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Network meta-analysis with integrated nested

Laplace approximations

Burak Kursad Gunhan 1

Abstract

This thesis investigates how to perform inference with different approaches in meta-

analysis models as well as in regression-type meta-analysis models named meta-regression.

Chapter 1 contains an introduction to meta-analysis as well as different statistical models

and estimation techniques for meta-analysis. Also, a recent Bayesian inference method

named integrated nested Laplace approximations (INLA) is used for making estimations

in meta-analysis. Chapter 2 contains a motivation for a broader type of meta-analysis

called network meta-analysis (NMA). This chapter introduces two models, namely the

Lumley and the Lu-Ades models, for NMA and shows how INLA apply to those models.

Chapter 3 starts with the discussion of the distinction for different types of inconsistency

in the network, namely the cycle inconsistency and the design inconsistency. Then, the

design-by-interaction model using random inconsistency parameters, the Jackson model,

is introduced. This chapter continues with showing how INLA can be used as an infer-

ence method for the Jackson model. Also, Chapter 3 shows that the Lu-Ades models

depend on the treatment ordering while the Jackson model do not for an application.

All analysis was performed in the R programming language (R Core Team, 2015). Three

different applications were used to demonstrate the use of INLA and other methods. Ap-

pendix includes the R-code which are used to obtain the results in the main text and the

BUGS/JAGS-code to fit the consistency and the Jackson model with MCMC. Also, an R

function, meta.inla, which is developed to implement the models introduced in Chapter

1 with INLA is given.

Key words: Meta-analysis; integrated nested Laplace approximations; network meta-

analysis; design inconsistency, design-by-treatment interaction model

1burakgunhnan@gmail.com
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iv Abstract



Chapter 1

Meta-analysis

1.1 Introduction

...The work which deserves, but I am afraid does not always receive, the most

credit is that in which discovery and explanation go hand in hand, in which

not only are new facts presented, but their relation to old ones is pointed out

(Rayleigh, 1885).

So said the professor of physics at Cambridge University in his presidential address

to the 54th meeting of the British Association for the Advancement of Science held in

Montreal in 1884.

The importance of the process of review of evidences from different studies is widely

recognized. However, one of the most crucial issue is the characteristics of such review

or synthesis process. According to Hothorn and Everitt (2014) “the classical narrative

review” of different studies can be very misleading, because of the possible biased selection

of evidence and “the emphasis placed upon it by the reviewer to support his or her

personal opinion”. On the other hand, an alternative and systematic way of such synthesis

that has become famous in recent years is systematic review, defined in A Dictionary of

Epidemiology (Last et al., 2001) as follows:

The application of strategies that limit bias in the assembly, critical appraisal,

and synthesis of all relevant studies on a specific topic.

In this thesis, my purpose is merely concentrating on meta-analysis which is the quan-

titative part of a systematic review, although there exists qualitative components of a sys-

tematic review. In this chapter, I will describe first meta-analysis in general, then different

techniques within the statistics of meta-analysis and finally regression-type methods in

the meta-analysis context will be introduced.

1
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1.2 Meta-analysis: The analysis of analyses

Gene Glass coined the term meta-analysis in 1976 in a presidential address stressing the

need for better synthesis of research results (Chalmers et al., 2002), and it is defined in

the Cambridge Dictionary of Statistics in the Medical Sciences (Everitt, 2002) as follows:

A collection of techniques whereby the results of two or more independent

studies are statistically combined to yield an overall answer to a question of

interest. The rationale behind this approach is to provide a test with more

power than is provided by the separate studies themselves. The procedure

has become increasingly popular in the last decade or so, but is not without

critics, particularly because of the difficulties of knowing which studies should

be included and to which population final results actually apply.

Meta-analysis gives the systematic review an objectivity by the help of its quantitative

nature which embodies different statistical techniques. However, before using statistical

methods for combining the results of different studies, maybe the first and foremost ques-

tion which should be asked by any reviewer is that “Where do studies come from?”.

Moreover, as pointed out in the above definition, main criticisms of meta-analysis meth-

ods are still about this question of study selection.

Study selection should be regarded as one of the most fundamental aspect of a meta-

analysis. The selected studies should be “sufficiently homogeneous” regarding in and

exclusion criteria. However, the thesis is aimed to focus on the statistics of a meta-

analysis rather than study selection, see Garg et al. (2008), Petitti (2000) and Harvard

and Lau (1993) for discussions about concepts of selection criterion and the importance

of this aspect. Also it is worth noting The Cochrane Collaboration which is a specialized

initiative for the systematic review processes including the study selection (details of the

structured process of Cochrane systematic reviews are available through their website:

http://www.cochrane.org).

1.3 Statistics of meta-analysis

Before explaining the statistics of meta-analysis, I introduce an illustrative dataset which

will be used through all techniques as it is easier to show concepts and inference methods

with an example and give definitions of some terminology from the field of biomedical

research.

1.3.1 TB dataset

Bacille Calmette Guerin (BCG) is one of the most widely used vaccination against tu-

berculosis (TB) in the world. And the data reported by Coldlitz et al. (1994) consists of

http://www.cochrane.org
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13 clinical trials of BCG vaccine each investigating its efficacy in the prevention of TB.

The TB dataset which includes the number of subjects suffering from TB with BCG vac-

cination or without BCG vaccination is shown for each study in Table 1.1. Furthermore,

values of two other variables for each trial, namely, the geographic latitude of the place

where the trial was undertaken and the year of publication are given.

Table 1.1: TB dataset. The number of TB cases after vaccination with BCG

(TRTTB), the total number of people who received BCG (TRT), the number of

TB cases without vaccination (CONTB), the total number of people in the trial

without vaccination (CON) as well as the geographic latitude of the place where

the trial was undertaken (Latitude) and the year of publication (Year)

Trial TRTTB TRT CONTB CON Latitude Year

1 4 123 11 139 44 1948

2 6 306 29 303 55 1949

3 3 231 11 220 42 1960

4 62 13598 248 12867 52 1977

5 33 5069 47 5808 13 1973

6 180 1541 372 1451 44 1953

7 8 2545 10 629 19 1973

8 505 88391 499 88391 13 1980

9 29 7499 45 7277 27 1968

10 17 1716 65 1665 42 1961

11 186 50634 141 27338 18 1974

12 5 2498 3 2341 33 1969

13 27 16913 29 17854 33 1976

In the biomedical research framework, arm is used for a group of people who receive

the same treatment. Treatment arm is the arm which receives a certain treatment, while

control arm is the arm which receives the standard treatment or placebo. Therefore, in our

example the second and third columns in Table 1.1 belong to the treatment arm whereas

the fourth and fifth columns belong to the control arm. Furthermore, treatment effect

is simply a way of quantifying the size of difference between two groups, here between

treatment arm and control arm. There are different measures of treatment effect such as

odds ratio, log odds ratio, relative risk or difference in means.

When we consider the TB dataset, our main purpose in collecting the results from the

controlled trials of using BCG to prevent TB was to estimate the overall log odds ratio,

θ, which is, more precisely,
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θ = log

(
π1

1−π1
π0

1−π0

)
(1.1)

where π1 is the ratio of suffering from TB in the treatment arm and π0 is the ratio of

suffering from TB in the control arm. At this point, we will introduce first a simplistic

approach that is simple pooling, then two frequently used methods which are fixed effect

and random effects models to achieve this goal.

1.3.2 Simple pooling

Intuitively, as a first method for estimating the overall treatment effect, we can assume the

unknown disease risk for treatment arm and control arm do not vary across the different

studies, so we can simply pool the whole data and perform the analysis which is called

simple pooling (Bravata and Olkin, 2001). For the TB dataset, if we simply pool the

results, we obtain the results shown in Table 1.2.

Table 1.2: Contingency table of pooled version of the TB dataset. The number

of people suffering from TB for each arm (TB) and the number of people do not

have TB for each arm (non-TB).

TB non-TB

TRT 1065 189999

CON 1510 164773

Then, we can obtain the Maximum likelihood estimate (MLE) θ̂SP = log[(1065 ·
164773)/(189999 · 1510)] = −0.49 of the log odds ratio and standard error as se(θ̂SP ) =√

(1/1065) + (1/164773) + (1/189999) + (1/1510) = 0.04. Therefore 95 % Wald confi-

dence interval for θ̂SP has limits −0.57 to −0.41. The estimated log odds ratio with 95

% Wald confidence interval can be seen in Figure 1.1.

On the other hand, this procedure is unrealistic and can yield poor results, since

it ignores the characteristics of different studies being pooled and hence the analysis is

performed as if the data were derived from a single sample. That’s why in our following

technique, data from different trials are weighted first, then combined, thereby avoiding

some of the problems of simple pooling.

1.3.3 Fixed effect model

Instead of the above simplistic procedure, in a fixed effect model (Whitehead and White-

head, 1991), we compute study-specific treatment effects, θ̂i, but assume that the under-

lying true treatment effect, θ, does not vary across studies. The model has the form as

follows:
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Figure 1.1: 95 % Wald confidence intervals for the trial-specific log odds ratios

θ̂i. The area of the boxes represent the weights given to the trial in the fixed effect

model. The diamond figure at the top represent overall log odds ratio calculated

by simple pooling θ̂SP and below represent treatment effect estimate by the fixed

effect model θ̂FE with their corresponding 95 % Wald confidence intervals. Also

shown is a 95 % Wald confidence interval for the mean treatment effect ν that

is estimated by method of moment approach (“Random effects model”).

θ̂i ∼ N (θ, σ2
i ) (1.2)

where σ2
i is the within-study variance.

For the estimation procedure, one common way is that the model uses as weighted

average of the study-specific treatment effects and the weights being inversely propor-

tional to the within-study variances. This method is called the inverse variance-weighted

approach. Precisely,

θ̂IV W =

∑k
i=1 ωiθ̂i∑k
i=1 ωi

(1.3)

where k is the number of the studies being analysed, θ̂i is the treatment effect estimated

in the ith study and ωi = 1/σ2
i . Also, estimated variance of θ̂IV W is given by
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Var(θ̂IV W ) =
1∑k
i=1 ωi

(1.4)

In order to analyze the TB dataset, firstly we compute the study-specific log odds ratio

estimates, θ̂i’s, with corresponding 95% Wald confidence intervals by the same method-

ology which we used in the simple pooling. Then by following the above estimation

procedure, we get an overall log odds ratio θ̂FE = −0.44 and with 95% Wald confidence

interval from −0.52 to −0.35, so very similar results as in the simple pooling. Figure 1.1

demonstrates all estimated log odds ratios with corresponding 95% Wald confidence in-

tervals.

By using such a model, it is important to realize that we are ignoring possible hetero-

geneity between studies (or between-study variation) since the fixed effect model has the

assumption of common true treatment effect. However, especially when we consider stud-

ies from biomedical and social sciences, the assumption of homogeneity between studies

can rarely be hold. This is because these studies are likely to have numerous differences,

including populations that are addressed, exposures or interventions under investigation

are examined (Higgins et al., 2009). Hence between-study variation, in many cases, can

be seen as a crucial source of uncertainty that should not be ignored. In the following

section, different methods will be discussed for addressing this aspect.

1.3.4 Random effects model

In order to allow for heterogeneity between studies, unlike the assumption of a common

true treatment effect in the fixed effect model, a random effects model assumes the treat-

ment effect parameter, θi, follows a certain distribution which is assumed to be a normal

distribution with mean ν and variance τ 2 (Sutton and Abrams, 2001). The random effects

model has the form as follows:

θ̂i|θi ∼ N (θi, σ
2
i )

θi ∼ N (ν, τ 2) (1.5)

Because of the definition of the model formula, there are two parameters to estimate,

namely the mean treatment effect ν and the heterogeneity variance τ 2, unlike the fixed

effect model. Although ν may be parameter of primary interest, estimation of τ 2 is just

as important, since this variance explicitly describes the extent of the heterogeneity. One

important feature of this model must be emphasized that if τ 2 = 0, then the model is

exactly same as the fixed effect model. Therefore, the fixed effect model is contained in

the random effects model as a special case.

Essentially, inference methods for random effects model can be divided into two cate-

gories: classical and Bayesian. In this section we will first discuss the method of moment
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and likelihood approaches in classical inference, then describe empirical Bayes and fully

Bayes approaches in Bayesian inference. Moreover, in fully Bayes approach we will show

Markov Chain Monte Carlo and integrated nested Laplace approximations methods. We

will show the results of the implemented techniques to the TB dataset in Table 1.3 at the

end of the section. Also we refer to Higgins et al. (2009) for descriptions and comparisons

about inference methods of random effects models.

Classical inference

• Method of moment approach

One classical approach to random effects meta-analysis is that the estimate of ν is

the same as given in equation (1.3) but in this case the weights are given by ωi =

1/(σ2
i + τ̂ 2) (Whitehead and Whitehead, 1991). An estimator for the heterogeneity

variance τ 2 is given by using a moment-based approach (i.e. the method of moment

estimator for τ 2 is used) as follows (DerSimonian and Laird, 1986):

τ̂ 2 =

{
0 if Q ≤ k-1

(Q−(k−1))∑
σ−2
i −

∑
σ−4
i /

∑
σ−2
i

if Q > k-1
(1.6)

where Q =
∑k

i=1(θ̂i − θ̂)2σ
−2
i and θ̂ =

∑
θ̂iσ

−2
i∑

σ−2
i

.

This methodology is implemented in the R package metafor (Viechtbauer, 2010)

and we rely on this package for estimation. Specifically by applying the rma.uni

function by using the argument of method = "DL", moment-based approach can

be implemented. The corresponding R-code can be seen in Appendix A.1.1. As

a result, we get log odds ratio of −0.75 with a 95% confidence interval of (−1.12,

−0.37) and estimated heterogeneity variance τ 2 of 0.37. Note that ν̂MOM = −0.75

in this model is smaller than under a fixed effect model (θ̂IV W = −0.44) and also

corresponding confidence interval is substantially wider than the one for the fixed

effect model. A comparison between the estimated ν and overall log odds ratios

estimated under the fixed effect model can be seen in Figure 1.1.

• Likelihood approach

A likelihood approach for random effects meta-analysis is possible by using a linear

mixed model. This technique is suggested and used by Lumley (2002) in a more

complicated context, however when we adapt it to our case, we obtain a linear mixed

model formulation which reflects a hierarchical structure as follows:

θ̂i|θi ∼ N (θi, σ
2
i )

θi ∼ N (ν + γi, σ
2
i ) (1.7)
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This model allows for an additional source of uncertainty by introducing variation

through random effects γi. Trial specific heterogeneity captured by the random ef-

fects γi ∼ N (0, τ 2). Here, the heterogeneity variance τ 2 is a measure for the degree

of heterogeneity or between-study variation. A crucial component of every random

effects model is the assessment of heterogeneity. With this likelihood approach, a

large heterogeneity variance τ 2 indicates that there is a between-trial variability ex-

ceeding the expected sampling variability for the mean treatment effect ν. Moreover,

the weights are given by ωi = 1/σ2
i .

In general, linear mixed models can be estimated by Maximum Likelihood (ML).

However, ML tends to underestimate the variance components. A modified version

of ML, known as restricted maximum likelihood (REML) is therefore often recom-

mended, since it provides consistent estimates for the variance components (for

details see Diggle et al., 2002). ML or REML is possible for the model we described

by applying function the lme function from nlme R-package (Pinheiro et al., 2015).

For the TB dataset, we implement this method with REML in R and the corre-

sponding R-code can be seen in Appendix A.1.2. We obtain estimates for the mean

treatment effect −0.75 with a 95% confidence interval of (−1.11, −0.38) and esti-

mated heterogeneity variance of 0.03.

Bayesian inference

The popularity of Bayesian methods has constantly increased in recent years in

different research areas including meta-analysis, mainly as a result of advances in

computational methods.

Bayesian techniques consider the model parameter θ, as random variable with appro-

priate prior distribution and the data as fixed, as opposed to frequentist techniques

where the situation is just the other way around. The posterior distribution summa-

rizes the information about θ after observing the data X = x. The density function

of the posterior distribution, f(θ|x), is obtained as follows:

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

(1.8)

where f(x|θ) is the likelihood function, f(θ) is the density function of the prior

distribution and the denominator is known as the marginal likelihood (Held and

Sabanés Bové, 2014c).

Since the marginal likelihood usually does not depend on θ, the following formula

can be used for the computation of f(θ|x):
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f(θ|x) ∝ f(x|θ)f(θ) (1.9)

Statistical inference about θ is based solely on the posterior distribution. Suitable

point estimates are location parameters, such as the mean, median or mode, of

the posterior distribution. Bayesian interval estimates such as credible intervals

and highest posterior density intervals (HPD) are also derived from the posterior

distribution. Now, we will proceed with two Bayesian methodology namely empirical

Bayes and fully-Bayes.

• Empirical Bayes

Empirical Bayes (EP) methods can be considered as a combination of the Bayesian

approach with likelihood techniques. The main distinction of this method is that the

EP approach estimate parameters of the prior distribution from data, rather than

fixing them based on prior knowledge (Held and Sabanés Bové, 2014b; Davison,

2003).

When we consider the random effects model, equation (1.5), from empirical Bayes

perspective, the corresponding likelihood function and the prior distribution are:

f(θ̂i|θi) ∝ exp

{
− 1

2σ2
i

(θ̂i − θi)2
}

and f(θi) ∝ exp

{
− 1

2τ 2
(θi − ν)2

}
(1.10)

As a result, by using formula 1.9, we can derive, analytically, the posterior distri-

bution of each treatment effect θi as follows:

f(θi|θ̂i) ∝ f(θ̂i|θi)f(θi)

∝ exp[−1

2
{ 1

σ2
i

(θ̂i − θi)2 +
1

τ 2
(θi − ν)}2]

∝ exp[−1

2
(

1

σ2
i

+
1

τ 2
){θi − (

1

σ2
i

+
1

τ 2
)−1(

θ̂i
σ2
i

+
ν

τ 2
)}2] (1.11)

Therefore, the posterior distribution is also normally distributed and can be written

as follows:

θi|θ̂i ∼ N (ν̃i, σ̃
2
i ) (1.12)

where σ̃2
i = 1/(1/σ2

i + 1/τ 2) and ν̃i = σ̃2
i (θ̂i/σ

2
i + ν/τ 2). However, the application of

this formula requires the knowledge of ν and τ 2.
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In our random effects model framework, for estimating ν and τ 2, we will use an em-

pirical Bayes method which is achieved by numerical maximization of the marginal

likelihood. Initially, for fixed τ 2 the estimate ν̂ML(τ 2) of the underlying treatment

effect is exactly same as the estimate for ν in the method of moment approach of

the random effects model (i.e. the weights are given by ωi = 1/(σ2
i + τ̂ 2)). Then,

the empirical Bayes estimate for heterogeneity variance, τ̂ 2ML, can be estimated by

numerically maximizing the profile log-likelihood:

`p(τ
2) = −1

2

k∑
i=1

[log(σ2
i + τ 2) +

{θ̂i − ν̂ML(τ 2)2}
σ2
i + τ 2

] (1.13)

Empirical Bayes estimates of the individual treatment effects θi are finally obtained

by plugging the MLEs ν̂ML and τ̂ 2ML into equation (1.12) in place of the fixed values

ν and τ 2.

For the TB dataset, we implement this estimation procedure in R and the corre-

sponding R-code can be seen in Appendix A.1.3. We obtain estimates for the mean

treatment effect −0.74 with a 95% confidence interval of (−1.13, −0.37) and es-

timated heterogeneity variance of 0.3, so very similar results as in the method of

moment approach. Figure 1.2 displays 95 % empirical Bayes interval estimates for

the individual treatment effects and a 95 % confidence interval based on the profile

likelihood of the mean treatment effect ν.

• Fully-Bayes

Fully-Bayes approach, in contrast to the empirical Bayes, assigns a prior distri-

bution to the mean treatment effect ν and the heterogeneity standard deviation

τ . For a meta-analysis framework, in most cases, the statistical inferences will be

based on the marginal posterior densities for ν and τ 2. However, usually those

densities do not have closed forms. One way of obtaining those marginal poste-

rior densities is analytically by integrating the joint posterior density over all the

other (“nuisance”) remaining parameters. But, in many cases especially relatively

complicated situations, these integrations can not be achieved analytically. As a

result, simulation-based methods and/or numerical or asymptotic approximation

procedures are commonly used as estimation techniques in meta-analysis. Before

the discussion about the estimation methods, we will give model formulations first.

Although, in most cases, fully Bayesian approaches to meta-analysis is used for im-

plementation of random effects models, fixed effect models are also possible, since as

we mentioned before, fixed effect models are special cases of random effects models.

A fully-Bayesian approach to the fixed effect model have implemented a hierarchical

model that mirrors this approach as follows (Sutton and Abrams, 2001):
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Figure 1.2: 95 % credible intervals for the individual treatment effects θi in an

empirical Bayes random effects model. Also shown is a 95 % profile likelihood

confidence interval for the mean treatment effect ν that is estimated by the

empirical Bayes approach (“Random effects model”).

θ̂i ∼ N (θ, σ2
i )

θ ∼ f(θ) (1.14)

where f(θ) indicates a prior distribution to be specified. The weights are given by

ωi = 1/σ2
i .

Also, a fully-Bayesian random effects model can be formulated as follows (Sutton

and Abrams, 2001):

θ̂i|θi ∼ N (θi, σ
2
i )

θi ∼ N (ν + γi, σ
2
i )

γi ∼ N (0, τ 2)

ν ∼ f(ν) and τ ∼ f(τ) (1.15)

where f(ν) and f(τ) indicates prior distributions to be specified. It should be

noted that trial specific heterogeneity captured by the random effects γi ∼ N (0, τ 2).
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Also, the weights are given by ωi = 1/σ2
i rather than ωi = 1/(σ2

i + τ̂ 2) as in the

empirical Bayes or the method of moment approaches. A very crucial advantage of

the Bayesian approach is that it provides posterior distributions of both the mean

treatment effect ν and the heterogeneity variance τ 2 besides estimation for individual

treatment effects θi. Now, we proceed with two estimation methods, namely MCMC

and INLA, which can be applied to the fixed effect and random effects models.

MCMC

In recent years, the simulation-based methods for generating values from posterior

distributions, in particular the group of methods broadly classified as Markov Chain

Monte Carlo (MCMC) methods is used quite common as a Bayesian inference tech-

nique. It can be said that especially one technique, Gibbs sampling, within MCMC

class has become a standard choice for modern meta-analysis models. This is be-

cause, simulating from typically high dimensional joint posterior densities is often

difficult but the posterior conditional distributions are often much easier to sample

from. However, our intention is not to give more details about MCMC methods,

instead we continue to one last technique, INLA, see Sutton and Abrams (2001)

and Higgins et al. (2009) for explanations and examples of MCMC methods in the

meta-analysis framework.

INLA

The integrated nested Laplace approximations (INLA) was very recently proposed

by Rue et al. (2009) which has become a valid alternative to MCMC. INLA is an

approximate Bayesian inference method, so it is a deterministic algorithm rather

than simulation-based such as MCMC. The main advantage of INLA is that it

provides accurate results in shorter computing time. Furthermore, there is no need

to examine convergence of samples as in MCMC. The INLA R package, hereafter

referred as r-inla, provides an interface for R programming language to INLA (a

free-standing programme) so that models can be fitted using standard R commands.

The r-inla package is available on INLA website (http://www.r-inla.org/).

In Sauter and Held (2015), it was shown that INLA approach is suitable for an

estimation method of meta-analysis models both for fixed effect and random effects

models. INLA approach by using r-inla is our main focus in the thesis, from now

on, mostly, we will use this Bayesian method for estimation.

A crucial component of any Bayesian inference is the prior specification. When

there is no extra information about the parameters besides the available data, the

prior distributions can be specified by the “just proper uninformative” distributions

(Spiegelhalter et al., 2004). By taking from Sauter and Held (2015), we prefer to set

the prior distributions for treatment effect to θ ∼ N (0, 1000) (or mean treatment

effect to ν ∼ N (0, 1000)) and heterogeneity standard deviation to τ ∼ U(0, 10) .

http://www.r-inla.org/


1.3. STATISTICS OF META-ANALYSIS 13

For the thesis, mainly adapting from Sauter and Held (2015), we wrote an R function,

meta.inla, in order to fit different meta-analysis models described in this chapter.

The meta.inla function is actually a wrapper for inla function from r-inla pack-

age. In order to use this function, dataset should be brought to a suitable format

which can be achieved by creatINLAdat.dir function. Both functions are provided

in Appendix A.1.4.

For the TB dataset, after the data preparation procedure, the fixed effect model

can be implemented in R by specifying the argument mod = "FE" within meta.inla

command as follows:

> TB.datINLA <- creatINLAdat.dir(ntrt = TB$TRT, nctrl = TB$CON,

+ ptrt = TB$TRTTB, pctrl = TB$CONTB)

> library(INLA)

> inla.fe.tb <- meta.inla(TB.datINLA, meanf = 0, varf = 1000, mod = "FE")

> print(inla.fe.tb)

Call: meta.inla(datINLA = TB.datINLA, meanf = 0, varf = 1000, mod = "FE")

Meta analysis using INLA

Posterior mean of treatment effect = -0.44 95% CrI ( -0.52, -0.35 )

For random effects model, to have a uniform prior for heterogeneity standard devi-

ation, we used a user-specified prior since the uniform prior is not defined under the

r-inla. This is achieved in r-inla, by handing over a table with the prior density

evaluated at an appropriate grid. For the details, see Section 1.1 of Supplemen-

tary Material of Sauter and Held (2015). Then, by applying meta.inla function

with the argument mod = "RE", the random effects model can be implemented. We

obtain posterior mean ν of −0.75 (posterior median is −0.75) and posterior mean

for τ 2 of 0.48 (posterior median is 0.41). The corresponding R-code can be seen in

Appendix A.1.5.

As a summary of all estimation approaches which we introduced and implemented

until here, Table 1.3 demonstrates estimates for ν (or θ) and τ 2 with their corre-

sponding interval estimates (if they are available) for each approach. Before giving

discussions about regression approaches within meta-analysis context, we describe a

different type of modelling approach (trial-arm level data) which is crucial especially

for meta-analysis models that will be introduced in the following chapters.

1.3.5 Trial-arm level data

It can be said that all these methods we presented, suffer some theoretical disad-

vantages. Firstly, the assumption of normally distributed log-odds ratios may be

inadequate for some situations, for example when result of some studies based on

small numbers of events. Especially, if there is a zero count in the contingency table

of a trial, then the corresponding odds ratio is not finite. Also none of the meth-
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Table 1.3: Results of meta-analysis of TB dataset using a classical fixed effect

(inverse-variance weighted), a Bayesian (INLA) fixed effect, a classical random

effects by method of moments approach (MOM), a classical random effects in

the likelihood approach by REML (REML), an empirical Bayes method (EB)

and a Bayesian (INLA) random effects model.

Fixed effect Random effects

Classical INLA MOM REML EB INLA

Treatment effect (ν)

Overall/posterior mean -0.4361 -0.4368 -0.7474 -0.7486 -0.7420 -0.7475

Lower b.(95%CI/CrI) -0.5190 -0.5198 -1.1242 -1.1136 -1.1318 -1.1633

Upper b.(95%CI/CrI) -0.3533 -0.3537 -0.3706 -0.3836 -0.3728 -0.3429

Heterogeneity variance (τ 2)

Estimated/posterior mean 0.3663 0.0301 0.3025 0.4832

Lower b.(95%CI/CrI) 0.1449

Upper b.(95%CI/CrI) 1.2564

ods takes into account of the fact that σ2
i are estimated from the data rather than

known (Thompson and Sharp, 1999). These problems are overcome by specifying

a logistic regression model with a fully-Bayesian approach which does not require

the assumption of normality for the individual treatment effects. With this model,

trial-arm level summaries are the natural inputs to different inference methods, i.e.

they are the data (Dias et al., 2010). This is different than what we were using in

our previous models which are called summary level data.

Now, we describe models which use the binomial structure of the data directly. The

number of events yi1 and number of patients ni1 is observed in the control arm

for each trial i = 1, 2, . . . , k. And correspondingly yi2 and ni2 in the treatment

arm. The number of events in each arm in each trial can be specified as distributed

binomially, i.e. yi1 ∼ Bin(πi1, ni1) and yi2 ∼ Bin(πi2, ni2). The log-odds ratio ν can

now be modeled as with logistic regression as:

logit(πi1) = ai

logit(πi2) = ai + ν + γi (1.16)

where the treatment effect ai of control arm in trial i is a nuisance parameter and the

main interest is in the log odds ratio ν. The trial specific heterogeneity captured

by the random effects γi ∼ N (0, τ 2). If τ 2 = 0, we obtain a fixed effect model.

Moreover, no weights are used in this case unlike the models for summary level

data.
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We use only a Bayesian approach with INLA in order to fit the TB dataset as a trial-

arm level. Firstly, the data should be brought into a suitable format, namely one-

arm-per-row data. This can be achieved by using creatINLADAT.dir function.

Then, the fixed effect model and random effects model using trial-arm level can

be implemented via meta.inla function with the argument type = "trial-arm".

Table 1.4 demonstrates the results of this procedure with fixed effect model and

random effects model, the results are similar which we obtained in INLA approach

with summary-level data. The corresponding R-code can be seen in Appendix A.1.5.

However, for the sake of convenience we are not giving more details about this

method, we will focus on such models in following chapters.

Table 1.4: Results of meta-analysis of TB dataset as a trial-arm level data

using fixed effect model and random effects model by logistic regression method

in fully Bayes approach with INLA.

Fixed effect Random effects

Treatment effect (ν)

Overall/posterior mean -0.4784 -0.7610

Lower b.(95%CI/CrI) -0.5597 -1.1801

Upper b.(95%CI/CrI) -0.3975 -0.3542

Heterogeneity variance (τ 2)

Estimated/posterior mean 0.4967

Lower b.(95%CI/CrI) 0.1496

Upper b.(95%CI/CrI) 1.2920

1.4 Meta-regression

Random effects models take into account the heterogeneity between different studies as

we described, however they do not provide a method of exploring and potentially of

explaining sources of heterogeneity. In order to explore the between-study variation or

possible reasons why study results vary systematically, regression type models, named

meta-regression, have been used (Lau et al., 1998). In contrast to meta-analysis methods

which we discussed so far, meta-regression models examine the associations between the

characteristics of the trials involved and treatment effects. It is important to mention that

we use the term meta-regression to indicate the use of summary level or trial-arm level

covariates, as distinct from regression analyses that are possible when individual patient

data on outcomes and covariates are available.

On the other hand, even if we only use randomized trials data, the study of covariates

is inherently observational, since it is not possible to randomize patients to one covariate.

As a consequence, meta-regression has many difficulties of interpretation and inference
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which attach to non randomized trials such as confounding, correlation between covariates

and, very important, the inability to infer causality from association.

There are various statistical techniques for meta-regression. Those techniques differ

in a number of aspects; for example whether the underlying model is assumed as fixed

effect or random effects model, whether estimation procedure is a classical approach or

a Bayesian approach (Thompson and Sharp, 1999). In this section, firstly weighted-least

squares and likelihood with REML approaches of random effects meta-regression within

classical perspective will be discussed, then a Bayesian approach with INLA methodology

will be shown and finally we will describe meta-regression using trial-arm level dataset.

1.4.1 Classical inference

Weighted-least squares approach

Firstly, we introduce a random effects meta-regression model by a weighted-least squares

approach within classical inference. The log-odds ratios of each trial is assumed to follow

a normal distribution and the regression uses weighted least squares approach to take into

account the variance of the log-odds ratio estimate in each trial. The model formulation

which is an extension of equation (1.2) can be shown as follows:

θ̂i ∼ N (ν + xi · β, σ2
i + τ 2) (1.17)

where xi is a study-level covariate, β represents the change in θ̂i per unit of change

in covariate xi and ν is the log-odds ratio at xi = 0 (Thompson and Sharp, 1999).

Also, between-study variance τ 2 is added to within-study variance σ2
i for incorporating

heterogeneity between trials. Maximum likelihood estimates of a and β can be obtained

by least square regression of θ̂i on xi with weights wi = 1/(σ2
i + ˆτ 2). In order to fit this

model, two-step approach is proposed (Raudenbush, 2009), first τ 2 is estimated with one

of the available estimators, then undertake the linear model via weighted least squares.

This methodology is implemented in R package metafor (Viechtbauer, 2010) and we

will utilize the functionality from this package to analyse the TB dataset with covariates

Year and Latitude by using method of moment estimator for τ 2 which we gave in

Section 1.3.4 (see Schwarzer et al., 2015 for different meta-analysis R packages overview).

Firstly we are shifting the covariates to a meaningful center, since this makes easier to

interpret the results. We set this center as characteristics of study number 5 which has the

minimum latitude available among trials included. That means, for Latitude as 13 and

for Year as 1973. Then, by applying function rma.uni to TB dataset, meta-regression

can be fitted in R. The corresponding R-code can be seen in Appendix A.1.6.

As a result, we obtain the estimate of the intercept as −0.13 (95 % CI −0.46, 0.19)

which have an interpretation as the expected treatment effect of a study with Latitude

of 13 and Year of 1973. Also, we got the estimate of regression coefficient for Latitude,
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βLat, −0.03 (95 % CI −0.05, −0.01). βLat means the expected increase in treatment effect

with every one point increase in Latitude. And similarly, βY ear is 0 (95 % CI −0.02,

0.03) which is the expected increase in treatment effect with every one point increase in

Year. Table 1.5 demonstrates these results with estimated heterogeneity variance.

Mixed model approach

Now, we proceed with a different approach to random effects meta-regression which is

achieved by using a linear mixed model. That procedure is an extension of equation (1.7)

and model formula can be obtained by including a study-level covariate, denoted xi, as

follows:

θ̂i|θi ∼ N (θi, σ
2
i )

θi = ν + xi · β + γi + εi (1.18)

where εi ∼ N (0, σ2
i ) is sampling error within each trial, γi ∼ N (0, τ 2) is random effect

for trial specific heterogeneity and ν is the log odds ratio at xi = 0. The weights are given

by ωi = 1/σ2
i . The maximum likelihood estimation or restricted maximum likelihood

(REML) estimation can be achieved as in equation (1.7) but in this case simply adding

covariates to the model formula when applying the lme function in R.

For the TB dataset, we implement this method with REML estimation method in

R by including Year and Latitude (again as centered) as a study level covarites. The

corresponding R-code can be seen in Appendix A.1.6. Table 1.5 shows the results which

are very similar to the weighted least squares approach except the heterogeneity variance.

Figure 1.3 displays a visual presentation of the results.

As we pointed out, meta-regression investigates whether particular covariates explain

any of the heterogeneity of treatment effects between studies. It is not reasonable to

assume that all of the heterogeneity is explained. Therefore meta-regression with a random

effect analysis is more appropriate than a fixed effect one (Thompson and Higgins, 2002).

For this reason, we are not presenting any fixed effect meta-regression model.

1.4.2 Bayesian inference

A fully-Bayesian approach to random effects meta-regression model can be obtained by

including covariates in a Bayesian meta-analysis model, equation (1.15), is as follows:

θ̂i|θi ∼ N (θi, σ
2
i )

θi = ν + xi · β + γi + εi

εi ∼ N (0, σ2
i )

γi ∼ N (0, τ 2) (1.19)



18 CHAPTER 1. META-ANALYSIS

●

●

●

●

●

●

●

●

●

●

●

●

−20 0 20 40

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

A

Latitude (centered)

lo
g 

od
ds

 r
at

io
s

●

●

●

●

●

●

●

●

●

●

●

●

−30 −10 10 20
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

B

Year (centered)

lo
g 

od
ds

 r
at

io
s

Figure 1.3: Log odds ratios of the TB dataset, including 13 trials, according to

in (A) the geographic latitude of the place where the trial was undertaken which

is centered at 13 degree and in (B) the year of publication which is centered at

1973. The circle corresponding to each trial has area proportional to the the

weights wi. The superimposed lines are obtained by mixed model approach of

random effects meta-regression using an REML estimate.

Similar to the mixed model approach, the weights are given by ωi = 1/σ2
i rather than

ωi = 1/(σ2
i + τ̂ 2).

We prefer to set the prior distributions for all covariates to a normal distribution with

mean zero and variance 1000. After data preparation using creatINLAdat.dir meta-

regression using random effects model can be implemented using meta.inla function with

the argument mreg = "TRUE" as follows:

> TB.mreg.datINLA <- creatINLAdat.dir(ntrt = TB$TRT, nctrl = TB$CON, ptrt = TB$TRTTB,

+ pctrl = TB$CONTB, cov1 = TB$Latitude_centered, cov2 = TB$Year_centered)

> inla.mreg.re.tb <- meta.inla(TB.mreg.datINLA, meanf = 0, varf = 1000,

+ ul = 10, mod = "RE", mreg = "TRUE")

> print(inla.mreg.re.tb, digits = 3)

Call: meta.inla(datINLA = TB.mreg.datINLA, meanf = 0, varf = 1000,

ul = 10, mod = "RE", mreg = "TRUE")

Meta regression using INLA

Intercept = -0.163 95% CrI ( -0.696, 0.322 )

Latitude = -0.028 95% CrI ( -0.053, 0 )
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Year = 0.006 95% CrI ( -0.029, 0.044 )

Posterior mean of heterogeneity variance = 0.12 95% CrI ( 0.015, 0.764 )

We obtain similar results with the weighted least squares approach, see Table 1.5 for

the results.

Table 1.5: Results of random effects meta-regression analysis of TB dataset:

Weighted-least squares approach (WLSQ), mixed model approach with REML

(REML), fully Bayesian approach by INLA with summary level dataset (INLA)

and INLA approach with trial-arm level dataset (INLA-ARM). Latitude and

Year are included as covariates to the models.

WLSQ REML INLA INLA-ARM

Intercept

Estimated/posterior mean -0.1316 -0.0854 -0.1631 -0.1618

Lower b.(95%CI/CrI) -0.4561 -0.3687 -0.6960 -0.6962

Upper b.(95%CI/CrI) 0.1930 0.1980 0.3218 0.3226

Latitude

Estimated/posterior mean -0.0295 -0.0318 -0.0278 -0.0281

Lower b.(95%CI/CrI) -0.0461 -0.0462 -0.0527 -0.0529

Upper b.(95%CI/CrI) -0.0129 -0.0174 -0.0003 -0.0006

Year

Estimated/posterior mean 0.0046 0.0013 0.0063 0.0069

Lower b.(95%CI/CrI) -0.0197 -0.0207 -0.0291 -0.0282

Upper b.(95%CI/CrI) 0.0288 0.0233 0.0442 0.0453

Heterogeneity variance

Estimated/posterior mean 0.0667 0.0002 0.1203 0.1263

Lower b.(95%CI/CrI) 0.0147 0.0143

Upper b.(95%CI/CrI) 0.7639 0.7647

1.4.3 Trial-arm level data

The model formulation of meta-regression by using summary level data has same disad-

vantages as in meta-analysis context (without regression), hence meta-regression random

effects model with logistic regression by using trial-arm level data is preferable, in prin-

ciple. A Bayesian model formulation for this type of meta-regression can be obtained by

including the study level covariate xi to equation (1.19) (Thompson and Sharp, 1999).

Therefore, the number of events is distributed as yi1 ∼ Bin(πi1, ni1) and yi2 ∼ Bin(πi2, ni2),

produces the following model:
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logit(πi1) = ai

logit(πi2) = ai + ν + xi · β + γi (1.20)

Similar to the model for summary level data, trial-specific heterogeneity is captured by

γi ∼ N (0, τ 2). A random effects meta-regression using a trial-arm level can be fitted with

meta.inla using the arguments mod = "RE", type = "trial-arm" and mreg = "TRUE".

The corresponding R-code can be seen in Appendix A.1.7. Table 1.5 shows the results of

this methodology.

R version and packages used to generate this chapter:

R version: R version 3.2.3 (2015-12-10)

Base packages: splines, stats, graphics, grDevices, utils, datasets, methods, base

Other packages: metafor, INLA, Matrix, sp, nlme, lattice, xtable

Versions of other packages (respectively): 1.9.8, 0.0.1443538834, 1.2.3, 1.2.2, 3.1.124, 0.20.33, 1.8.2

This document was generated on February 23, 2016 at 13:24.



Chapter 2

Network meta-analysis

2.1 Introduction

One of the most reliable ways of comparing two treatments is the direct comparison of

randomized trials as in the TB dataset in Chapter 1 (in that case, for two treatments,

we considered treatment vs control). In order to analyse the results of collected evidence

from different studies which include only direct comparisons or, shortly, for meta-analysis

of direct comparisons, there are different approaches as we discussed in Chapter 1. This

type of meta-analysis can be called pairwise meta-analysis or conventional meta-analysis

or head-to-head meta-analysis (Salanti, 2012). However, in many areas, available trials

may not have directly compared the specific treatments of interest. This situation can

stem from different reasons. For example, if there may be a class of several treatments,

each of which has been studied placebo-controlled randomized trials. If there are no trials

or very few trials in which the drugs have been directly compared with each other, then

by a pairwise meta-analysis, the comparison between two treatments from this class is

not possible, Therefore, there is a need for a broader and inclusive view of the available

evidence rather than pairwise meta-analysis (Salanti, 2012).

2.1.1 Direct vs. indirect estimates

Before the explanation of this broader approach or so-called network meta-analysis (NMA),

we will use some simple examples to introduce concepts of direct and indirect estimates.

As a first example, say Network 1, assume that there are two type of studies namely AC

studies which compare treatment A and control C and BC studies which compare treat-

ment B and control C (the formal definition of a network will be given in Section 2.2).

Also, as Network 2 suppose that there are AC, BC and AB studies. We can represent the

available treatment comparisons using a simple graph. Figure 2.1 shows such graphical

representations of these two networks.

Firstly, when we consider Network 1, AC studies provide a direct estimate of the dif-

ference of treatment effects of A and C measured on some scale, say log odds ratio as

21
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Figure 2.1: Graphical representation of two networks with three treatments

(A, B and C). Network 1 includes AC and BC studies. Network 2 includes

AC, BC and AB studies. Lines indicate we have data from one or more studies

comparing the two treatments.

in examples in Chapter 1. We denote this relative treatment effect as dDirAC (where the

superscript denotes the direct estimate). Other studies (BC studies) may provide infor-

mation on the direct comparison between treatment B and the same control C; denoted

dDirBC . Also, AC and BC studies provide an indirect estimate for the comparison of A and

B from the relative treatment effect of A-C and B-C as follows (Schwarzer et al., 2015):

dIndAB = dDirAC − dDirBC (2.1)

Secondly, when we consider Network 2, there are dDirAC , dDirBC and dIndAB as in Network

1. Additionally, there is direct evidence from studies comparing A and B (AB studies),

denoted by dDirAB . In summary, in a simple example like Network 2, for every comparison

between two treatments, one can estimate direct and indirect estimates.

Now, consider a slightly more complex example, say Network 3 which has an additional

treatment D with AD and BD studies. Figure 2.2 shows this network. When we examine

this network, the treatments, called nodes in graph theory, which are joined with a line,

called edge in graph theory, correspond to those for which direct evidence is available.

Thus, from Figure 2.2 we see that direct evidence is available for all comparisons except
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A

B

C

D

Figure 2.2: Graphical representation of Network 3 which is a network with

four treatments, A, B, C and D. Lines indicate we have data from one or more

studies comparing the two treatments.

between C and D which must be estimated indirectly. Moreover, indirect estimates, for

instance dIndAB , can be derived via two possible ways namely by using AD and BD studies

in addition to by using AC and BC studies.

At this point, we can give the definition of NMA. NMA or mixed treatment comparisons

(MTC) is used for combining direct and indirect estimates across a network of randomized

trials to infer about the relative treatment effect of multiple treatments (Salanti, 2012).

For simplicity, we begin by considering trials consisting of only two-arm trials. On the

other hand, there is a different kind of trial named multi-arm trial which compares several

treatments against a common control arm (Jaki, 2015). The extension to multi-arm trials

in NMA framework is possible and will be discussed later. As a side note, network meta-

analysis is a generalization of pairwise meta-analysis.

2.2 Some terminology in network meta-analysis

Network meta-analysis is a sufficiently new research area and terminology differs between

authors and continues to evolve (Puhan et al., 2014). Now we will present some terms

used in this thesis.

A network is a collection of trials of alternative treatments for a common clinical
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condition (such as disease) that allow, through direct and indirect estimates, calculation

of the relative treatment effects of all treatment versus one another on a particular outcome

(Puhan et al., 2014).

2.2.1 Transitivity

In NMA context, a crucial concept is the assumption of transitivity. That is an under-

lying assumption when dIndAB is calculated —one can learn about A versus B via C. In

other words, an indirect comparison validly estimates the unobserved direct comparison

(Salanti, 2012). Therefore, the violation of the assumption of transitivity, intransitivity,

refers to differences in study characteristics that may modify treatment effect in the di-

rect comparisons (such as dDirAC and dDirBC ) that form the basis for the indirect estimate of

dIndAB , and thus bias the indirect estimate of A versus B (Puhan et al., 2014). However,

this cannot be tested statistically, but its plausibility can be evaluated conceptually and

epidemiologically. Therefore, this is not our focus in the thesis but see Baker and Kramer

(2002) for a discussion about this topic.

2.2.2 Consistency

Consistency in a network means that there is no discrepancy between direct and indirect

estimates (Sauter and Held, 2015). The assumption of consistency is linked to the assump-

tion of transitivity, as the former is the extension of the latter. Mathematically speaking,

the assumption of consistency is reflected by equation (2.1) for a network includes treat-

ment A, B and C. When we consider such network, if there is no direct evidence for the

relative treatment effect of A vs B (no dDirAB ) or in other words no available comparisons

of A and B, then the consistency assumption of this comparison reduces to transitivity. If

there is direct evidence to estimate dAB (left part of the equation), consistency claims that

the two pieces of evidence give the same result. Unlike the transitivity, statistical methods

can be used to evaluate consistency (Salanti, 2012). In the next section, we will discuss

the assessment of network inconsistency which is the examination of the possibility that

consistency restrictions are not fulfilled. As a side note, this term has been referred as

incoherence by Lumley (2002).

The heterogeneity is already introduced in Chapter 1. With heterogeneity, we mean

differences between trials comparing the same treatments but being different in terms of

trial-specific features, e.g. differences between study-populations. We will later discuss

the statistical model named consistency model which incorporate heterogeneity by as-

suming consistency in the network and also the model called inconsistency model which

incorporate both heterogeneity and inconsistency in the network.
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2.2.3 Basic and functional contrasts

Here, we describe the parametrization of a network and introduce some terms from graph

theory by mainly adapting from Lu and Ades (2006). The parametrization is crucial

especially for defining statistical models for NMA. In a network meta-analysis the primary

interest is, usually, to compare a number of treatments to a baseline treatment. This can

be placebo, usual care, no treatment, or a well-established standard treatment (Schwarzer

et al., 2015). Consider a network, say Network 4, with four treatments (A, B, C, D) such

that every comparisons between any two treatments are available. Figure 2.3 illustrates

this network.

Here, if treatment C, control, is considered the baseline treatment for relative treat-

ment effects, then three relative treatment effect parameters dXC for X = A,B or D are

the basic contrasts. And the other three (dAB, dDB and dAD) are functional contrasts that

can be represented as functions of basic contrasts through the following linear relations:

dAB = dAC − dBC
dDB = dDC − dBC
dAD = dAC − dDC (2.2)

Functional contrasts can be written in terms of basic contrasts under the assumption

of consistency. Basic contrasts can be chosen in different ways based on NMA modelling

approach and will be discussed later. Let db be the vector of basic contrasts and df be

the vector of functional contrasts. The number of basic contrasts equal to the number of

treatments in the network, say K, minus one, # (db) = K − 1. Therefore, the number of

functional contrasts equal to the number of available treatment comparisons, say T, minus

the number of basic contrasts, # (df ) = T−K−1. Each consistency relation corresponds

to a cycle, a path that starts and ends at the same node, of edges in the network graph.

In the above example, the corresponding cycle of the relation of dAB = dAC − dBC which

is formed by AB, AC and BC edges (thick lines) in Network 4 can be seen in Figure 2.3.

In the literature, cycle and loop are used interchangeably for example in Salanti (2012)

or in Sauter and Held (2015), however we prefer to use cycle instead of loop, since, in

graph theory, loop is defined as an edge that connects a node to itself (West et al., 2001).

This definition is not coincided with the meaning of loop in the context of network meta-

analysis, for this reason, in our opinion the usage of loop may lead to confusion.

A 3-cycle means a cycle with three nodes —treatments in NMA context (West et al.,

2001). A spanning tree in a network graph is a connected subgraph consisting of all nodes

but containing no cycles. For Network 4, one spanning tree is formed by AB, AC and AD

edges (dashed lines) in Figure 2.3. Therefore, if one new edge is added to a spanning tree,

the new graph represents one functional contrasts and forms one cycle. By the time that

three new edges are added to the spanning tree formed by AB, AC, and AD in Figure 2.3,
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A
B

C

D

Figure 2.3: Graphical representation of Network 4. Thick lines correspond to

a 3-cycle formed by AB, AC and BC edges in the network graph. Dashed lines

correspond to a spanning tree formed by AD, CD, BD edges.

a total of seven cycles have been created. However, from all seven cycles, only three cycles

are independent in the sense that if we know that the relations in these three cycles are

consistent, that means all seven are consistent (see Section 2.2 and 2.3 in Lu and Ades,

2006).

2.3 Statistical models for network meta-analysis

Our general strategy to formulate the models for NMA can be summarized as writing

down a hierarchical model containing components for sampling variability, heterogeneity

and inconsistency. In Section 2.3.1, we introduce a NMA model for summary level data

which is a Bayesian linear mixed model. Section 2.3.2 discusses first a NMA model for

trial-arm level data with a binomial outcome and then extends this model in order to

account for multi-arm trials which is a Bayesian generalized linear mixed model with

logit link function.
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2.3.1 Summary level approach

This model is introduced by Lumley (2002). Actually we used this approach before in

Chapter 1 (more precisely see equation (1.7)). Now we will give a more general model

formulation of this approach so that it can be used for fitting NMA models. Consider

treatment effects parameters θijk comparing treatment j with k in trial i with correspond-

ing within-trial variance σ2
ijk for several independent two-arm trials i = {1, 2, . . . , S}. The

treatment pair k, j ∈ {1, . . . , T} compared in trial i is one among T (T − 1)/2 possible

combinations. The log-odds ratio θijk is assumed to follow a normal distribution and is

modelled as

θijk ∼ N (djk + γijk + ξjk, σ
2
ijk)

γijk ∼ N (0, τ 2)

ξjk ∼ N (0, κ2) (2.3)

The relative treatment effect djk is the difference between the treatment effects dj and

dk such that djk = dj − dk. Consider the comparison of treatment j with k in trial i

where we now introduce a random effect γijk. This heterogeneity random effects capture

differences between trials comparing the same treatments but being different in terms of

trial-specific features. Thus, it has a similar interpretation as in the pairwise meta-analysis

context.

In order to make the model identifiable, we need to fix the treatment effect of some

arbitrary baseline treatment at zero. By consequence we only need T − 1 parameters to

fully describe the model with its network structure. If there exists a treatment such that

all possible comparisons between that treatment and every other treatment are available,

then we call it global baseline. For illustrative reasons, consider a simple fully connected

network with three treatments (1, 2 and 3). In this network, if treatment 1 is chosen as

global baseline, then basic contrasts are db = (d12, d13)
T and the only functional contrast

is df = d23. Under the assumption of consistency, we have d23 = d13−d12, i. e. df = FTdb

where FT = (1,−1)T (Lu and Ades, 2006). In general, if there exists a global baseline

treatment, say treatment 1, then we have basic contrasts db = (d12, d13, . . . , d1T )T , the

treatment effects relative to the global baseline treatment. Based on db we can fully

describe the network structure or, more precisely, db forms a spanning tree in the network

graph.

In the model, there are additional random effects, inconsistency random effects, ξjk

which capture the network inconsistency. For instance, for the simple network above,

this model introduces three random effects, namely ξ12, ξ13 and ξ23. We assume that

ξjk ∼ N (0, κ2). The inconsistency variance κ2 is a measure for the degree of inconsistency

in the network. As a side note, when assume κ2 = 0 in the model, it corresponds to a

consistency model.
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2.3.2 Trial-arm level approach

The model is discussed in this section has been introduced by Lu and Ades (2006). In

Chapter 1 we have already discussed trial-arm level and summary level datasets. A

NMA model is possible by using trial-arm level data that is a similar approach which we

introduced in Section 1.3.5 (model formulation of equation (1.16)). Here, firstly we give

a model formulation for NMA models including two-arm trials only, then a model which

account for multi-arm trials will be introduced.

Each trial i = {1, 2, . . . , S} has two treatment arms namely t1(i) and t2(i). The

first treatment j = t1(i) is chosen as baseline treatment and compared with the other

treatment k = t2(i). For each trial i and baseline treatment j the number of events yij

and number of patients nij are observed. Correspondingly, also for treatment k, yik and

nik are observed. The number of events is (conditionally) independent for each trial-arm

and follows a binomial distribution, i.e. yij ∼ Bin(nij, πij) and yik ∼ Bin(nik, πik). The

log-odds ratio djk of baseline treatment j vs. treatment k can now be modelled with

logistic regression as:

logit(πij) = aij

logit(πik) = aij + djk + γijk + ξjkl (2.4)

The treatment effect aij of baseline treatment j in trial i is a nuisance parameter

and the main interest is in the log-odds ratio djk. Similar as in Section 2.3.1, possible

trial-specific heterogeneity is captured by the random effects γijk ∼ N (0, τ 2).

For inconsistency, a cycle-specific approach is proposed by Lu and Ades (2006) which is

adding a random effect for every independent 3-cycle (see also Dias et al., 2010; Sauter and

Held, 2015). Therefore, here consistency is a property of a cycle of a network graph, which

in the case of three treatments is simply a triangle, rather than a pairwise comparison.

Consider a 3-cycle with treatments j, k, l, where we now introduce a random effect

ξjkl ∼ N (0, κ2). Here, in order to account for inconsistency, we relax the consistency

relation dlk = dlj−djk to dlk = dlj−djk + ξjkl. The number of cycle-specific inconsistency

random effects is called the inconsistency degrees of freedom (ICDF). When there is no

multi-arm trial in the network, the ICDF is equal to number of functional contrasts

(ICDF = # (df )). By conducting a trial-arm level approach with a Bayesian method, the

posterior distribution of ξjkl reflects the extent of inconsistency in the cycle with j, k and

l treatments of the network.

In a trial-arm level data approach, the parametrization is different compared to a

summary level Here, it is not necessary to use a global baseline treatment to parametrize

the network. Any subset of relative treatment effect parameters can be chosen as basic

contrasts db as long as their corresponding edges form a spanning tree in the network

graph. As in general case, the remaining functional contrasts df can be described as

linear combinations of db.
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Multi-arm trials

Often, multi-arm trials, trials with more than two treatment arms, are included in a

network meta-analysis. Nowadays, in a variety of disease areas, a number of multi-arm

trials are being run (Jaki, 2015). Furthermore, according to Parmar et al. (2014), because

of the advantages offered by multi-arm trials compared to two-arm trials, more multi-arm

randomized trials are needed. One important advantage of multi-arm trials compared to

separate two-arm trials to assess several treatments is that the multi-arm design is quicker

and cheaper.

By adapting from Sauter and Held (2015), we will introduce a statistical model which

accounts for multi-arm trials. Here, each trial i can have more than two treatment arms

namely t1(i), . . . , tKi
(i). Again, the first treatment j = t1(i) is chosen as baseline treat-

ment and compared with the remaining treatments k = t2(i), . . . , tKi
(i). As in the case

of only two-arm trials, we assume that yij ∼ Bin(nij, πij), yik ∼ Bin(nik, πik) and djk is

modelled with the equation (2.4).

In the model that accounts only for two-arm trials, it is assumed that γijk ∼ N (0, τ 2).

Therefore, for a fixed i, γi = γijk, since there are only two arms to compare. However

with the presence of multi-arm trials, there are several treatments that are compared to

baseline treatment within one trial.

Consider a simple situation where a trial i includes treatments 1, 2 and 3 and treatment

1 is the baseline treatment. Now heterogeneity random effect, γi = (γi12, γi13)
T , is a vector

of length two. At this point, it is crucial to realize that the random effects γi12 and γi13 are

not independent, since treatment comparisons 1 vs 2 and 1 vs 3 in the multi-arm trial i are

based on the same baseline data. Therefore we need to take into account this dependency

within multi-arm trials. On the other hand, we assume that inconsistency does not occur

within a multi-arm trial or we say multi-arm trials are inherently consistent.

In order to allow for the dependency within multi-arm trials, now we assume that the

heterogeneity random effect, γi follows a bivariate normal distribution as follows:

γi ∼ N (0,T i) (2.5)

where T i is a two-by-two covariance matrix which is a non-diagonal matrix. This

covariance matrix can have different forms. One of the simplest forms but a convenient

one is proposed by Higgins and Whitehead (1996), that is a homogeneous covariance

matrix. In the thesis we exclusively use such form of covariance matrix. One can see

also Section 3.2 in Lu and Ades (2004) for a discussion about nonhomogenous covariance

matrix instead of our choice. By adapting from Section 5.1 in Higgins and Whitehead

(1996), we explain how such covariance matrix can be justified.

For the sake of simplicity, firstly we discuss a three-arm trial, say trial i, with treat-

ments 1, 2 and 3. Since a multi-arm trial is inherently consistent, we have following model

equations of this trial:
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logit(πi1) = ai1

logit(πi2) = ai1 + d12 + γi12

logit(πi3) = ai1 + d13 + γi13 (2.6)

Then, if we write down the treatment comparisons 1 vs 2 and 1 vs 3 on the logit scale

by following equation (2.6), we obtain:

logit(πi2)− logit(πi1) = d12 + γi12

logit(πi3)− logit(πi1) = d13 + γi13 (2.7)

At this point consider treatment comparison 2 vs 3 on logit scale, so we get following

equation:

logit(πi3)− logit(πi2) = d13 − d12 + γi13 − γi12 (2.8)

The key assumption to obtain a homogeneous covariance matrix is the homogeneity

of between-study variations for every treatment comparison:

Var(logit(πi2)− logit(πi1)) = Var(logit(πi3)− logit(πi1)) = Var(logit(πi3)− logit(πi2))

(2.9)

Since d13 and d12 are fixed variables, we can combine equation (2.7), equation (2.8)

and equation (2.9) as follows:

Var(γi12) = Var(γi13) = Var(γi13 − γi12) (2.10)

On the other hand, since (γi12, γi13)
T is a bivariate random variable, we have following

variance equation (see Held and Sabanés Bové, 2014a, Appendix A.3.5):

Var(γi13 − γi12) = Var(γi13) + Var(γi12)− 2Cov(γi13, γi12) (2.11)

Here, without loss of generality, say Var(γi12) = τ 2 and Cov(γi12, γi13) = ρτ 2. There-

fore, equation (2.10) and equation (2.11) implies that:

Var(γi13 − γi12) = τ 2

= 2τ 2 − 2ρτ 2 (2.12)
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Hence we get ρ = 0.5 which is the correlation between γi12 and γi13. The resulting T i

is as follows:

T i =

[
τ 2 τ 2/2

τ 2/2 τ 2

]
If we generalize this method to a multi-arm trial i with Ki different treatments, γi

is a vector of length (Ki − 1) and follows a multivariate normal distribution (i.e. γi ∼
N (0,T i)). Here, T i is a symmetric homogeneous covariance matrix of dimension (Ki −
1)× (Ki − 1) with diagonal entries equal to τ 2 and non-diagonal entries set to τ 2/2 (see

also Higgins et al., 2012).

With the presence of multi-arm trials, we still assume cycle-specific random effects

ξjkl ∼ N (0, κ2) to account for inconsistency. In a network with also include multi-arm

trials, ICDF = # (df ) − S where S is the number of independent inconsistency relations

in which the corresponding parameters are supported by no more than two independent

source (Lu and Ades, 2006). To explain this situation better, consider a direct estimate

only calculated from a multi-arm trial. Then any indirect estimate based on the other

treatments in the same multi-arm trial does not form an independent cycle, since the

baseline treatment is same for every comparison. For example, there is no inconsistency

in a network which includes a two-arm trial with structure 1 vs 2 and a multi-arm trial

with structure 1 vs 2 vs 3. The reason is that the direct estimate of comparison 1 vs 3 is

only calculated from a multi-arm trial (only from one source). Therefore, we should be

careful for calculation of ICDF in such situations. As a consequence, identification of all

independent 3-cycles and calculating ICDF can be complicated for a network with many

multi-arm trials. In such cases there is no general formula to calculate ICDF. Therefore

the calculation must be done “by hand” (see section 4.2 and 4.5 in Lu and Ades, 2006).

2.4 An application (Hip dataset)

We use a network meta-analysis dataset from a recently published systematic review

paper (Murad et al., 2012) to illustrate the application of INLA approach by using r-inla

package. To begin with we will describe the dataset. Then in the analysis part, firstly we

will analyse the dataset with pairwise meta-analysis using different inference methods and

compare their results. Finally we will conduct a network meta-analysis with INLA and

compare the results obtained by the same methods used in the original paper. However

we will not present systematic reviews, study selection and data extraction criterion which

were reported in the primary paper as those aspects are not our focus in the thesis.

Our dataset consists of randomized controlled trials which compared treatments to

prevent fragility hip fractures in individuals with or at risk of osteoporosis. Osteoporosis,

characterized by low bone mineral density and deterioration of bone structure, is primarily

present in postmenopausal women and is associated with an increased risk of fragility
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fractures, namely hip, vertebral and other non-vertebral fractures (Deal, 1997). In the

dataset, trials measure hip fragility fractures as the outcome of interest. The dataset is

hereafter referred as Hip dataset. In total, there are 40 trials and 11 treatments in the

Hip dataset. Table 2.1 shows the coding of treatments of interest which will be used in

plotting and analysis of the network. Note that there are one three-arm trial with the

structure 1 vs 9 vs 10 and two four-arm trials with the structure 1 vs 9 vs 10 vs 11.

Table 2.1: Treatments of interest in Hip dataset with their coding. These codes

are used in the analysis procedure.

CODE Treatment

1 Vitamin D+Calcium

1 Vitamin D+Calcium+Placebo

2 Teriparatide(PTH)+Vitamin D+Calcium

3 Demosumab+Vitamin D+Calcium

4 Raloxifene

4 Raloxifene+Vitamin D+Calcium

5 Zoledronate+Vitamin D+Calcium

6 Risedronate

6 Risedronate+Vitamin D+Calcium

7 Ibandronate+Calcium+Vitamin D

8 Alendronate+Calcium

8 Alendronate+Vitamin D

8 Alendronate+Vitamin D+Calcium

9 Vitamin D

9 Vitamin D+Placebo

10 Placebo

11 Calcium

11 Placebo+Calcium

2.4.1 Pairwise meta-analysis

In the original paper, it is stated that direct head-to-head comparisons (or pairwise meta-

analysis) were conducted by using a random effects model with classical approach (method

of moment, shortly MOM, estimator as shown in equation (1.6)). This procedure was

performed using Comprehensive Meta-analysis version 2 software package (Borenstein

et al., 2005). To conduct a pairwise meta-analysis, we chose the treatment comparisons

which have number of study is bigger than 1, namely 1 vs 8, 1 vs 6, 6 vs 10, 1 vs 4 and 1

vs 5 from given direct head-to-head comparisons in the original paper for Hip dataset.
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In the thesis, in order to implement the same MOM methodology in R environment,

we use the metafor (Viechtbauer, 2010) package, as we used in Chapter 1, but here to

analyse Hip dataset. Moreover, we use a fixed effect and random effects model with INLA

using summary-level data as discussed in Section 1.3.4.

By using same method which we demonstrated in Section 1.3.2, it is also possible to

demonstrate an individual study using a two-by-two contingency table. In the Hip dataset,

there are zero entries of a two-by-two table of some trials, namely the comparison of 1 vs

8 and 1 vs 4. The analysis by using summary level data (both MOM and INLA) requires

the calculation of odds ratios which is not possible when there is a zero entry of a two-

by-two table of a trial, as a result this creates a problem. Therefore to circumvent this

problem, 0.5 has been added to all the cells of the two-by-two table in which there is a

zero cell, as suggested by others (Cox and Snell, 1989). We used the log odds ratio as the

measure of treatment effect. Table 2.2 demonstrates the point estimates both for ν and

τ 2 and 95% confidence intervals for ν obtained by MOM approach. By using metafor

package, we obtained same results for all estimates up to second digit with the results

appeared in the original paper. The implementation of INLA approach was done with

meta.inla function as we used in Chapter 1. For the model choice of INLA method, we

used fixed effect model with prior distribution θ ∼ N (0, 1000) for comparisons 6 vs 10,

1 vs 4 and 1 vs 5. We considered a fixed effect model is sufficient since the number of

studies only two for those comparisons. For comparison 1 vs 8, we conducted a random

effects model with prior distributions ν ∼ N (0, 1000) and τ ∼ U(0, 10). However, for

comparison 1 vs 6, we obtained substantially wider interval estimates, when we used the

same prior distributions. This may occur because of the very low number of studies for

that comparison which is only three. For this reason, we used more informative prior

for τ , precisely τ ∼ U(0, 1). Table 2.2 shows the posterior mean of ν with 95% credible

intervals and the posterior mean of τ 2 that are obtained by INLA.

As a conclusion, when using INLA approach as an inference method for pairwise meta-

analysis, one should be careful, when the number of studies is low. Since as in our dataset,

the results can be heavily affected by the prior specification especially if the number of

studies is low. Although the choice of prior distributions is not our focus in the thesis,

when the number of studies is low, external knowledge may be used for determination

of an informative prior distributions instead of flat priors as we are mainly using in the

thesis.

2.4.2 Network meta-analysis

For the statistical analysis of this network, in the reference paper, the model which was

introduced by Lu and Ades (2004) was used. This model is actually very similar to the

consistency model of trial-arm level approach (Section 2.3.2). In the reference paper,

MCMC via WinBUGS 1.4.3 (Lunn et al., 2000) was used to analyse the Hip dataset. For

inconsistency, they compared the estimates from the direct comparisons and those from
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Table 2.2: Results of meta-analysis of direct comparisons of Hip dataset with

method of moment approach by using metafor (MOM) and INLA approach

with summary level dataset (INLA). The number of studies for each comparison

is shown (# of st.). In MOM, 2.5% and 97.5% correspond to lower bound and

upper bound for a 95% confidence interval for ν, respectively. Moreover, in

INLA, 2.5% and 97.5% correspond to lower bound and upper bound for a 95%

credible interval for ν, respectively.

Comparison # of st. MOM INLA

ν 2.5% 97.5% τ 2 ν 2.5% 97.5% τ 2

1 vs 8 7 -0.44 -0.87 -0.01 0 -0.47 -1.22 0.27 0.02

1 vs 6 3 -0.65 -1.46 0.17 0.27 -0.68 -1.98 0.62 0.94

6 vs 10 2 -1.78 -3.02 -0.54 NA -1.78 -3.02 -0.53 NA

1 vs 4 2 0.11 -0.44 0.66 NA 0.11 -0.44 0.66 NA

1 vs 5 2 -0.49 -0.78 -0.2 NA -0.49 -0.78 -0.2 NA

the indirect comparisons for the magnitude and direction of the point estimates and the

extent of overlap of CI.

Here, we will fit firstly the consistency model of trial-arm level approach which we

discussed in Section 2.3.2 using MCMC and then INLA. For MCMC method, we will use

JAGS (Plummer et al., 2003), a program for analysis of Bayesian hierarchical models using

MCMC, from within R with the help of R2jags (Su and Yajima, 2015) R package. The

same statistical model will be fitted via INLA. Then, we will implement trial-arm level

approach for incorporating both heterogeneity and inconsistency (cycle-specific approach)

by using INLA as described in Section 2.3.2. To fit those models via INLA, we will follow

the methodology described in Sauter and Held (2015). Finally a comparison between

results will be shown.

Data preparation and parameters

In order to fit a NMA model with r-inla, the dataset should be brought to a suitable for-

mat. This data preparation can be done by using creatINLAdat function from nmainla

R package which is available for download in the online version of the Sauter and Held

(2015) at the publishers web-site. The creatINLAdat function adds indicator variables

to a data frame which define the basic contrasts, the heterogeneity random effects (re),

the grouping vector which defines the covariance structure (g) (for the correlated multi-

arm trials). As we discussed before, any spanning tree can be used as basic contrasts

in trial-arm level approach. However due to lack of flexibility of the creatINLAdat

function, we are allowed to use only one “non-d1x” basic contrast. Luckily, in the Hip

dataset, the treatment of Vitamin D+Calcium (and Vitamin D+Calcium+Placebo) is a
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global baseline treatment. Note that when there is not a global baseline treatment in the

network, creatINLAdat should be adapted. In the raw dataset, the coding of Vitamin

D+Calcium was 10. Hence, we switch the coding 10 and the coding 1 in order to code

the chosen global baseline treatment as treatment 1. Table 2.1 is showing the coding

of treatments after this operation. In the network, the number of basic contrasts is 10,

# ( db) = 10. Also, since there are 18 available treatment comparisons, the number of

functional contrasts is 18 − 10 = 8, so # ( df ) = 8. Figure 2.4 demonstrates the plot

of the corresponding network after data preparation which is called as network graph.

Network graphs can be very useful as a data visualization technique for a NMA dataset.

The corresponding R-code for arranging dataset and plotting Figure 2.4 can bee seen in

Appendix A.2.1.

Although changing coding of treatments is not necessary for MCMC, we will analyse

the dataset by using both method (MCMC and INLA) after these steps in order not to

have any effects on the results stem from these changes. We will discuss later whether

the results can be affected by the changed treatment coding or not (Section 3.5).

Consistency model

Here, we use a trial-arm level approach by assuming consistency in the network. This

model, actually, can be obtained by not introducing any inconsistency random effects to

the model. For the implementation in both MCMC and INLA, we used the same non-

informative priors. For basic contrasts db ∼ N (0, 1000), and for heterogeneity standard

deviation τ ∼ U(0, 10) were used.

Firstly, for the implementation of this model with JAGS, we adapted the WinBUGS

code given in Jackson et al. (2014) to our consistency model. The corresponding JAGS

code can be seen in Appendix A.2 (see Listing A.1). The R-code for the implementation

of this procedure can be seen in Appendix A.2.2. A crucial component of any MCMC

implementation is checking the convergence diagnostics to have an idea whether Markov

chains converge to the posterior distribution. However, MCMC methods are not our

focus in the thesis, so we are not going to give any details about those concepts. In our

application, firstly to ensure convergence, we simulated 60 000 draws after 30 000 burn-in

phase with three chains by taking those values from the original systematic review paper

(Murad et al., 2012). Gelman-Rubin convergence statistic (Gelman and Rubin, 1992)

were stable in all instances. However, the effective sample sizes were substantially small

especially for parameters of d12 and τ (this situation may stem from high autocorrelation).

To overcome this problem, we increased the number of simulations to 600 000 draws after

300 000 burn-in by using 3 as thinning parameter and again with three chains. Then,

we checked convergence diagnostics by using Gelman-Rubin convergence statistic, visual

inspection of autocorrelation histogram plots and traceplots. It seems that the number of

simulations are sufficient. Table 2.3 shows the posterior median and 95 % credible interval

(Cr. I) obtained by MCMC for basic contrasts and heterogeneity standard deviation.
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Figure 2.4: Network of trials evaluating hip fractures (Hip dataset). The size

of the circle is proportional to the number of participants to that treatment.

Width of lines is proportional to the number of trials for that comparison.

Moreover, these results are consistent with the results appeared in the original paper.

For INLA, we must rearrange the dataset to get a trial-arm level (one-arm-per-row)

by using the mtc.data.studyrow function from the gemtc R package. Then by using the

creatINLAdat function, the dataset can be brought to a suitable format to analyse with

r-inla. For incorporating multi-arm trials, we want to have a homogeneous covariance

matrix, T i, to correlate the random effects for all arms of the same trial. As explained in

Section 3.2 of Sauter and Held (2015), the homogeneous covariance matrix which we need

is implemented in r-inla under the name model ="exchangeable". Also, we need to

define a grouping vector gi to determine the structure of T i. The first entry of gi is NA as

no random effect is present in the baseline treatment. The remaining entries are numbered

as 1, 2, . . . , Ki−1 to represent heterogeneity random effects γij2, γij3, . . . , γij(Ki−1) (Sauter

and Held, 2015). Also, this grouping vector (g) is obtained by creatINLAdat function.

The corresponding R-code can be seen in Appendix A.2.3.

The results are shown in Table 2.3. The comparison of the results estimated by MCMC
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and INLA can be seen in Figure 2.5. It can be said that MCMC and INLA results show

very good agreement. For both MCMC and INLA methods, functional contrasts can be

calculated by using consistency relations as explained in Section 2.2.3.

Table 2.3: Results of the consistency model implemented by MCMC and INLA

for Hip dataset. The last line shows the estimates for random effects standard

deviation of heterogeneity.

MCMC INLA

Median 2.5% 97.5% Median 2.5% 97.5%

d1,2 -0.709 -2.172 0.791 -0.703 -2.121 0.714

d1,3 -0.517 -1.082 0.028 -0.506 -1.079 0.049

d1,4 0.068 -0.263 0.419 0.067 -0.283 0.431

d1,5 -0.487 -0.833 -0.141 -0.484 -0.844 -0.126

d1,6 -0.522 -0.926 -0.234 -0.552 -0.936 -0.238

d1,7 -0.529 -1.380 0.342 -0.539 -1.385 0.322

d1,8 -0.600 -1.019 -0.195 -0.598 -1.024 -0.190

d1,9 0.327 0.100 0.562 0.330 0.090 0.574

d1,10 0.207 0.040 0.387 0.210 0.030 0.399

d1,11 0.344 0.031 0.667 0.349 0.021 0.679

τ 0.085 0.004 0.279 0.087 0.007 0.276

Inconsistency model

In order to account for inconsistency in the network of the Hip dataset, we will imple-

ment the inconsistency model using trial-arm level approach (cycle-specific approach) with

INLA. To achieve this, firstly we must determine ICDF by hand and its corresponding

inconsistency relations. If we examine the network, we can realize that two of the func-

tional parameters d9,11 and d10,11 are only estimated by four-arm trials. This gives ICDF

= # ( df ) − S = 8− 2 = 6. The corresponding inconsistency relations are as follows:

d4,8 = d1,8 − d1,4 + ξ1,4,8

d4,10 = d1,10 − d1,4 + ξ1,4,10

d6,10 = d1,10 − d1,6 + ξ1,6,10

d8,9 = d1,9 − d1,8 + ξ1,8,9

d8,11 = d1,11 − d1,8 + ξ1,8,11

d9,10 = d1,10 − d1,9 + ξ1,9,10 (2.13)
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Figure 2.5: Graphical representation of the results of the implemented con-

sistency model for Hip dataset by using MCMC and INLA. The estimates for

random effects standard deviation of heterogeneity is shown at the top (Hetero-

geneity stdev.). The points correspond to posterior medians of each parameter.

The corresponding lines refer to 95 % equi-tailed credible intervals of each pa-

rameter.

In order to implement this method in r-inla, the inconsistency random effects should

be given introduced in advance. For this purpose, we add an indicator variable, w, to the

data frame which define the above cycle-specific inconsistency random effects. Moreover,

so as to estimate functional contrasts, we need to define linear combinations for each of

them. To achieve this, we used the function inla.make.lincombs from r-inla. We used

vague prior for inconsistency standard deviation κ ∼ U(0, 10). The corresponding R-

code can be seen in Appendix A.3.1. Table 2.4 and Table 2.5 show the posterior median

and 95 % credible interval (Cr. I) obtained by this cycle-specific approach for basic

contrasts and functional contrasts, respectively. Also estimates for heterogeneity and

inconsistency random effects standard deviations are shown. For inconsistency standard

deviation, we obtained posterior median estimate of 0.306 with 95 % credible interval

from 0.016 to 1.405. Therefore, there is no evidence which suggests a severe inconsistency

in the network. Furthermore, when we compare Table 2.3 and Table 2.4, we can see that

introducing inconsistency random effects does not have a large impact on the estimates

of basic contrasts.
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Estimates of the inconsistency random effect parameters may also shed light on the

presence of the inconsistency within this network. Figure 2.6 displays posterior median

estimates with corresponding 95 % credible interval for inconsistency random effects. We

can conclude that there is no evidence advocating a severe inconsistency in the network

when we use a cycle-specific approach. This conclusion is also same as in the conclusion

of the reference paper in which they stated that there is no “significant” inconsistency in

the network.

Table 2.4: The results of the inconsistency model by using cycle-specific ap-

proach with INLA for Hip dataset. The last lines show the estimates for random

effects standard deviation of heterogeneity and inconsistency, respectively.

Median 2.5% 97.5%

d1,2 -0.703 -2.126 0.718

d1,3 -0.507 -1.091 0.060

d1,4 0.103 -0.388 0.645

d1,5 -0.484 -0.853 -0.115

d1,6 -0.517 -0.942 -0.187

d1,7 -0.539 -1.392 0.330

d1,8 -0.582 -1.029 -0.152

d1,9 0.228 -0.192 0.584

d1,10 0.204 0.008 0.411

d1,11 0.321 -0.020 0.667

τ 0.087 0.006 0.278

κ 0.306 0.016 1.405

Table 2.5: The estimates of functional contrasts using cycle-specific approach

with INLA.

Median 2.5% 97.5%

d4,8 -0.693 -1.926 0.472

d4,10 0.157 -0.233 0.544

d6,10 1.076 0.435 2.224

d8,9 1.000 0.284 1.936

d8,11 1.001 0.005 2.239

d9,10 -0.143 -0.349 0.063
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Figure 2.6: Estimates of the inconsistency random effects parameters using

cycle-specific approach with INLA.
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Chapter 3

Design-by-treatment interaction

model

3.1 Introduction

As opposed to pairwise meta-analysis, network meta-analysis offers the advantage of being

able to compare any treatment included in the network, including those that have not been

compared directly. However, there are some issues concerning network meta-analysis.

For example, the usage of more complicated statistical models to incorporate indirect

estimates of treatment comparisons presets problems. According to Song et al. (2009),

there is a variety of problems associated with network meta-analysis, including “unclear

understanding of underlying assumptions”, “use of flawed or inappropriate methods” and

“inadequate comparison and inappropriate combination of direct and indirect evidence”.

From a statistical perspective, one of the biggest challenges facing network meta-

analysis is inconsistency (or incoherence). As we discussed in Chapter 2, this occurs when

there is a discrepancy between direct and indirect estimates. We described two different

statistical models, summary level approach or Lumley model (Lumley, 2002), and trial-

arm level approach or Lu-Ades model (Lu and Ades, 2006), to incorporate inconsistency

in the network. Sauter and Held (2015) showed that INLA can be used as an alternative

inference method both for Lumley or Lu-Ades models which we discussed in Chapter 2.

Moreover, another method for assessing the inconsistency in the network is node-splitting

where inferences are split depending on whether the information comes from studies that

provide direct estimates or indirect estimates about a particular relative treatment effect

(Dias et al., 2010). The INLA implementation of the node-splitting is possible and in-

troduced by Sauter and Held (2015). However, in the thesis we want to discuss another

method for assessing inconsistency instead of node-splitting.

Very recently a new statistical model, called the design-by-treatment interaction model,

is introduced by Higgins et al. (2012). In their companion paper (White et al., 2012), they

applied this new model with fixed inconsistency parameters in a frequentist approach and

41
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in a Bayesian approach via MCMC. After that, Jackson et al. (2014) introduced design-

by-treatment interaction model with random inconsistency parameters via only MCMC.

In this chapter we firstly describe the design inconsistency and corresponding statistical

model for NMA, then by using both MCMC and INLA as inference methods we will

apply design-by-treatment interaction model with random inconsistency parameters and

compare the results.

3.2 Cycle inconsistency and design inconsistency

The following explanations are mostly adapted from Higgins et al. (2012) and Jackson

et al. (2014). In this section, we discuss the term design, design inconsistency and its rela-

tion to cycle inconsistency, also we used a graphical representation, Figure 3.1, of different

examples to make explanations easier. However, note that this graphical representation

is different than a network graph which we used in Chapter 2.

3.2.1 Consistency

In order to make it easier to comprehend, we illustrate different concepts with different

scenarios. Each scenario include three treatments namely A, B and C. We start with a

simple scenario with a network only include two-arm trials with the structure A vs B, A

vs C and B vs C under the consistency assumption. Therefore, the consistency in such a

network can be expressed with a consistency relation:

dAB = dAC − dBC (3.1)

where djk parameters represent mean treatment effect across all trials of comparison

j vs k as we discussed in Section 2.2.3. Figure 3.1a shows this scenario (a network with

only two-arm trials in which the consistency assumption holds). We draw all edges by

using the same solid line style in Figure 3.1a to show that there is no inconsistency in the

cycle.

3.2.2 Cycle inconsistency

The consistency may not hold if there is a substantial difference between estimates of

treatment comparisons so that treatment effects do not “add up” around the cycle in

the figure. Figure 3.1b demonstrates such cycle inconsistency situation when the network

includes only two-arm trials. The single dashed line in Figure 3.1b is used to indicate

that there is inconsistency in the network. However, the place of the single dashed line in

Figure 3.1b is arbitrary, since the cycle inconsistency is a property of a cycle rather than

a pairwise treatment comparison. Therefore, as an alternative scenario to Figure 3.1b one

can also demonstrate the same cycle inconsistency situation using a different graph. For
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Figure 3.1: Graphical representation of consistency, cycle inconsistency and

design inconsistency. (a) consistency: the consistency assumption holds in the

network of two-arm trials only. (b) cycle inconsistency: there is discrepancy

between direct estimate coming from A vs C (dashed line) and indirect estimate

coming from A vs B and B vs C (solid lines). (c) cycle inconsistency: alter-

native scenario, indistinguishable from (b) without additional evidence. (d)

consistency: three-arm trial is inherently consistent. (e) design inconsistency:

there is discrepancy between estimate coming from three-arm trial and from the

two-arm trials. (f) design inconsistency and cycle inconsistency: cycle inconsis-

tency within the cycle of two-arm trials, whereas the three-arm trial conflicts

with at least one two-arm trial which is design inconsistency.

instance, Figure 3.1c displays the same network as in Figure 3.1b, but now three edges are

shown in different line styles in order to indicate different possible sources of inconsistency

that are associated with each edge in the cycle. However, investigation of this kind of

alternative scenario is not our focus, since it cannot be tested statistically.
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3.2.3 Multi-arm trials

The presence of multi-arm trials in the network complicates the cycle inconsistency ap-

proach as we emphasized in Chapter 2. This is because the calculation of the ICDF

becomes hard. Within a multi-arm trial, cycle inconsistency cannot occur by definition.

Figure 3.1d shows a network which includes only three-arm trials. In Figure 3.1d, three

edges are drawn as thick lines to indicate three-arm trials. Also, the same line style is used

for all edges to display that there is no inconsistency in the network. Therefore, within the

framework of cycle inconsistency, a network may be consistent either structurally, since

all studies include all treatments (as in Figure 3.1d), or by observation, when consistency

assumption holds (as in Figure 3.1a), or by a combination of this two.

3.2.4 Design inconsistency

By the design of a trial, we mean the set of treatments included in a trial. Design

inconsistency refers to differences in treatment effects between trials involving different

designs. In allowing this difference, we implicitly assume that different designs may serve

as a proxy for some important effect modifiers. In Figure 3.1e, a design inconsistency is

shown. The three thick lines correspond to a three-arm trial with the design of A vs B vs C.

By using dashed line of AC edge, we imply that there is a design inconsistency between AC

treatment comparison in the two-arm trial (dashed line) and the AC treatment comparison

in three-arm trial (thick line).

From a different perspective, design inconsistency can be considered as a special case

of heterogeneity, since the study designs correspond to a study-level covariate which has

an association with treatment effect as in a pairwise meta-regression (see Section 1.4).

The design inconsistency approach is very helpful for solving the problems occurring with

the presence of multi-arm trials in the network. For a network with only two-arm trials,

however, the concept of design inconsistency provides no added insights compared with

cycle inconsistency.

In Figure 3.1f, an example in which a cycle inconsistency implies design inconsistency

is shown. Three thick lines in this figure correspond to a three-arm trial with design A vs

B vs C. All other three edges in this graph correspond to two-arm trials with designs A vs

B, A vs C and B vs C. From cycle-inconsistency perspective, the dashed line correspond

to a cycle inconsistency in the cycle (ABC) formed by two-arm trials. On the other hand,

since the three-arm trial is inherently consistent, there is design inconsistency between

treatment effect estimated by the three-arm trial and at least one of the two-arm trials

in this scenario. However, when the network has multiple multi-arm trials and two-

arm trials, the distinction between cycle inconsistency and design inconsistency becomes

complicated as Higgins et al. (2012) pointed out. The full design-by-treatment interaction

model, which we will introduce now, encompasses both cycle inconsistency and design

inconsistency.
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3.3 The Design-by-treatment interaction model

It is possible to have the design-by-treatment interaction model with random effects for-

mulation either using a summary level approach (contrasts-based) or a trial-arm level

approach (arm-based). The model using a summary level approach was widely described

in Section 2 of Jackson et al. (2014). That model can be considered as a multivariate

extension of the Lumley model, in which it is assumed that true treatment effects follow

a multivariate normal distribution. However, in the thesis we prefer to discuss exclusively

the trial-arm level approach. The consistency model of the Lu-Ades model and the con-

sistency model of the design-by-interaction model with trial-arm level is actually same,

since two models differ in defining inconsistency parameters in the network. Therefore this

model can be considered as an extension of the consistency model of the Lu-Ades model

(Section 2.3.2). Actually, the design-by-treatment interaction model contains additional

inconsistency random effects compared to the Lu-Ades model.

The model can be written as follows: Each trial s = 1, 2, . . . , S̄ of each design D =

1, 2, . . . , D̄ has treatment arms t1(s)
D, t2(s)

D, . . . , tKs(s)
D with at least Ks ≥ 2 treatment

arms. The first treatment j = t1(s)
D is chosen as baseline treatment and compared

with the remaining treatments k = t2(s)
D, t3(s)

D, . . . , tKs(s)
D. For each sth trial of

design D and baseline treatment j the number of events yDsj and number of patients

nDsj are observed. Correspondingly, also for the remaining treatments yDsk and nDsk are

observed. The number of events is (conditionally) independent for each trial-arm and

follows a binomial distribution, i.e. yDsj ∼ Bin(nDsj, π
D
sj) and yDsk ∼ Bin(πDsk, n

D
sk). The

relative treatment effect djk of baseline treatment j vs. treatment k can now be modelled

with logistic regression as:

logit(πDsj) = aDsj

logit(πDsk) = aDsj + djk + γDsjk + ωDjk (3.2)

The relative treatment effect aDsj of baseline treatment j in trial s of design D is a

nuisance parameter and the main interest is in djk. As we had in the Lu-Ades model

(Section 2.3.2), here also we assume a homogeneous covariance matrix for heterogeneity

as follows:

γDs ∼ Nc(0,Σγ) (3.3)

where Σγ denotes a square matrix where the diagonal entries are all τ 2 and all other

entries are τ 2/2, γDs = (γDs12, γ
D
s13, . . . , γ

D
s1c)

T . Nc denotes a multivariate normal distribu-

tion in c dimensions where c is the number of treatment arms of sth trial of design D.

The extent of heterogeneity is described by τ 2. Note that here we prefer to use Σγ instead

of T i which was used in Section 2.3.2.
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The key difference of this model and the Lu-Ades model is characterizing the in-

consistency parameters. Jackson et al. (2014) proposed a random effects formulation of

inconsistency parameters in a similar way to heterogeneity parameters as follows:

ωD ∼ Nc(0,Σω) (3.4)

where Σω denotes a square matrix where the diagonal entries are all κ2 and all other

entries are κ2/2, ωD = (ωD12, ω
D
13, . . . , ω

D
1c)

T . Here c is the number of treatment arms of

design D. Note that by definition of a design, all trials with the same design has the same

number of treatment arms. In this model, Σω is also a homogeneous covariance matrix.

Therefore, we implicitly assume that the inconsistency variance κ2 across designs is the

same for all treatment comparisons. As we had in cycle-specific inconsistency approach

(Lu-Ades model), κ2 quantifies the extent of the inconsistency in the network as whole,

and specific inconsistency parameters describe where particular inconsistencies arise. If

κ2 = 0, then there is no inconsistency, and the model becomes a consistency model.

Moreover, this model can be extended to incorporate more complicated forms of Σγ and

Σω in situations where it makes more sense.

The model which we just described (Jackson et al., 2014) is treating inconsistency

parameters ωDjk as random effects. By this way, inconsistency across evidence sources can

be conceptualized as an additional variation, in the same way as heterogeneity across

studies. A case for treating inconsistency parameters as fixed effects is made by Higgins

et al. (2012). There are advantages and disadvantages of using fixed effects model for-

mulation. One important practical advantage of using fixed effects formulation is that

the model can be fitted using multivariate meta-regression in a frequentist way (White

et al., 2012). On the other hand, maybe the most important advantage of using random

effects formulation is that we can estimate average treatment effects across all designs.

However, with the usage of fixed effects for inconsistency parameters, instead of average

treatment effects across all designs, the design-specific treatment effects are estimated.

Hence interpretation becomes a challenging task with the usage of fixed effect formula-

tion. Hereafter, we use the Jackson model to refer the design-by-treatment interaction

model with random effects model formulation.

3.4 An application (Smoking dataset)

In this section, we present a NMA using the Jackson model with trial-arm level. Also the

consistency model will be illustrated. We assume the same prior distributions as we had in

Chapter 2. Specifically, for all basic contrasts db ∼ N (0, 1000), and for heterogeneity and

inconsistency standard deviations τ ∼ U(0, 10) were assumed. We will apply the models

to a dataset which includes 24 trials investigating interventions to aid smoking cessation,

which we call the Smoking dataset. The smoking dataset is originally investigated by
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Hasselblad (1998) but also by Dias et al. (2010), Higgins et al. (2012) and Sauter and

Held (2015) among others. It must be noted that we obtained the dataset from the

nmainla R-package and its exact source is Dias et al. (2010).

The Smoking dataset counts the number of individuals who successfully quit smoking

after 6 to 12 months. The dataset describes a fully connected network comparing effects

of four different interventions (1: self-help, 2: individual counseling, 3: group counseling

and 4: no contact) and reports the number of successes and the number of participants

in 24 trials. There are two three-arm trials, one for treatments 1, 3 and 4 and one for

treatments 2, 3 and 4. There are eight different designs in the network which is shown in

Table 3.1. Figure 3.2 demonstrates corresponding network graph. We choose intervention

1 as global baseline treatment, therefore db = (d12, d13, d14)
T .

Firstly we analyze the Smoking dataset by fitting the consistency model with MCMC

and INLA (as we did in Chapter 2 for the Hip dataset, see Section 2.4.2). By taking the

values from Sauter and Held (2015), 20 000 iterations with an additional burn-in of 30 000

iterations are used for MCMC analysis. Figure 3.3 displays the posterior medians and the

95% equitailed credible intervals obtained by MCMC and INLA for basic contrasts and the

heterogeneity standard deviation. The results show very good agreement. Moreover, the

median and the 95%-CrI for τ in Figure 3.3 show that there is substantial heterogeneity

present in the network.

Table 3.1: The coding of the interventions and designs in the Smoking dataset.

Design Intervention

No Self Individual Group

contact help counseling counseling

1 1 3 4

2 2 3 4

3 1 3

4 1 2

5 1 4

6 2 3

7 2 4

8 3 4

3.4.1 The Jackson model

The implementation of the Jackson model (the design-by-treatment interaction model

with random inconsistency parameters) using trial-arm level via MCMC is achieved by

JAGS from within R. The corresponding WinBUGS code were taken from the supplemen-

tary material of Jackson et al. (2014) and can be seen in Appendix A.3 (Listing A.2).
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Figure 3.2: Network graph of the Smoking dataset. The size of the circle is

proportional to the number of participants to that intervention. Width of lines

is proportional to the number of trials for that comparison.

To get the posterior distribution of each parameter, 300 000 iterations after burn-in of

100 000 iterations were used. The R-code for the implementation of this procedure can

be seen in Appendix A.4.1. Convergence checked by running three different chains by

using five as thinning parameter. Gelman-Rubin convergence statistic were stable in all

parameters. Also, convergence and autocorrelation were checked by visual inspection of

traceplots and autocorrelation histogram plots which seems reasonable for all parameters.

The histograms in Figures 3.4 shows the marginal posterior densities for all basic con-

trasts, heterogeneity variance and inconsistency variance that are estimated by MCMC.

Now, we explain how the Jackson model is fitted by INLA. In general, the difference

between the consistency model and the Jackson model is the assumption of consistency.

In the consistency model, we assume κ2 = 0. In order to implement the latter model, the

inconsistency random effects should be taken into account by r-inla. As we showed in

equation (3.4), the assumption of inconsistency random effects is very similar to hetero-

geneity random effects. To implement the Jackson model, firstly we need to correlate ran-
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Figure 3.3: Graphical representation of the results of the implemented consis-

tency model for the Smoking dataset with MCMC and INLA. The estimates for

random effects standard deviation of heterogeneity is shown at the top (Hetero-

geneity stdev.).

dom effects in multi-arm trials and we achieved this by using model = "exchangeable"

under r-inla as we did for heterogeneity. Then to identify the inconsistency random

effects in each trial, we use the same grouping vector gi which is needed to determine the

structure of Σω. The difference between inconsistency and heterogeneity random effects

is that for inconsistency, the variance across designs is assumed to be same rather than

a common variance across each study which is the case for heterogeneity. Therefore, we

need to define an indicator variable which should be design-specific. By inspiring from

the indicator variable for heterogeneity random effects (re), we created a new indicator

variable for design-specific random effects (des). The variable des is obtained from the

coding of the designs in the network. For Smoking dataset this coding of designs is shown

in Table 3.1. Then, the inference is made by including inconsistency random effects to

the inla function as we did for heterogeneity random effects. The corresponding R-code

can be seen in Appendix A.4.2.

Posterior medians and 95 % credible intervals of each parameter which are obtained

from the fitted Jackson model (and the consistency model) using both MCMC and INLA

are shown in Table 3.2. Moreover, the straight lines in Figure 3.4 displays the marginal

densities for all basic contrasts, heterogeneity variance and inconsistency variance ob-
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Figure 3.4: Marginal posterior density estimates of all basic contrasts, the

heterogeneity and inconsistency variances by MCMC (histogram) and by INLA

(straight line) obtained from the fitted Jackson model for the Smoking dataset.

tained from the INLA implementation of the Jackson model. As Figure 3.4 suggests both

methods MCMC and INLA produce very similar results. Also these results are consis-

tent with the results appeared in Table III in Jackson et al. (2014). Figure 3.4 displays

that there is no evidence suggesting a large inconsistency in the network. Estimates of

individual inconsistency parameters ωDjk also can be helpful to investigate the presence

and even source of the inconsistency in the network. Table 3.3 shows the estimates of

those parameters obtained by MCMC and INLA. We can conclude that both inference

techniques give similar results.

3.5 The Lu-Ades vs the Jackson model

After we showed how INLA can be used to fit the Jackson model, in this section we present

comparison between the Lu-Ades models and the Jackson models derived from different

treatment orderings for Smoking dataset. This comparison is inspired from the discussion
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Table 3.2: Two sets of results for the Smoking dataset, consistency model

assumes consistency in the network, Jackson model allowing inconsistency in

the network. Posterior median and 95 % credible interval estimates are shown

for all parameters.

Consistency model Jackson model

Median 2.5% 97.5% Median 2.5% 97.5%

MCMC

d1,2 0.487 -0.295 1.320 0.563 -0.565 2.005

d1,3 0.838 0.395 1.349 0.901 -0.021 2.168

d1,4 1.095 0.266 2.016 1.194 0.075 2.702

τ 0.819 0.550 1.300 0.829 0.549 1.311

κ 0.401 0.018 1.906

INLA

d1,2 0.487 -0.269 1.274 0.586 -0.634 2.126

d1,3 0.833 0.397 1.309 0.916 -0.114 2.297

d1,4 1.088 0.278 1.953 1.216 0.031 2.793

τ 0.814 0.547 1.266 0.824 0.545 1.302

κ 0.490 0.161 1.552

Table 3.3: Estimated inconsistency parameters obtained from the fitted Jack-

son model for the Smoking dataset.

Design Parameter MCMC INLA

Median 2.5% 97.5% Median 2.5% 97.5%

1 ω1
13 0.01 -1.19 1.19 0.02 -1.33 1.33

ω1
14 -0.1 -2.06 0.65 -0.17 -2.22 0.72

2 ω2
23 -0.02 -1.37 1.04 -0.04 -1.54 1.16

ω2
24 -0.03 -1.46 0.99 -0.06 -1.63 1.09

3 ω3
13 -0.03 -1.34 0.84 -0.06 -1.47 0.94

4 ω4
12 -0.04 -1.53 0.87 -0.08 -1.69 0.98

5 ω5
14 0.16 -0.53 2.69 0.26 -0.58 2.75

6 ω6
23 -0.04 -1.48 0.97 -0.07 -1.64 1.07

7 ω7
24 0.03 -1.01 1.45 0.06 -1.13 1.59

8 ω8
34 -0.01 -1.23 1.02 -0.02 -1.35 1.13

in Section 4 of Higgins et al. (2012). However, here we implement the Jackson model

with INLA whereas in Higgins et al. (2012), the same model with fixed inconsistency

parameters with frequentist approach were used.
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The dataset which we analyzed in Section 3.4 had the treatment ordering 1234 (say

default ordering). In total, there are 24 possible treatment orderings since there are 4

different interventions in the network of Smoking dataset. When we fit the consistency

model for all 24 possible treatment orderings, the estimates of heterogeneity standard

deviation appears to be same. That shows that the results do not depend on the treatment

ordering for Smoking dataset (that means also the results do not depend on the chosen

basic contrasts). On the other hand, the Jackson model also gives the same results of

heterogeneity and inconsistency standard deviation regardless of the treatment ordering.

Also we fit various Lu-Ades models using INLA (as we explained in Section 2.4.2 for the

Hip dataset). The main distinction of a Lu-Ades model and a Jackson model for Smoking

dataset is that the former has three inconsistency random effects parameters (since there

are three independent 3-cycles in the network) whereas the latter has 10 as we showed in

Table 3.3 and naturally consistency model has zero.

The results of the fitted consistency model, the Jackson model and several Lu-Ades

models are shown in Table 3.4. It turns out that Lu-Ades models’ results substantially

depend on the treatment ordering (also the chosen basic contrasts). Especially the es-

timate of inconsistency standard deviation vary considerably amongst different Lu Ades

models. Actually not every fitted Lu-Ades model gives rise to different results, hence it

seems that some of the models are identical as is shown by the same row in Table 3.4.

In fact none of the Lu-ades models provides convincing evidence of inconsistency in the

network, since the lower bound of their interval estimates are very close to zero. This

conclusion is also the same for the Jackson model. However, the most crucial point is

that the Jackson model takes into account all possible sources of inconsistency in this

network. On the other hand, there are several distinct Lu-Ades models for this dataset.

Using the Jackson model, however, for a network with only two arm trials may lead to

overparametrisation, hence in such cases the Lu-Ades model can be preferred. However,

with the presence of multi-arm trials in the network (which is very often the case) one

should avoid the Lu-Ades model because the results depend on the treatment ordering.

Very recently, Jackson et al. (2015) showed that the Lu-Ades model is a restricted ver-

sion of the design-by-treatment interaction model and the design-by-treatment interaction

model is a unifying framework for modelling cycle inconsistency in network meta-analysis.

They made this conclusion by proving following statement: “The only model that contains

all the Lu-Ades models with all different treatment orderings is the design-by-treatment

interaction model”. However we are skipping more details about this discussion since it is

beyond the scope of the thesis and referring to Jackson et al. (2015) for interested readers.

Since the design-by-treatment interaction model should be preferred with the presence

of multi-arm trials, in the next section we will fit this kind of model to the Hip dataset

which we have already analyzed using the Lu-Ades model in Section 2.4.2.
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Table 3.4: Estimated heterogeneity standard deviation (τ) and inconsistency

standard deviation (κ) for the consistency model, the Jackson model and various

Lu-ades models for Smoking dataset with INLA. Also the number of inconsis-

tency parameters for each model is shown (# of inc. parameters). Model ’1234’

is the default ordering which was introduced in Table 3.1. Other models has

different treatment orderings. For this particular dataset, the models grouped

in rows turn out to be identical models.

# of inc.

parameters

κ τ

Median 2.5% 97.5% Median 2.5% 97.5%

Consistency model 0 0.00 0.00 0.00 0.81 0.55 1.27

Jackson model 10 0.49 0.16 1.55 0.82 0.55 1.30

Lu-ades models

1234, 1243 3 0.54 0.03 3.56 0.84 0.56 1.32

1324, 1423 3 0.62 0.04 3.92 0.83 0.56 1.31

1342, 1432 3 0.57 0.03 3.82 0.84 0.56 1.32

2314, 3214 3 2.01 0.12 5.44 0.79 0.53 1.24

3412, 4213 3 2.04 0.12 5.56 0.79 0.53 1.24

2143, 2431 3 0.53 0.03 3.59 0.84 0.56 1.32

2341, 2413, 3241 3 0.60 0.03 4.22 0.84 0.56 1.32

3421, 4231

3.6 An application (Hip dataset)

In this section, we implement the Jackson model using both MCMC and INLA for the Hip

dataset. We already introduced this dataset in Section 2.4. The main difference between

the Hip dataset and the Smoking dataset is that the former has two four-arm trials.

However, because of the flexibility of the Jackson model and both inference methods,

MCMC and INLA, which we already explained in Sec 3.4 (and referred their corresponding

R-code in Appendix), a network meta-analysis dataset which includes a multi-arm trial

with any number of arms can be fitted.

The posterior median and 95 % credible intervals for basic contrasts of the fitted

Jackson model for the Hip dataset using MCMC and INLA is shown in Figure 3.5. The

marginal posterior densities of heterogeneity and inconsistency variances using MCMC

and INLA are shown in Figure 3.6. All estimated parameters show very good agreement.

Moreover, estimates of inconsistency parameters are shown in Figure 3.7. Again MCMC

and INLA results show very good agreement. From marginal posterior density of het-

erogeneity variance, we can conclude that there is no evidence which advocates a severe
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Figure 3.5: Graphical representation of the estimates of the basic contrasts

obtained from the implemented Jackson model for the Hip dataset by using

MCMC and INLA.

heterogeneity in the network. Also, marginal posterior density of inconsistency variance

and estimates of inconsistency parameters both show that there is no evidence suggesting

a severe inconsistency in the network. Note that these conclusions are same with the

conclusions which we obtained from fitting The Lu-Ades model (see Section 2.4) and also

the conclusions of the reference paper (Murad et al., 2012).

R version and packages used to generate this chapter:

R version: R version 3.2.3 (2015-12-10)

Base packages: splines, stats, graphics, grDevices, utils, datasets, methods, base

Other packages: gridExtra, ggplot2, pcnetmeta, nmainla, R2jags, rjags, gemtc, coda, INLA, Matrix, sp,

lattice, igraph, xtable

Versions of other packages (respectively): 2.0.0, 2.0.0, 2.3, 1.1, 0.5.7, 4.5, 0.7.1, 0.18.1, 0.0.1443538834,

1.2.3, 1.2.2, 0.20.33, 1.0.1, 1.8.2

This document was generated on February 23, 2016 at 14:14.
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Figure 3.6: Marginal posterior density estimates of the heterogeneity and in-

consistency variances by MCMC (histogram) and by INLA (straight line) ob-

tained from the fitted Jackson model for the Hip dataset.
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Figure 3.7: Estimates of the inconsistency random effects parameters obtained

from the implemented Jackson model for the Hip dataset using MCMC and

INLA.



Chapter 4

Conclusions and future research

The thesis project was designed to investigate various inference methods for different

statistical models of meta-analysis. With meta-analysis, we mean both pairwise meta-

analysis and network meta-analysis. Among different inference methods, an approximate

Bayesian inference technique, INLA, was our primary focus.

The application of INLA to pairwise meta-analysis models showed results fairly close

to those obtained with its alternatives. Of course, the small differences of the results

may stem from INLA’s Bayesian nature, since all the alternatives which we discussed in

Chapter 1 were either a frequentist or an empirical Bayes method. Moreover, the provided

meta.inla R function makes the implementing pairwise meta-analysis models (including

fixed and random effects models using either a summary level or a trial-arm level with

the possibility of meta-regression) with INLA very easy. This function is the first main

contribution of the thesis to the current research. With the help of this function, the use

of INLA in the pairwise meta-analysis context is as simple as frequentist approaches which

is usually one single line code without need to examine any convergence diagnostics. On

the other hand, since INLA is an Bayesian technique, the researchers who want to make

use of Bayesian methods in this context can enjoy the ease of use of meta.inla. Note

that the meta-regression option of meta.inla can handle up to two covariates. Although,

it is possible to include any number of covariates with INLA methodology, this limitation

of the function only stem from a programming perspective. Therefore, it is possible to

extend the meta.inla function to include any number of covariates. Also, one can easily

extend the function and make it even more flexible, for example by adding more prior

distributions. The fact that the r-inla package provides wide options (specifications

of different priors, summary methods, model comparison criterion etc.), there are many

features which can be included to the meta.inla function.

The application of INLA to the consistency model in a NMA context showed results

very close to those obtained with MCMC. Note that this conclusion is already made

in Sauter and Held (2015). However, in the thesis we apply the INLA method to a

dataset including four-arm trials, so our dataset has a more complicated structure than

the examples introduced in Sauter and Held (2015). Moreover, we showed that a very

57
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recent statistical model, the Jackson model, with INLA is also possible even in networks

with four arm trials. The INLA implementation of the Jackson model using trial-arm

level is the second main contribution of the thesis to the current research. Note that

INLA (or MCMC) implementation of the Jackson model does not have any limitations

regarding the number of arms in the trials of the dataset, so it can handle the dataset

including more than four-arm trials. Then, it is also shown that the Lu-Ades models

depend on the treatment ordering of the NMA dataset, whereas the Jackson model do

not for an application. This task was accomplished by using INLA as an inference method.

By relying on these results and the theoretical background which was conceptualized in

Jackson et al. (2015), we have argued that the design-by-treatment interaction model

should be preferred with the presence of the multi-arm trials in the network. From two

possible random effects formulations, namely fixed and random effects, of the design-by-

treatment interaction model we have argued that the random effects model formulation,

the Jackson model, can be preferred because it has easier interpretation compared to

the fixed effect formulation. The Jackson model can be used for summary level or a

trial-arm level data. A trial arm-level approach has an advantage of not having zero

entry problem like summary level. However when there is no arm-level data available,

the model using the summary level is the only choice. As far as we understand, INLA

implementation of the Jackson model using a summary level is more challenging, if it is

possible, a different approach called multivariate meta-regression should be integrated to

the INLA methodology.

Our main concern about the fitted NMA models using both MCMC and INLA is the

comparison of those two methods. Although, we did not explicitly discuss the computation

time with INLA compared to MCMC for our applications, INLA is known for its speed

compared to MCMC, mainly because it is not a simulation based technique. On the other

hand, we can argue that the key advantage of INLA for NMA models is that there is no

need to examine the convergence diagnostics of samples. When implementing MCMC

methods, one should be careful about convergence diagnostics as we did in the thesis.

Also, this requires some background knowledge in MCMC techniques. From the INLA

perspective, implementing NMA models under r-inla as we demonstrated is also not

straightforward. For example, the use of correlated random effects for multi-arm trials

is one of the specialities which we discussed. However, INLA implementation of NMA

models can be automated as we achieved by meta.inla in the pairwise meta-analysis

context. Taking everything into consideration, INLA has a great potential for performing

Bayesian inference for both pairwise meta-analysis and NMA models.

There are many possible future research topics regarding the thesis. Writing an R

function to make graphical representation of data and meta.inla results is one possi-

bility in pairwise meta-analysis context. For NMA, also an R function can be created

to implement the consistency and the Jackson models (also the Lu-Ades model for net-

works which include only two-arm trials). By this way, implementing those relatively
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complicated models with INLA become available for a wide people of researchers. Also,

implementing the Jackson model using summary level is another possible work. As dis-

cussed in Jackson et al. (2014), regression type models for NMA, network meta-regression,

is also possible using the Jackson model. On the other hand we have showed that pair-

wise meta-regression models can be implemented by using INLA. Therefore extending the

Jackson model to fit network meta-regression models with INLA can be considered as a

future topic. Lastly, the R functions which we have just described can be included to the

nmainla R package to make them more available to the researchers.
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Appendix A

R-code and BUGS/JAGS-code

A.1 Pairwise meta-analysis models

A.1.1 Random effects model with the method of moment ap-

proach

# Loading the TB dataset (raw data)

TB <- read.csv("../data/TB.txt")[-1]

N <- nrow(TB) # number of trials

# Calculating log odds ratios and variances from data

logodds <- function(x) log((x[1] * (x[4] - x[3]))/((x[2] - x[1]) *

x[3]))

vars <- function(x) 1/x[1] + 1/(x[2] - x[1]) + 1/x[3] + 1/(x[4] -

x[3])

Y <- apply(cbind(TB$TRTTB, TB$TRT, TB$CONTB, TB$CON), 1,

logodds)

sigma <- apply(cbind(TB$TRTTB, TB$TRT, TB$CONTB, TB$CON),

1, vars)

prec <- 1/sigma

# Implementing the moment-based approach

library(metafor)

mom.re.tb <- rma.uni(yi = Y, vi = sigma, method = "DL")

# Mean treatment effect

nu_mom <- mom.re.tb$b

nuL_mom <- mom.re.tb$ci.lb

nuU_mom <- mom.re.tb$ci.ub

# Heterogeneity variance

tau2_mom <- mom.re.tb$tau2

A.1.2 Random effects model with the likelihood approach

# Data preparation in order to fit by 'lme' function

d <- rep(1, times = N) # treatment

ind <- 1:N # ID

61



62 APPENDIX A. R-CODE AND BUGS/JAGS-CODE

TB_sum <- data.frame(cbind(d, Y, sigma, ind))

# Likelihood approach for random effects model

library(nlme)

reml.re.tb <- lme(Y ~ -1 + d, random = ~1 | ind, data = TB_sum,

weights = varConstPower(form = ~sigma, fixed = list(power = 1)),

method = "REML", na.action = na.omit, control = list(opt = "optim"))

# Mean treatment effect

nu_reml <- fixef(reml.re.tb)

nuL_reml <- nu_reml - 1.96 * summary(reml.re.tb)$tTable[2]

nuU_reml <- nu_reml + 1.96 * summary(reml.re.tb)$tTable[2]

# Heterogeneity variance

tau2_reml <- as.numeric(VarCorr(reml.re.tb)[1, 1])

A.1.3 Random effects model with the empirical Bayes approach

# confidence level

confLevel <- 0.95

## small positive value

eps <- sqrt(.Machine$double.eps)

# Implementing Empirical Bayes method for the random effects

# model This R-code is mainly adapted from R-code which is

# shown in lecture STA 422 Bayesian Inference(spring 2015) by

# Prof. Leonhard Held

# Defining the function which computes the mean treatment

# effect MLE for fixed heterogeneity variance

nuMle <- function(tau2) {

precisions <- 1/(sigma + tau2)

weighted.mean(Y, precisions)

}

## Compute the profile log-likelihood of heterogeneity

## variance

profilLogLikTau2 <- function(tau2) {

margVars <- sigma + tau2

arg <- log(margVars) + (Y - nuMle(tau2))^2/margVars

-1/2 * sum(arg)

}

# Computing by numerical maximization of the profile

# log-likelihood function The empirical Bayes estimate of the

# heterogeneity variance

tau2Ml <- optimize(profilLogLikTau2, c(eps, 1/eps), maximum = TRUE)$maximum

# The empirical Bayes estimate of the mean treatment effect

nuMl <- nuMle(tau2Ml)

# Computing the empirical Bayes estimates for individual

# treatment effects and their corresponding credible

# intervals

weights <- sigma/(sigma + tau2Ml)

postExpectation <- weights * nuMl + (1 - weights) * Y
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postSd <- sqrt((1 - weights) * sigma)

postLower <- postExpectation - postSd * 1.96

postUpper <- postExpectation + postSd * 1.96

# Define functions in order to estimate profile

# log-likelihood confidence interval for the mean treatment

# effect

tau2Mle <- function(nu) {

scoreTau2 <- function(tau2) {

margVars <- sigma + tau2

arg <- (Y - nu)^2/margVars - 1

arg <- arg/margVars

1/2 * sum(arg)

}

res <- uniroot(scoreTau2, c(eps, 1/eps))

return(res$root)

}

profilLogLikNu <- function(nu) {

margVars <- sigma + tau2Mle(nu)

arg <- log(margVars) + (Y - nu)^2/margVars

-1/2 * sum(arg)

}

normProfilLogLikNu <- function(nu) profilLogLikNu(nu) - profilLogLikNu(nuMl)

# The function 'likelihood.ci' is directly taken from the

# book Applied Statistical Inference written by Held, L. and

# Sabanes Bove, D.(2014), page numbers are 108 and 109.

# Define a general function which computes likelihood

# confidence intervals

likelihood.ci <- function(gamma, loglik, theta.hat, lower, upper,

comp.lower = TRUE, comp.upper = TRUE, ...) ## additional arguments for the log-likelihood

{

## target function, such that f(theta)=0 gives CI limits

f <- function(theta, ...) {

loglik(theta, ...) - loglik(theta.hat, ...) + 1/2 * qchisq(gamma,

df = 1)

}

## compute lower and upper bounds of CI

ret <- c()

if (comp.lower) {

hl.lower <- uniroot(f, interval = c(lower, theta.hat),

...)$root

ret <- c(ret, hl.lower)

}

if (comp.upper) {

hl.upper <- uniroot(f, interval = c(theta.hat, upper),

...)$root

ret <- c(ret, hl.upper)

}

return(ret)
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}

# The 95 % profile likelihood confidence interval for the

# mean treatment effect

likCiNu <- likelihood.ci(gamma = confLevel, loglik = normProfilLogLikNu,

theta.hat = nuMl, lower = -10, upper = +10)

# Plotting the Figure 1.2 from Chapter 1

library(lattice) # needed for plotting figure by using 'dotplot' function

# Settings for 'dotplot' function

trials <- c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",

"11", "12", "13")

trials_overall <- c(trials, "Random effects model")

trials_overall <- ordered(trials_overall, levels = trials_overall)

ests <- c(postExpectation, nuMl)

ci_Lower <- c(postLower, likCiNu[1])

ci_Upper <- c(postUpper, likCiNu[2])

dotplot(trials_overall ~ ests, xlab = "log odds ratio", ylab = "trial",

xlim = c(-3, 3), panel = function(x, y) {

panel.xyplot(x, y, pch = 16, cex = 0.8)

panel.abline(v = 0, col = 2, lty = 2)

panel.abline(h = 13.5, col = 1, lty = 1)

panel.segments(ci_Lower, as.numeric(y), ci_Upper, as.numeric(y),

lty = 1, col = "red")

})

A.1.4 creatINLAdat.dir and meta.inla R functions

# The data preparation function needed for 'meta.inla'

# function

creatINLAdat.dir <- function(ntrt, nctrl, ptrt, pctrl, cov1 = NULL,

cov2 = NULL) {

# Adding 0.5 to entries which have 0 value!

zerocell <- function(y) {

if (y["ptrt"] == 0) {

y["ptrt"] <- 0.5

y["ntrt"] <- y["ntrt"] + 1

} else if (y["pctrl"] == 0) {

y["pctrl"] <- 0.5

y["ntrt"] <- y["ntrt"] + 1

}

return(y)

}

data <- NULL

data$ptrt <- ptrt

data$ntrt <- ntrt

data$pctrl <- pctrl

data$nctrl <- nctrl

data <- data.frame(data)

N <- nrow(data) # number of trials
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data.nozero <- t(apply(data, 1, zerocell))

d <- rep(1, times = N) # treatment arm

Y <- apply(data.nozero, 1, function(x) log((x[1] * (x[4] -

x[3]))/((x[2] - x[1]) * x[3]))) # observed log odds ratios

prec <- 1/apply(data.nozero, 1, function(x) 1/x[1] + 1/(x[2] -

x[1]) + 1/x[3] + 1/(x[4] - x[3])) # precisions

re <- 1:nrow(data.nozero) # ID for random effects

data.sum <- data.frame(cbind(d, Y, prec, re, cov1, cov2))

Y <- as.vector(rbind(data$pctrl, data$ptrt)) # number of diseased patients

sampleSize <- as.vector(rbind(data$nctrl, data$ntrt)) # number of all patients

d <- rep(0:1, times = N)

re <- as.vector(rbind(rep(NA, times = N), 1:N)) # heterogeneity random effects

if (!is.null(cov1)) {

cov1 <- as.vector(rbind(NA, cov1))

}

if (!is.null(cov2)) {

cov2 <- as.vector(rbind(NA, cov2))

}

data.arm <- data.frame(cbind(Y, sampleSize, d, re, cov1,

cov2))

data.arm$mu <- as.factor(as.numeric(gl(n = N, k = 2)))

datINLA <- list(data.sum = data.sum, data.arm = data.arm)

return(datINLA)

}

# THE 'meta.inla' function

# Pairwise meta-analysis with INLA

meta.inla <- function(datINLA, meanf = 0, varf = 1000, ul = 10,

digits = 3, mod = "FE", type = "summary", mreg = FALSE, ...)

{

if (mod %in% c("FE", "RE") == FALSE) {

stop("Function argument \"mod\" must be equal to \"FE\" or \"RE\"!")

}

if (type %in% c("summary", "trial-arm") == FALSE) {

stop("Function argument \"type\" must be equal to \"summary\" or \"trial-arm\"!")

}

if (mreg == TRUE && is.null(datINLA$data.sum$cov1)) {

stop("Function argument \"cov1\" must not be equal to \"NULL\" !")

}

# Prior dist for hyperparameter --Function for Uniform

# distribution:

hyperunif.function <- function(x) {

if (exp(x)^-0.5 < ul & exp(x)^-0.5 > 0) {

logdens <- log(1/ul)

} else {

logdens <- log(0.1e-320)

}

logdenst <- logdens + log(0.5 * exp(-x/2))

return(logdenst)
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}

lprec <- seq(from = -40, to = 40, len = 20000)

# Create table:

prior.table <- paste(c("table:", cbind(lprec, sapply(lprec,

FUN = hyperunif.function))), sep = "", collapse = " ")

inla.form <- "Y ~ -1 + d"

if (type == "trial-arm") {

inla.form <- paste(inla.form, " + mu ", sep = "")

}

if (mreg == TRUE) {

inla.form <- paste(inla.form, " + cov1 ", sep = "")

}

if (mreg == TRUE && !is.null(datINLA$data.sum$cov2)) {

inla.form <- paste(inla.form, " + cov2 ", sep = "")

}

if (mod == "RE") {

inla.form <- paste(inla.form, " + f(re, model=\"iid\", hyper = list(theta =

list(prior = prior.table))", ")", sep = "")

}

if (type == "summary") {

fit.inla <- inla(as.formula(inla.form), data = datINLA$data.sum,

family = "normal", control.fixed = list(expand.factor.strategy = "inla",

mean = meanf, prec = 1/varf), control.family = list(hyper = list(prec =

list(fixed = TRUE, initial = 0))), scale = prec, ...)

}

if (type == "trial-arm") {

fit.inla <- inla(as.formula(inla.form), data = datINLA$data.arm,

family = "binomial", control.fixed = list(expand.factor.strategy = "inla",

mean = 0, prec = 1/varf), Ntrials = sampleSize,

...)

}

nu <- as.numeric(fit.inla$summary.fixed[1, c(3, 4, 5)])

tau2 <- rev(1/summary(fit.inla)$hyperpar[1, c(3, 4, 5)])

if (mreg == TRUE) {

if (type == "trial-arm") {

N <- nrow(datINLA$data.arm)/2

} else N <- 0

cov <- as.numeric(fit.inla$summary.fixed[N + 2, c(3,

4, 5)])

if (mreg == TRUE && !is.null(datINLA$data.sum$cov2)) {

inla.form <- paste(inla.form, " + cov2 ", sep = "")

results <- list(nu = nu, cov = cov, tau2 = tau2,

call = match.call(), mreg = mreg, mod = mod)

}

cov2 <- as.numeric(fit.inla$summary.fixed[N + 3, c(3,

4, 5)])

results <- list(nu = nu, cov = cov, cov2 = cov2, tau2 = tau2,

call = match.call(), mreg = mreg, mod = mod)
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} else results <- list(nu = nu, tau2 = tau2, call = match.call(),

mreg = mreg, mod = mod)

class(results) <- "meta.inla"

return(results)

}

A.1.5 Conducting meta-analysis with meta.inla function

# Data pareparation --needed for meta.inla function

TB.datINLA <- creatINLAdat.dir(ntrt = TB$TRT, nctrl = TB$CON,

ptrt = TB$TRTTB, pctrl = TB$CONTB)

# Fitting fixed effect model using summary level approach

library(INLA)

inla.fe.tb <- meta.inla(TB.datINLA, varf = 1000, mod = "FE",

type = "summary")

# Fitting random effects model using summary level approach

inla.re.tb <- meta.inla(TB.datINLA, varf = 1000, ul = 10, mod = "RE",

type = "summary")

# Fitting fixed effect model using trial-arm level approach

inla.fe.arm.tb <- meta.inla(TB.datINLA, varf = 1000, mod = "FE",

type = "trial-arm")

# Fitting random effects model using trial-arm level approach

inla.re.arm.tb <- meta.inla(TB.datINLA, varf = 1000, ul = 10,

mod = "RE", type = "trial-arm")

A.1.6 Random effects meta-regression with weighted-least squares

and mixed model approaches

# Centering the covariates about the study number '5' to aid

# interpretation

TB$Year_centered <- TB$Year - TB$Year[5]

TB$Latitude_centered <- TB$Latitude - TB$Latitude[5]

# Using wlsq approach

wlsq.mreg.tb <- rma.uni(yi = Y, vi = sigma, mods = Y ~ TB$Latitude_centered +

TB$Year_centered, method = "DL")

# Using reml approach

TB_sum$Year_centered <- TB$Year_centered

TB_sum$Latitude_centered <- TB$Latitude_centered

nlme.mreg.tb <- lme(Y ~ -1 + d + Latitude_centered + Year_centered,

random = ~1 | ind, data = TB_sum, weights = varConstPower(form = ~sigma,

fixed = list(power = 1)), method = "REML", na.action = na.omit,

control = list(opt = "optim"))

# Heterogeneity variance

tau2_like <- as.numeric(VarCorr(nlme.mreg.tb)[1, 1])

A.1.7 Conducting meta-regression with meta.inla function
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# Creating data frame by including covariates

datINLA <- creatINLAdat.dir(ntrt = TB$TRT, nctrl = TB$CON,

ptrt = TB$TRTTB, pctrl = TB$CONTB, cov1 = TB$Latitude_centered,

cov2 = TB$Year_centered)

# Fixed effect meta regression using summary level

inla.mreg.fe.tb <- meta.inla(datINLA, mod = "FE", type = "summary",

mreg = TRUE)

# Random effects meta regression using summary level

inla.mreg.re.tb <- meta.inla(datINLA, mod = "RE", type = "summary",

mreg = TRUE)

# Fixed effect meta regression using trial-arm level

inla.mreg.fe.arm.tb <- meta.inla(datINLA, mod = "FE", type = "trial-arm",

mreg = TRUE)

# Random effects meta regression using trial-arm level

inla.mreg.fe.arm.tb <- meta.inla(datINLA, mod = "RE", type = "trial-arm",

mreg = TRUE)

A.2 The consistency model

A.2.1 Data preparation and data visualization for an NMA

# Load 'nmainla' R-package

library(nmainla)

# Load the Hip dataset

hip_fracdat_raw <- read.csv("../data/HipFracture.txt", header = T, sep = "\t")

# The necessary operation --switch names treatment 10 and 1!

# This is needed becaues of technical reasons caused by

# 'creatINLAdat' function: Global baseline treatment should

# be treatment 1, so we should switch coding of treatment 10

# and treatment 1!

for (k in 1:4) {

tk <- paste("t", k, sep = "")

hip_fracdat_raw[[tk]][which(hip_fracdat_raw[[tk]] == 1)] <- 0

hip_fracdat_raw[[tk]][which(hip_fracdat_raw[[tk]] == 10)] <- 1

hip_fracdat_raw[[tk]][which(hip_fracdat_raw[[tk]] == 0)] <- 10

}

# Change data-format to one-arm-per-row data

hip_fracdat <- mtc.data.studyrow(data = hip_fracdat_raw, armVars = c(treatment = "t",

responders = "r", sampleSize = "n"), nArmsVar = "NA.", studyNames = 1:nrow(hip_fracdat_raw),

patterns = c("%s", "%s%d"))

# Plot network:

library(pcnetmeta)

nma.networkplot(s.id = study, t.id = treatment, data = hip_fracdat)

A.2.2 Fitting the consistency model using JAGS with R2jags
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# Settings needed for MCMC

niter <- 6e+05 # number of iterations

burnin <- 3e+05 # number of burnin

thin <- 3 # number of thinning

nchain <- 3 # number of MCMC chains

# Dataset

jags.hip <- list(nt = 11, ns = 40, r = cbind(hip_fracdat_raw$r1,

hip_fracdat_raw$r2, hip_fracdat_raw$r3, hip_fracdat_raw$r4),

n = cbind(hip_fracdat_raw$n1, hip_fracdat_raw$n2, hip_fracdat_raw$n3,

hip_fracdat_raw$n4), t = cbind(hip_fracdat_raw$t1, hip_fracdat_raw$t2,

hip_fracdat_raw$t3, hip_fracdat_raw$t4), na = hip_fracdat_raw$NA.,

prec = 1/varf, ul = ul)

# Parameters to save

params.hip <- c("delta", "taubeta")

# Run JAGS model:

jags.hip.RE.JAGS <- jags(model = "JAGS.Cons.Model.txt", parameters.to.save = params.hip,

data = jags.hip, n.chains = nchain, burnin = burnin, n.iter = niter,

n.thin = thin)

# Convergence diagnostics and results

plot(jags.hip.RE.JAGS)

summary(jags.hip.RE.JAGS)

A.2.3 Fitting the consistency model using r-inla

# Prior specifications

varf <- 1000

ul <- 10

# Function for Uniform distribution:

hyperunif.function <- function(x) {

if (exp(x)^-0.5 < ul & exp(x)^-0.5 > 0) {

logdens <- log(1/ul)

} else {

logdens <- log(9.98012604599318e-322)

}

logdenst <- logdens + log(0.5 * exp(-x/2))

return(logdenst)

}

# Set up grid to evaluate the uniform prior:

lprec <- seq(from = -40, to = 40, len = 20000) ## CHANGE this LINE if INLA crashes!

## (extend grid by changing (from= , to=)) Create table with

## prior values and lprec:

prior.table <- paste(c("table:", cbind(lprec, sapply(lprec, FUN = hyperunif.function))),

sep = "", collapse = " ")

# Some more data preparation steps for INLA approach Creating

# Baseline variable:

hip_fracdat_raw$bas <- apply(hip_fracdat_raw[, c("t1", "t2",

"t3", "t4")], 1, function(x) min(x, na.rm = TRUE))

hip_fracdat$baseline <- rep(hip_fracdat_raw$bas, times = hip_fracdat_raw$NA.)
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1 model{

2

3 # LOOP THROUGH STUDIES

4 for(i in 1:ns){

5

6 # BINOMIAL LIKELIHOOD WITH LOGIT LINK

7 # VAGUE PRIORS FOR TRIAL BASELINES

8 base[i] ˜ dnorm(0, prec)

9 # LOOP THROUGH ARMS

10 for (k in 1:na[i]) {

11 r[i,k] ˜ dbin(p[i,k],n[i,k])

12 logit(p[i,k]) <- base[i] + eta[i,k]

13 }

14 # RANDOM EFFECTS DISTRIBUTION

15 w[i,1] <- 0

16 eta[i,1] <- 0

17 for (k in 2:na[i]) { # LOOP THROUGH ARMS

18 eta[i,k] ˜ dnorm(m.cond[i,k], precbeta.cond[i,k])

19 # MEANS WITH MULTI-ARM TRIAL CORRECTION

20 m.cond[i,k] <- delta[t[i,k]] - delta[t[i,1]] + sw[i,k]

21 # BETWEEN-STUDY PRECISION WITH MULTI-ARM TRIAL CORRECTION

22 precbeta.cond[i,k] <- precbeta * 2 * (k-1)/k

23 w[i,k] <- (eta[i,k] - delta[t[i,k]] + delta[t[i,1]])

24 sw[i,k] <- sum(w[i,1:(k-1)]) / (k-1)

25 }

26 }

27 # TREATMENT EFFECT IS ZERO FOR REFERENCE TREATMENT

28 delta[1] <- 0

29 # VAGUE PRIORS

30 for (k in 2:nt) { delta[k] ˜ dnorm(0,prec) }

31 taubeta ˜ dunif(0,ul)

32 precbeta <- pow(taubeta,-2)

33

34 }

Listing A.1: BUGS/JAGS code for the consistency model (JAGS.Cons.Model).

# Study should be factor variable!

hip_fracdat$mu <- as.factor(hip_fracdat$study)

# Creating data frame suitable for 'inla'

hipfracdatINLA <- creatINLAdat(dat = hip_fracdat, treatmentvar = "treatment",

baselinevar = "baseline", studyvar = "study")

# Some Settings Accounting for multi-arm trials Transform

# group-correlation 0.5 to internal.scale of INLA:

cor <- 0.5 # correlation between treatment comparisons of the same multi-arm trial.

ngroup <- 3 # number of groups is equal to the maximum number

# of pairwise treatment comparisons in a (multi-arm) trial

# transformation to internal INLA-scale.
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cor.inla.init <- log((1 + cor * (ngroup - 1))/(1 - cor))

# The Consistency model

inla_hip_arm_form_RE <- responders ~ -1 + mu + d12 + d13 + d14 +

d15 + d16 + d17 + d18 + d19 + d110 + d111 + f(re, model = "iid",

hyper = list(theta1 = list(prior = prior.table)), group = g,

control.group = list(model = "exchangeable", hyper = list(rho = list(fixed = TRUE,

initial = cor.inla.init))))

# Call inla:

nmainlaRE.hip <- inla(as.formula(inla_hip_arm_form_RE), Ntrials = sampleSize,

family = "binomial", data = hipfracdatINLA, control.fixed =

list(expand.factor.strategy = "inla",

mean = 0, prec = 1/varf), control.compute = list(dic = TRUE,

cpo = TRUE), control.inla = list(strategy = "simplified.laplace",

lincomb.derived.only = FALSE))

nmainlaRE.hip <- inla.hyperpar(nmainlaRE.hip)

# Basic contrasts

inla.bas.hip <- nmainlaRE.hip$summary.fixed[41:51, ][, c(3, 4,

5)]

# Heterogeneity standard deviation

tau2.inla <- rev(sqrt(1/summary(nmainlaRE.hip)$hyperpar[1, -c(1,

2, 6)]))

A.3 The Lu-Ades model

A.3.1 Fitting inconsistency model using cycle-specific approach

with r-inla

# Implementation of the Lu-Ades model Special attention to

# cycle-specific inconsistency random effects --ICDF must be

# determined by 'hand'!

hipfracdatINLA$w <- rep(NA, nrow(hipfracdatINLA))

hipfracdatINLA[hipfracdatINLA$study == 20 & hipfracdatINLA$treatment ==

8, ]$w <- 1

hipfracdatINLA[hipfracdatINLA$study == 1 & hipfracdatINLA$treatment ==

10, ]$w <- 2

hipfracdatINLA[hipfracdatINLA$study == 2 & hipfracdatINLA$treatment ==

10, ]$w <- 3

hipfracdatINLA[hipfracdatINLA$study == 3 & hipfracdatINLA$treatment ==

10, ]$w <- 3

hipfracdatINLA[hipfracdatINLA$study == 29 & hipfracdatINLA$treatment ==

9, ]$w <- 4

hipfracdatINLA[hipfracdatINLA$study == 37 & hipfracdatINLA$treatment ==

11, ]$w <- 5

hipfracdatINLA[hipfracdatINLA$study == 4 & hipfracdatINLA$treatment ==

10, ]$w <- 6

hipfracdatINLA[hipfracdatINLA$study == 5 & hipfracdatINLA$treatment ==

10, ]$w <- 6
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hipfracdatINLA[hipfracdatINLA$study == 6 & hipfracdatINLA$treatment ==

10, ]$w <- 6

hipfracdatINLA[hipfracdatINLA$study == 7 & hipfracdatINLA$treatment ==

10, ]$w <- 6

hipfracdatINLA[hipfracdatINLA$study == 8 & hipfracdatINLA$treatment ==

10, ]$w <- 6

hipfracdatINLA[hipfracdatINLA$study == 9 & hipfracdatINLA$treatment ==

10, ]$w <- 6

# Inconsitency random effects

lc1 <- inla.make.lincomb(d14 = -1, d16 = 0, d18 = 1, d19 = 0,

d110 = 0, d111 = 0, w = c(1, NA, NA, NA, NA, NA))

lc2 <- inla.make.lincomb(d14 = -1, d16 = 0, d18 = 0, d19 = 0,

d110 = 1, d111 = 0, w = c(NA, 1, NA, NA, NA, NA))

lc3 <- inla.make.lincomb(d14 = 0, d16 = -1, d18 = 0, d19 = 0,

d110 = 1, d111 = 0, w = c(NA, NA, 1, NA, NA, NA))

lc4 <- inla.make.lincomb(d14 = 0, d16 = 0, d18 = -1, d19 = 1,

d110 = 0, d111 = 0, w = c(NA, NA, NA, 1, NA, NA))

lc5 <- inla.make.lincomb(d14 = 0, d16 = 0, d18 = -1, d19 = 0,

d110 = 0, d111 = 1, w = c(NA, NA, NA, NA, 1, NA))

lc6 <- inla.make.lincomb(d14 = 0, d16 = 0, d18 = 0, d19 = -1,

d110 = 1, d111 = 0, w = c(NA, NA, NA, NA, NA, 1))

LC <- list()

LC[["d48"]] <- lc1[[1]]

LC[["d410"]] <- lc2[[1]]

LC[["d610"]] <- lc3[[1]]

LC[["d89"]] <- lc4[[1]]

LC[["d811"]] <- lc5[[1]]

LC[["d910"]] <- lc6[[1]]

# Formula:

inla_hip_arm_form_REinc <- responders ~ -1 + mu + d12 + d13 +

d14 + d15 + d16 + d17 + d18 + d19 + d110 + d111 + f(re, model = "iid",

hyper = list(theta1 = list(prior = prior.table)), group = g,

control.group = list(model = "exchangeable", hyper = list(rho = list(fixed = TRUE,

initial = cor.inla.init)))) + f(w, model = "iid",

hyper = list(theta1 = list(prior = prior.table)))

# Call inla:

nmainla.hip <- inla(as.formula(inla_hip_arm_form_REinc), Ntrials = sampleSize,

family = "binomial", data = hipfracdatINLA, lincomb = LC,

control.fixed = list(expand.factor.strategy = "inla", mean = 0,

prec = 1/varf), control.compute = list(dic = TRUE, cpo = TRUE),

control.inla = list(strategy = "simplified.laplace", lincomb.derived.only = FALSE))

nmainla.hip <- inla.hyperpar(nmainla.hip)

# Results

results.inla <- summary(nmainla.hip)

# Basic contrasts

INLA.luades <- nmainla.hip$summary.fixed[41:50, ][, c(3, 4, 5)]

# Functional contrasts

INLA.luades.fun <- nmainla.hip$summary.lincomb[, c(4, 5, 6)]



A.4. THE JACKSON MODEL 73

# Get median estimates of marginal posterior of the

# hyperparameter variances: Heterogeneity

het.luades <- rev(sqrt(1/summary(nmainla.hip)$hyperpar[1, -c(1,

2, 6)]))

# Inconsistency

inc.luades <- rev(sqrt(1/summary(nmainla.hip)$hyperpar[2, -c(1,

2, 6)]))

# Inconsistency random effects

INLA.luades.incs <- nmainla.hip$summary.random$w

A.4 The Jackson model

A.4.1 Fitting Jackson model with JAGS

# Load the Smoking dataset

data("smokdatDI", package = "nmainla")

# Adding 'design' variable to the dataset --by hand

smokdatDI$des <- c("1", "2", rep("3", times = 7), "4", "4", "3",

"3", "3", "5", "4", rep("3", times = 4), "6", "7", "8", "8")

# MCMC settings

niter <- (1e+05 + 1e+05) # number of iterations

burnin <- 1e+05 # number of burnin

thin <- 5 # number of thinning

nchain <- 3 # number of MCMC chains

# Dataset

jags.smoking.inc <- list(nt = 4, ns = 24, ndes = 8, nades = c(3,

3, 2, 2, 2, 2, 2, 2), r = cbind(smokdatDI$r1, smokdatDI$r2,

smokdatDI$r3), n = cbind(smokdatDI$n1, smokdatDI$n2, smokdatDI$n3),

t = cbind(smokdatDI$t1, smokdatDI$t2, smokdatDI$t3), na = smokdatDI$na,

des = smokdatDI$des, prec = 1/varf, ul = ul)

params.smoking.inc <- c("delta[2]", "delta[3]", "delta[4]", "taubeta",

"tauomega", "om[1,2]", "om[1,3]", "om[2,2]", "om[2,3]", "om[3,2]",

"om[4,2]", "om[5,2]", "om[6,2]", "om[7,2]", "om[8,2]")

# Run JAGS model:

jags.smokeREinc.JAGS <- jags(data = jags.smoking.inc, n.iter = niter,

n.burnin = burnin, n.thin = thin, n.chains = nchain,

parameters.to.save = params.smoking.inc, model.file = "JAGS.Design.Model.txt")

# Convergence diagnostics and results

plot(jags.smokeREinc.JAGS)

print(jags.smokeREinc.JAGS)

A.4.2 Fitting Jackson model with r-inla

data("smokdatDI", package = "nmainla")

# Adding 'design' variable to the dataset --by hand

smokdatDI$des <- c("1", "2", rep("3", times = 7), "4", "4", "3",

"3", "3", "5", "4", rep("3", times = 4), "6", "7", "8", "8")
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# Data preparation for the Smoking dataset

smokdat <- mtc.data.studyrow(data = smokdatDI, armVars = c(treatment = "t",

responders = "r", sampleSize = "n"), nArmsVar = "na", studyNames = 1:nrow(smokdatDI),

patterns = c("%s", "%s%d"))

smokdat$baseline <- rep(smokdatDI$t1, times = smokdatDI$na)

smokdat$mu <- as.factor(smokdat$study)

smokdatINLA <- creatINLAdat(dat = smokdat, treatmentvar = "treatment",

baselinevar = "baseline", studyvar = "study")

# Adding indicator variable for design inconsistency

# parameters (des) --design inconsistency random effects

smokdatINLA$des <- rep(smokdatDI$des, times = smokdatDI$na)

for (i in 1:nrow(smokdatINLA)) {

if (smokdatINLA$re[i] %in% NA)

smokdatINLA$des[i] <- NA

}

# Formula:

inla_form.smokeDesinc <- responders ~ -1 + mu + d12 + d13 + d14 +

f(re, model = "iid", hyper = list(theta1 = list(prior = prior.table)),

group = g, control.group = list(model = "exchangeable",

hyper = list(rho = list(fixed = TRUE, initial = cor.inla.init)))) +

f(des, model = "iid", hyper = list(theta1 = list(prior = prior.table)),

group = g, control.group = list(model = "exchangeable",

hyper = list(rho = list(fixed = TRUE, initial = cor.inla.init))))

# Call inla:

inla.smokeDesinc <- inla(as.formula(inla_form.smokeDesinc), Ntrials = sampleSize,

family = "binomial", data = smokdatINLA,

control.fixed = list(expand.factor.strategy = "inla",

mean = 0, prec = 1/varf), control.compute = list(dic = TRUE,

cpo = TRUE), control.inla = list(strategy = "simplified.laplace",

lincomb.derived.only = FALSE))

inla.smokeDesinc <- inla.hyperpar(inla.smokeDesinc)

# Results Get marginal posterior of the hyperparameter

# variances (instead of the precisions):

tau.inla.des <- rev(sqrt(1/summary(inla.smokeDesinc)$hyperpar[1,

-c(1, 2, 6)]))

inc.inla.des <- rev(sqrt(1/summary(inla.smokeDesinc)$hyperpar[2,

-c(1, 2, 6)]))
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1 model{

2

3 # LOOP THROUGH STUDIES

4 for(i in 1:ns){

5

6 # BINOMIAL LIKELIHOOD WITH LOGIT LINK

7 # VAGUE PRIORS FOR TRIAL BASELINES

8 base[i] ˜ dnorm(0, prec)

9 # LOOP THROUGH ARMS

10 for (k in 1:na[i]) {

11 r[i,k] ˜ dbin(p[i,k],n[i,k])

12 logit(p[i,k]) <- base[i] + eta[i,k] + om[des[i], k]

13 }

14 # RANDOM EFFECTS DISTRIBUTION

15 w[i,1] <- 0

16 eta[i,1] <- 0

17 for (k in 2:na[i]) { # LOOP THROUGH ARMS

18 eta[i,k] ˜ dnorm(m.cond[i,k], precbeta.cond[i,k])

19 # MEANS WITH MULTI-ARM TRIAL CORRECTION

20 m.cond[i,k] <- delta[t[i,k]] - delta[t[i,1]] + sw[i,k]

21 # BETWEEN-STUDY PRECISION WITH MULTI-ARM TRIAL CORRECTION

22 precbeta.cond[i,k] <- precbeta * 2 * (k-1)/k

23 w[i,k] <- (eta[i,k] - delta[t[i,k]] + delta[t[i,1]])

24 sw[i,k] <- sum(w[i,1:(k-1)]) / (k-1)

25 }

26 }

27 # INCONSISTENCY PARAMETERS

28 for (i in 1:ndes) { # LOOP THROUGH DESIGNS

29 om[i,1] <- 0

30 for(k in 2:nades[i]) { # LOOP THROUGH ARM OF DESIGN i

31 om[i,k] ˜ dnorm(mom.cond[i,k],precom.cond[i,k])

32 # MEAN OF INCONSISTENCY DISTRIBUTION WITH MULTI-ARM TRIAL CORRECTION

33 mom.cond[i,k] <- sum(om[i,1:(k-1)])/(k-1)

34 # PRECISION OF INCONSISTENCY DISTRIBUTION WITH MULTI-ARM TRIAL CORRECTION

35 precom.cond[i,k] <- precomega * 2 * (k-1)/k

36 }

37 }

38 # TREATMENT EFFECT IS ZERO FOR REFERENCE TREATMENT

39 delta[1] <- 0

40 # VAGUE PRIORS

41 for (k in 2:nt) { delta[k] ˜ dnorm(0,prec) }

42 taubeta ˜ dunif(0,ul)

43 precbeta <- pow(taubeta,-2)

44 varbeta <- 1 / precbeta

45 tauomega ˜ dunif(0,ul)

46 precomega <- pow(tauomega,-2)

47 varomega <- 1 / precomega

48

49 }

Listing A.2: BUGS/JAGS code for the Jackson model (JAGS.Design.Model).
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