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Chapter 1

Introduction

1.1 Unstructured Data in Medicine

Within the last three decades, the field of statistics has undergone fundamental changes due to the
increased availability of computational power. Models have become more complex, large datasets
are widespread and statisticians spend most of their time programming. At the same time, the
type of data we use for inference about the relationship between variables has stayed the same.
When we think about a dataset, we think about tabular data, observations or measurements
that can be described by numbers or simple characteristics. In medicine, popular measurements
are blood pressure or weight, while a characteristic might be the gender of a patient. But what
about other types of data? For example an EEG to measure brain activity, respiratory sounds
detected by a stethoscope or radiological images?
For statistical analysis, these types of data are not usually used in the raw format as sound
or image, but transformed to a number that then can be entered into a table. This feature
engineering can be very time consuming and demands a lot of expert knowledge. However with
the emergence of Artificial Neural Networks (ANNs) and Deep Learning (DL), methods for the
analysis of complex or unstructured data have been dominating the field for the last few years
(Goodfellow et al., 2016). Features of the data don’t have to be predefined and extracted from
raw data manually, but ANNs are able to automatically learn the relevant features that are
hidden within the complex dataset. First commercial applications of ANNs in medicine were
introduced recently, with a focus on disease detection on medical images (qure.ai1, RetinAI2,
Zebra Medical Vision3). Today, the best performing algorithms for image classification (diseased
vs. healthy) are Deep Convolutional Neural Networks (CNNs).
CNNs are a type of ANN consisting of convolutional layers, used for automatic feature extraction,
followed by fully connected layers used for classification. Convolution is a process, where only
a few neighboring cells are connected to the neuron in the next layer, which makes it possible
to extract features containing information about groups of neighboring pixels instead of the
image as a whole4. While CNNs show impressive performances in image classification, the
interpretation of the automatically extracted features in not straight forward. And while CNNs
are a powerful tool for 2D image classification, in medicine the acquired images are frequently
of three-dimensional structure. While MRIs and CTs are standard of care in medicine, there
are only few methods that use the three dimensional information for analysis. Compared to
statistical regression models, where interpretability is key, NN are often called a black box. How
much are we willing to trust a black box algorithm in medical decision making? Ideally, for
medical applications, the combination of complex and tabular data into a single interpretable

1https://qure.ai/, Online; accessed 12-July-2021
2https://www.retinai.com/, Online; accessed 12-July-2021
3https://www.zebra-med.com/, Online; accessed 12-July-2021
4For a more detailed introduction to NN refer to Nielsen (2015) and Goodfellow et al. (2016)
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4 CHAPTER 1. INTRODUCTION

model is desirable. In the case of ordinal outcomes this can be achieved through Ordinal Neural
Network Transformation Models (ONTRAMs) (Kook & Herzog et al. (2020)).

1.2 Stroke

A stroke is a medical condition where the blood supply to the brain is interrupted, leading to
neurological deficits. Most common symptoms include inability to move or feel parts of the body,
slurred speech and loss of vision. A stroke is either of hemorrhagic or ischemic origin. While
hemorrhagic strokes are caused by a brain bleed, ischemia is in most cases caused by a clogged
blood vessel, leading to a reduction in blood flow, resulting in hypoxia and tissue damage. A
Transient Ischemic Attack (TIA) has the same underlying mechanism as an ischemic stroke, but
the symptoms typically disappear within one or two hours. TIA patients experience transient
neurological deficits, but contrary to stroke patients, no persistent tissue damage can be detected
on an Magnetic Resonance Image (MRI) (Stroke – Wikipedia).
In Switzerland about 16’000 people suffer a stroke each year, 85% of which are caused by ischemia
(Swiss Neurological Society (2019)). Ischemic strokes are treated by unclogging the vessel, either
through drugs or mechanically. Speed of diagnosis and correct treatment is crucial for survival
and favorable outcome. But also factors like age and the size and localization of the stroke play
a major role in recovery. In order to predict the functional outcome after stroke, one has to
consider patient characteristics, risk factors and imaging data.

1.3 Objectives

For this Master Thesis a dataset consisting of unstructured data (MRIs) as well as tabular data
from ischemic stroke and TIA patients was used. The overall goal of the thesis was to adapt
ONTRAMs to 3D images, to predict functional outcome three months after ischemic stroke or
TIA and to interpret the effect of the different risk factors. In order to do so, some intermediary
steps had to be implemented first:

• Build a dataset out of brain MRIs that can be used for training a 3D CNN.

• Develop a 3D CNN capable to extract relevant features and detect ischemic strokes on
MRIs.

• Integrate the 3D CNN into an ONTRAM model using unstructured and tabular data.

• Use 3D MRIs and tabular data to predict functional outcome three months after ischemic
stroke or TIA.

• Evaluate the predictive performance of the ONTRAM model.

• Interpret the impact of the different model parts.



Chapter 2

Data and Methods

2.1 Data Preparation and Description

The data was collected retrospectively from 2013 to 2018 at the University Hospital in Zürich.
The final dataset included a total of 497 patients. All of them arrived at the emergency depart-
ment of the hospital showing neurological symptoms of a stroke. Only ischemic events, either
transient or persistent (TIA or stroke) were included into our database. The Patient selection
was not done systematically, but rather such that each patient, who had obtained a DWI se-
quence (see section 2.1.2) and was well enough to consent to the use of their medical records for
research purposes, was included. Accordingly, there is a selection and a survival bias in our data,
since patients with severe symptoms or deceased patients were not included.

2.1.1 Tabular Data

Tabular data was extracted from the Swiss Stroke Registry (Bonati (2015)), where baseline
variables, tabular risk factors and outcome variables were selected.

Outcome Variables

For the three different experiments (see section 2.3), the following outcome variables were used:

• Event: binary variable, indicating if the patient suffered an ischemic Stroke or a TIA. The
distribution of the variable can be seen in Figure 2.1 A.

• mRS ordinal: ordinal variable with 7 levels. The modified Rankin Scale (mRS) described
in Table 2.1 is a measure for the degree of disability, evaluated at three months after the
event. Figure 2.1 B shows the distribution of this variable.

• mRS binary: binary variable, dichotomized mRS ordinal into good (mRS ordinal ≤ 2) and
bad (mRS ordinal > 2). Figure 2.1 C depicts the distribution of the dichotomized outcome
variable.

5



6 CHAPTER 2. DATA AND METHODS

Table 2.1: The modified Rankin Scale (mRS) is a scale used for measuring the degree of
disability in activities of daily living of patients who have suffered a stroke. The scale runs
from 0 to 6, running from perfect health without symptoms to death (Wilson et al., 2002).

Modified Rankin Scale (mRS)
0 No symptoms.
1 No significant disability. Able to carry out all usual activities, despite some symptoms.
2 Slight disability. Able to look after own affairs without assistance, but unable to carry out all previous

activities.
3 Moderate disability. Requires some help, but able to walk unassisted.
4 Moderately severe disability. Unable to attend to own bodily needs without assistance, and unable to walk

unassisted.
5 Severe disability. Requires constant nursing care and attention, bedridden, incontinent.
6 Dead.

Figure 2.1: Distribution of the outcome variables. (A) Outcome Event with levels TIA and
Stroke, (B) mRS at 3 months as ordinal variable called mRS ordinal, (C) mRS at 3 months
is dichotomized into mRS binary with cutoff good : mRS ordinal ≤ 2. Patients with missing
outcomes were removed from the datasets for experiments with outcome mRS.

Baseline Variables and Risk Factors

Table 2.2 describes the dataset and lists the explanatory variables extracted from the Swiss
Stroke Registry. Baseline variables are Age, Gender, mRS before Event, Previous TIA, Previous
Ischemic Stroke and NIHSS at Baseline. The National Institutes of Health Stroke Scale (NIHSS)
is a scale used for quantification of the severity of a stroke through a neurological examination.
The NIHSS ranges from 0 to 42 with high scores indicating high severity. For the purpose of this
thesis, NIHSS and mRS before Event are treated as continuous variables. As risk factors, High
Cholesterol, Coronary Heart Disease, Atrial Fibrillation, Diabetes, High Blood Pressure and Smoker
were selected. The distributions of categorical baseline variables and risk factors can be seen in
Figure 2.2

Missing Data

Out of the 497 included patients, 456 had no missing values. There were 88 missing variables
for 41 patients, 29 for mRS at 3 months and 59 for various explanatory variables. The later
were imputed using random forest imputation with the R package missForest (Stekhoven and
Bühlmann, 2012) with default settings. 29 patients with missing outcome variables were removed
from the experiments with outcome mRS resulting in a sample size of 468 patients. There were
no missing Event labels.

2.1.2 Imaging Data

Patients were selected for the study if they received a Diffusion Weighted magnetic resonance
Image (DWI) when they first arrived at the emergency room. Each examination consisted of
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Figure 2.2: Categorical baseline variables and risk factors colored by mRS binary. There are
good and bad outcomes for each level of each variable. CHD: Coronary Heart Disease

axial cross sections through the brain, with an average of 30 slices per patient. The slices were
exported in JPG format and used as individual images in other studies (Herzog et al., 2020).
However, when combining the individual images into a 3D stack, it became apparent that there
were differences in brightness levels between adjacent slices, which is a problem when moving to
the analysis of 3D images. Therefore, the DWIs were exported in DICOM1 format to achieve
a consistent brightness level over all slices. Figure 3.1 shows the difference between JPG and
DICOM format.

Validation of DICOM Dataset

Image labels (Stroke/TIA) were assigned to each JPG image and had to be copied to the DICOM
dataset. To make sure that the labels were correctly assigned, every image was visually checked
and removed if JPG and DICOM data didn’t match. To check if the new DICOM images are
comparable to the original JPG dataset, both datasets were used to train a neural network
previously described by Herzog et al. (2020). As evaluation metrics for the validation, the
Negative Log Likelihood (NLL), Accuracy, Sensitivity, Specificity and Area Under the ROC
Curve (AUC) were used. The different evaluation metrics are described in Appendix A.1.

1DICOM: Digital Imaging and Communications in Medicine. Worldwide standard for storing and transmitting
medical images.
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Table 2.2: Explanatory variables used in the experiments, stratified by Event (TIA vs.
Stroke). For continuous variables (Age and NIHSS) mean and standard deviation (in brackets)
are given, while categorical variables are listed in counts and percent (in brackets).

Variables Levels TIA Stroke % Missing
n 154 343
Age 68.56 (14.78) 66.94 (15.35) 0.0
Gender male 95 (61.7) 214 (62.4) 0.0

female 59 (38.3) 129 (37.6)
mRS before Event 0 116 (76.8) 269 (79.1) 1.2

1 17 (11.3) 29 ( 8.5)
2 10 ( 6.6) 25 ( 7.4)
3 7 ( 4.6) 14 ( 4.1)
4 1 ( 0.7) 3 ( 0.9)

NIHSS at Baseline 1.00 (1.87) 6.46 (6.33) 1.0
Previous TIA no 136 (89.5) 322 (95.0) 1.2

yes 16 (10.5) 17 ( 5.0)
Previous Ischemic Stroke no 122 (80.3) 290 (85.5) 1.2

yes 30 (19.7) 49 (14.5)
High Cholesterol no 50 (32.9) 137 (40.4) 1.2

yes 102 (67.1) 202 (59.6)
Coronary Heart Disease no 128 (84.2) 274 (80.8) 1.2

yes 24 (15.8) 65 (19.2)
Atrial Fibrillation no 137 (90.1) 270 (79.6) 1.2

yes 15 ( 9.9) 69 (20.4)
Diabetes no 130 (85.5) 280 (82.6) 1.2

yes 22 (14.5) 59 (17.4)
Smoker no 126 (82.9) 252 (74.3) 1.2

yes 26 (17.1) 87 (25.7)
High Bloodpressure no 54 (35.5) 115 (33.9) 1.2

yes 98 (64.5) 224 (66.1)

Praparing 3D Image Stacks

In order to feed a 3D CNN, the dimensions of the 3D images need to be constant over all patients.
Linear interpolation was used to standardize the original volume (192×192 pixels, 24 – 46 slices)
to 128× 128× 30 voxels. For linear 3D interpolation, the Python function zoom of the ndimage
package in SciPy was used (Virtanen et al., 2020).

2.2 Methods

2.2.1 3D CNN

Architecture and Training

The development of the three dimensional CNN architecture was inspired by the work of other
groups, who used 3D CNNs for classification of medical images (Kan et al., 2021; Zunair et al.,
2020). The 3D CNN takes as input 3D images with dimensions width × height × depth =
x× y× z = 128×128×30 and consists of 5 convolutional layers with max pooling, followed by 2
dense layers with dropout. Batch normalization was used in every layer. For the 3D convolution,
kernels with dimensions 3×3×3 were used with 32 – 32 – 64 – 64 – 128 filters per layer. The dense
layers consisted of 128 neurons each, and the number of outputs was K − 1 with K being the
number of classes in the ordinal outcome. This architecture results in a total of almost 696’000
trainable parameters (also called weights), depending on the number of classes in the output.
These weights are not interpretable but used to calculate the predicted probability of each class,
depending on the input image. ReLU (Rectified Linear Unit) was used as activation function,
the NLL (Negative Log Likelihood, see Equation 2.3) as loss function and the Adam optimizer
for stochastic gradient descent (Kingma and Ba, 2017). Learning rate, number of epochs and
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batch size were adjusted for each model and outcome, but not tested systematically. Figure 2.3
shows a schematic representation of the 3D CNN architecture. The Python implementation of
the 3D CNN can be found on github: https://github.com/kilyth/MasterThesis.

Figure 2.3: Schematic depiction of the 3D CNN architecture. For details refer to the Python
implementation on github.

Image Preprocessing and Augmentation

After linear interpolation to a common image size of 128 × 128 × 30 voxels (Section 2.1.2), the
only preprocessing done before training was a standardization of voxel values per image to zero
mean and unit variance.
The following augmentation strategies were implemented and combined to ensure that in each
epoch unseen data was fed to the network:

• zoom: the image was zoomed in 3D, using random factors between 0.7 and 1.4, keeping
the initial image size of 128× 128× 30 voxels. Black voxels were added to the edges when
the zoom factor was smaller than 1.

• rotation: the image was rotated in 3D, using random angles between −30 and 30 degrees
for rotation around the z–axis and random angles between −10 and 10 degrees for rotation
around the x– and y–axes. Note that rotation around x and y leads to a shear, since we
don’t have isotropic voxels for our 3D data.

• shift: the image was randomly shifted in 3D, with a shift between −20 and 20 pixels in
x and y direction and between −5 and 5 slices in z direction. Where needed, black voxels
were added to the image.

• flip: the image was randomly flipped, i.e. mirrored at the y–z plane.

• gaussian filter: an isotropic 3D Gaussian filter was applied, with random standard devi-
ation between 0 and 0.2, leading to smoothing of the image.

2.2.2 Ordinal Regression Transformation Models

Transformation Models in General

In transformation models, we estimate the conditional outcome distribution FY (y|x ) through a
transformation into a continuous conditional distribution function FZ(h(y|x )) (Hothorn et al.,
2014).

FY (y|x ) = FZ(h(y|x )). (2.1)

Estimating FY (y|x ) is thus translated into a problem of estimating the parameters of a mono-
tonically increasing transformation function h(y|x ) (Figure 2.4 B and D).

https://github.com/kilyth/MasterThesis
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Figure 2.4: Ordinal Regression Transformation Model. Density and distribution functions
for an ordinal outcome with K = 5 classes. Probability density functions (PDFs, panels A
and C) and cumulative distribution functions (CDFs, panels B and D) of the variables Y and
Z. The PDF corresponds to the probability to belong to class k, while the CDF describes the
probability to belong to any class ≤ k. The heights of the steps in the CDF correspond to the
probability to belong to class k. FY (y|x ) = FZ(h(y|x )) can be seen by comparing Subfigures
B and D. Note that there are only K − 1 = 4 cutpoints, since h5 = +∞. Figure adapted from
Kook & Herzog et al. (2020).

In the case of ordinal regression, the transformation function h(yk|x ) comprises of K − 1 points.
It transforms the ordinal outcome yk into cutpoints of a continuous latent variable FZ , as can
be seen in Figure 2.4.

Estimating the Transformation Function

After choosing FZ , estimating regression parameters comes down to estimating the transforma-
tion function h(y|x ) via the maximum likelihood method. The likelihood contribution of a given
observation (yki, x i) is given by

Li(h; yki, x i) = P(Y = yki|x i) height of fY , Figure 2.4 A

= FY (yki|x i)− FY (y(k−1)i|x i) height of step in FY , Figure 2.4 B

= FZ(h(yki|x i))− FZ(h(y(k−1)i|x i)) height of step in FZ , Figure 2.4 D

=

∫ hk

hk−1

fZ(z)dz shaded area under fZ , Figure 2.4 C

(2.2)

In order to calculate the likelihood, we need to consider two consecutive cutpoints hk−1 and
hk. Thus the natural ordering of the outcome classes is taken into account.
Instead of maximizing the likelihood, we will be minimizing the Negative Log Likelihood (NLL)
over all samples:

− 1

n
`(h; y1:n, x 1:n) = −

1

n

n∑
i=1

logLi(h; yi, x i) (2.3)
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A B

Figure 2.5: Linear shift transformation model for ordinal outcomes. (A) h1 to h4 are the
K− 1 cutpoints that define the transformation function in the case of an ordinal outcome with
K = 5 classes. When the variable x is increased by one unit (from 0 to 1), all cutpoints get
shifted by the same amount β. This induces a non linear shift of the probabilities for each class
(area under the curve), that are colored with different shades of green. (B) The probabilities
for each class shift in a non linear way when the variable x is increased by one unit. The heights
of the probabilities fY correspond to the area under the curve of fZ shown in panel (A).

Interpretability of Transformation Models

The interpretability of the parameters in a transformation model depends on the choice of FZ and
the structure of the transformation function h(y|x ). Since our primary outcome is on an ordinal
scale, we will focus on ordinal regression transformation models with K classes. We choose for
FZ the standard logistic distribution FL

2, while the transformation function is parametrized as
a linear shift model:

h(yk|x ) = ϑk −
J∑

j=1

βjxj = ϑk − xTβ, j = 1, . . . , J. (2.4)

Then, the odds for the outcome to belong to a higher class than yk can be written as:

odds(Y > yk|x ) =
P(Y > yk|x )
P(Y ≤ yk|x )

=
1− FY (yk|x )
FY (yk|x )

=
1− FZ(h(yk|x ))
FZ(h(yk|x ))

=
1− FL(ϑk − xTβ)

FL(ϑk − xTβ)
.

(2.5)

If we increase the predictor xj by one unit, holding all other predictors constant, we change x
to x ′ and obtain

odds(Y > yk|x ′) =
1− FL(ϑk − x ′Tβ)
FL(ϑk − x ′Tβ)

=
1− FL(ϑk − xTβ − βj)
FL(ϑk − xTβ − βj)

= odds(Y > yk|x ) exp(βj).
(2.6)

Thus, when increasing the predictor xj by one unit, holding all other predictors constant, the
odds to belong to a higher class than yk change by a constant factor exp(βj). The parameter βj
is independent of k and can be interpreted as a log-odds ratio:

βj = log

(
odds(Y > yk|x ′)
odds(Y > yk|x )

)
= logORx→x ′ (2.7)

2FL(z) =
1

1 + exp(−z)
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It is interesting to notice what happens to fZ and fY when the predictor xj changes. In
Figure 2.5 we can see how the likelihood contributions change if we assume xj to increase by
one unit. The cutpoints h1:4 all get shifted by the same distance β. Note that h5 = +∞. The
change in fY (yk|x) is quite complex as can be seen in Figure 2.5 B.

Logistic Regression as a Special Case of Ordinal Regression

When the outcome variable is binary, we have two outcome classes and we need to estimate only
one cutpoint h1. This is the well known case of logistic regression.

2.2.3 Ordinal Neural Network Transformation Models (ONTRAM)

ONTRAMs combine ordinal regression models with deep neural networks through the integra-
tion of complex data like images (B) and/or tabular data (x ). As with the ordinal regression
transformation model, the goal is to estimate a transformation function h(yk|x , B) that now has
been extended by some complex data B. ONTRAMs consist of one or several building blocks,
that can be combined to complex models. All building blocks are calculated using neural net-
works and optimized by minimizing the NLL. For a complete description of ONTRAM models,
please refer to Kook & Herzog et al. (2020).

Architecture Building Blocks of ONTRAMs

Only the building blocks relevant to this analysis are introduced here. A schematic representation
of the different building blocks is shown in Figure 2.6.

Figure 2.6: Architecture building blocks of ONTRAMs. (A) SI LSx: simple Intercept, linear
shift for tabular data. The model is implemented as a single layer neural network. (B) CIb:
complex intercept for image, (C) CIb LSx: complex intercept for image, linear shift for tabular
data. The complex intercept for the unstructured data is implemented as a 3D CNN and
combined with a single layer NN for the LSx.

Simple Intercepts (SI) ϑk, k = 1, . . . ,K − 1 are independent of the input data and can be
modeled as a single layer neural network with a single unit input 1 and K − 1 output units
γk with linear activation function. To ensure that the transformation function is monotonically
increasing, the outputs are transformed as follows:

ϑk = ϑ1 +
k∑

i=2

exp(γi), k = 2, . . . ,K − 1

ϑ0 = −∞, ϑ1 = γ1, ϑK = +∞.

(2.8)
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Linear Shifts (LS) xTβ are used for tabular predictors. A single layer neural network is
used for modeling, comprising of P input neurons, one for each predictor, and a single output
unit with linear activation function. Note that there is no bias term. We are interested in the
optimized weights of this network β1:P , as they can be interpreted as the log-odds ratios described
in Section 2.2.2.

• SI LSx Model: The simple intercept (SI) can be combined with a linear shift for the tabular
data (LSx). It does not depend on any unstructured data and when optimized using the
NLL, leads to the same results as an ordinal regression model. In this case, β can be
interpreted as cumulative log odds-ratios, since we chose FY = FL. When using a small
enough learning rate and trained for long enough, this model is equivalent to a Proportional
Odds Logistic Regression (POLR). When the outcome is binary, this model leads to the
same results as a logistic regression (here called LogReg), since both POLR and LogReg
minimize the convex NLL. (Figure 2.6 A)

h(yk|x ) = ϑk − xTβ. (2.9)

Complex Intercepts (CI) ϑk(B), k = 1, . . . ,K− 1, unlike SIs, do depend on the input data.
For the current analysis, we model a complex intercept that depends on the image data, by using
3D CNNs as described in Section 2.2.1. As with the SIs, after a linear activation function, the
K − 1 last layer outputs get transformed as described in Equation 2.8.

• CIb Model: The complex intercept for image data is the simplest model for complex data.
It achieves classification for image data through a 3D CNN with K − 1 outputs. Since it
doesn’t depend on tabular data, there will be no coefficients for this model (Figure 2.6 B).

h(yk|B) = ϑk(B). (2.10)

• CIb LSx Model: Complex intercept for image data, linear shift for tabular data, is the
integration of image and tabular data into a single model. It still has high interpretability,
since the weights β of the linear shift term still can be interpreted as cumulative log odds-
ratios (Figure 2.6 C).

h(yk|x , B) = ϑk(B)− xTβ. (2.11)

2.3 Experiments

The code for all experiments is accessible on github: https://github.com/kilyth/MasterThesis

2.3.1 Models

The data was used to fit three different models introduced in the previous section: SI LSx,
simple intercept, linear shift for tabular data, integrating only tabular data (Figure 2.6 A),
CIb, complex intercept for image data, integrating only image data (Figure 2.6 B) and CIb LSx,
complex intercept for image data, linear shift for tabular data, is the combination of tabular and
image data (Figure 2.6 C).

2.3.2 Cross-Validation

5-fold Cross-Validation (CV) was used with a 60%/20%/20% split for train/validation/test, re-
sulting in approximately 300 training, 100 validation and 100 test samples per fold. Each patient
is part of the test split exactly once, such that the prediction performance can be calculated over
the whole dataset.

https://github.com/kilyth/MasterThesis
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2.3.3 Ensembles

Deep ensembles are used to increase prediction accuracy and to produce uncertainty estimates
(Lakshminarayanan et al., 2017; Gal, 2016). Each fold is trained 5 times (5 runs) using different
starting weights. The overall predicted probability for each patient is calculated as the mean
probability per outcome class over 5 runs. An uncertain estimate is expected to show a higher
variability between runs.
Partnering CV and ensembles results in a total of 25 networks per model.

2.3.4 Weight Initialization

The weights for the SI LSx and Cib models are initialized with a HeNormal (He et al., 2015)
distribution (truncated normal distribution centered around zero) with a different seed per run.
To speed up the training, the weights for the CIb LSx models were initialized with the following
strategy:

• Complex Intercept: the pretrained weights from the CIb model were used for initializa-
tion. The corresponding model for each fold and each run was chosen, such that information
leakage between folds was avoided.

• Linear Shift: a logistic regression for binary outcomes or a proportional odds logistic
regression for ordinal outcomes was fit to the training data of each fold. The resulting
coefficients were used for the weight initialization of the linear shift term. In each run,
random normal noise was added to the coefficients before training to ensure some variability
between runs.

2.3.5 Performance Metrics

For the binary outcomes the following evaluation metrics were used: Negative Log Likelihood
(NLL), Accuracy, Sensitivity, Specificity and Area under the ROC Curve (AUC)
For the ordinal outcome, the evaluation metrics were NLL, Accuracy, Ranked Probability Score
(RPS) and Quadratic Weighted Kappa (QWK). A detailed description of the different metrics can
be found in Appendix A.1. While NLL and RPS are the only proper scores, we still included the
other performance scores because of their wide use in classification. Proper scoring rules result
in honest probabilistic predictions, because they are optimized when the conditional outcome
distribution corresponds to the data generating distribution. For a brief discussion of the pitfalls
of improper scores, see Kook & Herzog et al. (2020).

2.4 Software

For reproducibility, all code is accessible on github: https://github.com/kilyth/MasterThesis

2.4.1 Importation of DICOM Data

The preparation of the DICOM dataset was semi-automatized with a Python script allowing for
manual verification of image labels.

2.4.2 ONTRAM

ONTRAMS were implemented in Python 3.6.9, models are written in Keras based on TensorFlow
backend 2.4.0 and trained on a GPU.

https://github.com/kilyth/MasterThesis
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2.4.3 Analysis

Analysis and visualization of Results was done in R (R Core Team, 2021), knitr and LATEX. Lo-
gistic regressions were fitted using the function stats::glm(), the POLR model was fitted with
MASS::polr() (Venables and Ripley, 2002).

R version and packages used to generate this report:
R version: R version 4.1.0 (2021-05-18)
Base packages: stats, graphics, grDevices, utils, datasets, methods, base
Other packages: xtable 1.8-4, tableone 0.13.0, RColorBrewer 1.1-2, psych 2.1.6, pROC 1.17.0.1,
ontram 0.1.0, tensorflow 2.5.0, keras 2.4.0, missForest 1.4, itertools 0.1-3, iterators 1.0.13, foreach
1.5.1, randomForest 4.6-14, MASS 7.3-54, latticeExtra 0.6-29, labelled 2.8.0, gridExtra 2.3, ggpubr
0.4.0, caret 6.0-88, ggplot2 3.3.5, lattice 0.20-44, boot 1.3-28, biostatUZH 1.8.0, survival 3.2-11,
knitr 1.33



16 CHAPTER 2. DATA AND METHODS



Chapter 3

Results and Discussion

3.1 Validation of DICOM Data

To build a 3D dataset with constant brightness levels over all slices, we needed to switch from
JPG to DICOM format. For the original JPG dataset, the labels for each slice and patient were
assigned by a neurologist. To get the equivalent dataset in DICOM format, the labels had to
be transferred to the DICOM images. There was one label per slice for a total of 503 patients
and 15’191 images. Pairs of JPG and DICOM images were checked visually to make sure that
the assignment of labels was done correctly. Figure 3.1 shows the difference between JPG and
DICOM image quality.

(a) JPG (b) DICOM

Figure 3.1: Patient 030: 28 axial DWI slices. Comparison of JPG and DICOM image format.
Changing brightness levels between adjacent slices in the JPG format are seen in Subfigure (a).
After changing from JPG to DICOM, brightness levels are constant over all slices. Each slice
is labeled with 1 if a stroke lesion is visible (bright area) and with 0 otherwise.

From the original 503 patients and 15’191 images, 1 patient (30 images) was removed because
JPG and DICOM didn’t show the same patient. 3 patients (90 images) were removed because
the MRI sequence was different between JPG and DICOM. 2 patients (53 images) were removed
because the order of slices between JPG and DICOM was different. An additional 219 DICOM
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images were removed because they were missing in the JPG dataset and thus didn’t have an
matching image label. After cleaning, the resulting dataset included 497 patients and 14’800
images.
For the validation of the DICOM dataset a previously described 2D CNN was used (Herzog
et al., 2020). The binary labels used for training were Stroke versus TIA on each image slice.
There was no aggregation of the predicted labels on patient level. Figure 3.2 shows the results
of the 5-fold cross-validation for both datasets. The results were consistent and the prediction
performance is very similar between JPG and DICOM, with a slightly better performance of
sensitivity for the DICOM data.

Figure 3.2: Validation of DICOM dataset. JPG
and DICOM data was used on a previously de-
scribed 2D CNN (Herzog et al., 2020). Each point
is the result from one fold of the 5-fold cross-
validation. NLL: Negative Log Likelihood, AUC:
Area Under the ROC Curve.

3.2 Binary Patient Outcome «Event»

To get a prediction per patient and not per image slice, we either need to aggregate the data
from a 2D CNN to a patient specific outcome (as done in Kook & Herzog et al. (2020)), or use
a 3D CNN from the beginning. Using a 3D CNN has the advantage, that 3D information from
the MRI can be fully integrated. In doing so, the main disadvantage is the sample size reduction
from 14’800 2D images to 497 3D images.
Before running the ONTRAM models, the dataset was restructured from 2D to 3D. The labels
per image slice were no longer used, but only the type of Event per patient (Stroke vs. TIA)
was used as label.
For the outcome Event three different ONTRAM models were used, as described in the methods
in Section 2.3. For each model a 5-fold cross-validation was used, which allowed us to have every
patient in the test fold exactly once. The 5 ensemble runs per fold led to 5 predictions for each
of the 497 patients in the dataset. To get an overall prediction per patient, the mean of the
predicted probabilities over all runs was calculated.

SI LSx Model Simple intercept, linear shift for tabular data.
As described in the methods in Section 2.2.3 the SI LSx model should lead to the same results
as the logistic regression LogReg when the outcome is binary, since both models minimize the
convex NLL. Prediction performance for the different models can be seen in Figure 3.3. The
small differences between the SI LSx and LogReg models are due to either too large learning rates
or not enough number of epochs. Accordingly, Figure 3.4 (A) shows that coefficients calculated
with the logistic regression are the same as the ones calculated with the SI LSx model. Because
the NLL of a logistic regression model has only one minimum, the 5 estimates from each run of
the SI LSx model lie exactly on top of each other.
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CIb Model Complex intercept for image data.
Since for the outcome Event all information is available within the image, we expect this model to
perform well. Prediction performance is significantly better than for the SI LSx model as can be
seen in Figure 3.3. Since this model doesn’t depend on tabular data, we don’t get interpretable
coefficients.

CIb LSx Model Complex intercept for image data, linear shift for tabular data.
Adding the tabular data to the image model leads to a further decrease of the NLL. The combina-
tion of the two types of data does not result in a better prediction accuracy, but leads to a model
with higher confidence for the predictions it makes. The weights for the CIb LSx model were
initialized with the results from the logistic regression for the linear shift and the pretrained 3D
CNN from the CIb model for the complex intercept. Here we allow the image to add additional
information and in return, we see that the estimated coefficients shift from their original value
(Figure 3.4 A).

Figure 3.3: Outcome Event: (Stroke vs. TIA)
Prediction performance of the different models. 5-fold CV for the LogReg model and 5-fold
CV with 5 ensembles for the ONTRAM models were calculated. (A) Prediction performance
and 95% confidence intervals for the different models. (B) Confusion Matrices with labels: 0 =
TIA, 1 = Stroke. (C) ROC curves. LogReg: logistic regression, SI LSx: simple intercept, linear
shift for tabular data, CIb: complex intercept for imaging data, CIb LSx: complex intercept for
imaging data, linear shift for tabular data. NLL: negative log likelihood, AUC: area under the
ROC curve.
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Figure 3.4: Estimated coefficients from all experiments.
(A) Outcome Event: Stroke vs. TIA (B) Outcome mRS binary: good vs. bad (C) Outcome
mRS ordinal. 5-fold CV for the LogReg and POLR models and 5-fold CV with 5 ensembles for
all ONTRAM models were calculated. The coefficients from the SI LSx ensemble runs all lie
on top of each other, such that only the five different folds can be seen. These correspond to
the coefficients from the LogReg model for the binary outcomes Event and mRS binary or to
the coefficients of the POLR model for outcome mRS ordinal. For the CIb LSx models, all 25
estimates can be seen.
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Interpretation of Coefficients The estimated coefficients for the LogReg, the SI LSx and the
CIb LSx models are shown in Figure 3.4 A. Using 5-fold cross-validation with 5 ensemble runs
gives us an idea about the uncertainty of the estimates, although we did not calculate point
estimates with confidence intervals. Wide spread values like the risk factor Smoker seem to have
a higher uncertainty in their estimate than for example the variable Age.
Interpretation of the magnitude of the different estimates is only of limited use here and has to be
done with great caution. This is due to the fact, that there is a selection and a survival bias in our
dataset, which could have a significant influence on the estimated coefficients. As an example, if
we had better data to begin with, the interpretation of the coefficient for Smoker would be as fol-
lows: The odds to have a ischemic stroke and not a TIA when presenting neurological symptoms
of a stroke, is ORsmoker = exp(βsmoker) times higher when the patient is a smoker, holding all
other predictors constant. See Section 2.2.2 for an explanation about the interpretability of the
ordinal transformation models. Since for the risk factor Smoker the odds-ratio is larger than one,
the odds to have a ischemic stroke instead of a TIA is higher for patients who smoke (holding
all other factors constant). This is a result that we would expect, knowing that smoking is bad
for our health. However when we look at the risk factor High Cholesterol, the interpretation is
not as clear. Since the estimate is smaller than one, we would conclude that patients with high
cholesterol have lower odds of suffering a ischemic stroke instead of a TIA. One interpretation
would be, that patients who have high cholesterol know about it and have already adapted their
lifestyles. Another interpretation is, that patients with high cholesterol are underrepresented in
our database, since we have a selection bias for patients with good outcomes. Because of this
selection and survival bias in our database, it is not possible to draw meaningful conclusions
about the effect size of the different coefficients.

3.3 Outcome «mRS binary»

The modified Rankin Scale (mRS) described in Table 2.1 is a measure for the degree of disability
for patients who suffered a stroke. The scale contains 7 ordered categories from 0 to 6, ranging
from perfect health to death, with small outcomes being better. The same experiment as with
outcome Event was repeated with outcome mRS binary. To this end, the ordinal outcome mRS
ordinal was dichotomized into good (mRS ordinal ≤ 2) and bad (mRS ordinal > 2). The 29
patients with missing outcomes were removed, leading to a dataset with 468 patients.

SI LSx Model Simple intercept, linear shift for tabular data.
As with the binary outcome Event, we expect the SI LSx and the LogReg models to lead to the
same results, if we use a small enough learning rate and train the network for many epochs.
Prediction performance for the different models can be seen in Figure 3.5. Again there is little
variability between the two models, presumably due to suboptimal training parameters. All
coefficients from all five ensemble runs lie on top of each other and only show minimal deviations
from the coefficients from the LogReg model (Figure 3.4 B).

CIb Model Complex intercept for image data.
For this outcome the information is not directly detectable in the image as it was the case with
the outcome Event. To train a CNN to extract features for an outcome that lies in the future is
a much harder task. Therefore the CIb model is expected to have lower prediction performance
than for the outcome Event. This could indeed be observed as shown in Figure 3.5. The CIb
model performs not as good the tabular data alone.

CIb LSx Model Complex intercept for image data, linear shift for tabular data.
Combining the image and the tabular data improves the prediction performance compared to
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Figure 3.5: Outcome mRS binary: (good vs. bad)
Classification performance of the different models. 5-fold CV for the LogReg model and 5-fold
CV with 5 ensembles for the ONTRAM models were calculated. (A) Prediction performance
and 95% confidence intervals for the different models. (B) Confusion Matrices with labels: 0
= good, 1 = bad. (C) ROC curves. The curves for LogReg and SI LSx lie exactly on top of each
other. LogReg: logistic regression, SI LSx: simple intercept, linear shift for tabular data, CIb:
complex intercept for imaging data, CIb LSx: complex intercept for imaging data, linear shift
for tabular data. NLL: negative log likelihood, AUC: area under the curve.

the CIb model, with a slight tenancy to perform even better than the tabular data alone (see
Figure 3.5). Especially, since we initiate the weights of the CIb LSx with the coefficients from
the logistic regression and the previously trained CIb (see Section 2.3.4), we expect the more
complex model to perform at least as good as the better performing of the simpler models.
Again we can see that when adding the image to the tabular data, estimated coefficients shift
from their original value (Figure 3.4 B).

3.4 Outcome «mRS ordinal»

We ran the same experiments as before, this time not using a binary, but an ordinal outcome.
The mRS score contains 7 ordered categories ranging from 0 to 6, with small outcomes being
better. For ordinal outcomes, we cannot use the same classification metrics than for the binary
outcomes. The evaluation metrics used here were NLL, Accuracy, Ranked Probability Score
(RPS) and Quadratic Weighted Kappa (QWK). While NLL and RPS are proper scores, the
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other performance metrics are still shown here, because of their wide use in classification. For a
description of the used metrics, please refer to Appendix A.1 and Kook & Herzog et al. (2020).

SI LSx Model Simple intercept, linear shift for tabular data.
The SI LSx model was compared to a Proportional Odds Logistic Regression (POLR). As for the
previous experiments, the SI LSx model should lead to the same results as the POLR, if trained
with enough epochs and small enough learning rate. Again, there is a small variability between
the two models, that can be explained by suboptimal training parameters of the SI LSx model.
A total of 3 patients were classified differently between the two models. Interestingly, classes 3
to 5 were never predicted, although there are 60 patients with mRS 3 to 5 at three months after
the ischemic event (Figure 3.6 B).
All SI LSx coefficients from each run lie on top of each other (Figure 3.4 C) and match the
coefficients from the POLR model.

Figure 3.6: Outcome mRS ordinal
(A) Prediction performance and (B) confusion matrices for the different models. All models
were calculated using a 5-fold CV and with 5 ensemble runs for the ONTRAM models. POLR:
proportional odds logistic regression, SI LSx: simple intercept, linear shift for tabular data, CIb:
complex intercept for imaging data, CIb LSx: complex intercept for imaging data, linear shift
for tabular data, NLL: negative log likelihood, RPS: ranked probability score, QWK: quadratic
weighted kappa.

CIb Model Complex intercept for image data.
As already observed with the dichotomized outcome mRS ordinal, the prediction performance
of the CIb model is worse than the SI LSx model for all performance metrics. We try to predict
an outcome that lies in the future compared to when the MRI was taken, which makes this
classification a much hard task. In contrast to the predictions of the SI LSx model, classes 3 to
5 are frequently predicted.
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CIb LSx Model Complex intercept for image data, linear shift for tabular data.
For the proper scores NLL and RPS and the improper Accuracy, the CIb LSx model gains in
performance compared to the CIb model, however it is not as good as the SI LSx model. Since
all ONTRAM models are trained with a NLL loss, we would expect the more complex CIb LSx
model to perform at least as good as the better performing simpler model, however this is not
the case here. This might be due to initialization of the weights, such that the model reaches a
different local minimum, or because of bad combination of learning rate, batch size and number
of epochs. Interestingly, when we look at the QWK, the CIb LSx model gains in performance over
all other models. In contrast to the other performance metrics, the QWK takes into account the
degree of miss-classification, penalizing classifications that are further away from the true value.
As observed with the previous outcomes, when combining tabular and imaging data, the co-
efficients start to deviate from the values given by the LogReg model. When we compare the
coefficients from the two experiments with outcome mRS, we see that the coefficients lie within a
similar range for both the ordinal and the dichotomized outcome (Figure 3.4 B and C).

Interpretation of Coefficients Again, interpretation of the magnitude of the different esti-
mates is only of limited use here and has to be done with great caution. Compared to binary
outcomes, the interpretation of the coefficients has to be adapted slightly for ordinal outcomes:
If the patient is a smoker, holding all other factors constant, the odds to belong to a higher class
than yk (0 to k vs. k+1 to K) change by a constant factor ORsmoker = exp(βsmoker). See Section
2.2.2 for an explanation about the interpretability of the ordinal transformation models.



Chapter 4

Summary and Outlook

It is well known that functional outcome after ischemic stroke depends not only on time to
treatment but also on patient characteristics and risk factors like age or diabetes (Weimar et al.,
2002). When we want to predict the functional outcome based on medical data, we want to build
a model that integrates these variables and predicts the outcome as accurately as possible. This
can be done with well known statistical models, like the logistic regression for binary outcomes
(LogReg), or the proportional odds logistic regression (POLR) for ordinal outcomes. But in the
case of stroke, the size and location of the ischemia is very much relevant to the outcome as
well. We are therefore in need for a model that is able to make predictions, not solely based on
tabular data, but is capable to integrate image data as well. This can be done with the recently
implemented ONTRAMs described in Kook & Herzog et al. (2020). In this thesis, I used three
different ONTRAMs with different complexity and interpretability, on three different outcomes
each – two binary outcomes and one ordinal – and compared them to the classical logistic re-
gression and proportional odds logistic regression models.
For the ONTRAM to work, a well performing CNN is needed, capable to extract relevant image
features from the data. While 2D CNNs are widely established and show astonishing perfor-
mance in image classification tasks, 3D CNNs are rare. The downsides of using 3D over 2D data
are the need for larger computational power to fit 3D models and the vast reduction in size of the
dataset. For example, the dataset used for this thesis was reduced from 14’800 2D images with
image labels to 497 3D images with patient labels. Using 3D information from MRIs however has
important advantages: we can extract three-dimensional information from our data and we get
rid of the need to aggregate several image predictions to a patient level prediction. Preparing a
dataset with 3D images was a large part of this thesis. Because of inconsistent brightness levels
in the previously used JPG dataset, we decided to re-import all data from DICOM format and
transfer image labels from the original dataset.
To make use of the 3D image data within an ONTRAM model, a 3D CNN was developed.
The resulting network was inspired by other groups who built 3D CNNs for medical data (Kan
et al., 2021; Zunair et al., 2020). The resulting network was not very deep, but contained only
5 convolutional layers and two dense layers. Even so, it showed good classification performance
for stroke detection of 92% accuracy and an AUC of 0.95 and was thus able to extract relevant
image features from MRIs. The same architecture was then used to predict patient outcome
three months after stroke.

4.1 ONTRAM

Three ONTRAM models were implemented: SI LSx (simple intercept, linear shift for tabular
data) taking only tabular data as input, CIb (complex intercept for image data) using only image
data and CIb LSx (complex intercept for image data, linear shift for tabular data) for the combi-
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nation of tabular and image data as described in Section 2.3. During training of the ONTRAMs,
the NLL was minimized by gradient descent. When using a batch size equal to the size of the
training data, the SI LSx model is no longer optimized with stochastic gradient descent, but
calculates the exact gradient over the whole training data. Since this is a convex problem, we
can reach the global optimum if we use a small learning rate and train the network for many
epochs. The global optimum is equivalent to the solution of the LogReg model if the outcome is
binary, or the solution of a POLR model for ordinal outcomes. It could be shown that the neural
network based SI LSx models yield the same results as the corresponding LogReg and the POLR
models that were fitted in R.
The CIb model only uses image data and demands high computational power. Image augmen-
tation and 3D architecture make the computations slow, such that one model needs up to four
hours for 200 epochs. The CIb LSx model allows for the integration of unstructured data besides
tabular data and at the same time estimates coefficients for the later, that can be interpreted as
log-odds ratios as described in Section 2.2.2.
All models were evaluated with 5-fold cross-validation. Each patient was part of the test dataset
exactly once, such that there was a predicted outcome for each patient. Additionally, for every
fold, 5 ensemble runs were calculated, resulting in 25 runs per model. Ensembles allow to get
better prediction performance (Lakshminarayanan et al., 2017) and also give us an idea about
the uncertainty and variability of the calculated coefficients.

4.2 Experiments

For the first experiment, a binary outcome Event (Stroke vs. TIA) was chosen. The label is based
on the patient’s image, if there is a stroke lesion visible on the MRI. It is not surprising that the
CIb model performs well for this outcome, since the whole information about the label is based
on the image. The SI LSx model, based on tabular data only, has a significantly lower prediction
performance than the models containing image information. The small variation between results
from the SI LSx and the LogReg model is presumably due to suboptimal training parameters for
the SI LSx model. The more complex CIb LSx model, integrating tabular and image data, has
significantly better prediction performance than the tabular data alone. Looking at the NLL, it
performs even better than the CIb model, and gives us an idea about the influence of the tabular
data.
The second experiment had the same implementation as the first one, but used the dichotomized
modified Rankin Scale mRS binary (Section 2.1.1) as patient outcome. Predicting the functional
outcome is a harder task than discriminating between TIA and stroke because the information
about the outcome in not readily available within the image and lies in the future compared to
the date when the image was acquired. Therefore we didn’t expect the CIb model to perform as
well as in the first experiment. The tabular data alone had a better prediction performance than
the image alone. However when combining the tabular data with the image data in the CIb LSx
model, the prediction performance is as good as with the simpler SI LSx model (Figure 3.5).
For the third experiment, the ordinal outcome mRS ordinal containing 7 categories was used.
The 3D CNN architecture was the same as in the other experiments and the NLL was again used
as loss function. Evaluating ordinal classification performance is not as straight forward as for
binary outcomes. Accuracy, although shown here as a performance metric, is not recommended
for assessing classification performance for ordinal outcomes. It only takes into account true and
false predictions without considering the predicted probabilities of the outcome. The NLL and
RPS are both proper scoring rules (see Gneiting and Raftery (2007) and Kook & Herzog et al.
(2020) for a discussion about scoring rules) but contradict QWK in the performance evaluation
for this experiment. The QWK is a performance measure that was developed for ordinal classi-
fication, penalizing miss-classifications farther away from the observed class. However it is not a



4.3. OUTLOOK 27

proper scoring rule and was not used for optimization in our experiments.

4.3 Outlook

Since our models were trained with a NLL loss, we would expect the more complex CIb LSx
model to have a similar NLL than either the SI LSx or the CIb model – whichever performed
better. If the image does not contribute to a better prediction performance, we would expect
the ONTRAM to set the weights from either CIb or LSx to zero, such that it reaches at least
the same NLL than the corresponding simpler model. However, this was not the case for the
third experiment, where the CIb LSx model performed worse than the simpler SI LSx model.
This might be due to initialization of the weights, such that the model reaches a different local
minimum, or because of bad combination of learning rate, batch size and number of epochs. This
is an issue that needs further investigation.
The models based on tabular data only (SI LSx, LogReg or POLR) are much faster to train
than the models including unstructured data. Thus, it only makes sense to include image data,
when the performance of the model can be significantly increased. If this is the case, using the
more complex CIb LSx model over the simpler CIb model is preferable. It yields interpretable
estimates about the influence of the tabular predictors, while the CIb model only predicts the
outcome. Therefore the CIb LSx model is no longer a black box, but allows for the estimation of
interpretable coefficients, which makes it possible to gain important knowledge about the data.
Another open question is the estimation of confidence intervals for the calculated coefficients.
Even though the combination of cross-validation and ensembles gives us an idea about the vari-
ability and uncertainty of the estimates, the aggregation to a valid confidence interval is not
obvious. It is in general an unsolved problem how to set valid confidence intervals in neural
network based model that combine single-layer and deep neural networks to estimate model
parameters. Since a single training run for the CIb LSx model takes up to 4 hours, bootstrap
confidence intervals cannot be computed as for example done in random forest classification.
For this thesis, the focus of the different models lied on prediction of the outcome, since there is
limited use in the interpretation of the magnitude of the coefficients. As explained in the Methods
2.1 the data was not collected in a systematic way nor do we have a consecutive patient cohort,
resulting in a selection bias. It is therefore not possible to draw meaningful conclusions about
the effect size of the different coefficients. In a future study, it would be important to define clear
inclusion criteria and avoid selection bias in order to make interpretation of the results possible.
Conducting a randomized clinical trial with systematic collection of all confounders would lead
to improved data quality. In addition to patient characteristics and risk factors, it would then be
possible to add treatment variables to our model in order to quantify a treatment effect. Let’s
assume a patient comes into the emergency room with an ischemic stroke. A properly trained
ONTRAM model would allow for selection of the best treatment for a specific patient, depending
on the patients baseline variables, risk factors and the MRI.
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Appendix

A.1 Evaluation Metrics

A.1.1 Evaluation Metrics for Binary Outcomes

For binary outcomes, the following evaluation metrics were used:

Negative Log Likelihood (NLL): Always given as the mean NLL per observation, i.e. the
NLL divided by the number of samples, which is thus equivalent to the crossentropy. Reversed
quantile confidence intervals were calculated using the R package boot (Davison and Hinkley,
1997).

NLL = − 1

n

n∑
j=1

(yj log(p1(xj))) + (1− yj)log(1− p1(xj))

= − 1

n

 ∑
j for y = 0

log(p0(xj)) +
∑

j for y = 1

log(p1(xj))


Accuracy1:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity

Sensitivity =
TP

TP + FN

Specificity

Specificity =
TN

TN + FP

For accuracy, sensitivity and specificity, Wilson confidence intervals were calculated with the R
function biostatUZH::confIntProportion (Brown et al., 2001; Haile et al., 2019).

Area Under the ROC Curve (AUC)
ROC curves, AUC and corresponding bootstrap confidence intervals were calculated using the R
Package pROC (Robin et al., 2011).

1TP: true positive, TN: true negative, FP: false positive, FN: false negative
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A.1.2 Evaluation Metrics for Ordinal Ourcomes

For ordinal outcomes, the evaluation metrics listed below were used. For a more detailed de-
scription of ordinal evaluation metrics refer to Kook & Herzog et al. (2020).

Negative Log Likelihood (NLL): Always given as the mean NLL per observation, i.e. the
NLL divided by the number of samples, which is thus equivalent to the crossentropy. Reversed
quantile confidence intervals were calculated using the R package boot (Davison and Hinkley,
1997).

NLL = − 1

n

 ∑
j for y = 0

log(p0(xj)) +
∑

j for y = 1

log(p1(xj)) + · · ·+
∑

j for y = K-1

log(pk−1(xj))



Accuracy: calculated with the R function biostatUZH::confIntProportion with Wilson con-
fidence intervals (Brown et al., 2001; Haile et al., 2019).

Accuracy =
number of correct classifications
total number of classifications

Ranked Probability Score (RPS)

RPS(p; y) =
1

K − 1

K∑
k=1

 k∑
j=1

pj −
k∑

j=1

ej



where K is the number of classes, pj and ej are the predicted and actual probability of class
j. ej is given by the jth entry of the one-hot encoded outcome. The RPS was calculated in
R using the function ontram::rps() (Kook, 2021). Reversed quantile confidence intervals were
calculated using the R package boot (Davison and Hinkley, 1997).

Quadratic Weighted Kappa (QWK)

κw =
pobs(w)− pexp(w)

1− pexp(w)

where pobs(w) and pexp(w) are the sum of observed and expected probabilities for each combi-
nation of true versus predicted class. The QWK and its confidence intervals was calculated in R
using the function biostatUZH::confIntKappa() (Haile et al., 2019).
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A.2 List of Terms

ANN Artificial Neural Network
AUC Area Under the ROC Curve
CDF Cumulative Distribution Function
CHD Coronary Heart Disease
CNN Convolutional Neural Network
CV Cross-Validation
DICOM National Institutes of Health Stroke Scale
DL Deep Learning
DWI Diffusion Weighted MRI
EEG Electroencephalography
ICH Intra-Cerebral Hemorrhage
LogReg Logistic Regression
MRI Magnetic Resonance Image
mRS modified Rankin Scale
NIHSS National Institutes of Health Stroke Scale
NLL Negative Log Likelihood
ONTRAM Ordinal Neural Network Transformation Model
PDF Probability Density Function
POLR Proportional Odds Logistic Regression
QWK Quadratic Weighted Kappa
ReLU Rectified Linear Unit
ROC Receiver Operating Characteristic
RPS Ranked Probability Score
TIA Transient Ischemic Attack
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