

κx|x,y ∼ Gamma
(
αx + n− 2

2 , βx + 1
2x

TQxx

)
,

π(κy|x,y) ∝ κn/2+αy−1
y exp

(
−κy2

(
yT − xTHT

)
(y −Hx)− κyβy

)
,

κy|y,x ∼ Gamma
(
αy + n

2 , βy + 1
2
(
yT − xTHT

)
(y −Hx)

)
.

Illustration To illustrate this concept, one considers a random draw from a normal distribu-
tion of size 100, with mean equal to ten and a standard deviation of five. This random signal
can be interpreted as a 10 × 10 spatial field, with some randomly picked locations assumed to
be missing values. Figure 3.3 shows the described scenario and Figure 3.4 the mean of 1’000
draws according to the modified Gibbs sampler. It is easy to see that on average the values in
the locations, with former missing values, are plausible.

It is intuitive, that the locations with missing values should have higher uncertainties, because
they will be propagated throughout the detail decomposition step to the credibility analysis. As
described above, transforming the likelihood function such that the missing values rely on the
priors and the neighbor values only, this can be achieved. For a better understanding, the sample
draws of the random signal is plotted in one dimension, instead of a 10 × 10 field. Figure 3.5
shows this matter, in black is the observed signal, which is incomplete and in red are the 1’000
draws of the modified Gibbs sampler. One can clearly see, that in the locations where the
observed signal is missing, the scatter is far wider around the true value than in the other
locations. Nevertheless the draws for the missing values are not totally random, but still signal
dependent through the influences by the neighbors and the prior distributions. Missing locations
at the border are exposed to less values and therefore a skewed and larger uncertainty can be
observed.

3.1.3 Removing missing values

In Subsection 2.1.1, it was argued, that the Lägeren mountain data, contains two types of
missing values. On one hand truly missing values, that means, the reason lies in the fact that
for the respective locations, no or a obviously false measurement is available. Otherwise, there
are also locations with values equal to zero, since there is topological or context based reason.
For example if one is interested in the composition of the first earth layer in a forest and in a
part of the observed area is a lake. Then one knows for sure that in the area of the lake, there
is no measurement available and setting the the value for the respective locations to zero or
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Figure 3.3: Normal distributed ran-
dom signal in a 10×10 field, with miss-
ing values at ten random locations.

Figure 3.4: Sample mean over 1’000
draws, with resampled missing values
of the same field.

Figure 3.5: Normal signal displayed in one dimension. In black is the
observed incomplete signal and in red 1’000 draws of the Gibbs sampler.

another value would be wrong. Hence, the option which remains, is to interpret the value as
missing or not prevalent. Therefore a second approach to deal with this kind of missing values,
is introduced.

Since those values are known to be not prevalent, one can account for this fact, by excluding
all respective locations. Furthermore the entries of the precision matrix need to be modified as
well, in particular one needs to remove the rows and the columns of the locations in question.
The diagonal entries of the precision matrix depend on the neighboring row and column values
and need therefore to be adjusted too. Otherwise, one needs not to make further adjustments
and can work with the model from Figure 3.1 and the associated signal decomposition.
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3.2 Eigenvalue approximation

In this section, a method to approximate eigenvalues for precision matrices of random walk
models is derived. To control the accuracy of the approximated eigenvalues and vectors, the
implicitly restarted Arnoldi algorithm is used.

This algorithm is available in the Fortran library ARPACK (Lehoucq et al., 1998), which was
implemented in the R package spam, during the course of this thesis. The ARPACK library is
designed to compute a few eigenvalues and corresponding eigenvectors of a general n×n matrix.
When a matrix is symmetric it reduces to a variant of the Lanczos process. These variants may
be viewed as a synthesis of the Arnoldi/Lanczos process with the implicitly shifted QR technique
that is suitable for large scale problems (Golub and Van Loan, 2013). The R implementation
thereof, consists basically of an R wrapper function, which calls two different Fortran routines,
dependent whether the input matrix is symmetric or not, see the R code in Appendix B.1.
The Fortran routines are based on examples, provided by the ARPACK library and include
all necessary functions and data structures to run successfully the algorithm. Appendix B.2
contains the subroutine dn eigen f for the non symmetric case, the subroutine ds eigen f is
analog to the former one. A matrix, in spam’s compressed sparse row format, is handed over
to the Fortran routine, where the entire eigenvalue and eigenvector computations are carried
out. The results are then returned back to the R wrapper, which returns the nicely formatted
eigenvalues and eigenvectors.

3.2.1 Circulant and Toeplitz matrices

For the eigenvalue approximation one uses the fact, that for a large enough dimensions a circulant
and a Toeplitz matrix are approximately equivalent. Since, eigenvalues of circulant matrices can
be calculated with a closed from expression, the eigenvalues of large dimensional matrices can
be computed efficiently.

A circulant matrix C is a matrix of the form

C =



c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2 · · · cn−2
. . . . . . . . . . . .

. . . c2

c2 · · · . . . . . . c1

c1 c2 · · · cn−1 c0


, (3.1)

where each row is a cyclic shift of the row above. Properties of circulant matrices are well
known and derived by Gray (2005). Those, which sketch the theoretical basis of the proposed
eigenvalue approximation, are stated in the following.

Closed form for eigenvalues and eigenvectors of circulant matrices Every circulant
matrix C has eigenvectors

y(m) = 1√
n

(1, exp (−2πim/n), . . . , exp (−2πim(n− 1)/n)) T
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and corresponding eigenvalues

ψm =
n−1∑
k=0

ck exp (−2πimk/n),

with m = 1, . . . , n and i =
√
−1. In this sense, all circulant matrices bear eigenvectors of the

same form.
This result grants the possibility, to calculate eigenvalues and eigenvectors of every circulant

matrix. The next step is to link circulant and Toeplitz matrices, the latter will then be used for
a connection to precision matrices of random walk models.

Banded Toeplitz matrix A banded n×n Toeplitz matrix T n, possessing a finite number of
diagonals with nonzero entries and zeros everywhere else, is of the form

Tn =



t0 t−1 · · · t−m
... . . . . . . . . .
tm

. . . . . . . . . . . .
tm · · · t0 t−1 · · · t−m

. . . . . . . . . . . .
t−m

. . . ...
. . . . . . t−1

tm · · · t0



. (3.2)

This banded Toeplitz matrix T n can be extended to a circulant matrix Cn, by adding
respective values in the upper right and the lower left of the matrix

Cn =



t0 t−1 · · · t−m tm · · · t1
... . . . . . . . . . . . . ...
tm tm

. . . . . . . . . . . .
tm · · · t0 t−1 · · · t−m

. . . . . . . . . . . .
t−m

t−m
. . . ...

... . . . . . . . . . t−1

t−1 · · · t−m tm · · · t0



. (3.3)

In order to justify an approximation of Toeplitz matrices by circulant ones, as n becomes
large, one needs the principle of asymptotic equivalent matrices.

The strong norm Let A be a matrix with eigenvalues αk and λk ≥ 0 the eigenvalues of the
Hermitian positive semi definite A∗A. The strong norm ||A|| is defined by

||A|| = max
z:z∗z=1

{z∗A∗Az}1/2.
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The weak norm (Hilbert-Schmidt norm) of an n× n matrix A = [ak,j ] is defined by

|A| =

 1
n

n−1∑
k=0

n−1∑
j=0
|ak,j |2

1/2

.

Asymptotic equivalent matrices Two sequences {An} and {Bn} of matrices are said to
be asymptotically equivalent if An and Bn are uniformly bounded in the strong norm,

||An|| ≤M and ||Bn|| ≤M, such that M <∞, n = 1, 2, . . .

and the difference of An and Bn goes to zero in the weak norm as n becomes large,

lim
n→∞

|An −Bn| = 0.

Given, that the two sequences {An} and {Bn} are asymptotically equivalent, one can show
that for the respective eigenvalues {αn,m} and {βn,m}

lim
n→∞

1
n

n∑
m=1

(αn,m − βn,m) = 0

and if either limit exists individually, then

lim
n→∞

1
n

n∑
m=1

(αn,m) = lim
n→∞

1
n

n∑
m=1

(βn,m).

In other words, from the asymptotic equivalence of two sequences of matrices, it follows directly,
that if n becomes large enough, one can use the respective eigenvalues as an approximation.

In Conclusion Under the additional assumption, that the banded Toeplitz matrices are ab-
solutely summable, i.e.

∞∑
k=−∞

|tk| <∞

it can be shown, that the matrices Tn and Cn are asymptotically equivalent. In other words
both are bounded in the strong norm and in the weak norm and hence

lim
n→∞

|T n −Cn| = 0.

3.2.2 Random walk precision matrix

In the following it is argued for the eigenapproximation by circulant matrices of precision ma-
trices, which are typically used for the introduced models. Therefore, the specific structure of
those precision matrices Q are introduced. A more rigorous derivation of it, is given in Rue and
Held (2005) and the R implementation thereof is available in the spam package.

One assumes In is a regular lattice, such that n = n1n2 the corresponding lattice dimensions
and (r, s) denotes a node in the ith row and the jth column. In the interior of the lattice, the
nearest four sites of (r, s) are defined as its neighbors, i.e (r + 1, s), (r − 1, s), (r, s + 1) and
(r, s− 1). Furthermore, in the interior of the lattice it holds, that π(xr,s|x−r,s, κ) is normal with
mean

1
4(xr+1,s + xr−1,s + xr,s+1 + xr,s−1) and the conditional precision 4κ.
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Figure 3.6: random walk of order one precision matrixQ of a 5 × 15 regular
grid, according to equation (3.4).

The corresponding precision matrix is defined as

Qr,s = κ


nr, r = s,

−1, r ∼ s,

0, otherwise,

,

where nr denotes the number of neighbors in region r.
Typically, an extended anisotropic model can be used, i.e. weighing the horizontal and ver-

tical neighbors differently. More precisely, one supposes that the conditional mean is

1
4(α′(xr+1,s + xr−1,s) + α′′(xr,s+1 + xr,s−1)).

Where α′ and α′′ are positive parameters, such that α′ + α′′ = 2. The conditional precision is
unchanged and one can write the precision matrix as

Q = α′Rn1 ⊗ In2 + α′′In1 ⊗Rn2 . (3.4)

Thereby is Rn the structure matrix and In the n × n dimensional identity matrix. The
structure matrix of the order one random walk model of dimension n× n is

Rn =


1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

 .

As Figure 3.6 shows, typical precision matrices, for the model in use, are not of an exact
Toeplitz form. Therefore, it is necessary to investigate, how to choose the circular matrix for
the approximation and for which lattice dimensions the approximation becomes accurate.
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3.2.3 Precision matrix approximation by circular matrices

In the following the approximation of the eigenvalues of the precision matrix Q is shown. Since
the principle is not proofed in theory, its applicability and accuracy is illustrated with a cohort
study of matrices, with different respective dimensions.

From the previous definition, it becomes clear, that the precision matrices Q are not of exact
Toeplitz form, like in equation (3.2). I.e. an element tk, for k = −m, . . . ,−1, 0, 1, . . . ,m, is not
equal to the same value for every row, this is due to the construction of Q through the Kronecker
product. One can account for this structure the best, if one uses the mth row of the precision
matrix and constructs a circulant matrix according to equation (3.3). With this choice one can
speculate, that for a large enough dimension of the matrix, the number of different entries of the
two matrices becomes small. Or in other words, the difference becomes bounded with respect
to the weak matrix norm.

Random walk of order one precision matrices For the first matrix cohort for the eigen-
value approximation study, precision matrices according to the random walk model of order one
are investigated. To start with non computationally intensive examples, the eigenvalues of pre-
cision matrices of dimensions 400×400, . . . , 4’900 × 4’900, 6’400 × 6’400 are approximated and
compared to the corresponding true value. In Figures 3.7 and 3.8 are the differences between
the approximated and the true eigenvalues displayed. This plot already demonstrates, that one
can hope for useful eigenvalue approximations as the dimensions become larger. Moreover, this
Figure shows for all the cases the same patter, the approximation is closest at the border and
the middle of the corresponding eigen spectra. Also the comparison between Figure 3.9 and
Figure 3.10 shows, that the corresponding tapering functions of the approximated eigenvalues
are tolerably similar. One notes, that small eigenvalues include large smoothing levels and vice
versa. The obvious differences are concerning the blue and green line, which correspond to the
two largest smoothing ranges, except the mean. If one looks at the same plots with non log
transformed x-axes, one could see the same properties, but less obvious. The motivation one
can take from this example, is that an underlying grid for this precision is only of the size of
60× 60 points.

The same procedure was applied to precision matrices of the same model but of higher
dimensions. Since ordinary R functions cannot allocate matrices of those sizes and also are not
able to do it in reasonable time, the aforementioned implicit restarted Arnoldi algorithm is used
to control the accuracy of the approximated eigenvalues.

The underlying lattice for the precision matrix is not necessary of quadratic form, hence the
precision matrices investigated do need to cover also those cases, since the structure of the the
respective precision matrix is different than from a quadratic lattice. The cohort of matrices of
this approximation study does also involve large matrices, to save computation time not all of
the approximated eigenvalues are controlled with the iterated ones from the Arnoldi algorithm.
In fact only n2/20 are calculated for a n×m lattice. For those values the number of eigenvalues
which differ more than a certain threshold, are counted and divided by the total number of
controlled eigenvalues. This number is referred to, as the relative number of rejected eigenvalues
with the threshold d = 0.01. One can argue for this threshold, with the resulting tapering
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Figure 3.7: Relatively small precision matrices of a random walk model of
order one, such that the dimensions increase quadratic. Every pair of black
and red lines represent the eigenvalues of another precision matrix.

functions, for which such a value is small enough do derive correct smoothing levels.
The attentive reader notes, that for a lattice of dimension n × m a precision matrix of

dimension n2×m2 is necessary. In the following the value for the underlying lattices of the data
is used to differentiate between different precision matrices. Figure 3.11 shows for a cohort of
matrices, regarding the mentioned relative number of rejected eigenvalues, which is displayed
with bubbles of diameter sizes corresponding to its value. Due to the symmetry of precision
matrices, one could exchange lattice rows and columns for the same results. The diagonal of
the Figure shows the precision matrices for the quadratic lattices, which have a reasonable
good approximation for lattices of the size 240 × 240 and larger. For non quadratic lattices,
larger dimensions are needed, if one side of the lattice is smaller than 120, the approximation is
imprecise the most.

random walk of order two precision matrices A similar pattern can be observed for a
cohort of precision matrices of a random walk model of order two. Figure 3.12 shows those
results analogue to Figure 3.11. But compared to the order one precision, the approximations
with circulant matrices are not very close for the respective lattices. This is due to the fact,
that the structure of such matrices is less Toeplitz, as a comparison between Figure 3.13 and



3.2. EIGENVALUE APPROXIMATION 27

Figure 3.8: Relatively small precision matrices of a order one random walk
model, such that the dimensions increase quadratically. The legend denotes
the dimension of the corresponding matrix and hence the number of eigen-
values. Every line corresponds to the difference of the approximated and the
true eigenvalues.

Figure 3.9: Tapering functions ac-
cording to the true eigenvalues of a
3’600 × 3’600 random walk precision
matrix of order one.

Figure 3.10: Tapering functions ac-
cording to the approximated eigenval-
ues of a 3’600 × 3’600 random walk
precision matrix of order one.

Figure 3.6 clearly shows. Individual tests for precision matrices of random walk models of order
two showed, that the underlying lattice needs to be even larger than of size 600 × 600, for a
reasonable approximation.
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Figure 3.11: Relative number of rejected eigenvalues according to precision
matrices of a random walk model of order one.

Figure 3.12: Relative number of re-
jected eigenvalues according to preci-
sion matrices of a random walk model
of order two.
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Figure 3.13: random walk of order
two precision matrix of a 5 × 15 regu-
lar lattice.



Chapter 4

Applications

In this chapter, the original multiresolution decomposition from Chapter 1 is compared with the
enhanced models, derived in Chapter 3. For this purpose the Lägeren mountain data is used,
which is introduced in Chapter 2. To show, that the extended model of the multiresolution
decomposition allows for data distributed on irregular lattices, also the oral cavity cancer SMR
data is applied.

4.1 Multiresolution decomposition of the Lägeren data

First the original multiresolution decomposition method, from Chapter 1, is used to analyze the
Lägeren mountain data. As an anterior approach, the data is analysed without changing zeros
or low measurements to missing values, despite the arguments from Chapter 2 to interpret those
as missing values. For the analysis the statistical software R with the provided functions from

Figure 4.1: Signal independent ta-
pering functions, for an underlying
grid of size 400 × 1’100.

Figure 4.2: Signal dependent taper-
ing functions, for an underlying grid of
size 400 × 1’100.

29
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Figure 4.3: Scale dependent details of raw “Canopy Heights”, summarized by their
posterior means corresponding to the mrbsizeR analysis.

the package mrbsizeR is used.
Due to the large amount of values equal to zero, the data requires a transformation. Oth-

erwise the analysis would be entirely dominated by those values and the normal assumption of
the model would be violated, hence it would not show reliable results in any sense. The original
data, including zeros and small values, are therefore log transformed for the first approach to
analyze this data.

In the signal reconstruction step, 1’000 samples are generated with the multivariate tν (µ,Σ)
distribution and the hyper parameters are non informatively fixed to λ = 0.2, σ = 6 and ν0 = 15.

The tapering functions, shown in Figure 4.1 and 4.2, exhibit the desired pattern of ap-
proximately disjoint supports, for the chosen smoothing levels. Pursuant smoothing levels are
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Figure 4.4: Highest pointwise maps of raw “Canopy Heights”, corresponding to the
mrbsizeR analysis.

determined with the help of the optimization procedure, which is implemented in the same
mrbsizeR package. The following scale-dependent details, in Figure 4.3, seem to be fitting only
at the first glance. If one examines larger areas with former values equal to zero, one recognizes,
that large features appear which are not prevalent in the original data. This leads to wrong
conclusions, especially in the point of view, that all of those original locations contain values
equal or close to zero. Those artificial features are even better recognizable in the details z2 and
z3. Moreover, the details z1 and z2 seem to be very blurred, and almost only the border points
of the Lägeren forest are apparent. The credible features, according to the highest pointwise
maps in Figure 4.4 do mirror all of those facts. High credible “Canopy Heights” measurements
are colored in red and low ones in blue. One would expect, that at least detail z2 shows a
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Figure 4.5: Tapering function according random walk model precision ma-
trix, of dimension 440’000 × 440’000.

large amount of detailed credible features, but due to the huge amount of values equal to zero,
those get washed out. Only in detail z4 the true underlying features are, according to its high
smoothing levels, identified acceptably well. The same behavior occurs, if one imputes an overall
mean value, for the missing values (see Appendix C).

4.1.1 Sample missing values

The modified model to sample missing values is applied next to the Lägeren mountain data and
the signal reconstructed accordingly. A suitable precision matrix of a random walk model of
order one, with dimensions 440’000 × 440’000 is used. The hyper parameters are chosen non
informatively as αx = 10, βx = 0.1 and αy = 0.1, βy = 0.0005. The attentive reader notes,
since the model includes a Gibbs sampler, further diagnostic of the resulting samples need to be
concerned. According to Brooks and Gelman (1998), typical tools like trace, auto correlation
plots and 95% as well as 5% quantiles are considered to assure the convergence of the sampler.
Therefore, 2’000 samples are taken into account after a burn-in period of 1’000 draws.

Since the precision matrix of this model is different to the model above, the smoothing
levels have to be determined newly. To compute the according tapering functions, the depicted
eigenapproximation, from Chapter 3, is used. In order to receive comparable smoothing levels,
to the model above, the known smoothing levels from above are used as a starting point. As
Figure 4.5 illustrates, the smoothing levels for this model are slightly different. The chosen
smoothing levels, λ1 = 0, λ2 = 1, λ3 = 50, λ4 = 500 and λ5 = 5’000 result in necessary
approximately disjoint supports of the tapering functions.

Figure 4.6 shows the details found by the multiresolution decomposition, with the new model
to sample missing values, summarized by their posterior means. Detail z1, with a narrow
smoothing range and small smoothing levels, shows large yellow areas, specifically in the locations
where the missing values used to be. Moreover, very delicate features are recognizable in this
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Figure 4.6: Scale dependent details of “Canopy Heights”, summarized by
their posterior means, whereupon missing values are sampled.

detail. Comparing the detail to its highest point wise maps counterpart in Figure 4.7, shows that
the yellow areas have different underlying uncertainties. One can now recognize very well the
credible features and as expected, are the large areas with former missing values not credible.
Also, detail z2 shows exciting results, since in its highest probability map all known features,
like the mountain ridge and so forth, are recognizable. It is still on a close scale and therefore
reasonable that areas with former missing values are still not credible. On the other hand, detail
z3 and z4, with distant smoothing levels, are able to color parts of those areas in blue. Most
importantly, the model does not recognize artificial or non prevalent features and in every detail
there is a reasonable amount of grey area between credible features.
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Figure 4.7: Highest pointwise maps of “Canopy Heights”, whereupon miss-
ing values are sampled.

4.1.2 Removing missing values

The second model to deal with with missing values is also applied to the Lägeren mountain data.
As outlined in the previous chapter, the respective locations are excluded from the analysis. For
this reason, Figures 4.8 and 4.9 consists of a large amount of white locations. The smoothing
levels are adjusted for this model to λ1 = 0, λ2 = 1, λ3 = 100, λ4 = 4’000, λ5 = 1000’000, since
the dimension of the precision matrix differs to both of the former models (see the tapering plot
in Figure C.3). Nevertheless equal non informative hyperparamters are chosen, as well as the
number of samples and burn-in period length, like in the previous application.

The corresponding scale dependent details and credible features are shown in Figure 4.8
and 4.9. The first detail, with the closest smoothing level, shows the data in clear details and
the the corresponding highest probability map recognizes almost no points as credible. Typically,
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Figure 4.8: Scale dependent details of “Canopy Heights”, summarized by
their posterior means, whereupon missing values are removed.

in details with smoothing range including zero and another low smoothing level, portray the data
in close detail and therefore not all locations are credible. In detail z2, the data is well recognized
also, but despite of that, only few features are credible and large grey areas are depicted. On
the other hand, the third detail distinguishes reasonably the important features of the data,
which are also in the credible analysis apparent. Detail z4 is again dominated by a red area
and contains areas with low measurements only at the borders. Otherwise, its highest pointwise
map illustrates nicely prudential large credible areas, containing of sufficient enough grey areas
in between. More experience is needed to treat corresponding smoothing at the borders of such
areas. Different approaches to further modify the precision matrix are possible, as the work of
Tiefelsdorf et al. (1999) shows.
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Figure 4.9: Highest pointwise maps of “Canopy Heights”, whereupon miss-
ing values are removed.

4.2 Multiresolution decomposition of irregular lattice data

The direct consequence of the generalization for the signal reconstruction model of the multires-
olution decomposition method, without any further modification, is the expansion from regular
to irregular lattice data. Therefore the standardized mortality ratios from the oral cavity cancer
data are applied to the generalized multiresolution decomposition. The usual precision matrix
of a random walk model of order one is used, but since the lattice is irregular, one needs to
weight the precision matrix according to the first neighbors of the respective districts. This is
done with the adjacency matrix from the spam package and depicted in Figure 2.5. The hyper-
parameters are chosen non informatively also, as αx = 0.001, βx = 0.01 and αy = 0.005, βy = 1.
Drawn are 2’000 samples by the normal response Gibbs sampler, after a burn-In period of 1’000
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Figure 4.10: Scale dependent details of the oral cavity cancer SMRs in
German districts, summarized by their posterior means.

draws. Moreover, the usual diagnostics are considered, to assure the convergence of the sampling
procedure. The precision matrix of this application is of relatively small dimension, hence the
eigenvalues can be calculated naively and an approximation is not necessary. The resulting taper-
ing functions lead to the following smoothing levels, λ1 = 0, λ2 = 0.1, λ3 = 1, λ4 = 10, λ5 = 100
(see Figure C.4).

The results of its multiresolution decomposition are depicted in the usual manner in Fig-
ure 4.10 and 4.11. For the credibility analysis are pointwise maps used, since the data consists
only of 544 measurements. The details show, according to their smoothing range, the desired
patterns. Details with low smoothing ranges, contain only few credible features, but for higher
smoothing ranges the large credible areas are well recognized. Districts with only one neighbor
are thereby not well smoothed out, if those contain relative extreme values.
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Figure 4.11: Pointwise maps of the oral cavity cancer SMRs in German
districts.



Chapter 5

Conclusion

5.1 Results

In this master’s thesis the existing multiresolution decomposition method was extended and
generalized to incomplete signals and irregular lattice data. In order to efficiently apply the
method, various steps were necessary, which are discussed separately in the following.

The generalized model for the Bayesian signal reconstruction of the multiresolution decom-
position method showed promising results and proofs its flexibility with different approaches to
deal with missing values. Moreover, it enabled the possibility to analyze data distributed on
irregular lattices. In this context, the method is challenged only, with locations holding one
nearest neighbor.

The derived model to sample missing values, yelledded exiting results and compared with the
other approaches applied to the data, the most reasonable ones. The reduction of the influence of
the likelihood function to non missing values, propagates the necessary uncertainties throughout
the decomposition until the credibility analysis. Features are well recognized in all the different
details and locations in large areas of former missing values became only credible for distant
smoothing levels. Since, one could not differentiate between locations, where no measurements
were taken and the measurement is actually zero, the data is still not fully accurately analyzed.
But an improvement is only possible through this distinction in the data itself.

The model which removes missing values, was not in particular fitting for the Lägeren moun-
tain data, since most of the values treated as missing, are equal to zero and for others, no
observations were taken. Nevertheless, the application to the data proofed the usefulness of
this model, since it still captured the important features of the data. One can imagine different
purposes for this model, for instance if the area of interest includes a large feature like a lake or a
river, where with absolute certainty no observation or measurement is available and if assigning
a specific value to such a location, would be wrong.

The implementation of the implicitly restarted Arnoldi algorithm of the spam package was
applied, in the course of this thesis, for various matrices of different dimensions and different
forms. Nevertheless of the promising performance, while computing a small set of eigenvalues
for large dimensional matrices, the algorithm provided no alternative to replace the fast Fourier
based eigendecomposition, proposed in the original multiresolution decomposition. Henceforth,
the algorithm proofed its usefulness, to test the accuracy of the eigenvalue approximation, out-
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lined in Chapter 3.
The results of the eigenvalue approximation procedure, showed that the eigenvalue approx-

imation of random walk precision matrices of order one by circulant matrices is sufficient for
large enough lattices. On the other hand, for random walk precision matrices of order two, the
approximation was not sufficiently accurate for the investigated lattice sizes. but, in the derived
multiresolution decomposition models, the random walk precision matrix of order one is clearly
favored, since it captures features of the data more precisely.

5.2 Outlook

The next step is to integrate the implicitly restarted Arnoldi method in the newest version of
the spam package (which is currently version spam 2.1-1). Moreover, this method could be
extended by making the implementation fit for sequential eigenvalue calculations. Therefore
one needs only to save the intermediate results of the Fortran routine in the R environment and
as soon as one starts further computations, handle those back to Fortran. Such an extension
would be of high value in scientific procedures.

Further investigations regarding the eigenapproximation could cover the whole eigendecom-
position of the matrix, i.e. to examine whether the circulant eigenvectors can be used as an
approximation for precision matrices. With the help of eigenvectors, one can compute the
signal-dependent tapering functions, in the outlined multiresolution decomposition method, to
improve the smoothing selection procedure.

To make this method entirely fit for large dimensional problems, another important detail
in the method needs an improvement. Namely, the optimization procedure to find the optimal
smoothing levels. This problem was addressed in this thesis only for completeness, but the
grid search which was proposed in the work of Holmström et al. (2011) is not suitable to deal
efficiently with large dimensional precision matrices.

The multiresolution decomposition and its corresponding model, could be made even more
generalized for non lattice data, i.e. to extend the method for data which has no grid structure
and use the nearest distance to model a corresponding neighbor structure of the points.

To extend the functionality of the investigated method, one could introduce a smoothing
level, which is dependent on the topology of the lattice points. With such a improved smooting
level, the analyzed features would agree on the same level. Hence, it would be possible to count
corresponding features and to make a probabilistic statement about the result.



Appendix A

Additional calculus

A.1 Gaussian Markov random field

After Rue and Held (2005), a Gaussian Markov random field (GMRF) is defined under the
following preliminaries. Assume conditional dependence on a few neighbor sites only, where
neighbor signifies sharing a common edge or boundary. Denote the neighbor relation with r ∼ s
for sites r 6= s. The relation is symmetric, i.e. if r ∼ s then s ∼ r. It is convenient to represent
the dependence structure with an undirected, labelled graph G = (V, E), where V is the set of
nodes in a graph and E the set of edges {r, s}, r 6= s ∈ V.

Definition A random vector Y = (Y1, . . . , Yn)T is a GMRF with respect to a labelled graph
G = (V, E) with mean µ and (spd) precision matrix Q if its density is given by

π(y) = (2π)−n/2 det(Q)1/2 exp
(
−1

2(y − µ)TQ(y − µ)
)

and Qij 6= 0⇐⇒ {i, j} ∈ E , ∀i 6= j.

A.2 Canonical parameterization of a GMRF

After Rue and Held (2005), a Gaussian Markov random field (GMRF) x with respect to graph
G with canonical parameters b and Q > 0 has density

π(x) ∝ exp
(
−1

2x
TQx+ bTx

)
i.e., the precision matrix is Q and the mean is µ = Q−1b. One writes the canonical parameter-
ization as

x ∼ NC (b,Q) .

A.3 Derivation of multivariate t-distribution parameters

The marginal posterior density function

π(x|y) ∝ (λ0x
TQx+ ||y − x||2 + ν0σ

2
0)−(2n+ν0−1)(2), (A.1)
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which describes a multivariate t-distribution tν (µ,σ). The parameters for this distribution
can be determined with the hep of the definition of the smoother in equation (1.10) and the
probability density function of the multivariate t-distribution. One starts with

λ0x
TQx+ ||y − x||2 + ν0σ

2
0

= xT(I + λ0Q)x+ yTy − 2xTy + ν0σ
2
0

= xTS−1
λ0
x+ yTy − 2xTy + ν0σ

2
0

= (x− Sλ0y)TS−1
λ0

(x− Sλ0y)− yTSλ0y + yTy + ν0σ
2
0

= 1
−yTSλ0y + yTy + ν0σ2

0
(x− Sλ0y)TS−1

λ0
(x− Sλ0y) + 1

The multivariate t-distribution includes the variance ν, otherwise its mean µ is not defined
and the distribution is a multivariate Cauchy (Genz and Bretz, 2009). To account for this, one
replaces the 1 in the nominator, in the last line above, with ν.

Then the multivariate t-distribution parameters can be read of the expression as

µ = Sλ0y

Σ = Sλ0

(
yTy − yTµ+ ν0σ

2
0

ν

)
ν = ν0 + n− 1.



Appendix B

Arnoldi algorithm

B.1 Spam R wrapper function

In ths appendix are the R functions displayed, which are necessary to call the Fortran routines
dn eigen f or ds eigen f. In addition the functions to format the input as well as the return
values of the aforementioned routines, are listed.

setMode <- function(sMode, symmetric, f_routine) {
if (sMode != 'L' & sMode != 'S') { sMode <- 'S' }

if (sMode == 'L') { mode <- as.integer(1L) }
if (sMode == 'S') { mode <- as.integer(2L) }

return(mode)
}

getEigenval <- function(values, mode, dim, nEig, retOrder = FALSE) {
result <- rep(NA, dim)

orderedInd <- order(values[1:nEig], decreasing = TRUE)
values <- values[orderedInd]

if (mode == 'L') { result[1:nEig] <- values }
if (mode == 'S' ) { result[(dim - nEig + 1):dim] <- values }
if (!retOrder) { return(result) }

else { return(list(values = result, newOrder = orderedInd)) }
}

mk_cmplxentries <- function(z = is.numeric()) {
if (dim(z)[2] != 2)

stop("wrong format from fortran return: dn_eigen_f")

cmplx <- NULL
cmplx <- sapply(1:length(z[ , 1]),

function(x) { complex(real = z[x, 1], imaginary = z[x, 2]) })
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if (is.null(cmplx))
stop("error while aggregating fortran return from two vectors to a complex")

return(cmplx)
}

mk_cmplxvectors <- function(V = is.matrix(), numbEig, eigVal, dimMat) {
formVec <- matrix(complex(real = 0, imaginary = 0),

nrow = dimMat, ncol = numbEig)

first <- TRUE
sapply(1:numbEig, function(x) {

if (abs(Im(eigVal[x])) > getOption("spam.eps")) {
if (first) {

sapply(1:dimMat, function(y) {
formVec[y, x] <<- complex(real = V[y, x], imaginary = V[y, x+1])
if (x + 1 < numbEig) {

formVec[y, x+1] <<- complex(real = V[y, x], imaginary = -V[y, x+1])
}

})
first <- FALSE

} else {
first <- TRUE

}
} else {

sapply(1:dimMat, function(y) {
formVec[y, x] <<- complex(real = V[y, x], imaginary = 0)

})
}

})

return(formVec)
}

getEigenvec <- function(v, values, sym, ncv, mode, dimen, nEig) {
if (is.null(v))

stop("fortran returned NULL eigenvectors")

if (sym)
tmpM <- matrix(v, nrow = dimen, ncol = ncv)

else {
tmpM <- matrix(v[1:(dimen*nEig*2)], nrow = dimen, ncol = nEig*2)
tmpM <- mk_cmplxvectors(V = tmpM, numbEig = nEig, eigVal = values,

dimMat = dimen)
}
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rm(v)
result <- matrix(NA, nrow = dimen, ncol = nEig)
orderedInd <- getEigenval(values = values, mode = mode,

dim = dimen, nEig = nEig, retOrder = TRUE)$newOrder

if (is.null(orderedInd))
stop("error while formatting eigenvectors")

result <- tmpM[ , 1:nEig, drop = FALSE]
result <- result[ , orderedInd, drop = FALSE]

return(result)
}

cat_verbose <- function(routine) {
if (routine == 'ds_eigen_f') {

cat("\n the fortran routine for symmetric matrices with double precision
was used: ds_eigen_f\n")

}
if (routine == 'dn_eigen_f') {

cat("\n the fortran routine for nonsymmetric matrices with double precision
was used: dn_eigen_f\n")

}
}

eigen_approx <- function(X,
nEigenVal = 1,
ncvOpt,
mode = 'S',
eigenvectors = FALSE,
verbose = FALSE,
f_routine = "ds_eigen_f",
devMode = FALSE){

# check & parse arguments
if (class(X) != 'spam')

stop("input matrix 'X' must be of class spam!")

if (isSymmetric.spam(X) & X@dimension[1] <= nEigenVal)
stop("nEigenVal: the number of eigenvalues to calculate must be smaller than

the matrix dimensions")

if (f_routine != "ds_eigen_f" && f_routine != "dn_eigen_f")
stop("non valid fortran routine is specified")

f_mode <- setMode(sMode = mode, symmetric = isSymmetric.spam(X),
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f_routine = f_routine)
fortran_object <- result <- list(NULL)

fortran_object <- .Fortran (f_routine,
maxnev = as.integer(nEigenVal),
ncv = as.integer(ncvOpt),
n = as.integer(X@dimension[1]),
iwhich = as.integer(f_mode),
na = as.integer(X@dimension[1]),
a = as.array(X@entries),
ja = as.array(X@colindices),
ia = as.array(X@rowpointers),
v = vector("double", X@dimension[1]*ncvOpt),
d = vector("double", nEigenVal),
vf = as.integer(ifelse(devMode, 1L, 0L)),
iparam = vector("integer", 11),

NAOK = getOption("spam.NAOK"),
PACKAGE = "spam")

result <- list ("nEigenVal" = fortran_object$maxnev,
"Mode" = fortran_object$which,
"Eigenvectors" = if (eigenvectors) { fortran_object$v }

else { NULL },
"Eigenvalues" = fortran_object$d,
"nconv" = fortran_object$iparam[5])

}

if (f_routine == "dn_eigen_f") {
fortran_object <- .Fortran (f_routine,

maxnev = as.integer(nEigenVal),
ncv = as.integer(ncvOpt),
n = as.integer(X@dimension[1]),
iwhich = as.integer(f_mode),
na = as.integer(X@dimension[1]),
a = as.array(X@entries),
ja = as.array(X@colindices),
ia = as.array(X@rowpointers),
v = vector("double", X@dimension[1]*ncvOpt),
dr = vector("double", nEigenVal),
di = vector("double", nEigenVal),
vf = as.integer(ifelse(devMode, 1L, 0L)),
iparam = vector("integer", 11),

NAOK = getOption("spam.NAOK"),
PACKAGE = "spam")

result <- list ("nEigenVal" = fortran_object$maxnev,
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"Mode" = fortran_object$which,
"Eigenvectors" = if (eigenvectors) { fortran_object$v }

else { NULL },
"Eigenvalues" = mk_cmplxentries(cbind(fortran_object$dr,

fortran_object$di)),
"nconv" = fortran_object$iparam[5])

}

if (is.null(result))
stop("error while calling fortran routine, check (control) arguments")

if (verbose)
cat(paste("\n ", nEigenVal, "eigenvalues requested and", result$nconv,

"converged\n"))

if (nEigenVal != result$nconv)
warning(paste("only", result$nconv, "instead of", nEigenVal,

"eigenvalues converged, try to increase 'control = list(ncv)'"))

return(result)
}

eigen.spam <- function (x, nev = 1, symmetric = TRUE, only.values = TRUE,
control = list()) {

con <- list(mode = 'S',
ncv = NULL,
spamflag = FALSE,
verbose = FALSE)

nmsC <- names(con)
con[(namc <- names(control))] <- control
if (length(noNms <- namc[!namc %in% nmsC]))

warning("unknown names in control: ", paste(noNms, collapse = ", "))

ifelse(!con$verbose, vFlag <- FALSE, vFlag <- TRUE)

minDimARPACK <- 16 # arpack routines cant handle very small matrices

resContainer <- list(NULL)

# dispatching
if ((!con$spamflag && prod(dim(x)) <= getOption("spam.inefficiencywarning"))||

(con$spamflag && prod(dim(x)) <= minDimARPACK)) {
warning("The eigenvalues are calculated with the function eigen from the

base package.")
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if (con$spamflag) { warning(paste("Even, the 'spamflag = TRUE'. Since the
matrix dimension is smaller than "),

minDimARPACK) }

resContainer <- base::eigen(x = x,
symmetric = symmetric,
only.values = only.values)

resEig <- resContainer$values
resVec <- resContainer$vectors

} else {
# --- using ARPACK -------------------------------------------------------- #

if (!is.spam(x))
try(x <- as.spam(x))

if (x@dimension[1] != x@dimension[2])
stop("non-square matrix in 'eigen'")

if (nev >= x@dimension[1] || nev >= x@dimension[2] || nev <= 0)
stop ("the number of asked eigenvalues is higher or equal the dimension of

the input matrix")

if (symmetric) { ncvMaxMin <- 100 } else { ncvMaxMin <- 100 }
if (con$ncv > x@dimension[1] || con$ncv < nev || is.null(con$ncv)) {

inpNcv <- min(x@dimension[1] - 1, max(2 * nev + 1, ncvMaxMin)) }
else { inpNcv <- con$ncv }

if (con$mode == 'S' | con$mode == 'L') {
inpMode <- con$mode

} else {
inpMode <- 'S'
warning("invalid mode selected; set to 'S'")

}

# symmetric double
if (isSymmetric.spam(x) && symmetric) {

resContainer <- eigen_approx(X = x,
nEigenVal = nev,
ncvOpt = inpNcv,
mode = con$mode,
eigenvectors = !only.values,
verbose = vFlag,
f_routine = 'ds_eigen_f',
devMode = FALSE)
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if (con$verbose) { cat_verbose(routine = 'ds_eigen_f') }

resEig <- getEigenval(values = resContainer$Eigenvalues,
mode = inpMode,
dim = x@dimension[1],
nEig = resContainer$nconv)

if(!only.values) {
resVec <- getEigenvec(v = resContainer$Eigenvectors,

values = resContainer$Eigenvalues,
ncv = inpNcv,
sym = TRUE,
dimen = x@dimension[1],
mode = inpMode,
nEig = resContainer$nconv)

}
}

# nonsymmetric double
if (!isSymmetric.spam(x) | !symmetric) {

resContainer <- eigen_approx(X = x,
nEigenVal = nev,
ncvOpt = inpNcv,
mode = con$mode,
eigenvectors = !only.values,
verbose = vFlag,
f_routine = 'dn_eigen_f',
devMode = FALSE)

if (con$verbose) { cat_verbose(routine = 'dn_eigen_f') }

resEig <- getEigenval(values = resContainer$Eigenvalues,
mode = inpMode,
dim = x@dimension[1],
nEig = resContainer$nconv)

if (!only.values) {
resVec <- getEigenvec(v = resContainer$Eigenvectors,

values = resContainer$Eigenvalues,
ncv = inpNcv,
sym = FALSE,
dimen = x@dimension[1],
mode = inpMode,
nEig = resContainer$nconv)

}
}

# ------------------------------------------------------------------------- #
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}

if (only.values) { return (list("values" = resEig)) }
else { return (list("values" = resEig, "vectors" = resVec)) }

}

B.2 Spam Fortran routine

The Fortran subroutine dn eigen f includes the ARPACK calls to start the implicitly restarted
Arnoldi method. It is based on sample code, from the selfsame ARPACK library, named
dndrv1 (Lehoucq et al., 1998).

c
subroutine dn_eigen_f (maxnev , ncv , n, iwhich ,

& na , a, ja , ia ,
& v, dr , di , vf , iparam )

c
implicit none

c
integer maxnev , ncv , n, na , vf ,

& iwhich
c
c %--------------%
c | Local Arrays |
c %--------------%
c

integer iparam (11) , ipntr (14) ,
& ja(*), ia(na +1)

c
logical select (ncv)

c
Double precision

& dr( maxnev +1), di( maxnev +1), resid(n),
& v(n, ncv), workd (3*n),
& workev (3* ncv),
& workl (3* ncv*ncv +6* ncv),
& a(*)

c
c %---------------%
c | Local Scalars |
c %---------------%
c

character bmat *1, which *2
integer ido , lworkl , info ,

& ierr , maxitr , ishfts , mode
Double precision
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& tol , sigmar , sigmai
c
c %------------%
c | Parameters |
c %------------%
c

Double precision
& zero

parameter (zero = 0.0D+0)
c

include 'debug.h'
ndigit = -3
logfil = 6
mngets = 0
mnaitr = 0
mnapps = 0
mnaupd = vf
mnaup2 = vf
mneupd = 0

c
bmat = 'I'

c
lworkl = 3* ncv*ncv +6* ncv
tol = zero
ido = 0
info = 0

c
ishfts = 1
maxitr = 1000
mode = 1

c
iparam (1) = ishfts
iparam (3) = maxitr
iparam (7) = mode

c
if ( iwhich .eq. 1) then

which = 'LR '
else

which = 'SR '
end if

c
10 continue

c
c %---------------------------------------------%
c | Repeatedly call the routine DNAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
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c | has been exceeded . |
c %---------------------------------------------%
c

call dnaupd ( ido , bmat , n, which , maxnev , tol , resid ,
& ncv , v, n, iparam , ipntr , workd , workl , lworkl ,
& info )

c
if (ido .eq. -1 .or. ido .eq. 1) then

call d_ope (na , workd(ipntr (1)) , workd(ipntr (2)) ,
& a, ja , ia)

go to 10
end if

c
if ( info .lt. 0 ) then

call errpr (info)
goto 9000

else
call dneupd ( .true., 'A', select , dr , di , v, n,

& sigmar , sigmai , workev , bmat , n, which , maxnev , tol ,
& resid , ncv , v, n, iparam , ipntr , workd , workl ,
& lworkl , ierr )

if ( ierr .lt. 0 ) then
call errpr (ierr)
goto 9000

end if
endif

c
9000 continue

c
end

c
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Appendix C

Additional figures

Figure C.1: Scale dependent details of mean imputed “Canopy Heights”, summarized
by their posterior means corresponding to the mrbsizeR analysis.
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Figure C.2: Highest pointwise maps of mean imputed “Canopy Heights”, correspond-
ing to the mrbsizeR analysis.
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Figure C.3: Tapering function, according to the precision matrix to remove
missing values of “Canopy Heights” measurements.

Figure C.4: Tapering function, according to the weighted precision matrix
of the oral cavity cancer data.



Appendix D

Session Info

print(sessionInfo())
## R version 3.4.1 (2017-06-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_CH.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] spam_1.3-01 ggplot2_2.2.1 knitr_1.15.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.10 assertthat_0.1 digest_0.6.12 plyr_1.8.4
## [5] gtable_0.2.0 magrittr_1.5 evaluate_0.10 scales_0.4.1
## [9] highr_0.6 stringi_1.1.5 lazyeval_0.2.0 tools_3.4.1
## [13] stringr_1.2.0 munsell_0.4.3 compiler_3.4.1 colorspace_1.3-2
## [17] tibble_1.2
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