
Simulation based inference in epidemic models

Master Thesis in Bio-statistics (STA495)

submitted in partial fulfillment of the requirements for the master degree in

Bio-statistics of Zurich University

by

Gilles Kratzer
03-809-142

supervised by

Associate Professor Michael Höhle, Stockholm Universitet

Full Professor Leonhard Held, Universität von Zürich

Stockholm, October 2015

1

Au printemps le sommeil ne cesse dès l’aurore
Partout se font ouïr les gazouillis d’oiseaux
La nuit s’achève enfin dans le souffle des eaux,
Qui sait combien de fleurs seront tombées encore ?

Mong-Kao-Jen

2

3

Abstract

The mathematical modelling of infectious diseases is a tool to study the mechanisms by which
diseases spread, to predict the future course of an outbreak and to evaluate strategies to con-
trol an epidemic. In the class of compartmental models, which serve as a base mathematical
framework for understanding the complex dynamics of infectious diseases, the Susceptible-
Infectious-Recovered (SIR) model is a valuable model for many infectious diseases.

Typically, stochastic model’s randomness vanishes for a large population size. This is an
issue for modelling infectious diseases that exhibits high seasonal stochasticity. In the stochas-
tic SIR modelling context, infectious diseases dynamic is described by a Partially Observed
Markov Process (POMP). A framework to perform data driven simulation based inference over
POMP objects is presented with a focus on stochastic epidemic models. The class of simulation
model that is presented is an Euler multinomial with extra stochasticity added to the transition
rates. The inference algorithm, for this class of model, is based on a Sequential Monte Carlo
algorithm for hidden states inference, and the parameter inference is based on Maximum Like-
lihood Estimation via Iterated Filtering algorithm as proposed by Breto et al. (2009).

As an example, a single age strata without seasonality with extra noise is used to fit rou-
tine collected public health surveillance data about rotavirus data in Germany. Computational
investigations are presented to show that, based on those preliminary results, this framework is
suitable to infer a more complicated model from the data.

4

Acknowledgements

I would like to thank Prof. Leonhard Held who helped me find an internship abroad and agreed
to be my official supervisor at Zurich University. I am especially grateful to Dr. Michael Höhle
who hosted me at Stockholm University. He gave me valuable comments all along my Master
Thesis and was very patient and enthusiastic. I would also like to thank Theresa Stocks for
the motivating and stimulating discussions. A special thanks goes to Andreas Hicketier for the
lunches and German discussions we had, for showing me the many wonders of Stockholm and
most of all for sharing with me the largest office of Stockholm University. Thank to Dr. Eva
Furrer who gave me the necessary support to build this project and more generally for her help
during all my studies at Zurich University.

Finally, I am more than grateful to Catarina Da Costa for the unconditional support she of-
fered me during these months. Without her, none of this would have been possible.

5

Contents

1 Introduction 8
1.1 Mathematical modelling of outbreaks . 8

1.1.1 Deterministic modelling . 9
1.1.2 Stochastic modelling . 10
1.1.3 Stochasticity vanishment . 11

2 Description of the epidemiological data 14
2.1 Rotavirus . 14

3 Theoretical background 18
3.1 Introduction to Inference algorithms for Partially Observed Markov Process :

Problem statement . 18
3.2 Continuous Time Markov Chain . 20
3.3 Construction of the Euler Multinomial class model 21
3.4 Monte Carlo method for POMP inference . 25

3.4.1 Naïve approach for POMP inference 25
3.4.2 The Monte Carlo approximation . 27
3.4.3 Importance Sampling . 28
3.4.4 Sequential Importance Sampling . 29
3.4.5 Sequential Importance Resampling 31
3.4.6 Regularized particle filter . 33

3.5 Parameter Inference for partially-observed nonlinear stochastic dynamical system 34
3.5.1 Maximum likelihood via Iterated Filtering 34
3.5.2 Algorithm of the Maximum Likelihood Estimation via Iterated Filtering 35

4 The pomp package model implementation 38
4.1 Model Implementation . 38
4.2 Model Definition for a single age strata SIR model 40
4.3 Functionality of the pomp package . 44
4.4 Deterministic Model Implementation using deSolve and pomp R package

comparison . 45

6

4.5 Stochastic Model Implementation using pomp R package 46
4.6 Remarks about parameter inference using pomp package 46

5 Results 47
5.1 Simulation study . 47
5.2 Simulation based inference investigations using pomp package with a single

age strata SIR model without gamma noise applied to rotavirus data 55
5.3 Simulation based inference investigations using pomp package with a single

age strata SIR model with gamma noise applied to rotavirus reported data . . . 60

6 Conclusion 62

7 Annexes 71
7.1 Chapter 1: Introduction . 71
7.2 Chapter 2: Description of the epidemiological data 74
7.3 Chapter 3: Theoretical background . 75

7.3.1 Theorem of the Maximum Likelihood Estimation via Iterated Filtering 78
7.4 Chapter 5: Results . 82

7.4.1 Model fitting using least square . 82
7.4.2 Model implementations . 83
7.4.3 Model predictions using quantile regression 86

7

1
Introduction

The mathematical modelling of infectious diseases is a tool which has been used for decades
to study the mechanisms by which diseases spread, to predict the future course of an outbreak,
to evaluate strategies to control an epidemic and to help create public health interventions [Da-
ley, Gani, and Gani, 2001]. Mathematical modelling of infectious diseases has an outstanding
history of success from pioneer work of Bernoulli which successfully defended the general in-
oculation against smallpox to enhance life expectancy [Graunt, 1939], to recent work [Brauer,
Castillo-Chavez, and Castillo-Chavez, 2001] where mathematical models of epidemics contin-
ually asses strategies to control them.

Weidemann, Dehnert, Koch, Wichmann, and Höhle [2014a] evaluate the impact of vacci-
nation against rotavirus in Germany concluding that a systematic vaccination leads to mortality
reduction. One limitation of the approach used in this study is that modelling is deterministic
and extra stochasticity has to be added in order to take into account seasonal variations. The
purpose of this Master Thesis is to describe and perform preliminary tests of a framework that
is able to carry out simulation based inference on rotavirus data using a stochastic modelling
approach. Hopefully leading to an improvement of the model’s predictive or evaluation ability.

1.1 Mathematical modelling of outbreaks
A well established method to operate inference on epidemic models, is to divide the population
of interest by the abstract notion of compartments, defined by health status with respect to the
pathogen in the system and demographic or epidemiological features. One of the cornerstone
works of such compartmental models was done by Kermack WO [1927]. In this paper, a deter-
ministic compartmental model was successfully described and applied to real data. Following
this work, the class of compartmental models, called Susceptible-Infectious-Recovered (SIR)
model was extendly use. A large variety of extension exists. In compartmental models, individ-
uals are assigned to different compartments, each representing a specific stage of the epidemic
or a demographic status.

The SIR model [Kermack WO, 1927] is a model that assumes a fixed population size and
only three compartments. S(t) is the number of individuals not yet infected with the disease

8

at time t, thus susceptibles to the disease. I(t) is the number of individuals who have been
infected with the disease at time t and spread the disease to those in the susceptible category.
R(t) is the compartment used for those individuals who have been infected and then recovered
from the disease at time t. Figure 1.1 shows a schematic representation of an SIR model where
black arrows between compartments represents the flux of individuals. Each flux of individuals
is associated to a rate.

Figure 1.1: Schematic representation of an SIR model

Compartmental models differ in whether they consider the infection process as a determin-
istic or, as a stochastic process. The following sections introduce both model formulations and
the issue of stochastic modelling’s randomness vanishment.

1.1.1 Deterministic modelling
When dealing with large populations deterministic models are often used. In deterministic
compartmental models, the transition rates from one compartment to another are mathemat-
ically expressed as derivatives. Hence the model is formulated using ordinary differential
equations (ODE), Kermack WO [1927]. A closed population is assumed i.e at all times t:
P (t) = S(t) + I(t) +R(t).

• dS(t)
dt

= −βS(t) I(t)
P (t)

• dI(t)
dt

= βS(t) I(t)
P (t)
− γI(t)

• dR(t)
dt

= γI(t)

Several assumptions were made in the formulation of the above equations. The population
in a compartment is differentiable with respect to time and the epidemic process is determinis-
tic. The compartments are homogeneous, meaning that an individual in the population contracts
the disease with a rate of β, being the infection rate of the disease. A fraction equal to γ rep-
resenting the mean recovery/death rate of infectives who are leaving this compartment per unit
time to enter the recovered compartment. Here 1/γ is called the mean infective period. These
processes occurring simultaneously, are referred to as the Law of Mass Action, implying that
the rate of contact between two groups in a population is proportional to the size of each of the
groups concerned. Finally, it is assumed that birth and death process in the population are much
slower than the rate of infection and recovery, thus can be ignored.

In deterministic settings, the Basic reproduction number R0 is given by:

9

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SIR Model

Time

P
op

ul
at

io
n

Susceptibles
Infecteds
Recovereds

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SIR Model including birth and death rates

Time

P
op

ul
at

io
n

Susceptibles
Infecteds
Recovereds

Figure 1.2: Deterministic SIR model

R0 =
β

γ
N

This is the number of new infections produced by one infected individual in a intact popu-
lation consisting only of susceptibles. When R0 > 1, the epidemic takes off and when R0 < 1,
there is no epidemic [Diekmann, Heesterbeek, and Metz, 1990].

The deterministic SIR model can be adapted to a more sophisticated setting including birth
and death processes for example, as shown in figure 1.2 Initial distribution of population is
S(0) = 1− 10−6, I(0) = 10−6 and R(0) = 0. Model parameters are β = 0.15 and γ = 0.005.
As one can see, in adding a birth/death rate µ = 0.001 the dynamic changes completely. In-
deed without birth and death rates the epidemic extinct quickly and with birth and death rates
the dynamic change drastically. The adaptability and the fast and easy inference process made
the deterministic compartmental model a very popular model for modelling outbreaks. Solvers
exist and are based on very efficient algorithm such as Runge-Kutta or Euler scheme.

Deterministic SIR models are often used in the case of sufficiently large populations, i.e
in the thermodynamic limit. Because the larger the population is the better the assumption of
homogeneity (i.e each individual in a given class is equivalent to the others) is met [Bartlett,
1957]. They can be viewed as limit models of a stochastic model class.

1.1.2 Stochastic modelling
A stochastic SIR model is defined analogously as the deterministic model. A closed homo-
geneous population is assumed, and S(t), I(t) and R(t) have the same definition as in the
deterministic setting. As done previously, birth and death are ignored in this simple setting.
The dynamic of the model is defined as follows. Infectives have contact with susceptibles at a
constant rate β. Contacts are mutually independent. Any susceptible which is in contact with

10

an infected individual immediately becomes infective and starts spreading the disease following
the same rules. Infected individuals remain infectious for a random amount of time governed by
an infections period distribution after which they stop being infectious and recover. The infec-
tious periods are defined to be independent and identically distributed (also independent of the
contact processes). The exponential distribution with intensity parameter γ has received spe-
cial attention in the literature, because the resulting model is Markovian [Britton and Giardina,
2014]. A stochastic process is said to be a Markov process or have the markov property if the
conditional probability of the future state conditional on both present and past states depends
only on the present state of the process.
In continuous time setting, Table 1.1.2 specifies a Markovian stochastic SIR model in giving
the set of events and rates.

Event Rate
(S(t), I(t))→ (S(t)− 1, I(t) + 1) βS(t) I(t)

P (t)

(S(t), I(t))→ ((S(t), I(t)− 1)) γI(t)

Table 1.1: Specification of a stochastic SIR model

where β ∈ R+ and γ ∈ R+ and recovery time exponentially distributed. R(t) is implicitly
given as the total number of individual is fixed.

A simple and efficient algorithm to simulate a stochastic model is the Gillespie algorithm
[Gillespie, 1977]. This algorithm assumes that all possible transitions between compartments
occur independently and are simulated at each time step with constant probability per unit time
that depends on the current state of the system (i.e the number of individual in each compart-
ment). The idea is to sample the next time event from an exponential distribution. Then, the
event is randomly chosen amongst the possible transitions between compartments with proba-
bilities proportional to their individual rates. Figure 1.3 shows two realizations of an stochastic
SIR model simulated by a Gillespie algorithm (see annex 7.1 for the R code), for two different
population size. Model parameters are : β = 0.02, γ = 0.3 and µ = 0.1

The basic reproduction number in the stochastic setting is the average number of secondary
cases directly caused by an infectious case in an entirely susceptible population. For the stochas-
tic SIR model, as defined in table 1.1.2, R0 can be calculated as [Greenwood and Gordillo,
2009]:

R0 =
β

γ
S(0)

1.1.3 Stochasticity vanishment
A major issue of the stochastic modelling approach is that for large population size the stochas-
ticity decreases. In the infinite limit the stochasticity vanishes [Kurtz, 1970]. Thus, stochastic

11

0 2 4 6 8 10

0
20

40
60

80
10

0
One realization of a stochastic model

 for S(0)=97, I(0)=3, R(0)=0

Time

P
op

ul
at

io
n

Susceptibles
Infecteds
Recovereds

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

One realization of a stochastic model
 for S(0)=997, I(0)=3, R(0)=0

Time

P
op

ul
at

io
n

Susceptibles
Infecteds
Recovereds

Figure 1.3: Realizations of stochastic models for different population size

models (specified in table 1.1.2) fail to appropriately reproduce the stochastic dynamics, as the
stochasticity depends on the sample size. Indeed, there is a decrease of the relative stochasticity
of trajectories when several realizations of a stochastic models are shown. Figure 1.4 (see annex
7.1 for the R code) shows the decline in stochasticity using 100 realizations of the number of
infected for small (100 individuals) and large populations (1000 individuals) for a given set of
parameters : β = 0.02, γ = 0.3 and µ = 0.1.

There is a need to investigate other approaches that include stochastic noises that do not van-
ish for large sized population. The idea, which will be developed in the next chapters, is to add
white noise to the transition rates in a stochastic SIR model. The advantages of white noises are
that it depends on a unique parameter (only the intensity is modeled not the frequency), that the
Markov property is inherited by the dynamical system and finally white noise can be designed
to model colored noise.

This thesis is organized as follows, chapter 2 introduces the rotavirus data which will be use
to exemplify the simulation based inference method. Chapter 3 contains the theoretical back-
ground of the thesis, it introduces the simulation model that allows scalable stochasticity also
the parameter inference methods to investigate models based on real data. Chapter 4 describes
the implementation of the method using an existing R package. Chapter 5 presents the results
obtained in applying this inference method to rotavirus data.

12

0 2 4 6 8 10

0
20

40
60

80
10

0

Small population size
 S(0)=97, I(0)=3, R(0)=0

Time

N
um

be
r

of
 in

fe
ct

ed

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

Large population size
 S(0)=997, I(0)=3, R(0)=0

Time

N
um

be
r

of
 in

fe
ct

ed

Figure 1.4: 100 trajectories simulations of Stochastic models for different population sizes

13

2
Description of the epidemiological data

This chapter presents the data used to exemplify the methods described in this research. First
the epidemiological features of rotavirus transmission and infection are presented. Then the
German reporting data are described. Finally, the estimates of basic reproduction number and
the mean recovery time are given which will help to build and asses the model for rotavirus.

2.1 Rotavirus
Rotavirus (RV) infection is the most common cause of severe diarrheas and dehydration amongst
infants and young children worldwide [Dennehy, 2000]. It is a genus of double-stranded RNA
virus of the family Reoviridae which is endemic worldwide. Nearly every child in the world has
been infected with RV at least once by the age of five. It is estimated that RV leads worldwide
to annually more than 110 million episodes of diarrheas causing 25 million of clinical visits, 2
million of hospitalizations, and 453000 deaths [Tate, Burton, Boschi-Pinto, Steele, Duque, and
Parashar, 2012]. Immunity to RV develops through infections, so subsequent infections are less
severe. Adults are rarely affected. Five species of the virus exist, referred to A, B, C, D, and E.
RV A, the most common species, causes more than 90% of RV infections in humans [Bernstein,
2009]. However, this thesis will not distinguish the different type of RV-infection.

Since 2001, acute rotavirus infection is notifiable in Germany [Koch and Wiese-Posselt,
2011]. Laboratory-confirmed cases are routinely reported to the local health offices and for-
warded electronically via the state health authority to the Robert Koch Institute (RKI). The
data-sets used in this thesis are based on the available surveillance reported data described
in Weidemann, Dehnert, Koch, Wichmann, and Höhle [2014b] and which are available from
github. It includes information on age and federal state of residency. The reported data were
separated in two regions of eastern (EFS) and western (WFS) federal states of Germany (the
state of Berlin is considered to be part of the western federal state). It is expected to have a dif-
ference of reported RV cases in between EFS and WFS due to difference in healthcare system
[Rosner, Stark, and Werber, 2010].

In between 2001-2009, 503373 RV cases have been reported in Germany. 210712 have been
reported in EFS and 292661 in WFS respectively. 144087 RV cases have been reported for chil-

14

0
10

00
20

00
30

00
40

00
50

00

W
ee

kl
y

re
po

rt
ed

 c
as

es

2001 2003 2005 2007 2009

Figure 2.1: Unstratified weekly reported number of cases

dren < 5 years old in EFS and 210147 for WFS. For patients above 5 years, 66625 RV cases
have been reported for EFS and 82514 for WFS. Additional demographic data on monthly birth
rates, annual age-stratified mortality rates, age-stratified migration data from 1990-2009, and
age-stratified population counts in the EFS and WFS for the years of 2001-2009 was obtained
from the GENESIS database at the Federal Statistical Office of Statistics [2013]; Weidemann
et al. [2014b].

Figure 2.1 presents the aggregated weekly number of reported number of RV. Figure 2.2
presents the weekly reported number of RV cases stratified by age (under and above 5 years
old) and regions (EFS and WFS). As one can see, RV data exhibits a strong seasonal pattern
with a maximum in March and minimum in August. Figure 2.3 shows the seasonality of the
rotavirus aggregated data. We use, as a working definition of a rotavirus season, a cutoff be-
tween week 37 and 38 of the year, thus in September. The red line is the data for 2002 (from
September 2002 to September 2003), and each other line is another year of data. The rotavirus
season 2002 will be used for model fitting This is the first complete season, as the data for sea-
son 2001 starts in January. It can be observed that there is a high stochasticity in between years.
The original data are available in both EFS WFS and for 10 age strata (0, 1, 2, 3, 4, 5-19, 20-30,
40-59, 60-79, 80+).

As previously pointed out, Weidemann et al. [2014b] assess with a deterministic model the
effect of rotavirus vaccination in using the difference of healthcare system in between West and
East side of Germany. The ODE system describes the dynamic of the infection while an obser-
vational model based on Negative binomial distribution is used (NB). However, one limitation

15

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

WFS: < 5 years old

W
e

e
kl

y
re

p
o

rt
e

d
 c

a
se

s

2001 2003 2005 2007 2009

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

EFS: < 5 years old

W
e

e
kl

y
re

p
o

rt
e

d
 c

a
se

s

2001 2003 2005 2007 2009

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

WFS: > 5 years old

W
e

e
kl

y
re

p
o

rt
e

d
 c

a
se

s

2001 2003 2005 2007 2009

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

EFS: > 5 years old

W
e

e
kl

y
re

p
o

rt
e

d
 c

a
se

s

2001 2003 2005 2007 2009

Figure 2.2: Weekly reported number of cases stratified by age and region

16

0
10

00
20

00
30

00
40

00
50

00

Seasonality of the rotavirus

W
ee

kl
y

re
po

rt
ed

 c
as

es

January March September

2001
2002
2003−2009

Figure 2.3: Seasonality of the weekly reported number of cases

of this approach is that the stochasticity arises from the observational model only. A stochastic
approach relying on stochastic modelling of the dynamic of the rotavirus infection process, is
believed to better integrate seasonal stochasticity (see figure 2.3). This is the main motivation
to use a stochastic setting to model the rotavirus dynamic.

The incubation period for the rotavirus diarrhea is usually less than 48 hours [Atkinson,
Wolfe, and Hamborsky, 2011]. The transmission of the rotavirus is by fecal-oral and thus in-
volve close person-to-person contact or fomites. Those are objects or materials that can carry
infections, such as clothes, utensils, furniture, toys or contaminated stools. Rotavirus is highly
communicable.

The basic reproduction number is estimated to be as high as R0 = 60. This estimate was
obtained by taking the mean of the basic reproduction number for 15 country reproduced in
Pitzer, Viboud, Lopman, Patel, Parashar, and Grenfell [2011]. The data used are reproduced in
7.1. The mean recovery time can be estimated as one week. "The gastrointestinal symptoms
generally resolve in 3 to 7 days" [Committee et al., 1996]. Then the mean recovery time can be
estimated as γ = 1 in a weekly period of time. These estimates will be useful for modelling
and for model assessment of rotavirus.

17

3
Theoretical background

This chapter introduces a simulation based inference method. Firstly, the problem we tackle
in this thesis will be presented. Then an introduction to the mathematical formulation of the
Continuous Time Markov Chains is given. This is the framework in which the Euler multino-
mial algorithm is described. The last two sections are devoted to the inference algorithms: to
infer the internal states we used the Sequential Monte Carlo algorithm and to infer the model
parameters we used a likelihood based algorithm.

3.1 Introduction to Inference algorithms for Partially Ob-
served Markov Process : Problem statement

The purpose of this thesis is to perform simulation based inference for the model parameters on
an epidemic model that allows tuneable stochasticity. To do so, the RV incidence data will be
modeled as a Partially Observed Markov Process (POMP) also called Hidden Markov Model
(HMM) or state-space model. A POMP is a statistical Markov Model in which the hidden states
are assumed to have the Markov property and emit symbols or observations. In the particular
case of SIR model, the hidden states are the number of individuals in the compartments. A
POMP can be represented as a graphical network as shown in figure 3.1. This graphical model
is a set of nodes and arrows. The nodes are the states and the arrows encode the conditional
probabilities. In figure 3.1, the Markov process generating the hidden states is depicted in black
and the emission process in blue. In the specific context of SIR modelling, hidden states are the
status of the SIR compartments and the observations process is the number of newly reported
cases.

The reason why a POMP is a good candidate for modelling infectious disease is that the
number of individuals susceptible, infected and recovered are unknown. The time series of the
newly reported cases (which is basically the only available information) is a noised signal of
the total number of newly infected people in the population. To model the RV data we use the a
Markov process as described in table 1.1.2 and the observational model is a negative binomial
trial of the number of newly infected. The rational to use a negative binomial distribution is
that this distribution allows to deal with over dispersion. The total number of infected at time

18

Figure 3.1: Schematic representation of an Hidden Markov Model (HMM)

t is given by: I(t), the number of newly infected at time t is given by: i(t) = βI(t)S(t). The
newly reported number of infected is then modeled by H(t) ∼ NB(size = θ i(t), prob = ρ).
The negative binomial distribution is parametrize by two parameters: θ is called the shape pa-
rameter and ρ is called the probability. Alternative parametrization exists. This model is a time
point wise model, thus in discrete time.

In order to give an example of the observational model, figure 3.2 depicts one simulation
of the total number of infected and the number of newly infected. Then the number of newly
reported cases is given by a point wise negative binomial trial with θ = 0.05 and ρ = 0.65.

A well suited inference framework for POMP is the Sequential Monte Carlo (SMC) algo-
rithm also called Particle Filter algorithm described by Doucet, De Freitas, and Gordon [2001]
and Arulampalam, Maskell, Gordon, and Clapp [2002]. The purpose of the SMC algorithm is to
sequentially estimate the density of hidden states given the observations. The system is observed
at times t ∈ {1, · · · , N} with values {y1, · · · , yN}. The density of hidden states is represented
by a set of particles. Each particle has a weight which represents the local mass of the density
function. As the estimations of the density are done sequentially, no other re-computations are
necessary to estimate the updated density other than incorporating new observation informa-
tion. Additional features such as re sampling step and kernel density estimation are specifically
designed to deal with degeneracy problem and sample impoverishment problem respectively,
which are two major issues of the SMC algorithm.

Parameter estimation for POMP is classically done by Expectation-Maximization algorithm
(i.e Baum-Welch algorithm) [Bilmes et al., 1998]. But due to the complexity of the likelihood,
evaluation could be rather complicated [Britton and Giardina, 2014]. For a more detailed discus-
sion refer to section 4.1. Ionides, Bretó, and King [2006] develops and implements a parameter
inference strategy for POMP that assumes that the parameter is a time varying random process
(i.e a random walk), because inference is easier in time varying setting, and takes the limit of
the estimate for null variance.

19

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

Time

P
op

ul
at

io
n

Nb of infected
Nb of newly infected
Nb reported newly infected

Figure 3.2: Representation of the weekly number of reported cases, the weekly new number of
cases and a negative binomial noised signal of the new weekly number of reported cases

3.2 Continuous Time Markov Chain
The aim of this section is to present the necessary mathematical background to understand Con-
tinuous Time Markov Chain. In annex 7.3 two useful concepts are introduced: filtration process
and the Poisson Random Measure (PRM).

To define a Continuous Time Markov Chain (CTMC) [Anderson, 2012], let there be a time
dependent state vector Xt = X(t;ω) ∈ ZNc

+ with ω ∈ Ω and where Nc is the number of com-
partments of the model. For an homogeneous SIR model we would have Nc = 3 (susceptible,
infected and recovered). This state vector counts at time t the number of individuals in each of
the Nc compartments. In a discrete state framework, the state vector process is right continuous
with respect to time. This is notationally stressed by X(t−). In order to describe the transitions
between compartments, let us have a rate function r : ZNc

+ → R+ and the stoichiometric coef-
ficients matrix s ∈ ZNc . Every flow of individuals between compartments is associated with a
rate. The stoichiometric coefficients specify intensity of connections in between compartments.
Then a CTMC is defined as:

20

dXt = sµ(dt) = sµ(r(X(t−)); dt)

where µ is a scalar Poisson Random Measure [Çınlar, 2011] (See annex 7.3 for more de-
tails). The expectation of the Poisson Random Measure is given by IE[µ(dt)] = r(X(t−))dt
with exponentially distributed waiting time. The generalization to a non-scalar counting mea-
sures is straight forward. The vector intensity of Nt transitions is defined by R : ZNc

+ → RNt+

and a stoichiometric matrix S ∈ ZNc×Nt . Then a general CTMC is given by:

dX t = Sµ(dt) = S [µ1(dt), ..., µNt(dt)]
> , for all k, µk(dt) = µ(Rk(X(t−)); dt) (3.1)

As an example, let us take the stochastic SIR model, defined in table 1.1.2. The state vector
is given by X(t) = [x1(t), x2(t), x3(t)], where xi(t) for i ∈ {1, 2, 3} has to be understood as
the number of individuals in the susceptible, infected and recovered compartments in function
of time. The stochiometric coefficient defined by table 1.1.2 is:

S =

−1 0
1 −1
0 1


The vector intensity is given by R(X(t)) = [βx1(t)x2(t), γx3(t)]

>. Then the CTMC of this
model is:

dX t = d

x1(t)x2(t)
x3(t)

 = Sµ(dt) =

−βx1(t)x2(t) 0
βx1(t)x2(t) −γx3(t)

0 γx3(t)



3.3 Construction of the Euler Multinomial class model
The stochasticity of a dynamical model is defined as the relative stochasticity in between dif-
ferent realizations of simulated trajectories. The stochasticity is said to be tunable or scalable
if there exists a parameter that determines the intensity of the stochasticity. An implicit model
is a statistical model for a stochastic system which is specified by a simulation algorithm. Pa-
rameter inference methods on implicit models are said to have the plug-and-play property (for
more details see 4.1). The following developments follow the description given by [Bretó, He,
Ionides, and King, 2009]. The general idea is to develop an algorithm for time series analysis
based on compartmental models that include both a scalable stochasticity and the plug-and-play
property. The scalable stochasticity will be achieved by adding white noise to the rates in be-
tween compartments. Another distinction compared to the previous section is that the model
we want to construct should be in a discrete time setting. This will be achieved by constructing
a CTMC as a limit of a discrete-time multinomial processes Cai and Xu [2007].

The characteristic of the compartmental models is that they respect total conservation of the
mass balance. This implies that the total number of individuals of the system stays constant.

21

This can be seen as flows in between compartments. Let us introduce the number of count at
time t between compartment i to compartment j written as Nij(t). Each number of count is
associated with a rate µij = µij(t,X(t)) between compartment i to compartment j. A number
of count is a random measure. For sake of simplicity, we will assume in the rest of the develop-
ment that the matrix Nij(t) is a square matrix (with possibly zero rows and/or zero columns).
Then equation 3.1 can be rewritten as:

xi(t) = xi(0) +
∑
j 6=i

Nij(t)−
∑
j 6=i

Nji(t).

It is very natural to assume that xi(t) ≥ 0 ∀i ∈ N and ∀t ∈ R. This implies that the total
population does not change over time. As pointed out previously, white noise (WN) has to be
added to the transition rates in order to create the desired extra stochasticity. The WN should
have the following properties in order to respect the closeness of the population:

1. Independent increments: The set of temporal increments of the WN should be such that: {Γi,j(t2)−
Γi,j(t1), 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nc} is presumed to be independent of {Γi,j(t4)−Γi,j(t3), for all i, j ∈
{1, · · · , Nc} and all sets of ordered time points t1, t2, t3, t4}

2. Stationary increments: The set of temporal increments of the WN should be such that: {Γi,j(t2)−
Γi,j(t1), for all i, j ∈ {1, · · · , Nc}} has a joint distribution depending only on t2 − t1

3. Non-negative temporal increments of the WN: {Γi,j(t2)−Γi,j(t1), for all i, j ∈ {1, · · · , Nc} ∀ t1 <
t2

4. Unbiased multiplicative noise :IE[Γi,j(t)] = t

5. Partially independent noises: For each i, {Γi,j(t)} is independent of: {Γi,k(t)} ∀ j 6= k

6. Independent noises: {Γi,j(t)} is independent of {Γk,l(t)} for all (i, j) 6= (k, l)

7. Gamma noises marginally distributed Γi,j(t+ δ)− Γi,j(t) ∼ Gamma(δ/σ2
i,j, σ

2
i,j)

Condition number 7, introduces a certain distribution for the WN. The choice of the gamma
noise is a convenient choice, because it fulfills the above requirements. In such a parametriza-
tion, the shape parameter is δ/σ2

i,j and the scale parameter is σ2
i,j . Thus the mean is given by δ

and the variance is given by δσ2
i,j .

The model is specified by the following equations. Let us define the number of com-
partment transitions by ∆Nij := Nij(t + δ) − Nij(t) and the gamma noises increments by
∆Γij := Γij(t + δ) − Γij(t), where i and j are compartments. The increment of the transition
of individuals between compartments and the WN increment are both independent of time. Be-
cause they are dependent on the parameter δ. Then following Bretó et al. [2009]:

22

P (∆Nij = nij, ∀ 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nc and i 6= j | X(t))

= IE

Nc∏
i=1


(

xi
ni1, · · ·nii−1nii+1 · · ·niNcri

)Ñ
1−

Nc∑
k 6=i

pik

éri ∏
j 6=i

p
nij
ij


+ o(δ)(3.2)

where X(t) = {xi, i ∈ 1 : Nc} is the set of the states of the compartments at time t and
ri = xi −

∑
i 6=k ni,k. Furthermore:

pij = pij({µi,j(nδ,X(nδ))}, {∆Γi,j)})
= (1− exp(−

∑
k

µi,k∆Γi,k))µi,j∆Γi,j/
∑
k

µi,k∆Γi,k.

Bretó et al. [2009] proves that 3.2 defines a CTMC when conditions 1-5 hold and that if con-
ditions 1-7 hold, then infinitesimal transitions probabilities can be computed exactly. The exact
computation is done using a Gillespie algorithm but in practice an Euler scheme is a reason-
able approximation. This CTMC is implicit since numerical solutions are available at arbitrary
precision. Indeed, exact computation can be done by an Gillespie algorithm and an arbitrary
precision can be achieved by considering smaller δ (as shown in 3.2). Finally, the rationale
behind introducing white noise and not colored noise is that it requires fewer parameters (only
intensity) and that colored noise can be obtain by coupling white noises. Algorithm 1 shows the
implementation of CTMC presented above.

Algorithm 1 Euler Multinomial model with gamma noise
1: Divide the interval [0,T] into N intervals of width δ =T/N
2: Set initial value X(0)=[S(0),I(0),R(0)]>

3: for n = 0 to N − 1 do
4: Generate noise increments
5: {∆Γij = Γij(nδ + δ)− Γij(nδ) ∼ Gamma(δ/σ2

i,j, σ
2
i,j)}

6: Generate process increments
7: (∆Ni,1, · · · ,∆Ni,i−1,∆Ni,i+1,∆Ni,c, Ri)
8: ∼ Multinomial(Xi(nδ), pi,1, · · · , pi,i−1, pi,i+1, · · · , pi,c, 1−

∑
k 6=i pi,k)

9: where pij = pij({µi,j(nδ,X(nδ))}, {∆Γi,j)}) =
10: (1− exp(−∑k µi,k∆Γi,k))µi,j∆Γi,j/

∑
k µi,k∆Γi,k

11: end for

As an example, figure 3.3 (see annex 7.3 for the R code) shows 100 realizations of an
stochastic SIR model (see table 1.1.2) simulated using algorithm 1 that lead to a conserved
stochasticity even for a large population size. In this example the total population size has been
chosen at 80,000,000 i.e the population size of Germany.

23

0 2000 4000 6000 8000 10000

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

100 trajectories for a large population size (80,000,000)

Time

N
um

be
r

of
 in

fe
ct

ed

Figure 3.3: Stochasticity produced by Euler multinomial model

24

3.4 Monte Carlo method for POMP inference
The further computations follows Doucet et al. [2001] and Arulampalam et al. [2002]. The
derivations are extended in order to become more digest and additional steps are added.

3.4.1 Naïve approach for POMP inference
For sake of simplicity we restrict our self to signals modeled as Markovian, nonlinear, non-
Gaussian state-space models. The Markovian property seems very natural for infection contact
driven problem i.e the number of infected at a certain time step depends exclusively on the
number of infective at previous time step. A non-linear formulation comes naturally if the law
of mass is admitted as transitions are proportional to product of the compartment size. The
non-Gausiannity come from the fact that the considered transitions density in between hidden
states is a noised gamma distributed process. This implies that the range of problem cover by
this approach include problems solved by classical Kalman filter but also nonlinear and non-
Gaussian problem.
Let us define a Hidden Markov Model (HMM) or a Partial Observed Markov Process (POMP).
It is a statistical Markov Model in which the sequence of hidden states, {xt; t ∈ N}, xt ∈ χ are
assumed to have the Markov properties and result in observations {yt; t ∈ N∗}, yt ∈ Υ. Here,
χ is the sample space of the signal (for example N3 for simple SIR model) and Υ is the sample
space of the observations (for example N for reported cases in simple case). The initial distri-
bution of the hidden states is given by p(x0) and the transition equation is given by p(xt | xt−1).
Observations are assumed to be conditionally independent given the process and of marginal
distribution p(yt | xt). Conditional independence imposes that p(yt | xt, y0:t−1) = p(yt | xt). To
summarize, an POMP is given by the following densities:

• p(x0) (3.3)

• p(xt | xt−1), ∀t ≥ 1 (3.4)

• p(yt | xt),∀t ≥ 1 (3.5)

A POMP can be represented as a graphical model Cappé, Moulines, and Rydén [2006] as
shown in figure 3.1. The time series of the signal is denoted by x0:t = {x0, · · · , xt} and the
time series of the observations are denoted by y1:t = {y1, · · · , yt} up to time t. This notation
is to stress that this is a set of vectors or scalar number. The aim is to estimate the distribution
p(x0:t | y1:t) or the marginal distribution p(xt | y1:t) also called the filtering distribution. The
filtering distribution is the probability that the system ends at time t in a certain state knowing
all the observations. In addition, one can be interested to compute the expectation of a function
of interest. This is of importance because any probability can be expressed as an expectation.
For example, let us assume a probability space (Ω,F ,P) and let X : Ω → R be a random
variable, A ∈ Ω an event and I the indicator function. Then one can express the probability that
a realization of the random variable belongs to a set A as: P (X ∈ A) = IE[I(X ∈ A)]. Thus for
a function ft : χ(t+1) → Rnft integrable with respect to p(x0:t | y1:t) where χ(t+1) is the sample
space of the signal. Then the expectation of such a function is given by:

25

I(ft) = IEp(x0:t|y1:t)[ft(x0:t)] =
∫
ft(x0:t)p(x0:t | y1:t)dx0:t

At any time t ∈ N+. Here, I(·) is the expectation and dx0:t is a measure over the sample
space of the signal χ(t+1). The distribution can be computed from Bayes theorem:

p(x0:t | y1:t) =
p(y1:t | x0:t)p(x0:t)∫
p(y1:t | x0:t)p(x0:t)dx0:t

(3.6)

A recursive formula for the joint distribution p(x0:t | y1:t) is given by:

p(x0:t | y1:t) = p(x0:t−1, xt | y1:t−1, yt)

=
p(x0:t−1, xt, y1:t−1, yt)

p(y1:t−1, yt)

=
p(yt | x0:t, y1:t−1)p(xt | x0:t−1, y1:t−1)p(x0:t−1 | y1:t−1)p(y1:t−1)

p(yt | y1:t−1)p(y1:t−1)

= p(x0:t−1 | y1:t−1)
p(yt | x0:t)p(xt | x0:t−1)

p(yt | y1:t−1)

(3.7)

In the last step in equation (3.7) one has p(yt | x0:t, y1:t−1) = p(yt | x0:t) due to the con-
ditional independence of the observations given the states and p(xt | x0:t−1, y1:t−1) = p(xt |
x0:t−1) because the signal is a Markov process. In a Bayesian setting, the marginal distribution
p(xt | x0:t−1, y1:t), can be computed recursively in two steps.

Prediction step: computed from the filtering distribution in using the law of total probabil-
ity applied for conditional probability and the markov property of the process:

p(xt | y1:t−1) =
∫
p(xt | xt−1y1:t−1)p(xt−1 | y1:t−1)dxt−1 =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

In this step, due to the recursive equation (3.7), the filtering distribution p(xt−1 | y1:t−1) is
assumed to be known.

Update step: the prior is updated with the new measurement.

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)∫
p(yt | xt)p(xt | y1:t−1)dxt

Despite the simplicity of those expressions, it turns out that to be computed they require
the evaluation of high-dimensional integrals. A possible solution are Monte Carlo (MC) inte-
grations methods, which are very powerful for evaluating high-dimensional integrals have the
advantage to not impose any linearity or Gaussianity constraints to the model. Those methods
have also very suitable general convergence properties.

26

3.4.2 The Monte Carlo approximation
Let us introduce the notion of particles for Monte Carlo computations, it is an independent and
identically distributed (i.i.d) random sample. Let us assume that we can simulate N particles
{x(i)

0:t, i = 1, · · · , N} according to the distribution p(x0:t | y1:t). An empirical estimate of this
distribution denoted p̂N(·) is given by:

p̂N(dx0:t | y1:t) =
1

N

N∑
i=1

δx(i)0:t
(dx0:t) (3.8)

Where δx(i)0:t
(dx0:t) denotes the delta-Dirac mass function located in x(i)

0:t. Here, dx0:t can be

viewed as an open set of χ(t+1). Equation 3.8 defines an estimate of the distribution since it
gives the value of the distribution for all open sets of χ(t+1). The indice N is there to stress that
the quality of the estimate depend on the number of simulated particles. Then, an estimate of
I(ft) is given by:

ÎN(ft) =
∫
ft(x0:t)p̂N(dx0:t | y1:t) =

1

N

N∑
i=1

ft(x(i)
0:t) (3.9)

To obtain equation 3.9, one has used the fact that the integral and the sum can be exchanged
as the sum is finite. Again the quality of this estimate depend on the number of simulated par-
ticles.

This estimate is unbiased and if the variance of ft satisfies σ2
ft = IEp(xt|y1:t)[f

2
t]−I2(ft) <∞,

then the variance of ÎN(ft) is equal to Var(ÎN(ft)) = 1
N
σ2
ft . From the strong law of large

numbers :

ÎN(ft)
a.s−→ I(ft), for N →∞

Moreover, if σ2
ft < +∞ then the Central Limit Theorem (CLT) can be applied :

√
N [̂IN(ft)− I(ft)]

dist−−→ N (0, σ2
ft), for N →∞

Thus from a set of particles {x(i)
0:t = 1, · · · , N} one can estimates any expectation I(ft).

The speed of convergence of this estimate is independent of the dimension of the integrand
Newman, Barkema, and Newman [1999]. This is the main motivation for using Monte Carlo
integration technique, since for any deterministic integration method the speed of convergence
decreases as the dimensionality of the problem increase.

Unfortunately, it is usually hard to sample efficiently from p(x0:t | y1:t) at any time t, as
p(x0:t | y1:t) is multivariate, non-Gausian, high-dimension and known up to a proportionality
factor only. Monte Carlo Markov Chain (MCMC) is a popular approach to sample from a com-
plex distribution Robert and Casella [2013]. Unfortunately, MCMC is unsuited for recursive
estimation processes, because for every new observation a global estimation procedure have to
be done. The modified importance sampling setting is well suited for a recursive procedure
to make inference for HMM. But first let us introduce the Importance sampling method as an

27

intermediate step in the problem formulation.

3.4.3 Importance Sampling
The importance sampling method is an approximation used to estimate a particular distribution
p(x0:t | y1:t), while only having samples generated from a different but related distribution, the
so called proposal distribution π(x0:t | y1:t). To be suited π(x0:t | y1:t) is required to have the
same support, thus π(·) = 0 implies p(·) = 0. The proposal distribution may or may not depend
on y1:t, in this last case it reduces to π(x0:t). Then an approximation of the expectation of ft is
given by:

Î(ft) =

∫
ft(x0:t)p(x0:t | y1:t)dx0:t∫

p(x0:t | y1:t)dx0:t

=

∫
ft(x0:t)

p(x0:t|y1:t)
π(x0:t|y1:t)

π(x0:t | y1:t)dx0:t∫ p(x0:t|y1:t)
π(x0:t|y1:t)

π(x0:t | y1:t)dx0:t

=

∫
ft(x0:t)w(x0:t)π(x0:t | y1:t)dx0:t∫

w(x0:t)π(x0:t | y1:t)dx0:t

(3.10)

In equation (3.10) w(x0:t) = p(x0:t|y1:t)
π(x0:t|y1:t)

is called the importance weight. The normalized

importance weight w̃(i)
t are given by :

w̃
(i)
t =

w(x(i)
0:t)∑N

i=1w(x(i)
0:t)

Thus from a set of N particles {x(i)
0:t = 1, · · · , N} from π(x0:t | y1:t) a Monte Carlo estimate

of I(ft) is given by :

Î(ft) =
1
N

∑N
i=1 ft(x(i)

0:t)w(x(i)
0:t)

1
N

∑N
i=1w(x(i)

0:t)

=
N∑
i=1

ft(x(i)
0:t)w̃(x(i)

0:t)

(3.11)

It is interesting to note that, in equation (3.9) x0:t are distributed according to p(·) and in
equation (3.11) x0:t are distributed according to π(·). Contrary to Monte Carlo approximation
where it is required to know how to sample and evaluate the density of interest, in the im-
portance sampling algorithm it is sufficient to evaluate the density of interest. Moreover, one
usually know the distribution of interest only up to a constant. Indeed in equation 3.6 the in-
tegral in the denominator is hard to compute. It is only required to know how to evaluate a
function proportional to p(x0:t | y1:t) ∝ p(y1:t | x0:t)p(x0:t). Explicitly, p(·) = c · p̃(·):

28

w̃
(i)
t =

c·p̃(·)
π(·)∑
c·p̃(·)
π(·)

=

p̃(·)
π(·)∑ p̃(·)
π(·)

Moreover the variance of the estimate can be lowered. Indeed in the Monte Carlo approx-
imation the variance of the estimate is given by Var(Î(ft)) = 1

N
σ2
ft compared to the variance

in the importance sampling framework Var(Î(ft)) = 1
N
σ2
ftw. In using a smart choice of the

proposal function then the weights will contribute to a reduction of this variance. In addition,
it can be prove that there exist an optimal choice of the proposal distribution that optimize the
mean square error [Sanz-González, Andina, and Seijas, 2002]. The Mean Square Error is given
by MSE = bias2 + var. It can be difficult to sample from it.

For N finite ÎN(ft) is biased, as it is a ratio of estimates. However, under suitable assump-
tions, the strong law of large number applies, thus ÎN(ft)

a.s.−−→ I(ft), for N → ∞. Under
additional suitable assumptions, due to CLT, the convergence rate is still independent of the
dimension of the integrand Geweke [1989]. Importance sampling is a general Monte Carlo
method. However, in this form, Importance sampling, does not allow for recursive estimation.
One need to have all the data y1:t available before estimate p(x0:t | y1:t) or I(ft). Sequential
Importance Sampling is a strategy to overcome this problem.

3.4.4 Sequential Importance Sampling
The importance sampling method can be adapted in order to compute an estimate p̂N(x0:t | y1:t)

of the distribution without recomputing the trajectories of the particles {x(i)
0:t, i = 1, · · · , N}

at each time a new observation is treated, but computing the estimate of the density based on
previous estimate modified by the updated observation and signal. This algorithm is called Se-
quential Importance Sampling (SIS). This implies that the importance function π(x0:t | y1:t) at
time t admits as marginal distribution at time t− 1 the importance function π(x0:t−1 | y1:t−1):

π(x0:t | y1:t) = π(x0:t−1, xt | y1:t−1, yt)

=
π(x0:t−1, xt, y1:t−1, yt)

π(y1:t−1, yt)

=
π(xt | x0:t−1, y1:t)π(yt | x0:t−1, y1:t−1)π(x0:t−1 | y1:t−1)π(y1:t−1)

π(y1:t−1, yt)

= π(x0:t−1 | y1:t−1)π(xt | x0:t−1, y1:t)
π(yt | x0:t−1, y1:t−1)π(y1:t−1)

π(yt | y1:t−1)π(y1:t−1)

= π(x0:t−1 | y1:t−1)π(xt | x0:t−1, y1:t)

Thus in iterating form:

π(x0:t | y1:t) = π(x0)
t∏

k=1

π(xk | x0:k−1, y1:k)

29

The importance weights can also be evaluated recursively:

w̃
(i)
t =

w(x(i)
0:t)∑N

i=1w(x(i)
0:t)

=
1î∑N

i=1w(x(i)
0:t)
ó p(x(i)

0:t | y1:t)

π(x(i)
0:t | y1:t)

=
1î∑N

i=1w(x(i)
0:t)
ó p(x(i)

0:t−1 | y1:t−1)p(x(i)
t | x

(i)
0:t−1, y1:t)

π(x(i)
0:t−1 | y1:t−1)π(x(i)

t | x
(i)
0:t−1, y1:t)

=
w(x(i)

0:t−1)î∑N
i=1w(x(i)

0:t)
ó p(x(i)

t , x
(i)
0:t−1, y1:t−1, yt)

p(x(i)
0:t−1, y1:t)π(x(i)

t | x
(i)
0:t−1, y1:t)

=
w(x(i)

0:t−1)î∑N
i=1w(x(i)

0:t)
ó
p(x(i)

0:t−1, y1:t)

p(yt | x
(i)
t , x

(i)
0:t−1, y1:t−1)p(x(i)

t | x
(i)
0:t−1, y1:t−1)p(x(i)

0:t−1, y1:t−1)

π(x(i)
t | x

(i)
0:t−1, y1:t)

=
w(x(i)

0:t−1)p(x(i)
0:t−1, y1:t−1)î∑N

i=1w(x(i)
0:t)
ó
p(x(i)

0:t−1, y1:t)

p(yt | x
(i)
t)p(x(i)

t | x
(i)
t−1)

π(x(i)
t | x

(i)
t−1, y1:t)

=
1î∑N

i=1w(x(i)
0:t)
ó
p(yt | x

(i)
t)

w(x(i)
0:t−1)

p(yt | x
(i)
t)p(x(i)

t | x
(i)
t−1)

π(x(i)
t | x

(i)
t−1, y1:t)

∝ w̃
(i)
t−1

p(yt | x
(i)
t)p(x(i)

t | x
(i)
t−1)

π(x(i)
t | x

(i)
t−1, y1:t)

(3.12)

In equation (3.12) p(yt | x
(i)
t , x

(i)
0:t−1, y1:t−1) = p(yt | x

(i)
t) and p(x(i)0:t−1,y1:t−1)

p(x(i)0:t−1,y1:t)
= 1

p(yt|x
(i)
t)

due to the

conditional independence of the observations. p(x(i)
t | x(i)

0:t−1, y1:t−1) = p(x(i)
t | x(i)

t−1) because
the signal is a Markov process independent of the observations. 1î∑N

i=1
w(x(i)0:t)

ó
p(yt|x

(i)
t)

is a con-

stant. Finally, the SIS algorithm is, in general, a recursive application of the following update
equations:

• x(i)
t ∼ π(xt | x(i)

t−1, y1:t) (3.13)

• w̃(i)
t ∝ w̃

(i)
t−1

p(yt | x
(i)
t)p(x(i)

t | x
(i)
t−1)

π(x(i)
t | x

(i)
t−1, y1:t)

(3.14)

• p̂N(dx0:t | y1:t) =
1

N

N∑
i=1

w̃
(i)
t δx(i)0:t

(dx0:t) (3.15)

An important particular case is given when adopting the prior distribution as importance
distribution:

π(x0:t | y1:t) = p(x0:t) = p(x0)
t∏

k=1

p(xk | xk−1)

30

In this case, the importance weights simplify to:

w̃
(i)
t ∝ w̃

(i)
t−1p(yt | x

(i)
t)

In the following, we will restrict the importance sampling distribution to the prior distribu-
tion. This choice is a very popular choice [Arulampalam et al., 2002]. Thus in this context, the
SIS algorithm is given by the following distributions:

• x(i)
t ∼ p(xt | x(i)

t−1) (3.16)

• w̃(i)
t ∝ w̃

(i)
t−1p(yt | x

(i)
t) (3.17)

• p̂N(dx0:t | y1:t) =
1

N

N∑
i=1

w̃
(i)
t δx(i)0:t

(dx0:t) (3.18)

The algorithm used in this thesis is described by the set of equations above. First one has to
sample the prior distribution, then computing the update of the weights and finally estimate the
distribution. The next two sections are devoted to computational complications.

3.4.5 Sequential Importance Resampling
In practice, iterating over equations (3.13) and (3.15) leads to the so-called degeneracy problem.
As t increases, the distribution of the importance weight w̃(i)

t becomes skewed. In other words,
only few particles will have a significant weight. Thus most of the computations to update parti-
cles trajectories will finally almost not contribute to the approximation of the density. This will
make SIS fail to efficiently and effectively represents the distribution. The degeneracy problem
is typically assessed by an estimate of the effective number of particles [Liu and Chen, 1998]:

N̂eff =
1∑N

i=1(w̃
(i)
t)2

The key idea of the Sequential Importance Resampling (SIR) or Bootstrap filter algorithm
is to introduce an additional selection step. In this chapter acronym SIR refer to Sequential
Importance Resampling and not to the Susceptible-Infected-Recovered model. The purpose is
to eliminate particles which have low weights and to multiply particles having high importance
weight. Thus weighted empirical distribution p̂(dx0:t | y1:t) = 1

N

∑N
i=1 w̃

(i)
t δx(i)0:t

(dx0:t) is re-
placed by the unweighted measure:

p̂N(dx0:t | y1:t) =
1

N

N∑
i=1

N
(i)
t δx(i)0:t

(dx0:t)

Where, N (i)
t is the number of offspring associated to particle x(i)

0:t such that
∑N
i=1N

(i)
t = N .

Explicitly if N (j)
t = 0 the particle j will die. N (i)

t have to be chosen such that the surviving

31

particles are approximately distributed according to p(x0:t | y1:t). There are many ways to select
those particles. In practice this is done by N sampling steps with replacement over the particles
[Gordon, Salmond, and Smith, 1993]. It is important to notice that after the resampling step, all
the particles have the same weight. A schematic representation of the algorithm is presented in
figure 3.4.

{Xt-­‐1(i),	
 N-­‐1}	

{Xt-­‐1(i),	
 Wt-­‐1
(i)}	

{Xt-­‐1(i),	
 N-­‐1}	

{Xt(i),	
 N-­‐1}	

{Xt(i),	
 Wt
(i)}	

Figure 3.4: Schematic representation of the Sequential Importance Resampling (SIR) algorithm
(adapted from [Doucet et al., 2001])

The SIR algorithm reduces to the same equations as the SIS and an additional resampling
step. The main advantage of the SIR algorithm is that it only requires sampling from the distri-
bution p(xt | x(i)

t−1), then evaluating p(yt | x(i)
t) and resampling. Due to the choice of the prior

distribution, SIR leads to an importance distribution which is independent of the observation
y0:t, and thus get rid of the information stored in the observations. In addition, addressing the
degeneracy problem by removing the particles with small weights, resampling step introduces a
new problem, called the sample impoverishment problem. As resampling the particle according
to their weights, the diversity of the particles will tend to decrease. This problem is more severe
for low noisy processes. In the extreme case, SIR can approximate the distribution with only
one particle. In practice, in a SIR setting, to deal with sample impoverishment problem one
can resample particles only if the estimated number of particles drop down to a certain cutoff
[Arulampalam et al., 2002]. The problem stays as long as resampling step rely on a discrete
distribution, the probability of choosing several time the same particle is not zero becoming

32

zero in the continuous case. Based on this ascertainment, Regularized Particle Filter Doucet
et al. [2001] is a special SMC algorithm designed to address specifically this problem.

3.4.6 Regularized particle filter
As pointed out previously, the key idea of the Regularized Particle Filter (RPF) is to create a
continuous distribution with the existing particles and to sample from this continuous distribu-
tion. The rest of the algorithm is the same as for SIR. In the RPF resampling step, the samples
are drawn from:

p̂h(xt | y1:t) ≈
N∑
i=1

w̃
(i)
t Kh(xt − x(i)

t)

where, K(·) is the rescaled Kernel density. Here, h > 0 is a scalar parameter called the Kernel
bandwidth and nx is the dimension of the state vector xt. The rescaled Kernel density is defined
as:

Kh(x) =
1

hnx
K(

x
h

)

The most common optimality criterion used to select the bandwidth (h) is the Mean Inte-
grated Squared Error (MISE). h is chosen to minimize the MISE between the true density and
its estimate.

MISE(h) = IE
ï ∫

[p̂h(xt | y1:t)− p(xt | y1:t)]
2dxt

ò
In the particular case where all weights are equal, the optimal choice of the kernel density

is given by the Epanechnikov kernel [Arulampalam et al., 2002]:

KEpa =
nx + 2

2cnx
(1− x2)I(|x| ≤ 1)

where cnx is the volume of the unit hypersphere in Rnx and I(·) is the indicator function.

Although the choice of the Epanechnikov kernel is optimal only in the case of equal weights,
it can still be used in the general case to obtain a sub optimal approximation. The complexity
of RPF is comparable to the complexity of the SIR. It only requires a finite sampling of a kernel
density at each time step. However, RPF does not guarantee to asymptotically approximate the
density. In practice, RPF performs better than SIR for low noise processes. Thus is described
as the preferred choice SMC algorithm in [Arulampalam et al., 2002].

33

3.5 Parameter Inference for partially-observed nonlinear stochas-
tic dynamical system

Parameter inference for partially-observed nonlinear stochastic dynamical system is known to
be easier for time varying parameters [Ionides et al., 2006]. Indeed, due to the essence of
the iterated filtering algorithm which applied sequentially, the maximization process arise at
each step and not globally for the hidden states, parameter inference follows naturally the same
scheme. In the Susceptible-Infected-Recovered context, the parameter of the model, namely
the force of infection, the mean recovery period, birth and death rate are defined as time in-
dependent. The algorithm has to be adapted. A likelihood-based algorithm adapted to time
independent parameter is presented below. The idea of this frequentist approach, called Max-
imum likelihood estimation via Iterated Filtering (MIF) [Bretó et al., 2009], is to replace the
parameter by a slowly time varying random walk that converge to the maximum likelihood pa-
rameter estimate.

The general idea of performing parameter inference for a POMP object is to use a simulation
algorithm, which should have the plug-and-play property to infer SIR models. Afterwards, one
should wrap the simulator in a first SMC loop that give as output the distribution of the hidden
states (which is called the filtering distribution). Then a second loop use a parameter inference
algorithm such as MIF to find the maximum likelihood estimates of the parameter. Figure 3.5
shows a schematic representation of the big picture. A more rigorous description of the MIF is
presented in 2.

3.5.1 Maximum likelihood via Iterated Filtering
This presentation follows Ionides et al. [2006] except that the derivations are extended in order
to make them more comprehensible for non-specialist. Furthermore, additional steps are added.
Maximum likelihood estimation via Iterated Filtering, called MIF, is a method that enable to
perform maximum likelihood inference for a partially-observed nonlinear stochastic dynami-
cal systems (also known as a POMP object). The method is based on a sequence of filtering
operations which will converge to the maximum likelihood parameter estimate under certain
conditions. Algorithms exist which handle efficiently time varying parameter (due to the natu-
ral sequential construction of the data). As the purpose of this thesis is to perform SIR inference
the parameter are assumed to be time constant. Thus MIF algorithm is very convenient in this
setting. In addition, maximum likelihood inference has various advantage: this is an efficient
process, standard errors are available via the Hessian matrix and it is possible to perform model
selection via maximum likelihood model comparison.

As described in the previous section a POMP object is completely specified by the con-
ditional transition densities. The basic idea of the MIF algorithm is to replace time constant
parameter θ (could be multi-dimensional) by smoothly time varying parameter θt. Thus the
conditional densities can be rewritten as:

• p(x0,θ0)

34

Simula'on	
 algorithm	

Sequen'al	
 Monte	
 Carlo	

Output	
 :	

-­‐  Filtering	
 Es'ma'on	

-­‐  Distribu'on	
 Es'ma'on	

-­‐  Hidden	
 States	
 Inference	

Parameter	
 Inference	

Algorithm	
 (MIF)	

Output	
 :	

-­‐	
 MLE	
 of	
 the	
 parameters	

Loop	
 over	
 Observa'ons	

Loop	
 over	
 Precision’s	
 parameter	

Figure 3.5: Schematic representation of an the global algorithm for POMP inference

• p(xt | xt−1,θt−1),∀t ≥ 1

• p(yt | xt,θt),∀t ≥ 1

The time varying parameter θt is a random walk:

• IE[θt | θt−1] = θt−1

• IE[θ0] = θ

• Var(θt | θt−1) = σ2Σ

• Var(θ0) = σ2c2Σ

where σ and c are scalar quantities.

3.5.2 Algorithm of the Maximum Likelihood Estimation via Iterated Fil-
tering

The purpose is to get an estimate of the MLE for σ → 0. The Maximum likelihood via Iterated
Filtering algorithm is given below. It is an upper layer over the Sequential Monte Carlo (SMC)

35

estimation. Algorithm 2 presents the MIF procedure and the SMC procedure. Model inputs are
defined by:

• f(·) is the density that generates the hidden states

• g(·) is the density that generates the observations

• y1, · · · , yN is the time series of the observations

• J is the number of particles of the SMC

• N is the fixed time lag

• M is the number of iterations of the MIF algorithm

• 0 < a < 1 is called the cooling factor. Thus the variance reduction factor as the variance
am−1 for m→∞ is studied

• b > 0 is the scaling factor of the variance reduction factor

• X(1)
I is the initial state vector

• θ(0) is the initial parameter vector

• ΣI is the variance-covariance matrix of the initial state

• Σθ is the variance-covariance matrix of the parameter

Algorithm 2 Maximum likelihood Estimation via Iterated Filtering algorithm
1: for m = 1 to M do
2: draw XI(t0, j) ∼ N (X

(m)
I , am−1ΣI), j = 1, · · · , J

3: set XF (t0, j) = XI(t0, j)
4: draw θ(t0, j) ∼ N (θ(m), bam−1Σθ)
5: draw θ(t0) = θ(m)

6: for n = 1 to N do
7: set XP (tn, j) = f(XF (tn−1, j), tn−1, tn, θ(tn−1, j),W)
8: set w(n, j) = g(yn | XP (tn, j), tn, θ(tn−1, j))
9: draw k1, · · · , kJ such that Prob[kj = i] = w(n, i)/

∑
l w(n, l)

10: set XF (tn, j) = XP (tn, j)
11: set XI(tn, j) = XI(tn−1, j)
12: draw θ(tn, j) ∼ N (θ(tn−1, kj), a

m−1(tn − tn−1)Σθ)
13: set θi(tn) to be sample mean of {θi(tn−1, kj), j = 1, · · · , J}
14: set Vi(tn) to be sample mean of {θi(tn, kj), j = 1, · · · , J}
15: end for
16: set θ̂(m+1)

i = θ̂
(m)
i + Vi(t1)

∑N
n=1 V

−1
i (tn)(θi(tn)− θi(tn−1))

17: set Xm+1
I to be the sample mean of {XI(tL, j), j = 1, · · · , J}

18: end for

The output of the algorithm is:

36

• The maximum likelihood estimate for parameters θ̂ = θ(M+1)

• The maximum likelihood estimate for the initial values X̂(t0) = X
(M+1)
I

• The maximum log likelihood estimate logL(θ̂) =
∑
n log(

∑
j w(n, j)/J)

Here N (., .) is the normal multivariate distribution. XI(tn) takes values in Rdx , where dx is
the dimension of the hidden states. In the algorithm, F stands for filtering. The filtering distri-
bution takes values in the same space. The observations yi takes values in Rdy . The parameter θ
takes values in Rdθ and has components {θi; i = 1, · · · , dθ}. Moreover θi(tn) can be considered
as local estimate of θi because they depend heavily on the observation around time tn. As the
number of iteration increase this dependence decrease. One can see that the steps 6-15 define
an iterated filtering algorithm (or Sequential Monte Carlo algorithm). The updated estimate is
a weighted average of the previous estimates. Theorem 7.3.1 in annex 7.3.1 show why using
such a weighted average is a reasonable choice that approximate the maximum likelihood with
respect to the parameters.

37

4
The pomp package model implementation

An R Core Team [2015] implementation of the Particle Filter and Maximum likelihood estima-
tion via Iterated Filtering called pomp exists [King, Nguyen, and Ionides, 2014]. This section
presents the pomp package [King, Ionides, Bretó, Ellner, Ferrari, Kendall, Lavine, Nguyen,
Reuman, Wearing, and Wood, 2015a] and [King, Nguyen, and Ionides, 2015b]. This package
provides tools to make inference for nonlinear partially-observed Markov processes. One can
implement a model by specifying its hidden process and measurement components and then a
broad range of method is implemented in order to make parameter inference.

In this thesis we use mainly two functions of this package: the particle filter algorithm
(implemented as pfilter() function) and the maximum likelihood estimation via iterated
filtering algorithm (implemented as mif2() function, which is an update of the algorithm pre-
sented in this thesis [Ionides, Bhadra, Atchadé, and King, 2011]). Several tutorials exist in
order to get started with the pomp package (The web page (http://dept.stat.lsa.umich.edu/ ion-
ides/tutorials/index.html) indexes all the tutorials about the pomp package).

The aim of this section is to clarify the link between the R implementation of the pomp
package and the algorithmic methods presented in chapter 3. To do so, the code used to make a
model implementation is presented and commented.

4.1 Model Implementation
In order to understand the implementation of the pomp package in the context described previ-
ously, a model implementation will be presented and commented. The core of the simulation
algorithm is to define a POMP object. One has to use a so called POMP constructor, imple-
mented as pomp(). This is an R function that encodes in a unique object: the conditional
distributions that define the POMP, the time series of the data including the initial time, the
names and initial values of the states and the parameters, the skeleton of the POMP (i.e set
of differential equations that define the underlying SIR model), the function that generates the
simulation, the possible covariates and the transformation of the parameter. It is often useful
from a computational point of view, to transform restricted parameters to an unrestricted scale.
Typically, the exponential-logarithmic function are used to extend real positive values and expit-

38

logit function to extend the (0, 1) domain.

The advantage of the POMP constructor function is that it allows to specify the listed fea-
tures using C code. Then, one has to use the Csnippet() function that allows to incorporate
C code in R function. From a computational point of view this is more efficient.
The distribution of the hidden states is given by:

xi+1 ∼ f(xi,θ)

The distribution of the observations is given by:

yi ∼ g(xi,θ)

The distribution f(·) contains state-update for the Markovian process and the distribution
g(·) define for the emission process. The hidden likelihood of the system is given by:

L = f(x0:T , y1:T ,θ) = f(x0,θ)
T∏
i=1

f(xi | xi−1,θ)g(yi | xi,θ) (4.1)

where θ is the parameter vector, the index i indicates the position in the time series and T is
the total number of observations (i.e the length of the time series). To decompose the likelihood,
we use the factorization described by the graphical model, see figure 3.1.

The hidden likelihood is quite complex. This justifies why an Expectation-Maximization
(EM or Baum-Welch algorithm) approach for parameter inference would be untractable from
a computational point of view. Indeed, the maximization step would require to maximize the
hidden likelihood, thus computing all the possible hidden states S(t), I(t) and R(t) in the vec-
tor xi and evaluating the likelihood. A priori, the hidden states are unbounded, therefore the
hidden space is huge. This is why such approach is inefficient from a computational point of
view. This is one of the rational to used Maximum Likelihood Estimation via iterated filtering.
In R, one constructs a POMP object, by specifying the following components:

• rprocess(): a simulator of the process model i.e a function to draw values from f(xti |
xi−1,θ)

• dprocess(): an evaluator of the process model, i.e a function yielding values of the
probability density function f(xi | xi−1,θ)

• rmeasure(): a simulator of the measurement model, i.e a function to draw values from
f(yi | xi,θ)

• dmeasure(): an evaluator of the measurement model, i.e a function yielding values of
the probability density function f(yi | xi,θ)

39

It is often not necessary nor possible to define for a particular model all those components.
As a side remark, this explains why this thesis is called Simulation based inference in epidemic
models. Indeed, oftentimes simulating a random processes is easier than evaluating their tran-
sition probabilities. From an algorithmic point of view it means that rprocess() is often
easier to specify as dprocess(). Such approach is called a simulation based method, or al-
ternatively plug-and-play, likelihood-free and equation-free method.

4.2 Model Definition for a single age strata SIR model
Figure 4.1 shows the states and transitions of a single age strata SIR model with demography.
This model is specified by 4 compartments, 3 transition values, 2 additional parameters for the
observation model and one parameter for the stochasticity. In the model µ is the birth and death
rate of the population (no disease related), β is the force of infection, γ is the recovery rate. The
emission process is defined by two parameters the size θ and the probability ρ. This model is
an Euler multinomial. In this model definition H is the number of newly reported cases deduce
from the total number of infected I . S is the number of susceptible and R is the number of
recovered. Due to the model definition, the population stay constant even if individuals are only
imported in compartments S. The specific death rate of the disease is neglected, which is a fair
assumption for rotavirus, which has almost no extra mortality associated with it in industrial-
ized countries.

Figure 4.1: Schematic representation of an SIR model

The skeleton of the SIR model is defined by the following set of ODEs:

• P (t) = S(t) + I(t) +R(t) (4.2)

40

•
dS(t)

dt
= −β I(t)

P (t)
S(t)− µS(t) + µP (t) (4.3)

•
dI(t)

dt
= β

I(t)

P (t)
S(t)− γI(t)− µI(t) (4.4)

•
dR(t)

dt
= γI(t)− µR(t) (4.5)

And the following emission process in discrete time:

• H(t) ∼ NB(mean = θ i(t), prob = ρ) for t = ti (4.6)

The newly reported number of infected is a point wise (thus discrete time process) negative
binomial distributed trial of the number of newly infected i.e : i(t) = βS(t)I(t)/P (t). The neg-
ative binomial distribution is parametrize by two parameters: θ is called shape and ρ is called
the probability. The stochastic representation of the model is then given by the following set of
events and their respective rates:

Event Rate
(S(t), I(t))→ (S(t)− 1, I(t) + 1) βS(t) I(t)

P (t)

(S(t), I(t))→ (S(t), I(t)− 1) γI(t)
(S(t), I(t))→ (S(t) + 1, I(t)− 1) µ
(S(t), I(t))→ (S(t) + 1, I(t)) µ

The emission process is given by the same discrete time process as in the deterministic set-
ting.

Below, the R code used to generate this model is presented (the entire code is presented in
7.4). Here, the functions rprocess() and dmeasure() are defined in R in using a pomp
constructor as:

rmeas <- "
cases = rnbinom_mu(theta, rho * i);
"
dmeas <- "
lik = dnbinom_mu(cases, theta, rho * i,give_log);
"

As one can see, the measurement process is negative binomial distributed with parameters θ
for the size and ρ · i for the probability, where i is the number of newly infected. The argument
give_log return the logarithm of the value of the function.

The SIR dynamic, defined by a multinomial model, is given by:

41

sir.step <- "
double rate[6];
double dN[6];
double dW; // white noise increment
double P;

P=S+I+R;

// compute the stochasticity
dW = rgammawn(sigma,dt);

rate[0] = mu * P;
rate[1] = (beta*I)/P*(dW / dt);
rate[2] = mu;
rate[3] = (gamma*dW)/dt;
rate[4] = mu;
rate[5] = mu;
dN[0] = rpois(rate[0] * dt);

reulermultinom(2, S, &rate[1], dt, &dN[1]);
reulermultinom(2, I, &rate[3], dt, &dN[3]);
reulermultinom(1, R, &rate[5], dt, &dN[5]);

S += dN[0] - dN[1] - dN[2];
I += dN[1] - dN[3] - dN[4];
R += dN[3] - dN[5];
i += dN[1];
"

As one can see the dynamics follow the equations given by table 4.2. The stochasticity is
introduced in adding gamma noise to γ rate.

The initializer function is defined by following code. It can be seen that the relative initial
distribution is specified by only one parameter and the initial number of infected S(0) is set to
a 1000 to reduce number of free parameters:

init <- "
S = popsize-1000;
I = 1000;
R = 0;
i = 0;
"

The skeleton of the SIR model is specified by:

42

sir.skel <- '
// transition rates
double rate[6];
// population size
double P;

// compute the transition rates
P=S+I+R;
rate[0] = mu * P;
rate[1] = beta * I/P;
rate[2] = mu;
rate[3] = gamma;
rate[4] = mu;
rate[5] = mu;

// assemble the differential equations
DS = rate[0]-rate[1]*S-rate[2]*S;
DI = rate[1]*S-rate[3]*I-rate[4]*I;
DR = rate[3]*I-rate[5]*R;
'

Parameter transformation are specified by:

fromEstimationScale <- "
Tgamma = exp(gamma);
Ttheta = exp(theta);
Tbeta = exp(beta);
Tmu = exp(mu);
Trho = expit(rho);
"

toEstimationScale <- "
Tgamma = log(gamma);
Tbeta = log(beta);
Ttheta = log(theta);
Tmu = log(mu);
Trho = logit(rho);
"

Finally, the pomp constructor that sums up everything is given by:

sir<-pomp(data = data.frame(cases = data,
time = seq(0, 51, by=1)),

times = "time", t0 = -1/52,

43

dmeasure = Csnippet(dmeas),
rmeasure = Csnippet(rmeas),
rprocess = euler.sim(step.fun =

Csnippet(sir.step), delta.t = 1/52/20),
skeleton=Csnippet(sir.skel),
skeleton.type='vectorfield',
statenames = c("S", "I", "R", "i"),
paramnames = c("gamma", "mu", "theta", "beta",

"popsize","rho"),
zeronames=c("i"),
fromEstimationScale = Csnippet(fromEstimationScale),
toEstimationScale = Csnippet(toEstimationScale),
initializer = Csnippet(init),
params = c(popsize = 1000000, beta = 25, gamma = 10,

mu = 0.01, rho = 0.15, theta = 1)
)

The time series of the data is provided but also the vector of time points as a data.frame().
Here, the length of the time series is 52 time points, thus is weekly reported data over a year.
The start of the time series is set one time step before starting of the time series and given by t0.
The rprocess() is generated in using a function, Euler.sim() which produce an Euler
scheme. The simulation time step of the process is set to twenty times the frequency of the
time series of the data. Based on those components, a pomp object is created and the features
described in the next chapter could be applied on.

4.3 Functionality of the pomp package
The following features have been developed in the pomp package. Many other feature have
also been developed but are not presented here as they are not used in this current work.

• Simulate a model using simulate()

• Integrate your model’s deterministic skeleton using trajectory(), here skeleton mean
the deterministic part of the model

• Estimate the likelihood of a model for a given set of parameters using Sequential Monte
Carlo, implemented in pfilter()

• Find the Maximum Likelihood Estimates for parameters via iterated filtering, imple-
mented in mif2()

44

4.4 Deterministic Model Implementation using deSolve and
pomp R package comparison

The purpose of this section is to exemplify and asses the model implementation, presented in
figure 4.1, in a deterministic setting. In figure 4.2, shows a model implementation and solutions
using both deSolve and pompR packages. As one can see there is a great agreement between
those very different implementations. The model parameters used are:

• β = 0.5

• µ = 1e−4

• γ = 0.005

The set of initial conditions are given by:

• P (0) : 1000000

• S(0) = 999999

• I(0) = 1

• R(0) = 0

0 200 400 600 800 1000

0e
+

00
4e

+
05

8e
+

05

Simple SIR Model using
 deSolve

Time [a.u]

P
op

ul
at

io
n

S
I
R

0 200 400 600 800 1000

0e
+

00
4e

+
05

8e
+

05

Simple SIR Model simulated using
 POMP (Skeleton)

Time [a.u]

P
op

ul
at

io
n

S
I
R

Figure 4.2: Solving dynamical SIR System using deterministic simulations

The set of initial values and parameters produce a single outbreak and the trajectory can be
seen in figure 4.2. The implementation using deSolve is based on solving the ODE model using
the deSolve package. The skeleton implementation is the deterministic implementation of
the pomp package. Both graphs are very similar.

45

4.5 Stochastic Model Implementation using pomp R package
Using the Euler Multinomial with Gamma noise algorithm (see algorithm 1 on page 23) imple-
mented in the pomp package framework gives figure 4.3. The intensity of the gamma noise has
been chosen to be σ = 8.

0 200 400 600 800 1000

0e
+

00
4e

+
05

8e
+

05

One realization of a single age strata
 SIR Model simulated using POMP

Time [a.u]

P
op

ul
at

io
n

S
I
R

0 10000 20000 30000 40000 50000

0e
+

00
4e

+
05

8e
+

05

10 realizations of a single age strata
 SIR Model simulated using POMP

Time [a.u]

N
um

be
r

of
 in

fe
te

d

Figure 4.3: Euler Multinomial with Gamma noise applied to a single age strata with demogra-
phy

The implementation of this model gives coherent results. Indeed the stochasticity seems
very similar to figure 3.3.

4.6 Remarks about parameter inference using pomp package
All computation presented in this thesis have been done using R Core Team [2015]. Generally
pomp computations are heavy. Even after using C code in the pomp constructor, the computa-
tions runs have to be written in parallel. To parallelize the code used in this thesis multiple R
packages foreach [Analytics and Weston, 2014a], doMC [Analytics, 2014], parallel [R
Core Team, 2015] and doParallel[Analytics and Weston, 2014b].
Moreover, heavy pomp computations are best performed in parallel on a cluster or multi-core
machine. Thus all computations have been performed on a 8 cores cluster virtual machine from
the Zurich University. Some challenges arise to ensure reproducibility and more important to
avoid useless computations. To ensure reproducibility, seeding have been done using l’Ecuyer
L’ecuyer, Simard, Chen, and Kelton [2002] technique. Avoiding repetition of expensive calcu-
lations have been done in using stew() function of the pomp package.

46

5
Results

This chapter described the results obtained in using the pomp package to perform simulation
based inference applied to the rotavirus reported data. As a proof of concept, a simulation study
is presented to exemplify the inference method used to find the maximum likelihood estimate
(MLE) of an SIR model.

The overall purpose is to find the MLE for a single age strata model without seasonality
with and without gamma noise. Then to compare the impact of the gamma noise on the model’s
predictions. It turns out that the gamma noise is a very sensitive parameter for inference pro-
cedure. Then as a first step, a model without gamma noise will be studied, then the MLE of
this model will be used to infer the model that include extra noise. The data used are the data
presented in chapter 2 for year 2002-2003 (see figure 2.3, red line).
A single age SIR model without seasonality with demography with gamma noise is defined by
7 model parameters (3 parameters for the model, one for the population, two for the emission
process and one for the stochasticity). The gamma noise, also called extra noise, is determined
by a unique parameter.

5.1 Simulation study
A simulation study have been performed in order to assess the validity and the efficiency of the
algorithm using the model defined in previous chapter (see figure 4.1). The model used is a sin-
gle age strata without seasonality without gamma noise (to reduce the computation workload).
First the model is used to simulate some data, then those data are used to infer the model’s
parameters.

In the simulation study, the parameter popsize is set to 80,000,000 to be in line with the
German population. The parameter µ is set to 0.00015 as an estimate of the mean birth rate in
Germany in 2002 [of Statistics, 2013]. The model’s parameters are set to ρ = 0.5, β = 5, γ = 5
and θ = 50. Figure 5.1 shows the data simulated used to perform this simulation study.

In order to find the MLE of the model’s parameters, the following procedure will be ap-
plied. As a first step a so called local search is performed, therefore the prior value of the MIF

47

0 10 20 30 40 50

0
50

00
0

15
00

00

Weeks

N
um

be
r

of
 n

ew
ly

 in
fe

ct
ed

Figure 5.1: One realization of the number of newly infected for (beta=5, gamma=5, theta=50,
rho=0.5, popsize=80,000,000, mu=0.00015)

logLik

3.80 3.90 4.00 47 48 49 50 51 52

−
70

0
−

66
0

−
62

0
−

58
0

3.
80

3.
90

4.
00

beta

gamma

3.
75

3.
85

3.
95

−700 −660 −620 −580

47
48

49
50

51
52

3.75 3.85 3.95

theta

Figure 5.2: Pair plots of the log likelihood with the parameters for a simulation study Simulation
parameters (Np=10000; Nmif=100; Nlocal=31/40)

48

algorithm is always the same for all simulations. In this simulation study the true parameter
values will be taken as prior values. Then a global search is performed, i.e starting values of the
MIF algorithm will have a distribution. This step is necessary as even theorem 7.3.1 assures the
global convergence of the algorithm and then suggest a local behavior, is computationally valid
only for an infinite computation time [Liu, Chen, and Logvinenko, 2001] and [Spall, 2003].
Thenceforth several starting values have to be tested, this is called the global search. Usually
this step requires a large computation time.

Figure 5.2 shows the pair plot graph of the model’s parameter in function of the log like-
lihood of the local search. It can be seen on figure 5.2, that β and γ are highly correlated.
Moreover, those parameters are also strongly correlated with the log likelihood. Figure 5.3
shows the trajectories of the model’s parameters for the local search (same starting value) and
global search (distribution of starting value). On can see that the MIF algorithm fails to find the
MLE for β and γ.

0 10 20 30 40 50

0
1

2
3

4
5

(a)

MIF iteration

be
ta

0 10 20 30 40 50

0
1

2
3

4
5

(a)

MIF iteration

ga
m

m
a

0 10 20 30 40 50

0
10

20
30

40
50

(a)

MIF iteration

th
et

a

0 20 40 60 80 100

0
2

4
6

8
10

(b)

MIF iteration

be
ta

0 20 40 60 80 100

0
2

4
6

8
10

(b)

MIF iteration

ga
m

m
a

0 20 40 60 80 100

0
20

40
60

80

(b)

MIF iteration

th
et

a

Figure 5.3: Trajectories of the model parameters (beta,gamma,theta) for a simulation study for
local (a) and global (b) searching procedure

The fact that β and γ are strongly correlated can be observed on both local and global
search. This is due to the fact that this simulation study infers model’s parameters based on the
newly reported number of cases. In the model used, the number of newly cases at each time is

49

0 20 40

0.
90

0.
95

1.
00

1.
05

1.
10

(a)

MIF iteration

R
0

0 40 80

0.
90

0.
95

1.
00

1.
05

1.
10

(b)

MIF iteration

R
0

Figure 5.4: R0 estimation for local (a) and global (b) search

mainly driven by the relative value of β and γ. In other words, there is a deal of information
between R0 = β/γ, which gives the final size of the epidemic, and the individual values of β
and γ. From a geometrical point of view, there is a ridge in the parameter space with a sharp
curvature in the R0 direction and a smooth curvature in complementary direction. This explain
why it is relatively easy to find an estimate of R0 and computationally hard to find a good esti-
mate of β and γ individually. Figure 5.4 shows the plot of R0 in function of the MIF iteration
for the local and global search. As one can see, both values are very close to the true value
(R0 = β/γ = 5/5 = 1).

−700

−600

−500

4.0 4.5 5.0 5.5 6.0
beta

lo
gL

ik

−600

−575

−550

−525

−500

4.0 4.5 5.0 5.5 6.0
gamma

lo
gL

ik

Figure 5.5: Likelihood profiles for gamma and beta

To overcome this issue, we will use the likelihood profiles. Figure 5.5 shows an estimate
of the likelihood profiles for β and γ optimized together. As one can see on this graph, the
maximum likelihood is estimated for β = 4.9 and γ = 4.9 which is very close to the true value

50

0 20 40 60 80 100

0
10

20
30

40
50

(a)

MIF iteration

th
et

a

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

MIF iteration

rh
o

0 20 40 60 80 100

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

(a)

MIF iteration

m
u

0 20 40 60 80 100

0
20

40
60

(b)

MIF iteration

th
et

a

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

MIF iteration

rh
o

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(b)

MIF iteration

m
u

Figure 5.6: Trajectories of the model parameters (theta,rho,mu) for a simulation study for local
(a) and global (b) searching procedure

of those parameters. To construct the likelihood profiles, the true values have been used for
other model’s parameters and a grid of sampled value of β and γ where the likelihood have to
be evaluated. To get a reliable estimate each points is computed 15 times, then only maximal
values are kept and plotted. On figure 5.5 blue line is a loess estimate of the profiles likelihood
and grey surface is an estimate of the computational variance of the profile likelihood. Even in
this highly favorable situation (known true value), the computational efforts to get the estimate
of the profile likelihood are heavy.

Figure 5.7 shows an other estimate of the profile likelihood of the model’s parameters. As
one can see, the profile likelihood for β, γ is very sharp. It can also be observed that ρ has a
no symmetric profile likelihood. This is an indication why MIF algorithm overestimates it. Fi-
nally, µ seems to be not very well identifiable due to the large curvature of the profile likelihood.

An important remark is that figures 5.5 and 5.7 present two estimates of the profile likeli-
hood but are very different in essence. Indeed, figure 5.7 can only be computed in knowing
the MLE of all model’s parameters. Indeed, each graph is obtained in using MLE value of all
parameters except the one varying. Whereas 5.5 can be computed without previous knowledge
of the MLE, and thus can be use in more general inference context, but is computationally more

51

demanding.

2 4 6 8 10

−
20

00
−

15
00

−
10

00
−

50
0

beta

lo
gL

ik

2 4 6 8 10

−
20

00
−

15
00

−
10

00
−

50
0

gamma

lo
gL

ik

0e+00 4e−04 8e−04

−
51

3.
30

−
51

3.
20

−
51

3.
10

mu

lo
gL

ik

30 40 50 60 70

−
51

7
−

51
6

−
51

5
−

51
4

−
51

3

theta

lo
gL

ik

0.0 0.2 0.4 0.6 0.8 1.0

−
20

00
−

15
00

−
10

00
−

50
0

rho

lo
gL

ik

0.0e+00 1.5e+10 3.0e+10

−
16

00
−

15
00

−
14

00

popsize

lo
gL

ik

Figure 5.7: Likelihood Profiles

The MIF estimation of the other model’s parameters, except popsize, are presented below.
Indeed, figure 5.6 presents the the trajectories of the model’s parameters for the local search
(same starting value) and global search (distribution of starting value). Contrary to the previous
trajectory plots, it can be observed that the trajectory plot of the global search contains some
ouliers whereas no outliers are observed in the local search. This could be due to the fact that
to obtain this graph all parameters are under optimization whereas in previous search only β, γ
and θ were optimized.

Figure 5.8 shows the vioplot plots of the distributions of θ, ρ, µ. A vioplot is a convenient
way to present a distribution. It is a boxplot with a kernel density estimate. The white dot is the
median, the borders of the black box is the first and the third quartiles and the black line is 1.5
Inter Quartile Range (IQR)). The blue curve is a kernel density estimate. Figure 5.8 presents
the distribution of the model’s parameters at the last MIF step of the local and global search
presented in figure 5.6. As one can see, on the vioplots the outliers are visible in the distribution
of the parameters in the global search. An open question is which estimator has to be used to
best estimate the MLE. Indeed, the mean, median and mode of the distribution are quite differ-
ent. Based on this estimation of the distributions of the model’s parameters, table 5.1 shows the

52

mean, median and mode estimates and the relative errors to the true values. The relative error is
defined as the difference between the true value and the estimate normalized by the true value.
It can be observed, that the mode seems to best estimate the MLE for the model’s parameters.

The fact that MIF procedure give us access to the distribution of the parameter is very in-
teresting. Indeed, model’s predictions can be computed in sampling the distribution of the
parameters and in simulating realizations of the model. Using a large number of realizations
and quantile regression it is possible to estimate a confidence region for the model’s prediction.
It is very interesting because, this estimation do not assume any gaussianity of the parameter’s
distribution. Assessment of uncertainty of epidemic model is a challenge because most of the
time prediction are based on point estimation of the model’s parameters and not the distribution.

49
50

51
52

53
54

55
56

theta

(a)

0.
75

0.
80

0.
85

0.
90

rho

(a)

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

mu

(a)

0
10

20
30

40
50

theta

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rho

(b)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

mu

(b)

Figure 5.8: Vioplots of the model’s parameters (mu,rho,theta) for a simulation study for local
(a) and global (b) searching procedure

53

Table 5.1: True value and estimates of the model’s parameters
Parameter True Value Mean RR [%] Median RR [%] Mode RR [%]

Local search estimates
µ 0.00015 1.66e-04 -10 4.48e-04 -198 7.44e-05 50
ρ 0.5 8.17e-01 -63 8.46e-01 -69 8.04e-01 -12
θ 50 5.20e+01 -04 5.24e+01 -05 5.16e+01 -03

Global search estimates
µ 0.00015 2.31e-03 -1440 5.42e-02 -36033 2.79e-04 -86
ρ 0.5 7.90e-01 -58 4.84e-01 3 7.87e-01 -57
θ 50 5.02e+01 -0.4 2.81e+01 44 5.21e+01 -4

54

5.2 Simulation based inference investigations using pomp pack-
age with a single age strata SIR model without gamma
noise applied to rotavirus data

In this section and the next one, all computations have been done using 5’000 particles. The
simulated model used has a frequency 20 times higher than the frequency of the observed time
series. The magnitude of the random walk of the MIF algorithm is set to 0.02. Final, a geomet-
ric cooling schedule, fixed at 0.8, has been used.

In order to find the MLE of a single age strata SIR model without gamma noise applied
to rotavirus reported data a local search has been done. Figure 5.9 shows the pair plot of the
model’s parameters and the log likelihood for 300 MIF runs. The log likelihood distribution
have a long tail for high values with respect to all parameters, this is an indication that conver-
gence is not achieved. One can also see that γ and β are highly correlated which is a major
issue for the optimization process. This problem has already been encountered.

logLik

260 320 0 1 2 3 4 0.025 0.035

−
11

00
−

80
0

26
0

32
0

beta

gamma

30
0

40
0

0
1

2
3

4

mu

theta

70
90

11
0

−1100 −800

0.
02

5
0.

03
5

300 400 70 90 110

rho

Figure 5.9: Pair plots of the log likelihood with the model’s parameters

Figure 5.10 shows the model’s parameters trajectories for 300 MIF iterations (µ is presented
two times for rescaling purpose). As one can see the pattern of convergence depends heavily

55

on the parameter. For example, the parameters β, γ and ρ seem to be correlated. Thus conver-
gence is not achieved. Whereas θ seems to converge. Here, µ has a very broad distribution. A
possible explanation is that low values of µ gives a birth rate that only "shift" the bell curve of
the number of newly infected.

0 50 150 250

0
10

0
20

0
30

0

MIF iteration

be
ta

0 50 150 250

0
10

0
20

0
30

0
40

0

MIF iteration

ga
m

m
a

0 50 150 250

0
20

40
60

80
10

0
12

0
14

0

MIF iteration

th
et

a

0 50 150 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

MIF iteration

rh
o

0 50 150 250

0
1

2
3

4

MIF iteration

m
u

0 50 150 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

MIF iteration

m
u

(Z
oo

m
)

Figure 5.10: Trajectories of the model parameters

Based on those preliminary results and the simulation study, the idea is that convergence is
not achieved because there is a deal of information between β and γ. In contrast to the previous
section the MLE is unknown here. Then a blind search following the ridge between β and γ is
computationally intractable. There is a need for a good proposal sets of values to be tested.

As previously pointed out, in a single outbreak context there tends to be a deal of informa-
tion onR0 = β/γ, which determines the final size of the epidemic and the invasion speed. Thus
β and γ are hard to be estimated individually but R0 seems to be well estimated. Figure 5.11
shows R0 in function of the MIF iteration. As one can see the variations is pretty small, mean
value is 0.91.

In order to try to infer β and γ individually we will again use the profiles likelihood. An-
other possible solution is to use the information of several outbreaks. But due to time constrain
this solution is not possible. The idea is to fit the values of the mean of the parameter distri-

56

0 50 100 150 200 250 300

0.
88

0.
90

0.
92

0.
94

MIF iteration

R
0

Figure 5.11: R0 estimation

Table 5.2: Model’s parameters estimation in function of the number of MIF iteration
MIF iteration β γ θ ρ µ

100 204.71 222.50 87.77 0.043 0.087
150 226.15 248.83 87.06 0.039 0.136
200 249.49 278.16 87.35 0.035 0.174
250 273.44 309.38 85.86 0.032 0.229
300 299.11 343.73 85.57 0.029 0.295

bution for a given number of MIF iteration in order to find their relationship. To compute the
profile likelihood for sampled parameters values that fulfills the relationship and to keep the set
of parameters that leads to the maximal value of the log likelihood. The estimation of θ, ρ and
µ seem to be easier. The mean of the distribution of θ and ρ seem more or less independent of
the number of MIF run.

Based on the parameters estimations during the 300 MIF runs, table 5.2 shows the mean of
the model’s parameters for a selected number of MIF iterations.

A linear relation between β and γ has been assumed and fitted (Intercept = 32.2, slope =
0.78). Again the purpose is not to find the MLE using this technique but only some proposal
sets of model’s parameters values to be tested in order to compute more efficiently the profile
likelihood. Unfortunately, this method do not guarantee to find the global maximum of the log
likelihood.

Figure 5.12 shows the profile likelihood in function of β. The largest log likelihood is
achieved for the following set of parameters popsize = 80000000, β = 401.6667, γ = 498.8889, µ =
0.03, ρ = 0.0175, θ = 75.

Figure 5.13 presents the reported data used to fit the model with 1000 realizations of the
model using the MLE and 97.5% and 2.5% confidence bands computed with a quantile regres-

57

−357.5

−355.0

−352.5

−350.0

−347.5

395.0 397.5 400.0 402.5 405.0
beta

lo
gL

ik

Figure 5.12: Profile likelihood of a single age strata without gamma noise

sion. As one can see, the model’s predictions do not succeed to reproduce the stochasticity of
the data. Thus additional stochasticity has to be added. Next section investigates the adding of
gamma noise.

58

0 10 20 30 40 50

0
10

00
20

00
30

00
40

00
50

00

Weeks

N
um

be
r

of
 n

ew
ly

 in
fe

ct
ed

Data
Simulated data
97.5%
2.5%

Figure 5.13: Simulations predictions using MLE

59

5.3 Simulation based inference investigations using pomp pack-
age with a single age strata SIR model with gamma noise
applied to rotavirus reported data

This section investigates the adding of gamma noise to the model described in the previous
section. The idea is to use the MLE found previously and using the MIF algorithm to find how
much extra stochasticity is implied by the data. The gamma noise is a very sensible parameter
for the optimization then it is treated separately.

Based on the MLE previously found, a local search of sigma has been done. Figure 5.14
presents both the trajectory plot and the vioplot of σ for a local search. As one can see the
convergence seems to be achieved. It can be observed on the vioplot that the kernel density
estimate of the mean (5.81e-03), the median (5.97e-03) and the mode (5.73e-03) are not very
different.

0 20 40 60 80 100

0.
00

0
0.

00
4

0.
00

8

MIF iteration

si
gm

a

Trajectory plot

0.
00

50
0.

00
60

0.
00

70

sigma

Vioplot

Figure 5.14: MIF iterations of gamma noise parameter

By way of example, a comparison between full model’s prediction and the rotavirus data
is presented. Using the mean estimate for σ and the MLE computed in the previous section,
figure 5.15 the model’s predictions and the weekly reported data from 2001-2009. The model’s
parameters have been inferred using 2002 data only. The confidence bands have been computed
using a quantile regression (97.5% and 2.5 %) of 10’000 simulations of the full model. As one
can see the coverage of the weekly reported data by the simulated data is better with gamma
noise. However, the model’s prediction seem to fail to accurately find the peak of the epidemic
which is in March. The model’s peak prediction is the 7th week of the year (February) for the
upper confidence band and the 11th week (March) for the lower confidence band. Moreover,
the model’s prediction of the beginning of the epidemic is inaccurate, indeed confidence region
starts to early compared to the data. The end of the epidemic seems contrariwise better fitted.
The beginning and end of an epidemic can be defined as threshold number of case for example.
Then further computations and investigations are needed to improve the model’s predictions.

60

0
20

00
40

00
60

00
80

00

Seasonality of the rotavirus

W
ee

kl
y

re
po

rt
ed

 c
as

es

January March September

2001
2002
2003−2009
Model predictions (95%)

Figure 5.15: Model’s simulations using MLE

61

6
Conclusion

The Particle filter and maximum likelihood via iterated filtering algorithms have been presented.
Also applications of those algorithms to simulation based inference on SIR epidemic models.
Some mathematical derivations have been extended to highlight the challenges to make param-
eter inference for complex problems. The algorithmic implementations of the Particle filter and
Maximum Likelihood via iterated filtering have been described. Some of the computational
issues have been shown and discussed. The pomp package have been presented. The main
features of the package have been described.

As an example, a single age strata without seasonality without gamma noise have been im-
plemented and studied in a simulation study. It has been possible to accurately infer the MLE
of the model used. Nonetheless some issues have been reported and solved. Indeed, one en-
counters pronounced difficulties trying to uniquely identify β and γ only based on the number
of newly reported cases for a single outbreak. In such context, there tends to be a deal of infor-
mation on R0 = β/γ, which determines the final size of the epidemic and the invasion speed.
But relatively little information is available on β and γ individually. From a geometrical point
of view, there is a ridge in the parameter space with a sharp curvature in the R0 direction and
a smooth curvature in the complementary directions. The likelihood profiles have been used in
order to find the MLE. It turns out that this adequately solved the problem.

Very preliminary results, on rotavirus inference are presented. In order to applied this frame-
work to real data, a single age strata without seasonality without gamma noise have been fitted
to the rotavirus data from season 2002. It turns out that it is relatively easy to estimate R0 from
the rotavirus data. Unfortunately, the same problem as described in the simulation study arises.
Profiles likelihood have been used to compute the MLE of the model. It turns out that with-
out any previous knowledge of the MLE the required computational efforts are heavy. Then a
mixed method have been used. First, the MIF algorithm have been used to find the relation-
ship between β and γ. Then likelihood profiles have been computed at selected places to find
the MLE. Based on those investigations, a confidence region’s prediction have been computed,
showing an insufficient coverage of the rotavirus data. More stochasticity is required.

As gamma noise is a sensible parameter during the optimization procedure, it has been com-
puted separately. The model’s predictions using extra stochasticity fits better rotavirus data. But
more computations are required to draw strong conclusions. One limitation of this approach is

62

that very little information can be learn from the data about β and γ separately. Then a possible
solution is to use the information from several outbreaks. Due to time constraint, it has not been
investigated.

A useful feature of this framework is to better asses model parameters uncertainty and
model’s prediction uncertainty. Indeed, this method gives access to an estimation of the dis-
tribution of the model’s parameters. Unfortunately, due to lack of time, this feature was not
carried on in this study. The next steps is to fit a more complex model to the rotavirus data. A
multiple age strata that can manage seasonality is certainly a good candidate.

63

Bibliography

Daryl J Daley, Joe Gani, and Joseph Mark Gani. Epidemic modelling: an introduction, vol-
ume 15. Cambridge University Press, 2001.

John Graunt. Natural and Political Observations made upon the Bills of Mortality. Number 2
in 1. The Johns Hopkins Press, 1939.

Fred Brauer, Carlos Castillo-Chavez, and Carlos Castillo-Chavez. Mathematical models in
population biology and epidemiology, volume 1. Springer, 2001.

Felix Weidemann, Manuel Dehnert, Judith Koch, Ole Wichmann, and Michael Höhle. Mod-
elling the epidemiological impact of rotavirus vaccination in Germany – A Bayesian ap-
proach. Vaccine, 32(40):5250–5257, 2014a.

McKendrick AG Kermack WO. A contribution to the Mathematical Theory of Epidemics.
Proceedings of the Royal Society, A 115(772):700–721, August 1927.

Odo Diekmann, JAP Heesterbeek, and Johan AJ Metz. On the definition and the computa-
tion of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations. Journal of mathematical biology, 28(4):365–382, 1990.

Maurice S Bartlett. Measles periodicity and community size. Journal of the Royal Statistical
Society. Series A (General), pages 48–70, 1957.

Tom Britton and Federica Giardina. Introduction to statistical inference for infectious diseases.
arXiv preprint arXiv:1411.3138, 2014.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of
physical chemistry, 81(25):2340–2361, 1977.

Priscilla E Greenwood and Luis F Gordillo. Stochastic epidemic modeling. In Mathematical
and Statistical Estimation Approaches in Epidemiology, pages 31–52. Springer, 2009.

Thomas G Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov
processes. Journal of applied Probability, 7(1):49–58, 1970.

64

Penelope H Dennehy. Transmission of rotavirus and other enteric pathogens in the home. The
Pediatric infectious disease journal, 19(10):S103–S105, 2000.

Jacqueline E Tate, Anthony H Burton, Cynthia Boschi-Pinto, A Duncan Steele, Jazmin Duque,
and Umesh D Parashar. 2008 estimate of worldwide rotavirus-associated mortality in children
younger than 5 years before the introduction of universal rotavirus vaccination programmes: a
systematic review and meta-analysis. The Lancet Infectious Diseases, 12(2):136 – 141, 2012.
ISSN 1473-3099. doi: http://dx.doi.org/10.1016/S1473-3099(11)70253-5. URL http://
www.sciencedirect.com/science/article/pii/S1473309911702535.

David I Bernstein. Rotavirus overview. The Pediatric infectious disease journal, 28(3):S50–
S53, 2009.

Judith Koch and Miriam Wiese-Posselt. Epidemiology of rotavirus infections in children less
than 5 years of age: Germany, 2001–2008. The Pediatric infectious disease journal, 30(2):
112–117, 2011.

Felix Weidemann, Manuel Dehnert, Judith Koch, Ole Wichmann, and Michael Höhle. Bayesian
parameter inference for dynamic infectious disease modelling: rotavirus in Germany. Statis-
tics in medicine, 33(9):1580–1599, 2014b.

Bettina M Rosner, Klaus Stark, and Dirk Werber. Epidemiology of reported Yersinia enteroco-
litica infections in Germany, 2001-2008. BMC Public Health, 10(1):337, 2010.

Federal Bureau of Statistics. GENESIS Online Database, 2013.

William Atkinson, S Wolfe, and Jennifer Hamborsky. Epidemiology and prevention of vaccine-
preventable diseases. Public Health Foundation, 2011.

Virginia E Pitzer, Cécile Viboud, Ben A Lopman, Manish M Patel, Umesh D Parashar, and
Bryan T Grenfell. Influence of birth rates and transmission rates on the global seasonality of
rotavirus incidence. Journal of the Royal Society Interface, page rsif20110062, 2011.

National Immunisation Committee et al. Immunisation guidelines for Ireland. Royal College of
Physicians of Ireland, 1996.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential Monte Carlo
methods. Springer, 2001.

M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on par-
ticle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Processing, IEEE
Transactions on, 50(2):174–188, 2002.

Jeff A Bilmes et al. A gentle tutorial of the EM algorithm and its application to parameter
estimation for Gaussian mixture and hidden Markov models. International Computer Science
Institute, 4(510):126, 1998.

EL Ionides, C Bretó, and AA King. Inference for nonlinear dynamical systems. Proceedings of
the National Academy of Sciences, 103(49):18438–18443, 2006.

65

http://www.sciencedirect.com/science/article/pii/S1473309911702535
http://www.sciencedirect.com/science/article/pii/S1473309911702535

William J Anderson. Continuous-time Markov chains: an applications-oriented approach.
Springer Science and Business Media, 2012.

Erhan Çınlar. Poisson Random Measures. In Probability and Stochastics, pages 243–312.
Springer, 2011.

Carles Bretó, Daihai He, Edward L Ionides, and Aaron A King. Time series analysis via mech-
anistic models. The Annals of Applied Statistics, pages 319–348, 2009.

Xiaodong Cai and Zhouyi Xu. K-leap method for accelerating stochastic simulation of coupled
chemical reactions. The Journal of chemical physics, 126(7):074102–074102, 2007.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden Markov models. Springer
Science & Business Media, 2006.

Mark EJ Newman, Gerard T Barkema, and MEJ Newman. Monte Carlo methods in statistical
physics, volume 13. Clarendon Press Oxford, 1999.

Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

José L Sanz-González, Diego Andina, and Juan Seijas. Importance sampling and mean-square
error in neural detector training. Neural processing letters, 16(3):259–276, 2002.

John Geweke. Bayesian inference in econometric models using Monte Carlo integration.
Econometrica: Journal of the Econometric Society, pages 1317–1339, 1989.

Jun S Liu and Rong Chen. Sequential Monte Carlo methods for dynamic systems. Journal of
the American statistical association, 93(443):1032–1044, 1998.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing),
volume 140 (2), pages 107–113. IET, 1993.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2015. URL http://www.R-project.org/.

Aaron A King, Dao Nguyen, and Edward L Ionides. Statistical inference for Partially Observed
Markov Processes via the R Package pomp. Journal of Statistical Software, 2014.

Aaron A. King, Edward L. Ionides, Carles Martinez Bretó, Stephen P. Ellner, Matthew J. Ferrari,
Bruce E. Kendall, Michael Lavine, Dao Nguyen, Daniel C. Reuman, Helen Wearing, and
Simon N. Wood. pomp: Statistical Inference for Partially Observed Markov Processes,
2015a. URL http://kingaa.github.io/pomp. R package, version 1.1.1.1.

Aaron A. King, Dao Nguyen, and Edward L. Ionides. Statistical inference for partially observed
Markov processes via the R package pomp. Journal of Statistical Software, in press, 2015b.

Edward L. Ionides, Anindya Bhadra, Yves Atchadé, and Aaron King. Iterated filtering. Ann.
Statist., 39(3):1776–1802, 06 2011. doi: 10.1214/11-AOS886. URL http://dx.doi.
org/10.1214/11-AOS886.

66

http://www.R-project.org/
http://kingaa.github.io/pomp
http://dx.doi.org/10.1214/11-AOS886
http://dx.doi.org/10.1214/11-AOS886

Revolution Analytics and Steve Weston. foreach: Foreach looping construct for R, 2014a. URL
http://CRAN.R-project.org/package=foreach. R package version 1.4.2.

Revolution Analytics. doMC: Foreach parallel adaptor for the multicore package, 2014. URL
http://CRAN.R-project.org/package=doMC. R package version 1.3.3.

Revolution Analytics and Steve Weston. doParallel: Foreach parallel adaptor for the parallel
package, 2014b. URL http://CRAN.R-project.org/package=doParallel. R
package version 1.0.8.

Pierre L’ecuyer, Richard Simard, E Jack Chen, and W David Kelton. An object-oriented
random-number package with many long streams and substreams. Operations research, 50
(6):1073–1075, 2002.

Jun S Liu, Rong Chen, and Tanya Logvinenko. A theoretical framework for sequential im-
portance sampling with resampling. In Sequential Monte Carlo methods in practice, pages
225–246. Springer, 2001.

J Spall. Introduction to stochastic searchand optimization: Estimation, simulation and control.
Wiley, 34:54–58, 2003.

Mark H Holmes. Introduction to perturbation methods, volume 20. Springer Science & Busi-
ness Media, 2012.

67

http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=doMC
http://CRAN.R-project.org/package=doParallel

List of Figures

1.1 Schematic representation of an SIR model . 9
1.2 Deterministic SIR model . 10
1.3 Realizations of stochastic models for different population size 12
1.4 100 trajectories simulations of Stochastic models for different population sizes . 13

2.1 Unstratified weekly reported number of cases 15
2.2 Weekly reported number of cases stratified by age and region 16
2.3 Seasonality of the weekly reported number of cases 17

3.1 Schematic representation of an Hidden Markov Model (HMM) 19
3.2 Representation of the weekly number of reported cases, the weekly new number

of cases and a negative binomial noised signal of the new weekly number of
reported cases . 20

3.3 Stochasticity produced by Euler multinomial model 24
3.4 Schematic representation of the Sequential Importance Resampling (SIR) algo-

rithm (adapted from [Doucet et al., 2001]) . 32
3.5 Schematic representation of an the global algorithm for POMP inference 35

4.1 Schematic representation of an SIR model . 40
4.2 Solving dynamical SIR System using deterministic simulations 45
4.3 Euler Multinomial with Gamma noise applied to a single age strata with de-

mography . 46

5.1 One realization of the number of newly infected for (beta=5, gamma=5, theta=50,
rho=0.5, popsize=80,000,000, mu=0.00015) 48

5.2 Pair plots of the log likelihood with the parameters for a simulation study Sim-
ulation parameters (Np=10000; Nmif=100; Nlocal=31/40) 48

5.3 Trajectories of the model parameters (beta,gamma,theta) for a simulation study
for local (a) and global (b) searching procedure 49

5.4 R0 estimation for local (a) and global (b) search 50
5.5 Likelihood profiles for gamma and beta . 50

68

5.6 Trajectories of the model parameters (theta,rho,mu) for a simulation study for
local (a) and global (b) searching procedure 51

5.7 Likelihood Profiles . 52
5.8 Vioplots of the model’s parameters (mu,rho,theta) for a simulation study for

local (a) and global (b) searching procedure 53
5.9 Pair plots of the log likelihood with the model’s parameters 55
5.10 Trajectories of the model parameters . 56
5.11 R0 estimation . 57
5.12 Profile likelihood of a single age strata without gamma noise 58
5.13 Simulations predictions using MLE . 59
5.14 MIF iterations of gamma noise parameter . 60
5.15 Model’s simulations using MLE . 61

7.1 Least square estimation of the number of infected 82
7.2 Least square estimation of the number of infected 83
7.3 Simulations predictions for a complete model 86

69

List of Tables

1.1 Specification of a stochastic SIR model . 11

5.1 True value and estimates of the model’s parameters 54
5.2 Model’s parameters estimation in function of the number of MIF iteration . . . 57

7.1 Basic Reproduction Number for different country 74

70

7
Annexes

7.1 Chapter 1: Introduction
R code used to produce the plots of chapter 1 are presented below. A Gillespie algorithm for
simulating stochastic SIR models and the same code updated for parallel use. The parallel
code perform poorly for a single simulation. This is why two codes are presented. Indeed, in
Gillespie algorithm the total number of simulation is stochastic thus when aggregating those an
augmentation step as to be added in order that all the simulations have the same length in order
to be returned in a matrix object.

##
SIR simulations Gillespie
###
##
Author: Gilles Kratzer <gilles.kratzer@gmail.com>
Info:
#
History
-- 08/04/2015 File created
-- 21/08/2015 Functionalization/speedup code
##
#Paramers:
parms
- m: birth and death rate in the compartments
- b: force of infection
- v: (additional) death rate due to infection
- r: recovery rate
X0: initial state (S, I, R)
Time.window: (min, max)
processes: a 7x3 matrix
- "birth"
- "death.S"
- "death.I"
- "death.R"
- "infection"
- "death.infec"
- "recovery"
- c("dS","dI","dR")
#
Returns:
a matrix containing :
Time:time step of the evaluation of the compartments number
A number of column (size of start) that contain the number of individuals
in each compartments for each time step
###

##package

##seed
set.seed(01042015, kind = "L'Ecuyer-CMRG")

##Function

gillespie<-function(parms=c(m=1e-4,b=0.02,v=0.1,r=0.3) , X0=c(S=97, I=3, R=0), time.window=c(0,100), processes=processes, pb=FALSE){

initialize state and time variables and write them into output
X <- X0

71

time <- time.window[1]

define output dataframe
out <- data.frame(t=time,S=X0["S"], I=X0["I"], R=X0["R"],row.names=1)

process probabilities
probabilities <- function(X, parms){

a<-matrix(data = 0,nrow = 7,ncol = 1)
a[1] = parms["m"]*(X["S"]+X["I"]+X["R"])
a[2] = parms["m"]*X["S"]
a[3] = parms["m"]*X["I"]
a[4] = parms["m"]*X["R"]
a[5] = parms["b"]*X["S"]*X["I"]
a[6] = parms["v"]*X["I"]
a[7] = parms["r"]*X["I"]
return(a)

}

##Progress bar
if(pb==TRUE) pbPrint <- txtProgressBar(min = 0, max = time.window[2], style = 3)

while(time < time.window[2] & X["I"]>0){

calculate process probabilities for current state
a<-probabilities(parms = parms, X = X)

WHEN does the next process happen?
elapsed.time <- rexp(1, rate=sum(a))

update time
time<-time+elapsed.time

Which process happens % update states
which.trans <-sample(length(a),1,prob=a)
X<-X+processes[which.trans,]

write into output
out <- rbind(out,c(time,X))

update progress bar
if(pb==TRUE){setTxtProgressBar(pb = pbPrint, value = time)}

}
out
}

##
SIR simulations Gillespie updated for parallel use
###
##
Author: Gilles Kratzer <gilles.kratzer@gmail.com>
Info:
#
History
-- 08/04/2015 File created
-- 21/08/2015 Functionalization/speedup code
##
#Paramers:
parms
- m: birth and death rate in the compartments
- b: force of infection
- v: (additional) death rate due to infection
- r: recovery rate
X0: initial state (S, I, R)
Time.window: (min, max)
processes: a 7x3 matrix
- "birth"
- "death.S"
- "death.I"
- "death.R"
- "infection"
- "death.infec"
- "recovery"
- c("dS","dI","dR")
#
Returns:
a matrix containing :
Time: time step of the evaluation of the compartments number
A number of column (size of start) that contain the number of individuals
in each compartments for each time step
###

##package
library(foreach)
library(iterators)
library(doParallel)
library(snow)
library(plyr)
library(nws)

72

##seed
set.seed(01042015, kind = "L'Ecuyer-CMRG")

##Function
gillespieMultTraj<-function(parms=c(m=1e-4,b=0.02,v=0.1,r=0.3) , X0=c(S=97, I=3, R=0), time.window=c(0,100), processes=processes, NbTraj=100, NbCPU=2, ClockTime=FALSE, maxLine=1000){

Start the clock!
if(ClockTime==TRUE) ptm <- proc.time()

gillespie<-function(parms=c(m=1e-4,b=0.02,v=0.1,r=0.3) , X0=c(S=97, I=3, R=0), time.window=c(0,100),
processes=processes, maxLine=1000){

initialize state and time variables and write them into output
X <- X0

time <- time.window[1]

define output dataframe
out <- data.frame(t=time,S=X0["S"], I=X0["I"], R=X0["R"],row.names=1)

process probabilities
probabilities <- function(X, parms){

a<-matrix(data = 0,nrow = 7,ncol = 1)
a[1] = parms["m"]*(X["S"]+X["I"]+X["R"])
a[2] = parms["m"]*X["S"]
a[3] = parms["m"]*X["I"]
a[4] = parms["m"]*X["R"]
a[5] = parms["b"]*X["S"]*X["I"]
a[6] = parms["v"]*X["I"]
a[7] = parms["r"]*X["I"]
return(a)

}

while(time < time.window[2] & X["I"]>0){

calculate process probabilities for current state
a<-probabilities(parms = parms, X = X)

WHEN does the next process happen?
elapsed.time <- rexp(1, rate=sum(a))

update time
time<-time+elapsed.time

Which process happens % update states
which.trans <-sample(length(a),1,prob=a)
X<-X+processes[which.trans,]

write into output
out <- rbind(out,c(time,X))

}
l<-length(out[,1])
while(l < maxLine){
out <- rbind(out,c(NA, NA, NA, NA))
l=l+1

}
return(out)

}

#array of results

gillespie.mult.traj<-array(data = NA, dim = c(maxLine,4, NbTraj))

######################
#Parallel Computations
######################

#setup parallel backend to use CPU efficiently
#cl2<-makeCluster(detectCores(logical = FALSE), "localhost")
registerDoParallel(cl = detectCores(logical = FALSE), cores = detectCores(logical = FALSE))

gillespie.mult.traj<-foreach(icount(NbTraj), .packages="foreach", .combine = "cbind") %dopar% {
gillespie(parms, X0, time.window, processes, maxLine)

}

#close multicore
#stopCluster(cl2)

gillespie.mult.traj.array<-array(NA, dim = c(dim(gillespie.mult.traj)[1],4, NbTraj))
gillespie.mult.traj.array[,1,]<-data.matrix(gillespie.mult.traj[,c(TRUE,rep(FALSE,3))], rownames.force = NA)
gillespie.mult.traj.array[,2,]<-data.matrix(gillespie.mult.traj[,c(FALSE,TRUE,rep(FALSE,2))], rownames.force = NA)
gillespie.mult.traj.array[,3,]<-data.matrix(gillespie.mult.traj[,c(FALSE, FALSE,TRUE,FALSE)], rownames.force = NA)
gillespie.mult.traj.array[,4,]<-data.matrix(gillespie.mult.traj[,c(FALSE, FALSE,FALSE, TRUE)], rownames.force = NA)
Stop the clock!
if(ClockTime==TRUE){
ClockTime<-proc.time() - ptm
cat("user" , "system", "elapsed", "\n", ClockTime)

}
return(gillespie.mult.traj.array)
}

73

7.2 Chapter 2: Description of the epidemiological data
In the table below is reproduce the estimates of the basic reproduction number issued from
Pitzer et al. [2011].

Table 7.1: Basic Reproduction Number for different country
Country Estimated R0 (mean = 59.48) 95% CI
Australia 53.9 (52.2, 55.6)
Taiwan 23.3 (20.4, 26.2)
USA 45.3 (44.8, 45.8)
China 88.1 (83.4, 93.4)
Nepal 51.3 (43.2, 61.9)
Uzbekistan 46.7 (42.4, 51.5)
Hong Kong SAR 52.1 (48.7, 55.4)
Cambodia 68.5 (62.0, 76.1)
Fiji 46.2 (36.8, 58.6)
Lao PDR 34.3 (30.4, 38.8)
England and Wales 54.4 (54.0, 54.8)
Bangladesh 72.2 (68.4, 76.4)
Malawi 191 (137, 313)
Nigeria 37.0 (27.5, 51.9)
Philippines 27.9 (24.4, 31.6)

74

7.3 Chapter 3: Theoretical background
Intuitively, a filtration is all the historical information available at a certain time on a stochastic
process. More formally, let us assume a probability space (Ω,F ,P). A filtration is an increasing
sequence of σ-algebras on a measurable space (Ω,F). A filtration is a sequence of σ-algebras
{Ft}t≥0 with Ft ⊆ F for each t such that t1 ≤ t2 =⇒ Ft1 ⊆ Ft2 . Classically, a σ-algebra
defines the set of events that can be measured. A filtration represents the information available
up to and including each time t for a stochastic process. In other words, it becomes more and
more precise as the set of measurable events is staying the same or increasing. In our case,
filtration containing Poisson processes.

A random measure Çınlar [2011] is a measure-valued of the generalization of a random
variable. More formally, let (E, ε) be a measurable space and let (Ω,F ,P) be a probability
space. A random measure on (E, ε) is a transition kernel from (Ω,F) into (E, ε). A mapping
M : Ω x ε → R+ is called a random measure if ω → M(ω,A) is a random variable ∀ A ⊂ E
and if A → M(ω,A) is a measure on (E, ε)∀ω ∈ Ω. A Poisson random measure is defined
in using a measurable space (E, ε) and let ν be a measure on it. A random measure N on
(E, ε) is said to be Poisson with mean ν if ∀A ∈ ε, the random variable N(A) has a Poisson
distribution with mean ν(A) and wheneverA1, ..., An are in ε and disjoint, the random variables
N(A1), ..., N(An) are independent ∀n ≥ 2.

75

R code used to produce the plots of chapter 3 are presented below. The mechanistic model
based on Euler multinomial method with gamma noise described in Bretó et al. [2009] and the
same code updated for parallel use are presented. The parallel code perform poorly for a single
simulation. This is why two codes are presented.

###
SIR mechanistic model
##
Author: Gilles Kratzer <gilles.kratzer@gmail.com>
Info: Euler scheme for a numerical solution of the MC using gamma noise
Based on paper "Time series analysis via mechanistic models"
#
History:
-- 23/03/2015 file created
-- 01/04/2015 files modified for presentation
-- 08/04/2015 beginning of versioning
-- 16/04/2015 optimization based on MH comments
-- 17/04/2015 progress bar
###
#Paramers:
T - The system is simulated for the time period [0,T]
N - Number of
start - Start status of the compartments (X[t=0])
delta - scale of gamma noise
sigma - shape of the gamma noise
mu - flux in between compartments
pb - TRUE/FALSE progress bar display during computation
#
Returns:
a matrix containing :
Time: time step of the evaluation of the compartments number
A number of column (size of start) that contain the number of individuals
in each compartments for each time step
###

##package

##seed
set.seed(01042015, kind = "L'Ecuyer-CMRG")

euler<-function(T=100, N=10, start, delta=0.1 ,sigma=0.1, mu=0.1, pb=FALSE){

##constructing times
delta.time<-T/N
times<-matrix(data = seq(from = 0,by = delta.time,length.out = N), nrow = 1, ncol = N)

##Initialisation of compartments
nbCompartments<-length(start)

##initialization of the output
out<-matrix(nrow = length(times), ncol = nbCompartments+1)
out[1,]<-c(0,start)

##sigma to matrix
if(is.matrix(sigma)) sigma.mat<-sigma else sigma.mat<-matrix(data = sigma,nrow = nbCompartments, ncol = nbCompartments)

##Progress bar
if(pb==TRUE) pbPrint <- txtProgressBar(min = 0, max = length(times[1,]), style = 3)

##loop over time
for(i in seq_len(length(times[1,])-1)){

update progress bar
if(pb==TRUE){setTxtProgressBar(pbPrint, i)}

##Generating noise increments
gam<-apply(X = sigma.mat,MARGIN = c(1,2),FUN = function(x) rgamma(n = 1,scale =x^2 ,shape = delta/x^2))

##generate probabilities & increments
#initialization
proba<-matrix(nrow = nbCompartments, ncol = nbCompartments)
var.N<-matrix(nrow = nbCompartments, ncol = nbCompartments)

##Probabilities
proba<-(1-exp(-rowSums(mu * gam)))*(mu * gam)/(rowSums(mu * gam))

##Normalization
diag(proba) <- 1 - rowSums(proba)

##generate process increments
###hoehle: I guess this can't be vectorized s.t. rmultinom(n=nCompartments, size=X[i,], proba) (I don't think so buch check)
for(c in 1:nbCompartments){

var.N[c,]<-rmultinom(n=1, size = out[i,c+1], prob = proba[c,])
}

out[i+1,-1]<-colSums(var.N)
}
#Output: time and compartments number at each time (# of compartments +1)
out[,1] <- times
return(out)
#closing pb
close(pb)

76

}

###
SIR mechanistic model
##
Author: Gilles Kratzer <gilles.kratzer@gmail.com>
Info: Euler scheme for a numerical solution of the MC using gamma noise
Based on paper "Time series analysis via mechanistic models"
Multiple trajectories implemented in parallel
Optimized for 2 CPU
#
History:
-- 23/03/2015 file created
-- 01/04/2015 files modified for presentation
-- 08/04/2015 beginning of versioning
-- 16/04/2015 optimization based on MH comments
-- 17/04/2015 progress bar
-- 24/04/2015 multiple trajectories in parallel
###
#Paramers:
T - The system is simulated for the time period [0,T]
N - Number of
start - Start status of the compartments (X[t=0])
delta - scale of gamma noise
sigma - shape of the gamma noise
mu - flux in between compartments
pb - TRUE/FALSE progress bar display during computation
#
Returns:
a matrix containing :
Time: time step of the evaluation of the compartments number
A number of column (size of start) that contain the number of individuals
in each compartments for each time step
###

##package
library(foreach)
library(utils)
library(iterators)
library(doParallel)
library(snow)

##seed
set.seed(01042015, kind = "L'Ecuyer-CMRG")

EulerMultTraj<-function(T=100, N=10, start, delta=0.1 ,sigma=0.1, mu=0.1, NbTraj=100, NbCPU=2, ClockTime=FALSE)
{
Start the clock!
if(ClockTime==TRUE) ptm <- proc.time()

##Core function optimized for parallel computing
euler<-function(T=100, N=10, start, delta=0.1 ,sigma=0.1, mu=0.1){

##constructing times
delta.time<-T/N
times<-matrix(data = seq(from = 0,by = delta.time,length.out = N), nrow = 1, ncol = N)

##Initialisation of compartments
nbCompartments<-length(start)

##initialization of the output
out<-matrix(nrow = length(times), ncol = nbCompartments+1)
out[1,]<-c(0,start)

##sigma to matrix
if(is.matrix(sigma)) sigma.mat<-sigma else sigma.mat<-matrix(data = sigma,nrow = nbCompartments, ncol = nbCompartments)

##loop over time
for(i in seq_len(length(times[1,])-1)){

##Generating noise increments
gam<-apply(X = sigma.mat,MARGIN = c(1,2),FUN = function(x) rgamma(n = 1,scale =x^2 ,shape = delta/x^2))

##generate probabilities & increments
#initialization
proba<-matrix(nrow = nbCompartments, ncol = nbCompartments)
var.N<-matrix(nrow = nbCompartments, ncol = nbCompartments)

##Probabilities
proba<-(1-exp(-rowSums(mu * gam)))*(mu * gam)/(rowSums(mu * gam))

##Normalization
diag(proba) <- 1 - rowSums(proba)

##generate process increments
for(c in 1:nbCompartments){

var.N[c,]<-rmultinom(n=1, size = out[i,c+1], prob = proba[c,])
}
out[i+1,-1]<-colSums(var.N)

}
#Output: time and compartments number at each time (# of compartments +1)
out[,1] <- times
return(out)

77

}

#array of results
Euler.mult.traj<-array(dim = c(N,4, NbTraj))

######################
#Parallel Computation#
######################

#setup parallel backend to use CPU efficiently
registerDoParallel(cl = detectCores(logical = FALSE), cores = detectCores(logical = FALSE))

Euler.mult.traj<-foreach(i = icount(NbTraj), .packages="foreach", .combine = "cbind") %dopar% {
euler(T, N, start, delta,sigma, mu)

}

Euler.mult.traj.array<-array(dim = c(N,4, NbTraj))
Euler.mult.traj.array[,1,]<-Euler.mult.traj[,c(TRUE,rep(FALSE,3))]
Euler.mult.traj.array[,2,]<-Euler.mult.traj[,c(FALSE,TRUE,rep(FALSE,2))]
Euler.mult.traj.array[,3,]<-Euler.mult.traj[,c(FALSE, FALSE,TRUE,FALSE)]
Euler.mult.traj.array[,4,]<-Euler.mult.traj[,c(FALSE, FALSE,FALSE, TRUE)]
Stop the clock!
if(ClockTime==TRUE) ClockTime<-proc.time() - ptm

cat("user" , "system", "elapsed", "\n", ClockTime)
return(Euler.mult.traj.array)
}

7.3.1 Theorem of the Maximum Likelihood Estimation via Iterated Fil-
tering

Before introducing the theorem 7.3.1, let us recall some of the Landau notation Holmes [2012].
Big O notation written O is defined for two real functions f and g if and only if there is a
positive constant M such that for all sufficiently large values of x one can write | f(x) |≤ M |
g(x) |,∀x > x0 then one can write f(x) = O(g(x)) as x → ∞. In addition, Small o notation
is defined for two real functions f and g if and only if for all sufficiently large values of x one
can write | f(x) |≤ M | g(x) |,∀x > x0 and ∀M then one can write f(x) = o(g(x)) as
x→∞.

Theorem 7.3.1. Assuming that:

• The Hessian matrix is bounded i.e ∃B > 0 and σ0 > 0 such that, ∀σ < σ0 and all θt ∈
Rdθ, where dθ is the dimension of the parameter space | ∇2ft(θt, σ) |< B (7.1)

• IE[| θt − θ̂t−1 |2| y1:t−1] = O(σ2) (7.2)

• IE[| θt − θ̂t−1 |3| y1:t−1] = o(σ2) (7.3)

Then:

lim
σ→0

T∑
t=1

V −1t (θ̂t − θ̂t−1) = ∇ log f(y1:T | θ, σ = 0), (7.4)

where [∇f(x)]i = δf
δxi

and θ̂0 = θ. Furthermore, for a sequence σn → 0 define θ̂(n)

recursively defined by :

θ̂(n+1) = θ̂(n) + V1,n
T∑
t=1

V −1t,n (θ̂
(n)
t − θ̂

(n)
t−1) (7.5)

where θ̂(n)t = θ̂t(θ̂
(n), σn) and Vt,n = Vt(θ̂

(n), σn). If there exist a θ̂ with | θ̂(n)− θ̂ | /σ2
n → 0

then ∇ log f(y1:T | θ = θ̂, σ = 0) = 0

78

Some remarks and further computations are welcome in order to understand the meaning of
the Theorem 7.3.1. It asserts that for sufficiently small σ the algorithm 2 (MIF) will update the
parameter estimate such that the likelihood increases. Indeed equation (7.4) shows that, in the
limit σ → 0, this equation tends to zero. As the gradient of the log likelihood is equal to zero
only for the maximum likelihood. Thus equation (7.5) simplifies to θ̂(n+1) = θ̂(n). And then
give a stable estimation for θ̂.

θ̂(n+1) = θ̂(n) + V1,n
T∑
t=1

V −1t,n (θ̂
(n)
t − θ̂

(n)
t−1)

= θ̂(n) + (θ̂
(n)
1 − θ̂

(n)
0) +

V1,n
V2,n

(θ̂
(n)
2 − θ̂

(n)
1) + · · ·+ V1,n

VT,n
(θ̂

(n)
T − θ̂

(n)
T−1)

= θ̂
(n)
1

Ç
V1,n
V1,n
− V1,n
V2,n

å
+ θ̂

(n)
2

Ç
V1,n
V2,n
− V1,n
V3,n

å
+ · · ·+ θ̂

(n)
T

Ç
V1,n
VT−1,n

− V1,n
VT,n

å
= V1,n

{
T−1∑
t=1

(V −1t,n − V −1t+1,n)θ̂
(n)
t + V −1T,nθ̂

(n)
T

}
(7.6)

In equation (7.6), one uses the following equality θ̂(n)0 = θ̂(n). Following equation (7.6),
equation (7.7) shows that the estimate θ̂(n+1) can be viewed as a matrix weighted average of the
previous estimates depending on time θ̂(n)1:T .

V1,n

{
T−1∑
t=1

(V −1t,n − V −1t+1,n) + V −1T,n

}
=
V1,n
V1,n
− V1,n
V2,n

+
V1,n
V2,n
− V1,n
V3,n

+ · · ·+ V1,n
VT−1,n

− V1,n
VT,n

+
V1,n
V −1T,n

=
V1,n
V1,n

= 1dθ

(7.7)

Where 1dθ is the identity matrix of size dθ x dθ. Let us introduce the following notation:
ft(ψ) = f(yt | y1:t−1, θt = ψ).

Proof. Suppose inductively that | Vt |= O(σ2) and | θ̂t−1 − θ |= O(σ2). This holds for t = 1
by construction. Bayes’ formula gives :

f(θt | y1:t)
f(θt | y1:t−1)

=
f(θt, y1:t−1, yt)

f(θt, y1:t−1)

f(y1:t−1)

f(y1:t)

=
f(yt | θt, y1:t−1)f(θt, y1:t−1)f(y1:t−1)

f(θt, y1:t−1)f(y1:t)

=
ft(θt)

f(yt | yt−1)

=
ft(θt)∫

f(yt | y1 : t− 1, θt)f(θt | y1 : t− 1)dθt

=
ft(θ̂t−1) + (θt − θ̂t−1)∇ft(θ̂t−1) +Rt

ft(θ̂t−1) +O(σ2)

=

{
1 + (θt − θ̂t−1)∇ log ft(θ̂t−1) +

Rt

ft(θ̂t−1)

}
× (1 +O(σ2))

(7.8)

79

Where Rt is the rest of the Taylor expansion. Equations (7.1) and (7.3) imply | Rt |< B |
(θt−θ̂t−1)2

2
|. In equation (7.8) a Taylor expansion of ft(θ̂t) = f(yt | y1:t−1, θ̂t) is used. We

further compute :

(θ̂t − θ̂t−1) = IE[θt | y1:t]− θ̂t−1
= IE[θt − θ̂t−1 | y1:t]

=
∫

(θ̂t − θ̂t−1)f(θt | y1:t)dθt

=
∫

(θ̂t − θ̂t−1)
f(θt | y1:t)
f(θt | y1:t−1)

f(θt | y1:t−1)dθt

=
∫

(θ̂t − θ̂t−1)
{

1 + (θt − θ̂t−1)∇ log ft(θ̂t−1) +
Rt

ft(θ̂t−1)

}
x (1 +O(σ2))f(θt | y1:t−1)dθt

=
∫

(θ̂t − θ̂t−1)(1 +O(σ2))f(θt | y1:t−1)dθt

+
∫

(θ̂t − θ̂t−1)2∇ log ft(θ̂t−1)(1 +O(σ2))f(θt | y1:t−1)dθt

+
∫

(θ̂t − θ̂t−1)
Rt

ft(θ̂t−1)
(1 +O(σ2))f(θt | y1:t−1)dθt

= Vt∇ log ft(θ̂t−1) + o(σ2)

(7.9)

In equation (7.9) the following identity are used
∫

(θ̂t − θ̂t−1)f(θt | y1:t−1)dθt = 0 and∫
(θ̂t − θ̂t−1)2f(θt | y1:t−1)dθt = Vt and

∫
(θ̂t − θ̂t−1)3f(θt | y1:t−1)dθt = o(σ). Then one can

use the inductive argument on equation (7.9) to get the equation (7.10). More precisely, | Vt |
and | θ̂t−1 − θ | are O(σ2) thus :

(θ̂t − θ̂t−1) = Vt∇ log ft(θ̂t−1) + o(σ2) = Vt∇ log ft(θ, σ = 0) + o(σ2) (7.10)

A similar argument gives :

Vt+1 = Vt + σ2Σ + o(σ2)

Summing equation (7.10) over t gives:

T∑
t=1

Vt(θ̂t − θ̂t−1) =
T∑
t=1

∇ log ft(θ, σ = 0) + o(1)

And then taking the limit give the required result :

80

lim
σ→0

T∑
t=1

Vt(θ̂t − θ̂t−1) = lim
σ→0

T∑
t=1

∇ log ft(θ, σ = 0) + o(1)

=
T∑
t=1

∇ log ft(θ, σ = 0)

=
T∑
t=1

∇ log f(yt | y1:t−1, θt = θ, σ = 0)

= ∇ log
T∏
t=1

f(yt | y1:t−1, θt = θ, σ = 0)

= ∇ log f(y1:T | θ, σ = 0)

(7.11)

Equation (7.11) prove the first part of the theorem 7.3.1.
Second part of the theorem 7.3.1 is proved in using the requirement that |θ̂

(n)−θ̂|
σ2
n
→ 0 and

continuity argument.

81

7.4 Chapter 5: Results

7.4.1 Model fitting using least square

0 1 2 3 4 5

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

SSE in function of Beta
 for Gamma = 0.5

Beta

S
S

E

0 5 10 15 20 25 30 35

50
0

15
00

25
00

Time in weeks

N
um

be
r

of
 in

fe
ct

ed

Data
Fit

Figure 7.1: Least square estimation of the number of infected

This section is only for learning purpose. The idea is to fit a deterministic single age strata
SIR model (without any emission process nor death of birth rate) in order to exemplify the
process of parameter inference using a simpler method. This model depends only on two pa-
rameters β and γ (see model definition 4.1). Rotavirus data first peak will be fitted, thus from
January 2001 - September 2001, thus 37 weeks of data (see figure 2.3). Figure 7.1 presents the
SSE (Sum of least Square Estimate) in function β (the force of infection) and the fitting of the
data. As one can see the likelihood space is very sensitive to the parameter, even in the simple
case. Thus finding the parameter range is a non-trivial task. Fitting procedure give the MLE
at (β = 0.63; γ = 0.23) for initial values (S(0) = 10000, I(0) = 250, R(0) = 0). But the
likelihood space slice for γ = 0.5 change completely the estimate for β. As we will see, it will
be an issue in the next section.

Figure 7.2 shows the model produced by the fitting of the data. The idea to use a simple
deterministic SIR model to get a rough estimate of the MLE fail for several reason. Mainly, the
simple model is too simple, indeed at least an emission process have to be considered.

82

0 5 10 15 20 25 30 35

0
20

00
40

00
60

00
80

00

Simple SIR Model using deSolve

Time in weeks

In
di

vi
du

al
s

S
I
R

Figure 7.2: Least square estimation of the number of infected

7.4.2 Model implementations
The model implementation using pomp package is presented below. Two examples are pre-
sented: a single age strata SIR model and a single age strata SIR model including seasonality.

##Library
library(pomp)
library(foreach)
library(doMC)
library(parallel)
library(doParallel)

##Options
options(verbose=TRUE)
nbcores<-registerDoMC(detectCores())
nbcores<-registerDoParallel(detectCores())
mcopts <- list(preschedule=FALSE,set.seed=TRUE)

##Seed
set.seed(396658101,kind="L'Ecuyer")

##Data
load(file = "../../Data/data_child.Rdata")

##Model definition

rmeas <- "
cases = rnbinom_mu(theta, rho * H);
"
dmeas <- "
lik = dnbinom_mu(cases, theta, rho * H,give_log);
"

sir.step <- "
double rate[6];
double dN[6];
double P;
P=S+I+R;
rate[0] = mu * P;
rate[1] = beta * I/P;
rate[2] = mu;
rate[3] = gamma;
rate[4] = mu;
rate[5] = mu;
dN[0] = rpois(rate[0] * dt);
reulermultinom(2, S, &rate[1], dt, &dN[1]);

reulermultinom(2, I, &rate[3], dt, &dN[3]);
reulermultinom(1, R, &rate[5], dt, &dN[5]);

S += dN[0] - dN[1] - dN[2];
I += dN[1] - dN[3] - dN[4];
R += dN[3] - dN[5];
H += dN[1];
"

83

init <- "
S = popsize-1000;
I = 1000;
R = 0;
H = 0;
"

sir.skel <- '
double rate[6]; // transition rates
double P;

// compute the transition rates
P=S+I+R;
rate[0] = mu * P;
rate[1] = beta * I/P;
rate[2] = mu;
rate[3] = gamma;
rate[4] = mu;
rate[5] = mu;

// assemble the differential equations
DS = rate[0]-rate[1]*S-rate[2]*S;
DI = rate[1]*S-rate[3]*I-rate[4]*I;
DR = rate[3]*I-rate[5]*R;
'

fromEstimationScale <- "
Tgamma = exp(gamma);
Ttheta = exp(theta);
Tbeta = exp(beta);
Tmu = exp(mu);
Trho = expit(rho);
"

toEstimationScale <- "
Tgamma = log(gamma);
Tbeta = log(beta);
Ttheta = log(theta);
Tmu = log(mu);
Trho = logit(rho);
"

##Pomp constructor
sir1<-pomp(data = data.frame(cases = child[1:37], time = seq(0, 1, by=1/36)),

times = "time", t0 = -1/36,
dmeasure = Csnippet(dmeas),
rmeasure = Csnippet(rmeas),
rprocess = euler.sim(step.fun = Csnippet(sir.step), delta.t = 1/36/20),
skeleton=Csnippet(sir.skel),
skeleton.type='vectorfield',
statenames = c("S", "I", "R", "H"),
paramnames = c("gamma", "mu", "theta", "beta", "popsize",

"rho"), zeronames=c("H"),
fromEstimationScale = Csnippet(fromEstimationScale),
toEstimationScale = Csnippet(toEstimationScale),
initializer = Csnippet(init),
params = c(popsize = 1000000, beta = 25, gamma = 10,

mu = 0.01, rho = 0.15, theta = 1)
)

##Library
library(pomp)
library(foreach)
library(doMC)
library(parallel)
library(doParallel)
library(rje)

##Options
options(verbose=TRUE)
nbcores<-registerDoMC(detectCores())
nbcores<-registerDoParallel(detectCores())
mcopts <- list(preschedule=FALSE,set.seed=TRUE)

##Seed
set.seed(396658101,kind="L'Ecuyer")

##Data
load(file = "../../Data/data_child.Rdata")

Warning in readChar(con, 5L, useBytes = TRUE): cannot open compressed file ’../../Data/data_child.Rdata’, probable reason ’No
such file or directory’
Error in readChar(con, 5L, useBytes = TRUE): cannot open the connection

##Seasonality: splines

tbasis <- seq(1/52,9,by=1/52)
basis <- periodic.bspline.basis(tbasis,nbasis=3,degree=2,period=10, names="seas%d")

##Model definition

84

rmeas <- "
cases = rnbinom_mu(theta, rho * H);
"

dmeas <- "
lik = dnbinom_mu(cases, theta, rho * H, give_log);
"

sir.step <- "
double beta;
double rate[6];
double dN[6];
double P;
double dW; // white noise increment
int k;

P=S+I+R;

// seasonality in transmission
for (k = 0, beta = 0; k < nbasis; k++)
beta += (&beta1)[k]*(&seas1)[k];

// compute the stochasticity
dW = rgammawn(sigma,dt);

rate[0] = mu * P;
rate[1] = (beta*I)/P*(dW / dt);
rate[2] = mu;
rate[3] = (gamma*dW)/dt;
rate[4] = mu;
rate[5] = mu;
dN[0] = rpois(rate[0] * dt); // birth process are poisson

reulermultinom(2, S, &rate[1], dt, &dN[1]);

reulermultinom(2, I, &rate[3], dt, &dN[3]);

reulermultinom(1, R, &rate[5], dt, &dN[5]);

S += dN[0] - dN[1] - dN[2];
I += dN[1] - dN[3] - dN[4];
R += dN[3] - dN[5];
H += dN[1];
"

init <- "
S = (0.2*popsize)-1000;
I = 1000;
R = (0.8*popsize);
H = 0;
"

sir.skel <- '
double rate[6]; // transition rates
//double dW; // white noise increment
int k;
//double seas1;
double beta;
//double beta1;

for (k = 0, beta = 0.0; k < nbasis; k++)
beta += (&beta1)[k]*(&seas1)[k];

// compute the stochasticity
//dW = rgammawn(sigma,dt);

// compute the transition rates
rate[0] = mu*P;
rate[1] = beta*I/P*dW/dt;
rate[2] = mu;
rate[3] = gamma*dW/dt;
rate[4] = mu;
rate[5] = mu;

// assemble the differential equations
DS = rate[0]-rate[1]*S-rate[2]*S;
DI = rate[1]*S-rate[3]*I-rate[4]*I;
DR = rate[3]*I-rate[5]*R;
'

sir.seas<-pomp(
data = data.frame(cases = child, time = seq(1/52, 9, by=1/52)),
times = "time", t0 = 1/52,
dmeasure = Csnippet(dmeas),
rmeasure = Csnippet(rmeas),
rprocess = euler.sim(step.fun = Csnippet(sir.step), delta.t = 1/52/20),
covar=basis,
tcovar=tbasis,
#skeleton=Csnippet(sir.skel),
skeleton.type='vectorfield',
statenames = c("S", "I", "R", "H"),
globals="int nbasis = 3;\n",

85

paramnames = c("gamma", "mu", "theta", "beta1", "popsize",
"rho", "sigma"), zeronames=c("H"),

initializer = Csnippet(init),
params = c(beta=50, beta1=80, beta2=100,gamma=1,mu=1,popsize=1000000, theta=5, rho=0.5, sigma=0.01)

)

model codes written to '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_54aeacc8cdcc1b313fc6b171b835f3a0.c'compiling '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_54aeacc8cdcc1b313fc6b171b835f3a0.so'
link to shared-object library '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_54aeacc8cdcc1b313fc6b171b835f3a0.so'

7.4.3 Model predictions using quantile regression
Figure 7.3 shows 10’000 model’s simulations using the MLE and gamma noise. As one can the
coverage of the reported 2002 rotavirus data is better than without extra noise. The confidence
bands have been computed using quantile regression.

model codes written to '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_d1a30802097eac88e82d10b0c130428e.c'compiling '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_d1a30802097eac88e82d10b0c130428e.so'
link to shared-object library '/var/folders/jq/5t7wz8257z91prwp9tds_v080000gn/T//RtmpgZDLLk/pomp_d1a30802097eac88e82d10b0c130428e.so'

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00

Weeks

W
ee

kl
y

nu
m

be
r

of
 n

ew
ly

 in
fe

ct
ed

Data
Simulated data
97.5%
2.5%

Figure 7.3: Simulations predictions for a complete model

86

	Introduction
	Mathematical modelling of outbreaks
	Deterministic modelling
	Stochastic modelling
	Stochasticity vanishment

	Description of the epidemiological data
	Rotavirus

	Theoretical background
	Introduction to Inference algorithms for Partially Observed Markov Process : Problem statement
	Continuous Time Markov Chain
	Construction of the Euler Multinomial class model
	Monte Carlo method for POMP inference
	Naïve approach for POMP inference
	The Monte Carlo approximation
	Importance Sampling
	Sequential Importance Sampling
	Sequential Importance Resampling
	Regularized particle filter

	Parameter Inference for partially-observed nonlinear stochastic dynamical system
	Maximum likelihood via Iterated Filtering
	Algorithm of the Maximum Likelihood Estimation via Iterated Filtering

	The pomp package model implementation
	Model Implementation
	Model Definition for a single age strata SIR model
	Functionality of the pomp package
	Deterministic Model Implementation using deSolve and pomp R package comparison
	Stochastic Model Implementation using pomp R package
	Remarks about parameter inference using pomp package

	Results
	Simulation study
	Simulation based inference investigations using pomp package with a single age strata SIR model without gamma noise applied to rotavirus data
	Simulation based inference investigations using pomp package with a single age strata SIR model with gamma noise applied to rotavirus reported data

	Conclusion
	Annexes
	Chapter 1: Introduction
	Chapter 2: Description of the epidemiological data
	Chapter 3: Theoretical background
	Theorem of the Maximum Likelihood Estimation via Iterated Filtering

	Chapter 5: Results
	Model fitting using least square
	Model implementations
	Model predictions using quantile regression

