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Zürich, June 2014



Master Program in Biostatistics
www.math.uzh.ch/biostat

STA495: Statistical Monitoring of Condemnation Rates from Swiss
Slaughterhouses

Analysis for the Veterinary Public Health Institute of Bern

Sarah Thommen (sarah.thommen@uzh.ch)

Version of June 15, 2014

Contents

1 Introduction 2

2 Research Questions 5

3 Methods 6

4 Data 13
4.1 Descriptive Statistics: Normal slaughtered Cattle . . . . . . . . . . . . . . . . . . . . . 15
4.2 Descriptive Statistics: Emergency slaughtered Cattle . . . . . . . . . . . . . . . . . . . 17
4.3 Descriptive Statistics: Normal slaughtered Pigs . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Descriptive Statistics: Emergency slaughtered Pigs . . . . . . . . . . . . . . . . . . . . 21
4.5 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Retrospective Analysis 23
5.1 Retrospective Analysis: Normal slaughtered Cattle . . . . . . . . . . . . . . . . . . . . 23
5.2 Retrospective Analysis: Emergency slaughtered Cattle . . . . . . . . . . . . . . . . . . 25
5.3 Retrospective Analysis: Normal slaughtered Pigs . . . . . . . . . . . . . . . . . . . . . 27
5.4 Retrospective Analysis: Emergency slaughtered Pigs . . . . . . . . . . . . . . . . . . . 29

6 Prospective Analysis 31
6.1 Prospective Analysis: Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Prospective Analysis: Normal slaughtered Cattle . . . . . . . . . . . . . . . . . . . . . 33
6.3 Prospective Analysis: Emergency slaughtered Cattle . . . . . . . . . . . . . . . . . . . 34
6.4 Prospective Analysis: Normal slaughtered Pigs . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Prospective Analysis: Emergency slaughtered Pigs . . . . . . . . . . . . . . . . . . . . 37
6.6 Prospective Analysis: Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 39

7 Discussion 41
7.1 Discussion: Retrospective Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Discussion: Prospective Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Acknowledgements 45

9 Appendix 46
9.1 Appendix: Retrospective Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2 Appendix: Prospective Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 References 55

http://www.math.uzh.ch/biostat


Master Program in Biostatistics University of Zürich

1 Introduction

The opportunity that made this Master Project possible came from a collaboration between the Insti-
tute of Social and Preventive Medicine (ISPM) of the University of Zürich and the Veterinary Public
Health Institute (VPHI) of the University of Bern. The VPHI in Bern is a relatively new institution
dedicated to animal health. It had been established in July 2009 and is based on a strategic partnership
between the University of Bern and the Federal Veterinary Office of Switzerland. This collaboration
between academia and veterinary services aims to contribute substantially towards animal health and
food safety and thus improve public health in Switzerland. The VPHI is involved in teaching and
consulting activities in the context of epidemiology, statistics and veterinary public health and has
several different research projects concerning detection, control and prevention of animal diseases and
animal welfare-related events. Diseases transmitted to humans directly or through products of animal
origin (food) are an additional field of research relevant to the VPHI. This thesis contributes to a larger
body of research being carried out at the VPHI on integrating slaughterhouse data into a national
syndromic surveillance system for the early detection of emerging diseases in production animals [1].

The field of research to which the topic of this Master Thesis belongs to is called syndromic surveil-
lance. Syndromic surveillance is defined by Triple-S (Syndromic Surveillance System in Europe) as
follows: ”Syndromic Surveillance is the real-time (or near real-time) collection, analysis, interpretation
and dissemination of health-related data to enable the early identification of the impact (or absence
of impact) of potential human or veterinary public-health threats which require effective public health
action” [2]. Out of the two terms surveillance refers to the monitoring of a wide range of data to en-
hance the ability of public health infrastructures to increase public health. The practice of monitoring
and analyzing data to detect and respond to disease outbreaks is called biosurveillance. Traditionally,
data that are clearly connected to a certain disease (e.g. diagnostic results from laboratory, mortality
rates) are used. Collecting such traditional data is often very time consuming and generally associ-
ated with high costs. In recent years not only the topic of outbreak detection has been of increasing
interest, but especially the early outbreak detection of diseases in human and animals has become
more and more popular. The aim is to be able to detect, investigate and respond to possible out-
breaks early enough to get them under control before disease spreads and serious epidemic or even
pandemic evolve. To be able to detect an outbreak at an early stage, the data to analyze are needed
as early as possible. In the late 1990s a more modern type of biosurveillance evolved: syndromic bio-
surveillance. Modern syndromic biosurveillance uses non-specific prediagnostic data which are readily
available and can be collected and processed in near real-time without any substantial additional costs.
These data are called syndromic data and are not a direct measure of the cases of a specific disease.
Instead, they are non-specific preclinical data that are assumed to contain an outbreak signal before
diagnostic confirmation of the disease/pathogen. Syndromic data collected in the context of animal
health, can be sales/prescription of antibiotic drugs, volume and quality of milk produced, number
of condemned carcasses at slaughterhouses or the number of stillbirths. Although none of these data
are directly linked to a specific disease, their distribution is still expected to change in the presence
of a natural disease outbreak. As such, syndromic data are increasingly used by epidemiologists and
public health authorities for (direct) surveillance of animal health and (indirectly) for human health [3].

It has long been recognized, that human health and animal health are tightly connected. The impor-
tance of animal health, on which humans depend for food, has been notoriously illustrated in the last
two decades. However in the same time also animal welfare and the human sense of responsibility
towards their natural environment (including animals) has grown. In the context of animal diseases,
on one hand public health infrastructures are interested in the protection, the prevention and the
well-being of animals themselves. On the other hand, animal welfare is also linked to human health
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to a certain degree. This is reflected clearly by the definition of veterinary public health by the World
Health Organization (WHO): ”Veterinary public health is the sum of all contributions to the physical,
mental and social well-being of humans through an understanding and application of veterinary sci-
ence”. One reason why animal health is investigated, is the awareness that zoonotic pathogens can be
transmitted from animals to humans (in particular from production animals). ’Zoonosis’ refers to an
infectious disease that is transmitted into humans by another species. In the context of surveillance
and warning systems, the WHO defined the expression emerging zoonosis in 2004 as ”a zoonosis that is
newly recognized or newly evolved, or that has occurred previously but shows an increase in incidence
or expansion in geographical, host or vector range” [4].

The possible degree of damage that can be caused by an emerging zoonosis to humans or an emerging
disease to animals and that a devastating emerging disease may be closer to reality than expected has
been demonstrated several times in the last two decades. Examples include:

1. The acute respiratory syndrome (SARS), which resulted in a SARS-epidemic in 2002/2003. By
July 2003, the international spread of SARS resulted in 8’098 SARS cases in 26 countries and
caused 774 deaths [5].

2. The spread of the Bovine Spongiform Encephalitis (BSE), an animal disease affecting cattle. Be-
tween November 1986 and September 2002, approximately 180’900 cases of BSE were confirmed
in the United Kingdom (UK). Cases have appeared in other European countries, in Israel and
Japan as well, although in relatively small numbers. Cases of BSE are still occasionally reported
but have decreased over the years [6].

3. The foot-and-mouth epidemic in the United Kingdom in 2001, that caused an alarming number
of animal deaths (over 50 million animals were slaughtered due to the disease) and enormous
economic costs [7].

4. H1N1 influenza (swine flu) in 2009/2010 affecting human as well as animal health. Between
April 2009 and March 2010, 40 to 80 million cases were observed only in humans. Due to this
pandemic within one year 8’000 to 18’000 people died in different countries over the world [8].
Even though the virus only spreads from human to human and not from infected pigs to human,
several hundred thousand pigs were slaughtered in prevention and to contain the epidemic.

About 75% of the new diseases that have affected humans over the past 10 years, have been caused
by pathogens originating from an animal or from products of animal origin. Thus emerging zoonotic
diseases in food animals are important components of food safety system. In recent years detection
of emerging diseases in food animals at various points along the farm-to-fork continuum has been a
main interest of research [9, 10].

The world’s annual meat production is projected to increase from 218 million tons in 1997-1999
to 376 million tons by 2030. The production increase is a reaction to the ongoing increase in meat
consumption, which has been observed over the last 60 years. Meat consumption rose from 44 million
tons in 1950 to 284 million tons in 2009 [11, 12]. Due to our concern for food safety and animal welfare
the meat production process is tightly regulated, constantly inspected and documented. At present
meat inspection data are collected in several countries in Europe (e.g. Finland, Sweden and Switzer-
land) but are not currently used for prospective syndromic surveillance [13]. There have been studies
which showed, that disease outbreak patterns of production animals are reflected in the condemnation
rates of slaughtered animals. These studies and several recent reports by the European Food Safety
Authority [14, 15, 16] support the assumption that meat inspection data from slaughterhouses are a
potential data source for the surveillance of diseases in production animals [17, 18].
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In Switzerland the preparation and manufacture of food is strictly regulated by law. Regulations,
inspections, obligations to report and the documentation of these tasks lead to the aggregation of
data about the condition of meat products before and after entry into the production process. In
Switzerland animals to be slaughtered for meat production are inspected twice at the slaughterhouse,
once at their arrival and once after the slaughter. In the first inspection it is mandatory to report the
number of animals that arrived sick or injured at the slaughterhouse. Those animals are separated
into a slaughter group called ”emergency slaughter” and slaughtered after the healthy animals in order
to decrease the risk of pathogen transmission. After the slaughter is processed every carcass in the
slaughterhouse is visually inspected by a meat inspector and classified into one of the following classes:

1. entirely fit for human consumption

2. wholly condemned (including organs and blood)

3. partially condemned (only part of the carcass is unfit for human consumption)

The outcome of the meat inspection needs to be reported to the Federal Food Safety and Veterinary
Office. It is compulsory to report the number of wholly condemned carcasses (reporting of partially
condemned carcasses is not compulsory). The inspectors also have to state the reason why the carcasses
were condemned by choosing one out of 44 possible reasons. The reasons also have to be reported
back to the producers. Reasons include for example pronounced weight loss, abscesses or lesions. All
possible reasons for whole carcass condemnations are listed in the Swiss legislation [19]. Up to now
it is mandatory to report those informations on a monthly basis for cattle, pigs and small ruminants
(sheep and goats). These data collected in Switzerland could be a valuable syndromic indicator of
national herd health. This thesis will assess the possibility and the prospects of integrating these data
in a national syndromic surveillance system for early detection of emerging and re-emerging diseases
in production animals.
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2 Research Questions

For this master project a complete dataset of meat inspection post-mortem results in Switzerland is
analyzed and investigated. One elemental aim of the thesis is to find out whether the accumulated data
constitutes a convenient dataset for syndromic surveillance. The target outcome of the thesis is an
algorithm that can be used during the prospective surveillance of monthly whole carcass condemnation
rates for production animals in Switzerland. To reach this very specific goal, the following research
questions were investigated:

1. Does the condemnation rate depend on external time related factors (seasonality, trend, auto-
correlation)?

2. What statistical model describes the condemnation rates retrospectively in a reasonable way?

3. How can outbreak data for monthly condemnation rates of slaughtered production animals be
simulated?

4. How good is the performance of a quasi-Poisson regression algorithm for the simulated outbreak
data?

5. Is the quasi-Poisson regression algorithm convenient for prospective outbreak detection using
the slaughterhouse data?

If the outcome of the project is promising and a convenient algorithm can be found, this Master
Thesis could contribute to show the necessity and the importance of such reporting systems. It could
contribute to the improvement of syndromic surveillance for production animals and thus improve
outbreak detection and animal welfare in Switzerland. In any case this Master Thesis contributes
to evaluate the use of monthly condemnation rates form Swiss slaughterhouses for early outbreak
detection.
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3 Methods

Statistical Methods: The analysis of the time series data was split into two parts. First the data
were analyzed retrospectively before being analysed a second time based on prospective methodology.

Retrospective Analysis: To analyze the data retrospectively, the time series data were decomposed
into seasonal, trend and residual components. Two different methods were used. The first method
performs a seasonal-trend decomposition of time series based on LOESS. It has been proposed by
Cleveland et al. [20] and is implemented in R [21] as the {stl} function in the {stats} package. The
distributional assumption on which the {stl} function is based on is the normal distribution. The
slaughterhouse time series data used in this study were proportional rate data (number of condemned
carcasses relative to the number of slaughtered animals per month). Thus the data are assumed to
be Poisson distributed. In order to stabilise the variance and achieve homoscedasticity, the data were
transformed before applying the {stl} function. The transformation chosen was arcsin(

√
x), which

is commonly used for proportions [22]. The transformed data were then decomposed additively into
three components:

Xt = Tt + St +Rt

{Xt} is the monthly measure of the proportion of carcasses condemned. {St} represents the seasonal
component and {Tt} the trend part. By applying the {stl} function, the seasonal and trend component
are found by LOESS smoothing. In fact the seasonal component for our data was found by taking the
mean of the de-trended seasonal sub-series. (The series of all January values, all February values and
so on). In a second step the seasonal values are removed from the observed data and the remainder is
smoothed by LOESS to find the trend. {Rt} is the remainder component, that is the residuals from
the seasonal plus trend fit. Data points with very high reminders are considered to be outliers and
get replaced by locally weighted robust estimates of the observed values. Thus the decomposition is
done in a robust way. To find the estimates, the procedure is iterated a few times.
The output of the decomposition based on LOESS is illustrated by a plot of the observed data and
the estimated components for each time point. There is a grey bar at the right hand side of each
component graph to allow a relative comparison of the magnitudes of the information coming from
each component. It helps to see how much variation in the data can be attributed to each component
or to the remaining part.

The second method used to decompose or model the time series data (number of condemned car-
casses per month {yt}) in a retrospective manner, is a model framework, proposed by Held et al.
[23]. The function used for the decomposition is called {hhh4} and is implemented in the package
{surveillance} [24, 25]. The {hhh4} function allows to model count data of uni- and multivariate time
series in a flexible way. As suggested by Held et al. [23] the distributional assumption for the model
is Poisson:

P (yt) =
e−µtµytt
yt!

An alternative distributional family that is implemented is the negative binomial distribution, which
also accounts for over-dispersion. By applying the {hhh4} function, the mean incidence (here the num-
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ber of condemned carcasses per month) is decomposed additively into an autoregressive component
and an endemic component. Assuming that the data are Poisson distributed the conditional mean is:

µt = λtyt−1 + νt × et, (λt, νt > 0)

The autoregressive component {λt} and the endemic component {νt} are unknown quantities that
can be estimated. The autoregressive part is supposed to capture possible outbreaks and can include
a seasonal pattern or a long term trend, thus {λ} can be dependent on the time. If there is neither
a seasonal pattern nor a trend included, an overall {λ} is estimated independently of time {t}. The
endemic component models the baseline amount of incidences and can include seasonality and trend.
The endemic component is multiplied by the offset {et} to adjust for variation in the number of total
animals slaughtered per month. Using the Poisson model or the negative binomial model respectively
the estimated variances of the mean incidence rates are:

V ar(µt) = µt

V ar(µt) = µt + µ2t × θ, (with estimated overdispersion parameter θ)

All the variation of seasonal patterns and long term trends are motivated by patterns observed in the
time series data, in the season-trend decomposition based on LOESS and in the findings that were
published by Vial and Reist [26]. The following parametric models for the endemic and autoregressive
component were used:

log(νt) = α+ βt+ St

log(λt) = τ + ωt+At

In the endemic part a baseline condemnation rate is estimated with the intercept {α}, the trend is
estimated with the parameter {β} and the seasonal component is estimated with different terms for
{St}. In the autoregressive component, a baseline estimate of the impact of the observation from the
previous month on the current month is estimated with {τ}. A long term trend for the dependence
of the observations on the previous ones can be estimated with the parameter {ω}. In this model
framework a seasonal pattern within the autoregressive part can be estimated with different terms for
{At}. There were four different types of trends used to model the data:

1. no trend (t0)

2. (log-) linear trend (t1)

3. (log-) linear trend starting in 2010 (t2010)

4. no trend but a shift in the intercept in 2010 (j2010)
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For the different seasonal patterns that could be included in the endemic or in the autoregressive part
the following seven variations of parametric models were used (the same models were used for At as
for St):

1. no seasonality (s0)

2. a seasonal impact of each month (monthly)

3. an impact of December only (so-called Christmas effect referred to as xmas seasonality)

4. seasonality with 1 to 4 harmonics per year modeled by a combination of sine and cosine functions
suggested by Held et al. [23] (s1 to s4):

St =
H∑
h=1

γh sin(ωht) + δh cos(ωht)

The estimated parameters γh and δh depend on the number of harmonics {H} that are included
and ωh = 2πh/freq are Fourier frequencies (e.g. freq = 12 for monthly data). Figure 1 illustrates
these seasonal patterns.

time [years]

1 2 3 4

time [years]

1 2 3 4

time [years]

1 2 3 4

time [years]

1 2 3 4

Figure 1: Seasonality with 1 to 4 harmonics per year modeled by a combination of the sine
and cosine functions. (topleft: 1 harmonic, topright: 2 harmonis; buttomleft: 3 harmonics,
buttomright: 4 harmonics)

To select the best fitting model, all combinations of the different seasonal patterns and long term trends
within the autoregressive and endemic components were fitted. Furthermore models which exclude a
whole component (either the autoregressive or endemic component) were evaluated. During prelimi-
nary analysis of a subset of the models, it was asserted that the negative binomial models fit the data
generally better than the Poisson models (see Appendix). Therefore only negative binomial models
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were used for the final model selection. In order to analyze the different data sets in a well-structured
way, the same models were fitted on all the different data sets used. In total 840 models were fitted for
each data set. The criteria used for model selection was the BIC. It was shown that the BIC performs
much better than AIC for time series model selection in small samples, as the AIC tends to overfit
the data [27]. The best model with reliable estimates was then accepted to be used for data simulation.

After the decomposition, based on LOESS or by using the {hhh4} function, the autocorrelation func-
tion of the residuals was plotted using the {acf} function of the {stats} package that is included in R
[21], in order to check visually whether the models captured the seasonal patterns and the trends as
expected.

Data Simulation: Data simulations were generated by using the best model found in the retro-
spective analysis. First baseline data series with a length of 72 months were generated by using the
best models found. In a second step outbreak cases with random size and random starting time points
were generated and added to the baseline time series. To each simulated baseline time series there
was exactly one outbreak added within a defined ”Outbreak-Risk-Period” (from time point 39 to 62).
The time series were structured into three periods: the ”Baseline-Period” of a bit more than 3 years
(38 months), the ”Outbreak-Risk-Period” of 2 years (24 months) and the ”Post-Outbreak-Period” of
10 months (from time point 63 to 72). The starting time points of the outbreaks were randomly
sampled from the 24 time points within the Outbreak-Risk-Period. The outbreak data sets were sim-
ulated according to the paper of Noufaily et al. [28]. The outbreak sizes were generated by random
Poisson variables. Thereby the estimated standard deviation of the simulation model was multiplied
with different scaling parameters k (we chose k 2 to 10). The product was then used as the mean
rate to generate random Poisson numbers. Each case of the total outbreak size was then randomly
distributed to the time points from outbreak start to end according to a lognormal distribution with
a mean of 0 and a standard deviation of 0.5. For each parameter k 1000 time series were simulated.
For parameters in the range of 2 to 10 the resulting outbreak durations were typically between 3 to 6
months. Figure 2 helps to visualize the generation process of one simulation.
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Figure 2: Illustrative example of outbreak data simulation.

Prospective Analysis: To perform outbreak detection on the simulated time series, the improved
Farrington algorithm was applied. Farrington algorithm is an outbreak detection method published
in 1996 by Farrington et al. [29]. The improved Farrington algorithm, as suggested by its function
name, {farringtonFlexible}, is the more flexible version of the original Farrington algorithm. The im-
proved Farrington method was described by Noufaily et al. [28]. It is implemented in the R-package
{surveillance} [30]. The first step of the algorithm is to fit a log linear quasi Poisson model using the
available baseline data (historic data). The amount of historic data that should be used as reference
values to fit the model can be chosen (with parameter {b}) such that only recent values (within b
years from current time point) are included to fit the model.
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E[yt] = µt = (α+ βt+ ft)× et, V ar(yt) = θ × µt, (with θ >1)

The model can include a baseline incidence rate {α}, a trend {β}, a seasonal pattern {ft} and the
population offset {et}. In the first algorithms tested the parameters were chosen according to the
results of the retrospective part of the analysis. Thus a trend was only included if there was evidence
for a trend based on the retrospective analysis otherwise no trend was fitted. Seasonality was handled
either as in the original Farrington algorithm, as supposed by the improved Farrington algorithm or
no seasonal component was included at all. To exclude seasonality, the parameter {w} was set to 6.
In this case all time points within the time window (2w + 1), evidently data of the whole year, are
used to fit the model. Using the original algorithm, excluding data which are assumed to not lay in
the current season is the only one way to account for seasonality. To still be able to estimate a trend
parameter, the window size was set to 3 (w=1). With an even more restrictive window size (w=0)
even with the largest possible learning period (b=3) the sample size for the model fit is only 3. Thus
by estimating three parameters (a trend parameter, an intercept and the overdispersion parameter)
the model is overfitting the data (the number of estimated parameters (p) is equal to the sample size
(n) and thus p<n is violated). The inclusion of only a small subset of the available reference data
is in general one of the limitations of the original Farrington algorithm [28]. To consider seasonality
and simultaneously include the biggest part of the historic data, in FarringtonFlexible the parameter
{noPeriods} is introduced. This gives the option to choose a number of seasonal periods that are
modelled by a zero order spline function with {noPeriod + 1} knots. This option allows the use of
more baseline values to calculate seasonal factors (with 1 to 11 levels) for all the time points outside
of the window (2w + 1) [30]. While using this option the parameter {w} was chosen according to the
retrospective result (e.g. if a seasonality with two harmonics per year should be modeled {w} was
set to 1 and {noPeriods} was set to 3). For each data set the the result of the retrospective analysis
decided if seasonality was included in the Farrington algorithm.

In a second step the estimates of the model fit are used to predict the expected observation and more
important the threshold that defines the upper limit of alarm free observations. There are several
options to calculate the threshold. For our analysis the option ”muan” was chosen, as it is statistically
the most correct one. With this method the threshold (one-sided) (1−α)× 100% prediction interval)
is calculated based on the assumption that the estimated prediction parameters are asymptotically
normal distributed. Thus the threshold can be derived from the (1−α)×100% quantile of the normal
distributed estimates (thresholds based on the 0.995 and 0.975 quantile were used). The uncertainty
of the estimated overdisperson parameter is thereby disregarded. If the threshold is exceeded by the
simulated observed value, the counts are considered as possible outbreaks. Alarms are flagged by
calculating the following exceedance score {Z} for those possible outbreak counts:

Z =
y0 − µ̂0
U0 − µ̂0

There by {y0} is the observed count for the current time point, {µ̂0} is the estimated current expected
value and {U0} is the calculated threshold value for the current time point. An alarm is flagged if
Z ≥ 1 [28]. Time points for which an alarm is flagged should be investigated in greater detail.

After the evaluation of the algorithm with parameters chosen according to the retrospective anal-
ysis, several additional algorithms were tested. The purpose was to see if the performance could be
improved by modifying the parameter settings of {b} (b=2 or b=3), {w} (w=6, w=0, w=1, w=2) and
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{trend} (trend=TRUE). The hypotheses were that the performance can be improved by (a) increasing
the learning period of the algorithm (form b=2 to b=3) or (b) by including a trend (if not already
included). As a consequence of parameter {b} modification the window size had to be adjusted (w=0,
w=1 or w=2). The algorithm with the most restrictive windowsize (w=0) only includes data of the
months identical to the current month for each of the {b} previous years. To include both extreme
options for {w} (0 and 6) this algorithm was evaluated as well. This algorithm is less reliable because
of the small sample size included. To include the biggest possible amount of historic data and at the
same time keep parameter w=0, {noPeriods}=11 was included in an additional algorithm tested. The
inclusion of a trend even if there was no evidence for a trend based on the retrospective analysis was
based on the recommendation in the paper of Noufaily et al. (it was stated that a trend should always
be included) [28]. The parameter {pastWeeksNotIncluded} was set to 0 to not exclude the highly
informative most resent historic data. Therefore the adaption of the algorithm to emerging outbreaks
had to be expected and consequently the reduction of sensitivity and the increase of specificity. In
addition the algorithms with w=6 were also tested with the parameter {pastWeeksNotIncluded} set
to 2 in order to evaluate the influence of emerging outbreaks that started shortly before the current
time point on algorithm performance. To not further decrease the amount of the very recent historic
data that is included, parameters bigger than 2 were not tested. As there were no outbreaks included
in the baseline data none of the algorithms included any re-weighting of high values. The provided
options to account for minimal outbreak sizes can be neglected for all algorithms ({limit54} was kept,
as it did not have any effect on the analysis and {powertrans} was set to ”none” as no transformation
was needed). For all algorithms tested the option to include an offset was applied, thereby the offset
of the collected historic data was used for all simulations.

In order to evaluate the performance of the algorithms, the false positive rate (FPR) and the probabil-
ity that an outbreak is detected (POD) were calculated. To calculate the FPR, the number of alarms
flagged in outbreak free months within the Outbreak-Risk-Period was divided by the total number
of months that were outbreak-free and tested. The POD was calculated by dividing the number of
outbreaks that were detected by the total number of simulations which were tested. Thereby an out-
break was regarded as detected, if there was at least one alarm flagged during the entire outbreak
duration. Thus FPR indicates a rate per month and POD a rate per outbreak. Next to the FPR
and POD the mean outbreak duration for each parameter k as well as the mean outbreak size, the
mean time to detection in months (TTD) and the mean number of cases added until detection (CUD)
were recorded and evaluated. The mean TTD and CUD were calculated only from simulations during
which an outbreak was detected. A mean TTD of 1 indicates that the mean time until an alarm was
flagged is 1 month after the start of the outbreak. A mean CUD of e.g. 27 means that out of the
all injected outbreak cases, 27 were added until the outbreak was detected (including the cases of the
detection month).

Software: All statistical analyses were performed in R [21].
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4 Data

The data used in this study were extracted from the ”Fleischkontrolldatenbank” (FLEKO database).
FLEKO is a database owned by the Swiss Federal Food Safety and Veterinary Office (FSVO). FLEKO
contains ante- and post-mortem meat inspection data from all animals slaughtered in authorised
slaughterhouses of Switzerland (over 600). FLEKO database includes information about all hooved
animals slaughtered in Switzerland including cattle, pigs and small ruminants. The data mandatory
to report to FLEKO are the number of normal and emergency slaughtered animals (ante-mortem
inspection), the number of whole carcass condemnations (post-mortem inspection) and the reason for
condemnation. The official veterinarian in charge needs to report the results of the visual inspections
to FLEKO in a monthly manner. This obligation started at the end of 2006. Thus full data of the
period between January 2007 and December 2012 could be extracted. FLEKO was originally created
for economic reason, in order to be able to keep track of the number of animals slaughtered whose
by-products would need disposal. The slaughterhouses are supported financially by the government
in the proper disposal of animal by-products [26, 19].

FLEKO provides also details of the slaughterhouse and canton in which each individual was processed.
Preliminary analysis of the data by Dr. Flavie Vial showed that there are several factors which could
have an effect on the number of animals slaughtered as well as on the number of condemned carcasses.
There are for example connections between the meat price and the number of cattle and pigs sent
for slaughter. The slaughterhouse size has an effect on the number of condemned carcasses for some
slaughter and animal types too. There were also cantonal differences detected in the rate of carcass
condemnations. However, these effects have not been further investigated. Furthermore it was seen
that more than 100 slaughterhouses, all of which process more than 1’000 animals a month, did not
report a single whole carcass condemnation case over the 6 years of data acquisition. Based on this
observation some non-recording bias is expected in the data [26].

Only part of the available data from FLEKO was extracted for this study. Two animal types (cattle
and pigs) and both slaughter groups (normal and emergency slaughter) were included in the analysis.
To each individual the following information was used:

• total number of carcasses processed each month

• total number of carcass condemnations for each month

• time (month and year)

The descriptive statistics section as well as the analysis section are structured according to the different
data sets analyzed. Each section contains one subsection for each data set (normal slaughtered cattle,
emergency slaughtered cattle, normal slaughtered pigs and emergency slaughtered pigs).

The study includes in total 20.4 million observations that were collected over a period of 72 months.
Table 1 shows the number of observations per animal type and slaughter group. Overall many more
pigs (17 million) than cattle (4 million) were slaughtered within the given time frame. For the normal
slaughter group the number of slaughtered pigs was approximately 4 times higher than the number of
slaughtered cattle. However, it was the opposite for the emergency slaughter group. The number of
emergency slaughtered cattle was approximately 2 times higher than the number of emergency slaugh-
tered pigs. The portion of animals that were classified into the emergency slaughter group upon their
arrival, was a minor part of all slaughters reported. 1.71% of cattle and 0.2 % of pigs arrived injured
or sick at the slaughterhouse. Thus the general state of health prior slaughter for cattle is inferior
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compared to pigs. This could be explained by the fact that accidents occur more often to cattle, as
they are more often kept on alpine pastures [26].

normal slaughter emergency slaughter

cattle 3’750’805 65’304
pigs 16’517’599 33’720

total 20’268’404 99’024

Table 1: Number of observations per animal type and slaughter group

Table 2 shows the number of condemnations per type of animal and slaughter group together with
the corresponding percentage of condemned carcasses. The condemnation proportions observed for
normal slaughtered pigs and cattle were, with 0.15% and 0.16% respectively, fairly low and very sim-
ilar. As to be expected, the percentage of carcasses condemned after normal slaughter is much lower
than after emergency slaughter. The percentage of condemnation in the emergency group was about
9.75% for pigs and approximately 20.4% for cattle. The discrepancy of the two different animal types
could be a result of the widespread injuries and hematomas which are often observed for cattle that
were involved in an accident on alpine pastures (leading to whole carcass condemnations). Another
reason could be that abscesses on emergency slaughtered pigs are more often isolated compared to
cattle (leading to partial carcass condemnation that are not reported) [26].

Taken both slaughter groups together, the mean condemnation proportions for pigs and cattle re-
spectively are 0.17% and 0.5%. These proportions are comparable to the proportions observed for
pigs and cattle respectively in Ontario (0.37% and 0.4-0.8%), for pigs in UK (0.35%) and for cattle in
France (0.67%) [26].

normal slaughter emergency slaughter

# % # %
cattle 5863 0.16 13322 20.4

pigs 25310 0.15 3288 9.75

total 31173 0.15 16610 16.77

Table 2: Condemnations per animal type and slaughter group
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4.1 Descriptive Statistics: Normal slaughtered Cattle

The observed mean number of cattle slaughtered normally each month was 52’095. In the upper panel
of Figure 3 all the observed monthly numbers are shown together with the mean (green line) and the
standard deviation (dotted red line). All monthly counts range between 42’836 and 64’073 normal
slaughters. The observed number of normal slaughters for cattle is highly fluctuating over time. There
is a slight increase in the number of slaughtered cattle visible over the whole time period. The months
with the highest and lowest number of cattle slaughtered were March and July respectively.

In the second panel of Figure 3 the number of condemned carcasses is displayed. The mean num-
ber of carcasses declared as condemned within the normal slaughtered cattle group was 81 per month
with a standard deviation of 19. The minimal and maximal number of condemned carcasses reported
per month was 49 and 153 respectively. This corresponds to a condemnation proportion of 0.1% to
0.26% with a mean of 0.16%. Even though the number of slaughters increased slightly over time, the
number of condemned carcasses was steadily low. There is one period between June and December
2009 that shows an increased number of condemned carcasses, peaking in December 2009. This value
drops again in January 2010 and does not increase noticeable anymore afterwards.

Slaughtered cattle Condemned cattle Proportion [%]

min 42’836 49 0.10
mean 52’095 81 0.16

median 51’457 79 0.16
max 64’073 153 0.26

sd 5’211 19 0.03

Table 3: Summary statistics of normal slaughtered cattle

Almost the same pattern can be observed in the percentage of condemned carcasses after normal
slaughter. There is neither an obvious long term trend visible over the whole time period of data
acquisition nor a seasonal pattern. The observed condemnation proportions are distributed almost
symmetrically around the mean. The fluctuation in the data is rather low, but the variability is con-
siderable high. The peak in the number of condemned carcasses, seen in December 2009, is visible
in the condemnation proportion as well, but it is downscaled. There are two months (December and
February) that could have a seasonal impact on the data, as there is in general an increase in the
percentage of condemned carcasses visible for those two months. This increase could be an effect of
winter, as food and hay are limited in winter months. Cattle that are less productive or not fit enough
to be sent back to the alpine pastures in summer may be sent for slaughter during those months [26].
Figure 3 shows the time series data of normal slaughtered cattle regarding the total number of animals
slaughtered, the number of condemned carcasses and the condemnation proportions. The summary
statistics are listed in Table 3.

Sarah Thommen, sarah.thommen@uzh.ch 15 June 15, 2014

sarah.thommen@uzh.ch


Master Program in Biostatistics University of Zürich
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Figure 3: Time series data of normal slaughtered cattle
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4.2 Descriptive Statistics: Emergency slaughtered Cattle

The mean number of emergency slaughtered cattle per month was 907 with a standard deviation of
181. The minimum number of cattle slaughtered as emergency slaughter within one month was 659,
whereas the maximal number of cattle that arrived injured or sick at the slaughterhouse within one
month was 1’398. In the upper panel of Figure 4 the numbers of emergency slaughtered cattle over
time are visualized. The highest numbers observed clearly lay in the years 2007 to 2009. Not only
the highest numbers but also very low numbers were observed within this time period. Thus the
fluctuation is much higher in the first three years of the study. The BVL (Bundesamt für Lebens-
mittelsicherheit und Veterinärwesen) could not provide a satisfactory explanation for the change of
stability in the data. Therefore it should be looked at as a reporting artefact.

The mean number of carcasses declared as wholly condemned was 185 with a standard deviation
of 33. The minimal number of carcasses condemned in the emergency slaughter group within one
month was 120 whereas the count of condemned carcasses reached its maximum at 257. These num-
bers correspond to a range in proportion between 14.17% and 28.5% of carcasses declared as wholly
condemned. On average 20.78% of the carcasses from emergency slaughtered cattle were declared as
wholly condemned after slaughter each month with a standard deviation of 3.72%. Thus the con-
demnation proportion for this group was noticeably high, as was already the percentage of emergency
slaughters. Figure 4 shows the count data of emergency slaughtered cattle over time, as well as the
number of carcasses condemned within the emergency slaughter cattle group and the corresponding
condemnation proportions in percentage over time. The summary statistics are shown in Table 4.

Slaughtered cattle Condemned cattle Proportion [%]

min 659 120 14.17
mean 907 185 20.78

median 850 186 20.32
max 1’398 257 28.50

sd 181 33 3.72

Table 4: Summary statistics of emergency slaughtered cattle

In all the three graphs of Figure 4 the variability of the time series data is high. Despite the fact that
the fluctuation in the total number of emergency slaughters processed is changing between 2009 and
2010, the fluctuation in the other two data series is fairly stable. For the total number of emergency
slaughtered cattle there is a strong general peak visible in March and December. These are the same
peak months as observed for the normal slaughtered cattle. These peaks are visible in the second panel
as well, that shows the number of condemned carcasses after slaughter but they are not reflected by
the condemnation proportions. In the lowest panel, that shows the times series data of the condem-
nation proportion in percentage, there is a positive trend visible over time. This trend is in contrary
to the negative trend observed in total numbers of slaughters in the upper panel and is thus also seen
in the number of condemned carcasses (second panel). The trend does not last until the end of the
acquisition period, the percentage of condemned carcasses decreases again in the middle of 2012. The
most remarkable observations on the emergency slaughter group for cattle, is on one hand the change
of the distribution of the total slaughters in 2009/2010 and on the other hand the positive trend for
the condemnation proportion.
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Figure 4: Time series data of emergency slaughtered cattle
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4.3 Descriptive Statistics: Normal slaughtered Pigs

The number of animals slaughtered in the normal slaughtered pig group was by far the largest with a
mean number of 229’411 normal slaughtered pigs per month. The lowest number of normal slaughtered
pigs was observed in Mai 2008 with 186’822 slaughters. The maximal number of pigs was slaughtered
in December 2010 (262’941 individuals). The amount of carcasses declared as wholly condemned af-
ter slaughter was reasonable low. On average 352 carcasses were declared as wholly condemned per
month with a standard deviation of 70. The minimal (244 individuals) and maximal (496 individuals)
numbers of condemned carcasses were observed in August 2008 and November 2012 respectively. The
percentage of pig carcasses that were disallowed for food consumption after normal slaughter was thus
between 0.11% and 0.22% with a mean of 0.15% and a standard deviation of 0.03%. The statistics
are summarized in Table 5. All reported numbers of normal slaughtered pigs, as well as the amount
of observed condemnations and the percentage of condemned carcasses are illustrated in Figure 5.

Slaughtered pigs Condemned pigs Proportion [%]

min 186’822 244 0.11
mean 229’411 352 0.15

median 229’954 342 0.15
max 262’941 496 0.22

sd 16’858 70 0.03

Table 5: Summary statistics of normal slaughtered pigs

The amount of fluctuation and variability in the number of normal slaughtered pigs is similar to what
was seen for cattle rather high. The number often exceeds or drops below the mean plus minus one
standard deviation. The upper plot of Figure 5 illustrates the time series data of total slaughters.
It does not show an overall trend or a noticeable seasonal pattern, contrary to the second graph in
Figure 5 which shows the number of carcasses declared as condemned. There is a clear increase in the
number of observed condemnations over time visible. It is not clear at which point in time this positive
trend starts. One possibility is that the trend starts in December 2010. Another possibility could be
a shift of the baseline number of condemned carcasses in 2010. The graph at the bottom of Figure 5
shows the condemnation proportion. The same increase as seen in the total number of condemnations
can be observed again for the condemnation proportion. The trend or shift in 2010 could be a result
of the unfavorable economic situation for the pig industry in the past 5 years. There had been an
over-production of pigs in Switzerland which has resulted in low prices for pork and a campaign urging
farmers to try to reduce the number of sows. If farmers are getting rid of less productive (injured or
sick) individuals first, this may partly explain the rise in the number of condemnations in pigs sent to
normal slaughter [26].

Two months show very high counts of condemned carcasses that could possibly be considered as
outliers (February 2009 and February 2010). In addition there is some sort of seasonal pattern visible
in the graph at the bottom of Figure 5. At the end of each year from November to December there is
always an increase in the condemnation proportion. The increase of the percentage at the end of the
year could simply be a result of the increase in number of animals with diseases in winter. Another
reason might be the hypothesis that individuals of lower quality are sent for slaughter in winter, when
hay and food are limited and a very high demand for pork is expected (due to Christmas) [26].
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Figure 5: Time series data of normal slaughtered pigs
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4.4 Descriptive Statistics: Emergency slaughtered Pigs

During the time of data acquisition the number of pigs that arrived sick or injured at the slaughter-
houses was between 248 (observed in April 2007) and 911 (observed in January 2010). The numbers
of emergency slaughters for pigs were fairly low (the mean number of normal slaughters was 490 times
higher). The mean number of emergency slaughters per month was 468 with a standard deviation
of 115. The monthly numbers of emergency slaughtered pigs are illustrated in the upper panel of
Figure 6. The variability and fluctuation is as for all other data sets quite high. There is a clear peak
visible in January 2010 in the total number of pigs slaughtered. Overall there is a positive trend visible
in the data. This trend seems to be moderate in the time period before the peak. In general there
is a lower number of emergency slaughtered pigs observed in July and increased numbers are seen in
March and December.

The minimal (23 individuals) and maximal (75 individuals) numbers of condemned carcasses were
observed in Mai 2009 and January 2008 respectively. The percentage of pig carcasses that were disal-
lowed for food consumption after emergency slaughter was thus between 4.39% and 15.77%. The time
series of the number of condemned carcasses (seen in the second panel of Figure 6) shows a similar
trend pattern as in the upper panel. Again after 2010 there seems to be an increase in the trend.
The fluctuation is higher in this time series, especially between 2007 and 2010. The peak which was
observed in January 2010 is not reflected by the number of condemned carcasses. Similar to the upper
panel, there is a general increase in the condemnation numbers seen in December.

Slaughtered pigs Condemned pigs Proportion[%]

min 248 23 4.39
mean 468 46 9.96

median 454 44 9.79
max 911 75 15.77

sd 115 12 2.24

Table 6: Summary statistics of emergency slaughtered pigs

As to be expected and already seen in the cattle data set, also for pigs the condemnation proportion
in the emergency group is much higher than in the normal slaughter group. With a mean percentage
of 9.96%, the average condemnation proportion is 65 times higher than for normal slaughtered pigs
(0.15%). This mean percentage value corresponds to an average of 46 carcasses that were wholly con-
demned with a standard deviation of 12. The panel at the bottom of Figure 6 shows the percentage
of condemned carcasses. This plot contradicts the trend pattern observed in the panels above. There
is in fact no trend visible at all for the condemnation proportion. Furthermore, the data is even less
stable than the data in the upper panel. The peak seen in January 2010 is not reflected contrariwise
the condemnation proportion even shows a trough in January 2010. Thus the number of animals that
were grouped into the emergency slaughter group was exceptionally high in January 2010 but also an
exceptional big part of the carcasses could be used for food consumption after slaughter (or at least
parts of the carcasses, as only whole condemnations are reported).

The summary statistics is shown in Table 6. All reported numbers of emergency slaughtered pigs,
the monthly numbers of observed condemnations and condemnation proportions are illustrated in
Figure 6.
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Figure 6: Time series data of emergency slaughtered pigs

4.5 Missing Data

As this FLEKO data set is a complete data set, there was no need to deal with methods for missing
values.

Sarah Thommen, sarah.thommen@uzh.ch 22 June 15, 2014

sarah.thommen@uzh.ch


Master Program in Biostatistics University of Zürich

5 Retrospective Analysis

5.1 Retrospective Analysis: Normal slaughtered Cattle

The decomposition of the transformed carcass condemnation proportion for normal slaughtered cattle
(shown in Figure 7) did not give evidence for a linear trend or a strong seasonal pattern in the data.
The variation in the transformed observed condemnation proportion (upper panel) was much higher
compared to the minor information coming from the estimated trend and seasonal component. Ad-
ditionally the estimated remaining part (lowest panel) illustrates that the variation can be attributed
more to the remaining part than to the effect of season and trend (comparison of the grey bars on
the right hand side of the plot). However a weak seasonal effect was modelled in autumn (peaking in
October). Furthermore the seasonal impact that has been observed in the descriptive analysis at the
end and in the beginning of each year can also be seen in the decomposition model. The estimated
trend (third panel) is a non-monotone function, indicating that there was no long term trend influ-
encing the data. It alternates annually between positive and negative trend phases.
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Figure 7: Season and trend decomposition of the transformed proportion of condemned car-
casses for normally slaughtered cattle (based on LOESS)

Unsurprisingly the condemnation counts were modelled best with simple models (modelling done with
method two (hhh4-models)). None of the top 5 models for normal slaughtered cattle (Table 7) was
found to include a trend and a seasonal pattern at the same time. The fourth and fifth best models
included a seasonal effect of December only (Christmas effect), that was included either in the endemic
or in the autoregressive component and is consistent with what was observed in the descriptive part.
The third best model included a log-linear trend starting in 2010 in the autoregressive component.
The estimated seasonal or trend parameters were very small for those models, leading to very little
effect on the predicted number of condemnation counts.
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trendAR trendEND seasonAR seasonEND df BIC lambda overdisp.

1 t0 t0 s0 s0 3 608.35 0.26 0.028
2 c.e. t0 c.e. s0 2 610.59 0.031
3 t2010 t0 s0 s0 4 610.66 0.28 0.027
4 t0 t0 xmas s0 4 610.68 0.26 0.027
5 t0 t0 s0 xmas 4 610.93 0.27 0.027

Table 7: Top five model fits for normal slaughtered cattle (t0=no trend, t2010=log-linear
trend starting in 2010, c.e.=whole autoregressive component excluded, s0=no seasonality,
xmas=effect of December only)

The best fit (with a BIC of 608.35) for normal slaughtered cattle was reached with a model including
an offset (total number of animals slaughtered), a baseline condemnation rate and a constant autore-
gression parameter. This model did not include any trend or seasonal pattern and thus confirmed the
result of method one (decomposition based on LOESS). Figure 8 shows the best model fit along with
the observed data.
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Figure 8: Best model fit according to the BIC for normal slaughtered cattle (model components
endemic:t0, s0; autoregressive:t0, s0)

The estimated {λ} for this model was 0.26. This means that about a quarter of the information
used to calculate the expected number of condemned carcasses can be gained from the autoregressive
component (previous month). It is clearly visible by comparing the blue and the grey components of
the plot (grey part is approximately four times bigger than the blue part). For all the five top model
fits, the estimated overdispersion parameters are very similar and rather small. It is about 0.028 for
the best model. In the context of outbreak detection an upper limit of condemnation counts that can
be expected to be observed without excessing an inconspicuous range is of great interest. On that
account the upper limit of the 95%-confidence-interval was plotted in Figure 8 (evidentially the lower
limit can be neglected for the purpose of outbreak detection).
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5.2 Retrospective Analysis: Emergency slaughtered Cattle

Compared to normal slaughters for emergency slaughtered cattle the additive decomposition of the
transformed proportion of condemned carcasses discloses different information about possible time
related patterns. The observed positive trend (seen in the descriptive part) for emergency slaughtered
cattle was reflected by the estimated trend in method one (third panel of Figure 9). Likewise the turn-
ing point of this positive trend into a negative trend in 2012 was estimated as seen in the descriptive
part. Taking the grey bar at the right hand side of the plot into account, it can be concluded that the
estimated trend contains approximately as much information as there is variation in the data. Hence
other than for normal slaughtered cattle, for emergency slaughtered cattle it is reasonable to include
a monotone trend to model the data (even though it deviates from the actual data at least for the last
year observed).
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Figure 9: Season and trend decomposition of the transformed proportion of condemned car-
casses for emergency slaughtered cattle (based on LOESS)

The estimated impact of a seasonal pattern does not contain as much information as the trend compo-
nent. A weak seasonal pattern with the highest peak in August was estimated. Anyway, the estimated
effect of seasonality is much smaller than the variation in the data and therefore it can be deduced
that these data do not exhibit a seasonal pattern. Overall Figure 9 indicates that the trend and the
random part dominate these data.

The result of method one (the inclusion of a trend and exclusion of a seasonal pattern) was con-
sistent with the top five models found upon applying method two (Table 8). None of the best five
models included a seasonal pattern but all of them included some kind of trend (either a shift in the
intercept 2010 or a log-linear trend).
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trendAR trendEND seasonAR seasonEND df BIC lambda overdisp.

1 t0 t1 s0 s0 4 659.16 0.28 0.009
2 j2010 t0 s0 s0 4 661.24 0.25 0.009
3 j2010 t1 s0 s0 5 661.69 0.25 0.009
4 j2010 j2010 s0 s0 4 661.76 0.29 0.01
5 t1 t1 s0 s0 5 662.59 0.24 0.009

Table 8: Top five model fits for emergency slaughtered cattle (t0=no trend, t1=log-linear
trend, j2010=a shift in the intercept in January 2010, s0=no seasonality)

The model that best fits the data (BIC of 659.16) included a log-linear trend in the endemic part only.
This model agrees well with what was observed in the descriptive part and in the analysis of method
one. A shift in the intercept in 2010 would be less compatible with the estimated trend of method
one (see third panel of Figure 9). The estimated autoregression parameter {λ} for the best model was
0.28. A visualization of the best model fit is shown in Figure 10.
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Figure 10: Best model fit according to the BIC for emergency slaughtered cattle (model
components endemic:t1, s0; autoregressive:t0, s0)

The endemic part (shown in grey) contains the offsets and thus shows nicely the fluctuation seen in
the total numbers of emergency slaughtered cattle (see descriptive part). On the other hand it can be
seen, that the effect of the trend is very small compared to the offset (Figure 10). The best model fits
the observed data quite well. The upper 95%-confidence-interval is fairly narrow compared to the one
seen for the normal slaughtered cattle, due to the lower estimated overdispersion parameter (0.009).
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5.3 Retrospective Analysis: Normal slaughtered Pigs

According to method one, the time series data of the normal slaughtered pigs might include some time
trend but very likely no strong seasonality impacting the data. The grey bar on the trend panel is
slightly larger than the one on the data panel, revealing that the trend signal is quite large relative to
the variation in the data (Figure 11). The estimated seasonal component of the decomposition for the
transformed proportion of condemned carcasses does not provide considerable information about the
data according to Figure 11. However, the shape of this weak estimated seasonal pattern includes four
harmonics with bigger effects in the period from September to February and lower impacts within the
season from February to August. This pattern can be explained with the increase of the number of
condemned carcasses which was observed from November to December in the descriptive part. The
estimated trend strengthens what was already observed in the descriptive analysis. Until 2010 there
was no (or maybe a very small non monotone) trend. After 2010 the trend is clearly positive and larger
for the second part of the time series. It can be deduced that these data do not exhibit a seasonal
pattern but include a trend (probably starting in 2010).
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Figure 11: Season and trend decomposition of the transformed proportion of condemned
carcasses for normally slaughtered pigs (based on LOESS)

The trend starting in 2010, that was observed in the descriptive statistics as well as with method one,
reappeared again in the top five models of method two (Table 9). The five models with the lowest
BICs all include a log-linear trend starting in 2010 in the endemic component. Despite the assumption
of method one, that the data does not feature a seasonal pattern, all the five models include a seasonal
component in the endemic part. But none of the estimated seasonal parameters in the endemic part
lead to noticeable effects, as the estimated coefficients are all very small.

The best model fit (BIC of 749.44) was achieved with a model including a log-linear trend that starts in
2010 and a seasonal pattern with one harmonic in the endemic component. This model does not include
an autoregressive component at all (consequently no {λ} was estimated). As the data are time series
data the exclusion of the whole autoregressive component was rather surprising. Although the data is
assumed to be dependent on the previous observation, the best model fit resulted without including
any information of the previous time point. The estimated overdispersion parameter of the best model
is quite small (0.01) but still increases the model fit compared to the Poisson model (see Appendix).
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trendAR trendEND seasonAR seasonEND df BIC lambda overdisp.

1 c.e. t2010 c.e. s1 5 749.44 0.011
2 t0 t2010 s0 s1 6 753.7 0 0.011
3 t2010 t2010 s2 s1 11 755.01 0 0.008
4 t0 t2010 s1 s1 8 755.49 0 0.01
5 c.e. t2010 c.e. s2 7 755.58 0.01

Table 9: Top five model fits for normal slaughtered pigs (t0=no trend, t2010=log-linear trend
starting in 2010, c.e.=whole autoregressive component excluded, s0=no seasonality, s1=sine-
cosine seasonality with 1 harmonic, s2=sine-cosine seasonality with 2 harmonics)

The visualization of the best fitting model (Figure 12) only contains the endemic component (and does
not include the autoregressive component in blue). The estimated trend starting in 2010 as well as the
seasonal harmonics can be seen. This very simple model, which does not even include autoregression,
fits the data quite well. The upper limit of the 95%-confidence-interval (red dotted line) was fairly
narrow. Also the two data points that were suspected to be outliers in the descriptive part (February
2009 and February 2010), lie close to the 95%-confidence-interval, which supports the assumption that
the data are outbreak free.
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Figure 12: Best model fit according to the BIC for normal slaughtered pigs (model components
endemic:t2010, s1; autoregressive:no autoregressive component)
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5.4 Retrospective Analysis: Emergency slaughtered Pigs

The condemnation proportions of emergency slaughtered pigs are not affected by strong seasonal
effects or a time trend. The smallest impact on the data was caused by a seasonal pattern (according
to method one, second panel Figure 13). This is consistent with the lack of seasonality observed in the
condemnation proportion in the descriptive part. However, this weak estimated pattern includes four
harmonics with the highest peak in August. Slightly more information can be gained by the estimated
trend (but again the information was not of dominating importance). Despite all previous observations
of the other slaughter groups, the weak estimated trend is in general negative for emergency slaughtered
pigs, indicating a slight decrease of the condemnation proportion for emergency slaughtered pigs over
the last few years. This trend as well as any seasonality is not obvious and was thus not recognized
in the descriptive part.
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Figure 13: Season and trend decomposition of the transformed proportion of condemned
carcasses for emergency slaughtered pigs (based on LOESS)

Since very simple models were found to best fit the other data sets, it is not surprising that among
all the 840 different models, also for emergency slaughtered pigs the top five models appear to be
very simple ones (Table 10). All of the five best fitting models do not include any seasonal pattern
in the endemic and autoregressive component. The negative trend that is estimated with method one
re-emerged in different forms among the top five models again.

trendAR trendEND seasonAR seasonEND df BIC lambda overdisp.

1 t0 t0 s0 s0 3 536.42 0.26 0.026
2 t0 t1 s0 s0 4 536.74 0.23 0.023
3 t1 t0 s0 s0 4 537.9 0.3 0.024
4 t0 j2010 s0 s0 4 537.97 0.24 0.024
5 t0 t2010 s0 s0 4 538.64 0.24 0.024

Table 10: Top five model fits for emergency slaughtered pigs (t0=no trend, t1=log-linear
trend, t2010=log-linear trend starting in 2010, j2010=a shift in the intercept in January 2010,
s0=no seasonality)
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The model which best fits the data (BIC of 536.42) was the same model that was found to best fit the
normal slaughtered cattle data. It includes neither a trend nor a seasonal pattern and thus only consists
of the offset and a baseline condemnation rate in the endemic part and the autoregressive component.
The ratio between the information coming from the previous data and the information coming from
the endemic part is approximately 1 to 4 ({λ} of 0.26). Besides the autoregressive component a big
part of the information is contributed by the offset (thus the fluctuation that can be observed in the
grey part of Figure 14 is mainly caused by the offset). The estimated overdispersion parameter for the
best model fit was, same as for the other data sets, fairly low (0.03). Anyway it enhances the model fit
compared to the Poisson model (see Appendix). The upper limit of the 95%-confidence-interval is, as
for normal slaughtered cattle, wider than in the emergency cattle and normal pig data sets. However,
also for emergency slaughtered pigs, the best model fits the data well.
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Figure 14: Best model fit according to the BIC for emergency slaughtered pigs (model com-
ponents endemic:t0, s0; autoregressive:t0, s0)

The plots of the autocorrelation function of the residuals for all the datasets for method one and two
are included in the Appendix. These plots show that for both methods used potential seasonal or
trend patterns are disappeared in the residuals of the decompositions. Thus both methods captured
the patterns well (this is not surprising as for most of the data sets there was no or only little evidence
for a trend or a seasonal pattern). The majority of the sample correlations is particularly small and
can therefore be attributed to random noise.
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6 Prospective Analysis

For all data sets, the prospective analysis part includes the performance of the algorithm with pa-
rameters chosen according to the result of the retrospective analysis, as well as the results of the best
performing algorithm in terms of POD for small outbreak sizes (k=2 to 3). The detection of small out-
breaks was the main focus as big outbreaks can be detected with other sources as well. The outcomes
of some of the other algorithms tested are shown in the Appendix as representative examples for all
algorithms tested. In general with thresholds based on the 0.995 quantile (alpha=0.005 see Appendix)
the decrease in POD for small outbreaks was unconvincing compared to the decrease in FPR. The
inclusion of a trend did not improve performance of the algorithms for our data (in terms of POD). By
including a trend the performance was either similar or worse. This is reasonable as the simulations
did only include a very weak trend or no trend at all (see representative examples in the Appendix).
The systematic exclusion of data to account for emerging outbreaks (by setting {pastWeeksNotIn-
cluded} to 2) had no remarkable effect on the POD or FPR and the mean TTD and CUD were not
shortened or decreased as well (see representative examples in the Appendix). Thus the impact of
emerging outbreaks on the sensitivity and specificity can be neglected for the outbreak simulations
used. This is why the performance of the algorithms with pastWeeksNotIncluded=0 are shown in the
prospective results part. In general different settings of {w} and {b} only had little effect on algorithm
performance. For w=1 or w=2 the performance of the algorithms was either worse or very similiar to
w=6 in terms of POD, TTD and CUD. The FPR of algorithms with w=1 or w=2 were very similar or
improved compared to w=6 (see representative examples in Appendix). The difference between w=0
and w=6 was more clear and will be discussed in detail in the next section part. By including a higher
amount of historic data (setting noPeriods=11) while using w=0 the performance was not improved
in terms of POD for small outbreak detection (see representative example for emergency slaughtered
cattle in Appendix). In general for all algorithms the CUD proportion of the whole outbreak size but
also the TTD as well as the FPR were fairly stable over k with a tendency to slightly decrease with
increasing k. The POD clearly increased with increasing k for all the algorithms tested.

6.1 Prospective Analysis: Data Simulation

For all simulated outbreak data sets the mean outbreak duration increases with increasing scaling
parameter k (from 2 to 10). The outbreak durations are very similar among all the four data sets (on
average between 3.6 and 5.6 months). Differences in the outbreak sizes between the data sets are more
obvious. These deviations are due to the specific estimated standard deviation used to calculate the
outbreak sizes. Naturally, the outbreaks increase in size with increasing scaling parameter k. Figure 15
shows an example of the outbreak simulations for each of the four different groups and for different
parameters k.
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Figure 15: Illustrative example of outbreak data simulation for different parameters k and for
the four different slaughter groups (number of condemnations during the outbreak are marked
in red).
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6.2 Prospective Analysis: Normal slaughtered Cattle

The simulations for normal slaughtered cattle resulted in outbreaks lasting 3.9 to 4.9 months on aver-
age. The mean outbreak size lie between 33.1 and 166.3 for the different scaling parameters (k=2 to
10). For outbreaks of 2 standard deviations (k=2), on average 33.1 additional cases were distributed
to the 3.9 outbreak months (leading to an average of 8.5 additional cases per outbreak month). Taking
into account the mean baseline number of condemned carcasses predicted by the best model (µ̄=81.71)
and the estimated standard deviation of 16.33 this is a fairly low number of additional cases. Only
by increasing the parameter k to 5 the mean number of additional cases per month (19) is above the
estimated standard deviation. The outbreak size of the most extreme simulations (with k=10) is on
average 166.3 with a mean outbreak duration of 4.9 months. On the other hand those outbreak sizes
are perceptible high compared to the estimated mean and standard deviation of the baseline data.
Mean outbreak sizes and durations for normal slaughtered cattle are summarized in Table 11.

Table 11 (a) and (b) show the outcome of two different outbreak detection algorithms used. Al-
gorithm 1 (Table 11 (a)) includes parameters chosen according to the results of the retrospective
analysis. Therefore it includes no trend and no seasonal components. Algorithm 2 was the algorithm
with the best outbreak detection performance (in terms of POD) for low outbreak sizes. The resulting
algorithm includes more of the historic data (b=3 instead of b=2). As a consequence the window size
of the data used for the first step of the algorithm (the model fitting) had to be narrowed (w=0).
Thus Algorithm 2 includes no trend but considers monthly seasonal effects (in an analogous manner
as the original Farrington algorithm).
Both algorithms show low FPR values in the context of early outbreak detection. Whereas Algorithm
1 achieves slightly better FPRs (one positive alarm between every 9 and 17 years), the FPRs for Al-
gorithm 2 are less compelling (one positive alarm between every 2.5 and 2.7 years). Both algorithms
achieve FPRs which lead to less than one false positive alarm every year resulting in investigation
costs which should be deemed acceptable. In terms of POD Algorithm 1 is again more convincing,
at least in terms of the detection of larger outbreaks (k=5 to 10). But for small outbreak detection
Algorithm 2 performs slightly better. Algorithm 1 only detects more than 30% of the outbreaks for
k bigger than 4 whereas Algorithm 2 already detects more than 30% of all outbreaks if k equals 3
(Table 11).

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.1 27.4 0.11 0.009
3 4.2 49.6 1.0 39.8 0.26 0.009
4 4.3 66.5 1.0 53.8 0.45 0.007
5 4.4 83.5 1.0 65.8 0.66 0.006
6 4.6 99.6 1.0 78.7 0.80 0.006
7 4.7 116.2 1.0 89.5 0.90 0.007
8 4.7 132.6 1.0 102.6 0.93 0.005
9 4.9 149.6 1.0 115.9 0.96 0.006

10 4.9 166.3 0.9 126.1 0.97 0.006

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=FALSE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.2 25.2 0.23 0.033
3 4.2 49.6 1.1 38.2 0.35 0.032
4 4.3 66.5 1.1 51.0 0.46 0.031
5 4.4 83.5 1.1 62.8 0.58 0.033
6 4.6 99.6 1.0 73.6 0.66 0.031
7 4.7 116.2 1.0 86.5 0.73 0.033
8 4.7 132.6 1.0 99.5 0.79 0.032
9 4.9 149.6 0.9 109.7 0.85 0.032

10 4.9 166.3 0.9 122.0 0.88 0.031

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1)

Table 11: Outbreak detection performance for the simulated data sets of normal slaughtered
cattle
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The difference between the two algorithms in terms of TTD is very small. Algorithm 2 needs on av-
erage slightly more than 1 month to detect an outbreak for small outbreak sizes (k=2 to 5). Whereas
Algorithm 1 detects outbreaks on average within the first month independent of the outbreak size.
The CUD shows that the peak of the outbreaks is or was already reached at the time of detection.
The number of outbreak cases which emerged until detection (CUD) is between 27.4 and 126.1 for
both algorithms. Thus 73% to 83% of the outbreak cases already occurred before outbreak detection.
The CUDs of Algorithm 2 are slightly smaller than the ones for Algorithm 1.

Over all the improvement for small outbreak detection from Algorithm 1 to Algorithm 2 is not strik-
ing. Its performance is only better for outbreaks smaller than 4 standard deviations and at the same
time the FPR is more than 3 times higher than in Algorithm 1. Algorithm 1 outperforms Algorithm
2 in the detection of outbreaks the size of more than 4 standard deviations and reaches a POD of
97% as opposed to 88% for Algorithm 2. Based on the sample size included for threshold estimation,
Algorithm 1 is doubtless the more reliable one as well.

6.3 Prospective Analysis: Emergency slaughtered Cattle

For emergency slaughtered cattle the mean of the estimated incident rates (µ̄=185.86) is more than
twice as high as for normal slaughtered cattle and has a slightly higher estimated standard deviation
of 22.27 as well. The mean simulated outbreak sizes and durations for emergency slaughtered cat-
tle resulted to be very similar to the ones obtained for normal slaughtered cattle (compare Table 11
and 12). To add on average more cases than one estimated standard deviation to each month of the
outbreak, a scaling parameter k of at least 5 was needed. For the most extreme outbreak scenario
simulated (k=10) the mean outbreak size is about (230.8). With a mean outbreak duration of 5.1 this
makes on average 45.25 additional cases per outbreak month. This corresponds to adding on average
24% of the mean incidence rate of the best model (µ̄=185.86) on top of the baseline counts for each
outbreak months.

The parameters which are compatible with the best fitting model of the retrospective analysis (no
seasonality but a trend included) were used for Algorithm 1. The improved algorithm for emergency
slaughtered cattle is the equivalent to Algorithm 2 for normal slaughtered cattle (more historic data
is included with b=3, a smaller window size is used with w=0 and no trend is included) and is thus
again very similar to the original Farrington algorithm. Table 12 (a) and (b) list the performances of
the Algorithms 1 and 2 for emergency slaughtered cattle.

The difference between the two algorithms for emergency slaughtered cattle is more pronounced to
what was seen for the normal slaughtered cattle. Whereas Algorithm 1 detects 20% of the smallest
outbreaks (k=2), Algorithm 2 is able to detect 46%. Algorithm 1 is only able to detect more than 40%
of the outbreaks of size bigger than 91.4 (k=4). Both algorithms are convenient for large outbreak
detection with maximal PODs of 0.96 (Algorithm 1) and 0.92 (Algorithm 2). For outbreaks of the
size bigger than 5 standard deviations, Algorithm 1 is outperforming Algorithm 2 in terms of POD.
The difference of the two Algorithms in terms of FPR is remarkable. Again Algorithm 1 is more
convenient. The FPR for Algorithm 2 is on average 9 times higher than the one for Algorithm 1.
However, Algorithm 2 might still be acceptable with an FPR between 8.4% and 9% for data that is
reported in a monthly manner. This would lead to maximal one false positive alarm every 11 months.
The TTD for the two algorithms are very similar but differences in the CUDs are observed. On average
Algorithm 2 detects the small outbreaks (k=2 and 3) a bit later, but both algorithms detect outbreaks
on average within 1 month after outbreak start. Both algorithms detect outbreaks after 64% to 80%
of the outbreak cases occurred. Algorithm 2 is slightly better in terms of CUD (CUD for Algorithm
1 are between 37.2 and 171.9 and between 31.4 and 148.6 for Algorithm 2).
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k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.0 37.2 0.20 0.013
3 4.4 69.6 1.0 55.2 0.35 0.013
4 4.5 91.4 1.0 72.1 0.51 0.011
5 4.7 114.9 1.0 89.7 0.72 0.008
6 4.8 136.6 1.0 106.5 0.83 0.011
7 4.9 161.7 1.0 125.3 0.90 0.009
8 5.0 185.0 0.9 139.9 0.95 0.009
9 5.1 207.1 0.9 154.0 0.96 0.008

10 5.1 230.8 0.9 171.9 0.96 0.008

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=TRUE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 31.4 0.46 0.087
3 4.4 69.6 1.1 48.4 0.56 0.089
4 4.5 91.4 1.0 60.6 0.64 0.088
5 4.7 114.9 1.0 79.3 0.73 0.086
6 4.8 136.6 0.9 93.7 0.80 0.086
7 4.9 161.7 0.9 109.3 0.84 0.084
8 5.0 185.0 0.9 123.0 0.88 0.090
9 5.1 207.1 0.8 135.6 0.91 0.088

10 5.1 230.8 0.8 148.6 0.92 0.085

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1)

Table 12: Outbreak detection performance for the simulated data sets of emergency slaughtered
cattle

6.4 Prospective Analysis: Normal slaughtered Pigs

For normal slaughtered pigs higher numbers of condemned carcasses were observed (see descriptive
statistics). The estimated standard deviation of the best model (41.42) is higher for normal slaughtered
pigs compared to the other groups. Consequently the simulated outbreaks are larger in size (more than
double the size of for normal and emergency slaughtered cattle). Furthermore the outbreak duration
is slightly longer for normal slaughtered pigs (Table 13). The mean outbreak duration is between 4.5
and 5.6 months and includes an average of between 88.4 and 444.4 additional cases for the different
parameters k. These numbers are high compared to the outbreak sizes simulated for the other data
sets. Still relative to the mean predicted baseline counts (µ̄=353.09), the numbers are alike to what
was simulated for the other data sets. For the most extreme outbreak situation (k=10), the average
of cases added to each outbreak month, are approximately 1/4 of the mean baseline counts (µ̄) (which
is the same than what was seen for emergency slaughtered cattle).

For normal slaughtered pigs the best fit in the retrospective part was found for a model which in-
cludes a seasonal pattern. As there are two ways used to include seasonality for outbreak detection
(either according to the original or the improved Farrington algorithm) there are two Algorithms 1
for normal slaughtered pigs (1a and 1b). Table 13 (a) shows the result of the first variation of the
algorithm used (Algorithm 1a). This version considers seasonality in an analogous manner compared
to the original of Farrington algorithm. Algorithm 1a includes a trend, the biggest possible amount
of historic data (b=3) and a narrow window size around the current observation (w=1). In terms of
POD the outbreak detection is similar to what was observed for the cattle data sets. Algorithm 1a
detects between 18.1% and 91.3% of the outbreaks for k form 2 to 10. The FPR of Algorithm 1a
is convincing for monthly data (between 0.021 and 0.024) and would lead to up to one false positive
alarm every 3.5 years.

The TTD of Algorithm 1a for normal slaughtered pigs is similar to what was observed for the cattle
data sets and thus convenient. Again one drawback of the algorithm is the CUD. Between 73% and
75% of the total outbreak cases emerged before the time of detection.
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k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.3 64.2 0.18 0.024
3 4.8 133.2 1.1 98.4 0.29 0.021
4 5.0 176.9 1.1 131.4 0.38 0.023
5 5.1 221.8 1.0 163.0 0.51 0.023
6 5.3 267.0 1.0 201.0 0.62 0.022
7 5.3 311.0 1.0 228.8 0.75 0.021
8 5.4 355.8 0.9 265.8 0.84 0.022
9 5.5 397.8 0.9 292.7 0.90 0.022

10 5.6 444.4 0.9 327.2 0.91 0.023

(a) Algorithm 1a - according to retrospective analysis
(b=3, w=1, trend=TRUE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.1 69.2 0.10 0.007
3 4.8 133.2 1.1 104.5 0.21 0.006
4 5.0 176.9 1.0 136.8 0.37 0.007
5 5.1 221.8 1.0 171.8 0.57 0.007
6 5.3 267.0 1.0 208.7 0.71 0.006
7 5.3 311.0 1.0 240.5 0.83 0.005
8 5.4 355.8 1.0 274.1 0.91 0.005
9 5.5 397.8 1.0 302.8 0.95 0.005

10 5.6 444.4 1.0 338.8 0.94 0.005

(b) Algorithm 1b - according to retrospective analysis
(b=3, w=1, trend=TRUE, noPeriods=3)

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.2 58.1 0.65 0.140
3 4.8 133.2 1.1 89.1 0.75 0.135
4 5.0 176.9 1.0 116.0 0.81 0.138
5 5.1 221.8 0.9 137.4 0.87 0.137
6 5.3 267.0 0.9 166.7 0.90 0.134
7 5.3 311.0 0.8 187.8 0.92 0.133
8 5.4 355.8 0.8 218.4 0.95 0.134
9 5.5 397.8 0.8 236.5 0.97 0.134

10 5.6 444.4 0.7 256.1 0.96 0.133

(c) Algorithm 2 - season only
Best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.3 67.0 0.33 0.040
3 4.8 133.2 1.1 100.1 0.49 0.037
4 5.0 176.9 1.0 129.7 0.62 0.036
5 5.1 221.8 0.9 162.7 0.74 0.031
6 5.3 267.0 0.9 192.3 0.84 0.028
7 5.3 311.0 0.9 223.1 0.91 0.026
8 5.4 355.8 0.9 250.2 0.96 0.022
9 5.5 397.8 0.9 273.3 0.97 0.021

10 5.6 444.4 0.9 301.8 0.96 0.020

(d) Algorithm 3 - trend only
Increased POD for small outbreak detection
(b=2, w=6, trend=TRUE, noPeriods=1)

Table 13: Outbreak detection performance for the simulated data sets of normal slaughtered
pigs

The second variation of the algorithm used (Algorithm 1b) takes advantage of the parameter {noPe-
riods} of {farringtonFlexible}. The seasonality found in the retrospective analysis (a function with 2
harmonics per year) is taken into account by setting {w}=1 and {noPeriods}=3. The performance
of this outbreak detection variation is summarized in Table 13 (b). The POD of Algorithm 1b is
very good for large outbreaks. More than 50% of the outbreaks are detected if the outbreaks are of
size 221.8 or bigger (k ≥5). For outbreaks of 2 to 4 standard deviations, the performance is not as
convenient in terms of POD (only 10% to 37% are detected for k=2 to 4). In terms of FPR Algorithm
1b is very satisfactory with a maximal FPR of 0.007. The TTD of Algorithm 1b is comparable with
what was obtained for Algorithm 1a and the other data sets (the outbreaks are detected within one
month on average). The performance of Algorithm 1b is comparable to Algorithm 1a in terms of
CUD. On average Algorithm 1b detects outbreaks after 77% of the total outbreak cases occurred for
Algorithm 1a it is on average after 74%.

The performance of outbreak detection for the simulated times series of normal slaughtered pigs,
can be increased in terms of POD by including either only a seasonal or only a trend pattern. These
algorithm variations are shown as Algorithm 2 and 3 respectively (Table 13 (c) and (d)). Algorithm 2
includes no trend, the biggest possible amount of historic data (b=3) and a narrow window size around
the current observation (w=0). In terms of POD this outbreak detection is much more efficient than
what was achieved so far. Algorithm 2 already detects more than 60% of the outbreaks for the smallest
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outbreak size simulated (k=2). The TTD of Algorithm 2 for normal slaughtered pigs is convenient
and is even slightly better for larger outbreaks than what was observed for Algorithm 1a and 1b. One
drawback of the algorithm is again the large CUD even though it is already improved compared to
what was seen for the other algorithms. Between 58% and 67% of the total outbreak cases emerged
before detection. Another drawback of Algorithm 2 is the FPR, which is remarkably high (between
0.133 and 0.14). Thus Algorithm 2 leads to up to 1.7 false positive alarms each year. This algorithm
variation includes again only very little data for threshold estimation and is therefore less reliable than
other algorithms. Nevertheless it is interesting that similar to what was seen previously for the cattle
data sets, the performance of this algorithm is the best in terms of POD for small outbreak detection.

However, there is a fourth mentionable Algorithm (Algorithm 3 see Table 12 (d)) that can increase the
POD and at the same time leads to more convenient FPRs. This rather simple algorithm includes a
trend but no seasonality and thus the estimated threshold is based on a bigger sample. The algorithm
is able to detect between 33.4% and 97.4% of outbreaks (for k=2 to 10). With Algorithm 3 a mean
FPR of 0.029 is achieved where the mean FPR in Algorithm 2 was 0.135 (Tables 13 (c) and (d)). The
improvement in terms of FPR is not striking, but at least the expected emergence of investigations
are decreased from one every 7 months (Algorithm 2) to one every 25 months (Algorithm 3). The
FPR of Algorithm 3 decreases with increasing outbreak size, indicating that in this case the specificity
of the algorithm is influenced by emerging diseases. The TTD for Algorithm 3 (between 0.9 and 1.3)
are comparable to the outcomes of the other algorithms and are not dramatically long for outbreaks
that last between 4.5 and 5.6 months. The CUD for Algorithm 3 is comparable to what was seen
for Algorithms 1a and 1b. Algorithm 3 detects an outbreak on average only after 72% of the total
outbreaks have already occurred.

6.5 Prospective Analysis: Emergency slaughtered Pigs

The simulated time series for emergency slaughtered pigs are similar to the ones obtained for cattle.
In contrast to the normal slaughtered pigs (with the highest outbreak sizes and durations simulated),
for emergency slaughtered pigs the lowest and shortest outbreaks were obtained. This is due to the
estimated standard deviation of 10.03 and the estimated mean incidence rate (µ̄=46.15) used to simu-
late the data. The resulting time series contain outbreaks of an average size of 20.6 to 102.7 (for k=2
to 10). The outbreak durations are on average between 3.6 and 4.6 months. To exceed the estimated
standard deviation of the best model (10.03) with the mean number of cases added to each month of
the outbreak, parameter k needs to be at least 4. The mean of the estimated outbreak durations and
sizes for all parameters k are listed in Table 14.

In the retrospective analysis the best model for emergency slaughtered pigs was found to be the same
as for normal slaughtered cattle. Therefore the same algorithms were tested for the outbreak detection
of those two groups. Table 14 (a) and (b) show the outbreak detection performance of these two algo-
rithms with emergency slaughtered pig outbreak simulations. Algorithm 1 (the very simple algorithm
without seasonal and trend pattern) is convincing in terms of POD for larger outbreaks (with k=7
to 10). It is able to detect at least 85% of the simulated outbreaks of the size 72 and bigger (k ≥7).
The performance of this algorithm is comparable with the performance of Algorithm 1 for normal
slaughtered cattle.

Algorithm 2 (which includes a longer learning period and considers seasonality but no trend) reaches
slightly higher PODs for smaller outbreaks (with k=1 to 2) compared to Algorithm 1. This is what
was seen for normal slaughtered cattle as well. Both algorithms are able to detect more than 50% of
the outbreaks for outbreak sizes bigger than 51.2 (k=5).
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k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.0 17.8 0.12 0.010
3 3.9 31.3 1.0 26.9 0.28 0.009
4 4.0 41.1 1.0 33.8 0.42 0.007
5 4.2 51.2 1.0 41.9 0.60 0.007
6 4.3 61.9 1.0 49.3 0.74 0.006
7 4.4 72.0 1.0 56.1 0.85 0.006
8 4.5 82.9 1.0 64.9 0.89 0.007
9 4.5 92.7 1.0 71.1 0.92 0.006

10 4.6 102.7 1.0 78.0 0.96 0.005

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=FALSE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.2 16.9 0.19 0.027
3 3.9 31.3 1.1 25.3 0.31 0.025
4 4.0 41.1 1.1 31.9 0.38 0.026
5 4.2 51.2 1.0 40.4 0.52 0.028
6 4.3 61.9 1.0 45.4 0.61 0.026
7 4.4 72.0 1.0 53.1 0.70 0.026
8 4.5 82.9 1.0 62.8 0.78 0.024
9 4.5 92.7 1.0 69.4 0.80 0.025

10 4.6 102.7 0.9 75.7 0.85 0.024

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1)

Table 14: Outbreak detection performance for the simulated data sets of emergency slaughtered
pigs

In terms of FPR, both algorithms are convenient. Even though the FPR of Algorithm 2 is on average
3.6 times higher compared to the one of Algorithm 1. With a mean FPR of 0.026 it would still lead to
only one false positive alarm every 3 years. Algorithm 1 performs slightly better in terms of TTD as
well. However with TTDs between 0.9 and 1.2 both algorithms can detect outbreaks within a similar
time period as seen for the other groups. Also the CUDs of the two outbreaks lie in a similar range.
Both algorithms detect outbreaks only after the majority of the outbreak cases have already occurred
(73% to 86%). Algorithm 2 is doing slightly better in terms of CUD (81% on average for Algorithm
1 and 77% on average for Algorithm 2).
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6.6 Prospective Analysis: Summary and Conclusion

Figure 16 summarizes the performance of the algorithms for all the simulated data sets. The PODs
achieved with the algorithms according to the retrospective analysis (Figure 16 (a)) are not prominent
for small to medium outbreak sizes. Only outbreaks with high magnitudes (k=8 to 10) are detected
reliably (POD≥80%). To detect more than 50% of the outbreaks with Algorithms 1, the number of
added cases need to be more than 102%, 49% and 111% of the mean monthly baseline counts (for
normal and emergency slaughtered cattle and emergency slaughtered pigs respectively). For normal
slaughtered pigs the number of added cases needs to be more than 63% of the mean monthly baseline
counts to detect at least 50% of the outbreaks with Algorithm 1a and more than 63% of the mean
monthly baseline counts with Algorithm 1b.
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Figure 16: Outbreak detection performance for all detection algorithms and data simulations.
The line in grey marks the FPR that corresponds to one false positive alarm per year and a
POD of 0.5 respectively. The adjusted algorithms are the algorithms with the best PODs for
small outbreak detection or in case of Algorithm 3 for normal slaughtered pigs with increased
PODs compared to Algorithms 1.
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The FPRs for the algorithms according to the retrospective analysis (shown in Figure 16 (c)) are far
below the rate which corresponds to one false positive alarm per year (dotted grey line in the plot).
For all data sets the FPRs are between 0.005 and 0.024, corresponding to one investigation every 3 to
18 years.

By modifying the outbreak detection algorithm the PODs for the small outbreaks can be improved
for all data sets. Algorithms 2 and 3 achieve PODs (for k=2 or 3) which are 1.6 to 6.8 times as high
as the ones for Algorithms 1. On the other hand the improved algorithms decrease the PODs for
outbreaks with k larger than 6 except for the algorithms used for normal slaughered pigs. Compared
to Algorithm 1a and 1b the two modified algorithms used for the normal slaughtered pigs (shown in
blue in Figure 16 (d)), increase the outbreak detection proportion for all the outbreak sizes.

For all data sets the algorithms which are improving the POD for small outbreaks lead to an in-
crease of the FPR at the same time. In some cases this increase is not dramatic. It shortens the
mean expected time between two false positive alarms by several years but the resulting FPR is still
acceptable. It reduces the gap from 12.4 to 2.6 years for normal slaughtered cattle and for emergency
slaughtered pigs and from 4 years (Algorithm 1a) or 14.5 years (Algorithm 1b) to 2.9 years (Algorithm
3) for normal slaughtered pigs. The increase in FPR is more severe for emergency slaughtered cattle
and for Algorithm 2 for normal slaughtered pigs. For emergency slaughtered cattle one false alarm
can be expected every 8 years with Algorithm 1 and with Algorithm 2 once every 11 months (which is
just at the edge of acceptance). The highest number of false positive alarms (on average) are expected
with Algorithm 2 for normal slaughtered pigs (1 alarm every 7 months). All the outcomes (range
of POD and FPR) for the simulated outbreak sizes used are comparable to what was observed in a
similar study by Noufaily et al. [28].
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7 Discussion

7.1 Discussion: Retrospective Analysis

The retrospective analysis with the two different methods used provides sufficient information about
the data distribution of the different animal and slaughter groups. The dependence of the data on time
related factors (trend, seasonality and autoregression) can be evaluated nicely by these methods. The
purposes for which the two different methods were used each suited the advantages and disadvantages
of both and the results gained revealed relevant information.
The first method, the additive decomposition based on LOESS, was convenient to get an idea of
the seasonal and trend patterns that should be used in the second method. The main advantage of
method one (compared to method two) is its robustness. The biggest disadvantage and the one reason
why method two was needed, is the lack of an easily accessible regression function in method one. It
does not produce a regression function which can be represented by a mathematical formula. Thus
to simulate outbreak data time series or to predict expected condemnation counts, method one is
inappropriate. These requirements are met by method two. Applying the {hhh4} function results in
a regression function that describes the data in a convenient way. By using the estimated parameters
of this function, baseline time series of the condemnation rates can be simulated. However, to be able
to use method two efficiently, an idea about the seasonal and trend pattern that could influence the
data are essential. Another disadvantage is the fact, that the models can quickly become complex
(depending on the combinations of seasonal and trend patterns used) and several parameters possibly
have to be estimated. If long term data is not available and at the same time the reporting frequency
is low, it can lead to unreliable and thus useless estimates with large standard errors. In this project
the time series ranged over 6 years and the data were reported in a monthly manner, which is why the
sample size was rather small. E.g. for estimates of monthly seasonal effects, only 6 observations per
month could be used. Another disadvantage of method two is, that it cannot be applied in a robust
way. Especially for short time series (which lead to low sample sizes for monthly data), one outlier
can strongly influence the estimates.

According to the retrospective analysis it can be concluded that simple models best fit the con-
demnation rates of Swiss slaughterhouse. Thus time related factors, such as seasonality and long term
trends do not influence the data strongly in general. Autoregression on the other hand influences the
data to a great extent which is reasonable for time series data.

7.2 Discussion: Prospective Analysis

The simulation of outbreaks for condemnation rates of Swiss slaughterhouses were done according to
Noufaily et al. [28]. One can argue that using exactly the same method to simulate outbreaks for
monthly condemnation counts from slaughterhouses as is used for weekly organism counts in labo-
ratories might not be appropriate. The simulation of the outbreak sizes, might be feasible but the
parameters used to lognormal distribute the data in time could be disproportionate. The parameters
chosen lead to outbreak durations of several months, which does not fit the expected duration of aber-
rations reflecting (re-)emerging outbreaks for a wide range of infectious diseases. The incubation times
for infectious diseases differ between several days to years (e.g. 1-5 days for foot-and-mouth disease;
1-4 weeks for Lumpy skin disease or several years for BSE). Also the duration of the disease and its
transmission rates differ between diseases [31]. Thus outbreak simulations between 3 to 6 months
can be too restrictive. On the other hand, for poor animal handling these outbreak durations can be
appropriate, as manifestation of maltreatment of animals can be protracted and thus aberrations can
be expected to last for several months. By choosing other parameters or another simulation method
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a wider range of outbreak dynamics can be captured. For example with the {hhh4} models outbreaks
could be simulated for the data sets, by increasing the parameter {λ} progressively for a randomly
chosen time period at different starting points. In general only a small amount of data was used to
estimate the threshold for outbreak detection (e.g. with b=3 or b=2). With larger amounts of data
(e.g. b=5) the uncertainty of the estimates can be decreased and will lead to a more precise threshold.
Therefore using a higher amount of historic data can potentially increase the POD or decrease the
FPR. Therefore simulating longer time series (longer than 72 months) for the use of the algorithm
could improve outbreak detection and might therefore be of interest. The simulation of longer time
series might also require simulations of the offsets. As in this case the reuse of the offsets of the historic
data is only appropriate if the offset data are not influenced by a trend or seasonal pattern. The offset
contributes to a great part to the threshold estimation. Thus in any case the reuse of the historically
observed offset for all the simulations might also influence the performance. As such, the investigation
of offset simulation is of interest in general.

The performance of the {farringtonFlexible} algorithm for the simulated outbreaks was convenient
regarding FPR. One can argue that the method of FPR calculation leads to underrated FPRs (due
to the influence of the injected outbreaks in the beginning of the Outbreak-Risk-Period). As these
outbreaks can impact the specificity and the FPR for those simulations might be underestimated. This
concern cannot be refuted entirely, but since the FPR is fairly stable over k (for almost all algorithms)
and this effect can be expected to increase with increasing outbreak size it can be neglected. Thus the
FPR calculation seems appropriate for the evaluation of the algorithms on the simulations used. A
way to reassure the validity of the FPRs would be to recalculate the rates by applying the algorithm
to simulations which do not include any outbreaks (as done by Noufaily et al. [28]). The major part of
the convenience in the FPR might be attributed to the monthly reporting system. For more frequent
reports (e.g. on weekly or daily basis) the FPRs would need to be reinvestigated again and could be
the limiting factor. The same is true for the quantile used to calculate the thresholds. For monthly
reports a 0.975 quantile leads to sufficiently low FPRs, but for more frequently reported data the use
of a 0.995 quantile might be required (as stated in the studies of Noufaily et al. [28]).

In terms of POD the performance of the algorithm used in this study was convenient for large outbreak
simulations. For outbreaks of small sizes, the proportion of outbreaks detected was less satisfying. One
problem which is faced is the presence of high variations in the baseline data and the low amount of
data points used for parameter estimation. The low amount of data leads to uncertain estimates with
potentially high standard errors which lead to increased thresholds. High variances in the baseline
data lead to high estimated mean incidence rates and therefore to presumably high thresholds (relative
to months with low condemnation counts). Therefore exceeding a threshold with small outbreak sizes
is getting less likely. As such it is especially difficult to detect small outbreaks efficiently with the data
and the settings used (Figure 15 illustrates this problematic).

Surprisingly the best performing algorithms (in terms of POD for small outbreak detection) turned
out to be the algorithms which included the smallest amount of data for threshold estimation. These
algorithms are not reliable and should be considered with serious concerns. However, it is still inter-
esting to see that these algorithms performed the best for all the groups. Thus further investigations
on monthly seasonal effects with more frequent or larger amount of data would be of interest. The
options to account for seasonal effects are not convincing. A resonable approach for improvement
might be the modelling of seasonality by sine and cosine functions instead of step functions. Even
though there was little evidence for seasonal effects in the monthly data, to reinvestigate seasonality
with more frequent data would be of interest.
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For our study the possibility to use the algorithm in a robust way was not needed. As the data
was known to be outbreak free, this option did not seem to be of interest. It might be interesting to
include the option anyway to see if better results can be obtained in terms of POD by down-weighting
counts which could be outliers or part of an emerging outbreak. Furthermore it would be interesting
to investigate the performance of the algorithm for time series which include outbreaks already in the
baseline data, as such scenarios could be faced with real data. With this option, Farrington algorithm
is able to account for known as well as unknown outbreaks in the past.

In terms of TTD and especially CUD the algorithm performance for early outbreak detection us-
ing monthly data is inconvenient. Despite the fact that the majority of the outbreaks are detected
within one month, more than 50% of the outbreak cases already have occurred at the time of detection.
Thus as a matter of fact, outbreaks with the assumed distribution in time can hardly be detected early
by using monthly data. The applicability of the algorithm for early outbreak detection needs to be
investigated using more frequently reported data and cannot be evaluated based on this study.

Recommendation for preliminary test stage on real data (short-term): Overall the appli-
cation of Farrington algorithm on the currently available data seems reasonable. Despite the lack of
timeliness and even though the PODs are not convincingly high for all outbreak sizes, the output of
the algorithm is of avail. The cost of applying the algorithms in a monthly manner and the cost of
possible investigations due to false positive alarms are low and therefore acceptable. If an alarm is
flagged the first investigations that are made on condemnation counts are not very time and cost con-
suming. First the reason for the condemnations is analysed in detail. A heterogeneous mix of reasons
indicates that the alarm is possibly due to occasional events. A second step is the investigation of the
geographical pattern of the condemnation counts. Again a heterogeneous distribution of the condem-
nation counts in terms of the location of the slaughter and the origin of the animal (farm) indicates
a coincidental increase of condemnations. Only if there is a high occurrence of one specific reason or
a geographical accumulation of condemnations more intensive investigations at higher costs are needed.

The interest in the detection of small outbreaks is of higher priority as bigger outbreaks might also
be detected using other sources. Therefore algorithms that increase the PODs of small outbreaks and
lead to less than 2 investigations per year are considered applicable. Based on the PODs and the
FPRs and by disregarding the reliability of the algorithms (according to the size of historic data used)
Algorithm 2 is favourable for all the data sets except for normal slaughtered pigs. For this group
Algorithm 3 is of better use. However, taking into account the sample size and the reliability of the
algorithms, Algorithms 1 should be applied for all the data sets (Algorithm 1b for normal slaughtered
pigs).

For normal slaughtered cattle (with an estimated mean incidence rate of µ̄=81.71) Algorithm 1 is
convenient (POD≥75%) for outbreaks of sizes bigger than 122% of the average monthly count in the
baseline data. At the same time it leads to far less than two investigation per year. The same applies
to Algorithm 1 for emergency slaughtered cattle (µ̄=185.86) for outbreak sizes bigger than 73% of the
average monthly count in the baseline data. For normal and emergency slaughtered pigs the outbreak
size has to be at least 88% (Algorithm 1b) and 156% (Algorithm 1) of the mean predicted baseline
incidents rate respectively to meet the above mentioned conditions of FPR and POD (µ̄=353.09 for
normal slaughtered pigs and µ̄=46.15 for emergency slaughtered pigs). The proportion of outbreak
detection for the smallest outbreak size (k=2) with the same algorithms are 11% for normal slaugh-
tered cattle, 20% for emergency slaughtered cattle, 10% (Algorithm 1b) for normal slaughtered pigs
and 12% for emergency slaughtered pigs.
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With thresholds based on the 0.995 quantile (see Appendix) the decrease in POD for small out-
breaks was unconvincing compared to the decrease in FPR. Therefore for outbreak detection using
the mentioned algorithms and the Swiss slaughterhouse data an alpha of 0.025 should be used.

Outlook: A limiting factor of the data was that only the number of wholly condemned carcasses are
reported, which limits the information that can be gained from the data. The picture of condemnation
is only complete if the partially condemned carcasses are included as well. The goal of this study was
to investigate if the available data are adequate for early detection of outbreaks or increasing incidence
rates in order to prevent disease outbreaks or poor handling of production animals. Unfortunately the
data available so far do not provide enough information for early outbreak detection. The problem
of the available data is the deficit in timeliness as the data are collected in a monthly manner. By
using monthly reports the detection of an outbreak will not be as early as possible. Another problem
which is caused by the monthly reports is its resolution. The detection of outbreaks shorter than
one month is possible but it would be earlier as well as more successful and reasonable with weekly
or daily reports. One way to deal with these problems could be to neglect the offset. Currently the
date on which a condemnation happens is available but the total numbers of slaughtered animals are
often only reported at the end of the month. As the offset is of crucial importance it would be more
convenient if the total number of slaughters is reported together with the condemnation counts in a
daily or weekly manner [26].

Besides changing the reporting system, another possibility to improve outbreak detection would be to
investigate the performance of other algorithms. For example the {EarsC} algorithm which is included
in the package {surveillance} could be suitable for outbreak detection in the condemnation rates of
Swiss slaughterhouses. This method only uses very recent data (low amount of historic data) and
thus is suitable for data which does not include seasonal or trend effects but is still influenced by the
previous time points [32]. Another possibility is to apply an approximated version of the {CUMSUM}
algorithm that also accounts for the Poisson distribution of the data [33]. But as a matter of fact
whatever algorithm is used, the problem of early outbreak detection based on monthly data reports
will be faced and cannot be avoided. However Farrington algorithm seems to be really convenient
for outbreak detection especially because there are many options that can be included e.g. trend and
seasonal effects, robustness against outliers and inclusion of an offset.

Recommendation for established use on real data (long-term): Conclusively Farrington
algorithm is suitable for outbreak detection using condemnation data of Swiss slaughterhouses subject
to the condition that the data contains useful information for outbreak detection. Even for monthly
data the proportion of outbreaks detected seems convenient when put in relation to the costs of
investigation that are caused due to false positive alarms. To establish a long-term outbreak detection
system further investigations on both the algorithm and the data are still needed. Especially the
inclusion of small subsets of data for the threshold estimation in algorithms (e.g. Algorithm 2) is
giving cause of concern. However, it is highly recommended to investigate on the possibility to increase
the reporting frequency to at least weekly reports. This would allow the algorithm to be applied in a
much more reliable and effective way especially for early disease outbreak detection.
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9 Appendix

9.1 Appendix: Retrospective Analysis
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trendAR trendEND seasonAR seasonEND df BIC lambda

1 t0 t0 s0 s0 2 684.59 0.26
2 c.e. t0 c.e. s0 1 701.86
3 t2010 t0 s0 s0 3 681.28 0.28
4 t0 t0 xmas s0 3 681.25 0.26
5 t0 t0 s0 xmas 3 682.28 0.26

According Poisson model fits to the top five negative binomial models for normal slaugh-
tered cattle (t0=no trend, t2010=log-linear trend starting in 2010, c.e.=whole autoregressive
component excluded, s0=no seasonality, xmas=effect of December only)

trendAR trendEND seasonAR seasonEND df BIC lambda

1 t0 t1 s0 s0 3 699.97 0.27
2 j2010 t0 s0 s0 3 705.33 0.25
3 j2010 t1 s0 s0 4 699.42 0.25
4 j2010 j2010 s0 s0 3 707 0.28
5 t1 t1 s0 s0 4 701.99 0.24

According Poisson model fits to the top five negative binomial models for emergency slaugh-
tered cattle (t0=no trend, t1=log-linear trend, j2010=a shift in the intercept in January
2010, s0=no seasonality)

trendAR trendEND seasonAR seasonEND df BIC lambda

1 c.e. t2010 c.e. s1 4 904.36
2 t0 t2010 s0 s1 5 908.62 0
3 t2010 t2010 s2 s1 10 847.87 0
4 t0 t2010 s1 s1 7 NA NA
5 c.e. t2010 c.e. s2 6 900.2

According Poisson model fits to the top five negative binomial models for normal slaughtered
pigs (t0=no trend, t2010=log-linear trend starting in 2010, c.e.=whole autoregressive compo-
nent excluded, s0=no seasonality, s1=sine-cosine seasonality with 1 harmonic, s2=sine-cosine
seasonality with 2 harmonics)

trendAR trendEND seasonAR seasonEND df BIC lambda

1 t0 t0 s0 s0 2 563.64 0.28
2 t0 t1 s0 s0 3 558.95 0.26
3 t1 t0 s0 s0 3 561.74 0.33
4 t0 j2010 s0 s0 3 560.93 0.26
5 t0 t2010 s0 s0 3 563.59 0.27

According Poisson model fits to the top five negative binomial models for emergency slaugh-
tered pigs (t0=no trend, t1=log-linear trend, t2010=log-linear trend starting in 2010, j2010=a
shift in the intercept in January 2010, s0=no seasonality)
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9.2 Appendix: Prospective Analysis

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.1 28.6 0.03 0.002
3 4.2 49.6 1.0 41.1 0.10 0.002
4 4.3 66.5 1.0 55.3 0.24 0.001
5 4.4 83.5 1.0 68.4 0.42 0.001
6 4.6 99.6 1.0 81.6 0.53 0.001
7 4.7 116.2 1.0 93.2 0.73 0.002
8 4.7 132.6 1.0 105.3 0.84 0.001
9 4.9 149.6 1.0 118.2 0.91 0.001

10 4.9 166.3 1.0 130.9 0.95 0.001

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=FALSE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.1 25.1 0.12 0.014
3 4.2 49.6 1.2 39.8 0.21 0.015
4 4.3 66.5 1.1 52.8 0.32 0.014
5 4.4 83.5 1.1 65.4 0.41 0.015
6 4.6 99.6 1.0 75.9 0.50 0.015
7 4.7 116.2 1.0 90.1 0.58 0.014
8 4.7 132.6 1.0 102.3 0.65 0.015
9 4.9 149.6 1.0 113.0 0.71 0.015

10 4.9 166.3 1.0 126.8 0.77 0.014

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.2 27.5 0.12 0.010
3 4.2 49.6 1.0 39.9 0.27 0.010
4 4.3 66.5 1.0 53.6 0.46 0.007
5 4.4 83.5 1.0 65.8 0.66 0.007
6 4.6 99.6 1.0 78.3 0.78 0.007
7 4.7 116.2 1.0 89.6 0.90 0.007
8 4.7 132.6 1.0 102.2 0.93 0.005
9 4.9 149.6 1.0 115.7 0.96 0.007

10 4.9 166.3 0.9 125.8 0.97 0.007

(c) Algorithm 1 with pastWeeksNotIncluded=2
(b=2, w=6, trend=FALSE, noPeriods=1,
pastWeeksNotIncluded=2)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.1 27.4 0.11 0.009
3 4.2 49.6 1.0 39.8 0.26 0.009
4 4.3 66.5 1.0 53.8 0.45 0.007
5 4.4 83.5 1.0 65.8 0.66 0.006
6 4.6 99.6 1.0 78.7 0.80 0.006
7 4.7 116.2 1.0 89.5 0.90 0.007
8 4.7 132.6 1.0 102.6 0.93 0.005
9 4.9 149.6 1.0 115.9 0.96 0.006

10 4.9 166.3 0.9 126.1 0.97 0.006

(d) Algorithm 1 with trend included
(b=2, w=6, trend=TRUE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.2 26.5 0.13 0.013
3 4.2 49.6 1.1 40.2 0.24 0.012
4 4.3 66.5 1.0 52.3 0.43 0.012
5 4.4 83.5 1.0 64.7 0.56 0.013
6 4.6 99.6 1.0 76.4 0.73 0.012
7 4.7 116.2 1.0 90.4 0.82 0.012
8 4.7 132.6 1.0 102.9 0.88 0.013
9 4.9 149.6 0.9 113.6 0.94 0.011

10 4.9 166.3 0.9 125.8 0.95 0.013

(e) Algorithm 2 with w=1
(b=3, w=1, trend=FALSE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.9 33.1 1.2 27.2 0.13 0.010
3 4.2 49.6 1.0 39.9 0.26 0.010
4 4.3 66.5 1.0 52.8 0.43 0.009
5 4.4 83.5 1.0 65.7 0.61 0.009
6 4.6 99.6 1.0 78.2 0.76 0.010
7 4.7 116.2 1.0 90.0 0.88 0.010
8 4.7 132.6 1.0 102.7 0.91 0.009
9 4.9 149.6 1.0 115.1 0.95 0.009

10 4.9 166.3 1.0 126.9 0.96 0.009

(f) Algorithm 2 with w=2
(b=3, w=2, trend=FALSE, noPeriods=1)
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k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 40.0 0.06 0.002
3 4.4 69.6 1.0 59.7 0.14 0.002
4 4.5 91.4 1.0 76.8 0.28 0.002
5 4.7 114.9 1.0 94.8 0.49 0.001
6 4.8 136.6 1.0 111.7 0.57 0.001
7 4.9 161.7 1.0 130.1 0.77 0.001
8 5.0 185.0 1.0 146.8 0.86 0.001
9 5.1 207.1 1.0 163.0 0.92 0.001

10 5.1 230.8 1.0 181.3 0.95 0.001

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=TRUE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 33.4 0.30 0.045
3 4.4 69.6 1.1 50.5 0.39 0.044
4 4.5 91.4 1.1 64.0 0.47 0.045
5 4.7 114.9 1.1 84.6 0.56 0.041
6 4.8 136.6 1.1 99.9 0.63 0.045
7 4.9 161.7 1.0 117.7 0.70 0.044
8 5.0 185.0 0.9 132.0 0.77 0.047
9 5.1 207.1 0.9 148.0 0.80 0.044

10 5.1 230.8 0.9 161.7 0.83 0.043

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 37.0 0.23 0.015
3 4.4 69.6 1.0 54.9 0.38 0.016
4 4.5 91.4 1.0 71.9 0.53 0.013
5 4.7 114.9 1.0 89.4 0.74 0.010
6 4.8 136.6 1.0 106.1 0.84 0.013
7 4.9 161.7 1.0 124.9 0.91 0.010
8 5.0 185.0 0.9 139.0 0.95 0.011
9 5.1 207.1 0.9 152.6 0.96 0.009

10 5.1 230.8 0.9 170.8 0.96 0.010

(c) Algorithm 1 with pastWeeksNotIncluded=2
(b=2, w=6, trend=TRUE, noPeriods=1,
pastWeeksNotIncluded=2)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 38.5 0.05 0.004
3 4.4 69.6 1.0 57.8 0.09 0.005
4 4.5 91.4 1.0 76.1 0.16 0.003
5 4.7 114.9 1.0 93.1 0.29 0.002
6 4.8 136.6 1.0 110.9 0.38 0.003
7 4.9 161.7 1.0 130.4 0.56 0.003
8 5.0 185.0 1.0 147.9 0.69 0.003
9 5.1 207.1 1.0 163.3 0.80 0.002

10 5.1 230.8 1.0 180.6 0.86 0.003

(d) Algorithm 2 with noperiods=11
(b=3, w=0, trend=TRUE, noPeriods=11)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.1 36.9 0.05 0.004
3 4.4 69.6 1.0 56.9 0.09 0.004
4 4.5 91.4 1.0 73.6 0.17 0.004
5 4.7 114.9 1.0 95.1 0.30 0.003
6 4.8 136.6 1.0 111.3 0.39 0.004
7 4.9 161.7 1.0 130.8 0.54 0.003
8 5.0 185.0 1.0 148.2 0.63 0.003
9 5.1 207.1 1.0 165.1 0.72 0.004

10 5.1 230.8 1.0 182.1 0.81 0.003

(e) Algorithm 2 with w=1
(b=3, w=1, trend=TRUE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 4.1 46.4 1.0 37.2 0.06 0.003
3 4.4 69.6 1.0 60.1 0.11 0.003
4 4.5 91.4 1.0 76.5 0.21 0.003
5 4.7 114.9 1.0 95.6 0.38 0.002
6 4.8 136.6 1.0 111.2 0.49 0.003
7 4.9 161.7 1.0 131.4 0.64 0.003
8 5.0 185.0 1.0 148.1 0.74 0.003
9 5.1 207.1 1.0 163.7 0.83 0.003

10 5.1 230.8 1.0 181.4 0.88 0.003

(f) Algorithm 2 with w=2
(b=3, w=2, trend=TRUE, noPeriods=1)
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k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.3 69.7 0.08 0.008
3 4.8 133.2 1.1 99.1 0.12 0.007
4 5.0 176.9 1.1 134.6 0.18 0.008
5 5.1 221.8 1.0 169.6 0.28 0.008
6 5.3 267.0 1.0 207.4 0.39 0.008
7 5.3 311.0 1.0 241.0 0.51 0.007
8 5.4 355.8 1.0 273.2 0.61 0.007
9 5.5 397.8 1.0 304.1 0.71 0.007

10 5.6 444.4 1.0 341.2 0.78 0.008

(a) Algorithm 1a - according to retrospective analysis
(b=3, w=0, trend=TRUE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.0 74.3 0.02 0.001
3 4.8 133.2 0.9 106.7 0.06 0.001
4 5.0 176.9 1.0 141.6 0.11 0.001
5 5.1 221.8 1.0 178.9 0.26 0.001
6 5.3 267.0 1.0 218.1 0.41 0.001
7 5.3 311.0 1.0 251.5 0.58 0.001
8 5.4 355.8 1.0 281.6 0.76 0.000
9 5.5 397.8 1.0 314.5 0.87 0.000

10 5.6 444.4 1.0 347.6 0.91 0.001

(b) Algorithm 1b - according to retrospective analysis
(b=3, w=1, trend=TRUE, noPeriods=3,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.3 61.6 0.49 0.083
3 4.8 133.2 1.2 93.0 0.57 0.082
4 5.0 176.9 1.1 123.4 0.67 0.083
5 5.1 221.8 1.0 150.8 0.74 0.082
6 5.3 267.0 1.0 181.5 0.80 0.080
7 5.3 311.0 1.0 211.7 0.83 0.078
8 5.4 355.8 0.9 241.7 0.89 0.081
9 5.5 397.8 0.9 267.0 0.92 0.080

10 5.6 444.4 0.9 286.4 0.93 0.084

(c) Algorithm 2 - season only
best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1),
alpha=0.005

k Dur. Size TTD CUD POD FPR

2 4.5 88.4 1.1 70.8 0.12 0.010
3 4.8 133.2 1.1 108.8 0.22 0.009
4 5.0 176.9 1.0 141.7 0.34 0.008
5 5.1 221.8 1.0 177.7 0.53 0.007
6 5.3 267.0 1.0 210.7 0.66 0.007
7 5.3 311.0 1.0 242.5 0.78 0.006
8 5.4 355.8 1.0 275.2 0.88 0.005
9 5.5 397.8 1.0 300.0 0.94 0.005

10 5.6 444.4 1.0 338.2 0.94 0.005

(d) Algorithm 3 - trend only
Increased POD for small outbreak detection
(b=2, w=6, trend=FALSE, noPeriods=1,
alpha=0.005)
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k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.0 19.6 0.04 0.002
3 3.9 31.3 1.0 28.2 0.11 0.001
4 4.0 41.1 1.0 35.7 0.21 0.001
5 4.2 51.2 1.0 43.9 0.36 0.001
6 4.3 61.9 1.0 51.5 0.52 0.001
7 4.4 72.0 1.0 58.6 0.67 0.001
8 4.5 82.9 1.0 66.6 0.80 0.001
9 4.5 92.7 1.0 74.4 0.85 0.001

10 4.6 102.7 1.0 81.0 0.92 0.001

(a) Algorithm 1 - according to retrospective analysis
(b=2, w=6, trend=FALSE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.2 17.8 0.10 0.010
3 3.9 31.3 1.3 27.1 0.18 0.009
4 4.0 41.1 1.1 33.6 0.22 0.010
5 4.2 51.2 1.0 41.2 0.36 0.010
6 4.3 61.9 1.0 47.8 0.42 0.011
7 4.4 72.0 1.0 56.6 0.52 0.010
8 4.5 82.9 1.0 65.4 0.64 0.010
9 4.5 92.7 1.0 72.2 0.66 0.011

10 4.6 102.7 1.0 79.9 0.72 0.009

(b) Algorithm 2 - best POD for small outbreak detection
(b=3, w=0, trend=FALSE, noPeriods=1,
alpha=0.005)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.1 17.7 0.14 0.011
3 3.9 31.3 1.0 26.5 0.28 0.011
4 4.0 41.1 1.0 33.9 0.42 0.008
5 4.2 51.2 1.0 41.6 0.60 0.008
6 4.3 61.9 1.0 49.0 0.74 0.008
7 4.4 72.0 1.0 56.1 0.84 0.008
8 4.5 82.9 1.0 64.5 0.89 0.008
9 4.5 92.7 1.0 71.1 0.92 0.008

10 4.6 102.7 1.0 77.4 0.96 0.007

(c) Algorithm 1 with pastWeeksNotIncluded=2
(b=2, w=6, trend=FALSE, noPeriods=1,
pastWeeksNotIncluded=2)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.0 17.8 0.12 0.010
3 3.9 31.3 1.0 26.9 0.28 0.009
4 4.0 41.1 1.0 33.8 0.42 0.007
5 4.2 51.2 1.0 41.9 0.60 0.007
6 4.3 61.9 1.0 49.3 0.74 0.006
7 4.4 72.0 1.0 56.1 0.85 0.006
8 4.5 82.9 1.0 64.9 0.89 0.007
9 4.5 92.7 1.0 71.1 0.92 0.006

10 4.6 102.7 1.0 78.0 0.96 0.005

(d) Algorithm 1 with trend included
(b=2, w=6, trend=TRUE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.1 17.1 0.13 0.012
3 3.9 31.3 1.0 27.1 0.26 0.010
4 4.0 41.1 1.0 33.6 0.36 0.011
5 4.2 51.2 1.0 41.4 0.54 0.011
6 4.3 61.9 1.0 48.8 0.67 0.011
7 4.4 72.0 1.0 56.2 0.79 0.011
8 4.5 82.9 1.0 64.4 0.85 0.010
9 4.5 92.7 1.0 71.8 0.89 0.012

10 4.6 102.7 1.0 78.0 0.93 0.011

(e) Algorithm 2 with w=1
(b=3, w=1, trend=FALSE, noPeriods=1)

k Dur. Size TTD CUD POD FPR

2 3.6 20.6 1.0 16.6 0.12 0.011
3 3.9 31.3 1.0 26.8 0.27 0.009
4 4.0 41.1 1.0 33.9 0.40 0.010
5 4.2 51.2 1.0 41.5 0.57 0.009
6 4.3 61.9 1.0 48.8 0.71 0.010
7 4.4 72.0 1.0 55.7 0.83 0.009
8 4.5 82.9 1.0 63.8 0.89 0.008
9 4.5 92.7 1.0 71.7 0.92 0.010

10 4.6 102.7 1.0 77.8 0.96 0.008

(f) Algorithm 2 with w=2
(b=3, w=2, trend=FALSE, noPeriods=1)
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10 References

References

[1] VPHI. Veterinary Public Health Institute Bern. Available online: http://www.vetsuisse.

unibe.ch/vphi.html, 2013, last accessed: June 2014.

[2] Triple S Project. Assessment of syndromic surveillance in Europe. The Lancet, 378(9806):1833–
1834, 2011.

[3] G Shmueli and H Burkom. Statistical challenges facing early outbreak detection in biosurveillance.
Technometrics, 52(1), 2010.

[4] World Health Organization. Emerging zoonoses. Available online: http://www.who.int/

zoonoses/emerging_zoonoses, 2004, last accessed: June 2014.

[5] World Health Organization. WHO guidelines for the global surveillance of severe acute respiratory
syndrome (SARS). Available online: www.who.int/csr/resources/publications/WHO_CDS_

CSR_ARO_2004_1, 2004, last accessed: June 2014.

[6] World Health Organization. WHO Guidelines on BSE. Available online: http://apps.who.int/
iris/bitstream/10665/68932/1/a85721.pdf, 2003, last accessed: June 2014.

[7] D Thompson, P Muriel, D Russell, P Osborne, A Bromley, M Rowland, S Creigh-Tyte, and
C Brown. Economic costs of the foot and mouth disease outbreak in the United Kingdom in
2001. Revue scientifique et technique-Office international des epizooties, 21(3):675–685, 2002.

[8] Centers of Disease Control and Prevention. CDC Estimates of 2009 H1N1 Influenza Cases,
Hospitalizations and Deaths in the United States, April 2009 to March 2013. Available online:
http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm, 2010, last accessed: June 2014.

[9] C Brown. Emerging zoonoses and pathogens of public health significance–an overview. Revue
Scientifique et Technique-Office International des Epizooties, 23(2):435–442, 2004.

[10] GD Alton, DL Pearl, KG Bateman, WB McNab, and O Berke. Factors associated with whole
carcass condemnation rates in provincially-inspected abattoirs in Ontario 2001-2007: implications
for food animal syndromic surveillance. BMC Veterinary Research, 6:42, January 2010.

[11] World Health Organization. Global and regional food consumption patterns and trends. Avail-
able online: http://www.who.int/nutrition/topics/3_foodconsumption, 2014, last accessed:
June 2014.

[12] Earth-Policy-Institute. Rising Meat Consumption Takes Big Bite out of Grain Harvest. Avail-
able online: http://www.earth-policy.org/data_highlights/2011/highlights22, 2011, last
accessed: June 2014.

[13] C Dupuy, A Bronner, E Watson, L Wuyckhuise-Sjouke, M Reist, A Fouillet, D Calavas, P Hen-
drikx, and J-B Perrin. Inventory of veterinary syndromic surveillance initiatives in Europe (Triple-
S project): Current situation and perspectives. Preventive Veterinary Medicine, 111(3):220–229,
2013.

[14] C Dupuy, E Morignat, X Maugey, J-L Vinard, P Hendrikx, Ch Ducrot, D Calavas, and E Gay.
Defining syndromes using cattle meat inspection data for syndromic surveillance purposes: a
statistical approach with the 2005–2010 data from ten French slaughterhouses. BMC Veterinary
Research, 9(1):88, 2013.

Sarah Thommen, sarah.thommen@uzh.ch 55 June 15, 2014

http://www.vetsuisse.unibe.ch/vphi.html
http://www.vetsuisse.unibe.ch/vphi.html
http://www.who.int/zoonoses/emerging_zoonoses
http://www.who.int/zoonoses/emerging_zoonoses
www.who.int/csr/resources/publications/WHO_CDS_CSR_ARO_2004_1
www.who.int/csr/resources/publications/WHO_CDS_CSR_ARO_2004_1
http://apps.who.int/iris/bitstream/10665/68932/1/a85721.pdf
http://apps.who.int/iris/bitstream/10665/68932/1/a85721.pdf
http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm
http://www.who.int/nutrition/topics/3_foodconsumption
http://www.earth-policy.org/data_highlights/2011/highlights22
sarah.thommen@uzh.ch


Master Program in Biostatistics University of Zürich
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