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Abstract

In many application areas, different ways to construct confidence intervals exist and methods
to compare them are necessary to decide which should be used in practice. Especially for
the binomial proportion, there are more than 20 confidence intervals to choose from. Gneiting
and Raftery (2007) suggested that proper scoring rules, as used for (central) prediction intervals,
could also be useful to compare confidence intervals. The proposed interval score is a loss function
that combines the coverage as a measure of calibration and the interval width as a measure of
sharpness. We evaluated eleven confidence intervals for the binomial proportion regarding the
expected interval score. By using a summary measure which can take into account different
weighting of the true proportions, we obtained a clear ranking of the confidence intervals. In
general, this ranking recommends the Wilson confidence interval or Bayesian equal-tailed or HPD
intervals with a uniform prior. If the performance in scenarios with rare cases is important, as
for example in the estimation of sensitivity and specificity, it recommends Bayesian intervals
with Jeffreys’ prior. While the use of proper scoring rules in estimation problems yet needs to
be put on a theoretically more solid basis, the results suggest that the interval score is a useful
evaluation method as opposed to coverage probability or expected interval width alone. This
novel approach for comparison of confidence intervals could also be used in other application
areas such as confidence intervals for meta-analysis.
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Chapter 1

Introduction

Estimation of unknown parameters such as treatment effects is a key task in biostatistics. Based
on the interpretation of these estimates, medical decisions are made. Today, it is strongly
recommended to report point effect estimates together with confidence intervals (Altman et al.,
2000). That is, an interval estimate should be indicated as a range of plausible values for the
unknown parameter. In contrast to a point estimate or a p-value, the confidence interval provides
information about the magnitude and the precision of the effect estimate at once (Rothman,
1986).

Although researchers agree that point estimates should be reported together with confidence
intervals, it is not clear which confidence interval to choose. For many parameters, there exist
different interval estimators depending, for example, on different ways of approximation. In par-
ticular for the binomial proportion, one can choose from numerous different methods to compute
confidence intervals. In 1998, seven methods have been compared in Newcombe (1998) and new
methods are still being developed; see Gillibert et al. (2021) for a recent systematic review and
Pires and Amado (2008) for a comparison of 20 methods. The goal of these comparisons is to
recommend the method with the best properties for the practical use.

The quality of a confidence interval is commonly assessed by two properties: the actual cov-
erage probability and the expected interval width. The confidence interval should cover the true
parameter with a high probability and should be precise. That means that the actual coverage
probability should be close to a nominal confidence level (usually 95%) and the expected inter-
val width should be small. In terms of these evaluation criteria, usually the Wilson confidence
interval (score method) is recommended for binomial proportions (Newcombe, 1998; Held and
Sabanés Bové, 2020). However, there is still no widely recognized consent. Still, often the Wald
confidence interval is used in practice although it is known for its coverage bias (Brown et al.,
2001; Gillibert et al., 2021). The reason is mainly that it has a simple form, hence it is easy to use
and simple to communicate. Since there are multiple evaluation criteria, the recommendations
depend on what evaluation criteria are used and how they are assessed.

One issue is the trade-off between coverage and width. The best interval would be as small
as possible while still respecting the correct coverage. This is a trade-off because decreasing the
interval width decreases the coverage and increasing the coverage increases the interval width.
This relation is referred to as sharpness subject to calibration, where the coverage calibrates the
interval while the width determines its sharpness (Gneiting et al., 2007). A way to assess cali-
bration and sharpness simultaneously are scoring rules. Such a scoring rule is the interval score
that combines coverage and width in a loss function. The interval score has been developed for
prediction intervals in Gneiting and Raftery (2007) where the authors suggest that it could also
be used for interval estimates. It is intended to compare intervals for the same nominal coverage
that have equal lower and upper exceedance probabilities which is called central (Gneiting and
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2 CHAPTER 1. INTRODUCTION

Raftery, 2007, p. 18). Only in this case, the interval score is a proper scoring rule, that is, a
scoring rule such that the optimal interval estimate minimizes the expected score.

Another issue is that the comparisons depend on the chosen confidence level, the value of
the true unknown parameter and possibly on other (known) parameters. In the binomial case,
for example, these parameters are the (known) sample size n, the (chosen) confidence level γ
and the (unknown) true success probability π. Graphical representations can be used where the
coverage probability or the expected width are represented as a function of π for fixed n and
γ as for example in Held and Sabanés Bové (2020, p. 117–119). However, it is hard to make
a recommendation only based on graphical representations since the performance of a method
might vary substantially depending on the parameter setting. It is a well-known problem that
the actual coverage probability of the Wald confidence interval is poor for extreme cases where
π is near the boundaries 0 and 1 (Brown et al., 2001; Held and Sabanés Bové, 2020). Moreover,
the coverage probability oscillates in an erratic way as a function of π. Less known is that
these oscillations lead to poor coverage probability also if π is not near the boundaries (Vollset,
1993; Agresti and Coull, 1998; Newcombe, 1998; Brown et al., 2001). A summary measure that
summarizes over different parameter values such as the possible values for π is needed in order
to make recommendations. In the literature, minimum and mean coverage probabilities are used
(Newcombe, 1998; Pires and Amado, 2008).

In this master thesis, a new technique for the comparison of confidence intervals for the
binomial proportion is investigated. The main objective is to address the trade-off between
coverage and width by using the expected interval score as a measure to compare confidence
intervals. Binomial proportions have been chosen as an example with many different confidence
intervals of which the following eleven have been selected: Clopper-Pearson, Wilson, Wald,
Rindskopf (logit Wald with adjustment), variance-stabilized Wald, Agresti-Coull, likelihood ratio
and the Bayesian equal-tailed and HPD intervals with uniform and Jeffreys priors. Moreover,
also the issue of suitable summary measures, which is to some extent application-specific, is
addressed. First, the integral of the expected interval score over all possible true proportions
π is used as a summary measure summarizing for different values of π. Secondly, the integral
of the expected interval score after the variance-stabilizing transformation of π is used as a
summary measure that attributes more weight to the extreme cases of π at the boundaries.
Thirdly, the weighted interval score is used to summarize over different confidence levels. Since
not all confidence intervals are central, a generalized interval score for non-central intervals is
developed.

Using these two novel approaches to evaluate confidence intervals, a clear ranking of the
confidence intervals is obtained. Regarding the integral of the expected interval score on the
scale of π, the best confidence intervals are the uniform equal-tailed followed by the Wilson.
Regarding the integral on the variance-stabilized scale, the best intervals are the Jeffreys equal-
tailed followed by the uniform HPD. The Wald confidence interval is the worst and should not be
used. The same results hold when different confidence levels are combined using the weighted
interval score. In terms of the generalized interval score for non-central intervals, the HPD
intervals outperform the equal-tailed intervals.

The structure of this master thesis is as follows: The confidence intervals, the interval score
as well as the summary measures are described in Chapter 2, followed by the presentation of
the results in Chapter 3 and a discussion in Chapter 4.



Chapter 2

Methods

This chapter introduces notation and summarizes the statistical methods that are used in this
master thesis. Unless otherwise stated, the presentation of the methods including notation
follows Held and Sabanés Bové (2020).

2.1 Binomial proportion

The parameter of interest is the unknown success probability π ∈ (0, 1) of a binomial sample
X ∼ Bin(n, π), where X denotes the number of successes and n is the known number of trials,
also called the sample size. A realization of the random variable X is denoted by x. The binomial
distribution is a discrete distribution, x ∈ {0, 1, . . . , n}, with probability mass function

f(x) =

(
n

x

)
πx(1− π)n−x.

For the boundary values π = 0 or π = 1, this distribution would be degenerate in the sense that
it would be deterministic: identical to 0 for π = 0 or identical to n for π = 1.

The probability π of a certain event is often referred to as the binomial proportion of that
event. If π is the underlying probability of the event in a population of size n, then nπ is the
expected number of events, hence π is the (expected) proportion of events in that population.

2.2 Likelihood inference for a proportion

In a binomial experiment, the maximum likelihood estimate (MLE) of the unknown parameter
π is the observed proportion

π̂ML(x) =
x

n
.

The MLE is obtained by maximizing the (log-)likelihood function in π. For an observation
x from X ∼ Bin(n, π), the likelihood function and related quantities from likelihood inference
(see Held and Sabanés Bové (2020) for definitions) are the following:

likelihood function L(π;x) =

(
n

x

)
πx(1− π)n−x ∝ πx(1− π)n−x,

log-likelihood function l(π;x) = x log(π) + (n− x) log(1− π),

score function S(π;x) =
x

π
− n− x

1− π
,

Fisher information I(π;x) =
x

π2
+

n− x
(1− π)2

,

3



4 CHAPTER 2. METHODS

expected Fisher information J(π) =
n

π(1− π)
,

observed expected Fisher information J{π̂ML(x)} =
n

π̂ML(x){1− π̂ML(x)}
.

These quantities are estimates as a function of the realization x and estimators as a function
of the random variable X. As a function of X, they can be used to find an approximate
pivot, i. e. a statistic whose distribution is asymptotically independent of the true parameter π.
Approximate pivots are important for the construction of confidence intervals. The following
three are the most popular:

Wald statistic (π̂ML(X)− π)
√
J(π̂ML(X)) =

X
n − π√

X/n(1−X/n)
n

a∼ N(0, 1),

score statistic
S(π;X)√
J(π)

=
X
n − π√
π(1−π)

n

a∼ N(0, 1),

likelihood ratio statistic − 2 log

{
L(π)

L(π̂ML(X))

}
a∼ χ2(1),

where N(0, 1) denotes the standard normal distribution, χ2(1) denotes the chi-squared distribu-
tion with one degree of freedom and the symbol

a∼ means “is asymptotically distributed as” in
the sense of convergence in distribution for n → ∞. The denominator of the Wald statistic is
equal to the standard error

se(π̂ML(X)) =

√
π̂ML(X)(1− π̂ML(X))

n
.

The Wald, Wilson and likelihood ratio confidence intervals are based on these statistics (see
Section 2.3).

The approximate distribution of the likelihood ratio statistic is derived in Wilks’ theorem
using the asymptotical characteristic function (Wilks, 1938). The approximate distribution of
the score statistic is derived using the central limit theorem. Now, the Wald statistic is an
approximation of the score statistic that uses the standard error as a consistent estimator of
the standard deviation

√
J−1(π) of the MLE (Held and Sabanés Bové, 2020, p. 98–99). It can

also be viewed as an approximation of the (square root of the) likelihood ratio statistic that
uses a second-order Taylor expansion of the log-likelihood function around the MLE (Held and
Sabanés Bové, 2020, p. 109–110). Consequently, the Wilson and the likelihood ratio confidence
intervals are more accurate than the Wald confidence interval.

Subsequently, π̂ML(x) and π̂ML(X) will both be abbreviated by π̂ML to simplify notation.

2.3 Frequentist intervals

The frequentist framework assumes that the proportion π is fixed but unknown. More precisely,
it assumes a binomial distribution Bin(n, π) for the number of successes x in a population of
size n with an underlying true success probability π. An interval estimate (or estimator) for the
parameter π in this setting is called confidence interval (CI). A γ · 100% confidence interval for
π, where γ ∈ (0, 1) is the confidence level, is defined as an interval [L,U ] that fulfills

Pr(L ≤ π ≤ U) = γ.
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Since π is fixed, no probability statement is attached to π but to the limits L and U . This is
why the interpretation of a frequentist interval is slightly intricate: For repeated random samples
X ∼ Bin(n, π), a γ · 100% confidence interval will cover the parameter π in γ · 100% of all cases.

The perfect confidence interval has a coverage probability of γ ·100%. However, since the bi-
nomial distribution is discrete, all confidence intervals will only approximately have the intended
coverage probability (Held and Sabanés Bové, 2020; Gillibert et al., 2021).

Let α = 1− γ be the associated non-coverage and q be the (1 + γ)/2 quantile of N(0, 1).

2.3.1 Clopper-Pearson

The (discrete) realizations x will lie between some x1 and x2 with a probability of at least γ. The
γ·100% Clopper-Pearson confidence interval (Clopper and Pearson, 1934) inverts the determining
inequalities for this interval for x to obtain an interval for the (continuous) parameter π. The
limits L and U are derived from the two equations (Pires and Amado, 2008)

n∑
j=x

(
n

j

)
Lj(1− L)n−j =

α

2
and

x∑
j=0

(
n

j

)
U j(1− U)n−j =

α

2
. (2.1)

The quantities in (2.1) are interpreted as Pr(X ≥ x) for X ∼ Bin(n,L) and Pr(X ≤ x) for
X ∼ Bin(n,U). The relation

n∑
j=x

(
n

j

)
πj(1− π)n−j =

∫ π

0
fb(t)dt

to the beta density function fb of Be(x, n− x+ 1) is used to solve (2.1) for the limits

L = b(1−γ)/2(x, n− x+ 1) and U = b(1+γ)/2(x+ 1, n− x) for 0 < x < n,

where bγ(α, β) is the γ quantile of Be(α, β). For x = 0 and x = n, the lower, respectively upper,
limit is improper (one parameter is 0). In these cases, the solutions are calculated directly:

L = 0 and U = 1− (α/2)1/n for x = 0,

L = (α/2)1/n and U = 1 for x = n.

The Clopper-Pearson interval is known as an “exact” interval because (2.1) uses the exact
distribution X ∼ Bin(n, π). However, it does not have exact coverage probability equal to γ.
On the contrary, the minimum coverage probability (for any true proportion π) is at least γ.
Hence, it is conservative.

2.3.2 Wilson

Based on the standard normal approximate pivot of the score statistic, the γ · 100% Wilson
confidence interval (Wilson, 1927) is the set of all parameter values π that satisfy

π2
(
n2 + nq2

)
+ π

(
−2nx− nq2

)
+ x2 = 0.

Solving this quadratic equation yields the limits

x+ q2/2

n+ q2
± q

√
n

n+ q2

√
π̂ML(1− π̂ML) +

q2

4n
.

The center (or midpoint) of the Wilson interval is the relative proportion of successes after
adding q2/2 successes and q2/2 non-successes to the sample. It is called a shrinkage estimator
(Newcombe, 2013).
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2.3.3 Wald

Based on the standard normal approximate pivot of the Wald statistic, the limits of the γ ·100%
Wald confidence interval (Wald and Wolfowitz, 1939) have the simple form

π̂ML ± q · se(π̂ML) with se(π̂ML) =

√
π̂ML(1− π̂ML)

n
.

Due to the normal approximation, the Wald interval may fall outside the range (0, 1) for π.
This problem is referred to as overshoot or boundary violation and happens for small or large
x. For a 95% interval, overshoot occurs whenever x = 1 or x = 2, and also when x = 3 except
when n < 14 (Newcombe, 1998). It happens more often for large confidence levels since then,
the confidence interval is wider. Any overshoot is truncated to (0, 1), as it is usually done in
the literature. Truncation cannot affect coverage properties but limits 0 or 1 are unsatisfactory
since they are uninterpretable if 0 < x < n (Newcombe, 2013).

Since the standard error is 0 for the extreme cases x = 0 (π̂ML = 0) and x = n (π̂ML = 1),
the Wald interval is a degenerate or zero width interval in these cases (for any confidence level).
Some modifications to avoid this problem have been proposed in the literature:

1. Use “exact” Clopper-Pearson limits for x = 0 and x = n (Vollset, 1993; Pires and Amado,
2008).

2. Calculate a one-sided interval for x = 0 and x = n using a standard error that is computed
for x = 0 + 0.5 and x = n− 0.5, respectively (Held and Sabanés Bové, 2020).

3. Add 0.5 successes and non-successes when x = 0 or x = n (Rindskopf, 2000). This
adjustment increases the sample size by 1 (only) for x = 0 and x = n.

4. Always add 0.5 successes and non-successes (Rubin and Schenker, 1987; Rindskopf, 2000).
This adjustment increases the sample size by 1 for any x. It can be interpreted as a
Bayesian interval with Jeffreys’ prior (Rubin and Schenker, 1987).

5. Use a shrinkage estimator obtained by adding a pseudo-frequency ψ > 0 to the number
of successes and to the number of non-successes (Newcombe, 2013). This modification
shrinks the MLE towards the center 0.5. The modified interval can be interpreted as a
Bayesian interval with a Be(ψ,ψ) prior. The previous modification chooses φ = 0.5 and
the Agresti-Coull interval is obtained for φ = 2.

6. Use a continuity correction by subtracting 1/(2n) from the lower limit and adding 1/(2n)
to the upper limit (Newcombe, 2013; Pires and Amado, 2008). This correction increases
the coverage probability but also increases the expected width (by 1/n) which in turn
produces more boundary violation, e. g . for x = 0 and x = n (Newcombe, 2013).

No modification is really satisfactory (Newcombe, 2011). The first three modifications only
adjust the two problematic outcomes which is inconsistent. For example, rather the Clopper-
Pearson method should be recommended directly for extreme cases instead of imposing its limits
for the Wald interval. The last three modifications are at least consistent for any outcome. Two
of them are considered in the present comparison (Rindskopf logit Wald and Agresti-Coull).

Besides truncation, the Wald interval will not be adjusted. The non-adjusted version is
called imputed non-coverage in Vollset (1993) referring to its degeneracy for x = 0 and x = n.
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2.3.4 Rindskopf (logit Wald with adjustment)

A γ · 100% Wald confidence interval is calculated for the logit transformed parameter

φ = logit(π) = log

(
π

1− π

)
with

φ̂ML = log

(
x+ 0.5

n− x+ 0.5

)
and se(φ̂ML) =

√
1

x+ 0.5
+

1

n− x+ 0.5
.

The adjustment of adding 0.5 successes and non-successes ensures that also for the cases
x = 0 and x = n (with otherwise infinite MLE and standard error) an interval can be computed.
Since the scale of φ is (−∞,∞), this interval is boundary respecting. Back-transformation to
the scale of π with the inverse logit function

π = expit(φ) =
exp(φ)

1 + exp(φ)

yields the Rindskopf confidence interval. It is called Rindskopf here because the used adjustment
was suggested in Rindskopf (2000).

2.3.5 Variance-stabilized Wald

A γ · 100% Wald confidence interval is calculated for the variance-stabilizing transformation

φ = arcsin
(√
π
)

with

φ̂ML = arcsin
(√

π̂ML

)
and se(φ̂ML) ≈ 1√

4n
.

It is called variance-stabilizing since the variance of φ̂ML is asymptotically independent of
the parameter φ. Since the scale of φ is (0, π/2), where π for once means the mathematical
constant, this interval may overshoot (e. g . for x = 0 and x = n). In these cases, the interval is
truncated to (0, π/2). Back-transformation to the scale of π with the inverse function

π = sin2(φ)

yields the variance-stabilized Wald confidence interval.

2.3.6 Agresti-Coull

The limits of the γ · 100% Agresti-Coull confidence interval are

π̃ ± q ·
√
π̃(1− π̃)

n+ 4
with π̃ =

x+ 2

n+ 4
.

The Agresti-Coull confidence interval was called the “add two successes and two failures”
adjusted Wald confidence interval in Agresti and Coull (1998). It was motivated by the finding
that for γ = 0.95, where q2 ≈ 4, the midpoint π̃ is approximately equal to the midpoint of
the Wilson interval. Although this is only true for γ = 0.95, the same adjustment is used for
any confidence level. Moreover, the midpoint π̃ is identical to the Bayes estimate (mean of the
posterior distribution) for a Be(2, 2) prior.
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2.3.7 Likelihood ratio

The γ · 100% likelihood ratio confidence interval uses the right tail of the approximate pivot for
the likelihood ratio statistic to derive the condition

− 2 log

{
L(π)

L(π̂ML)

}
≤ χ2

γ(1), (2.2)

where χ2
γ(1) is the γ quantile of the χ2(1) distribution. The confidence interval consists of all

parameter values π that satisfy (2.2). It is calculated numerically using R function uniroot.
Only one solution is obtained for the cases x = 0 and x = n where the second limit is set to 0,
respectively 1.

2.4 Bayesian intervals

In the Bayesian framework, the unknown parameter π is not fixed but assumed to be a random
variable with a prior distribution with density function f(π). Having observed realization x of
random variable X with density f(x |π), the density f(π |x) of the posterior distribution of π
is calculated using Bayes’ theorem

f(π |x) =
f(x |π)f(π)

f(x)
=

f(x |π)f(π)∫
f(x |π)f(π)dπ

.

Beta priors have the appropriate support (0, 1) and are conjugate for the binomial proportion.
Conjugate means that also the posterior is a beta distribution: The Be(α, β) prior leads to the
Be(α+ x, β + n− x) posterior.

The posterior distribution can be used to make probability statements about the parameter
π. A Bayesian interval estimate for the parameter π is called credible interval (abbreviated also
by CI with small abuse of notation). A credible interval [l, u] for π with credibility level γ ∈ (0, 1)
is defined by two quantiles l and u of the posterior distribution that fulfill∫ u

l
f(π |x)dπ = γ.

Under the assumed prior distribution, the random variable π |x is contained in a γ · 100%
credible interval with probability γ (in contrast to frequentist inference). Bayesian intervals
would have exact mean coverage probability equal to γ under the specified prior distribution
(Pires and Amado, 2008). However, the frequentist setting does not assume a prior distribution
but intervals using the following two priors are known to have favourable properties when viewed
as frequentist intervals (Newcombe, 2013, p. 20).

1. Using the uniform prior π ∼ U(0, 1) = Be(1, 1), the posterior distribution is

π |x ∼ Be(1 + x, 1 + n− x).

This prior is non-informative (on the scale of π) since any value between 0 and 1 is equally
likely. However, it would not be uniform anymore for nonlinear transformations of π.

2. Using the Jeffreys prior π ∼ Be(1/2, 1/2), the posterior distribution is

π |x ∼ Be(1/2 + x, 1/2 + n− x).

The Jeffreys prior is defined as the prior that is proportional to
√
J(π) and it is invariant

under reparametrization. That means the prior of a transformed parameter is still a
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Jeffreys prior. Held and Sabanés Bové (2020, p. 186–187) provides an argument why this
is a non-informative prior: In a frequentist setting, the average information about π in
the data is measured by J(π). In this sense, non-informative would mean that J(π) is
independent of π and one could choose a uniform prior for π. However, if J(π) does
depend on π, one should first remove the dependence by applying the variance-stabilizing
transformation φ = arcsin(

√
π). The Jeffreys prior for π is the uniform prior for φ.

2.4.1 Equal-tailed

The limits of the γ · 100% equal-tailed credible interval are the (1−γ)/2 and (1 +γ)/2 quantiles
of the posterior distribution. A probability mass of α/2 is cut off from both tails of the posterior
distribution. For the two priors, the limits are:

1. Uniform prior: b(1−γ)/2(1 + x, 1 + n− x) and b(1+γ)/2(1 + x, 1 + n− x).

2. Jeffreys prior: b(1−γ)/2(1/2 + x, 1/2 + n− x) and b(1+γ)/2(1/2 + x, 1/2 + n− x).

The Clopper-Pearson confidence interval limits can be interpreted in a Bayesian way with
two different priors. The lower limit corresponds to the lower limit of an equal-tailed interval
with an improper Be(0, 1) prior, while the upper limit corresponds to the upper limit of an
equal-tailed interval with an improper Be(1, 0) prior.

2.4.2 Highest posterior density

The highest posterior density (HPD) interval is the unique (for the chosen prior) γ ·100% credible
interval [l, u] that fulfills the condition

f(π |x) ≥ f(π̃ |x)

for all π ∈ [l, u] and all π̃ /∈ [l, u]. It consists of all the parameter values with the highest
posterior density until they reach a probability mass of γ. This is the smallest interval that has
mean coverage probability γ under the specified prior.

The HPD interval is calculated numerically except for the two extreme cases. Since the
posterior density is monotone decreasing for x = 0, the lower limit is 0 and the upper limit is
the γ quantile of the posterior distribution. Since the posterior density is monotone increasing for
x = n, the upper limit is 1 and the lower limit is the 1− γ quantile of the posterior distribution.

2.5 Interval evaluation methods

The most commonly used evaluation methods for confidence intervals are the coverage proba-
bility and the expected width as for example in Vollset (1993); Brown et al. (2001); Held and
Sabanés Bové (2020); Pires and Amado (2008). Common summary measures are the minimum
or mean coverage probabilities used in Newcombe (1998) and Pires and Amado (2008). The
(expected) interval score that has been used for prediction intervals is suggested in Gneiting and
Raftery (2007) as a new method to evaluate (central) confidence intervals.

2.5.1 Coverage probability

The coverage of a confidence interval [l, u] for a true proportion π is

C(l, u, π) = 1(l ≤ π ≤ u),
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where 1 denotes the indicator function. So, the coverage is 1 if the confidence interval contains
the true proportion and 0 otherwise.

The coverage probability is the probability with which a confidence interval contains the true
proportion. The confidence level γ that is associated with the confidence interval is called the
nominal coverage probability. It is the coverage probability that the interval should theoretically
attain. However, empirically, the actual coverage probability often deviates from the nominal
coverage probability. Since a binomial sample X ∼ Bin(n, π) only has a finite number of possible
outcomes, the actual coverage probability can be calculated analytically (Held and Sabanés Bové,
2020; Pires and Amado, 2008):

CP(π) =
n∑
x=0

Pr(X = x) C{l(x), u(x), π}

=
n∑
x=0

(
n

x

)
πx(1− π)n−x C{l(x), u(x), π},

(2.3)

where the limits l and u depend on a realization x from X ∼ Bin(n, π).
Note that the the limits depend on n and γ as well. This dependence does not need to

be made explicit in (2.3) as long as both are assumed to be known and fixed. For γ = 0.95
and n = 50, Figure 2.1 shows the (actual) coverage probabilities of the discussed confidence
and credible intervals (only for the Jeffreys prior) as a function of the true proportion π. It
also shows smoothed coverage probabilities (in black) that are computed using a specific kernel
function as described in Bayarri and Berger (2004) for a smoothing parameter ε = 0.025. Only
the first half of the values for π is displayed since coverage probabilities (also expected widths
and interval scores) are symmetric around 0.5 due to the equivariance of lower and upper bounds
of the confidence intervals (Gillibert et al., 2021). This figure reproduces Figures 4.9 and 6.7 in
Held and Sabanés Bové (2020), where it should be mentioned that the boundary cases x = 0
and x = n for the Wald type confidence intervals are handled differently.

2.5.2 Expected width

The width of a confidence interval [l, u] for a true proportion π is

W(l, u) = u− l

and the expected width (expectation w.r.t. the distribution of the data X) is (Pires and Amado,
2008)

EW(π) =

n∑
x=0

(
n

x

)
πx(1− π)n−x W{l(x), u(x)}. (2.4)

The limits l and u depend on a realization x, while n and γ are assumed to be known and
fixed. For γ = 0.95 and n = 50, Figure 2.1 shows the expected widths of the discussed confidence
and credible intervals (only for the Jeffreys prior) as a function of the true proportion. Figure
4.10 in Held and Sabanés Bové (2020) displays the widths of the frequentist intervals except
Agresti-Coull as a function of x.

2.5.3 Expected interval score

The interval score is introduced in Gneiting and Raftery (2007, Section 6, p. 12) as a special
case of a more general proper scoring rule for predictive quantiles. This subsection summarizes
how it is developed. The same notation is used, except that the variable x is replaced by y since
x already denotes the number of successes in a binomial experiment.
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Figure 2.1: Coverage probability and expected width for each confidence interval as a function
of π for n = 50 and γ = 0.95. The locally smoothed coverage probability is added in black.
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Let α1, . . . , αk be the levels of the sought quantiles q1, . . . , qk, let r1, . . . , rk be the predicted
quantiles and let y be the true outcome. The rewarded score is denoted by S(r1, . . . , rk; y) and
the expected score under a probability measure P is defined by

S(r1, . . . , rk;P ) =

∫
S(r1, . . . , rk; y)dP (y).

Let q1, . . . , qk be the true quantiles for P at levels α1, . . . , αk. Following Cervera and Muñoz
(1996), the scoring rule S is said to be proper if for any real numbers r1, . . . , rk and for any
probability measure P ,

S(q1, . . . , qk;P ) ≥ S(r1, . . . , rk;P ).

This means that the expected score of a proper scoring rule is maximized under the true quan-
tiles. Hence, predictions with larger scores are better.

First, scoring rules that are proper for the prediction of a single quantile are presented (the
proof presented here is essentially the same but contains more steps).

Theorem 2.1. If s is non-decreasing and h is arbitrary, then the scoring rule

S(r; y) = αs(r) + {s(y)− s(r)}1(y ≤ r) + h(y)

is proper for predicting the quantile at level α ∈ (0, 1).

Proof. Let P be any probability measure, FP be the associated distribution function and q be
the true quantile for P at level α, i. e. FP (q) = α. Without loss of generality, assume that r < q
(the case r > q is analogous). Then,

S(q;P )− S(r;P ) =

∫ ∞
−∞

[
αs(q) + {s(y)− s(q)}1(y ≤ q) + h(y)

]
dP (y)

−
∫ ∞
−∞

[
αs(r) + {s(y)− s(r)}1(y ≤ r) + h(y)

]
dP (y)

= αs(q) · 1 +

∫ q

−∞
s(y)dP (y)− s(q) · FP (q) +

∫ ∞
−∞

h(y)dP (y)

−
[
αs(r) · 1 +

∫ r

−∞
s(y)dP (y)− s(r) · FP (r) +

∫ ∞
−∞

h(y)dP (y)

]
= αs(q) +

∫ q

−∞
s(y)dP (y)− s(q)α

− αs(r)−
∫ r

−∞
s(y)dP (y) + s(r)FP (r)

=

∫ q

r
s(y)dP (y)− αs(r) + s(r)FP (r)

≥ s(r){FP (q)− FP (r)}+ s(r){FP (r)− α}
= s(r){α− FP (r)}+ s(r){FP (r)− α}
= 0,

where for the inequality, it is needed that s is non-decreasing. Hence, S(q;P ) ≥ S(r;P ) for any
r and P and therefore S is a proper scoring rule.

Then, from Theorem 2.1, proper scoring rules for the prediction of multiple quantiles are
deduced.
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Corollary 2.1. If si is non-decreasing for i = 1, . . . , k and h is arbitrary, then the scoring rule

S(r1, . . . , rk; y) =
k∑
i=1

[
αisi(ri) + {si(y)− si(ri)}1(y ≤ ri)

]
+ h(y) (2.5)

is proper for predicting the quantiles at levels α1, . . . , αk ∈ (0, 1).

The scoring rule from Corollary 2.1 can be viewed as the sum of k scoring rules for a single
quantile. Since the sum of two proper scoring rules is again a proper scoring rule, Corollary 2.1
follows directly from Theorem 2.1 (this explanation is not provided in Gneiting and Raftery
(2007)).

Now, interval forecasts are a special case of quantile forecasts. A central (1 − α) · 100%
prediction interval is defined such that its lower and upper limits are the predictive quantiles at
level α/2 and 1 − α/2. It is called central because the two tail probabilities are equal to α/2.
Let (l, u) be a central (1−α) · 100% prediction interval. A proper scoring rule of the form (2.5)
for predicting this interval fixes α1 = α/2 and α2 = 1−α/2. By choosing s1(y) = s2(y) = 2y/α
and h(y) = −2y/α, Equation (2.5) yields

S(l, u; y) =
α

2

2

α
l +

2

α
(y − l)1(y ≤ l) +

(
1− α

2

) 2

α
u+

2

α
(y − u)1(y ≤ u)− 2

α
y

= l +
2

α
(y − l)1(y ≤ l) +

2

α
u− u+

2

α
(y − u)1(y ≤ u)− 2

α
y

= l − u+
2

α
(y − l)1(y ≤ l) +

2

α
(u− y)1(y > u).

The interval score is obtained for this choice of s1 and s2 by additionally reverting the sign:

ISα(l, u, y) = (u− l) +
2

α
(l − y)1(y < l) +

2

α
(y − u)1(y > u)

= W(l, u) +
2

α
min(|y − l|, |y − u|)

[
1− C(l, u, y)

]
.

(2.6)

Note that the probability of the event y = l is almost surely 0, which is why the two quantities
1(y < l) and 1(y ≤ l) are interchangeable. The second line of (2.6) expresses the interval score
in terms of width and coverage. Width and coverage are combined into a negatively oriented
score, meaning that lower scores are better. It consists of two penalties: the width where a
larger interval is a larger penalty and non-coverage weighted by the minimal distance of the true
observation to the interval and by 2/α.

In a binomial experiment X ∼ Bin(n, π) (now y = π is the true proportion), the expected
interval score of a γ · 100% confidence interval is

EISα(π) = EW(π) +
2

α

n∑
x=0

(
n

x

)
πx(1− π)n−x min{|π − l(x)|, |π − u(x)|}

[
1− C{l(x), u(x), π}

]
.

The interval score is proposed as a loss function for optimum score interval estimation. It
is a proper score in the sense that the score is proper in the setting of probabilistic predictions
(more details in Chapter 4). However, this only applies to central interval estimators meaning
γ · 100% confidence intervals with lower and upper exceedance probability α/2 (Gneiting and
Raftery, 2007, Subsection 9.3). The exceedance probability is called left and right non-coverage
probability in Newcombe (1998). For non-central intervals, the interval score is not a proper
scoring rule (Brehmer and Gneiting, 2021).
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2.5.4 Generalized interval score

Since a confidence interval is not necessarily central, it would be useful to have a (proper) score
that incorporates the two possibly non-central tails. As part of this master thesis, a generalized
interval score has been developed that simplifies to the interval score in the special case of
central intervals. As the interval score, it is derived in the prediction setting.

Let α1 and α2 be the levels of two quantiles such that α1 + (1− α2) = α. Note that α1 and
1−α2 are the two tail probabilities. They define a (possibly non-central) (1−α)·100% prediction
interval. Choosing the two non-decreasing functions s1(y) = y/α1 and s2(y) = y/(1 − α2) and
h(y) = −s2(y), Equation (2.5) yields

S(l, u; y) = α1
1

α1
l +

1

α1
(y − l)1(y ≤ l) + α2

1

1− α2
u+

1

1− α2
(y − u)1(y ≤ u)− 1

1− α2
y

= l +
1

α1
(y − l)1(y ≤ l) +

1− (1− α2)

1− α2
u+

1

1− α2
(y − u)1(y ≤ u)− 1

1− α2
y

= l − u+
1

α1
(y − l)1(y ≤ l) +

1

1− α2
(u− y)1(y > u).

Reverting the sign yields the generalized interval score:

GISα1,α2(l, u, y) = (u− l) +
1

α1
(l − y)1(y < l) +

1

1− α2
(y − u)1(y > u). (2.7)

For a central prediction interval with α1 = α/2 and α2 = 1− α/2, expression (2.7) is equal
to the interval score (2.6). So, in theory it is possible to extend the interval score to non-central
intervals. However, the definition of the score would depend on the tail probabilities. Con-
sequently, prediction intervals with different tail probabilities would be assessed with different
scores, hence the score would not be proper.

2.5.5 Weighted interval score

The weighted interval score defined in Bracher et al. (2021) assesses central prediction intervals
for multiple levels in terms of the weighted sum of the interval scores:

WISα0:K (l1:K , u1:K , y) =
1

K + 1/2

{
w0 |y −m|+

K∑
k=1

wk ISαk
(lk, uk, y)

}
,

for levels 1 − α0, . . . , 1 − αK , non-negative weights w0, . . . , wK (such that it is proper) and
predictive median m (corresponding to α0 = 1). For wk = αk/2, large K and equally spaced
values α1, . . . , αK (covering the whole unit interval), it is approximately equal to the continuous
ranked probability score (CRPS). The reason for the factor 1/(K + 1/2) is probably that for
this particular choice of weights

K∑
k=1

wk
2

αk
+ w0 =

K∑
k=1

αk
2

2

αk
+

1

2
= K +

1

2
,

which are the summed up weights for the non-coverage part of the interval scores where 2/αk is
integrated in the weights as well.

The intuition behind the weighted interval score is to describe the predictive distribution
using many central intervals. The same could be done for the posterior distribution in the
Bayesian setting. However, for fixed parameters in the frequentist setting, only large confidence
levels are useful. In practice, often levels 0.9, 0.95 or 0.99 are used (α1 = 0.1, α2 = 0.05 and
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α3 = 0.01). Since the nice connection to the CRPS (probably) does not hold considering only
large levels, a simpler version of the weighted interval score, with all weights equal to 1 and
without the constant factor 1/(K + 1/2), will be used for those levels:

WISα1:3(l1:3, u1:3, y) =

3∑
k=1

ISαk
(lk, uk, y).

2.5.6 Summary measures

The coverage probability, expected width and expected interval score can only be computed for
a fixed true proportion π (see e. g . Figure 2.1). One way to summarize these measures over
different values for π is to integrate the functions over π. Like this, for any n and γ, one number
can be compared between different methods. The integral over all possible true proportions
can be regarded as a global average as compared to local averages for the coverage probability
in Bayarri and Berger (2004). It is also closely related to the concept of integrated risk in
Bayesian decision theory (Robert, 2007, p. 62–63), which integrates the frequentist risk (e. g .
the expected interval score) over π with respect to the prior distribution of π. Note that the
integral considered here would be the integrated risk for the uniform prior.

Another issue is the poor performance of some methods for observations x near the bound-
aries. An idea how to give more weight to rare cases is to integrate on the variance-stabilized
scale. That means instead of integrating a function f(π) from 0 to 1, the function f(sin2(φ))
is integrated from 0 to π/2 (here, π means the mathematical constant), where φ = arcsin

√
π is

the transformed parameter on the variance-stabilized scale. It holds that

f(π) = f{sin2(arcsin
√
π)} = f{sin2(φ)}.

Figure 2.2 illustrates how the integral on the usual scale without transformation compares to
the integral on the scale after a variance-stabilizing transformation. It is illustrated exemplary
for the expected width of a 95% Wald confidence interval with n = 50. Note that the x-axis for
the transformed integral is shifted to the left.

The variance-stabilizing transformation is symmetric around 0.5 and transforms the unit
interval of true proportions π in a way that stretches the boundaries compared to the middle
part, as can be seen in Figure 2.3. Hence, integration over π on the variance-stabilized scale
gives indeed more weight to the boundaries. This is even more evident looking at the weight
function of this transformation which will now be derived using an arbitrary example.

The variance-stabilizing transformation maps the interval [0.01, 0.02] to the larger interval
[0.1, 0.14]. This transformed interval is weighted by its relative length compared to the original
interval:

arcsin
(√

0.02
)
− arcsin

(√
0.01

)
0.02− 0.01

≈ 4.17.

Letting the length of the interval become smaller corresponds to the derivative of the transfor-
mation function. So, the weight function, which gives a weight to each point in the unit interval,
is the first derivative of the transformation function,

d

dπ
arcsin

(√
π
)

=
1

2
√
π(1− π)

,

which is valid for 0 < π < 1. Up to a constant factor 2/π (where π means the mathematical
constant), this is the density of the Jeffreys prior (Be(1/2, 1/2)). This relation was already
touched upon in the discussion of the Jeffreys prior in Section 2.4. The weight density is displayed
in Figure 2.3. Consequently, the integral on the variance-stabilized scale is the integrated risk
for the Jeffreys prior (up to the constant factor 2/π).



16 CHAPTER 2. METHODS

0.0 π 4 π 2

0.0

0.1

0.2

0.0 0.5 1.0
True π

E
W

With variance−stabilizing transformation Without transformation

Wald

Figure 2.2: Integral of expected width of the 95% Wald confidence interval for n = 50 on the
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2.6 Asymptotics

The coverage probability is asymptotically equal to the nominal coverage probability γ. Simi-
larly, asymptotical references (under normality) can be derived for the expected width and the
expected interval score. They are derived because they will be used as a reference in Chapter 3.

Using the normal approximation of the binomial distribution X ∼ Bin(n, π) by the central
limit theorem, X/n

a∼ N(π, π(1−π)/n), the asymptotical reference is the expected interval score
of the γ · 100% confidence interval with limits

L = π̂ML − q · σ and U = π̂ML + q · σ

under normality of X/n with known standard deviation σ =
√
π(1− π)/n. The interval score

of this confidence interval is

ISα(L,U, π) = 2qσ +
2

α
(L− π)1(L > π) +

2

α
(π − U)1(U < π)

and, by linearity, the expected interval score is

E{ISα(L,U, π)} = 2qσ +
2

α
E{(L− π)1(L− π > 0)}+

2

α
E{(π − U)1(π − U > 0)}.

Under the (asymptotical) normal distribution of X/n, both L − π and π − U have a normal
distribution N(−qσ, σ2). Defining Y ∼ N(−qσ, σ2), the asymptotical value of the expected
interval score is

E{ISα(L,U, π)} = 2qσ + 2
2

α
E{Y 1(Y > 0)}

= 2qσ + 2
2

α
E{Y |Y > 0}Pr(Y > 0)

= 2qσ + 2E{Y |Y > 0}

= 2qσ + 2

(
−qσ +

σφ(q)

1− Φ(q)

)
=

2σφ(q)

1− Φ(q)
,

where φ and Φ are the density and distribution functions of a standard normal. The derivation
uses conditional expectations and that Pr(Y > 0) is equal to α/2. The expectation of a truncated
normal random variable Y |Y > 0 is computed according to Johnson et al. (1994). In particular,
the asymptotical value of the expected width is

E{W(L,U)} = 2qσ.

The asymptotical references of the expected interval score and the expected width are concave
curves as a function of the true proportion π, as can be seen in Figure 2.4 in an example with
n = 50 and γ = 0.95%.
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Figure 2.4: Asymptotical expected interval score and asymptotical expected width of a confi-
dence interval under asymptotical normality of a binomial sample as a function of π for γ = 0.95
and n ∈ {10, 25, 50, 100}.



Chapter 3

Results

In this chapter, confidence intervals are compared using the coverage probability, the expected
width and the expected interval score (also weighted and generalized versions). Two of them are
in fact credible intervals (using non-informative priors) but are viewed as frequentist intervals
and also assessed with these frequentist measures.

3.1 Central intervals

A confidence interval is central if the lower and upper exceedance probabilities are equal. For the
Bayesian intervals, the equal-tailed interval is clearly central and the HPD interval is not. Now,
confidence intervals based on normal approximation are only asymptotically central. Those
are the Wilson, Wald, Rindskopf, variance-stabilized Wald and Agresti-Coull intervals. Such
confidence intervals are also considered as central in Pires and Amado (2008). The likelihood
ratio confidence interval is also asymptotically central. While it is constructed only from one
tail of a χ2(1) distribution, it is equivalent to the signed likelihood ratio statistic which is
asymptotically standard normal (Held and Sabanés Bové, 2020, p. 106). For the conservative
Clopper-Pearson confidence interval, the two exceedance probabilities are not both equal to α/2
but are both at least α/2. In some sense, this is a “central” constraint and asymptotically, it
should be less conservative. So, all considered frequentist intervals are intended to be central
but it only holds asymptotically.

It is necessary that the confidence intervals are central for the interval score to be a proper
scoring rule. As proposed in Gneiting and Raftery (2007), only confidence intervals with the
same nominal coverage are compared. Moreover, all intervals except the HPD interval are
intended to be central and interpreted as such. However, a caveat should be kept in mind that
all intervals except the equal-tailed interval are not central in a rigorous way.

3.2 Coverage

Figure 3.1 compares the smoothed coverage probabilities (as in Bayarri and Berger (2004) with
smoothing parameter ε = 0.025) of 95% confidence intervals of binomial samples for different
sample sizes n as a function of the true proportion π. Since they are symmetric around 0.5, only
the first half of the values for π are shown. The nominal coverage is marked as a dashed line.
One can see that for increasing n, the coverage probabilities converge to the nominal coverage.
The coverage probability of the Wald CI decreases a lot more at the boundaries π = 0 and π = 1
than is visible in the plots (below 30% for n = 10 and below 65% for n = 50). In order to see
the differences of the confidence intervals better, these parts of the Wald CI have been cut off.

19
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Figure 3.1: Smoothed coverage probability for each method as a function of π for γ = 0.95 and
n ∈ {10, 25, 50, 100}.

The Wald CI can be identified as the one with the worst coverage probability. It is practically
always smaller than all the other CIs. In particular, it is always smaller than the nominal
coverage (it approaches the nominal coverage from below). Also the variance-stabilized Wald CI
drops dramatically near the boundary. Clearly, the Clopper-Pearson CI is the most conservative.
Also the Agresti-Coull CI is conservative. The Rindskopf CI is conservative except for values
of π near the boundary. The Wilson and the uniform equal-tailed CIs perform well. Only at
the boundaries, other methods like the uniform HPD, the Jefreys HPD and equal-tailed and the
likelihood ratio CIs peform better (in decreasing order).

Figure 3.2 compares smoothed coverage probabilities for fixed sample size n = 50 but dif-
ferent confidence levels γ. For increasing confidence level, there are less differences between the
methods. Overall, the comparison between the confidence intervals does essentially not change
for different confidence levels, except for the ranking of the Agresti-Coull CI.

3.3 Width

Figure 3.3 compares the expected widths of 95% confidence intervals of binomial samples for
different sample sizes n as a function of the true proportion π (symmetric around π = 0.5).
What is shown is the difference between the expected width and the asymptotical reference
value of the expected width (under normality). This is done because otherwise the differences
between the CIs would not be visible due to the curvature of the expected widths as a function
of π (see Figure 2.1). By taking the difference to the asymptotical reference curve, the curvature
can be removed. For a fixed π, the differences between the CIs become smaller for increasing n.
Otherwise, the comparison is similar for all n.
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Figure 3.2: Smoothed coverage probability for each method as a function of π for n = 50 and
γ ∈ {0.99, 0.95, 0.9, 0.8}.
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Figure 3.3: Difference between expected width and asymptotical EW for each method as a
function of π for γ = 0.95 and n ∈ {10, 25, 50, 100}.
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Figure 3.4: Difference between expected width and asymptotical EW for each method as a
function of π for n = 50 and γ ∈ {0.99, 0.95, 0.9, 0.8}.

The Wald and the variance-stabilized Wald CIs are the smallest if π is near the boundaries.
However, as seen in the previous section, this comes at the cost of poor coverage probability.
As expected, the conservative Clopper-Pearson CI is the largest. The HPD intervals are always
smaller than the equal-tailed intervals for the same prior. Conversely, the HPD intervals have too
low coverage compared to the equal-tailed intervals. The Agresti-Coull CI is generally smaller
than the Rindskopf CI and the Wilson CI is generally smaller than those two. The likelihood
ratio interval performs better if π is near the boundary but worse otherwise.

For different confidence levels with n = 50, the overall results do not change except for the
ranking of the Agresti-Coull CI, as can be seen in Figure 3.4. For increasing confidence level,
the CIs and also the differences between the CIs become larger for a fixed π.

3.4 Interval score

Figure 3.5 compares the expected interval scores of 95% confidence intervals of binomial samples
for different sample sizes n as a function of the true proportion π (symmetric around 0.5). For
the same reason as for the expected width, the difference to the asymptotical reference is used
to compare the CIs. Lower scores are better. The values for the Wald CI would be even larger
but to see the differences between the CIs better, these parts have been cut off in the plots.

The Wald CI is also the worst CI in terms of the expected interval score which combines width
and coverage. The variance-stabilized Wald CI performs equally bad except for the boundaries
of π where it has the best score. It is the other way around for the Rindskopf and the Agresti-
Coull CIs which are the best for π = 0.5 but the worst or second worst for π near the boundaries.
Similarly, the HPD intervals are better than the equal-tailed intervals for π = 0.5 but worse at
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Figure 3.5: Difference between expected interval score and asymptotical EIS for each method
as a function of π for γ = 0.95 and n ∈ {10, 25, 50, 100}.
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Figure 3.6: Difference between expected interval score and asymptotical EIS for each method
as a function of π for n = 50 and γ ∈ {0.99, 0.95, 0.9, 0.8}.
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Figure 3.7: Difference between expected weighted interval score and asymptotical EWIS
for each method as a function of π for n ∈ {10, 25, 50, 100} combining confidence levels
γ ∈ {0.9, 0.95, 0.99}.

the boundaries. The Wilson and the uniform equal-tailed CIs are equivalent (for all n). The
likelihood ratio CI is worse than these two except at the boundaries.

Figure 3.6 compares the CIs for fixed n = 50 but varying confidence levels. Overall, different
confidence levels mostly affect the ranking of the Agresti-Coull CI. Also, for confidence levels
lower than 0.95, the Wilson CI is better than the uniform equal-tailed at the boundaries but
worse near π = 0.5. For larger confidence levels, it is the other way around.

3.4.1 Weighted interval score

Figure 3.7 considers the three confidence levels 0.9, 0.95 and 0.99 at once by comparing the
expected weighted interval scores for different sample sizes n. What changes compared to the
expected interval score for a level of 0.95, is that the Agresti-Coull CI performs equally well
as the Wilson and the uniform equal-tailed CIs. The Agresti-Coull CI was the only one that
changed its ranking for different levels.

3.4.2 Integral as summary measure

In this subsection, the integral over all possible true proportions π ∈ (0, 1) is used as a summary
measure. The function that is integrated is the difference between the expected interval score
and the asymptotical reference of the expected interval score. For each sample size n, now the
methods can be compared with one number by these integrals.

Figure 3.8 yields a clear ranking of the CIs that virtually holds for every n between 10 and
100. The legend in Figure 3.8 is ranked for n = 10 where the best CI is at the top. The three best
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CIs are the uniform equal-tailed, the Wilson and the Agresti-Coull (in decreasing order). The
three worst CIs are the Jeffreys HPD, the variance-stabilized Wald and the Wald (in decreasing
order). All CIs converge to the same value for increasing n but not all at the same speed. The
Wald CI coverges slower. In this case, they converge to 0 since the integral is computed for the
difference to the asymptotical reference value.

Figure 3.9 is a comparison of the CIs by the integral of the expected interval score (difference
to the asymptotical reference) after the variance-stabilizing transformation of the true propor-
tions π. This corresponds to weighting the integral where more weight is attributed to rare cases
near the two boundaries 0 and 1. Poor performance for boundary values is a common problem
in CIs for the binomial proportion. So, this comparison of the CIs is like a sensitivity analysis
with special attention to the performance in extreme cases.

The ranking of the CIs does indeed change compared to the usual integral. Now, for n = 10,
the Jeffreys equal-tailed, the uniform HPD and the Likelihood ratio CIs are at the top of the
list (in decreasing order), followed by the Wilson CI. The variance-stabilized Wald and Wald
CIs are still at the bottom of the list. For small n, the ranking changes between the Rindskopf
and the variance-stabilized Wald CIs and between the Agresti-Coull and the Clopper-Pearson
CIs. The good performance of the Jeffreys equal-tailed CI can be explained by the connection
between the Jeffreys prior and the variance-stabilizing transformation (see Subsection 2.5.6).

Essentially the same results hold for the integrals of the weighted expected interval scores.
The only differences are: For the integral without transformation, the Rindskopf CI worsens
towards the likelihood ratio CI and the Agresti-Coull CI worsens towards the Jeffreys equal-
tailed CI. For the integral after the variance-stabilizing transformation, the Wilson CI is worse
than the uniform equal-tailed CI for n > 15.

3.5 Generalized interval score

Figure 3.10 compares the expected interval score to the expected generalized interval score for
95% Jeffreys HPD intervals for different sample sizes n as a function of the true proportion π
(symmetric around 0.5). If π is not near the boundaries, the Jeffreys HPD interval has the
better ranking with the generalized interval score. Assuming the true π lies on the left of the
CI, then the generalized interval score is smaller than the interval score if and only if

α1 >
α

2
.

The same holds for α2, assuming that the true π lies on the right of the CI. Near the
boundaries of π, the expected generalized interval score is penalized more than the expected
interval score because then extreme observations are more likely for which the lower (or upper)
exceedance probability is actually (under the posterior) smaller than α/2.

Overall, looking at the generalized interval score leads to better rankings for the HPD in-
tervals compared to the equal-tailed intervals, see Figure 3.11. The same range of the y-axis is
chosen such that it can be compared to Figure 3.8. This means that in terms of the expected
generalized interval score (using the integral summary measure), the uniform HPD interval is
at the top of the list, followed by the Jeffreys HPD interval. Note that for the other CIs, the
generalized interval score is the same as the interval score since they are considered to be central.



3.5. GENERALIZED INTERVAL SCORE 27

n = 50 n = 100

n = 10 n = 25

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.05

0.10

0.15

0.20

0.2

0.4

0.6

0.8

0.1

0.2

0.3

True π

E
xp

ec
te

d 
sc

or
e

Score type

IS for Jeffreys HPD

GIS for Jeffreys HPD

Figure 3.10: Expected interval score and expected generalized interval score for the Jeffreys
HPD interval as a function of π for γ = 0.95 and n ∈ {10, 25, 50, 100}.
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Discussion

The interval score is a measure to evaluate confidence intervals that combines width and cover-
age. It is intuitively appealing since it allows for a decomposition into a measure of sharpness
and penalties for over- and underestimation (Bracher et al., 2021). The measure of sharpness is
simply the interval width. The size of the penalties are the minimal distance of the true param-
eter to the confidence interval times 2/α, where α is the complement of the confidence level. So,
the interval score does not only address non-coverage per se but the amount of non-coverage.
Non-coverage is penalized more if the true parameter is far away from the confidence interval
and if the confidence level is large. So far, the interval score has only been used for prediction
intervals but not for confidence intervals.

In this master thesis, eleven confidence intervals for the binomial proportion have been
compared using the expected interval score. The frequentist intervals were the Clopper-Pearson,
Wilson, Wald, Rindskopf (logit Wald with adjustment), variance-stabilized Wald, Agresti-Coull
and likelihood ratio confidence intervals. Also Bayesian equal-tailed and HPD intervals for
uniform and Jeffreys priors were included in the analysis. These intervals are interpreted as
frequentist intervals in the comparison.

Both in terms of coverage probability and in terms of the expected interval score, the Wald
CI is the worst of the compared methods. Its good performance in terms of width for true
proportions near the boundaries influences the interval score less than the bad coverage. Also
in the literature, the consensus is that the Wald CI should generally not be used (Brown et al.,
2001; Held and Sabanés Bové, 2020; Gillibert et al., 2021).

The confidence intervals with the overall best performance, again both in terms of coverage
probability and the expected interval score, are the Wilson CI and the uniform equal-tailed CI.
This is also the result of a clear ranking by the integral summary measure when the expected in-
terval score is integrated over the true proportions from 0 to 1. However, the Jeffreys equal-tailed
CI or the uniform HPD CI should be chosen when rare cases are of special interest. These are
the best methods in the ranking by the integral summary measure when the variance-stabilizing
transformation is applied to the set of true proportions. Integrating on the transformed scale
results in a higher weight for boundary values. Recommendations are based on whether rare
cases are of interest since usually different methods perform well for rare cases and non-rare
cases.

By looking at coverage probabilities and expected widths as functions of π, the Wilson CI
and the Jeffreys equal-tailed CI are also generally recommended in Held and Sabanés Bové
(2020) and for small sample sizes n ≤ 40 in Brown et al. (2001). For n > 40, the Agresti-Coull
CI is recommended because it is simpler. Gillibert et al. (2021) prefers equal-tailed (central) CIs
because of the balance of one-sided errors. The Clopper-Pearson mid-P CI or a modified Jeffreys
equal-tailed CI are recommended (but the modification is criticized) based on local average
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coverage computed by randomly drawing the true proportion π and the outcome x. Other
summary measures are the minimum or mean coverage probabilities. If a nominal minimum
coverage probability is desired, Newcombe (1998) recommends the Clopper-Pearson CI. The
Wilson CI or the mid-P Clopper-Pearson CI are recommended if a nominal mean coverage
probability is desired. Pires and Amado (2008) recommends the Agresti-Coull CI considering
nominal mean coverage probability because it is simpler.

The integral summary measure, closely related to the integrated risk in Bayesian decision
theory, is also a way of averaging the considered measure. To the best knowledge of the author,
it has not been used elsewhere to evaluate CIs for the binomial proportion. The advantage
of this technique is that more weight can be given to rare cases if this is a concern. Poor
performance in scenarios with rare cases is a problem for many methods. This should be taken
into account since according to Tuyl (2007, p. 17), “the most important property of a method
is that it produces sensible intervals for any possible data outcome”, and according to Jaynes
(1976, p. 178), “the merits of any statistical method are determined by the results it gives when
applied to specific problems” (quoted in Newcombe (2013, Subsection Boundary Anomalies)).
Indeed, in practice, low or zero counts can happen if the sample size is small or for rare diseases.
Large counts nearly equal to n can happen e. g . when estimating the sensitivity or the specificity
of a diagnostic test (Newcombe, 2013). Also in these cases, a confidence interval method should
produce a sensible interval.

The major advantage of the interval score as an evaluation method is that it is a proper
scoring rule. According to Gneiting and Raftery (2007), it solves that “the question of measuring
optimality (either frequentist or Bayesian) of a set estimator against a loss criterion combining
size and coverage does not yet have a satisfactory answer”, pointed out by Casella et al. (1993,
p. 141). The interval score indeed combines width and coverage. However, it is only a proper
scoring rule for interval estimators that are central. This is a limitation for the use of the interval
score for the comparison of confidence intervals since many confidence intervals are not central.
In this comparison of confidence intervals for the binomial proportion, only the equal-tailed CIs
are central while the HPD CIs are not and all the others are only asymptotically central.

A generalization of the interval score for non-central CIs has been defined in this master
thesis. It is not a proper scoring rule anymore since the generalized interval score depends on
the two unequal exceedance probabilities which vary for different CIs. The advantage of the
generalized interval score is that the amount of non-coverage is correctly assessed by taking into
account the correct exceedance probability. For the HPD CI, the generalized interval score is
slightly larger at the boundaries but otherwise smaller than the interval score. It is not surprising
that the HPD CIs outperform the (otherwise best) equal-tailed CIs in terms of the generalized
interval score since this score corrects the (otherwise unfair) weights of the non-coverage penalty.
If the interval score is not used as a proper scoring rule but for its intuitive appeal combining
width and coverage, the generalized interval score is a reasonable alternative. It is however
computationally more involved and the exceedance probabilities need to be calculable.

Strictly speaking, proper scoring rules have only been defined for probabilistic predictions,
where the outcome of interest is assumed to come from a probability distribution. The definition
depends heavily on this assumption. The same assumption holds in the Bayesian estimation
setting but the frequentist setting assumes a fixed unknown parameter. A simple option is to
understand proper scoring rules for the frequentist estimation setting as a loss function that
would be a proper scoring rule in a setting where the unknown parameter is assumed to have
a distribution (as in the Bayesian setting). This is the definition used in this master thesis
since no source with a clear definition could be found. In Gneiting and Raftery (2007), proper
scoring rules for estimation are described as attractive loss functions. In Buja et al. (2005), they
are defined as loss functions with the property that the expected loss (w.r.t. the probability
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distribution of the data) is minimized under the true parameter. With this definition, also the
score

W(l, u)− 1(l ≤ y ≤ u),

for interval limits l and u and true parameter y, would be a proper scoring rule. The minimum
of the score is −1 and is only attained for the degenerate (point) interval l = u = y. However,
this score leads to a paradox in Casella et al. (1993) and Gneiting and Raftery (2007) argues
that this paradox can be solved using proper scoring rules. So, apparently, propriety means
more than just having a global minimum at the true parameter. It should also cause a sensible
ordering of different estimators, which is not the case for the paradoxical example. Indeed, with
the definition from this master thesis where an unknown distribution is assumed for π, it could
be shown that the paradoxical score is not proper (by choosing l = u < q1, where q1 denotes
the true lower quantile, as a counterexample). How the concept of propriety for the frequentist
estimation setting is understood in this master thesis could maybe be related to the concept of
confidence distributions, see Xie and Singh (2013), where the parameter of interest is equipped
with some sort of probability distribution.

The results from this master thesis could be extended in at least two ways. For one, the
Bayesian intervals could be compared using the weighted interval score that approximates the
CRPS. The Bayesian setting is more similar to the prediction setting for which the interval score
has been developed and proper scoring rules have a clear definition in this setting. It would be
reasonable to further explore the Bayesian intervals because of their good performance. More-
over, the new approach from this master thesis could also be used to compare different confidence
intervals for other parameters than the binomial proportion. For example, heterogeneity vari-
ances in meta-analysis have many different interval estimators. This approach could be valuable
to better understand the resulting confidence intervals.
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Software

All analyses were performed in the R programming language (R Core Team, 2021), R version
3.6.2 (2019-12-12), using the packages displayed in the session info.

sessionInfo()

## R version 3.6.2 (2019-12-12)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 10 x64 (build 19043)

##

## Matrix products: default

##

## locale:

## [1] LC_COLLATE=German_Switzerland.1252 LC_CTYPE=German_Switzerland.1252

## [3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C

## [5] LC_TIME=German_Switzerland.1252

##

## attached base packages:

## [1] parallel stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] doParallel_1.0.15 iterators_1.0.12 foreach_1.4.7 ggpubr_0.3.0

## [5] scales_1.1.0 ggplot2_3.2.1 knitr_1.27

##

## loaded via a namespace (and not attached):

## [1] tidyselect_1.0.0 xfun_0.12 purrr_0.3.3 haven_2.2.0

## [5] lattice_0.20-38 carData_3.0-3 colorspace_2.0-0 vctrs_0.2.2

## [9] generics_0.0.2 rlang_0.4.4 pillar_1.4.3 foreign_0.8-72

## [13] glue_1.3.1 withr_2.1.2 readxl_1.3.1 lifecycle_0.1.0

## [17] stringr_1.4.0 munsell_0.5.0 ggsignif_0.6.0 gtable_0.3.0

## [21] cellranger_1.1.0 zip_2.0.4 codetools_0.2-16 evaluate_0.14

## [25] labeling_0.3 rio_0.5.16 forcats_0.5.0 curl_4.3

## [29] highr_0.8 broom_0.5.4 Rcpp_1.0.3 backports_1.1.5

## [33] abind_1.4-5 farver_2.0.3 hms_0.5.3 digest_0.6.23

## [37] stringi_1.4.5 openxlsx_4.1.4 rstatix_0.5.0 dplyr_0.8.4

## [41] grid_3.6.2 cowplot_1.0.0 tools_3.6.2 magrittr_1.5

## [45] lazyeval_0.2.2 tibble_2.1.3 crayon_1.3.4 car_3.0-7
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## [49] tidyr_1.0.2 pkgconfig_2.0.3 data.table_1.12.8 assertthat_0.2.1

## [53] R6_2.4.1 nlme_3.1-147 compiler_3.6.2
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R code

Code provided by Held and Sabanés Bové (2020) was used to implement confidence intervals,
smoothed coverage probabilities and a plot function for the coverage probability for the binomial
proportion. The implementation of confidence intervals also used code from package biostatUZH
for the Wald, Wilson, Agresti-Coull, Jeffreys equal-tailed and Clopper-Pearson confidence inter-
vals.

# =============================================================================

# Checks if x is a whole number

# =============================================================================

is.wholenumber <- function(x) {abs(x - round(x)) < .Machine$double.eps^0.5}

# =============================================================================

# Computes a Wald confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# overshoot is truncated to [0,1]

# degenerate zero width interval for x=0 and x=n

# =============================================================================

waldCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

q <- qnorm(p = (1 + conf.level)/2)

p <- x/n

lower <- max(p - q*sqrt(p*(1 - p)/n), 0)

upper <- min(p + q*sqrt(p*(1 - p)/n), 1)

return(cbind(lower, upper))

}

# =============================================================================

# Computes a (modified) logit Wald confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# modification: add 0.5 successes and 0.5 failures

# (otherwise for x=0 and x=n no interval computable)

33
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# =============================================================================

logitwaldCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

q <- qnorm(p = (1 + conf.level)/2)

x <- x + 0.5

n <- n + 1

lower <- plogis(log(x/(n-x)) - q*sqrt(1/x + 1/(n - x)))

upper <- plogis(log(x/(n-x)) + q*sqrt(1/x + 1/(n - x)))

return(cbind(lower, upper))

}

# =============================================================================

# Computes a variance-stabilized Wald confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# overshoot is truncated to [0,pi/2] on var.-stab. scale

# =============================================================================

varstabwaldCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

q <- qnorm(p = (1 + conf.level)/2)

p <- x/n

lower <- sin(max(asin(sqrt(p)) - q*sqrt(1/(4*n)), 0))^2

upper <- sin(min(asin(sqrt(p)) + q*sqrt(1/(4*n)), pi/2))^2

return(cbind(lower, upper))

}

# =============================================================================

# Computes a Wilson confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# =============================================================================

wilsonCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

q <- qnorm(p = (1 + conf.level)/2)

p <- x/n

pseudo.est <- (x + q^2/2)/(n + q^2)

pseudo.se <- sqrt(n)/(n + q^2) * sqrt(p*(1 - p) + q^2/(4*n))

lower <- pseudo.est - q*pseudo.se

upper <- pseudo.est + q*pseudo.se

return(cbind(lower, upper))

}

# =============================================================================

# Computes an Agresti-Coull confidence interval
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# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# overshoot is truncated to [0,1]

# =============================================================================

agrestiCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

q <- qnorm(p = (1 + conf.level)/2)

x <- x + 2

n <- n + 4

p <- x/n

lower <- max(p - q*sqrt(p*(1 - p)/n), 0)

upper <- min(p + q*sqrt(p*(1 - p)/n), 1)

return(cbind(lower, upper))

}

# =============================================================================

# Computes a Clopper-Pearson confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# =============================================================================

clopperpearsonCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

alpha <- 1 - conf.level

if(x == 0) {
lower <- 0

upper <- 1 - (alpha/2)^(1/n)

}
else if(x == n) {
lower <- (alpha/2)^(1/n)

upper <- 1

}
else {
lower <- qbeta(p = alpha/2, shape1 = x, shape2 = n - x + 1)

upper <- qbeta(p = 1 - alpha/2, shape1 = x + 1, shape2 = n - x)

}
return(cbind(lower, upper))

}

# =============================================================================

# Computes a likelihood confidence interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the confidence level

# numerical solutions for 0<x<n

# =============================================================================
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likelihoodCI <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

p <- x/n

eps <- 1e-12

loglik <- function(p, x, n) {x*log(p) + (n - x)*log(1 - p)}
f <- function(theta) {

loglik(p = theta, x = x, n = n) - loglik(p = p, x = x, n = n) +

1/2*qchisq(p = conf.level, df = 1)

}
if(x == 0) {

lower <- 0

upper <- 1 - exp(-1/2*qchisq(p = conf.level, df = 1)/n)

}
else if(x == n) {

lower <- exp(-1/2*qchisq(p = conf.level, df = 1)/n)

upper <- 1

}
else {

lower <- uniroot(f, interval = c(eps, p))$root

upper <- uniroot(f, interval = c(p, 1 - eps))$root

}
return(cbind(lower, upper))

}

# =============================================================================

# Computes a Jeffreys equal-tailed credible interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the credibility level

# =============================================================================

jeffreysET <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

alpha <- 1 - conf.level

lower <- qbeta(p = alpha/2, shape1 = x + 0.5, shape2 = n - x + 0.5)

upper <- qbeta(p = 1 - alpha/2, shape1 = x + 0.5, shape2 = n - x + 0.5)

return(cbind(lower, upper))

}

# =============================================================================

# Computes a uniform equal-tailed credible interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the credibility level

# =============================================================================

uniformET <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)
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alpha <- 1 - conf.level

lower <- qbeta(p = alpha/2, shape1 = x + 1, shape2 = n - x + 1)

upper <- qbeta(p = 1 - alpha/2, shape1 = x + 1, shape2 = n - x + 1)

return(cbind(lower, upper))

}

# =============================================================================

# Helper function for HPD intervals with beta posteriors,

# returns the probability of all points for which the beta density is smaller

# than h (two tails) as well as the two boundaries of these regions

# - p1 and p2 are the parameters of the beta density

# - h is the function value of the beta density (height)

# =============================================================================

outerdens <- function(h, p1, p2){
modus <- (p1 - 1)/(p1 + p2 - 2)

schnitt.l <- uniroot(function(x){dbeta(x, p1, p2) - h},
interval = c(0, modus))$root

schnitt.u <- uniroot(function(x){dbeta(x, p1, p2) - h},
interval = c(modus, 1))$root

tails <- pbeta(schnitt.l, p1, p2) + pbeta(schnitt.u, p1, p2,

lower.tail = FALSE)

return(c(tails, schnitt.l, schnitt.u))

}

# =============================================================================

# Computes a Jeffreys HPD interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the credibility level

# extreme cases x=0, x=n handled differently (no mode in these cases)

# =============================================================================

jeffreysHPD <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

alpha <- 1 - conf.level

p1 <- x + 0.5

p2 <- n - x + 0.5

modus <- (p1 - 1)/(p1 + p2 - 2)

eps <- 1e-15

if(x == 0) {
lower <- 0

upper <- qbeta(p = conf.level, shape1 = 0 + 0.5, shape2 = n - 0 + 0.5)

}
else if(x == n) {
lower <- qbeta(p = 1 - conf.level, shape1 = n + 0.5, shape2 = n - n + 0.5)

upper <- 1

}
else {
height <- uniroot(function(h) {



38 APPENDIX B. R CODE

outerdens(h = h, p1 = p1, p2 = p2)[1] - alpha},
interval = c(eps, dbeta(modus, p1, p2) - 10*eps))[["root"]]

lower <- outerdens(h = height, p1 = p1, p2 = p2)[2]

upper <- outerdens(h = height, p1 = p1, p2 = p2)[3]

}
return(cbind(lower, upper))

}

# =============================================================================

# Computes a uniform HPD interval

# - x is the number of successes

# - n is the sample size

# - conf.level is the credibility level

# extreme cases x=0, x=n handled differently (no mode in these cases)

# =============================================================================

uniformHPD <- function(x, n, conf.level) {
stopifnot(is.wholenumber(x), is.wholenumber(n), x <= n, n >= 1, x >= 0,

conf.level > 0, conf.level < 1)

alpha <- 1 - conf.level

p1 <- x + 1

p2 <- n - x + 1

modus <- (p1 - 1)/(p1 + p2 - 2)

eps <- 1e-15

if(x == 0) {
lower <- 0

upper <- qbeta(p = conf.level, shape1 = 0 + 1, shape2 = n - 0 + 1)

}
else if(x == n) {

lower <- qbeta(p = 1 - conf.level, shape1 = n + 1, shape2 = n - n + 1)

upper <- 1

}
else {

height <- uniroot(function(h) {
outerdens(h = h, p1 = p1, p2 = p2)[1] - alpha},
interval = c(eps, dbeta(modus, p1, p2) - 10*eps))[["root"]]

lower <- outerdens(h = height, p1 = p1, p2 = p2)[2]

upper <- outerdens(h = height, p1 = p1, p2 = p2)[3]

}
return(cbind(lower, upper))

}

# =============================================================================

# Returns a list with lower and upper limits for all possible x (nb of success)

# for the CIs: Wald, Logit Wald, Var stab Wald, Wilson, Agresti, Likelihood,

# Clopper-Pearson, , Jeffreys HPD, Jeffreys equal-tailed,

# Uniform HPD, Uniform equal-tailed

# - n is the sample size

# - conf.level is the confidence level

# =============================================================================
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CIprop <- function(n, conf.level) {
x <- 0:n

nwald <- t(sapply(x, waldCI, n = n, conf.level = conf.level))

lwald <- t(sapply(x, logitwaldCI, n = n, conf.level = conf.level))

vwald <- t(sapply(x, varstabwaldCI, n = n, conf.level = conf.level))

wil <- t(sapply(x, wilsonCI, n = n, conf.level = conf.level))

agr <- t(sapply(x, agrestiCI, n = n, conf.level = conf.level))

lik <- t(sapply(x, likelihoodCI, n = n, conf.level = conf.level))

CP <- t(sapply(x, clopperpearsonCI, n = n, conf.level = conf.level))

jeffET <- t(sapply(x, jeffreysET, n = n, conf.level = conf.level))

jeffHPD <- t(sapply(x, jeffreysHPD, n = n, conf.level = conf.level))

unifET <- t(sapply(x, uniformET, n = n, conf.level = conf.level))

unifHPD <- t(sapply(x, uniformHPD, n = n, conf.level = conf.level))

return(list(nwald, lwald, vwald, wil, agr, lik, CP,

jeffHPD, jeffET, unifHPD, unifET))

}

# =============================================================================

# Computes the width of a confidence interval

# - ci is a confidence interval (vector with lower and upper limit)

# =============================================================================

width <- function(ci) {
lower <- ci[1]

upper <- ci[2]

return(upper - lower)

}

# =============================================================================

# Computes the mean width

# - true.pi is the true proportion

# - n is the sample size

# - ci contains all possible confidence intervals (for all possible x = 0:n),

# a matrix where each row contains lower and upper limit for one x

# conf.level is not needed here but in CIpropmeasures() because of the score

# =============================================================================

meanwidth <- function(true.pi, n, ci, conf.level) {
sum(dbinom(x = 0:n, size = n, prob = true.pi)*apply(ci, 1, width))

}

# =============================================================================

# Computes the coverage of a confidence interval

# - ci is a confidence interval (vector with lower and upper limit)

# - true.pi is the true proportion

# =============================================================================

coverage <- function(ci, true.pi) {
lower <- ci[1]

upper <- ci[2]

return((true.pi >= lower) & (true.pi <= upper))

}
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# =============================================================================

# Computes the coverage probability

# - true.pi is the true proportion

# - n is the sample size

# - ci contains all possible confidence intervals (for all possible x = 0:n),

# a matrix where each row contains lower and upper limit for one x

# conf.level is not needed here but in CIpropmeasures() because of the score

# =============================================================================

meancoverage <- function(true.pi, n, ci, conf.level) {
sum(dbinom(x = 0:n, size = n, prob = true.pi)*

apply(ci, 1, coverage, true.pi = true.pi))

}

# =============================================================================

# Computes the interval score of a confidence interval

# - ci is a confidence interval (vector with lower and upper limit)

# - true.pi is the true proportion

# - conf.level is the corresponding (!) confidence level of ci

# =============================================================================

score <- function(ci, true.pi, conf.level) {
alpha <- 1 - conf.level

return(width(ci) +

2/alpha*min(abs(true.pi - ci))*(1 - coverage(ci, true.pi)))

}

# =============================================================================

# Computes the mean interval score

# - true.pi is the true proportion

# - n is the sample size

# - ci contains all possible confidence intervals (for all possible x = 0:n),

# a matrix where each row contains lower and upper limit for one x

# - conf.level is the corresponding (!) confidence level of ci

# - varstab.rescale decides if the var.-stab. transformation should be used

# =============================================================================

meanscore <- function(true.pi, n, ci, conf.level, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
sum(dbinom(x = 0:n, size = n, prob = true.pi)*

apply(ci, 1, score, conf.level = conf.level, true.pi = true.pi))

}
# needs to be vectorized for the numerical integration

meanscore <- Vectorize(meanscore, vectorize.args = c("true.pi"))

# =============================================================================

# Computes the weighted interval score of confidence intervals for different

# confidence levels

# - ci is a vector with confidence intervals (lower and upper limit),

# concatenated for the different levels

# - true.pi is the true proportion
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# - conf.level is a vector with the corresponding (!) confidence levels of ci

# =============================================================================

wscore <- function(ci, true.pi, conf.level) {
ci <- matrix(ci, ncol = 2, byrow = TRUE)

res <- apply(ci, 1, score, true.pi = true.pi, conf.level = conf.level)

return(sum(diag(res)))

}

# =============================================================================

# Computes the mean weighted interval score

# - true.pi is the true proportion

# - n is the sample size

# - ci contains all possible confidence intervals (for all possible x = 0:n),

# a matrix where each row contains lower and upper limits for one x,

# concatenated for all considered levels (per row)

# - conf.level is a vector with the corresponding (!) confidence levels of ci

# - varstab.rescale decides if the var.-stab. transformation should be used

# =============================================================================

meanwscore <- function(true.pi, n, ci, conf.level, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
sum(dbinom(x = 0:n, size = n, prob = true.pi)*

apply(ci, 1, wscore, conf.level = conf.level, true.pi = true.pi))

}
# needs to be vectorized for the numerical integration

meanwscore <- Vectorize(meanwscore, vectorize.args = c("true.pi"))

# =============================================================================

# Returns mean width, coverage probability and mean interval score for a finite

# grid of true proportions and the following confidence intervals:

# Wald, Logit Wald, Var stab Wald, Wilson, Agresti, Likelihood, Clopper-Pearson,

# Jeffreys HPD, Jeffreys equal-tailed, Uniform HPD, Uniform equal-tailed

# (as a concatenated vector)

# - n is the sample size

# - conf.level is the confidence level

# - nbpoints is the number of points in the equidist. grid of true proportions

# measures symmetric around 0.5 --> grid of (0,0.5]

# =============================================================================

CIpropmeasures <- function(n, conf.level, nbpoints) {
CIs <- CIprop(n, conf.level)

pvector <- seq(0, 0.5, length = nbpoints + 1)[-1]

methodwisemeanmeasure <- function(ci, measure.fct) {
res <- sapply(pvector, measure.fct, n = n, ci = ci, conf.level = conf.level)

return(res)

}
w <- lapply(CIs, methodwisemeanmeasure, measure.fct = meanwidth)

w <- unlist(w)

c <- lapply(CIs, methodwisemeanmeasure, measure.fct = meancoverage)

c <- unlist(c)

s <- lapply(CIs, methodwisemeanmeasure, measure.fct = meanscore)
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s <- unlist(s)

return(data.frame("width" = w, "coverage" = c, "score" = s))

}

# =============================================================================

# Returns the integral of the mean interval score over the unit interval of

# underlying true proportions for the following confidence intervals:

# Wald, Logit Wald, Var stab Wald, Wilson, Agresti, Likelihood, Clopper-Pearson,

# Jeffreys HPD, Jeffreys equal-tailed, Uniform HPD, Uniform equal-tailed

# (in a vector with the same order)

# - n is the sample size

# - conf.level is the confidence level

# - nbpoints is the number of subdivisions used for the integration

# - varstab.rescale decides if the var.-stab. transformation should be used

# =============================================================================

CIpropscoreintegral <- function(n, conf.level, nbpoints,

varstab.rescale = FALSE) {
CIs <- CIprop(n, conf.level)

if(varstab.rescale == FALSE) {u <- 1}
if(varstab.rescale == TRUE) {u <- pi/2}
res <- lapply(CIs, function(ci) integrate(meanscore, n = n, ci = ci,

conf.level = conf.level,

varstab.rescale = varstab.rescale,

lower = 0, upper = u,

subdivisions = nbpoints)$value)

return(unlist(res))

}

# =============================================================================

# Returns the mean weighted interval scores for a finite grid of true

# proportions and confidence intervals: Wald, Logit Wald, Var stab Wald, Wilson,

# Agresti, Likelihood, Clopper-Pearson,

# Jeffreys HPD, Jeffreys equal-tailed,

# Uniform HPD, Uniform equal-tailed

# (as a concatenated vector)

# - n is the sample size

# - conf.level is a vector of the used confidence levels

# - nbpoints is the number of points in the equidist. grid of true proportions

# uses the linearity of the expectation

# =============================================================================

CIpropwscore <- function(n, conf.level, nbpoints) {
score.matrix <- sapply(conf.level,

function(x) CIpropmeasures(conf.level = x,

nbpoints = nbpoints,

n = n)[, "score"])

return(apply(score.matrix, 1, sum))

}

# =============================================================================
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# Returns the integral of the mean weighted interval score over the unit

# interval of underlying true proportions for the confidence intervals:

# Wald, Logit Wald, Var stab Wald, Wilson, Agresti, Likelihood, Clopper-Pearson,

# Jeffreys HPD, Jeffreys equal-tailed, Uniform HPD, Uniform equal-tailed

# (in a vector with the same order)

# - n is the sample size

# - conf.level is a vector of the used confidence levels

# - nbpoints is the number of subdivisions used for the integration

# - tol is the relative tolerance (of errors) in the integration

# - varstab.rescale decides if the var.-stab. transformation should be used

# =============================================================================

CIpropwscoreintegral <- function(n, conf.level, nbpoints, tol,

varstab.rescale = FALSE) {
res <- lapply(conf.level, CIprop, n = n)

CIs <- res[[1]]

for(i in 2:length(res)) {
CIs <- mapply(cbind, CIs, res[[i]], SIMPLIFY = FALSE)

}
if(varstab.rescale == FALSE) {u <- 1}
if(varstab.rescale == TRUE) {u <- pi/2}
res <- lapply(CIs, function(ci) integrate(meanwscore, n = n, ci = ci,

conf.level = conf.level,

varstab.rescale = varstab.rescale,

lower = 0, upper = u,

subdivisions = nbpoints,

rel.tol = tol)$value)

return(unlist(res))

}

# =============================================================================

# Asymptotical reference for expected (weighted) interval score/ expected width

# and integrals thereof

# - true.pi is the true proportion

# - n is the sample size

# - conf.level is the confidence level

# - varstab.rescale decides if the var.-stab. transformation should be used

# - nbpoints is the number of subdivisions used for the integration

# =============================================================================

refmeanscore <- function(true.pi, n, conf.level, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
q <- qnorm(p = (1 + conf.level)/2)

s <- sqrt(true.pi*(1-true.pi)/n)

2*s*dnorm(q)/(1-pnorm(q))

}

refmeanwscore <- function(true.pi, n, conf.level, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
res <- sapply(conf.level, refmeanscore, true.pi = true.pi, n = n,

varstab.rescale = varstab.rescale)
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return(sum(res))

}
# needs to be vectorized for the numerical integration

refmeanwscore <- Vectorize(refmeanwscore, vectorize.args = c("true.pi"))

refmeanwidth <- function(true.pi, n, conf.level, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
q <- qnorm(p = (1 + conf.level)/2)

s <- sqrt(true.pi*(1-true.pi)/n)

2*q*s

}

refmeanscoreintegral <- function(n, conf.level, nbpoints,

varstab.rescale = FALSE) {
if(varstab.rescale == FALSE) {u <- 1}
if(varstab.rescale == TRUE) {u <- pi/2}
res <- integrate(refmeanscore, n = n, conf.level = conf.level,

varstab.rescale = varstab.rescale,

lower = 0, upper = u,

subdivisions = nbpoints)$value

return(res)

}

refmeanwscoreintegral <- function(n, conf.level, nbpoints,

varstab.rescale = FALSE) {
if(varstab.rescale == FALSE) {u <- 1}
if(varstab.rescale == TRUE) {u <- pi/2}
res <- integrate(refmeanwscore, n = n, conf.level = conf.level,

varstab.rescale = varstab.rescale,

lower = 0, upper = u,

subdivisions = nbpoints)$value

return(res)

}

# =============================================================================

# Returns local average of coverage probabilities (as in BayarriBerger2004)

# for a finite grid of true proportions and the following confidence intervals:

# Wald, Logit Wald, Var stab Wald, Wilson, Agresti, Likelihood, Clopper-Pearson,

# Jeffreys HPD, Jeffreys equal-tailed, Uniform HPD, Uniform equal-tailed

# (as a concatenated vector)

# - n is the sample size

# - conf.level is the confidence level

# - nbpoints is the number of points in the equidist. grid of true proportions

# measures symmetric around 0.5 --> grid of (0,0.5]

# =============================================================================

CIproplocalcoverage <- function(n, conf.level, nbpoints) {
CIs <- CIprop(n, conf.level)

x <- 0:n

pvector <- seq(0, 0.5, length = nbpoints + 1)[-1]
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a <- function(p) {
if(p <= 0.025) {
NA # (p*(1-p)*p^(-2) - 1)*p #1 - 2*0.025

}
else if(p >= (1 - 0.025)) {

NA # (p*(1-p)*(1-p)^(-2) - 1)*p #1/0.025 - 3 + 2*0.025

}
else {

(p*(1-p)*0.025^(-2) - 1)*p

}
}
local.meancoverage <- function(p, ci) {
ap <- a(p)

a1mp <- a(1-p)

alpha <- ap + x

beta <- a1mp + n - x

values.gamma <- (lchoose(n, x)

+ lgamma(ap + a1mp) - lgamma(ap) - lgamma(a1mp)

+ lgamma(ap + x) + lgamma(a1mp + n - x)

- lgamma(ap + a1mp + n))

values.integral <- log(pbeta(ci[, 2], alpha, beta)

- pbeta(ci[, 1], alpha, beta))

return(sum(exp(values.gamma + values.integral)))

}
methodwisemeanmeasure <- function(ci) {
res <- sapply(pvector, local.meancoverage, ci = ci)

return(res)

}
c <- lapply(CIs, methodwisemeanmeasure)

return(unlist(c))

}

# =============================================================================

# GIS for HPD intervals (computation of tail probabilities, generalized interval

# score and expected generalized interval score)

# - n is the sample size

# - true.pi is the true proportion

# - prior is the used prior (uniform or Jeffreys)

# - tailprobs: ci is a vector with lower limit, upper limit, nb of success x

# - gscore: ci is a vector with lower limit, upper limit, tail prob. 1 and 2

# - meangscore: ci is a matrix with rows for all x=0:n, vector like in gscore

# for each row

# - varstab.rescale decides if the var.-stab. transformation should be used

# =============================================================================

tailprobs <- function(ci, n, prior) {
lower <- ci[1]

upper <- ci[2]

x <- ci[3]

if (prior == "uniform") s <- 1
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if (prior == "jeffreys") s <- 0.5

if (x == 0) {
alpha1 <- 0

alpha2 <- pbeta(upper, x + s, n - x + s, lower.tail = FALSE)

}
else if (x == n) {
alpha1 <- pbeta(lower, x + s, n - x + s)

alpha2 <- 0

}
else {

alpha1 <- pbeta(lower, x + s, n - x + s)

alpha2 <- pbeta(upper, x + s, n - x + s, lower.tail = FALSE)

}
return(c(alpha1, alpha2))

}

gscore <- function(ci, true.pi) {
lower <- ci[1]

upper <- ci[2]

alpha1 <- ci[3]

alpha2 <- ci[4]

if (alpha1 == 0) {
k <- 1/alpha2

}
else if (alpha2 == 0) {

k <- 1/alpha1

}
else {

k <- ifelse(abs(true.pi - lower) < abs(true.pi - upper), 1/alpha1, 1/alpha2)

}
k <- k*min(abs(c(true.pi - lower, true.pi - upper)))

return(width(ci) + k*(1 - coverage(ci, true.pi)))

}

meangscore <- function(true.pi, n, ci, varstab.rescale = FALSE) {
if(varstab.rescale == TRUE) {true.pi <- sin(true.pi)^2}
sum(dbinom(x = 0:n, size = n, prob = true.pi)*

apply(ci, 1, gscore, true.pi = true.pi))

}
# needs to be vectorized for the numerical integration

meangscore <- Vectorize(meangscore, vectorize.args = c("true.pi"))

# =============================================================================

# Plot function for binomial proportion

# - df is a dataframe with columns x (x values), y (y values), CI (method of

# confidence interval), type (sample size or confidence level setting)

# - xlab and ylab are the labels of the x- and y-axis

# - layers decides if we have several plots (types)

# - ylimfree decides if a common y range should be used
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# =============================================================================

library(ggplot2)

library(scales)

ggprop <- function(df, xlab, ylab, layers = FALSE, ylimfree = FALSE) {
colours <- hue_pal()(6)

colours <- c(colours[c(1,4,3)], "red", colours[c(6,2)], "orange", "grey",

"black", colours[5], "blue")

if(layers == FALSE) {
relevelnb <- order(df$y[1:11])

ranking10 <- levels(df$CI)[relevelnb]

df$CI <- factor(df$CI, levels = ranking10)

colours <- colours[relevelnb]

}
names(colours) <- levels(df$CI)

p <- ggplot(df, aes(x = x, y = y, group = CI, colour = CI)) +

geom_line(alpha = 0.5) +

scale_colour_manual(name = "CI", values = colours) +

labs(x = xlab, y = ylab) +

theme_bw() +

theme(legend.justification = "top", aspect.ratio = 1)

if(layers == TRUE) p <- p + facet_wrap(~ type)

if(ylimfree == TRUE) p <- p + facet_wrap(~ type, scales = "free")

return(p)

}
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