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Abstract

Multiple linear regression techniques are well-established statistical tools that are able to quantify
the association between many explanatory variables and one outcome variable in a human-
interpretable manner. However, many explanatory variables increase the chance of collinearity,
which means that one of them is well explainable by linear combinations of others. It is well
known that collinearity has detrimental impacts on multiple linear regression estimands, thus
stimulating research on collinearity. For example, Belsley came up with a rule of thumb to detect
harmful collinearity, which says that condition indices, and therefore also condition numbers,
over 30 indicate consequential collinearity. In the meantime, this rule of thumb has been widely
advocated so that it seems to be carved in stone. Therefore, it is important to design a Monte
Carlo simulation to clarify the relevance of this cut-o�.

Belsley's rule of thumb applies to the omnipresent statistical workhorse, the least-squares model.
However, with the rise of computational power, novel transformation models that are able to
�exibly transform the outcome have a large impact on the understanding of regression models.
It is currently not known whether both, least-squares and the transformation model equivalent,
react equally to collinearity. Thus, it is important to clarify whether collinearity diagnostics
procedure developed with least-squares can also be used in transformation models.

Furthermore, it can be expected that the sample size can mitigate the detrimental impact of
collinearity, but there are currently no exact rules how to do this. Thus, there is a demand for
software and well-explained hands-on examples that assist in properly adjusting the study design
to account for collinearity.

To address these needs in this master thesis, we designed and conducted a Monte Carlo simu-
lation study where we found no signs of tipping point at Belsley's cut-o� value of 30. However,
we discovered that the degree of collinearity summarized by one condition number impacts the
Wald statistics values of both, the least-squares model and the transformation model equiva-
lent. We also demonstrated that the Wald statistic values di�er in general between the two
methods. Moreover, we proposed a method for sample size calculation in the least-squares case.
The methods developed are implemented in open-source R software, which is integrated in the
Collinearity package. As additional support, we also demonstrated how to apply these meth-
ods in a case study using the BostonHousing2 data. These examples and functions assess the
impact of the detrimental e�ect of collinearity on multiple linear regression estimands and suggest
how to improve the sample size to mitigate this detrimental e�ect.
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Chapter 1

Introduction

Multiple linear regression techniques are well-established and easy-interpretable statistical tools
that can incorporate many explanatory variables associated with one outcome variable. Many
explanatory variables increase the chance of collinearity, which means that one of them is well
explained by a linear combination of others. It is well known that collinearity has detrimental
impacts on multiple linear regression estimands (Graham, 2003). Therefore, collinearity is ex-
tensively discussed in several statistical textbooks such as Cohen (2013); Hocking (2013); Neter
and Wasserman (1996); Tabachnick and Fidell (2012); Draper and Smith (1998); Chatterjee and
Hadi (2012); Montgomery et al. (2021) and Belsley (1991) just to mention a few.

Belsley (1991) came up with a diagnostic procedure that illustrates and quanti�es the overall
collinearity among the explanatory variables used in the model. Belsley also introduced a rule
of thumb saying that condition indices, and therefore also condition numbers, over 30 calculated
on the equilibrated design matrix mean that the collinearity at hand is consequential and should
be avoided. Belsley (1991)[page 129] says "If pressed to provide a value for a scaled condition
index that divides large from small, 30 seems quite reasonable for many purposes. I am, however,
always reluctant to give such �gures because they are sometimes taken too seriously.". Despite
this warning, the rule of thumb is established in statistical literature and seems almost to be
carved in stone as the rule can be read for example in Cohen (2013); Hocking (2013); Tabachnick
and Fidell (2012); Chatterjee and Hadi (2012) but also Wikipedia (2022) writes about condition
numbers larger than 30 are a sign for severe multicollinearity.

Belsley further mentioned (Belsley, 1991)[page 81] as a shortcoming in his work that his rec-
ommendations do not come from Monte Carlo experiments, and thus no inference about the
distributional properties was made. To the best of our knowledge, no properly designed Monte
Carlo simulation studies (Burton et al., 2006; Morris et al., 2019; Pawel et al., 2022) to that
matter have been conducted. Belsley stated that his work provides a basis for any re�nements
that future work suggests. Therefore, the time has come to clarify the relevance of the cut-o� of
30.

With increasing computational power on the rise, developing and employing statistical models
that make use of this power are more and more used. Transformation models that are able to
�exibly transform the outcome to the distribution we assume, belong to models that feast on this
computational power (Hothorn et al., 2017; Hothorn, 2020; Siegfried and Hothorn, 2020). Such
transformation models are for example implemented in the tram package. While these models
o�er many bene�ts, their properties are often di�cult to study as analytical results may not be
possible or di�cult to obtain (Morris et al., 2019; Boulesteix et al., 2020). In contrast, the least-
squares method has an analytical solution that can be nicely studied also in terms of collinearity.
While Belsley's collinearity diagnostic procedures and exploration of collinearity are based on
models �tted by the least-squares method, novel statistical methods such as transformation

1



2 CHAPTER 1. INTRODUCTION

models have not yet been discussed. For example, it is currently not known whether both,
least-squares (lm) and transformation model equivalent (tram::Lm), react equally to collinearity.
Moreover, it is unknown whether the same diagnostics apply for tram::Lm as to lm. Finally, it
remains to be clari�ed whether other factors related to collinearity play an important role in the
tram::Lm estimating procedure.

To get reliable parameter estimates of statistical models, sample size calculations are necessary.
These calculations help plan experiments and increase the probability of �nding relevant e�ects,
if they are true. Sample size calculations are well established for numerous di�erent analyses
where the aim is to design a study and quantify a certain e�ect of interest (e.g. daewr Lawson
and Krennrich (2021), pwrss Bulus (2022), designsize Bhattacharjee et al. (2021), presize
Haynes et al. (2021), MKpower Kohl (2020), TrialSize Ed Zhang ; Vicky Qian Wu ; Shein-
Chung Chow ; Harry G.Zhang (2020), pwr Champely (2020)) or analysis targeting the overall
modelling performance, which is for example the goal in prediction models (e.g. pmsampsize

Ensor et al. (2022)). However, up to our knowledge, sample size calculations that adjust for
collinearity and corresponding software implementations are missing. Thus, there is a need for
software that adjusts for collinearity to optimize the study design.

To address these needs, we introduced some theoretical methods in Chapter 2. We designed a
Monte Carlo simulation study in Chapter 5. We developed procedures for sample size computa-
tion in Chapter 4 and applied these methods to the BostonHousing2 data. Finally, we assured
our work is reproducible by making the relevant components transparent and accessible for the
public (see Appendix A.5 for more details).

This thesis clari�es the relevance of the cut-o� of 30 on the detrimental impact of collinearity.
It also demonstrates the di�erence in the impact of collinearity on lm and tram::Lm estimat-
ing procedures. Moreover, it develops and implements functions for sample size computation,
collinearity �ngerprint, and graphical collinearity assessment in an open-source Collinearity

package. Finally, these functions are applied to a real-world data, providing well-explained
hands-on examples.



Chapter 2

Methods

This chapter summarizes the statistical methods used and provides some mathematical deriva-
tions and formulas. It is based on the books by Montgomery et al. (2021); Draper and Smith
(1998); Held and Sabanés-Bové (2020) with several adaptions to better crystallize the theoretical
knowledge that is necessary later on.

2.1 Linear regression models and least-squares estimator

Modeling and estimating the linear relationship between a continuous response y and one or more
explanatory variables is called linear regression analysis. The change in the response y ∈ Rn×1

as a reaction to changes in the explanatory variables gets quanti�ed by the coe�cients β ∈ Rp×1

and represents the main target of multiple linear regression analysis. The linear model that also
represents the conditional expectation model takes the form

y = Xβ + ε · σ (2.1)

with X being the so called design matrix of dimension n × p where n refers to the number of
observations and p to the number of explanatory variables including a constant. In order to be
well-speci�ed, the model assumes the following:

1. Linearity in Xβ

2. Errors ε are identically and independently standard normal distributed as ε[i] ∼ N (0, 1)

3. The errors are further scaled by σ which stays constant throughout the whole range of X
(homoscedasticity)

The least-squares estimator β̂ is a function S
(
β̂
)
which �nds the best �tting coe�cients by

minimizing the squared error term ε ∈ Rn×1 as

S(β) =

n∑
i=1

ε[i]2 = ε⊤ε = (y −Xβ)⊤(y −Xβ) (2.2)

which can be rearranged to

S(β) = y⊤y − β⊤X⊤y︸ ︷︷ ︸
dim:1×1

−y⊤Xβ︸ ︷︷ ︸
dim:1×1

+β⊤X⊤Xβ

= y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ

3



4 CHAPTER 2. METHODS

To obtain the least-squares estimators we have to take the derivative with respect to the coe�-
cients, set to zero and evaluate at the estimates

δS(β)

δβ

∣∣∣
β̂
= −2X⊤y + 2X⊤Xβ̂

!
= 0

X⊤Xβ̂ = X⊤y

β̂ =
(
X⊤X

)−1
X⊤y (2.3)

This is a convenient analytical solution but it assumes that the inverse of X⊤X exists which can
pose di�culties as we will see. In R, by executing the command lm what happens is essentially
what Equation (2.3) describes.

Properties of the least-squares estimator

To understand the impact of collinearity with respect to the estimation process, it is worth to
have a look at some properties of the least-squares estimator.

Expectation

Assuming the model is well speci�ed, the expectation of the least-squares estimator β̂ is:

E
(
β̂
)
= E

[(
X⊤X

)−1
X⊤y

]
= E

[(
X⊤X

)−1
X⊤(Xβ + ε)

]

= E

(X⊤X
)−1

X⊤X︸ ︷︷ ︸
=I

β +
(
X⊤X

)−1
X⊤ε

 = E [β] +
(
X⊤X

)−1
X⊤ E [ε]

since the explanatory variables are �xed (measured without error), the errors E(ε) = 0 and the
coe�cients are unknown but constant as E(β) = β, this means

E
(
β̂
)
= β (2.4)

and therefore the least-square estimator β̂ is an unbiased estimator for β.

Variance

The variance, or better the covariance for a multidimensional setting, of β̂ is computed by
applying a variance operator on β̂ :

Var
(
β̂
)
= Var

[(
X⊤X

)−1
X⊤y

]
=
(
X⊤X

)−1
X⊤Var [y]

[(
X⊤X

)−1
X⊤

]⊤
because the uncertainty of the response y is described by the errors that are independent and
identically distributed, it holds that Var (y) = Var (Xβ + ε) = σ2I which uses the fact that Xβ
is also constant and thus has a variance of zero. Therefore

Var
(
β̂
)
= σ2

(
X⊤X

)−1
X⊤

[(
X⊤X

)−1
X⊤

]⊤
= σ2

(
X⊤X

)−1
X⊤X

(
X⊤X

)−1

Var
(
β̂
)
= σ2

(
X⊤X

)−1
(2.5)

Noteworthy is at this point that σ is treated as a constant although it has to be estimated from
the data.
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Distribution of the least-squares estimator

The distribution of the least-squares estimator can be determined by rearranging Equation (2.3)
as following

β̂ =
(
X⊤X

)−1
X⊤y

=
(
X⊤X

)−1
X⊤ (Xβ + ε)

= β +
(
X⊤X

)−1
X⊤ε (2.6)

where we see that β̂ is a linear combination of ε which is the only stochastic component in
Equation (2.6) since the explanatory variables but also the true but unknown coe�cient β are
�xed. Thus, a linear combination of a normal distributed random variable is again normally
distributed with mean and variance obtained from (2.4) and (2.5). Thus, the distribution of the
estimator is

β̂ ∼ N p

(
β, σ2

(
X⊤X

)−1
)

(2.7)

2.2 Transformation models

Hothorn (2020) nicely proposes a prospective to unify a wide range of statistical models by moving
to conditional distributions and thus leaves the models relying on conditional expectation behind.
We get there by rearranging the familiar model, noted by Equation (2.1), to model the error term
ε as

y −Xβ

σ
= ε

This is done because the error term ε is the only stochastic component of the model and in
this transformed linear model framework we specify the error terms to be standard normally
distributed with ε[i] ∼ N (0, 1). Moreover, we can treat the constant term from the least-squares

method separately by letting β =
[
α, β̃

]
and X =

[
1, X̃

]
. For one observation, the model takes

then the form

y [i]− α− X̃[i, ]β̃

σ
= ε[i] ∼ N (0, 1)

Modelling via conditional distribution function, this turns to

P(Y [i] ≤ y [i] | X̃[i, ]) = Φ

(
y [i]− α− X̃[i, ]β̃

σ

)
(2.8)

and to make sense of the name transformation model we further reformulate to

P(Y [i] ≤ y [i] | X̃[i, ]) = Φ

−α

σ︸︷︷︸
θ0

+
1

σ︸︷︷︸
θ1

y [i]− X̃[i, ]
β̃

σ︸︷︷︸
βtram

 = Φ
(
θ0 + θ1y [i]− X̃[i, ]βtram

)
(2.9)

where we see that the number of parameters to be estimated simultaneously is now p+ 1 which
is due to θ1 = σ−1. This means that θ1 is not estimated independently from βtram as it is the
case in the least-squares setup.
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Now, we introduce the transformation function h(y [i]|θ) which is in this particular case θ0+θ1y [i]
and the purpose of it is doing the best it can to transform the response y to follow the distribution
we want, which is here a standard normal distribution N (0, 1) speci�ed by Φ(z) = FZ(z):

P(Y [i] ≤ y [i] | X̃[i, ]) = FZ

(
h(y [i]|θ)− X̃[i, ]βtram

)
(2.10)

Equation (2.10) describes the general speci�cation of a transformation model as it is used in the
tram package (Hothorn, 2020). The transformation function in (2.9) is linear and gets �tted by
executing the command tram::Lm in R. However, we are by no means limited to this linearity
and sometimes it is also necessary to use more complex transformations to assure our model
is well-speci�ed. Similarly as we see sometimes log or square-root transformed responses as an
attempt to assure normality, we can use highly �exible functions such as splines to get a data-
driven transformation. Such functions easily help to transform the outcome, which only has to
be at least ordinal, to follow the distribution we want (not limited to normal distribution). The
only restriction we must respect is that the transformation function is monotone, not strictly
though. Whereas in the linear model so far we have estimated the coe�cients via the least-
squares method, we estimate them now by optimizing the likelihood. For more details with
respect to the underlying functionalities of the tram package we refer the reader to Hothorn
(2020) and for more theoretical issues to Hothorn et al. (2017).

2.3 Collinearity and its problems

Collinearity actually can be reformulated into the problem that the inverse of X⊤X in Equa-
tion (2.3) does not, or almost not, exist. A strict non-existence arises when the p × p matrix
X⊤X is not of full rank (rank(X⊤X) < p) which consequently means the rank of X is also not
full (rank(X) < p). Rank de�ciency of X, and thus the non-existence of the inverse, happens
when there is linear dependence among the columns of X. However, a strict non-existence is

hardly the case and therefore the inverse matrix
(
X⊤X

)−1
most likely exists. The damage

caused by this almost non-existence might be still severe and probably is even more dangerous
than a complete absence of the inverse. This, because it still provides results that might lead to
wrong conclusions.

In a �rst step, we will demonstrate what collinearity's simplest representative, correlation, causes.
For this, we will center and subsequently equilibrate the data to have X⊤X in the form of a
correlation matrix C. We have then a one-to-one relationship what correlation does to the
least-squares estimator β̂.

However, centering means that an intercept is removed, and as we will later see, the intercept can
also be involved in collinearity and thus centering is not an option. One might ask at this point
why we even need to transform our data set at all and the answer is that linear transformations
on X result in di�erent collinearity diagnostics. This means that the collinearity diagnostics will
tell a di�erent story although the problem is essentially the same. This should be avoided and
therefore the diagnostics has to be applied on data that is as much uni�ed as possible.

2.3.1 Equilibration of the design matrix

Standardization is needed since it does not matter for example whether the size of a �eld is in
m2 or in ha or the amount of fertilizer is in liters or deciliters. This will provide essentially
the same information via the estimated coe�cients but will result in di�erent collinearity di-
agnostic measures. Thus, there is a need to transform the data appropriately and a common
transformation of X is equilibration which means that after transformation, the columns have
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unit length. We call from now on equilibrated matrices E. This method is also applied in the
procedures developed by Belsley (1991) and is in this report done by executing the command
equilibrate_matrix from the Collinearity package (Georgios Kazantzidis, Jerome Sepin and
Malgorzata Roos, 2023). The procedure works as following

E[, j] =
X[, j]

||X[, j]||
=

X[, j]√∑n
i=1X[i, j]2

and for a whole matrix

E = X · diag

 1√
diag

(
X⊤X

)
 (2.11)

E⊤E is then a p× p symmetric matrix with all diagonals equals to 1. And in the case where all
columns are orthogonal (columns are independent), all other entries are zero which represents
the most ideal case for linear regression estimands.

2.3.2 Standardization of the design matrix - Correlation matrix

Although we said that centering is not an option as it removes the intercept from the model, it
is more intuitive to have a �rst look at X⊤X and what is caused by collinearity when explana-
tory variables are centered and then equilibrated to unit length. This produces dimensionless
coe�cients but more importantly X⊤X is then in the form of a correlation matrix. However,
correlation and collinearity is not exactly the same: Correlation is one special case of collinearity
since only two variables are linearly dependent or highly correlated. Thus, whereas correlation
is also always collinearity, the opposite is not necessarily true.

Centering and subsequent equilibration transforms the design matrix X to a standardized matrix
which we call W from now on. The procedure is applied as follows:

W [i, j] =
X[i, j]− X̄[j]√

S[j, j]
, i = 1, 2, ..., n, j = 1, 2, ..., p− 1

where

S[i, j] =

n∑
u=1

(X[u, i]− X̄[i])(X[u, j]− X̄[j]), X̄[j] =
1

n

n∑
i=1

X[i, j]

Each explanatory variable W [, j] has now mean equals 0 and length ||W [, j]|| = 1. Thus, the
new design matrix W , and the square of it, is

W =

W [1, 1] · · · W [1, p]
...

. . .
...

W [n, 1] · · · W [n, p]

 ∈ Rn×p, W⊤ =

W [1, 1] · · · W [n, 1]
...

. . .
...

W [1, p] · · · W [n, p]

 ∈ Rp×n

W⊤W =

W [1, 1] · · · W [n, 1]
...

. . .
...

W [1, p] · · · W [n, p]

 ·

W [1, 1] · · · W [1, p]
...

. . .
...

W [n, 1] · · · W [n, p]


=


∑n

u=1W [u, 1]W [u, 1] · · ·
∑n

u=1W [u, 1]W [u, p]
...

. . .
...∑n

u=1W [u, p]W [u, 1] · · ·
∑n

u=1W [u, p]W [u, p]

 ∈ Rp×p
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which can be expressed componentwise by

n∑
u=1

W [u, i]W [u, j] =

n∑
u=1

(X[u, i]− X̄[i])(X[u, j]− X̄[j])√
S[i, i]S[j, j]

=
S[i, j]√

S[i, i]S[j, j]
= C[i, j]

and C[i, j] is thus the simple correlation between explanatory variable X[, i] and X[, j] and
therefore

W⊤W =


1 C[1, 2] · · · C[1, p]

C[1, 2] 1 · · · C[2, p]
...

...
. . .

...
C[1, p] C[2, p] · · · 1

 ∈ R(p−1)×(p−1)

is the correlation matrix C. Noteworthy at this point is that the correlation coe�cients are
invariant to any linear operations (see Appendix A.1). This means that any design matrix X
that is constructed by linear operations from C can again be reduced to essentially telling the
same correlation story.

2.3.3 Problems of collinearity

To intuitively illustrate the harm caused by collinearity, we reduce the dimension of X to only
having two explanatory variables and assuming the data is standardized. With the design matrix
X replaced by the standardized matrix W , we know from Equation (2.3) that the least-squares
estimator, which we denote as b̂std. for the standardized case, is then

W⊤Wb̂std. = W⊤y

b̂std. =
(
W⊤W

)−1
W⊤y

where

W⊤W =

(
1 C[1, 2]

C[1, 2] 1

)
,

(
W⊤W

)−1
=

(
1

1−C[1,2]2
−C[1,2]

1−C[1,2]2

−C[1,2]
1−C[1,2]2

1
1−C[1,2]2

)

Thus, high correlation between X[, 1] and X[, 2] results in a large C[1, 2] which further means
that the term 1

1−C[1,2]2
is blown up. This clearly illustrates the relationship between correlation

and an almost non-existence of the inverse. Of course, similar problems also happen if X is not
standardized. Thus, we switch now back to the original design matrix X. Consequentially, high
collinearity blows up the variance of the least-squares estimate which can be clearly seen when
looking at the Equation (2.5)

Var
(
β̂
)
= σ2

(
X⊤X

)−1
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2.4 Quanti�cation of collinearity

Belsley (1991) proposed a collinearity diagnostic procedure where the n× p design matrix X is
�rst equilibrated to E, as described in Equation (2.11), and then decomposed as:

E = UDV ⊤

where U is of dimension n× p, V is p× p and represents the eigenvectors of E⊤E. Further, it
holds that U⊤U = V ⊤V = I. The diagonal matrix D is of dimension p × p and carries the
non-negative elements µ[j], j = 1, 2, . . . , p which are called singular values of E. Therefore, this
method is called singular-value decomposition.

The so called condition indices are de�ned as:

η[j] =
max(µ)

µ[j]
, j = 1, 2, . . . , p,

and the largest of them is the condition number denoted as max(µ)
min(µ) ≡ κ (E). Belsley (1991)

suggested that appearing condition indices, and therefore also condition numbers, larger than 30
are considered harmful (see Sections 2.4.3 and 2.4.4 for more details ).

The singular value decomposition has a close connection to the eigenvalue decomposition which
works on the squared equilibrated design matrix:

E⊤E =
(
UDV ⊤

)⊤
UDV ⊤

= V DU⊤UDV ⊤

= V D2V ⊤

Thus the eigenvalues, which are the entries of the diagonal matrix D2 are simply the squares of
the singular values µ. However, there are several reasons why the diagnostics is performed on
E and not on E⊤E but the strongest is, that the singular value decomposition is numerically
more stable especially when E is ill-conditioned, which means the inverse does not or almost
not exist. As this is exactly the situation of our interest, employing the singular decomposition
method is in our context more applicable.

2.4.1 Variance decomposition proportions

To determine which variables are involved in collinearity scenarios, Belsley (1991) proposed a
further diagnostic procedure. The procedure works on decomposing the variance of each estimate
into independent components which correspond to the condition indices. By doing this, one can
�gure out how near dependencies are causing blown-up variances in terms of being responsible
for a considerable high proportion thereof. The decomposition starts with the variance of the
least-squares estimator when the design matrix is equilibrated, which is denoted by b̂:

Var
(
b̂
)
= σ2

(
E⊤E

)−1
= σ2

(
V D2V ⊤

)−1
= σ2

(
V ⊤

)−1
D−2V −1

= σ2V D−2V ⊤

Now focusing on getting the variance for one speci�c estimate b̂[j], this can be expressed as

Var
(
b̂
)
= σ2

p∑
i=1

(V [j, i])2

D2[i, i]



10 CHAPTER 2. METHODS

and the variance-decomposition proportions are then

Π[k, j] =

(V [j,k])2

D2[k,k]∑p
i=1

(V [j,i])2

D2[i,i]

, j, k = 1, . . . , p

This means then that in the variance-decomposition matrix Π each column j corresponds to
a speci�c variable and each row k corresponds to a certain condition index which are typically
sorted with increasing order. Π is then studied row-wise and one should look out for the case
where two or more variables have large variance-decomposition proportions associated with the
same condition index. The computation of the matrix can be easily done with the Collinearity
package (Georgios Kazantzidis, Jerome Sepin and Malgorzata Roos, 2023).

2.4.2 Why the condition number?

Actually, we only want to know what the inverse of X⊤X does to our results since there are
conditions leading to a non- or almost non-existence of the inverse. Thus, what we mean with
ill-conditioned is the inverse does almost not exist or almost not of full rank. This is also what is
meant with a small determinant of X⊤X. But a small determinant has nothing to do with its
invertibility because for example a matrix A = αI ∈ Rn×n has a determinant of αn which can
be made very small, yet the inverse still exists.

Thus, the magnitude of the determinant as a measure for what we mean with ill-conditioning is
misleading. Still, we see that by making α small, A = αI decreases while the inverse blows up
A−1 = 1

αI.

In numerical analysis the condition number is used to show how much the output changes as a
result of small changes or errors in the input. Thus, this can of course also be applied to our
problem. Belsley (1991) showed that for an inexact system of linear equations, such as it is in
the (equilibrated) least-squares setup Eb ≈ y, one can study the sensitivity of the solution b to
perturbations with the following formula:

||δb||
||b||

≤ κ (E)R−1
[
2 +

(
1−R2

)1/2
κ (E)

]
ν +O

(
ν2
)

(2.12)

where ν = max (||δy ||/||y ||, ||δE||/||E||) and the introduced perturbation in y or E is denoted by
δy respectively δE. The term O

(
ν2
)
describes the error term of the equation as it is derived

over a Taylor approximation. Further details about the derivation can be found in Golub and
Van Loan (1983).

What Equation (2.12) tells us is that the condition number is a conservative indicator of the
potential sensitivity of the solution of inexact equations. It also includes the strength of the
linear relation between y and E described by R (see Section 4.2) and says that the looser it is,
the higher the sensitivity to perturbations even with well-conditioned data.

2.4.3 An example

Figure 2.1 illustrates what a high and low condition number means in terms of model �tting.
Both plots show data that is constructed by a simple equation

y = 4 + 2 ·X[, 1] + 2 ·X[, 2] + ε · σ (2.13)

where the explanatory variables within X are n = 50 realizations of a multivariate normal
distribution as

X[i, ] ∼ N
(
µ =

(
0
0

)
,Σ =

(
ρ 0
0 ρ

))
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Figure 2.1: Impact of collinearity on the instability of estimates.

This allows to tune the amount of collinearity within the system by specifying ρ. On the left plot
it is chosen to be high with ρ = 0.995 and on the right side low with ρ = 0. By bootstrapping
the original sample 10 times and subsequent model �tting we can visualize the instability that
collinearity causes. Because when we plot the planes that represent the area where the models
would see ŷ = α̂+ β̂[1]X[, 1]+ β̂[2]X[, 2] we note on the left side with high collinearity (κ (E) =
18.981) that the planes are quite di�erent from each other, whereas on the right side (κ (E) =
1.29) they seem to be very similar and thus stable. Table 2.1 shows the corresponding variance
decomposition proportion matrices Π and the least-squares model results of the original data
sets.

Table 2.1: Variance decomposition matrices as introduced by Belsley in the �rst row
and summary output of the multiple linear regression models on the second row. Left
side corresponds to the example with higher collinearity and the right table for the
lower.

mu cond_ind const X [,1] X [,2]

1.412 1.000 0.000 0.003 0.003
1.000 1.412 0.939 0.000 0.000
0.074 18.981 0.061 0.997 0.997

mu cond_ind const X [,1] X [,2]

1.144 1.000 0.294 0.230 0.206
0.951 1.202 0.003 0.448 0.613
0.887 1.290 0.703 0.323 0.181

β̂ se
(
β̂
)

t-value p-value

Intercept 4.17 0.17 24.89 < 0.0001
x1 2.35 1.61 1.46 0.15
x2 1.85 1.58 1.17 0.25

β̂ se
(
β̂
)

t-value p-value

Intercept 4.17 0.17 24.89 < 0.0001
x1 2.16 0.18 12.19 < 0.0001
x2 2.13 0.15 14.08 < 0.0001

But why going trough all the trouble with collinear variables and the detrimental e�ects that
come with it and not simply drop one or some of the a�ected variables? Figure 2.2 visualizes
the model �ts when the variable X[, 2] is neglected although truly it has very well an e�ect on y

as is visible in Equation (2.13). We see on the right plot for low collinearity the 95% con�dence
interval for β̂[1] does cover the true e�ect of 2 whereas for the case with high collinearity this
seems to be not the case. This demonstrates that it is not so easy to simply get rid of some
variables as this may introduce bias to some extent.
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95% CI = [3.88, 4.57] 95% CI = [1.19, 2.8]

ρ = 0.995 and κ(E) = 18.981 ρ = 0 and κ(E) = 1.29
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X [,1]
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Figure 2.2: Univariate �tted model (y∼x1) of the same data sets as in Figure 2.1.
The slope of the line represents β̂[1] which would be truly 2 and the con�dence interval
thereof is given in the box. Obviously, only the right plot with low collinearity seems
to capture the true e�ect whereas with higher collinearity the estimate is biased.

2.4.4 Belsley's experiments

To explore what harm collinearity does to the estimating procedure Belsley (1991) created data
sets with varying amount of collinearity. He induced collinearity by using a basis data set X
and constructed from this an additional variable wi with controlled collinearity as follows:

wi = Xc+ ei

where ei is drawn from a normal distribution with zero mean and variance σ2
i = 10−is2Xc with

s2Xc ≡ Var (Xc). He constructed then i data sets as

X{i} = [X,wi] , i = 0, . . . , 4

For several situations, meaning di�erent bases X, Belsley created 5 data sets with increasing
collinearity as the error term gets smaller with i. Belsley investigated then the condition indices
of the data set but also the correlation between variable wi with ŵi = Xc and also performed a
regression of wi on X which he quanti�ed with an R2

wi
. Belsley (1991)[page 129] concluded from

his experiments that condition indices of 15-30 come from underlying near dependencies with
an associated correlation of 0.9, which is according to Belsley, considered to be the borderline
of tightness in informal econometric practices. Based on these experimental experiences, Belsley
established a rule of thumb that a condition index of 30 separates high from low collinearity
in regression analysis. Although suggested, Belsley strictly advises against using this rule of
thumb mechanically. Still, the cut-o� value of 30 is promoted in various literature for example
in Cohen (2013); Hocking (2013); Tabachnick and Fidell (2012); Chatterjee and Hadi (2012) but
also Wikipedia (Wikipedia, 2022).

2.5 Di�erences between lm and tram::Lm

The parametrization and the chosen estimation approaches di�er between lm and tram::Lm and
in this section we are going to compare what these di�erences mean from a theoretical perspective.
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2.5.1 Maximum-Likelihood estimation for the linear regression model

We can show that independent of the estimating procedure, with the parametrization as speci�ed
in Equation (2.8) we will end up at the very same optimization problem if we go over the pro�le
likelihood. The approximate log-likelihood of a sample that is treated as exact (see Appendix A.3
for more details) is

ℓ(β, σ|y) = −N log (σ)− N

2
log (2π)− 1

2

N∑
i=1

(
−α

σ
+

1

σ
y [i]− X̃[i, ]

β̃

σ

)2

= −N log (σ)− N

2
log (2π)− 1

2σ2

N∑
i=1

(
y [i]− α− X̃[i, ]β̃

)2
= −N log (σ)− N

2
log (2π)− 1

2σ2
(y −Xβ)⊤ (y −Xβ) (2.14)

We can now employ the pro�le likelihood where we treat σ as the nuisance parameter:

dℓ(β, σ|y)
dσ

∣∣∣
σ̂
= −Nσ−1 + σ̂−3 (y −Xβ)⊤ (y −Xβ)

!
= 0

σ̂−3 (y −Xβ)⊤ (y −Xβ)
!
= Nσ̂−1

σ̂2 !
= (y −Xβ)⊤ (y −Xβ) /N

Plugging σ̂ into (2.14), we see that σ̂ vanishes from the equation which is handy:

dℓ(β, σ̂|y)
dβ

∣∣∣
β̂
= −N log

(
(y −Xβ)⊤ (y −Xβ)

) d

dβ

∣∣∣
β̂

!
= 0

log
(
(y −Xβ)⊤ (y −Xβ)

) d

dβ

∣∣∣
β̂

!
= 0

Since the log is a monotone function, the maximum likelihood is also found by minimizing the
term (y −Xβ)⊤ (y −Xβ) with respect to β and thus the maximum-likelihood estimator β̂ is
the very same as for the least-squares estimator described in Equation (2.3).

2.5.2 Maximum-Likelihood estimation for the transformation model equiva-
lent (tram::Lm)

The approximate log-likelihood with the parametrization used for the tram::Lm model speci�ed
in Equation (2.9) is

ℓ(βtram, θ0, θ1|y) = −N log(θ1)−
N

2
log (2π)− 1

2

N∑
i=1

(
θ0 + θ1y [i]− X̃[i, ]βtram

)2
(2.15)

which has one parameter (θ1) more to simultaneously estimate.

The design matrix in this setup is di�erent. For lm, X contained the variables that will be used
to explain the outcome y . But this can also be reformulated in terms of using the variables
including the outcome to explain the error ε[i] ∼ N (0, 1). Since for tram::Lm the parameter θ1
is attached to the outcome y , the collinearity constellation is not only restricted to the X space
but extends onto [y ,X]. This basically implies that the better the outcome y is explainable by
X, the higher the collinearity and thus the larger the e�ects caused by it. This is important to
keep in mind.

Figure 2.3 illustrates the behavioral di�erence between lm and tram::Lm for di�erent sy on the
Wald statistics scale. The plot shows that with lower sy, tram::Lm seems to yield increasingly
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Figure 2.3: Simulating data as y = 10 + 2x 1 + 2x 2 + sy · ε with (x 1, x 2, ε) ∼
N 3n(0, 1), n = 100. The scaling factor sy is iterated on a grid between 0.03 and 3 where
a low scaling factor means that the outcome y is well explainable and thus collinearity
for tram::Lm is higher. Wald statistics are plotted restricted to have maximum values
of 20 and points laying above are illustrated as triangles.

more di�erent Wald statistics than lm. In addition, a model (optim tram::Lm) is �tted by
optimizing the likelihood as speci�ed in (2.15) with the function optim(...,method = "BFGS")

to check whether these di�erences are due to the di�erent parametrization and not because of the
setup in the tram package. Since the lines overlay, we concluded that di�erences arise solely by
the chosen parametrization. Furthermore, a model (optim lm) is �tted by optimizing the normal
likelihood without applying the pro�le likelihood and it gets visible that the Wald statistics is
very similar to the equivalent parametrization but �tted over the least-squares method.

Whether this behavior has a practical implication is at this point not known but this should
simply illustrate that the collinearity composition is more complex for the tram::Lm than the lm
method. Still, the proceeding collinearity diagnostics will be all based on the design matrix X
corresponding to the least-squares method.



Chapter 3

Introduction to the BostonHousing2

data set

In the following chapters, we will take use of a real world data set to simulate a system that is
close to reality. For this, we take the BostonHousing2 data set that is provided in the mlbench
package. The data originally comes from Harrison and Rubinfeld (1978) who investigated the
willingness to pay for clean air in terms of housing prices for the Boston metropolitan area.

3.1 Hedonic housing prices and the demand for clean air

Harrison and Rubinfeld (1978) took the concentration of nitrogen oxides (nox) as a surrogate
for air pollution and thus serves as the variable of interest. In addition, they assumed that
housing prices are not only based on the corresponding amount of air pollution but consider also
other properties such as housing quality and other neighbor characteristics. Therefore, they also
included several other variables into the model. A short description of the variables is visible in
Table 3.1 and summary statistics thereof are given in Table 3.2.

Table 3.1: Description of the variables provided in the BostonHousing2 data set.

Variable De�nition

cmedv Corrected median value of owner-occupied homes (outcome)
rm Average number of rooms in owner units
age Proportion of owner units built prior to 1940
B Black proportion of population
lstat Proportion of population that is lower status 1/2 (proportion of adults

without some high school education and proportion of male workers
classi�ed as laborers)

crim Crime rate by town
zn Proportion of a town's residential land zoned for lots greater than

25,000 square feet
indus Proportion nonretail business acres per town
tax Full-value property-tax rate per USD 10,000
ptratio Pupil-teacher ratio by town school district
dis Weighted distances to �ve Boston employment centres
rad Index of accessibility to radial highways
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox Nitric oxides concentration (parts per 100 million)

15
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Note: The data set that is loaded by executing data(BostonHousing2) in R is not exactly the
same as in the paper. More speci�cally, some transformations have to be applied:

� cmedv: Is originally in USD (BostonHousing2$cmedv<-BostonHousing2$cmedv*1000)

� nox: Is originally in parts per hundred million (BostonHousing2$nox<-BostonHousing2$nox*10)

� lstat: Is originally a proportion (0-1) (BostonHousing2$lstat<-BostonHousing2$lstat/100)

� B: The used variable in the model is b which is also provided in the BostonHousing2 data
set. b is constructed from B as b = 1000(B − 0.63)2. However, the back-transformation
does not match B from the original publication but the data set is still complete.

Table 3.2: Descriptive statistics of the variables in the BostonHousing2 data set
coming from 506 census track records. The data set contains no missing values and is
therefore complete.

Variable Mean (SD) Missing (%) Min Median Max

cmedv 22528.85 (9182.18) 0 5000 21200 50000
rm 6.28 (0.70) 0 3.56 6.21 8.78
age 68.57 (28.15) 0 2.9 77.5 100
B 1.22 (0.11) 0 0.65 1.26 1.26
lstat 0.13 (0.07) 0 0.02 0.11 0.38
crim 3.61 (8.60) 0 0.01 0.26 88.98
zn 11.36 (23.32) 0 0 0 100
indus 11.14 (6.86) 0 0.46 9.69 27.74
tax 408.24 (168.54) 0 187 330 711
ptratio 18.46 (2.16) 0 12.6 19.05 22
dis 3.80 (2.11) 0 1.13 3.21 12.13
rad 9.55 (8.71) 0 1 5 24
chas = 1 (%) 35 (6.9) 0
nox 5.55 (1.16) 0 3.85 5.38 8.71

3.1.1 The Basic equation model of Harrison and Rubinfeld

Harrison and Rubinfeld (1978) modeled housing prices with the model visible in R-Code 1.

R-Code 1 Basic equation formula to model housing prices.

mpaper <- lm(data = BostonHousing2, log(cmedv) ~ I(nox^2) + I(rm^2) + age +

log(dis) + log(rad) + tax + ptratio + b + log(lstat) + crim +

zn + indus + chas )

The output of the model is visible in Table 3.3 and matches well the results provided in the
original publication. Resulting from the Basic equation (R-Code 1) model is, that a one unit
increase in nox2 (nox: Nitrogen oxide concentration in pphm) leads to an increase in log(cmedv)
of -0.0064 with 95% con�dence interval of (-0.0086, -0.0042).

What this value actually means is not trivial due to the non-linearity in the equation. It means
that when we set all explanatory variables as they are used in the model to their respective mean
and then increase nox, on the original level, for one pphm (part per hundred million), then the
change in the original housing value increases by -1571.469 (from -1942.524 to -1120.881) (in the
publication is an increase of -1613 without uncertainty provided). The computation is visible in
R-Code 2 and the output thereof in Table 3.4.
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Table 3.3: Analyzing Boston Housing prices with the multiple linear regression model
as speci�ed in Harrison and Rubinfeld (1978) with the Basic equation. Outcome variable
is the (corrected) median value of the owner occupied homes in USD (log(cmedv)) on
the logarithmic scale. chas1 represents the e�ect when moving from the reference,
meaning that the house does not bound at the river (0), to the case when it does (1).

β̂ 95% con�dence interval t-value p-value

Intercept 9.74 from 9.45 to 10.03 66.05 < 0.0001
I(nox^2) -0.0064 from -0.01 to -0.00 -5.71 < 0.0001
I(rm^2) 0.0063 from 0.00 to 0.01 4.83 < 0.0001

age 0.000071 from -0.00 to 0.00 0.14 0.89
log(dis) -0.20 from -0.26 to -0.13 -6.01 < 0.0001
log(rad) 0.09 from 0.05 to 0.13 4.75 < 0.0001

tax -0.00042 from -0.00 to -0.00 -3.46 0.0006
ptratio -0.03 from -0.04 to -0.02 -5.99 < 0.0001

b 0.36 from 0.16 to 0.56 3.55 0.0004
log(lstat) -0.37 from -0.42 to -0.33 -15.20 < 0.0001

crim -0.012 from -0.01 to -0.01 -9.59 < 0.0001
zn 0.000092 from -0.00 to 0.00 0.18 0.85

indus 0.00018 from -0.00 to 0.00 0.077 0.94
chas1 0.092 from 0.03 to 0.16 2.81 0.005

R-Code 2 Code to predict what a one unit increase in nox means.

# Calculating Predictions and Difference

dd_pred <- t(colMeans(model.matrix(mpaper)))

colnames(dd_pred) <- colnames(model.matrix(mpaper))

dd_pred <- dd_pred[rep(1,2),]

dd_pred[,"I(nox^2)"] <- (sqrt(dd_pred[,"I(nox^2)"]) + 0:(nrow(dd_pred)-1) )^2

beta <- cbind(coef(mpaper),coef(mpaper),coef(mpaper))

beta["I(nox^2)", c(1,3)] <- confint(mpaper)["I(nox^2)",]

hat_log_cmedv <- dd_pred %*% beta

dd_pred <- data.frame(dd_pred, hat_log_cmedv, exp(hat_log_cmedv))

Table 3.4: Explanation of what a one unit increase in variable nox does to the outcome
cmedv when all variables are held at their mean value. The predictions are done for the
estimate (E) and the lower (L) and upper (U) bound of the 95% con�dence interval for
the I(nox^2) variable. The other e�ects are hold at the corresponding e�ect estimate
without considering the uncertainty.

(Intercept) I(nox^2) I(rm^2) age log(dis) log(rad) tax

1 32.109 39.989 68.575 1.188 1.868 408.237
1 44.442 39.989 68.575 1.188 1.868 408.237

ptratio b log(lstat) crim zn indus chas1

18.456 0.357 -2.234 3.614 11.364 11.137 0.069
18.456 0.357 -2.234 3.614 11.364 11.137 0.069

ˆL− log(cmedv) ˆE − log(cmedv) ˆU − log(cmedv) ˆL− cmedv ˆE − cmedv ˆU − cmedv

9.872 9.942 10.013 19378.477 20791.786 22308.17
9.766 9.864 9.961 17435.953 19220.317 21187.289
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3.1.2 Collinearity diagnostics in the model

Harrison and Rubinfeld (1978) were aware that the multiple linear regression can induce collinear-
ity, as they speci�cally looked for any signs of it with the procedures described in a working paper
of Belsley and Klema (1974). They came to the conclusion that the amount is rather harmless,
as they say they have rather high singular values (would be column mu in Table 3.5). But the
working paper does not fully agree with the procedures that came up later in Belsley et al. (1980).
Because the newer �ndings suggest that diagnostics are speci�cally based on the equilibrated de-
sign matrix EBoston and not on XBoston. The calculated condition number κ (EBoston) = 66.268
would then mean that there is consequential collinearity present. Table 3.5 shows the whole
variance decomposition matrix employed on the equilibrated design matrix EBoston. This is a
more detailed collinearity diagnostics than only looking at a single condition number, and is also
suggested by Belsley et al. (1980).

Table 3.5: Variance decomposition matrix for the Basic equation model in R-Code 1
(EBoston).

mu cond_ind (Intercept) I(nox^2) I(rm^2) age log(dis) log(rad) tax

3.211 1 0 0 0 0 0 0 0
1.225 2.621 0 0.001 0 0.001 0.003 0.001 0
0.975 3.292 0 0 0 0 0 0 0
0.799 4.018 0 0 0 0.001 0 0 0
0.482 6.657 0 0.016 0.003 0.003 0.02 0.002 0.005
0.327 9.819 0 0.022 0.003 0.077 0.021 0.166 0.032
0.275 11.66 0 0.027 0.038 0.051 0.057 0.065 0
0.238 13.481 0 0 0.076 0.188 0.053 0.007 0
0.205 15.642 0.001 0.081 0.007 0.01 0.18 0.04 0.005
0.203 15.792 0 0.597 0.034 0.235 0.006 0 0.004
0.131 24.515 0.001 0 0.024 0.007 0.062 0.618 0.668
0.116 27.771 0.006 0.006 0.615 0.031 0.098 0.094 0.15
0.101 31.86 0.015 0 0.172 0.309 0.312 0.006 0.126
0.048 66.268 0.977 0.25 0.03 0.086 0.189 0.001 0.009

mu cond_ind ptratio b log(lstat) crim zn indus chas1

3.211 1 0 0 0 0.001 0.001 0.001 0.001
1.225 2.621 0 0.001 0.001 0.083 0.089 0.003 0
0.975 3.292 0 0 0 0.026 0.012 0 0.823
0.799 4.018 0 0.001 0 0.384 0.204 0.002 0.107
0.482 6.657 0 0.009 0.004 0.293 0.395 0.052 0.005
0.327 9.819 0 0.021 0.001 0.114 0.036 0.005 0.013
0.275 11.66 0.002 0.019 0.006 0.041 0 0.372 0.009
0.238 13.481 0.003 0.026 0.102 0.004 0.025 0.134 0.012
0.205 15.642 0.001 0.661 0.001 0.001 0.02 0.001 0.001
0.203 15.792 0.001 0.064 0 0.009 0.022 0.066 0.001
0.131 24.515 0.031 0.013 0.021 0.01 0.034 0.34 0.022
0.116 27.771 0.064 0.124 0.431 0.004 0.06 0.001 0
0.101 31.86 0.352 0.011 0.328 0.02 0.082 0.014 0.006
0.048 66.268 0.545 0.05 0.106 0.011 0.02 0.009 0

3.2 Parametrization by tram vignette

Harrison and Rubinfeld (1978) modeled housing prices with a rather complex model with nu-
merous variables and also some transformations thereof. They did not speci�cally state all their
actions, and thus it is questionable if independent researchers had been able to replicate the
results. For example, R-Code 3 shows the model with non-transformed variables, as it is also
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used in the tram package vignette. This can of course lead to di�erent results and collinearity
magnitudes, as we see in Tables 3.6 and 3.7.

R-Code 3 Modeling housing prices without transformed variables.

msimpler <- lm(data = BostonHousing2, cmedv ~ nox + rm + age +

dis + rad + tax + ptratio + b + lstat + crim +

zn + indus + chas )

Table 3.6: Analyzing Boston Housing prices with the multiple linear regression model
without transformed variables. Outcome variable is the (corrected) median value of the
owner occupied homes in USD (cmedv).

β̂ 95% con�dence interval t-value p-value

Intercept 36'371.89 from 26434.57 to 46309.22 7.19 < 0.0001
nox -1'774.26 from -2518.03 to -1030.49 -4.69 < 0.0001
rm 3'789.39 from 2975.62 to 4603.17 9.15 < 0.0001
age 0.57 from -25.15 to 26.30 0.044 0.96
dis -1'501.79 from -1890.17 to -1113.42 -7.60 < 0.0001
rad 303.76 from 174.57 to 432.95 4.62 < 0.0001
tax -12.70 from -20.03 to -5.38 -3.41 0.0007

ptratio -923.91 from -1178.65 to -669.17 -7.13 < 0.0001
b 9'228.44 from 3998.40 to 14458.49 3.47 0.0006

lstat -53'066.19 from -62941.35 to -43191.04 -10.56 < 0.0001
crim -106.20 from -170.19 to -42.21 -3.26 0.001
zn 47.72 from 20.99 to 74.45 3.51 0.0005

indus 23.25 from -96.49 to 143.00 0.38 0.70
chas1 2'691.73 from 1014.08 to 4369.37 3.15 0.002

The linearity of the model lets us easily interpret the e�ect of the variable nox (non-transformed)
on the housing prices: A one unit increase in nox leads to an increase of -1774.262 (from -
2518.033 to -1030.491). With the parametrization by Harrison and Rubinfeld (1978) again:
increases by -1571.469 (from -1942.524 to -1120.881). The non-transformed model (R-Code 3)
also leads to di�erent collinearity magnitudes, as visible in Table 3.7 and a condition number of
κ (Enon-trans.) = 87.318 which was earlier κ (EBoston) = 66.268.

This demonstrates that di�erent parametrization can lead to di�erent results and di�erent
collinearity even with the same underlying data in terms of sample size and number of vari-
ables used. This should be kept in mind.
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Table 3.7: Variance decomposition matrix for the model used in the tram vignette in
R-Code 3 (Enon-trans.).

mu cond_ind (Intercept) nox rm age dis rad tax

3.177 1 0 0 0 0 0 0 0
1.263 2.516 0 0 0 0 0.006 0.004 0
0.98 3.243 0 0 0 0 0.001 0 0
0.813 3.905 0 0 0 0.002 0 0.003 0
0.491 6.47 0 0 0 0 0.016 0.076 0.005
0.408 7.786 0 0 0.001 0.019 0.034 0.09 0.002
0.329 9.651 0 0.002 0.003 0.022 0.11 0.021 0
0.273 11.64 0 0.001 0.001 0.162 0.094 0.035 0.001
0.204 15.581 0 0.002 0.004 0.191 0.156 0.014 0
0.16 19.84 0.005 0.043 0.039 0.563 0.313 0.026 0.001
0.115 27.663 0 0.019 0.016 0.004 0.015 0.636 0.905
0.11 28.912 0.001 0.371 0.009 0.019 0.155 0.01 0.03
0.085 37.418 0 0.257 0.393 0.001 0.002 0.001 0.046
0.036 87.318 0.993 0.305 0.534 0.017 0.097 0.083 0.009

mu cond_ind ptratio b lstat crim zn indus chas1

3.177 1 0 0 0.001 0.001 0.001 0.001 0.001
1.263 2.516 0 0.001 0.001 0.066 0.075 0.002 0.001
0.98 3.243 0 0 0 0.022 0.015 0 0.804
0.813 3.905 0 0.001 0.001 0.311 0.173 0.002 0.123
0.491 6.47 0 0.011 0 0.507 0.184 0.018 0.002
0.408 7.786 0.001 0.003 0.155 0.001 0.251 0.034 0
0.329 9.651 0 0.016 0.36 0.054 0.066 0.058 0.035
0.273 11.64 0 0.004 0.011 0.025 0.025 0.484 0.002
0.204 15.581 0 0.687 0.077 0 0.013 0.001 0
0.16 19.84 0.013 0.178 0.057 0.004 0 0.075 0
0.115 27.663 0.006 0.001 0.01 0.002 0.013 0.234 0.023
0.11 28.912 0.269 0.026 0.002 0.003 0.079 0.04 0.005
0.085 37.418 0.325 0.008 0.229 0 0.106 0.046 0.002
0.036 87.318 0.387 0.063 0.096 0.004 0.001 0.005 0.001



Chapter 4

Sample size to mitigate collinearity

This chapter discusses the harm induced by collinearity from an analytical point of view and
what can be done in terms of increasing the sample size to compensate appropriately for the
e�ects induced by collinearity.

4.1 Harmful collinearity and the Wald statistics

Belsley (1991) describes that collinearity increases the instability of the least-squares estimates,
in terms of in�ated Var(β̂). Whether this in�ation is large or not is relative, and an intuitive
comparison is to relate the variance to what it is actually describing: the estimate β̂. Thus, a
familiar measure is the Wald statistics, which is in the end what we want:

t̂[j] =
β̂[j]− β0[j]

se
(
β̂[j]

) (4.1)

What the Wald statistics represents is also sometimes called the signal-to-noise ratio.

α 2 H0 :  0 α 2

correct detection non−detection incorrect detection

Truth:  βj < 0

−4 −1.96 0 1.96 4

Figure 4.1: Visualization of the distribution of a Wald statistics and the interpretation
thereof with the common two-sided hypothesis test and a signi�cance level of 0.05 if
the true e�ect is known to be βj < 0.

Wald statistics that are in their absolute value | t̂[j] | smaller as the typically used critical value of
q1−α/2,Z ≈ 1.96 (corresponding to the 1−α/2 quantile of a standard normal distributed variable
Z with signi�cance level α = 0.05) means that we are not able to reject the Null hypothesis

H0 : β[j] = β0[j]

and if we know that β[j] ̸= β0[j] holds, we call this loss-of-detection harmful. Furthermore, t̂[j]
can also be large but with an incorrect sign, which represents an even more dangerous case as
this gives false con�dence in making a decision. The idea thereof is illustrated in Figure 4.1.

21
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4.2 Partitioned regression

But what causes a low t̂[j]? To investigate this question, it is worthwhile to have a look at the
partitioned regression to see how collinearity within X messes with the detection of a potential
signal. Thus, the linear regression model can be partitioned as

y = Xβ + ε

= X1β1 +X2β2 + ε

where X = [X1,X2] with X1 ∈ Rn×p1 , X2 ∈ Rn×p2 and β = [β1,β2] with β1 ∈ Rp1×1,
β2 ∈ Rp2×1 and p1 + p2 = p. The least squares estimator turns then to

β̂ =
(
X⊤X

)−1
X⊤y(

X⊤X
)
β̂ = X⊤y(

X⊤
1

X⊤
2

)(
X1 X2

)(β̂1

β̂2

)
=

(
X⊤

1 y

X⊤
2 y

)
(
X⊤

1 X1 X⊤
1 X1

X⊤
2 X1 X⊤

2 X2

)(
β̂1

β̂2

)
=

(
X⊤

1 y

X⊤
2 y

)
which can be written in two equations called the normal equations

X⊤
1 X1β̂1 +X⊤

1 X2︸ ︷︷ ︸
0 if ⊥

β̂2 = X⊤
1 y

X⊤
2 X1︸ ︷︷ ︸

0 if ⊥

β̂1 +X⊤
2 X2β̂2 = X⊤

2 y

where we already see that the partial estimates are not in�uenced by each other if the partial
design matrices X1 and X2 are orthogonal (⊥) or perfectly independent of each other. But if
this is not the case, we can investigate how they interact with each other. To show this, the
second equation normal equation can be transformed to

β̂2 =
(
X⊤

2 X2

)−1
X⊤

2

(
y −X1β̂1

)
and to get β̂1 we substitute the expression for β̂2 into the �rst normal equation as

X⊤
1 X2

(
X⊤

2 X2

)−1
X⊤

2

(
y −X1β̂1

)
+X⊤

1 X1β̂1 = X⊤
1 y

X⊤
1 X1β̂1 −X⊤

1 X2

(
X⊤

2 X2

)−1
X⊤

2 X1β̂1 = X⊤
1 y −X⊤

1 X2

(
X⊤

2 X2

)−1
X⊤

2 y

X⊤
1

(
I−X2

(
X⊤

2 X2

)−1
X⊤

2

)
X1β̂1 = X⊤

1

(
I−X2

(
X⊤

2 X2

)−1
X⊤

2

)
y

This solves then as

β̂1 =

X⊤
1

I−X2

(
X⊤

2 X2

)−1
X⊤

2︸ ︷︷ ︸
P

X1


−1

X⊤
1

I−X2

(
X⊤

2 X2

)−1
X⊤

2︸ ︷︷ ︸
P

y (4.2)

where X2

(
X⊤

2 X2

)−1
X⊤

2 ≡ P is a projection matrix.
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Contribution of the projection matrix and R2 to the instability

It is worth to have a short clari�cation what a projection matrix P means and what also belongs
to this topic is the R2 as an assessment of a �t. Because with this R2, a more speci�c amount
of collinearity can be quanti�ed, as we will see.

From the least-squares estimator, we can compare how our model �ts the outcome ŷ with what
is actually there, namely y . The estimated outcome ŷ can be easily shown to be

ŷ = Xβ̂ = X
(
X⊤X

)−1
X⊤︸ ︷︷ ︸

P

y = Py

where the term X
(
X⊤X

)−1
X⊤ = P ∈ Rn×n is a projection matrix, since it maps y onto X

as well as possible. A projection matrix is idempotent, which means that P⊤ = P and P 2 = P
holds. If we now want to assess how well ŷ �ts the truth y we can use this R2 or also called
coe�cient of determination that is de�ned as

R2 = 1− SSRes
SSTot

=
SSModel

SSTot
and more general

R2 =
(
y⊤y

)−1
ŷ⊤ŷ (4.3)

Thus, R2 describes the ratio of what of y can be explained by a linear combination of X with
some coe�cients. R2 also represents the square of the correlation between the �t ŷ and the truth
y . Figure 4.2 visualizes what a good and bad projection in form of a high and low R2 looks like.
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Good and bad projection

Figure 4.2: Projection ŷ = X
(
X⊤X

)−1
X⊤y for two di�erently constructed y . The

�rst column visualizes a good linear �t (blue line) and projection with a rather high
R2-value, whereas the second column is not as good. This, because we see in the upper
right plot that the points are not as close to the blue line and further we see in the
bottom right plot that the points are quite o� of the diagonal line. Points right on the
diagonal would mean that the y is well explainable by linear transformations of X.

Coming back to the quanti�cation of uncertainty, the variance of the partitioned least-squares
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estimator is then (see Appendix A.2 for the derivation)

Var
(
β̂1

)
= σ2 ·

[
X⊤

1 (I− P )X1

]−1

= σ2 ·
[
X⊤

1 X1 −X⊤
1 PX1

]−1

= σ2 ·
[
X⊤

1 X1 −X⊤
1 P⊤PX1

]−1

= σ2 ·
[
X⊤

1 X1 − (PX1)
⊤PX1

]−1

where PX1 means that it maps X1 onto X2 as demonstrated earlier. Thus, we can denote:

X̂1 ≡ PX1

and set it in as

Var
(
β̂1

)
= σ2 ·

[
X⊤

1 X1 − X̂
⊤
1 X̂1

]−1

= σ2 ·

X⊤
1 X1

I−
(
X⊤

1 X1

)−1
X̂

⊤
1 X̂1︸ ︷︷ ︸

R2
X



−1

where we note that term
(
X⊤

1 X1

)−1
X̂

⊤
1 X̂1 is very similar to Equation (4.3). And indeed the

application of Equation (4.3) is not limited to the outcome y but can very well also describe
how well a regression among the explanatory variables �ts. More speci�cally, it describes here a
regression of X1 on X2, and we denote this by R2

X .

Now, if we stick with the one coe�cient of interest, here β1, and move to the squared Wald
statistics, we can substitute our �ndings as

t̂
2
1 =

(
β̂1 − βo

1

)⊤
·
(
Var

(
β̂1

))−1
·
(
β̂1 − βo

1

)
=
(
β̂1 − βo

1

)⊤
·
[
X⊤

1 X1

(
I−R2

X

)]
·
(
β̂1 − βo

1

)
/σ2 (4.4)

which points out several key components why a low t̂
2
1 might appear. Thus, a non-detection can

be caused by:

1. Low β̂1 ∈ Rp1×1

2. High noise σ2

3. High collinearity in form of a large R2
X ∈ Rp1×p1

4. Low length of X1 ∈ Rn×p1 in form of a small X⊤
1 X1 ∈ Rp1×p1

While the �rst three points are not really something that we have in the hand to manipulate,
the fourth point regarding the length of X1 partly is: In form of the sample size n. Thus, to
assure that �nding a relevant treatment e�ect β1, is not out of chance, there is usually a sample
size calculation conducted to have more certainty that, given that a (particular) treatment e�ect
is there, we will �nd it with a certain probability. This is also called the power of the test.

Sample size calculations are usually made only for one explanatory variable, and one does not
include the e�ect of other variables in the model. However, as demonstrated in Figure 2.2,
obtaining truth e�ects requires adjusting for confounders and thus one may have to add multiple
additional explanatory variables. This, to the risk of inducing collinearity in the model. Certainty
in �nding the e�ect in this multiple model requires then the sample size calculation to be adjusted
for collinearity, as we will see.
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4.3 Can the condition number explain everything?

From what we know so far, the threat to our results comes from the entries of the term
(
X⊤X

)−1
.

X⊤X is a p× p symmetric matrix and therefore has np =
∑p

i=1 i elements describing it, which
might be very large. Therefore, the condition number claims to be a nice way of quantifying the
collinearity within X by a single number instead of np elements.

Summarizing a high dimensional system in a single number may be a di�cult task. However,

while focusing on only one variableX[, j], the term that may be problematic is
((

X⊤X
)−1
)
[j, j].

Whether this particular value is well-de�ned by the condition number shall be checked now in the
simple setup where X ∈ Rn×p with p = 3 and X[, 1] is a constant and the other two explanatory
variables are binary (0 or 1).

The condition number is calculated on the equilibrated design matrix E. Following from the
equilibration is that the diagonals of E⊤E are now 1. No collinearity, and thus the optimal
case means that all o�-diagonals are equals to zero. Since this is hardly the case, those values
can �uctuate between 0 up to 1. Now, the product between the constant term E[, 1] and E[, 2],
E[, 3] respectively, is fortunately not arbitrary. Setting the proportion of ones in variable E[, j]
as π[j], we can show that(

E⊤E
)
[j, 1] =

(
E⊤E

)
[1, j] =

(
X[, 1]√∑n
i=1X[i, 1]2

)⊤(
X[, j]√∑n
i=1X[i, j]2

)

=

(
E[, 1]√

n

)⊤
(

E[, j]√
n · π[j]

)
=

E[, 1]E[, j]

n
√
π[j]

=
n · π[j]
n
√

π[j]
=
√

π[j]

which leaves in this simple setup only
(
E⊤E

)
[3, 2] =

(
E⊤E

)
[2, 3] subject to �uctuations which

we call r here. Therefore, the equilibrated squared design matrix is

E⊤E =

 1
√

π[2]
√

π[3]√
π[2] 1 r√
π[3] r 1


with r on a range between 0 and 1 where 1 means consistent agreement. The inverse is then(

E⊤E
)−1

=
1

−2
√

π[2]
√
π[3]r + π[2] + π[3] + r2 − 1 r2 − 1

√
π[2]−

√
π[3]r

√
π[3]−

√
π[2]r√

π[2]−
√
π[3]r π[3]− 1 r −

√
π[2]

√
π[3]√

π[3]−
√
π[2]r r −

√
π[2]

√
π[3] π[2]− 1

 (4.5)

Figure 4.3 shows the calculated squared condition number versus the diagonal elements of the

inverse matrix
(
E⊤E

)−1
for di�erent r iterated on a grid between 0 and 1, not including 1

though and di�erent π[2] and π[3]. Unfortunately, it does not seem to be the case that the
diagonal entries are easily explainable by the squared condition number, which is probably not
a big surprise since the condition number summarizes here 3 numbers in one. However, we see
that with increasing condition number also the diagonal entries increase, resulting in blown-up
standard errors.

4.4 Sample size calculation

The sample size calculation is based on the research question and thus the hypothesis we want
to address. This can for example be a certain treatment that we want to test for its e�cacy
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Figure 4.3: Diagonal entries of
(
E⊤E

)−1
from Equation (4.5) versus the squared

condition number κ (E) which are approximated by the eigenvalue decomposition. Not
all results from the constellations are shown since there are some outliers, making the
visualization uninformative.

compared to a placebo. Thus, we formulate the null hypothesis as

H0 : βtrt = β0
trt

To detect the signal, meaning a rejection of H0, we have to specify an alternative hypothesis

HA : βtrt = β0
trt +∆

where ∆ = βtrt−β0
trt is the relevant e�ect which we want to �nd with a certain probability given

it is there. With �nd, we mean that we will reject the null hypothesis H0 in either direction.
Since the e�ect of the treatment on the outcome can be confounded, we need to include them
in the analysis to get the true e�ect of the treatment. The confounding variables are usually
not of primary interest and thus �nding the true e�ect of confounders does not have to occur
with certainty and is for the sample size calculation usually omitted. Thus, focusing on only one
variable X[, j] and the respective estimate β̂[j], we can formulate the Wald statistics as:

t̂[j] =
β̂[j]− β0[j]√

Var
(
β̂[j]− β0[j]

) =
β̂[j]− β0[j]

σ

√((
X⊤X

)−1
)
[j, j]

H0, approx∼ N (0, 1)
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Now, if we work with the equilibrated design matrix, we also have to correct the coe�cients as

t̂[j] =
b̂[j]− b0[j]

σ

√((
E⊤E

)−1
)
[j, j]

H0, approx∼ N (0, 1)

where b̂[j] =
√∑n

i=1X[i, j]2 · β̂[j] which turns the formula to

t̂[j] =

√√√√ n∑
i=1

X[i, j]2 · β̂[j]− β0[j]

σ
· 1√((

E⊤E
)−1
)
[j, j]

H0, approx∼ N (0, 1) (4.6)

where we remind that the term
((

E⊤E
)−1
)
[j, j] is in the optimal case (no collinearity) just 1.

Furthermore, in the binary setting, the term
√∑n

i=1X[i, j]2 reduces to
√
n · π[j] where π[j] is

the percentage of ones in X[, j]. Now, ∆̂ = β̂[j]− β0[j] is under H0 assumed to be 0 and under
HA it is ∆. We will reject H0 if the absolute value of the statistics t̂[j] is larger than a certain
critical value q1−α/2,Z which is de�ned as the quantile where for a standard normal distributed

variable Z (such as our t̂[j] approximately is) holds P(q1−α/2,Z ≤ Z ≤ q1−α/2,Z) = 1− α. Then,
the power is the probability that given the alternative HA is true, we also �nd it. This includes
all values for t̂[j] that are in their absolute value larger than q1−α/2,Z . The concept of this is
visualized in Figure 4.4.

α 2 H0 :  0 α 2 HA :  t0 [j]0.0

0.1

0.2

0.3

0.4

−5 0 5

t̂  [j]

D
en

si
ty

Type 1 error

Power

Visualization of Power on Normal−Distribution scale

Figure 4.4: Visualization of power on the normal distribution scale according to
Equation (4.6). The alternative hypothesis is in this example set as t0[j] = 4 which is
arbitrary but should only visualize the procedure.

4.5 Estimation of σ2

Unfortunately, σ in Equation (4.6) is not given and has to be estimated as σ̂. Thus, there is
actually no way around estimating σ when truly quantifying the uncertainty of the estimates β̂
and we will investigate this now.

The estimator of σ2 is derived from the sum of the squared residuals. Residuals e[i] represent
the term of the outcome that, after model �tting, can not be explained by the model and are
therefore estimates for the errors ε[i]:

e = y − ŷ = y −Xβ̂
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The sum of the squared residuals is then

SSRes =
n∑

i=1

(y [i]− ŷ[i])2 = e⊤e

=
(
y −Xβ̂

)⊤ (
y −Xβ̂

)
= y⊤y − β̂

⊤
X⊤y − y⊤Xβ̂ + β̂

⊤
X⊤Xβ̂

= y⊤y − 2β̂
⊤
X⊤y + β̂

⊤
X⊤Xβ̂

and with
(
X⊤X

)
β̂ = X⊤y this turns to

SSRes = y⊤y − β̂
⊤
X⊤y

The estimator of σ2 is also called the residual mean square since it comes from dividing the
SSRes by its degrees of freedom which is n− p as

σ̂2 = MSRes =
SSRes
n− p

=

∑n
i=1 (y [i]− ŷ[i])2

n− p
=

e⊤e

n− p

Note, σ̂ is also called the residual standard error, and it is the value that R provides with the func-
tion sigma(...) applied on a linear model (lm). Moreover, Montgomery et al. (2021)[Appendix
C] shows that the residuals are distributed with the following relation

SSRes
σ2

=
e⊤e

σ2
=

(n− p)σ̂2

σ2
∼ χ2

df=n−p (4.7)

which will be useful later when we also want to respect the uncertainty of σ̂.

4.6 F -distribution

Extending Equation (4.6) with the estimated σ̂ means the combination of two distributions in
one. Luckily, the F -distribution exists that allows us to study the ratio of two χ2-distributions.
Thus, we need to transform Equation (4.6) on to the χ2 scale as

t̂[j]2 =
n∑

i=1

X[i, j]2 ·

(
β̂[j]− β0[j]

)2
σ2

· 1((
E⊤E

)−1
)
[j, j]

H0, approx∼ χ2
1

dividing t̂[j]2 by (n−p)σ̂2

σ2 (see Equation (4.7)) which follows a χ2
n−p distribution and additionally

dividing both terms by the respective degree of freedom we get

ϕ2 =

∑n
i=1X[i, j]2 · (β̂[j]−β0[j])

2

σ2 · 1(
(E⊤E)

−1
)
[j,j]

· (n− p)

(n−p)σ̂2

σ2 · 1

which can be simpli�ed to

ϕ2 =

[
n∑

i=1

X[i, j]2

]
· ∆

2

σ̂2
· 1((

E⊤E
)−1
)
[j, j]

H0, approx∼ F(1,n−p) (4.8)
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The power calculation works on this F -distribution scale the same as before. We will reject the
null hypothesis H0 when ϕ2 is larger than a certain critical value qα,F(1,n−p)

which is de�ned as the
quantile where the cumulative distribution function of F(1,n−p), with non-centrality parameter
0, reaches the probability 1−α or P(F(1,n−p) ≤ qα,F(1,n−p)

) = 1−α. The power of the test is the

cumulative distribution function of F(1,n−p) with non-centrality parameter
[∑n

i=1X[i, j]2
]
· ∆2

σ̂2 ·
1(

(E⊤E)
−1

)
[j,j]

evaluated at the critical value of F(1,n−p) with non-centrality parameter 0. The

concept is also visualized in Figure 4.5.

α0.00

0.05

0.10

0.15

0.20

0 10 20 30

φ2

D
en

si
ty

Type 1 error

Power

Visualization of Power on F−Distribution scale

Figure 4.5: Visualization of power on the F -distribution scale according to Equa-
tion (4.8). The alternative hypothesis is in this example set as ϕ2 = 16 (t0[j] = 4)
serving as non-centrality parameter, n = 100 and p = 3 which are all arbitrary param-
eters but should only visualize the procedure.

In terms of code, this means we adjust our total sample size n so that the following holds:

power =1− pf

(
q=qf (p=1− α, df1=1, df2= n − p) ,

df1=1, df2= n − p, ncp=

 n∑
i=1

X[i, j]2

 · ∆
2

σ̂2
· 1((

E⊤E
)−1
)
[j, j]

)
(4.9)

Equation (4.9) is implemented in the function called myFpower which forms the basis of the
copowerlm function available in the Collinearity package (Georgios Kazantzidis, Jerome Sepin
and Malgorzata Roos, 2023). The arguments of myFpower are:

� Delta=∆

� sigma=σ̂

� trouble=
((

E⊤E
)−1
)
[j, j]

� voilen= 1
n ·
[∑n

i=1X[i, j]2
]

� n= sample size n

� p= number of parameters in the model
including an intercept

� alpha= signi�cance level α

Usually, those parameters are obtained from a pilot study and the function then returns the

power that is reached. We remind again that the term
((

E⊤E
)−1
)
[j, j] is just 1 in the optimal

case where there is no collinearity present. But we know this is almost always not the case.
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Furthermore, what we note at this point is that while focusing only on one variableX[, j], we only

need the information what the other variables do to X[, j] via
((

E⊤E
)−1
)
[j, j]. This means,

this holds for any distribution of the variable that is not of primary interest. Unfortunately, this
switch to continuity is not as easy in the variable of interest X[, j]. Since, this means that the
term

√∑n
i=1X[i, j]2 gets not conveniently reduced to

√
n · π[j]. But still, if we make further

assumptions about the properties of X[, j], performing a sample size calculation is possible.
We switch now to random variables and assume X1j , . . . , Xnj are identically and independent
distributed. Then, the expected squared length thereof is

E

(
n∑

i=1

X2
ij

)
=

n∑
i=1

E
(
X2

ij

)
with E(X2

ij) = Var(Xij) + E(Xij)
2

=

n∑
i=1

(
Var(Xij) + E(Xij)

2
)
= n

(
Var(Xij) + E(Xij)

2
)

Thus, we would expect
∑n

i=1X[i, j]2 to be n ·
(
Var(Xij) + E(Xij)

2
)
. This, under the assumption

that E(Xij) and Var(Xij) are correctly speci�ed, meaning that they stay robust with more
observations. This means, we can break the boundaries and switch to more complex setups for
the sample size calculation than just a binary case.
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Figure 4.6: Resulting power for di�erent combinations of ∆, σ̂, the total sample size

n and diagonal entries of the inverse matrix
((

E⊤E
)−1
)
[j, j]. The squared length of

X[, j] is here set to n · 1/2 which means that the proportion of ones in X[, j] is 50%.

Figure 4.6 shows the behavior of the power as a result of di�erent combinations of ∆ (2 or 3),
σ̂ (2 or 3), the total sample size n (from 10 up to 80) and diagonal entries of the inverse matrix
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((
E⊤E

)−1
)
[j, j] (from 1 up to 15). The squared length of X[, j] is here de�ned as n · 1/2

(π[j] = 1/2). Figure 4.6 demonstrates that the number of observations needed to maintain
the desired power is linearly related to the diagonal entries, since the contour lines are straight.
Furthermore, the slope of this relationship seems to be de�ned by the ratio ∆

σ̂ but also the wanted
power level.
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Figure 4.7: Resulting power for di�erent combinations of the total sample size n,

diagonal entries of the inverse matrix
((

E⊤E
)−1
)
[j, j] and di�erent π[j]. ∆=3 and

σ=3 are �xed. Obviously the power in the treatment contrast depends on the proportion
π[j].

Equation (4.8) contains the term
∑n

i=1X[i, j]2 which represents the length of the variable of
interest X[, j]. Thus, the power depends on it. Naturally, the question arises in binary settings
about the encoding, since this has certainly an in�uence. The default choice in lm is either a
0 or 1 which reduces the length of X[, j] to n · π[j] where π[j] is the proportion of ones. A
di�erent encoding is the so-called sum-to-zero contrast which means it is now either a −1 or 1
and thus the length of X[, j] is now simply n and therefore the proportion has no in�uence on
the length. Figure 4.7 illustrates how the power depends on π[j] in the 0, 1 encoding and of
course shows that the power increases with larger π[j]. However, the power calculation does not
consider how we get to the estimated coe�cient β̂[j] which of course does also depend on π[j].
And in addition, we are not to determine π[j] since this is a property of the data.
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Change of Power due to Collinearity

Given the e�ect is there, of course we want to �nd it. And we want to �nd it with a certain
probability, which represents our power. A general desired power seems to be roughly around
80% which means that out of 5 experiments, 4 of them will �nd the e�ect. On the other hand, a
power of 50% is as good as a coin �ip to detect the signal and is then rather a waste of resources.
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Figure 4.8: Dynamic of power with di�erent levels of collinearity (de�ned by trouble)
for di�erent signal-to-noise ratios ∆/σ where the sample size is initially calculated for
the assumption of no collinearity to reach the power of 80% but stays constant. πj is
here �xed at 1/2.

Figure 4.8 shows how the power drops with increasing amount of collinearity for a �xed length
of X[, j] ∈ Rn×1 where n is calculated for a particular ∆ and σ̂ to get the desired power of
80% under the assumption of no collinearity. The �gure shows what happens to the power with
increasing amount of collinearity, expressed by the jth diagonal entry of E⊤E. It gets already
clear that the situation where the power reaches 50% is not describable by a single condition
number that is valid for all circumstances. This, because it is already impossible to describe

it through
((

E⊤E
)−1
)
[j, j]=trouble, which is a much more precise measure that is directly

related to the variable of interest and can also not summarize the whole situation.



Chapter 5

Simulation study

The BostonHousing2 data set introduced in Chapter 3 showed in Tables 3.5 and 3.7 two dif-
ferent collinearity constellations coming from two di�erent models. Thus, we don't know what
collinearity itself does to the results provided in Tables 3.3 and 3.6. We also have in general no
control over the results that both methods yield since we do not really have an idea what the
true coe�cients β are. Thus, we create a simulation study inspired by the BostonHousing2 un-
transformed data set where we have full control over the collinearity situation and about the true
coe�cients. A simulation study is a computer based experiment where we create pseudo-random
Simulated Data where the underlying parameters are known. Such studies allow to understand
the statistical properties and behaviors of methods under considerations because comparison to
the Truth is possible.

Harrison and Rubinfeld (1978) do not speci�cally reason the transformations of variables apart
from nox^2 which is found via grid search. Despite the use of the rather complex model with
many variables and even transformations of some, we will investigate the behavior of lm and
tram::Lm due to collinearity in a simpler setup with only two explanatory variables involved
and also with the data set loaded by executing the command data("BostonHousing2") from
the mlbench package. This, because also seemingly simple systems can be already suspect to the
detrimental e�ects of collinearity.

We followed recommendations by Burton et al. (2006); Morris et al. (2019) and Pawel et al.
(2022) and developed two simulation work�ows summarized in Figures 5.1 and 5.2. Whereas
the work�ow in Figure 5.1 focuses on the parameter estimation process, Figure 5.2 addresses the
design of the experiment. More speci�cally, it addresses the sample size that is needed to mitigate
the e�ect of collinearity. Sections 5.1�5.8 justify the work�ows and the results are provided in
Chapter 6.

33
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True linear model

X · β + εy · sy = y Conclusions

Design Matrix (Collinearity):

� rho<-tanh(seq(

from=-1.8,to=0,

length.out=20))

� n obs<-c(5, 31, 400)

� Distribution of X (normal)
X<-mvtnorm::rmvnorm(...)

� mean x1<-0.6; mean x2<-3.8

� sd x1<-0.1; sd x2<-2.1

� Number of simulations B<-1211

Aim:
How does collinearity influence the output
(t̂, β̂, se(β̂),power) of lm, tram::Lm ?

Regression parameters:

� beta 0<-c(51.4)

� beta 1<-c(-46.1, 0)

� beta 2<-c(-0.9, 0)

Noise parameters:

� set.seed(...)

� eps y<-rnorm(0,1,n=n obs)

� s y<-c(2, 5, 8.2)

Data-Generating-Process:
for(k in 1:B){
for(i in 1:nrow(experimental factors)){
X<-mvtnorm::rmvnorm(n = n obs[i],

mean = c(mean x1,mean x2),

sigma = matrix(c(

sd x1^2, rho[i]*sd x1*sd x2,

rho[i]*sd x1*sd x2, sd x2^2

), ncol = 2))

X<-cbind(1,X)

cond nu<-max(

Collinearity::Var decom mat(X)[,"cond ind"])

E<-Collinearity::equilibrate matrix(X)

trouble<-diag(solve(t(E)%*%E))

eps y<-rnorm(0,1,n=n obs[i])

y<-X%*%c(beta 0[i],beta 1[i],beta 2[i])+eps y*s y[i]

df list[[length(df list)+1]]<-data.frame(y,X[,-1])

}
}

Experimental factors (full factorial):
experimental factors<-expand.grid(...)

id n obs rho beta 0 beta 1 beta 2 s y

1 5 -0.9 51.4 -46.1 -0.9 8.2
1212 31 -0.9 51.4 -46.1 -0.9 8.2
... ... ... ... ... ... ...
301540 5 -0.9 51.4 -46.1 -0.9 2
... ... ... ... ... ... ...
870710 400 0 51.4 0 0 5
... ... ... ... ... ... ...
871920 400 0 51.4 0 0 5

Estimands:
exp

hbeta 0 se 0 t 0 ... cond nu

-13 366.3 0 ... 122.1
9.1 64.6 0.1 ... 69.1
... ... ... ... ...
-51.1 21.1 -2.4 ... 26.5
... ... ... ... ...
0 2.7 0 ... 15.5
... ... ... ... ...
-2.7 2.2 -1.2 ... 13.8

Estimand-Generating-Process:
# paired design

m<-lm(data,y∼x1+x2)

m<-tram::Lm(data,y∼x1+x2)

Simulated Data
(n = 871920)
df list[[1]]

Simulated Data
(n = 871920)
df list[[1]]

Simulated Data
(n = 871920)
df list[[1]]

Performance Evaluation:
Metrics:

� Wald statistics t̂

� Bias β̂ − β

� Relative Bias
(
β̂ − β

)
/β

� Empirical standard error se
(
β̂
)

� Proportion of p-values ≤ α (Power)

Figures:

� Trace plots with quantiles

� Spatial plots

Figure 5.1: Simulation work�ow for the parameter estimation process comparing the
least squares model lm with the transformation model equivalent tram::Lm with respect
to collinearity susceptibility.
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True linear model

X · β + εy · sy = y

Aim:
How does collinearity influence the design
in terms of the needed sample size (n need) ?

Conclusions

Design Matrix (Collinearity):

� rho<-tanh(seq(

from=-1.8,to=0,

length.out=20))

� n obs<-c(5, 31, 400)

� Distribution of X (normal)
X<-mvtnorm::rmvnorm(...)

� mean x1<-0.6; mean x2<-3.8

� sd x1<-0.1; sd x2<-2.1

� Number of simulations B<-1211

Regression parameters:

� beta 0<-c(51.4)

� beta 1<-c(-46.1, 0)

� beta 2<-c(-0.9, 0)

Noise parameters:

� set.seed(...)

� eps y<-rnorm(0,1,n=n obs)

� s y<-c(2, 5, 8.2)

Data-Generating-Process:
for(k in 1:B){
for(i in 1:nrow(experimental factors)){
X<-mvtnorm::rmvnorm(n = n obs[i],

mean = c(mean x1,mean x2),

sigma = matrix(c(

sd x1^2, rho[i]*sd x1*sd x2,

rho[i]*sd x1*sd x2, sd x2^2

), ncol = 2))

X<-cbind(1,X)

cond nu<-max(

Collinearity::Var decom mat(X)[,"cond ind"])

E<-Collinearity::equilibrate matrix(X)

trouble<-diag(solve(t(E)%*%E))

eps y<-rnorm(0,1,n=n obs[i])

y<-X%*%c(beta 0[i],beta 1[i],beta 2[i])+eps y*s y[i]

df list[[length(df list)+1]]<-data.frame(y,X[,-1])

}
}

Experimental factors (full factorial):
experimental factors<-expand.grid(...)

id n obs rho beta 0 beta 1 beta 2 s y Delta

1 5 -0.9 51.4 -46.1 -0.9 8.2 -46.1
1212 31 -0.9 51.4 -46.1 -0.9 8.2 -46.1
... ... ... ... ... ... ... ...
301540 5 -0.9 51.4 -46.1 -0.9 2 -46.1
... ... ... ... ... ... ... ...
870710 400 0 51.4 0 0 5 -46.1
... ... ... ... ... ... ... ...
871920 400 0 51.4 0 0 5 -46.1

Design correction:rrrrr
exp

cond nu n need

122.1 2462.9
69.1 479.6
... ...
26.5 10.8
... ...
15.5 12.9
... ...
13.8 10

Estimand-Generating-Process:
m<-lm(data,y∼x1+x2)

Correction of the Design
which alleviates the impact of Collinearity:
s <- sigma(m)

n need <- Collinearity::copowerlm(power = 0.8, n = NULL,

alpha = 0.05, Delta = Delta,

sigma = s, p=3,

voilen = sd(X$x1)^2 + mean(X$x1)^2,

trouble = trouble[2] )$n

Simulated Data
(n = 871920)
df list[[1]]

Simulated Data
(n = 871920)
df list[[1]]

Simulated Data
(n = 871920)
df list[[1]]

Design Evaluation:
Metrics:

� n need

� n need/n obs

Figures:

� Trace plots with quantiles

Figure 5.2: Simulation work�ow for the design correction through an appropriate
sample size that can alleviate the harm caused by collinearity. So far, this procedure
only applies for the lm model.
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5.1 Aim

The aim for this particular simulation study is: We want to compare the conventional least-
squares model lm with the transformation model equivalent tram::Lm under di�erent collinearity
magnitude in the design matrix X. The experimental factors that change in this simulation are:

� Magnitude of collinearity (rho)

� Number of observations (n_obs)

� Magnitude of noise (s_y)

� E�ect and no e�ect (beta_0, beta_1, beta_2)

5.2 Data generating process

Since this simulation study is inspired by the BostonHousing2 data set, we also borrow our
parameters for the data generation process from it. We start with generating the collinear design
matrix X ∈ Rn_obs×p where p is 3 and n_obs will be determined later.

5.2.1 How to generate X with controlled collinearity?

In the linear regression setup, we do not make any assumption about the explanatory variables,
except that they are measured without error. Thus, we can choose a distribution of our own
liking. Of more importance is the magnitude of collinearity within X. To control collinear-
ity, we considered three options: scaling factor (scalefactor) and multivariate normal method
with transformation to uniform distribution (rmvuni) and without transformation to di�erent
distribution (rmvnorm). We follow the approach where we stick with the multivariate normal
distribution, but state now all three options for completeness.

Scaling factor (scalefactor)

This method is similar to the used approach in Belsley (1991)[Chapter 4], and the idea here is
that we start with generating one explanatory variable x 1 as we want and then generate a second
explanatory variable x 2 based on x 1 via a linear transformation. The magnitude of collinearity,
more speci�cally correlation, is determined by adding some noise εx to x 1. The amount of noise
added can be determined by multiplying εx with the scaling factor sx. A lot of noise will lead
to x 1 and x 2 having less correlation. On the other hand, almost no noise will lead to the fact
that x 2 can almost perfectly be described by linear transformations of x 1 and thus leads to high
correlation.

Therefore, we draw n_obs samples from a uniform distribution whose borders are inspired by
the range of nox from the BostonHousing2 data set. Thus,

x 1 ∼ Un_obs(0.4, 0.9) (5.1)

The second explanatory variable x 2 is generated from x 1 as

x 2 = γ0 + γ1 · x 1 + εx · sx (5.2)

where γ0 and γ1 are here leaned on the coe�cients obtained by �tting the model lm(data =

BostonHousing2, dis∼nox) (Table 5.1). εx is an n_obs-dimensional vector containing inde-
pendent and identical draws of the standard normal distribution N (0, 1) and sx is the scaling
factor that allows us to control the magnitude of collinearity.
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Table 5.1: Analyzing (weighted) distance of Housings to �ve employment centers
(dis) with simple linear regression via the lm function for the whole data set (n=506).
Outcome variable is the weighted distances to �ve Boston employment centers (dis).
Explanatory variable nox is continuous.

γ̂ 95% con�dence interval t-value p-value

Intercept 11.55 from 10.97 to 12.12 39.41 < 0.0001
nox -13.98 from -14.99 to -12.96 -27.03 < 0.0001

Multivariate normal and transformation to uniform (rmvuni)

The second method employs drawing n_obs samples from a standard multivariate normal distri-
bution with the variance-covariance matrix Σ being equivalent to the correlation matrix C Z11 Z12

...
...

Zn_obs1 Zn_obs2

 ∼ N
(
µ =

(
0
0

)
,Σ =

(
1 ρ12
ρ21 1

))
(5.3)

where ρ12 = ρ21 is the correlation coe�cient between realizations z1 and z2 de�ned between -1
and 1 (and has thus natural bounds, which is good for us with respect to parameter de�nition for
the simulation). Starting from z1 and z2, which are currently standard normal distributed with
a certain collinearity, we can generate the distribution we want, by, in a �rst step, transforming
them to be standard uniform distributed using the inverse transformation. If zij is a realization
of a random variable Zij with cumulative distribution function FZij (zij), we can rearrange to

FZij (zij) = P (Zij ≤ zij) = P (T (U) ≤ zij) = P
(
U ≤ T−1(zij)

)
and when U is standard uniform it holds that P(U ≤ u) = u and thus

FZij (zij) = T−1(zij) ∼ U(0, 1)

where FZij (zij) is in our case Φ(zij). Thus, Φ (z1) and Φ (z2) are now both standard uniform
with a certain correlation and can be further transformed. In our case, we change the support
a1 and b1 by

x1 = Φ(z1) · (b1 − a1) + a1

where now x1 ∼ Un_obs(a1 = 0.4, b1 = 0.9) and the support is leaned on the BostonHousing2

data set. The same procedure is also applied to generate the second explanatory variable x2

(a2 = 1.1, b2 = 12.1). Using the uniform distribution has the advantage that we can strictly
de�ne the range of our explanatory variables. The disadvantage is that it is not very natural
with observations sticking very densely to the corners (Figure 5.5) which might in�uence the
analysis.

Multivariate normal (rmvnorm)

The third case that we inspect is if we keep the standard normal distribution, but we shift
and scale the data to have the same marginal mean µx1 and standard deviation σx1 as the
BostonHousing2 data set. Thus, we draw observations described by Equation (5.3) and transform
them as

xj = zj · σxj + µxj
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Collinearity over the correlation matrix

Of course, C describes directly the correlation, which is not exactly collinearity but rather a
special case thereof. Furthermore, we invest collinearity on the design matrix X which includes
a constant column of ones (x0) as this can also contribute to collinearity. Nevertheless, there is
no angle for us to manipulate on x0 as this is clearly given, which leaves us with x1 and x2 to
steer the whole amount of collinearity in X and thus operating on C seems to be valid.

Extension of this method to design matrices of higher dimension p > 3 are of course also possible.
As described earlier in Section 2.3.2, when we standardize the design matrix and take the square
of it, we end up with the correlation matrix C which lacks the constant column.

W⊤W = C =


1 ρ12 . . . ρ1p
ρ21 1 . . . ρ2p
...

...
. . .

...
ρp1 ρp2 . . . 1

 (5.4)

Although all individual parameters describe only the pairwise correlation, the degree of collinear-
ity within W can be determined, as the eigenvalue decomposition works on this scale and the
results of the singular value decomposition can approximate these results. However, the later
transformation to the distribution of choice and the addition of the constant column to end
up at the design matrix X, will not surprisingly yield a di�erent condition number. Neverthe-
less, the transformation and the constant column are independent of the collinearity magnitude
which means that the correlation coe�cients, (p−1)p

2 in number, are still the only parameters
that determine the level of collinearity within X.

Figure 5.3: Visualization how di�erent correlation coe�cients impact collinearity,
which is described by the condition number. The condition number is approximated
via the eigenvalue decomposition of the correlation matrix C = W⊤W for the 3-
dimensional case. For an easier visualization, the condition number is split into 5 bins,
where the bin in red represents condition numbers higher then 30.
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Figure 5.3 illustrates for the 3-dimensional case how di�erent constellations of ρ12, ρ13 and ρ23
lead to a rank-de�cient, or almost rank-de�cient, matrix C expressed by high condition numbers.
This �gure should emphasize that it is possible to get high collinearity while still having rather
low correlation coe�cients.

5.2.2 The outcome?

When X is set, we can tackle the outcome variable y . With a column of a ones, our design
matrix X takes the form

X =

1 x11 x12
...

...
...

1 x n_obs1 xn_obs2

 ∈ Rn_obs×3 (5.5)

and the outcome y is then generated as

y = X · (β0, β1, β2)⊤ + εy · sy

where β0, β1 and β2 are inspired by coe�cients obtained by �tting the model
lm(data=BostonHousing2, cmedv∼dis+nox)(Table 5.2). In addition, β1 and β2 will both have
a second experimental condition speci�ed as zero. εy is an n_obs dimensional vector containing
independent and identical draws of the standard normal distribution N (0, 1) and sy is also a
parameter that is inspired by the same �tted model, where it serves as the residual standard
error. sy will also have two additionally di�erent realizations to explore more experimental
conditions.

Table 5.2: Analyzing Boston Housing prices with multiple linear regression via the lm
function for the whole data set (n=506). Outcome variable is the (corrected) median
value of the owner occupied homes in USD 1000 (cmedv). Explanatory variables nox
and dis are both continuous.

β̂ 95% con�dence interval t-value p-value

Intercept 51.38 from 44.27 to 58.48 14.21 < 0.0001
nox -46.10 from -55.81 to -36.38 -9.32 < 0.0001
dis -0.86 from -1.40 to -0.33 -3.18 0.002

Thus according to Table 5.2, after having speci�ed X, the following parameters are set to create
the outcome y :

� β0 (βIntercept) set as c(51.4)

� β1 (βnox) set as c(-46.1, 0)

� β2 (βdis) set as c(-0.9, 0)

� sy set as c(2, 5, 8.2))

where all these parameter are rounded on one decimal place.
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5.2.3 Comparison of methods

We create 50 collinearity situations of di�erent magnitude and for each of these situations we
create 100 data sets consisting of 500 observations. There is not really a rationale for these
parameters, but should only visualize the di�erent data properties each method is accompanied
by. Although β1, β2 and sy have several conditions, all of them take in this example the realization
that is inherited from the BostonHousing2 data set: β1 = −46.1, β2 = −0.9, sy = 8.2.

The individual data frames are generated as described earlier in this section. ρ is iterated on an
equally spaced grid between 0 and -1. The negative correlation is chosen because as visible in
Table 5.1 the association between variable x 1 (nox) and x 2 (dis) is negative (γnox=-14).

For the scalefactor method, the grid for sx is determined by computing the scale factors that
are needed to achieve the same minimum and maximum condition number, the rmvuni method
could achieve. These borders are determined by a uniroot function and sx is iterated between
these two borders with an equal spacing.

Furthermore, the outcome variable y is also generated and subsequently the least-squares linear
model lm(y∼x1+x2) is �tted to �gure out whether the di�erent simulation methods also end
up with di�erent results. The transformation model equivalent is not yet applied, as we are
currently only comparing the data generation process.

Figure 5.4 plots on the �rst two rows the diagonal entries of
(
E⊤E

)−1
versus the correlation

coe�cient ρ, the condition number κ (E) respectively. The third row visualizes the correlation
coe�cient versus the condition number, and it seems to be the case that for the same condi-
tion number, the correlation is highest in the rmvnorm method. This e�ect seems to be more
pronounced for lower condition numbers.

The fourth row plots the standard deviation of the explanatory variables. This row crystallizes
the di�erence when simulating with the scalefactor or drawing from the multivariate normal
(rmvnorm or rmvuni): Variable x 2 (dis) that is constructed from x 1 (nox) has a non-constant
standard deviation, as this is the parameter that de�nes the collinearity within X. The standard
deviation for x 1 in the scalefactor method stays horizontally the same, as the collinearity
magnitude is only de�ned by sx but works with the same random pattern. This means that
there are only 100 di�erent random patterns, and each of them is 50 times scaled to get di�erent
collinearity situations. Thus, the scalefactor method yields dependent data sets, whereas for
rmvnorm and rmvuni, all generated data sets are independent of each other.

The three last rows show the estimated coe�cients β̂[i, j], the standard error se
(
β̂[i, j]

)
and

the Wald-Statistics t̂[i, j] for all created data sets. It seems to be the case that the non-constant
standard deviation for x2 that accompanies the scalefactor method, has an e�ect on all three
statistics. Thus, all three methods will cause di�erent estimation behavior, but whether one of
them is better or worse is not clear.
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Figure 5.4: Comparing rmvuni, rmvnorm and scalefactor approaches to induce
collinearity.
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Figure 5.5 compares how the raw data for two di�erent collinearity magnitudes di�ers between
the simulation approaches. We see here even clearer that the scalefactor method (blue) does
not protect the marginal standard deviation of x 2 (dis) whereas the multivariate normal method
does. In addition, we see that for rmvuni, the borders are respected but we see that the ob-
servations are preferably scattered at the upper-left and lower-left corner which seems not very
natural.

Figure 5.5: Comparing approaches to induce collinearity. Visualization how the two
variables x1 and x2 are in relation to each other for the di�erent methods but for
somewhat similar collinearity magnitudes. The black dot and the dotted lines represents
the location of the mean and range of the two explanatory variables coming from the
BostonHousing2 data set.
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To summarize a few points to compare the methods:

1. Dependency : Whereas the scalefactor method may have dependent data sets, and thus
also dependent estimates, rmvuni and rmvnorm break this association.

2. Marginal standard deviation: The scalefactor method results in di�erent standard devi-
ations for x2 depending on the collinearity magnitude. The rmvuni and rmvnorm methods
protect the marginal standard deviation of the created variables.

3. Range: In the rmvuni and rmvnorm methods we induce collinearity over the correlation
matrix C whose coe�cients are naturally bounded by (−1, 1). Determining the boundaries
for the scalefactor method is less restrictive and setting reasonable limits is a task that
might cause serious headache.

Simulation of controlled collinearity for the case when more than two explanatory variables
need de�nition might be more intuitive with the scalefactor method, as one variable can
be rather clearly de�ned by a linear transformation of others. On the other hand, with this
approach one is rather bounded to the case one is imagining and moves a bit away from the
more general application. The dependency is lost when simulating over the rmvuni or rmvnorm
method. But this is not necessarily a bad thing, as this simpli�es later analysis by not having
to correct for dependent estimates. Of course, breaking the dependency is also possible for the
scalefactor method. Nevertheless, with respect to simulation, a clear de�ned range seems to
be very convenient and also a constant marginal standard deviation of the explanatory variables
is desirable as this might lead to unexpected e�ects. Unexpected e�ects might be also caused by
the transformation to uniform scale (rmvuni), as the points prefer to stick in the corners.

In the end, we conclude that there is not really one optimal method to induce collinearity.
The method we choose to go along with is the rmvnorm method. With this method, we do
not restrict X to be within the range of the BostonHousing data set, but we don't see this as
problematic. This method seems for us the most convenient and natural method to simulate
collinear explanatory variables, and therefore we move along with it.

5.2.4 Sample size n_obs for continuous variable of interest

n_obs is chosen to be able to �nd the e�ect corresponding to variable x 1 (=nox) with a power of
80% and signi�cance level of α =0.05 when no collinearity is assumed. Even though we change
the magnitude of collinearity within the simulation, n_obs stays constant throughout the whole
simulation to point out the e�ect solely caused by collinearity. To determine the sample size
n_obs we employ the function Collinearity::copowerlm with the parameters de�ned earlier
employed at the noisiest condition speci�ed at the maximum s_y value as:

� power=0.80

� n=NULL

� alpha=0.05

� Delta=β1=-46.1

� sigma=sy=8.2

� p=3

� voilen=Var(X1) + E(X1)
2=0.443

� trouble=. . .

where a crucial parameter is trouble is yet missing. trouble is still the diagonal entry of[(
E⊤E

)−1
]
corresponding to β1 and assumed to be 1 with no collinearity if we equilibrate the

design matrix X. This will almost never be the case, even if we construct X to have as less
collinearity as we can.
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This is hardly visible in Figure 5.4 due to the scale but the Diagonal Entry never reaches 1 in the
case where we simulate collinearity with the multivariate normal distribution. Figure 5.6 zooms
in and makes this clearer.

Figure 5.6: Visualization of the dynamic of the diagonal entries and a cross-section
at ρ = 0, represented by the histograms. In addition, the 2.5%, 50%, 97.5% quantiles
are plotted as well.

To get an even clearer picture about the distribution of the diagonal entries (trouble) at the point
where the collinearity within X should be lowest, (ρ = 0) we draw 200 data sets, each containing

500 observations. Then we calculate the diagonal entries of
(
E⊤E

)−1
, plot it with a histogram

for each variable separately and also add the 2.5%, 50% and 97.5% quantiles (Figure 5.6 ). We
see that even though we construct X as good as we can to have no collinearity and thus would

mean that the diagonal entries of
(
E⊤E

)−1
are equal to 1, this is simply not the case.

A sample size, calculated with trouble equals to 1, would yield n_obs to be 5 (rounded up to
the next integer). If we set trouble to the 97.5% quantile, which is ≈42.581, we get a sample
size of 31. This then covers 97.5% of all cases when the collinearity is as low as possible.

To see what happens to the estimates with di�erent sample sizes, we add as sample size levels 5
and an over-powered case with 400 which corresponds to the sample size of 31 times 10 rounded
up to the next hundred. Thus, this means throughout the simulation we have three di�erent
levels as n_obs<-c(5, 31, 400).
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5.2.5 Range and grid of the collinearity magnitude

Since we have chosen to simulate collinearity over the correlation matrix, de�ning the range of
rho is easy: (-1,0). The negative correlation is chosen because the relation between x1 and x2

is negative too (Table 5.1). This results in this setup in a condition number range of (13.542,
126.872).

So far, we explored the di�erent collinearity magnitudes with an equal spaced grid on the cor-
relation level (rho<-seq(from=-1,to=0,length.out=no_coll_magnitude)), where the number
of di�erent correlation levels is 50 (no_coll_magnitude). But the relation between correlation
and condition number is of course not linear, leading to the fact that the condition number grid
is not explored by even steps, which is visible in Figure 5.7.
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Figure 5.7: Visualization how the correlation translates into the condition number for
one run.

This is a bit unfortunate as we also want to explore higher collinearity magnitudes. But we can
solve this issue with the Fisher transformation (Fisher (1915)) since it is used to transform highly
skewed correlation coe�cients ρ to be approximately normally distributed. By doing this, one
can compute reliable statistics of ρ and of course we can use this transformation for our situation
to explore higher condition numbers at a �ner grid.

Figure 5.8: For 1000 Fisher transformed rho (z) on a grid between -4 and 0,
the transformation to X, via the correlation coe�cient ρ is simulated. Each X
contains 500 observations and the condition number is calculated with the function
Collinearity::Var_decom_mat(X).

The Fisher transformation, which is essentially the inverse hyperbolic tangent function (z<-atanh(rho)),
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maps ρ which is de�ned within [−1, 1] onto (−∞,∞). This means we lose the lower boundary
of -1 and thus have to determine it. We do this by setting the proportion of condition numbers,
larger than Belsley's cut-o� value of 30, to be 1/3 and determine the maximum Fisher trans-
formed rho (z) to achieve this. Figure 5.8 iterates z on an equally-spaced grid between -4 and
0 for 1000 di�erent values. Then the back-transformation to rho is applied (rho<-tanh(z)) and
X is constructed, each having 500 observations. Then the condition number for X is calcu-
lated. The proportion of condition numbers that are higher or equal to 30 are visualized on the
upper-right panel and we see that we need the lower limit of the Fisher transformed rho (z) to
be ≈-1.8 to get the desired proportion of 1/3. Furthermore, the number of di�erent collinearity
magnitudes (no_coll_magnitude) does not have to be very large, also for computational reasons,
and thus we set it to 20.

Thus, to summarize, the collinearity magnitude in the simulation study will be explored with:
rho <- tanh(seq(from=lower_fisher_rho,to = 0, length.out = no_coll_magnitude))

where lower_fisher_rho=-1.8 and no_coll_magnitude=20. Table 5.3 visualizes the translation
from the Fisher transformed rho (z) to the condition number via the rho corresponding to the
correlation coe�cient (ρ).

Table 5.3: Visualization how an equally binned Fisher transformed rho (z) translates
into rho on the correlation level scale (ρ) and then into the condition number (κ (E)).
Note that rho (ρ) is only the theoretically assigned for the simulation and deviates to
some extent from the actual rho (ρ̂) in the simulated data.

Fisher transformed rho (z) rho (ρ) rho after sim. (ρ̂) κ (E)

-1.8 -0.947 -0.949 51.33
-1.6 0.2 -0.922 0.025 -0.91 42.077
-1.4 0.2 -0.885 0.036 -0.872 36.17
-1.2 0.2 -0.834 0.052 -0.844 30.765
-1 0.2 -0.762 0.072 -0.782 25.334
-0.8 0.2 -0.664 0.098 -0.688 21.902
-0.6 0.2 -0.537 0.127 -0.524 18.681
-0.4 0.2 -0.38 0.157 -0.356 15.885
-0.2 0.2 -0.197 0.183 -0.157 15.469
0 0.2 0 0.197 0.072 14.768

5.3 Estimands

The estimands considered are the coe�cients β̂[i, j], standard error se
(
β̂[i, j]

)
and the Wald

statistics t̂[i, j] = β̂[i,j]

se(β̂[i,j])
for the explanatory variables not including the intercept though.

5.4 Sample size needed

A further measure that is related to the design of the study is the number of observations
needed to reach the desired power of 80% given the current collinearity magnitude. We call this
measure n_need, and it is determined with the copowerlm function of the Collinearity package
(Georgios Kazantzidis, Jerome Sepin and Malgorzata Roos, 2023). As copowerlm is developed to
be applicable for the least-squares case and thus is only applied to determine the needed sample
size based on results that are �tted with the lm function.

copowerlm can be used as a tool to determine the appropriate sample size to have a power of 80%
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corresponding to a certain variable of interest. This function extends already existing sample size
software as it takes the collinearity information within the model into consideration and adjusts
for that.

5.5 Methods

Multiple linear regression methods:

� lm(...)

� tram::Lm(...)

Methods are employed at their default parameters.

5.6 Performance measures

The distribution of the following performance measures is inspected graphically via plotting the
trace of the estimands along the condition number grid. The trace means that we compute
percentiles (5%, 25%, 50%, 75%, 95%) for a speci�c condition number to get an idea about the
distribution of the estimand. To have meaningfully computed percentiles, we need to have a
certain amount of observations. Thus, we employ some sort of moving quantile method, where
we condense 100 observations into one and calculate the quantiles plus the median condition
number for this particular window. Then one moves along by dropping the �rst 10 observations
but adds the next 10 and performs the same computation again. This procedure is then done
until one has moved the window through the whole data set.

� Both statistical methods not comparable:

� Trace of the estimated coe�cient β̂[i, j]

� Trace of the standard error se
(
β̂[i, j]

)
� Trace of the bias E

(
β̂[i, j]

)
− β[j]

� Both statistical methods comparable:

� Trace of the Wald statistics t̂[i, j]

� Trace of the relative bias

(
E(β̂[i,j])−β[j]

β[j]

)
� Proportion of p-values ≤ α = 0.05 plus discriminating whether the estimate has a
correct or incorrect sign and thus is correctly or incorrectly signi�cant

� Plotting the Wald statistics of tram::Lm minus the lm model on the y-axis versus the
condition number on the x-axis.

� Plotting the Wald statistics of the tram::Lm model on the y-axis versus the Wald statistics
of the lm model on the x-axis.

� Plotting the Wald statistics of tram::Lm minus the lm model on the y-axis versus the Wald
statistics of the lm model on the x-axis
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5.7 Determining the number of simulations

According to Burton et al. (2006), the determination of the number of simulations to be per-
formed (B) can be based on the accuracy of the estimate of interest. One can make a sample
size calculation based on the (1-α)% con�dence interval with a �xed width. Thus, the (1-α)%

con�dence interval for ¯̂t is

¯̂t± Z1−(α/2) · se
(
¯̂t
)

with standard error being

se
(
¯̂t
)
=

√√√√Var

(
1

B

B∑
i=1

t̂[i]

)
=

√
1

B
Var

(
t̂[i]
)
=

√
Var

(
t̂[i]
)

√
B

The half width of the con�dence interval, which we call δ, is then

δ = Z1−(α/2) ·

√
Var

(
t̂[i]
)

√
B

which can then be solved for B

B =

Z1−(α/2) ·
√
Var

(
t̂[i]
)

δ

2

(5.6)

The half-width δ is the pre-speci�ed level of accuracy for the estimate of interest, which is in
our case the Wald-statistics t̂[i] corresponding to the variable of interest. δ means the largest
di�erence |t̂[i]− t [i]| one is willing to accept, and we take here 0.1 as reasonable.√

Var
(
t̂[i]
)
is the variance of t̂[i] and is determined by an initial small run employed at the worst

condition, which is the situation with the highest collinearity magnitude that we are going to
inspect as κ (E) = 60 and with the noisiest and in-stable data speci�ed with s_y=8.2 and n=5.
Due to the instability, the resulting condition numbers vary quite heavily, and thus we simulate
data with a while loop and only take the realizations where a condition number rounded to
full digits is equal to 60 and continue the loop until we have 100 t̂[i] values. Thus, we employ

Equation (5.6) with α = 0.05, δ=0.1 and
√
Var

(
t̂[i]
)
=1.775 which yields B ≈1211.

5.8 Handling exceptions

When running the estimation methods, errors and warnings will be caught with NA values and
the resulting output from the method will be considered unreasonable and thus will be missing.
The cause of the issues will not be explicitly examined. Investigating any occurring exceptions
will be facilitated since we store the random seed before each simulation run.



Chapter 6

Results: Simulation study

This chapter provides the results of the simulation study developed in Section 5. Only for n_need
aspect of the simulation 4 out of 871920 experimental conditions yield NA values that were not
expected, and thus we will not further investigate these issues. The simulation was executed
with only one core and took approximately 11.8 hours to run. This process can be accelerated
using parallelized computing. An example of how to do this is provided in the �le (https://
bitbucket.org/jsepin/simulation/src/master/simulation_total.R) with the commented-
out simulation.

For example, this simulation can be performed in approximately 50 minutes when using 64 cores.
However, we did not use parallelized computing as the results also depend on how many cores are
at work and thus depending on the resources available, not everyone may be able to reproduce
the results in this master thesis.

This report focuses only on two experimental conditions β1 = −46.1, β2 = −0.9 and β1 = 0, β2 =
0 and three estimands, namely the Wald statistics, proportion of signi�cant results, and n_need.
This is because the Wald statistics represents the most important estimand which quanti�es
what we de�ne as harmful. All remaining results are provided online (https://bitbucket.org/
jsepin/simulation/src/master/results_simulation/results_simulation.pdf).

6.1 Performance evaluation of the most important estimands

Figures 6.1 and 6.2 show on the y-axis the Wald statistics and on the x-axis the condition number
for both, lm and tram::Lm. The condition number ranges between 0 and 60. The quantiles that
are obtained by the moving quantile procedure (Section 5.6) summarize the distribution of Wald
statistics values. Due to two-sided hypothesis testing, points laying inside (-1.96, 1.96) are
interpreted as non-signi�cant and colored as a red area. Points laying in the white area are said
to be signi�cant and with an e�ect estimate that is negative, which is correct. On the other hand,
Wald statistic values in the yellow area are thought to be signi�cant, but the sign of the e�ect is
positive and thus wrong. In Figure 6.1, where we have a true signal (β1 = −46.1, β2 = −0.9), we
see that with higher collinearity, quanti�ed by the condition number, Wald statistics move more
and more into the red area, resulting in a non-detection. This tendency is the same for both lm

and tram::Lm but is even more pronounced for higher noise s_y and low sample sizes n_obs.
What we also see is that the tendency to have points laying in the yellow area is increased with
low sample size and high noise. This problem gets even better visible in Figure 6.2 where there
is no signal (β1 = 0, β2 = 0). In this �gure, the Wald statistics distribution stays quite constant
over the whole range of the condition number. But, with lower sample size and higher noise,
more points lay outside the red area.
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Figures 6.3 and 6.4 plot the Wald statistic di�erences against the condition number which is
possible due to the paired design. It gets visible that with higher condition number, the di�erence
gets smaller. The di�erence seems to increase however with less noise of the data (s_y), and the
di�erence appears more consistent with increasing sample sizes.

Figures 6.5 and 6.6 elaborate on the correct and incorrect proportion of signi�cant results. We
see here as well that with higher noise, lower sample size and higher collinearity, the proportion
of correct signi�cant results decreases. In addition, we note here that as the proportion of correct
results decreases, the proportion of incorrect signi�cant results increases. And further, the �gures
indicate that tram::Lm has either way more the tendency to have signi�cant results.

Figures 6.7 and 6.8 compare the Wald statistics of lm and tram::Lm as a ratio. If both methods
yield the same Wald statistics, points would lay on the red line, which is a straight line with a
slope of 1. But, we see that the Wald statistics of lm tends to be much larger than for tram::Lm.

Figures 6.9 and 6.10 also compare the Wald statistics but as a di�erence and not as a ratio
and plots this di�erence against the Wald statistics of the lm method. This means that if Wald
statistics values are the same, points would lay on the horizontal line at y = 0. Similarly to
Figures 6.7 and 6.8 we note that lm tends in general to have much larger Wald statistics values
than tram::Lm. But this e�ect seems to be inverted for Wald statistics of lower magnitude,
and therefore leads to the fact that tram::Lm has more frequently results that are interpreted
as signi�cant. To make this even clearer, the area where lm and tram::Lm would have Wald
statistics values that are interpreted di�erently in terms of signi�cance is colored in blue. This
represents the area between:

� For t̂lm < 0: −q1−α/2,Z(≈ 1.96) and the function f(t̂lm) = −q1−α/2,Z − t̂lm

� For t̂lm > 0: −q1−α/2,Z(≈ 1.96) and the function f(t̂lm) = −q1−α/2,Z − t̂lm

Since the di�erences are only in the lower-left and upper-right area, they are interpreted as the
zone where lm would not have signi�cant conclusions but tram::Lm does. However, it seems to
be the case that with higher sample sizes, the di�erence in Wald statistics values vanishes. This
behavior appears to be very similar for both conditions of β1.
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6.1.1 Wald statistics: β1 = −46.1 and β2 = −0.9

Figure 6.1: Wald statistics versus the condition number. The red shaded area repre-
sents Wald statistics between -1.96 and 1.96 which are non-detected signals and thus
harmful. Points in the yellow shaded area are even more troublesome since they mean
there is a detection, but the signal is incorrect. The frame of the plots are restricted
to have maximum y-axis range between -10 and 10. Points laying outside are placed at
the border and visualized as triangles.
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6.1.2 Wald statistics: β1 = 0 and β2 = 0

Figure 6.2: Wald statistics versus the condition number. The red shaded area repre-
sents Wald statistics between -1.96 and 1.96 which are non-detected signals and thus
harmful. Points in the yellow shaded area are even more troublesome since they mean
there is a detection, but the signal is incorrect. The frame of the plots are restricted
to have maximum y-axis range between -10 and 10. Points laying outside are placed at
the border and visualized as triangles.
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6.1.3 Wald statistics di�erence vs. condition number: β1 = −46.1 and β2 =
−0.9

Figure 6.3: Wald statistics di�erences plotted versus the condition number and colored
by the Wald statistics of the tram::Lm method. See description in Figure 6.4.

6.1.4 Wald statistics di�erence vs. condition number: β1 = 0 and β2 = 0

Figure 6.4: Wald statistics di�erences plotted versus the condition number and colored
by the Wald statistics of the tram::Lmmethod. It seems like that the di�erence between
the Wald statistics values decreases with increasing condition number and increasing
noise s_y. In addition, with higher sample sizes, the di�erence seems to be much more
stable.
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6.1.5 Proportion of signi�cant results: β1 = −46.1 and β2 = −0.9

Figure 6.5: Obtained proportion of Wald statistics with correctly detected e�ect
estimates (t̂ij ≤ −1.96) and incorrectly detected e�ect estimates (t̂ij ≥ 1.96). The
proportions are calculated similarly to the moving quantile procedure: We gather 100
observations, calculate the proportions and the location thereof determined by the me-
dian condition number. Then the window moves forward by discarding 10 observations
but adding the next 10 and computes the proportion and location again. This procedure
is then done until the end of the frame.
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6.1.6 Proportion of signi�cant results: β1 = 0 and β2 = 0

Figure 6.6: Obtained proportion of Wald statistics with correctly detected e�ect es-
timates (t̂ij ≤ −1.96) and incorrectly detected e�ect estimates (t̂ij ≥ 1.96). In the
situation where βj = 0, correct means a non-signi�cant result (−1.96 < t̂ij < 1.96).
The proportions are calculated similarly to the moving quantile procedure: We gather
100 observations, calculate the proportions and the location thereof determined by the
median condition number. Then the window moves forward by discarding 10 observa-
tions but adding the next 10 and computes the proportion and location again.
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6.1.7 Wald statistics ratio: β1 = −46.1 and β2 = −0.9

Figure 6.7: Direct comparison of Wald statistics. See description in Figure 6.8.

6.1.8 Wald statistics ratio: β1 = 0 and β2 = 0

Figure 6.8: Direct comparison of Wald statistics resulting from the two di�erent
methods. Due to the paired design we can directly compare the two Wald statistics and
if they are the very same, the points lay on the red diagonal. To have an impression
about the distribution of the points, marginal densities are added at the sides. In
general, it seems like that lm has larger Wald statistics than tram::Lm especially when
t̂lm is large. On the other hand, if t̂lm is low, t̂tram::Lm tends to be larger in magnitude.
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6.1.9 Wald statistics di�erence vs. Wald statistics of lm: β1 = −46.1 and
β2 = −0.9

Figure 6.9: Wald statistics di�erences plotted versus the Wald statistics of the lm

method and colored by the condition number in the upper plot. Comparison of all
panels in the lower plot, but now colored with respect to the panels. The light blue
area represents the area where lm and tram::Lm yield Wald statistics values that are
interpreted di�erently in terms of signi�cance for the generally used type 1 error rate of
α=0.05 (f(t̂lm) = sign(t̂lm)·q1−α/2,Z− t̂lm). It seems to be the case that tram::Lm yields
Wald statistics values that are more frequently interpretable as signi�cant, independent
of the direction. This e�ect seems to vanish with increasing sample size. The lower plot
shows that the curves do not di�er too much with the noise of the data (s_y). However,
the upper plot reveals that the condition number is then di�erent and therefore hints
towards the fact that the same Wald statistics can be obtained by di�erent combinations
of, here, s_y and κ (E) values.
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6.1.10 Wald statistics di�erence vs. Wald statistics of lm: β1 = 0 and β2 = 0

Figure 6.10: Wald statistics di�erences plotted versus the Wald statistics of the lm

method and colored by the condition number in the upper plot. Comparison of all
panels in the lower plot, but now colored with respect to the panels. The light blue
area represents the area where lm and tram::Lm yield Wald statistics values that are
interpreted di�erently in terms of signi�cance for the generally used type 1 error rate of
α=0.05 (f(t̂lm) = sign(t̂lm)·q1−α/2,Z− t̂lm). It seems to be the case that tram::Lm yields
Wald statistics values that are more frequently interpretable as signi�cant, independent
of the direction. This e�ect seems to vanish with increasing sample size. The lower plot
shows that the curves do not di�er too much with the noise of the data (s_y). However,
the upper plot reveals that the condition number is then di�erent and therefore hints
towards the fact that the same Wald statistics can be obtained by di�erent combinations
of, here, s_y and κ (E) values.
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6.2 Sample size correction

Figure 6.11 and 6.12 show the relative number of observations (sample size needed divided by
the current sample size) that is needed to reach the power of 80% with the current collinearity
magnitude. The needed sample size is determined by the function Collinearity::copowerlm

and works so far only for the lm method. The relevant e�ect estimate for β1 that we want to �nd,
given it is there, is β1 = −46.1 and is in both �gures the same, leading to very similar dynamics.
We see that with increasing collinearity and increasing noise in the form of large s_y, the needed
sample size gets larger. Furthermore, the lower the current sample size, the more variability in
the predicted sample size needed.
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6.2.1 Study design - Relative sample size needed: β1 = −46.1 and β2 = −0.9

Figure 6.11: Number of observations needed to reach the power of 80% with the
given collinearity magnitude expressed by the condition number. It gets visible that
the condition number does not uniquely de�ne the collinearity within X as no straight
line is plotted. Further, we see that with higher condition number, but also with higher
s_y, the needed sample size increases. We also note, that with very low sample sizes,
the uncertainty of predicted needed sample size gets very large.
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6.2.2 Study design - Relative sample size needed: β1 = 0 and β2 = 0

Figure 6.12: Number of observations needed to reach the power of 80% with the
given collinearity magnitude expressed by the condition number. It gets visible that
the condition number does not uniquely de�ne the collinearity within X as no straight
line is plotted. Further, we see that with higher condition number, but also with higher
s_y, the needed sample size increases. We also note, that with very low sample sizes,
the uncertainty of predicted needed sample size gets very large. The results are very
much the same as in Figure 6.11 since the e�ect the sample size calculation is based on,
is the same and does not matter if it is actually there or not.
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Results: Collinearity �ngerprint and

graph

We are approaching the end of this master thesis and have now more knowledge about the trou-
bles that come with collinearity. Therefore, let us revise on the paper of Harrison and Rubinfeld
(1978) introduced in Chapter 3. It seems that they have arrived at their goal to investigate the
willingness to pay for clean air. They found a one unit increase in nox2 (nox: Nitrogen oxide con-
centration in pphm) leads to an increase in log (Median value of owner-occupied homes in USD)
of -0.0064 with 95% con�dence interval of (-0.0086, -0.0042). Since the con�dence interval does
not include zero, the result is said to be statistically signi�cant on the 95% con�dence level.

Now time has passed since 1978 and maybe someone wants to reproduce the results or want
to conduct a similar study in a di�erent area. A natural question that arises is the number of
observations that are needed to show the e�ect given it is there. The number of observations in
Harrison and Rubinfeld (1978) is n = 506 and each point belongs to a certain census tract in
the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. n = 506 was enough for
the researchers to make their point in terms of having statistically signi�cant results. But what
if one is interested in an area that does not have that many observations or has to be gathered
�rst?

Thus, a sample size calculation is needed. And we think there are two good reasons for this,
independent of the type of research:

1. If data is already available: Determine whether a null-�nding is likely due to the fact that
the e�ect is not there or the sample size was too low to show it.

2. If data has to be gathered: Have an idea about the amount of resources that need to be
invested to get the data.

Hopefully, this convinces the reader that a sample size calculation is in both cases of use.

7.1 Sample size calculation

7.1.1 Parametrization of Harrison and Rubinfeld

Let us have a �rst look at how many observations Harrison and Rubinfeld (1978) really would
have needed to show the same e�ect with a common power of 80%. Since we are no expert in this
�eld of study, a determination of a relevant e�ect size from our side may be quite arbitrary. Thus,
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R-Code 4 Application of the copowerlm function. mpaper is the so-called basic equation model
�tted in Harrison and Rubinfeld (1978). The e�ects we want the test to be powered for is
the e�ect we found with the model and the corresponding 95% con�dence interval boundaries
as Delta = c (−0.0085648,−0.0063724,−0.00418). The part that introduces collinearity is

trouble=diag
((

E⊤E
)−1
)
["I(nox^2")] where E is the equilibrated design matrix extracted

from the model.

# Sample size calculation

n_boston <- Collinearity::copowerlm(power = 0.8, alpha = 0.05,

Delta = Delta,

sigma = sigma(mpaper), p= nrow(trouble) ,

voilen = var(BostonHousing2$nox^2)+mean(BostonHousing2$nox^2)^2,

trouble = diag(trouble)["I(nox^2)"] )

n_boston <- ceiling(n_boston$n)

we will do the sample size calculation for 3 di�erent e�ect sizes, namely the e�ect estimate and
the lower and upper bound of the corresponding 95% con�dence interval (computed in Table 3.3).

Thus, we apply copowerlm as is visible in R-Code 4 and from this calculation we get n =
c (70, 124, 285). Since we know the underlying e�ect size of the model, we can verify the sam-
ple size calculation by repeated sampling of n = 124 observations without replacement and
subsequent model �tting.

mean(κ(E)) = 74.3
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Figure 7.1: Wald statistics dynamic for B = 200 repeated draws of size n = 124
from the whole BostonHousing2 data set to verify the sample size calculation. The
empirically determined power for variable nox2 is 0.8 for the lm model and 0.845 for
the tram::Lm model.

Figure 7.1 shows the Wald statistics of the repeatedly drawn data sets plotted against the calcu-
lated condition number for both methods. The empirically determined power for variable nox2

is for the lm model 0.8 which is quite close to the initially wanted power of 0.80. The power for
the tram::Lm model is with 0.845 slightly higher than in the lm case. Although the sample size
calculation is based on the least-squares approach and parametrization, it seems to be the case
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that the results from tram::Lm behave for this particular example similarly to the results of lm.

7.1.2 Non-transformed parametrization

We also do the same sample size calculation for the non-transformed parametrization. We want
to have the model powered for the same relevant e�ect size, and thus we take Delta=c(-1942.524,
-1571.469, -1120.881) which corresponds to the translated estimate from the mpaper model as
already described in Section 3.1.1.

R-Code 5 Application of the copowerlm function. msimpler is the simpler model �tted without
any transformation of the variables. The e�ects we want the test to be powered for is the
e�ect and the corresponding 95% con�dence interval boundaries determined by the model �tted
in Harrison and Rubinfeld (1978) but translated on the original housing value scale (3.1.1).
Thus, Delta = c (−1942.524,−1571.469,−1120.881). The part that introduces collinearity is

trouble=diag
((

E⊤E
)−1
)
["I(nox^2")] where E is the equilibrated design matrix extracted

from the model.

# Sample size calculation

n_simpler <- Collinearity::copowerlm(power = 0.8, alpha = 0.05,

Delta = Delta,

sigma = sigma(msimpler), p= nrow(troublesimpler) ,

voilen = var(BostonHousing2$nox)+mean(BostonHousing2$nox)^2,

trouble = diag(troublesimpler)["nox"] )

n_simpler <- ceiling(n_simpler$n)

R-Code 5 shows the computation which results in sample sizes of n = c(153, 233, 455) and thus
we note that with this model we need a considerable amount more data to arrive at the same
power.

7.2 Collinearity �ngerprint with bootstrap

We have seen that collinearity can lead to unstable e�ect estimates. This usually results in a
non-detection as the standard error of the e�ect estimate overwhelms the signal. But there are
situations, especially when the sample size is low, where this is not the case and signals are
proportionally high and result in a large Wald statistics. Due to the instability, these signals can
point into the wrong direction, which is very dangerous in terms of making a decision. Thus,
it is crucial to invest the reliability of the estimation process when high collinearity is present,
especially when accompanied by low sample sizes.

Investigating the reliability can be checked for instance with bootstrapping (Efron and Tibshirani,
1986) as it is also done for example in selecting variables (Altman and Andersen, 1989; Heinze
et al., 2018). This idea is implemented in the function Collinearity::cofingerprint. In our
situation this means that for one bootstrap sample we draw from the BostonHousing2 data set
506 observations with replacement. Then, for each of these data sets, the model is again �tted.
Plotting this procedure on the scale of the Wald statistics shows whether signi�cant results can
be trusted or not. Figure 7.2 shows the results for the parametrization that is used in the paper
for the least-squares and transformation model, and Figure 7.3 shows the same for the non-
transformed model. Although as mentioned in Section 2.5.2 the design matrix and therefore also
the variance decomposition is not exactly de�ned, the investigation of the collinearity �ngerprint
is applied on the part of the model that is returned by the command model.matrix(). For the
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lm case this means that the intercept is also investigated, but for the tram::Lm model only the
explanatory variables without transformation function parts are provided.

R-Code 6 Application of the cofingerprint function. mpaper is the so called basic equation
model �tted in Harrison and Rubinfeld (1978). The source code of the function cofingerprint

can be found in the Collinearity package.

# Collinearity fingerprint with bootstrap

Collinearity::cofingerprint(mpaper,

B = B,

ncon = ncon, # Number of printed condition indices

main = "Collinearity Fingerprint - Least Squares (lm)",

alpha = 0.05,

cex.vd = 1.4, cex.main = 1.5, cex.prop = 0.9, ydi = 10

)
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Figure 7.2: Wald statistics dynamic for B = 500 repeated draws of size n = 506
with replacement from the whole BostonHousing2 data set with the model used in
Harrison and Rubinfeld (1978). Underneath the title of the plot are the condition
indices printed determined with the Collinearity package, and the 3 largest thereof
are also visualized within the plot. The variance proportions are also added with the
strength of color corresponding to their size, meaning that lower proportions are more
likely to be transparent. In addition, the proportion of t values that are considered as
signi�cant on the 5% signi�cance level is printed as well for each variable.
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Figure 7.3: Wald statistics dynamic for B = 500 repeated draws of size n = 506 with
replacement from the whole BostonHousing2 data set with the simpler model using all
variables non-transformed. Underneath the title of the plot are the condition indices
printed determined with the Collinearity package, and the 2 largest thereof are also
visualized within the plot. The variance proportions are also added with the strength
of color corresponding to their size, meaning that lower proportions are more likely to
be transparent. In addition, the proportion of t values that are considered as signi�cant
on the 5% signi�cance level is printed as well for each variable.
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7.3 Collinearity zoom-in: Who is responsible?

Equation (4.4) points out four key components why a signal can go undetected, and the part that
relates to collinearity is the R2

X term, which describes how well the variable of interest can be
explained by a linear combination of the other remaining variables (4.2). However, the R2

X is a
single value and does not tell which variable speci�cally explains the variable of interest well and
is therefore responsible for the potentially inconvenient results. Thus, to investigate this issue
further, we visualize the relation of the variable of interest to all the other explanatory variables
by a multiple linear regression model. Figure 7.4 illustrates this concept that is integrated in
the Collinearity::cotograph function. The R2

X value is plotted in the central node that
corresponds to the variable of interest (voi). Variables that have a high Wald statistics (t) have
high explanatory power of the variable of interest and should be closely inspected.

Still, this diagnostics is also susceptible to collinearity, which means that a high R2
X can appear

even without high individual Wald statistics, since collinearity within this model also leads to the
e�ect to go undetected. Thus, we can say that variables associated with high t will contribute
to high R2

X , but it does not necessarily detect all variables. The cotograph function has an
argument, subR2, which by default is set to FALSE, but can be changed to TRUE to understand
the underlying collinearity not directly related to the variable of interest. With subR2 set to TRUE,
a separate multiple linear regression model is �tted for each explanatory variable, excluding the
variable of interest (voi). The �ts are then quanti�ed by R2

X and displayed in the nodes of the
corresponding variable. Explanatory variables with high R2

X values are a�ected by collinearity,
meaning their e�ect on the variable of interest (voi) is weakened, expressed by a lower t.

All diagnostic measures in these plots are calculated with the least-squares method and the vari-
ables considered in the plot are the ones that appear when calling the command model.matrix()

which provides for the lm model the explanatory variables including intercept if used. For the
tram::Lm model, only the explanatory variables are returned, and we remind that the part
corresponding to the transformation of the outcome may also contribute to collinearity but is
not inspected in this case. Furthermore, this diagnostic procedure does not necessarily have to
agree with the Variance decomposition matrix suggested by Belsley in Tables 3.5 and 3.7. This,
because Belsley's procedure quanti�es the overall collinearity composition and does not target
one speci�c variable of interest, as it is done in the Collinearity::cotograph function. Thus,
cotograph provides more an alternative to the Variance decomposition matrix.

R-Code 7 Application of the cotograph function. mpaper is the so called basic equation model
�tted in Harrison and Rubinfeld (1978). The source code of the function cotograph can be found
in the Collinearity package.

# Collinearity zoom-in

Collinearity::cotograph(m=mpaper,voi = "I(nox^2)", equilibrate = FALSE,

main = "Graph: Relation of explanatory variables\n Multivariable fitted Model",

cex.node = 1, cex.tovoi = 1, cex.main = 1,

col.edge.line = "blue", col.edge.text = "black",col.node.voi = "green",

col.node.nonvoi = "lightblue",

radius_circle = 0.2, subR2 = TRUE, mar = c(.1, .1,2.1, .1)

)
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Figure 7.4: Graphical representation of the relation of the variable of interest (voi)
in the middle of the plots and the remaining explanatory variables. The left column
represents the model �tted in Harrison and Rubinfeld (1978) and on the right side is
the simpler model with the non-transformed variables according to the tram vignette.
The �rst row of plots illustrate models originally �tted via the least squares method,
the second row the ones �tted with the transformation model equivalent and the third
row are �tted with the least squares method but on the equilibrated design matrix.
The multiple �tted model points out which variables can describe voi well and are thus
associated with a high t. Since this model also is susceptible to collinearity and the
e�ects thereof, one can only say that variables associated with a high t value take part
in collinearity, but one does not know for sure if others also contribute.



Chapter 8

Discussion

We designed and conducted a Monte Carlo simulation study (Chapter 5) and assessed the detri-
mental e�ects of collinearity on the Wald statistics, proportion of signi�cant results, estimates,
bias and standard error in multiple linear regression models (Chapter 6). Moreover, we assessed
the sample size needed to alleviate the harm caused by collinearity (Figures 6.11 and 6.12).
The whole amount of results is provided on: https://bitbucket.org/jsepin/simulation/

src/master/results_simulation/results_simulation.pdf.

We found no signs of a tipping point at Belsley's cut-o� of 30. This indicates that the detrimental
impact of collinearity on all estimands does not depend on a single cut-o�, but rather on many
factors such as sample size, noise, true e�ect estimate and estimation technique.

We found that the extent of collinearity summarized by one condition number impacts the Wald
statistics values of both, lm and tram::Lm. Further, we demonstrated that lm and tram::Lm

react very similarly to collinearity among the explanatory variables (Figures 6.1 and 6.2). The
same collinearity diagnostics are therefore of use in both methods to quantify the collinearity
within X. We also demonstrated that there is an association between condition number and
the di�erence of Wald statistic values between lm and tram::Lm (Figures 6.3 and 6.4). These
di�erences also depend on many factors such as sample size, noise and the condition number and
interact in a non-trivial way.

In general, we found that the Wald statistic values di�er between lm and tram::Lm. We demon-
strated that tram::Lm renders more frequently signi�cant conclusions that may be incorrect
compared to lm (Figures 6.5�6.10). The possible reason for this behavior is that tram::Lm reacts
to the amount of noise (s_y) in a paradox way, meaning that with less noisy data, the tram::Lm
modelling procedure gets more and more disturbed (due to association between y and X). This
detrimental e�ect is more pronounced for small sample sizes.

In Chapter 4, we proposed a method for sample size calculation in the least-squares case (lm)
to determine the appropriate sample size needed to �nd a speci�c e�ect that deals with the
amount of collinearity and also works for continuous variables. With that, we have now a tool to
appropriately calculate the sample size needed in an analysis that contains several explanatory
variables which can induce collinearity.

We developed R software which is integrated in the Collinearity package (publicly available
on GitHub: https://github.com/jsepin/Collinearity.git to support the theoretical deriva-
tions and give examples to apply it in practice. This software extends the original Collinearity
package by three functions: copowerlm, cofingerprint and cotograph. These functions pro-
vide alternative collinearity diagnostic tools and compute sample size that adjusts for collinearity.

In Chapters 3 and 7 we applied the methods to BostonHousing2 data originating from Harrison
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and Rubinfeld (1978). Our results con�rmed the author's perception that there is no detrimental
impact of collinearity in this BostonHousing2 data set for the main explanatory variable.

The thesis uses collinearity diagnostic procedures suggested by Belsley (1991). Although Belsley's
work is extensive and discussed many collinearity diagnostics procedures, there are still other
collinearity measures that can be considered to assess collinearity and that are implemented in
R software such as for example collin (Basagaña and Barrera-Gómez, 2021), mctest (Imdad
and Aslam, 2020), lrmest (Dissanayake and Wijekoon, 2016), mcvis (Lin et al., 2020), rvif
(Salmerón and García, 2022) and multiColl (Salmeron et al., 2022). Future work may also take
some of the collinearity measures implemented in these packages to quantify collinearity.

In this thesis, we focus on low-dimensional scenarios where the collinearity that we manipulated
manually is equivalent to correlation. Although correlation is also collinearity, the inverse does
not necessarily hold true, as collinearity is also possible without large correlation. Therefore,
experimental conditions of higher dimensionality where no large pairwise correlations yet high
collinearity is present might be a topic that is worth to explore in future research. Neverthe-
less, the correlation setup of this thesis could be easily used for a high-dimensional collinearity
assessment.

Furthermore, we did not unleash the full power of all transformation models, as this master
thesis compares lm and tram::Lm. The tram (Hothorn, 2020) package carries further models
that are in their transformation function much more �exible than the simple tram::Lm, which
uses linear combinations equivalent to the lm case to transform the outcome. For example,
a comparison between the classical Cox proportional hazard model, e.g. survival::coxph,
with the transformation model equivalent tram::Coxph may be interesting since also the pro�le
likelihood is applied in the classical approach but not possible in the transformation model setup
(see Appendix A.4 for a short illustration thereof). Other transformation models in tram or, for
example, analysis of count data with cotram (Siegfried and Hothorn, 2020) may also be worth
to assess the detrimental e�ects of collinearity on estimands.

The sample size calculation procedure proposed in this thesis is restricted to the least-squares
model. However, also for other statistical models a sample size calculation that includes collinear-
ity knowledge is worth to consider in the light of good practice. For example, the extension to
other settings such as when the outcome is binary would be of great use. Yet, the derivation
thereof may not be straightforward or even feasible at all. Therefore, a possible general method
would be to set up an easy usable environment that makes use of simulations to determine the
appropriate sample size.

This thesis came up with a simulation work�ow that investigates two methods under di�erent
collinearity magnitudes. The study is reproducible, follows strict guidelines and is visualized in
an unambiguous but user-friendly way by mixing code and graphs. This is useful, since properly
set up simulation studies are becoming increasingly important to compare methods which rely
on computational power to obtain results rather than on analytical derivations, and therefore, it
is di�cult to study their properties (Burton et al., 2006; Morris et al., 2019; Pawel et al., 2022).
This simulation work�ow evaluates di�erent methods in terms of collinearity, as the underlying
core is still the same. Thus, future simulation studies can use the openly accessible code from
the work�ow to clearly communicate their simulation approach.

This thesis also sets the theoretical scene to see more problems in statistics through the eyes
of collinearity. For example, randomization planning or sampling algorithms to create matched
data sets can be implemented with the clear target to reduce collinearity. This theoretical basis
can be used for at least two topics. First, to assess whether other cut-o�s can induce detrimental
e�ects on estimands. Such as, for example, condition numbers over 100, which are perceived
as problematic by Montgomery et al. (2021). Second, the general setup of this thesis could be
easily applied to investigate the detrimental impact of the y ,X association. This, because our
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results indicate that tram::Lm �t is a�ected by both, collinearity in X but also the strength of
the y ,X association.

This thesis proposes a sample size calculation tool (copowerlm) that allows to appropriately plan
an analysis which is conducted in multiple regression settings with potential collinearity and is
not limited to a binary variable of interest. The tool computes the sample size needed to �nd a
certain e�ect, given it is there, in settings that require multiple regression techniques. Planning is
crucial, as an appropriate sample size calculation reduces the risk of false conclusions, particularly
in systems with high collinearity where the estimation procedure can lead to unstable results.
This is not only convenient to have but absolutely essential as correctly powered studies protect
the overall error rate and therefore support correct conclusions.

We also came up with additional software implemented in the Collinearity package that allows
to easily assess the results and the stability thereof (cofingerprint). Moreover, an alternative
approach to the diagnostics of Belsley has been developed (cotograph). The function cotograph

investigates from a more applied side the relation of the variable of interest to the explanatory
variables that are not of primary interest, allowing to communicate with practitioners in a more
down-to-earth way. With these two functions, statistical analysts have two additional tools to
inspect complex models and to get guidance and help in potentially ill-conditioned systems.

We have created an environment where the theory of the classical least-squares model and trans-
formation model is extensively investigated with respect to collinearity. Theoretical knowledge
required to understand the results are pointed out where possible and the behavior of the meth-
ods are compared in a sound simulation study. Practicing statisticians who are concerned about
collinearity have an open-accessible script that provides help and guidance to detect the impact
of detrimental e�ect of collinearity on multiple linear regression estimands. Furthermore, a mit-
igation strategy in form of an appropriate sample size has been developed and examples how to
use it in practice are given.

Multiple regression techniques remain perhaps the most frequently used technique to create
knowledge from complex interacting systems as nature is. It is therefore important to have no
fear from collinearity, as it is likely to be omnipresent, but take it as it is. Nevertheless, this thesis
provides guidance that helps to navigate through shallow waters that collinearity can impose.
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Appendix A

Appendix

A.1 Correlation Invariance to linear operations

Demonstration what linear operations f (X[u, i]) = ϕX[u, i]− λ where ϕ, λ are scalars have on
the correlation coe�cient.

C[i, j] =
n∑

u=1

(ϕX[u, i]− λ− ϕX̄[i] + λ)(X[u, j]− X̄[j])√∑n
u=1(ϕX[u, i]− λ− ϕX̄[i] + λ)2

∑n
u=1(X[u, j]− X̄[j])2

=
n∑

u=1

ϕ(X[u, i]− X̄[i])(X[u, j]− X̄[j])√
ϕ2
∑n

u=1(X[u, i]− X̄[i])2
∑n

u=1(X[u, j]− X̄[j])2

=
n∑

u=1

(X[u, i]− X̄[i])(X[u, j]− X̄[j])√∑n
u=1(X[u, i]− X̄[i])2

∑n
u=1(X[u, j]− X̄[j])2

A.2 Variance of the partitioned regression

From Equation (4.2) we can further rearrange the partitioned least-squares estimator

β̂1 =
[
X⊤

1 (I− P )X1

]−1
X⊤

1 (I− P )y

where I − P can be written as M which is sometimes also called the residual maker matrix.
Since P is idempotent the matrix M = I− P is idempotent as well. Thus, the variance of the
partitioned least-squares estimator is

Var
(
β̂1

)
=
[
X⊤

1 MX1

]−1
X⊤

1 M Var (y)

([
X⊤

1 MX1

]−1
X⊤

1 M

)⊤

= Var (y) ·
[
X⊤

1 MX1

]−1
X⊤

1 MM⊤︸ ︷︷ ︸
=M

X1

[
X⊤

1 MX1

]−1

= Var (y) ·
[
X⊤

1 MX1

]−1

and since it holds that Var (y) = Var (Xβ + ε) = σ2I

Var
(
β̂1

)
= σ2 ·

[
X⊤

1 MX1

]−1
= σ2 ·

[
X⊤

1 (I− P )X1

]−1

75



76 APPENDIX A. APPENDIX

A.3 Approximate likelihood

Since real-life data is always observed in intervals D = (y, y] and is never exact (although treated
as if), the likelihood contribution of one observation is:

l(βtram, θ|D) = P(y < Y ≤ y|X = x) = FZ (hY (y|θ)− x̃βtram)− FZ

(
hY (y|θ)− x̃βtram

)
which is the exact likelihood as originally introduced by Fisher. The approximated likelihood
for a continuous response is obtained by making the interval around the "observed" value y
negligibly small D = (y − ϵ, y + ϵ] and thus the likelihood is approximated as

l(βtram, θ|D) = FZ (hY (y + ϵ|θ)− x̃βtram)− FZ (hY (y − ϵ|θ)− x̃βtram)

=

∫ y+ϵ

y−ϵ
F ′
Z (hY (u|θ)− x̃βtram)h

′
Y (u|θ)du

≈ fZ (hY (y|θ)− x̃βtram)h
′
Y (y|θ) · 2ϵ

∝ fZ (hY (y|θ)− x̃βtram)h
′
Y (y|θ)

The joint likelihood for several observations assuming independence is:

L(βtram, θ|D1, ..., DN ) =

N∏
i=1

l(βtram, θ|Di)

where it is theoretically and computationally convenient to operate on the log scale

ℓ(βtram, θ|D1, ..., DN ) =

N∑
i=1

log (l(βtram, θ|Di))

The resulting maximum log-likelihood estimator is then:

β̂tram, θ̂ = argmax ℓ(βtram, θ|D1, ..., DN )
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A.4 Di�erence between tram::Coxph and survival::coxph

Extension of Figure 2.3 with the tram::Coxph and survival::coxph models. We did not in-
vestigate these two models formally in this thesis and therefore this plot should only act as
stimulation for further research within this area.
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Figure A.1: Extension of Figure 2.3 with the tram::Coxph and survival::coxph

models to stimulate further research. For the tram::Lm and lm comparison it was the
classical lm that seems to be superior by not reacting to the y ,X association in a weird
way. However, when comparing tram::Coxph and survival::coxph, it seems to be the
case that the transformation model is more robust to the y ,X association.
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A.5 Computational reproducibility

This master thesis is built on two bitbucket repositories for storage reasons. The simulation

project (https://bitbucket.org/jsepin/simulation/src/master) contains the needed �les
to execute the simulation study. Everything else can be found in the STA495MT_JS project
(https://bitbucket.org/jsepin/STA495MT_JS/src/master) which also carries this report.

To reproduce the whole work some things have to be considered:

1. The work�ows in Figures 5.1 and 5.2 located in the STA495MT_JS project need to be pro-
duced in the end since they need access to the experimental conditions and also to a
demonstration data frame that is produced after the successful execution of the simulation
study and is saved in the simulation project.

2. Running the STA495MT_JS project also needs access to some �gures that are constructed
in the simulation project.

3. Executing the simulation study needs to have access to the parameters that are speci�ed
in Chapter 5 (needs to be accessible by data/boston_parameters.rds). Furthermore, it
is a computationally rather costly process and we performed the simulation on a remote
desktop. There, not too much memory is allowed and although planned at the beginning
to, in a �rst step produce all data and then apply the estimating process, this was simply
not possible due to the limited storage. Thus, the data generating and estimating process
was performed in one step.

However, if you are not interested in generating everything new, you can also simply clone the
STA495MT_JS project which comes with everything you need to generate this Master thesis.

To completely reproduce the report perform the following steps:

1. Clone the following two git repositories into the same directory: https://bitbucket.org/
jsepin/simulation/src/master and https://bitbucket.org/jsepin/STA495MT_JS/src/
master

2. Compile (Build All) the STA495MT_JS/STA495MasterThesis/report/report.Rproj project.
This will provide the parameters for the experimental conditions.

3. Run the simulation/simulation_total.R �le. This will perform the whole simulation.
You need the experimental conditions which get saved in
STA495MT_JS/STA495MasterThesis/data/boston_parameters.rds. The script will auto-
matically try to access it.

4. Run the simulation/results_simulation/results_simulation.Rproj project. This
will provide the �gures for the results and the demonstration data frame
(simulation/data/data_demo.rds) for the work�ows.

5. Run the STA495MT_JS/STA495MasterThesis/sim_workflow_tikz/flow_para.Rnw and
STA495MT_JS/STA495MasterThesis/sim_workflow_tikz/flow_design.Rnw �les to gener-
ate the work�ows.

6. Run the STA495MT_JS/STA495MasterThesis/report/report.Rproj project again to �nal-
ize the report.

https://bitbucket.org/jsepin/simulation/src/master
https://bitbucket.org/jsepin/STA495MT_JS/src/master
https://bitbucket.org/jsepin/simulation/src/master
https://bitbucket.org/jsepin/simulation/src/master
https://bitbucket.org/jsepin/STA495MT_JS/src/master
https://bitbucket.org/jsepin/STA495MT_JS/src/master
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sessionInfo()

## R version 4.2.2 Patched (2022-11-10 r83330)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 20.04.5 LTS

##

## Matrix products: default

## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

##

## locale:

## [1] LC_CTYPE=de_CH.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=de_CH.UTF-8 LC_COLLATE=de_CH.UTF-8

## [5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=de_CH.UTF-8

## [7] LC_PAPER=de_CH.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] ggdag_0.2.4 dagitty_0.3-1 ggtext_0.1.1

## [4] gg3D_0.0.0.9000 plotly_4.10.0 plyr_1.8.7

## [7] ggpubr_0.4.0 daewr_1.2-7 mlbench_2.1-3

## [10] metR_0.12.0 gridExtra_2.3 fields_13.3

## [13] viridis_0.6.2 viridisLite_0.4.0 spam_2.8-0

## [16] tram_0.8-0 mlt_1.4-3 basefun_1.1-2

## [19] variables_1.1-1 forcats_0.5.1 stringr_1.4.0

## [22] dplyr_1.0.9 purrr_0.3.4 readr_2.1.2

## [25] tidyr_1.2.0 tibble_3.1.7 ggplot2_3.4.0

## [28] tidyverse_1.3.1 RColorBrewer_1.1-3 xtable_1.8-4

## [31] biostatUZH_2.0.2 MASS_7.3-58 survival_3.4-0

## [34] tableone_0.13.2 Collinearity_1.1.2 mvtnorm_1.1-3

## [37] scales_1.2.0 scatterplot3d_0.3-41 knitr_1.39

##

## loaded via a namespace (and not attached):

## [1] readxl_1.4.0 backports_1.4.1 alabama_2022.4-1

## [4] igraph_1.3.1 lazyeval_0.2.2 splines_4.2.2

## [7] gmp_0.6-6 BB_2019.10-1 TH.data_1.1-1

## [10] digest_0.6.29 htmltools_0.5.2 FrF2_2.2-3

## [13] fansi_1.0.3 magrittr_2.0.3 checkmate_2.1.0

## [16] sfsmisc_1.1-13 tzdb_0.3.0 modelr_0.1.8

## [19] sandwich_3.0-1 colorspace_2.0-3 rvest_1.0.2

## [22] mitools_2.4 haven_2.5.0 rbibutils_2.2.8

## [25] xfun_0.31 tcltk_4.2.2 crayon_1.5.1

## [28] jsonlite_1.8.0 lme4_1.1-29 zoo_1.8-10

## [31] glue_1.6.2 gtable_0.3.0 V8_4.1.0

## [34] car_3.0-13 maps_3.4.0 abind_1.4-5

## [37] DBI_1.1.2 rstatix_0.7.1 Rcpp_1.0.8.3

## [40] psy_1.2 gridtext_0.1.4 cmprsk_2.2-11
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## [43] dotCall64_1.0-1 Formula_1.2-4 survey_4.1-1

## [46] vcd_1.4-9 htmlwidgets_1.5.4 httr_1.4.3

## [49] numbers_0.8-2 ellipsis_0.3.2 pkgconfig_2.0.3

## [52] partitions_1.10-7 farver_2.1.0 dbplyr_2.1.1

## [55] utf8_1.2.2 tidyselect_1.1.2 labeling_0.4.2

## [58] rlang_1.0.6 polynom_1.4-1 munsell_0.5.0

## [61] cellranger_1.1.0 tools_4.2.2 cli_3.4.1

## [64] generics_0.1.2 broom_0.8.0 mathjaxr_1.6-0

## [67] evaluate_0.15 fastmap_1.1.0 fs_1.5.2
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