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1 Introduction

In many scientific fields, a common problem is the computation of definite in-
tegrals of functions. For some integrals it is impossible to analytically compute
their exact value. Instead, numerical methods like the Gaussian quadrature are
used. The subject of this thesis is the Tensor-Gaussian quadrature applied to
one particular problem, namely the three-dimensional wave equation.

An elegant procedure for solving partial differential equations like the wave
equation is considered: The differential equation is transformed to an integral
equation using an adequate ansatz; the integral equation is then transferred onto
the Laplace domain by using the Laplace transform; and the problem is finally
reduced to solving a coupled system of an integral equation on the boundary
and a system of ordinary differential equations. Instead of solving the classical
formulation of the integral equation, we use the variational formulation in order
to apply a Galerkin method.

A demanding task for this procedure is the setup and solution process of a
linear system of equations with a massive dense system matrix of dimension
∼ 104 − 105. The entries of this matrix are integrals of the form

∫
Γ

bi(x)∫
Γ

k(x,y,x − y)bj(y)dΓy dΓx, (1.1)

where the bi are basis functions of the boundary element space, k is a kernel
operator and Γ is the boundary of the integration domain.

Our goal is to analyze the behavior of the error of the Tensor-Gaussian quadra-
ture applied to integrals such as (1.1). This error will depend on many param-
eters, such as the mesh size and the steps of the time discretization. The intent
of our work is to experimentally study the influence of these parameters in order
to optimize the performance of the method.

In Section 2, we formulate the problem. In Section 3, we introduce the numeri-
cal methods we use. Moreover, some theoretical frameworks are collected in the
appendix. Section 4 is a brief summary of the theory about numerical integra-
tion and in particular about Gaussian quadrature in one and more dimensions.
In Section 5, the concrete setup of the experiments is presented. Section 6 con-
tains a small overview of the MATLAB implementation of the experiments. In
particular, it also explains how the approximations could be reused for possible
additional analyses. The results of the numerical experiments are then shown
in Section 7. Finally, some conclusions are drawn in Section 8.
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2 Formulation of the problem

The goal of this section is to briefly introduce the mathematical problem that
we study. Part of the mathematical theory used in this section is presented in
Appendix A. Additional theory can be found in e.g. [LFS12a, LFS12b], where
the same problem is discussed with other goals.

2.1 The wave equation

Let Ω− ⊂ R3 be a bounded Lipschitz domain with boundary Γ. The unbounded
complement is denoted by Ω+ ∶= R3/Ω−. Let Ω ∈ {Ω−,Ω+}, and let T > 0 be a
final time. Consider the homogeneous wave equation

∂2tU −∆U = 0 in Ω × (0, T )
U(⋅,0) = 0 in Ω

∂tU(⋅,0) = 0 in Ω

U = g on Γ × (0, T ),
(2.1)

where g∶Γ × (0, T ) → C is a sufficiently smooth and compatible boundary con-
dition.

2.2 Integral formulation

As in [Lub94], we employ as an ansatz the single-layer potential

U(x, t) = ∫
t

0
∫
Γ

δ(t − τ − ∥x − y∥)
4π ∥x − y∥ φ(y, τ)dΓy dτ ∀x ∈ Ω,∀0 < t ≤ T, (2.2)

where
δ(t − ∥x∥)
4π ∥x∥ (2.3)

is the fundamental solution of the wave equation and δ is the Dirac delta distri-
bution. This results in the following boundary integral equation for the density
φ:

∫
t

0

(k(t)φ)(x, τ)dτ = g(x, t) ∀t ∈ (0, T ), x ∈ Γ, (2.4)

where k(t) ∶H−1/2(Γ)→H1/2(Γ) is the kernel operator given by

(k(t)φ)(x) = ∫
Γ

δ(t − ∥x − y∥)
4π ∥x − y∥ φ(y)dΓy ∀x ∈ Γ.

We refer to (2.4) as the single-layer potential equation of the wave equation. If g
is sufficiently smooth and compatible, then this equation has a smooth solution.
For proofs of existence and uniqueness of a solution, see [Lub94, BHD86].
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The Sobolev spaces Hs(Γ), s ≥ 0, are defined in the usual way (cf. [Hac92]).
The range of s for which Hs(Γ) is defined may be limited depending on the
global smoothness of the surface Γ. Throughout, we let [−r, r] denote the range
of Sobolev indices for which Hs(Γ) is defined. The spaces of negative order are
defined by duality in the usual way (cf [Hac92, Chapter 6.3]).

2.3 Problem on the Laplace domain

As in Section 3 of [LFS12a], we move to the Laplace domain by using the inverse
Laplace transform of k. Therefore, let us first introduce the definition of the
Laplace transform, which can be found e.g. in [EBY99].

Definition 1. Let f ∶R→ R be a function with f(t) = 0 for t < 0. One says that
f is Laplace transformable on the half-plane C>σ0

= {s ∈ C ∣ Re(s) > σ0} if there
exists a σ0 ∈ R such that e−σ0tf(t) is integrable over R. In this case, we call

(Lf)(s) = F (s) ∶= ∫ ∞

0

f(t)e−st dt.
the Laplace transform of f .

However, we are more interested in an inverse operator from F (s) to f(t).
Lemma 1. Let f be Laplace transformable, let σ0 as in Definition 1 and let
F (s) = (Lf)(s) be its Laplace transform. The inverse Laplace transform is
given by

f(t) = (L−1F )(t) ∶= 1

2πi
∫
σ+iR

F (s)est ds
for t ∈ R, σ > σ0.
The theory for the Laplace transform can be extended to distribution (cf. e.g.
[Jan71]).

The Laplace transform of the fundamental solution to the wave equation

δ(t − ∥x∥)
4π ∥x∥

with respect to t gives

K(x, s) = e−s∥x∥
4π ∥x∥ . (2.5)

We can now write the left-hand side of (2.4) as

∫
t

0

(k(t)φ)(x, τ)dτ = ∫ t

0
∫
Γ

k(x − y, t − τ)φ(y, τ)dΓydτ
= ∫

t

0
∫
Γ

1

2πi
∫
γ
ez(t−τ)K(x − y, z)dz φ(y, τ)dΓydτ

= 1

2πi
∫

t

0
∫
γ
ez(t−τ)(K(z)φ)(x)dz dτ,
4
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where γ = σ0+ iR for some σ0 > 0 and K(z)ψ is the Laplace transformed integral
operator, i.e. the transfer operator for kψ(t) given by

(K(z)ψ)(x) ∶= ∫
Γ

K(x − y, z)ψ(y)dΓy. (2.6)

We thus rewrite (2.4) by exchanging the order of the integrals and obtain

1

2πi
∫
γ
K(z)∫ t

0

ez(t−τ)φ( ⋅ , τ)dτ dz = g(x, t). (2.7)

Note that ∫ t0 ez(t−τ)φ(y, τ)dτ =∶ u(y, z, t) solves the ordinary differential equa-
tion

∂tu( ⋅ , z, t) = zu( ⋅ , z, t) + φ( ⋅ , t)
u( ⋅ , z,0) = 0,

so (2.4) can be reduced to solving the coupled system of an ordinary differential
equation and an integral equation

1

2πi
∫
γ
K(z)u(z, t)dz = g(t)

∂tu(z, t) = zu(z, t)+ φ(t)
u(z,0) = 0

(2.8)

for φ∶ [0, T ] → H−1/2(Γ) and u∶γ × [0, T ] → H−1/2(Γ). Note that the integral
equation must hold for all x ∈ Γ. For simplicity, we omit the argument on both
sides of the equation.
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3 Numerical methods

To find a solution of the wave equation (2.1), one has to solve the coupled system
(2.8)

1

2πi
∫
γ
K(z)u(z, t)dz = g(t)

∂tu(z, t) = zu(z, t)+ φ(t)
u(z,0) = 0.

In this section we present the numerical methods used to solve this problem.
We first employ discretizations in time and space, and then a quadrature for
the complex contour integral.

3.1 Temporal discretization

We consider the discretization in time used in [LFS12a] and [LFS12b]. For this,
let

0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T,
be the points in time at which we want to discretize. We define the steps

∆j ∶= tj − tj−1 for 1 ≤ j ≤N
∆ ∶= max

1≤j≤N
∆j .

(3.1)

We denote by uj(z) ∈H−1/2(Γ) and φj ∈H−1/2(Γ) the approximation of u(z, tj)
and φ(tj) at time tj ,0 ≤ j ≤ N respectively.

The initial values u0(z) = 0 and φ0 = 0 are given. Let us assume that we know the
approximate values uℓ(z) and φℓ for 1 ≤ ℓ ≤ j. Our goal is to compute uj+1(z)
and φj+1. We apply the implicit Euler method to the ordinary differential
equation of the coupled system (2.8) and get

uj+1(z) = 1

1 − z∆j+1
uj(z) + ∆j+1

1 − z∆j+1
φj+1. (3.2)

This expression is then inserted in the integral equation

1

2πi
∫
γ
K(z)uj+1(z)dz = gj+1

of (2.8), giving

1

2πi ∫γ
K(z)

1 − z∆j+1
uj(z)dz + 1

2πi ∫γ
K(z)
1

∆j+1
− z φj+1 dz = gj+1.
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Note that the only unknown is φj+1. We now apply Cauchy’s integral formula to
the left-hand side. For this, we require that 0 < σ0 < 1

∆
in the contour γ = σ0+iR.

We obtain

K( 1

∆j+1
)φj+1 = gj+1 − 1

2πi
∫
γ

K(z)
1 − z∆j+1

uj(z)dz. (3.3)

One has to solve (3.3) for φj+1 and then insert the result into (3.2) to get uj+1(z)
for the next step.

3.2 Boundary element spaces

We now define an appropriate finite dimensional subspace of our function space
Hs(Γ) in order to perform a Galerkin discretization (see Subsection A.3). We
triangulate the boundary Γ, following [SS11, Chapter 4.1.2]. We will restrict
ourselves to plane triangles with straight edges, i.e. Γ is the surface of a poly-
hedron.

We first define the reference triangle τ̂

τ̂ ∶=
⎧⎪⎪⎨⎪⎪⎩
⎛
⎝
x1

x2

⎞
⎠ ∈ R2 ∣ 0 ≤ x2 ≤ x1 ≤ 1

⎫⎪⎪⎬⎪⎪⎭ = conv
⎧⎪⎪⎨⎪⎪⎩
⎛
⎝
0

0

⎞
⎠ ,
⎛
⎝
1

0

⎞
⎠ ,
⎛
⎝
0

1

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭ ⊂ R

2.

For any triangle τ with vertices A = (a1, a2, a3),B = (b1, b2, b3),C = (c1, c2, c3) ∈
R

3 we can now define the matrix

Mτ ∶=
⎛⎜⎜⎝
b1 − a1 c1 − b1
b2 − a2 c2 − b2
b3 − a3 c3 − b3

⎞⎟⎟⎠ = (B −A∣C −B), (3.4)

and the affine parametrization

χτ ∶ τ̂ → τ

x̂ ↦ A +Mτ x̂,
(3.5)

whose Jacobian is Mτ .

Definition 2. A paneling G of the boundary Γ is a partitioning of Γ into finitely
many closed triangles τ ⊂ Γ, that satisfies:
(i) G covers Γ:

Γ = ⋃
τ∈G

τ

(ii) Every triangle τ ∈ G is the image of an affine parametrization χτ ∶ τ̂ → τ as
described in (3.5).
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(iii) If the triangles are non-degenerate (i.e. the vertices are not collinear), there
exist λmin, λmax > 0 such that

0 < λmin ≤ inf
v∈R2,∥v∥=1

vTMT
τ Mτv ≤ sup

v∈R2,∥v∥=1

vTMT
τMτv ≤ λmax <∞. (3.6)

If this is the case, χτ is called regular.

Definition 3. A paneling G is called regular, if

(i) For any two distinct triangles τ, τ∗ ∈ G, their intersection is either empty
or consists only of a common edge or vertex.

(ii) If τ, τ∗ ∈ G, intersect in a common edge e = τ ∩ τ∗, then their parametriza-
tions are compatible, i.e.

χτ ∣ê = χτ∗ ○ γτ,τ∗ ∣ê ,
where ê = χ−1τ (e) and γτ,τ∗ ∶ τ̂ → τ̂ is an affine bijection.

Note that in practice our domain Ω will usually not be polyhedral. If Γ is curved,
then an additional error arises. For an analysis of this error see [SS11].

Let us now define some attributes of the paneling.

Definition 4. Let G be a regular paneling.

(i) The diameter of a triangle τ ∈ G is hτ ∶=maxx,y∈τ ∥x − y∥.
(ii) The inner width ρτ of τ is its incircle diameter.

(iii) The paneling width of G is hG ∶=maxτ∈G hτ .

(iv) The shape-regularity constant of G is κG ∶=maxτ∈G(hτ /ρτ).
(v) The quasi-uniformity constant of G is qG ∶= hG/(minτ∈G hτ).
(vi) The number of triangles of G is nT = ∣G∣.
We will now give the definition of the boundary element space. In our numerical
experiments, we only take into account piecewise constant boundary elements.
An extension of the code to piecewise linear boundary elements should be easy
to implement.

Let Γ be a polygonal boundary and G a paneling of it. We then define

S0

G ∶= {u ∈ L∞(Γ) ∣ ∀τ ∈ G ∶ u∣τ ○ χτ ∈ P0} , (3.7)

where P0 is the space of all constant functions on τ̂ . Notice that S
0

G ⊂H−1/2(Γ).
We can easily define a basis (bG,0k )k=1,...,M of S0

G given by

b
G,0
k (x) =

⎧⎪⎪⎨⎪⎪⎩
1 x ∈ τk
0 else,

(3.8)

8
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where the triangles of G are numbered τ1, . . . , τnT
. Hence, the dimension of

S0

G is M ∶= nT . For spaces SpG of order p > 0, consult [SS11, Chapter 4.1.2,
4.1.7].

bτ (x)

τ

Figure 3.1: Piecewise constant basis function bτ , as defined in (3.8).

3.3 Spatial discretization

Let Gj be the mesh approximating Γ at time step1 tj , 0 ≤ j ≤ N as presented

in Subsection 3.2. We denote by Mj the dimension of S0

Gj
and by bjk the bases

b
Gj,0
k ,1 ≤ k ≤Mj .

The Galerkin discretization of (3.3) is then given by

Find φj+1 ∈ S0

Gj+1
such that

(K( 1

∆j+1
)φj+1, v)

L2(Γ)

=

(gj+1, v)L2(Γ) − ( 1

2πi
∫
γ

K(z)uj(z)
1 − z∆j+1

dz, v)
L2(Γ)

∀v ∈ S0

Gj+1 .

(3.9)

The elements of S0

Gj+1
, φj+1 and uj+1(z) can be written as

φj+1 =
Mj

∑
ℓ=1

(φj+1)ℓbj+1,pℓ ,

uj+1(z) = Mj

∑
ℓ=1

(uj+1(z))ℓbj+1,pℓ .

Furthermore, we define the Helmholtz matrices

(Kj+1(z))k,ℓ ∶= (K(z)bj+1ℓ , b
j+1
k )L2(Γ) (3.10)

1The mesh G can be adapted after each time step, see [Sch12].
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and the right-hand side vector

(gj+1)k ∶= (gj+1, bj+1k )L2(Γ). (3.11)

Let us denote by Pj ∶SpGj → S
p
Gj+1

the prolongation from one mesh to the next

in matrix representation. We can now rewrite (3.3) and (3.2) as follows:

Kj+1 ( 1

∆j+1
)φj+1 = gj+1 − 1

2πi
∫
γ

Kj+1(z)Pjuj(z)
1 − z∆j+1

dz (3.12)

uj+1(z) = 1

1 − z∆j+1
Pjuj(z)+ ∆j+1

1 − z∆j+1
φj+1. (3.13)

3.4 Contour quadrature

We now have to resolve the contour integral

∫
γ

Kj+1(z)Pjuj(z)
1 − z∆j+1

dz. (3.14)

For this, an appropriate quadrature technique should be used. By the Cauchy
theorem, we can replace the contour γ = σ0 + iR by any negatively oriented
contour in the positive complex plane that surrounds the poles 1

∆j
, 1 ≤ j ≤ N .

For this, we define

m = 1

∆
, (3.15)

M =max({m2} ∪ { 1

∆j

∣ 1 ≤ j ≤ N}) , (3.16)

q = M
m
, (3.17)

where ∆ and ∆j are as in (3.1). For simplicity we will assume that m ≥ 2.
We consider the circle centered at M with radius M , following the implemen-
tation proposed in [LFS12b].
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4 Numerical integration

In this section we introduce the concept of numerical integration and in par-
ticular of Gaussian quadrature, first in one and then in multiple dimensions.
Moreover, we will present a derivative-free error estimation.

4.1 Introduction

We start by introducing the notion of quadrature for the one-dimensional case.
Given a function f ∈ C0(J) for an interval J = [a, b] ⊂ R, we want to approximate
the value of the definite integral

IJ(f) ∶= ∫
J
f(x)w(x)dx, (4.1)

where w ∶ J → R is a positive weight function. The Gaussian quadrature be-
longs to the family of quadrature rules based on interpolation. The procedure
consists of dividing the integration domain J into subintervals and interpolat-
ing the integrand on these subintervals by polynomials, which can be integrated
exactly.

A quadrature of order n is therefore

IJ(f) ≈ n

∑
i=1

ωif(xi) =∶ Qn,J(f), (4.2)

where the xi are called nodes and the ωi are called weights of the quadrature
formula. The values of the weights depend on the choice of the nodes and the
order of the interpolation. The error of the quadrature is denoted by

En,J(f) ∶= IJ(f) −Qn,J(f). (4.3)

For simplicity, we let I = IJ , Qn = Qn,J , En = En,J . We denote by Pk the set of
all real polynomials of degree at most k:

Pk ∶= {a0 + a1x + . . . + akxk ∣ ai ∈ R∀0 ≤ i ≤ k}. (4.4)

Definition 5. A quadrature rule has degree of exactness k, if

En(p) = 0 ∀p ∈ Pk, J ⊂ R,
and there exists at least one p∗ ∈ Pk+1 such that En(p∗) ≠ 0.
Note that if a quadrature rule based on polynomial interpolation, then the value
of the integral is computed exactly for every polynomial of degree ≤ n, and so
the degree of exactness k is always ≥ n.

11
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Definition 6. A quadrature is called stable if

n

∑
i=1

ωi = ∣J ∣
and there exists a CQ ∈ R such that

n

∑
i=1

∣ωi∣ ≤ CQ n

∑
i=1

ωi.

The constant CQ is called the stability constant of the quadrature.

It is convenient2 to scale the domain of integration to a reference interval Ĵ =[−1,1]. For this, we define the parametrization

χ∶ Ĵ → J

x̂ ↦ χ(x̂) = a + b
2
+ x̂ b − a

2
,

(4.5)

and its inverse
χ−1∶ J → Ĵ

x ↦ χ−1(x) = 2

b − ax −
a + b
b − a .

(4.6)

We can now rewrite (4.1) as

IJ(f) = ∫
J
f(x)w(x)dx = ∫

Ĵ
f(χ(x̂))w(χ(x̂))χ′(x̂)dx̂. (4.7)

4.2 One-dimensional Gaussian quadrature

For a function f ∈ C0(J) and a set of nodes Gn ∶= {ξi ∣ 1 ≤ i ≤ n} ⊂ J , the
interpolation polynomial pn(f,Gn) is unique. We write it in the Lagrange-
representation

f(x) ≈ pn(f,Gn)(x) ∶= n

∑
i=1

f(ξi)li(x), (4.8)

where

li(x) = n

∏
j=1
j≠i

x − ξj
ξi − ξj . (4.9)

We insert the interpolation polynomial in (4.2) and obtain

Qn(f) = ∫
J
pn(f,Gn)(x)w(x)dx = n

∑
i=1

f(ξi)ωi, (4.10)

2In the numerical experiment in Chapter 5, we will compute many integrals on different
domains. For this, it is worthwhile to scale the domains and to compute the Gaussian nodes
and weights on the reference domain once for all.
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where the weights of the quadrature are defined by

ωi = ∫
J
li(x)w(x)dx ∀1 ≤ i ≤ n. (4.11)

The goal now is to find the highest degree of exactness. For this, we employ a
theorem, whose proof can be found e.g. in [Sau10].

Theorem 2. Let d ∈ N. The quadrature formula (4.2) has degree of exactness
k = n + d if and only if the following conditions are fulfilled:

(i) The quadrature (4.2) is based on interpolation.

(ii) The polynomial s(x) ∶= (x − ξ1)⋯(x − ξn) satisfies
∫
J
s(x)p(x)w(x)dx = 0, ∀p ∈ Pn. (4.12)

Note that (ii) is a condition on the nodes ξi. Furthermore, for w(x) > 0,w ∈
L∞(J),

∫
J
u(x)v(x)w(x)dx =∶ a(u, v), u, v ∈ L2(J), (4.13)

defines a scalar product on L2(J). One says that two functions u, v are orthog-
onal with respect to a(⋅, ⋅) if a(u, v) = 0. Thus, condition (ii) means that s(x) is
orthogonal to every p ∈ Pd. This implies3 that s(x) ∉ Pn, and consequently n > d.
Hence, the highest degree of exactness for a quadrature formula of order n is
k = 2n−1 (d = n−1). Such quadratures are called Gaussian quadratures.

For the actual computation of the Gaussian nodes and weights, we will use
polynomials pj defined by the following recursion:

p−1(x) ≡ 0,
p0(x) ≡ 1,

pj+1(x) ≡ (x − αj)pj(x) − βjpj−1(x), j ≥ 0,
where, with the scalar product defined in (4.13),

αj = a(xpj , pj)
a(pj, pj) , j ≥ 0,

βj = a(pj , pj)
a(pj−1, pj−1) , j ≥ 1,

β0 = ∫
J
w(x)dx = 1.

By construction, we have

a(pi, pj) = ∫
J
pi(x)pj(x)w(x)dx = 0, for i ≠ j. (4.14)

3s(x) ∈ Pn implies a(s, s) = 0, but since s ≠ 0, a(s, s) > 0

13
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Since every polynom p ∈ Pk can be written as a linear combination of the pj ,
0 ≤ j ≤ k, the generalization of (4.14) is:

a(p, pk) = ∫
J
p(x)pk(x)w(x)dx = 0, ∀p ∈ Pk−1. (4.15)

The nodes ξi, 1 ≤ i ≤ n, of the Gaussian quadrature of order n are the roots
of the polynomial pn. The weights ωi are the solutions to the system of linear
equations

n

∑
i=1

ωip0(ξi) = a(p0, p0)
n

∑
i=1

ωipj(ξi) = 0, ∀1 ≤ j ≤ n − 1.

It is easy to show that the Gaussian weights are all positive and that the Gaus-
sian quadrature is stable.

We can now present a result about the error of the one-dimensional Gaussian
quadrature from [Sto07].

Theorem 3. For a sufficient smooth function f ∈ C2n(J) and a ξ ∈ J we have

En(f) = f (2n)(ξ)(2n)! ∫J pn(x)2 dx. (4.16)

A proof of the theorem can be found in [Sto07]. Note that the error estimation
strongly depends on the derivatives of the integrand. Therefore, it can be trou-
blesome (or even impossible) to determine the order n of the quadrature for a
given desired accuracy ǫ.

Theorem 4. Let f ∈ C(J). Then

lim
n→∞

En(f) = 0. (4.17)

Proof. First recall that by the Weierstrass theorem, for every ε∗ > 0, there exists
a polynomial p such that ∥f − q∥∞ < ε∗. Let m = deg q. We have

En(f) = I(f) −Qn(f)
= I(f) −∫

J
q(x)dx +∫

J
q(x)dx −Qn(q) +Qn(q) −Qn(f). (4.18)

For the first two terms, we have

∣I(f) −∫
J
q(x)dx∣ = ∣∫

J
(f(x) − q(x))dx∣ ≤ ∫

J
∣f(x) − q(x)∣dx ≤ ε∗∣J ∣. (4.19)

Moreover, because of the degree of exactness of the quadrature, we have for
every n ≥ (m − 1)/2

∫
J
q(x)dx −Qn(q) = 0. (4.20)

14
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Finally,

∣Qn(q) −Qn(f)∣ = ∣ n∑
i=1

ωi(q(ξi) − f(ξi))∣
≤

n

∑
i=1

∣ωi∣ ∣(q(ξi) − f(ξi))∣ ≤ ε∗ n

∑
i=1

∣ωi∣ ≤ ε∗∣J ∣,
(4.21)

since all of the Gaussian weights are positive. The combination of (4.19), (4.20)
and (4.21) in (4.18) gives us

∣En,J(f)∣ ≤ 2ε∗ ∣J ∣ . (4.22)

In particular, for the reference domain Ĵ = [−1,1], we have ∣En,Ĵ(f)∣ < 4ε∗. This
means that for an arbitrary ε > 0, we set ε∗ = ε

2∣J ∣
and obtain

∣En,J(f)∣ ≤ ε (4.23)

for sufficiently large n. Hence, the theorem holds.

In Section 5 we will see that the functions we have to integrate are analytic.
However, they have poles near the integration domain (more precisely in a
complex neighbourhood). The kernel functions and their derivatives in local
coordinates are in practice very difficult to estimate. Therefore, a derivative-
free error estimation4 is more convenient. We present hence a theorem from
[SS11, Section 5.3.2.2].

We denote by Ξρa,b ⊂ C the closed ellipse with focal points a, b ∈ R, major semiaxis

a > b−a
2

and minor semiaxis b > 0. ρ = a+b is the sum of the two semiaxes. Since
in practice we are only interested in the case a = 0 and b = 1, we abbreviate Ξρ

0,1

by Ξρ.

4With the expression “derivative-free error estimation” we mean an error estimation which
does not depend on the derivative of the integrand, unlike in (4.16).
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R

iR

0 1

Figure 4.1: Ellipse Ξρ
0,1 with focal points 0 and 1 on the real axis and

semi-axes sum ρ ∈ {0.56,0.72,1.2,1.88}.
Theorem 5. Let f ∶ [0,1]→ C be an analytic function with analytic continuation
f∗ on the ellipse Ξρ ⊂ C, ρ > 1

2
. Then we have

∣En(f)∣ = ∣I(f) −Qn(f)∣ ≤ C(2ρ)−2n max
z∈∂Ξρ

∣f∗(z)∣ . (4.24)

4.3 Tensor-Gaussian quadrature

We will now describe the multi-dimensional case. Let the reference domain be
the unit cube Ĵ = [0,1]d ⊂ Rd for d ∈ N. Let x = (x1, . . . , xd) ∈ Rd and f ∶ Ĵ → C.
We approximate the value of the definite integral

I(f) ∶= ∫
[0,1]d

f(x)dx (4.25)

by the tensor-Gaussian quadrature of order n = (n1, . . . , nd) ∈ N
d, which is

defined by

Qd
n
(f) ∶= Qn1

⊗ ⋅ ⋅ ⋅ ⊗Qnd
(f) = n1

∑
i1=1

⋅ ⋅ ⋅
nd

∑
id=1

ωi1⋯ωidf(ξi1 , . . . , ξid), (4.26)

where ωij and ξij for 1 ≤ j ≤ nj are the Gaussian weights and nodes for the
one-dimensional domain [0,1].
As before, let us denote the error of the quadrature by

En(f) ∶= I(f) −Qdn(f). (4.27)

We now extend Theorem 5 to the multi-dimensional case [SS11, Theorem 5.3.15].
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Definition 7. For 1 ≤ i ≤ d and −∞ < ai < bi < ∞, let Θ ∶= ⊗di=1[ai, bi] ⊂ Rd.
A continuous function f ∶Θ → C is called componentwise analytic if there exist(ρi)di=1 with ρi > bi−ai

2
for 1 ≤ i ≤ d such that for all 1 ≤ i ≤ d and all x ∈ Θ the

function

fi,x∶ [ai, bi]→ C

t↦ fi,x ∶= f(x1, . . . , xi−1, t, xi+1, . . . , xd) (4.28)

has an analytic continuation f∗i,x∶Ξρiai,bi → C.

Theorem 6. Let f ∶ [0,1]d → C be a componentwise analytic function and (ρi)di=1
as in Definition 7. Then, we have the error estimate

∣En(f)∣ ≤ d∑
i=1

Ci(2ρi)−2ni max
x∈[0,1]d

max
z∈∂Ξρi

∣f∗i,x(z)∣ , (4.29)

for the Gaussian quadrature of order n = (n1, . . . , nd) ∈ Nd.
We will, however, mostly consider quadrature with the same order n ∈ N in
every direction, i.e. with n = (n, . . . , n), and write Qdn = Qdn. Moreover, the
integration domain is the four-dimensional unit cube, so d = 4. In this case, the
error estimation can be rewritten as

∣En(f)∣ ≤ 4∑
i=1

Ci(2ρi)−2n max
x∈[0,1]4

max
z∈∂Ξρi

∣f∗i,x(z)∣ ≤ C̃ρ−n, (4.30)

where

C̃ = 4max{Ci max
x∈[0,1]4

max
z∈∂Ξρi

∣f∗i,x(z)∣} ,
ρ = (2max{ρi})2.

17



Sensitivity Analysis of Boundary Element Quadrature

5 Numerical approximation of the boundary in-

tegral

In this section, we present the concrete circumstances under which the experi-
ments were developed.

As seen in Section 3, in order to solve the coupled system (2.8) we have to
compute for different z the entries of the Helmholtz matrices in (3.10). They
are of the form

(Kj(z))k,ℓ = ∫
Γ
∫
Γ

K(x − y, z)bjℓ(y)bjk(x)dΓydΓx, (5.1)

where bjk, b
j
ℓ are the piecewise constant basis functions defined in (3.8) for the

mesh Gj approximating Γ at time step tj . K(z)∶R3/{0}→ C denotes the Laplace
transform of the fundamental solution of the wave equation, i.e.

K(x − y, z) = e−z∥x−y∥

4π ∥x − y∥ . (5.2)

It holds

(Kj(z))k,ℓ = ∑
τ∈G

∑
τ∗∈G
∫
τ
∫
τ∗

K(x − y, z)bjℓ(y)bjk(x)dΓydΓx
= ∫

τk
∫
τℓ

K(x − y, z)dΓydΓx,
(5.3)

since, by construction of the basis functions, the integrand is zero whenever
x ∉ τi or y ∉ τj . Therefore, it is enough to study the quadrature over pairs of
triangles.

5.1 Regularizing transforms

In order to compute the integrals efficiently and exactly enough, we have to
develop a procedure to avoid the singularities of K(x − y, z) when τk ∩ τℓ ≠ ∅.
This is done in Chapter 5 of [SS11]. We summarize here the main ideas of these
regularizing coordinate transforms.

First, the integration over τk ×τℓ is transformed onto the reference element τ̂ × τ̂
using χτk respectively χτℓ (cf. (3.5)). The quadrature rule is then applied to
this reference element.

Furthermore, relative coordinates z = x−y are introduced with the goal of fixing
the singularity of ∥x − y∥ at the origin. Four cases are distinguished:

• identical triangles,

• triangles with a common edge,
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• triangles with a common vertex,

• triangles with a positive distance.

For each case, an ǫ-neighbourhood is cut out and a decomposition of the inte-
gration domain is chosen. Then, the integration order is changed and the inte-
gration domain is transformed onto the four-dimensional unit cube [0,1]4. It is
shown that for each case, the integrand can be analytically extended to a com-
plex neighbourhood of [0,1]4. Finally, some assumptions on the parametrization
of the two triangles have to be made.

Assumption 7. Let be τ, τ∗ ∈ G and χτ , χτ∗ be their parametrizations.

• In the case of identical panels, it holds χτ = χτ∗ .
• In the case of a common edge, it holds χτ(ξ,0) = χτ∗(ξ,0)∀ξ ∈ [0,1].
• In the case of a common vertex, it holds χτ(0,0) = χτ∗(0,0).

For x̂, ŷ ∈ [0,1]2, we can now define the integrand in local coordinates [see SS11,
Chapter 5.2.4]

Kloc

z (x̂, ŷ) = K(χτ (x̂) − χτ∗(ŷ), z)gτ(x̂)gτ∗(ŷ), (5.4)

where gτ denotes the Gram determinant of χτ ,

gτ(x̂) =√det(Dχτ(x̂))T (Dχτ (x̂)). (5.5)

Note that Dχτ (x̂) =Mτ and hence the Gram determinant does not depend on
x̂, i.e. is constant:

g2τ = det(MT
τ Mτ)

= det⎛⎝
⎛
⎝
B −A
C −B

⎞
⎠ ⋅ (B −A∣C −B)

⎞
⎠

= det⎛⎝
∥B −A∥2 ⟨B −A,C −B⟩

⟨B −A,C −B⟩ ∥C −B∥2
⎞
⎠

= ∥B −A∥2 ∥C −B∥2 − ⟨B −A,C −B⟩2
= 4 ∣τ ∣2 .

(5.6)

We now introduce the regularizing transforms for the different cases.
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Identical triangles

Iτ×τ∗ =∫
(0,1)4

ξ3η21η2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

1 − η1 + η1η2
1 − η1η2η3
1 − η1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2η3
1 − η1
1

1 − η1 + η1η2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

η1(1 − η2 + η2η3)
1 − η1η2
η1(1 − η2)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2
η1(1 − η2)

1

η1(1 − η2 + η2η3)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

+ Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2η3
η1(1 − η2η3)

1

η1(1 − η2)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

η1(1 − η2)
1 − η1η2η3
η1(1 − η2η3)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
dη1dη2dη3dξ.

(5.7)

Triangles with a common edge

Iτ×τ∗ =∫
(0,1)4

ξ3η21Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

η1η3

1 − η1η2
η1(1 − η2)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

+ ξ3η21η2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

η1

1 − η1η2η3
η1η2(1 − η3)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2
η1(1 − η2)

1

η1η2η3

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

+ Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2η3
η1η2(1 − η3)

1

η1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1 − η1η2η3
η1(1 − η2η3)

1

η1η2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
dη1dη2dη3dξ.

(5.8)

Triangles with a common vertex or positive distance

Iτ×τ∗ = ∫
(0,1)4

ξ3η1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

1

η1

η2

η2η3

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
+Kloc

z

⎛⎜⎜⎜⎜⎜⎝
ξ

⎛⎜⎜⎜⎜⎜⎝

η2

η2η3

1

η1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
dη1dη2dη3dξ. (5.9)
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Let us denote the integrands for the different cases by f(ξ, η1, η2, η3). Since
f ∶ [0,1]4 → C is analytic, we can employ a Tensor-Gaussian quadrature (cf. Sec-
tion 4.3) to approximate the value of the integral. We will use a four-dimensional
Gaussian quadrature with n points in every direction. Let ω1, . . . , ωn be the
weights and ξ1, . . . , ξn be the nodes for the interval [0,1]. Then,

I(f) = ∫
(0,1)4

f(ξ, η1, η2, η3)dη1dη2dη3dξ
≈

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

ωiωjωkωlf(ξi, ξj , ξk, ξl) = Q4

n(f). (5.10)

In practice, the Gauss weights and nodes are computed once and saved in a
file. During the experiments, the program loads the weights and nodes for the
desired order and approximates the integral.

5.2 Positioning of the triangles

As said before, we consider four different cases for the positioning of the tri-
angles: identical triangles, triangles with a common edge, triangles with a
common vertex and triangles with a positive distance. For the experiments,
we will vary the diameter hτ of the triangles. Specifically, the two triangles
τ1 = conv{A1,B1,C1} and τ2 = conv{A2,B2,C2} are defined as follows:

Identical triangles

A1 =
⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ = A2, B1 =
⎛⎜⎜⎝
hτ

0

0

⎞⎟⎟⎠ = B2, C1 =
⎛⎜⎜⎝
0

hτ

0

⎞⎟⎟⎠ = C2.

y

z

x

A1 = A2 C1 = C2

B1 = B2

Figure 5.1: Position of the identical triangles.
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Triangles with a common edge

A1 =
⎛⎜⎜⎝
hτ

0

0

⎞⎟⎟⎠ = A2, B1 =
⎛⎜⎜⎝
0

hτ

0

⎞⎟⎟⎠ = B2, C1 =
⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ , C2 =
⎛⎜⎜⎝
hτ

hτ

0

⎞⎟⎟⎠ .

y

z

x

C1 B1 = B2

A1 = A2
C2

Figure 5.2: Position of the triangles with a common edge.

Triangles with a common vertex

A1 =
⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ = A2, B1 =
⎛⎜⎜⎝
hτ

0

0

⎞⎟⎟⎠ , B2 =
⎛⎜⎜⎝
−hτ
hτ

0

⎞⎟⎟⎠ , C1 =
⎛⎜⎜⎝
hτ

hτ

0

⎞⎟⎟⎠ , C2 =
⎛⎜⎜⎝
−hτ
0

0

⎞⎟⎟⎠ .

y

z

x

A1 = A2

C1B1

B2C2

Figure 5.3: Position of the triangles with a common vertex.
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Triangles with positive distance

A1 =
⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ , B1 =
⎛⎜⎜⎝
hτ

0

0

⎞⎟⎟⎠ , C1 =
⎛⎜⎜⎝
0

hτ

0

⎞⎟⎟⎠ ,

A2 =
⎛⎜⎜⎝
0

0

d

⎞⎟⎟⎠ , B2 =
⎛⎜⎜⎝

0

0

hτ + d

⎞⎟⎟⎠ , C2 =
⎛⎜⎜⎝

hτ

0

hτ + d

⎞⎟⎟⎠ .

y

z

x

A1

C1

B1

A2

B2

C2

d

Figure 5.4: Position of the triangles with positive distance d.

In practice, for the numerical experiments, we set hτ ∈ {1,0.1,0.01} and d ∈{0.1,1,10,100}.
5.3 Complex parameter z

As we have seen in Subsection 3.4, in order to solve the contour integral (3.14),
we have to compute the entries of the Helmholtz matrices (Kj+1(z))k,ℓ for
different z. For both uniform and non-uniform time steps, we choose as a
contour a circle centered in M with radius M , where M is defined as in (3.16).
This means that the complex parameter z lies on this circle. Note that M
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depends on the time discretization. In practice, for the numerical experiments,
we take different values of M depending on the diameter of the triangles and
analyze the error of the quadrature for five concrete complex numbers on the
circle, namely

z ∈ {M(1 + eiϕ) ∣ϕ = 0, π
4
,
π

2
,
3π

4
, π} , (5.11)

for
M ∈ {hℓ ∣ ℓ = −3,−2.5,−2, . . . ,1,1.5,2}. (5.12)

R

iR

M

Figure 5.5: Position of the complex parameter z on the contour.

Note that there are no z with negative imaginary parts, because the values ofK(x, z) are symmetric with respect to the real axis.
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6 Implementation

In this section, we present the main programs for the numerical experiments
and the stored data files. They were implemented in MATLAB.

6.1 Programs

Function: generate_gauss_XW.m

Input: ◦ N ∈ N
Output: • X, n × 4 matrix

• W, n × 1 vector

Description: This function generates an n × 4 matrix X and an n × 1 vector W,
which are the Gauss nodes respectively the Gauss weights for a 4-dimensional
Gaussian quadrature over the unit cube [0,1]4 with N points in every direction,
i.e. n = N4.
X and W are then saved to the file ‘Gauss_Nodes_Weights.mat’ as X_N and W_N

for the input parameter N, so that they have to be computed only once. They
can be loaded using the program ‘load_gauss_XW.m’.

Function: load_gauss_XW.m

Input: ◦ N ∈ N
Output: • X, n × 4 matrix

• W, n × 1 vector

Description: This function loads an n × 4 matrix X and an n × 1 vector W,
which are the Gauss nodes respectively the Gauss weights for a 4-dimensional
Gaussian quadrature over [0,1]4 with N points in every direction, i.e. n = N4. X
and W are previously generated with the program ‘generate_gauss_XW.m’ and
saved in ‘Gauss_Nodes_Weights.mat’ as X_N and W_N for the input parameter
N.
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Function: K_x_z_handle.m

Input: -

Output: • K as function handle for K(r, z)
Description: This program defines the function handle for the Laplace trans-
form of the fundamental solution of the wave equation defined in (2.5). The
function handle then takes following input parameters:

◦ z ∈ C
◦ r ∈ R3, or (rℓ)nℓ=1 (i.e. n different vectors in R

3)

Function: eval_kernel_fct.m

Input: ◦ x1, x2, y1, y2 such that x̂ = (x1,x2) and ŷ = (y1,y2)
(or four n × 1 vectors for multiple entries)

◦ A1, B1, C1 vertices of the triangle τ , as 3 × 1 vectors

◦ A2, B2, C2 vertices of the triangle τ∗, as 3 × 1 vectors

◦ z complex parameter

Output: • K_loc as K(χτ (x̂) − χτ∗(ŷ), z) (cf. (5.4))
Description: This program evaluates the integrand Kloc

z as seen in equation
(5.4) in local coordinates x = (x1,x2), y = (y1,y2). Note that, since gτ(x̂) is
equal ∀x̂ ∈ τ , in this program we do not multiply by the Gramian determinants
for each pair of local coordinates x,y. Instead, we later multiply by gτ(x̂)gτ∗(y)
once for all the x ∈ τ,y ∈ τ∗.
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Function: eval_identical_panels.m

eval_common_edge.m

eval_common_vertex.m

Input: ◦ xi, eta1, eta2, eta3 local coordinates

(or four n × 1 vectors for multiple entries)

◦ A1, B1, C1 vertices of the triangle τ , as 3 × 1 vectors

◦ A2, B2, C2 vertices of the triangle τ∗, as 3 × 1 vectors

◦ z complex parameter

Output: • integrand, scalar (or n × 1 vector)

Description: These programs compute the regularizing transform (5.7), (5.8),
respectively (5.9) presented in Subsection 5.1 and then evaluate the integrands
for the local coordinates ξ, η1, η2, η3.

Function: quadrature_id_panels.m

quadrature_common_edge.m

quadrature_common_vertex.m

quadrature_positive_distance.m

Input: ◦ h, diameter of the triangles

◦ z, complex parameter

◦ N, number of Gaussian points in each direction

Output: • Q, approximated value of the integral

Description: These programs approximate the integrals presented in equations
(5.7), (5.8), (5.9) for two given triangles in one of the four different configurations
(cf. Subsection 5.2). The approximated values are computed using a tensor-
Gaussian quadrature with N points in each direction.

The algorithms quadrature 〈case〉.m for the four different configurations of the
triangles have the following structure.

27



Sensitivity Analysis of Boundary Element Quadrature

Algorithm 1 quadrature 〈case〉.m

Generate triangles’ vertices A1,B1,C1,A2,B2,C2

Compute Gramian determinants gτ1 , gτ2[XN ,WN ] = load_gauss_XW(N) ▷ load Gaussian weights and nodes
I =eval_〈case〉(XN ,A1,B1,C1,A2,B2,C2, z)
Q = gτ1gτ2∑(I ⋅WN);

6.2 Data files

Many different experiments have been conducted. Some of them are presented
in Section 7. The approximated values of the integrals computed with the
programs quadrature 〈case〉.m were systematically stored in the files

id_panels.mat

common_edge.mat

common_vertex.mat

positive_distance.mat

One can load the data sets using the program load_quadrature.m. They are
saved for the following parameters:

Parameter Values

h 1,10−1,10−2

M hl for l ∈ {−3,−2.5,−2, . . . ,1,1.5,2}
z M(1 + eiϕ), ϕ = 0, π

4
, π
2
, 3π

4
, π

N 1, . . . ,80

Table 6.1: Parameters for the quadrature.

Note that when the diameter h of the triangles is 1, the radius M is always 1.
In the configurations with two distinct triangles we have an additional param-
eter, which is the distance between these two triangles, denoted by d. For this
parameter the possible values are {10−1,1,10}.
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7 Numerical experiments

With the settings presented in Section 5, we approximate the integral (5.3) by
a quadrature. The parameters for this quadrature can be found in Table 6.1.
In this section, we report some results about the error. We recall the error
estimation presented in Section 4:

∣En(f)∣ ≤ C̃ρ−n. (7.1)

We first present in detail the results for the case of identical triangles. The
behaviour of the error for the other configurations is similar and hence fewer
plots and tables are shown.

Since there is no analytical solution, the error is given with regards to a reference
solution, which was computed by the Gaussian quadrature with 80 nodes in
every direction.

7.1 Identical triangles

7.1.1 Triangle diameter h = 1

Figure 7.1 shows the relative error and the estimated linear fitting for z = 1+eiπ4 .
The machine error is reached with fewer than 20 Gaussian points. The error
plots for the other values of z are similar.
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Figure 7.1: Relative error for h = 1, M = 1 and z = 1 + eiπ4 .
ρ = 6.15, C̃ = 0.32.

The error converges exponentially like the theory suggests (cf. (7.1)). Table 7.1
shows the values of the constants ρ and C̃ of the theoretical error estimate for
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the different arguments ϕ of the considered values z. These are approximated
using linear regression on the errors up to machine accuracy, e. g. the first 16
points in Figure 7.1.

ϕ ρ C̃

0 4.91 0.21
π
4

6.15 0.32
π
2

6.22 0.32
3π
4

6.19 0.26

π 6.21 0.24

Table 7.1: Approximated values of ρ and C̃ for h = 1.

7.1.2 Triangle diameter h = 0.1

With smaller h andM ≤ 102, the error behaves similarly (see Figure 7.2).
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Figure 7.2: Relative error for h = 0.1, M = 101.5 and z =M(1 + ei 3π4 ).
ρ = 6.28, C̃ = 0.38.

Tables 7.2 and 7.3 show the approximated values of ρ and C̃ respectively for
the same values of M . Note that for the special case ϕ = π, i. e. when z = 0, the
value of the integral does not depend on M .
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M

102 101.5 101 100.5 100 10−0.5 10−1 10−1.5 10−2

ϕ = 0 5.09 6.08 4.92 6.18 6.22 6.19 6.19 6.18 6.18

ϕ = π
4

5.96 6.10 6.15 6.21 6.19 6.17 6.20 6.21 6.20

ϕ = π
2

5.96 6.19 6.21 6.18 6.17 6.19 6.20 6.17 6.21

ϕ = 3π
4

6.13 6.28 6.17 6.19 6.22 6.18 6.20 6.20 6.20

ϕ = π 6.19

Table 7.2: Approximated values of ρ for h = 0.1.

M

102 101.5 101 100.5 100 10−0.5 10−1 10−1.5 10−2

ϕ = 0 0.44 0.52 0.21 0.27 0.26 0.24 0.24 0.23 0.24

ϕ = π
4

0.71 0.50 0.32 0.28 0.25 0.23 0.24 0.24 0.24

ϕ = π
2

0.68 0.49 0.32 0.25 0.24 0.24 0.24 0.23 0.24

ϕ = 3π
4

0.64 0.38 0.25 0.24 0.25 0.24 0.24 0.24 0.24

ϕ = π 0.24

Table 7.3: Approximated values of C̃ for h = 0.1.

For M > 102, the convergence rate seems to become superexponential (see for
example the error plot for M = 103 in Figure 7.3), i.e.

En ≤ C̃ρ−Nα

(7.2)

for some α > 1. However, the parameter ρ approaches 1 and hence more Gaus-
sian points are needed to reach the machine error. Notice that the exponential
convergence corresponds to the case α = 1.
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Figure 7.3: Relative error for h = 0.1, M = 103 and z =M(1 + eiπ4 ).
ρ = 1.09, C̃ = 1.4, α = 1.59.

Table 7.4 shows the approximated values of the constants ρ, C̃ and α forM = 103
or 102.5.

ρ C̃ α

M 103 102.5 103 102.5 103 102.5

ϕ = 0 1.09 1.29 1.41 1.58 1.59 1.52

ϕ = π
4

1.09 1.29 1.40 1.55 1.59 1.53

ϕ = π
2

1.10 1.34 1.43 1.86 1.58 1.51

ϕ = 3π
4

1.13 1.47 2.51 3.80 1.56 1.54

Table 7.4: Approximated values of ρ, C̃ and α for h = 0.1.

7.1.3 Triangle diameter h = 0.01

The results for h = 0.01 are very similar: For M ≤ 103 the convergence is
exponential; for bigger M it is superexponential. In this case however, ρ tends
to 1 and therefore the effect of the exponent α > 1 is neutralized.

Tables 7.5, 7.6 and 7.7 show the approximated values of the constants ρ, C̃ and
α for the different M and ϕ.
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M

103 102 101 100 10−1 10−2 10−3 10−4

ϕ = 0 4.60 4.93 6.19 6.18 6.20 6.18 6.20 6.19

ϕ = π
4

5.84 6.15 6.20 6.17 6.19 6.20 6.19 6.20

ϕ = π
2

5.92 6.21 6.17 6.20 6.19 6.19 6.18 6.19

ϕ = 3π
4

6.15 6.18 6.22 6.20 6.18 6.19 6.18 6.20

ϕ = π 6.21

Table 7.5: Approximated values of ρ for h = 0.01.

M

103 102 101 100 10−1 10−2 10−3 10−4

ϕ = 0 0.44 0.21 0.25 0.24 0.24 0.23 0.24 0.24

ϕ = π
4

0.56 0.32 0.25 0.23 0.24 0.24 0.24 0.24

ϕ = π
2

0.63 0.31 0.24 0.24 0.24 0.24 0.24 0.24

ϕ = 3π
4

0.65 0.25 0.25 0.24 0.23 0.24 0.23 0.24

ϕ = π 0.24

Table 7.6: Approximated values of C̃ for h = 0.01.

ρ α

M 106 105 104 106 105 104

ϕ = 0 1.0004 1.0019 1.086 2.03 2.10 1.59

ϕ = π
4

1.0004 1.0017 1.082 2.03 2.13 1.61

ϕ = π
2

1.0002 1.0012 1.102 2.15 2.22 1.57

ϕ = 3π
4

1.0002 1.0102 1.168 2.13 1.74 1.49

Table 7.7: Approximated values of ρ and α for h = 0.01.

7.1.4 Variation of the integral value

We now observe how the value of the computed integral varies for the different
z. Our aim is to study, how the value of the integral is influenced by the radius
M and by the complex parameter z.
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Let us denote by Q(h, z) the approximated value of the integral. For a fixed h,
the maximum value is always attained at z = 0 (i.e. ϕ = π).
Table 7.8 shows the ratio between ∣Q(h, z)∣ and ∣Q(h,0)∣. Notice that the bigger
M is, the smaller the ratio becomes.

ϕ 0 π
4

π
2

3π
4

π

h = 1
0.6523 0.6842 0.7816 0.9223 1

h = 0.1
M = 10−2 0.9995 0.9996 0.9998 0.9999 1

10−1.5 0.9984 0.9987 0.9992 0.9998 1

10−1 0.9950 0.9958 0.9975 0.9993 1

10−0.5 0.9844 0.9867 0.9922 0.9977 1

100 0.9522 0.9588 0.9754 0.9926 1

100.5 0.8609 0.8784 0.9243 0.9764 1

101 0.6523 0.6842 0.7816 0.9223 1

101.5 0.3552 0.3826 0.4865 0.7438 1

102 0.1405 0.1521 0.1986 0.3656 1

102.5 0.0479 0.0518 0.0677 0.125 1

103 0.0155 0.0168 0.0219 0.0405 1

h = 0.01
M = 10−4 1.0000 1.0000 1.0000 1.0000 1

10−3 1.0000 1.0000 1.0000 1.0000 1

10−2 0.9999 0.9999 0.9999 0.9999 1

10−1 0.9995 0.9996 0.9998 0.9999 1

100 0.9950 0.9958 0.9975 0.9993 1

101 0.9521 0.9588 0.9754 0.9926 1

102 0.6523 0.6842 0.7816 0.9223 1

103 0.1405 0.1521 0.1986 0.3656 1

104 0.0155 0.0168 0.0219 0.0405 1

105 0.0016 0.0017 0.0022 0.0041 1

106 9.3e-05 0.0001 0.0002 0.0005 1

Table 7.8: Ratio
∣Q(h,z)∣
∣Q(h,0)∣

for different values of h, M and z.
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7.2 Triangles with a common edge

The error behaves as in the previous case. Therefore, only some tables with the
approximated values of the constants C̃, ρ and α are reported.

7.2.1 Triangle diameter h = 1

ϕ ρ C̃

0 6.92 0.14
π
4

7.02 0.14
π
2

7.12 0.12
3π
4

7.27 0.11

π 7.25 0.09

Table 7.9: Approximated values of ρ and C̃ for h = 1.

7.2.2 Triangle diameter h = 0.1

The superexponential convergence rate arises for M ≥ 102.

ρ α

M 103 102.5 102 103 102.5 102

ϕ = 0 1.0147 1.0947 1.1135 2.03 1.81 2.08

ϕ = π
4

1.0118 1.1503 1.2867 2.09 1.69 1.75

ϕ = π
2

1.0000 1.0227 2.1769 3.68 2.30 1.35

ϕ = 3π
4

1.0069 1.1068 6.9001 2.31 1.98 1.00

Table 7.10: Approximated values of ρ and α for h = 0.1.
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Figure 7.4: Relative error for h = 0.1, M = 103 and z = 2M .
ρ = 1.0147, C̃ = 1.36, α = 2.03.

7.2.3 Triangle diameter h = 0.01

With diameter h = 0.01, the superexponential convergence rate arises for M ≥
103.

ρ α

M 106 105 104 103 106 105 104 103

ϕ = 0 1.0002 1.0003 1.0146 1.0422 2.21 3.70 2.03 2.47

ϕ = π
4

1.0001 1.0005 1.0118 1.2028 2.28 3.54 2.09 1.89

ϕ = π
2

1.0001 1.0092 1.0001 1.9539 2.15 2.42 3.68 1.41

ϕ = 3π
4

1.0000 3.4722 1.0056 6.8799 3.70 1.00 2.38 1.00

Table 7.11: Approximated values of ρ and α for h = 0.01.

36



Sensitivity Analysis of Boundary Element Quadrature

0 10 20 30 40
10

−16

10
−12

10
−8

10
−4

10
0

Number of Gaussian points

R
e
la
ti
v
e
e
rr
o
r

 

 

En

Fitting

Figure 7.5: Relative error for h = 0.01, M = 104 and z =M(1 + ei 3π4 ).
ρ = 1.0056, C̃ = 0.13, α = 2.38.

7.2.4 Variation of the integral value

We observe the variation of the integral value along the complex circle. The
largest value is again taken in z = 0 (i.e. ϕ = π). Table 7.12 shows the ratio
between ∣Q(h, z)∣ and ∣Q(h,0)∣.
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ϕ 0 π
4

π
2

3π
4

π

h = 1
0.3973 0.4431 0.5969 0.8494 1

h = 0.1
M = 10−2 0.9990 0.9991 0.9995 0.9998 1

10−1.5 0.9967 0.9972 0.9984 0.9995 1

10−1 0.9897 0.9912 0.9948 0.9985 1

10−0.5 0.9679 0.9725 0.9838 0.9952 1

100 0.9028 0.9162 0.9496 0.9849 1

100.5 0.7294 0.7617 0.8492 0.9521 1

101 0.3973 0.4431 0.5969 0.8494 1

101.5 0.1000 0.1179 0.2058 0.5525 1

102 0.0131 0.0154 0.0265 0.0954 1

102.5 0.0014 0.0017 0.0028 0.0097 1

103 0.0001 0.0002 0.0003 0.0010 1

h = 0.01
M = 10−4 1 1 1 1 1

10−3 0.9999 0.9999 0.9999 1 1

10−2 0.9999 0.9999 0.9999 0.9999 1

10−1 0.9989 0.9991 0.9995 0.9998 1

100 0.9897 0.9912 0.9948 0.9985 1

101 0.9028 0.9162 0.9496 0.9848 1

102 0.3973 0.4431 0.5969 0.8494 1

103 0.0131 0.0154 0.0264 0.0954 1

104 0.0002 0.0002 0.0003 0.0009 1

105 1.4e-06 1.7e-06 2.9e-06 9.9e-06 1

106 1.1e-08 1.4e-08 3.8e-08 2.7e-07 1

Table 7.12: Ratio ∣Q(h,z)∣
∣Q(h,0)∣

for different values of h, M and z.
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7.3 Triangles with a common vertex

For triangles with a common vertex, the constant ρ for the exponential conver-
gence is much larger. Moreover, the superexponential convergence arises already
for h = 1 (cf. Table 7.13).

7.3.1 Triangle diameter h = 1
ϕ ρ C̃ α

0 1.5178 0.20 2.02
π
4

2.1347 0.58 1.73
π
2

4.0747 1.39 1.47
3π
4

47.177 5.13 -

π 36.319 0.55 -

Table 7.13: Approximated values of ρ, C̃ and α for h = 1.

7.3.2 Triangle diameter h = 0.1

In these cases, we notice from the plots that there is a pre-asymptotical be-
haviour of the error. For this reason, we cannot consider the first few points of
the plot when approximating the constants ρ, C̃ and α.
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Figure 7.6: Relative error for h = 0.1, M = 101.5 and z = 2M .
ρ = 1.0788, C̃ = 0.14, α = 2.35.

The approximated values of the constants are reported in Table 7.14. The sym-
bol “-” in the α-fields means that for these cases, the convergence is exponential
(i.e. α = 1).
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M

103 102.5 102 101.5 101 100.5 100 10−0.5 10−1 10−1.5 10−2

ρ

ϕ = 0 1.0011 1.0084 1.0232 1.0718 1.5096 30.346 31.5383 41.034 39.3131 38.6852 37.6055
π
4

1.0003 1.0063 1.0205 1.2401 2.1569 47.6488 40.4372 37.5062 42.8621 37.8635 37.8538
π
2

1.0001 1.0007 1.0137 1.5318 3.6599 44.448 40.2568 39.6547 41.2587 36.9109 39.3776
3π
4

1.0000 1.0035 1.0681 2.5453 59.0147 42.3912 41.0421 39.027 38.7824 37.8158 40.6902

π 40.3838

C̃

ϕ = 0 1.36 1.56 0.57 0.14 0.17 6.51 0.30 0.98 0.83 0.77 0.69
π
4

1.00 1.38 0.33 1.08 0.54 5.65 1.00 0.71 1.13 0.71 0.71
π
2

1.00 0.66 0.64 4.05 1.38 2.62 1.04 0.87 0.98 0.64 0.82
3π
4

0.40 7.17 7.93 3.25 34.30 1.60 1.03 0.80 0.77 0.70 0.92

π 0.89

α

ϕ = 0 2.49 2.31 2.38 2.40 2.02 1.07 - - - - -
π
4

2.83 2.40 2.43 1.98 1.73 - - - - - -
π
2

3.31 3.09 2.66 1.78 1.52 - - - - - -
3π
4

5.60 2.81 2.33 1.59 1.02 - - - - - -

π -

Table 7.14: Approximated values of ρ, C̃ and α for h = 0.1.
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7.3.3 Triangle diameter h = 0.01

For h = 0.01 and triangles with a common vertex, if M < 104, we get similar
results as before. However, for bigger M , the value of the integral is too small
(about 10−20) and this prevents us from computing the error properly.
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Figure 7.7: Relative error for h = 0.01, M = 10−1 and z =M(1 + eiπ4 ).
ρ = 51.07, C̃ = 3.01.

7.3.4 Variation of the integral value

The variation of the integral value is again very similar as in the case of triangles
with a common edge.

7.4 Triangles with positive distance

For distinct triangles, we have the minimal distance d ∈ {0.1,1,10} between
the triangles as an additional parameter. With this configuration, the case
h = 0.01 the values of the integrals are very small and thus the quadrature error
is strongly influenced by the machine error. For the same reason the radius M
has some restriction too.

7.4.1 Triangle diameter h = 1

Figures 7.8a, 7.8b and 7.8c show how the distance between the triangles influ-
ences the error convergence.
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(a) d = 0.1.
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(b) d = 1.
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(c) d = 10.

Figure 7.8: Relative error for h = 1 and z = 1 + eiπ4 .
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The approximated values of the constants are reported in Table 7.15. The
symbol “-” in the α-fields again means that for these cases, the convergence is
exponential (α = 1).

d = 0.1 ρ α

ϕ = 0 3.5254 -
π
4

3.5753 -
π
2

3.6022 -
3π
4

3.5959 -

π 3.5721 -

d = 1
ϕ = 0 2.9606 1.42

π
4

3.8804 1.36
π
2

9.6140 1.17
3π
4

28.7161 -

π 38.8082 -

d = 10
ϕ = 0 2.1506 1.84

π
4

2.8844 1.71
π
2

4.1661 1.61
3π
4

5.0156 1.65

π 21.6577 1.48

Table 7.15: Approximated values of ρ and α for h = 1.

7.4.2 Triangle diameter h = 0.1

Here the results for the case h = 0.1 are reported.
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(a) d = 0.1.
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(b) d = 1.
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(c) d = 10.

Figure 7.9: Relative error for h = 0.1, M = 10−1 and z =M(1 + eiπ2 ).

44



S
en
sitiv

ity
A
n
a
ly
sis

o
f
B
o
u
n
d
a
ry

E
lem

en
t
Q
u
a
d
ra
tu
re

M M

100 10−0.5 10−1 10−1.5 10−2 100 10−0.5 10−1 10−1.5 10−2

d = 0.1 ρ α

ϕ = 0 32.4299 31.9334 32.0206 31.931 32.3693 - - - - -
π
4

32.0689 31.8908 32.0465 32.3023 32.3267 - - - - -
π
2

32.0102 32.162 32.0701 32.0656 31.9311 - - - - -
3π
4

32.2077 32.452 32.1716 32.1939 32.6543 - - - - -

π 32.1766 -

d = 1 ρ α

ϕ = 0 1.8157 2.3247 9.1351 8.7516 12.5072 2.54 2.24 1.59 1.63 1.51
π
4

3.3307 11.2328 9.7634 11.5854 10.5714 1.99 1.61 1.56 1.53 1.57
π
2

6.0711 42.9802 9.3929 11.0456 12.5066 1.77 1.32 1.59 1.55 1.51
3π
4

12.8994 2.9138 10.1463 10.9673 3.7601 1.59 2.10 1.58 1.56 1.97

π 10.9157

d = 10 ρ α

ϕ = 0 3.8421 2.6552 9.7459 7.5619 8.7104 2.00 2.42 1.93 2.18 2.17
π
4

3.6007 2.5107 9.6437 7.6898 9.0021 2.05 2.47 1.94 2.18 2.16
π
2

2.9183 2.2578 11.0071 8.3896 9.9317 2.25 2.59 1.89 2.16 2.12
3π
4

2.4347 9.0452 4.6121 9.43 11.3112 2.46 1.96 2.48 2.14 2.08

π 12.0714 2.05

Table 7.16: Approximated values of ρ and α for h = 0.1.

4
5



Sensitivity Analysis of Boundary Element Quadrature

7.4.3 Variation of the integral value

Again the integral value varies as before for every d ∈ {0.1,1,10} and therefore
the table is not reported.
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8 Conclusion

The experiments we conducted confirm the theory about the error convergence.
The conclusions about the experiments are summarized here, together with
some ideas for further investigation:

• For general configurations, the error behaves as expected. In some limit
cases the convergence is no longer exponential, but even superexponential.
However, the base ρ of the exponent −Nα tends to 1. This fact neutralize
the effect of α. So, in practice, more Gaussian points are needed to achieve
the minimal error. One could study in detail the conditions under which
this behaviour arises. We can suppose that it depends on the product
h ⋅M . But how exactly?

• As expected, the configuration of the triangles plays a central role. The
approximation works better if there is no singularity in the integrand.

• If the radiusM of the complex circle is large, then the value of the integral
varies strongly along this circle. Does this mean that, while approximating
the quadrature along the complex circle, one could ignore some computa-
tions and concentrate on nodes which are near the origin?
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A Additional mathematical background

In this appendix, we gather some theoretical frameworks which are helpful for
the understanding of the thesis.

A.1 Complex contour integrals

As seen in Subsection 2.3, we have to deal with complex contour integrals. In this
subsection, we introduce some basic theory about them, based on [Ahl53].

Definition 8. A curve in the complex plane is a continuous map

γ∶ [a, b] → C,

where a, b ∈ R, a < b. γ is called smooth if it is continuously differentiable, and
it is called closed if γ(a) = γ(b).
We define the integral of a continuous complex function along a curve.

Definition 9. Let γ∶ [a, b] → C be a smooth curve and let f ∶D → C be a
continuous map, where D ⊂ C and γ([a, b]) ⊂D. We define the contour integral
of f along γ as

∫
γ
f(z)dz ∶= ∫ b

a
f(γ(t))γ′(t)dt.

Note that the value of the integral does not depend on the parametrization of
the curve, but only on its image and direction.

We now present Cauchy’s integral formula, which is a crucial formula in the
context of contour integrals. First, we need a definition.

Definition 10. Let γ be a curve and let z0 ∈ C. The winding number of γ with
respect to z0 is defined by

n(γ, z0) = 1

2πi ∫γ
1

z − z0 dz. (A.1)

n(γ, z0) is sometimes called the index of z0 with respect to γ.

For a curve to have winding number n > 0 with respect to a point roughly
means that it twists n times around this point; counterclockwise if n is positive,
clockwise if n is negative.

Theorem 8 (Cauchy’s integral formula). Let U ⊂ C an open subset, f ∶U → C

a holomorphic function and γ∶ [a, b] → C a smooth closed curve with image
contained in U . Then, for any point z0 not on γ,

n(γ, z0) ⋅ f(z0) = 1

2πi ∫γ
f(z)
z − z0 dz.
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The easiest application is when n(γ, z0) = 1. We then have

f(z0) = 1

2πi ∫γ
f(z)
z − z0 dz,

which allows us to compute f(z0) as soon as the values of an analytic function
f on γ are known.

Cauchy’s integral formula is then generalized to the residue theorem:

Theorem 9 (Residue Theorem). Let U ⊂ C an open subset, f ∶U → C a mero-
morphic function and γ∶ [a, b] → C a smooth closed curve with image contained
in U . Assume the poles of f are given by α1, α2, . . . , αℓ. Then,

1

2πi
∫
γ
f(z)dz = ℓ

∑
k=1

n(γ,αk)Res(f,αk),
where the residue of f at αk, k = 1, . . . , ℓ, is given by

Res(f,αk) ∶= 1

2πi
∫
C
f(z)dz,

with C(t) = αk + εeti for 0 ≤ t ≤ 2π and ε sufficiently small.5

Note that the value of the integral along γ only depends on the winding numbers
of the curve around the poles of f .

Let us now look at the special case of the half-plane U = {s ∈ C ∣ Re(s) > 0} and
the map

γ∶R→ C

t↦ σ0 + it
with σ0 > 0. The definition of the contour integral can be extended to unbounded
lines like γ by using an improper integral, and with certain requirements on f ,
Cauchy’s integral formula can also be extended.

Lemma 10. If supz∈U ∣zf(z)∣ <∞ and z0 ∈ U with Re(z0) > σ0, then
f(z0) = − 1

2πi
∫
γ

f(z)
z − z0 dz.

Proof. We employ Cauchy’s integral formula for a curve γ∗ as in figure A.1. We
obtain

n(γ∗, z0) ⋅ f(z0) = 1

2πi
∫
γ∗

f(z)
z − z0 dz.

5The other poles αj , j ≠ k, have to be outside the curve C.
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R

iR

σ0 − iR

γ∗

σ0 + iR

Figure A.1: Extension of Cauchy’s integral formula.

For a sufficient large R, we have n(γ∗, z0) = −1. Moreover, we can split the
integral along the curve as follows:

−f(z0) = 1

2πi
(∫ R

−R

f(σ0 + it)
σ0 + it − z0 idt + ∫

−π
2

π
2

f(R(σ0 + eiϕ))
R(σ0 + eiϕ) − z0Rieiϕ dϕ)

For the second integral on the right-hand side, we have

∣∫ −π
2

π
2

f(R(σ0 + eiϕ))
R(σ0 + eiϕ) − z0Rieiϕ dϕ∣ ≤ ∫

−π
2

π
2

∣ f(R(σ0 + eiϕ))
R(σ0 + eiϕ) − z0Rieiϕ∣ dϕ

Since supz∈U ∣zf(z)∣ < ∞, we know that ∣f(R(σ0 + eiϕ))Rieiϕ∣ is bounded for
every R and ϕ. Hence, the second integral disappears as R → ∞. We thus
obtain

−f(z0) = 1

2πi
lim
R→∞

∫
R

−R

f(σ0 + it)
σ0 + it − z0 idt =

1

2πi
∫
γ

f(z)
z − z0 dz.

Analogously, the residue theorem can be extended to such a line.

A.2 Weak formulation of integral equations

Since the classical formulation of boundary value problems does not lead to
satisfactory results about existence and uniqueness of solutions, one can employ
the weak formulation (also called variational formulation). For this formulation,
definitions and theory about adequate functions spaces can be found in [Eva98].
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In this subsection, we present a small summary with the main results about
such formulation.

Consider the problem of finding the function ψ ∈ H−s(Γ) that solves
Kφ = g,

where K ∶H−s(Γ) → Hs(Γ) is an integral operator and g ∈ Hs(Γ) a right-hand
side function.

The weak formulation of the problem is given by

Find φ ∈H−s(Γ) such that

∫
Γ

Kφ ⋅ v dΓx = ∫
Γ

g ⋅ v dΓx ∀v ∈H−s(Γ). (A.2)

We rewrite this using the inner product (⋅, ⋅)L2(Γ), extended to H−s(Γ):
(Kφ,v)L2(Γ) = (g, v)L2(Γ) ∀v ∈H−s(Γ).

A weak solution φ of this problem, if it is regular enough, is equivalent to a
classical solution. We now want to show the existence and uniqueness of such a
weak solution.

Definition 11. For u, v ∈H−s(Γ) we define the sesquilinear form

a∶H−s(Γ) ×H−s(Γ) → C

(u, v) ↦ a(u, v) ∶= (Ku,v)L2(Γ)

and the linear form

f ∶H−s(Γ) → C

v ↦ f(v) ∶= (g, v)L2(Γ).

Definition 12. Let H be a Hilbert space. A sesquilinear form a∶H ×H → C is
called H-elliptic if there exist γ > 0 and σ ∈ C with ∣σ∣ = 1 such that

Re(σa(w,w)) ≥ γ ∥u∥2H , ∀w ∈H.

We can now formulate the Lax-Milgram theorem [SS11, Chapter 2.1.6].

Theorem 11 (Lax-Milgram). Let H be a Hilbert space. Let a∶H ×H → C be a
continuous, H-elliptic sesquilinear form, with γ and σ as in Definition 12. Let
f ∈H ′ be a linear form. Then, the equation

a(φ,w) = f(w) ∀w ∈H
has a unique solution φ ∈H. Furthermore, it holds that

∥φ∥H ≤ 1

γ
∥f∥H′ .
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A.3 The Galerkin discretization

As seen in Subsection 3.2, we employ Galerkin discretization. Therefore, we
include some theoretical framework, following [Hac92, Chapter 8.1].

Consider a boundary value problem in its variational formulation:

Find φ ∈H such that
a(φ, v) = g(v) ∀v ∈H, (A.3)

where a is a continuous bilinear or sesquilinear form on H ×H and g ∈H ′.
Its Galerkin discretization is created by replacing the infinite-dimensional space
H with a finite-dimensional space HN :

HN ⊂H, dimHN = N <∞. (A.4)

Note that HN is still a Hilbert space with the same norm ∥⋅∥H , and that a and
g are still defined for elements of HN . Thus, we may pose the problem

Find φN ∈ HN such that

a(φN , v) = g(v) ∀v ∈HN . (A.5)

To find a solution, one needs a basis of HN . Let {b1, . . . , bN} be such a basis,
i.e. HN = span{b1, . . . , bN}. The problem (A.5) is then equivalent to:

Find φN ∈ HN such that

a(φN , bi) = g(bi) ∀i = 1, . . . ,N. (A.6)

We can write an element v ∈ HN as v = (v1, . . . , vN ) ∈ RN , where v = ∑Ni=1 vibi.
The problem then becomes a system of linear equations, as the following theorem
illustrates.

Theorem 12. [Hac92, Theorem 8.1.3] For the N × N -matrix A and the N -
vector g defined by

Aij ∶= a(bj, bi)
gi ∶= g(bi)

for 1 ≤ i, j ≤ N , the problem (A.6) is equivalent to finding φ ∈ RN that solves

Aφ = g.
Corollary 13. The Galerkin discretization (A.6) has a unique solution for each
g ∈H ′ if and only if A is nonsingular.
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