
Mixtures of Partially Linear Models

with Monotone Shape Constraints

Master Thesis in Biostatistics (STA495)

by

Daniel Leibovitz
19-764-851

supervised by

Dr. Torsten Hothorn (UZH, Zürich)

Dr. Matthias Löffler (ETH, Zürich)

Zurich, April 2021

Mixtures of Partially Linear Models
with Monotone Shape Constraints

Daniel Leibovitz

Version May 3, 2021

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

2 Previous Work 3

3 An Overview of Contributing Models and Estimators 7

4 Proposed Model 15

5 Model Applications 21

6 Discussion 37

A Appendix 39
A.1 Asymptotic Behaviour of Partially Linear Models with Monotone Constraints . . 39
A.2 Flexmix Extension . 40

Bibliography 63

i

ii CONTENTS

Abstract

Mixtures of non-parametric monotone regressions are applicable to clustering problems where

there is prior knowledge about appropriate shape constraints within the resulting model. The

current standard for estimating such models involves fitting a series of non-parametric regression

functions without shape constraints using an EM algorithm, as described by Zhang and Zheng

(2018), followed by a monotonic estimate given the resulting latent variable classifications. In

this paper, we propose to remove redundancy by incorporating the non-parametric monotone

regression function estimate into the M-step of the EM algorithm. Moreover, we generalize the

model to include any number of monotone or linear effects. We demonstrate the effectiveness of

the algorithm when applied to both simulated data and real-world data on global life expectancy

and GDP from the World Bank.

iii

iv Abstract

Acknowledgments

I would like to thank: Drs. Holger Dette, Runze Li, and Mian Huang for providing the necessary

code to run the Zhang et al. algorithm. Dr. Matthias Löffler for initially suggesting the topic of

this manuscript, and for pushing me in the right direction on all the occasions when I seemed to

have reached a dead end. The faculty of the Master’s in Biostatistics at the UZH for two intense,

creative and academically stimulating years, and for shepherding me on an academic journey from

a state of statistical ignorance to a state of somewhat less statistical ignorance. Dr. Torsten

Hothorn in particular for agreeing to sponsor this master thesis and thereby demonstrating

significant trust that I would return with something useful. My family for supporting me through

an unexpected number of video calls and a global pandemic. My friends in Zürich for making six

months writing a thesis in home-office not only something I don’t regret, but something I would

do again.

Daniel Leibovitz

April 2021

v

vi Acknowledgments

Chapter 1

Introduction

A mixture of partially linear regressions with monotone shape constraints takes the following

form:

Y =



p∑
h=1

gh1(Zh) +

q∑
j=1

βj1Xj + ε1, with probability π1;

...
p∑

h=1

ghk(Zh) +

q∑
j=1

βjkXj + εk, with probability πk;

(1.1)

where the model has K components, X ∈ Rq, Z ∈ Rp, β ∈ Rq, and each function ghk() is

assumed to be monotone. The error ε is assumed to be Gaussian distributed with mean zero

and to be independent of the covariates (X,Z). The prior probabilities πk satisfy the conditions

πk ∈ (0, 1) and
∑k

1 πk = 1.

Such a model has broad applications for clustering of data in domains where monotone

relationships are known a priori. These domains include, for example, epidemiology, where

risk-exposure relationships may be modeled monotonically (Morton-Jones et al. (2000), Cai and

Dunson (2007)); finance, where option pricing functions may be restricted to both monotonic-

ity and and/or or convexity (Ait-Sahalia and Duarte (2003)); and biomedical research, where

biochemical kinetics may be monotone over time (Oussalah et al. (2020)).

A similar type of model has previously been described by Zhang and Zheng (2018), and takes

the following form for a k-component mixture:

Y =


g1(Z) + ε1, with probability π1(Z);
...

gk(Z) + εk, with probability πk(Z);

(1.2)

where Z ∈ R1, and each function gk() is assumed monotone. The variables εk and πk are not

constant, as in model [1.1], but are modelled as nonparametric functions εk(Z) and πk(Z). They

nonetheless satisfy the same conditions as in model [1.1], namely, πk(Z) ∈ (0, 1) and
∑k

1 πk(Z) =

1

2 CHAPTER 1. INTRODUCTION

1 for any Z, and εk(Z) is Gaussian distributed with E(εk|Z) = 0 and V ar(εk|Z) = σk(Z).

The model and estimator of Zhang et al. has four drawbacks:

1. The model proposed by Zhang et al. cannot be generalized to a semiparametric approach,

i.e., one cannot include linear effects in the mixture components. Being able to include

linear effects in the mixture components is conducive to two distinct purposes:

(a) First, it can be used when the data to be clustered has multiple independent variables

that are not of primary interest, but which the user would still like to include in the

model. As Zhang et al. point out, including such varibles with nonparametric effects

can explode the complexity of the algorithm beyond usability (see Section [4.0.5]).

Including such variables as linear effects is a alternative that keeps the complexity of

the algorithm tractable.

(b) Second, users who are mainly concerned with linear effects of components within

a mixture model can flexibly control for one or more nuisance variables that are

suspected of being monotone in effect.

2. The Zhang et al. estimator fits mixture components in two, sequential steps, first fitting

an unconstrained function and then applying monotone constraints once the components

membership has been calculated. This approach introduces a potential bias when compo-

nents are not clearly identifiable.

3. The Zhang et al. estimator requires a tuning parameter for the fitting of each unconstrained

mixture component function, which is difficult in practice and adds computational com-

plexity.

We propose model [1.1] and a new estimator as an alternative, more generalized form of the

approach suggested by Zhang et al. that avoids the drawbacks mentioned above. Specifically,

our model accepts any number of non-parametric monotone or linear effects within each mixture

component; our estimator fits the monotone functions within each component in a single step;

and our estimator does not require the calibration of any tuning parameters.

The remainder of this paper is organized as follows. In Section 2, we discuss previous research

in the domains of mixture models, partial linear models, and isotonic regression. In Section 3,

we discuss the components of the proposed model. In Section 4, we describe the theoretical

structure of the proposed model (model [1.1]) as well as the estimation algorithm, followed by

the model’s asymptotic properties and empirical complexity. In Section 5, we apply the proposed

model to simulated data as well as World Bank data on global life expectancy through the end

of the 20th century. In the final section, we discuss implications and future work.

Chapter 2

Previous Work

The model proposed in this article draws from several branches of statistical research. In this

section, we briefly discuss the history and current state of said research.

2.0.1 Regression with shape constraints

Parametric regression models are constrained in their shape by construction. They can be further

constrained, often trivially, by estimating their shape within a limited parameter space. A

univariate linear model E(Y) = Xβ, for example, can be constrained to be non-decreasing by

estimating β̂ to be non-negative, i.e., β̂ ∈ [0,+∞). When estimating nonparametric regressions,

this triviality is lost and one must reconsider how to estimate constrained functions. The resulting

estimators are often applications of classical techniques such as maximum likelihood, and are

often free of tuning parameters, making them attractive alternatives to typical, unconstrained

nonparametric estimators (Guntuboyina and Sen (2018)).

Several types of constraint have been considered over the years. Frisen described unimodal

regression, i.e., the case where for E(Y) = f(X), f() has a unique local maximum or local

minimum (Frisen (1986)). Convex/concave regression, where the first derivatives of the estimated

functions are non-decreasing/non-increasing respectively, was first given a least-squares point

estimate by Hildreth (1954). The Hildreth estimate was later proved to be consistent by Hanson

and Pledger (1976), while its rate of convergence was established by Mammen (1991b). More

recently, convex estimation has been considered by Seijo and Sen (2011), Mazumder et al. (2015),

Kuosmanen (2008), and Groeneboom et al. (2001).

Isotonic, or monotone, regression and its variants have received the most attention in the

statistical literature, perhaps due to their continuing relevance. Monotone regression can be

defined most simply as a mapping f : x → y where f is non-decreasing or non-increasing over

the range of x. Monotone regressions have seen diverse applications across research domains;

They have been used by Hu et al. (2005) to analyze dose-response in bioinformatics, by Luss

et al. (2012) to estimate gene-gene interactions, and by Diggle et al. (1997) to estimate disease

risk as functions of spatial exposure, to name just a few examples.

Isotonic regression maximum likelihood estimators with no smoothness requirements were

3

4 CHAPTER 2. PREVIOUS WORK

first explored by Brunk (1958) and Grenander (1956). The asymptotic distribution of these

estimators was later established by Wright (1981). The Pool Adjacent Violators algorithm for

the estimation of the isotonic regression MLE with Gaussian distributed errors was first suggested

by Ayer et al. (1955).

The literature regarding isotonic regression diverges at the point of choosing an estimator

based on the crucial assumption of whether the resulting function is smooth. For applications in

which a step-wise function is acceptable, the estimators of Brunk, Grenander, Ayer, etc., have an

exact solution and no tuning parameter. However, for applications in which a smooth function

is required, alernate approaches have had to be developed, and a two-step procedure has become

common. These two-step procedures either estimate a smooth function and apply a monotonic

constraint on the resulting function (Friedman and Tibshirani (1984)), or estimate a monotonic

function and then smooth the resulting estimate (Cheng and Lin (1981)). Mammen compares the

asymptotic behaviours of these approaches in a comprehensive treatment of smooth, monotonic

nonparametric regression. Although these procedures differ in their asymptotic behaviours, all

of them require the selection of a tuning parameter (Mammen (1991a)).

2.0.2 Partial Linear Models

The Generalized Additive Model, or GAM (see equation [2.1]), was first suggested by Hastie and

Tibshirani (1986), and can be seen both as a generalization of the GLM to include nonparametric

terms, and as a generalization of additive models to models with error terms from the exponential

family. GAMs provide a large amount of flexibility to the nonparametric modeling of multivariate

data, but avoid the slow convergence – the curse of dimensionality – associated with multivariate

non-parametrics by imposing an additive structure between terms.

g(E(X)) = β0 +
∑
i=1

fi(xi) (2.1)

Partial Linear Models, or PLMs, predate GAMs by several years, having been introduced in

1986 by Engle et al. (1986) for the modelling of weather and energy-use. PLMs can nonetheless

be considered more productively as a slightly more restrictive subset of GAMs, wherein some

proportion of the model terms are required to be linear.

Both GAMs and PLMs have often been fit using the “backfitting” algorithm, first introduced

by Breiman and Friedman (1985) and used in the first descriptions of GAMs by Tibshirani

and Hastie, though several alternatives have been developed over the years. Notably, Speckman

introduced the profile least-squares estimator in 1988 Speckman (1988); Hua proposed the penal-

ized spline estimator Liang (2006); and Hamilton and Truong proposed the local linear estimator

Hamilton and Truong (1997). A thorough review of these various estimators, including numerical

comparisons, was performed by Liang (2006).

5

2.0.3 Mixture Models

Model-based clustering, or mixture models, are a common method for producing models of

latent clusters with probabalistic or “soft” cluster assignment. The history of mixture models

is particularly long, with the first such models having been implemented more than a century

ago by Newcomb (1886) and Pearson (1894). In much of the following century, progress in the

theory of mixture models and their estimation stalled due to a lack of computational power and

for lack of an efficient estimating strategy.

This dry spell was called to a close by the introduction by Dempster et al. (1977) of the

EM algorithm for estimation of models with supposed latent variables, which vastly simplified

the estimation of mixture models. Since then, development and research in mixture modelling

has proceeded rapidly, with implementations of Bayesian mixture models (Marin et al. (2005)),

infinite mixture models (Rasmussen (2000)), must-link and cannot-link constraints (Kiri Wagstaff

(2000)), and many variations of normal mixture models (McLachlan and Peel (1999), Fraley and

Rafter (2012)) all having been published within the last two decades.

Yet more recently, mixtures of regressions have received increased attention (Grün et al.

(2008), Viele and Tong (2002), Hurn et al. (2003)) as easily interpretable clustering methods that

specify a dependence structure amongst observed covariates without modelling the distributions

of the covariates themselves.

2.0.4 Mixtures of Nonparametric Regressions

Both Xiang and Yao (2016), and Huang et al. (2013) have considered mixtures of nonparametric

regressions. The model of Xiang & Yao estimates mixing proportions and the variance of each

component as constants, while allowing the mean of each component to be a nonparametric

function of the data. Huang et al., by contrast, propose a model where mixing proportions,

mean and variance within each mixture component are all estimated nonparametrically.

Various attempts have been made at generalizing the above approaches to include linear

effects, i.e., to model mixtures of partially linear models (PLMs) or generalized additive models

(GAMs). Wu and Liu (2017) propose a structure for estimating mixtures of PLMs with a

univariate nonparametric effect and arbitrary linear effects per component. Most recently, Zhang

and Pan (2020) extended this model to accept arbitrary nonparametric effects.

Within the smaller subset of mixtures of non-parametric regressions, one may frequently

encounter situations in which one would like to place shape constraints on some, or each, of the

components in our mixture model. There has been relatively little previous work in the modelling

of mixtures of specifically monotone nonparametric regressions, with the publication by Zhang

et al. standing out as the only treatment of this particular issue.

6 CHAPTER 2. PREVIOUS WORK

Chapter 3

An Overview of Contributing Models

and Estimators

3.0.1 Mixture Models and the EM Algorithm

General Finite Mixture Models

At its most basic, a finite mixture of K distributions for some positive integer K can be repre-

sented by its additive distribution:

p(X) =

K∑
k=1

πk · p(X|θk) (3.1)

where the distribution of each component k is parametrized by some set of parameters θk,

and the number of observations generated by component k is proportionate to πk. Necessarily,

all πk ∈ (0, 1), and
∑K

k=1 πk = 1. We assume that each observation generated by the mixture

is generated uniquely by one component, such that if we are given some number n of observed

values X1, ..., Xn, we can denote their categorization within the components of a mixture by a

latent (i.e., unobserved) variable Λ such that Λi ∈ {1, ..,K} for all i ∈ {1, ..., n}. Then, the

distribution of Λ can be denoted by equation [3.2], and the additive distribution in equation [3.1]

can be deconstructed to the conditional distribution in equation [3.3].

p(Λ = k) = πk (3.2)

p(Xi|Λi = k) = pk(X) = p(X|θk) (3.3)

Typically, however, one is simultaneously estimating the number of componentsK, the mixing

proportions πk, the parameters θk, and the latent variable Λ, at which point it becomes more

useful to consider Λ an n × k matrix of sequentially updated probabilities respresenting the

probability of observation n having been generated by component k. Λ must then meet the

condition that
∑K

k=1 Λik = 1 for all i ∈ {1, ..., n}.

7

8 CHAPTER 3. AN OVERVIEW OF CONTRIBUTING MODELS AND ESTIMATORS

This is an extremely flexible basic model structure, with p(·) only needing to be a valid

probability density function. Thus, one may have a mixture of gaussians (normals), of binomials,

of poissons, etc. These distributions may also be multivariate, and again, there is no restriction

on the presumed distribution belonging to each dimension within each cluster k. Some specific

such models are known by alternate names. For example, with some minimal restrictions added

to the mixture of multivariate gaussians, namely, when all component covariances are diagonal,

equal, and the variances are infinitesimal or the observations are given “hard assignments” (i.e.,

Λik ∈ {0, 1}), one has the well-known k-means model.

Finite Mixtures of Regressions

If one further specifies the distributions pk() in equation [3.1] as regression functions, one is left

with a finite mixture of regressions. The structure of such a mixture can be described without

specifying the exact form of either the regression model Y = fk(·| ~X) + εk or the distribution of

the random component, εk, as long as there is a weighted procedure for estimating f̂(·).
Suppose then that, instead of univariate X, we observe Yi, ..., Yn and associated ~Xi, ..., ~Xn.

As before, we assume that each observed set (Yi, ~Xi) belongs to one of {1, ..., k} unobserved

components for some positive integer k, and we denote this by a matrix of probabilities Λ. We

further assume some vector of regression model parameters θk.

Thus equation [3.1] becomes equation [3.4], in which the distribution of Y is conditioned on

the associated covariates ~X. The likelihood of this model is written out in equation [3.5]. When

the likelihood is maximized and parameters are estimated, the model provides the following:

1. The previously mentioned n × k matrix Λ representing the posterior probability of each

(Yi, ~Xi) belonging to each of K components.

2. A vector π1, ..., πk of prior probabilities representing the mixing proportions of each com-

ponent in the larger mixture model

3. A set of parameters θk for each regression component k

p(Y) =
K∑
k=1

πkp(Y = y | X = x,θk) (3.4)

L(π,θ) =
n∏
i=1

K∑
k=1

πkpk(yi | ~xi, θk) (3.5)

In contrast with other mixture models of multivariate data, this is in fact a 1-deminsonal

mixture of conditional normals. The convenience of this structuring is that no assumptions or

restrictions are placed on covariatesX. As a result, none of the parameters of the mixture model

external to the model components, i.e., neither the priors π nor the estimated posterior matrix

Λ, depend on covariates X except through Y . One could choose to include this dependence by

modelling the priors π as a function of the covariates, i.e., π(X). The result is what is sometimes

9

called a mixture-of-experts model, with π(X) being called gating coefficients or gating networks

(Gormley and Frühwirth-Schnatter (2018)).

The EM Algorithm

The EM algorithm is a method for discovering the parameter estimates that maximize the like-

lihood of a model which incorporates unobserved variables representing latent clusters. If we

denote such a problem as incorporating observations x1, ..., xn and associated latent variable

z1, ..., zn where zi ∈ {1, ..., k}, then the EM algorithm allows us to maximize equation [3.6],

which is the general likelihood of a single observation x. Note that this equation already appears

quite similar to the likelihood of a mixture model. A set of prior probabilities πk is not required,

as here we have assumed that each xi has a true cluster assignment, i.e., a “hard” assignment.

`(θ) = log

K∑
k=1

pk(X = x, Z = z|θ) (3.6)

The EM algorithm allows us to avoid determining the maximum of equation [3.6] directly,

and instead allows us to iteratively maximize a lower bound of the log-likelihood. To demonstrate

this, we introduce an arbitrary distribution over Z called q(Z). This allows us to reformulate

the likelihood equation as below:

`(θ) = log
K∑
k=1

q(Z)
pk(X = x, Z = z|θ)

q(Z)
(3.7)

Since the log-likelihood function is concave, Jensen’s inequality (equation [3.8], Jensen (1906))

applies, which specifies that the expectation over a convex function of X is greater or equal to

the convex function of the expectation. This gives us the inequality in equation [3.9].

E(f(X)) ≥ f(E(X)), for convex function f() (3.8)

log
K∑
k=1

q(Z)
pk(X = x, Z = z|θ)

q(Z)
≥

K∑
k=1

q(Z) log
pk(X = x, Z = z|θ)

q(Z)
(3.9)

The function J(q, θ) =
∑K

k=1 q(Z) log pk(X=x,Z=z|θ)
q(Z) therefore serves as a lower bound to the

likelihood. Given this formulation of J(q, θ), the expectation and maximization steps of the EM

algorithm, in equations [3.10] and [3.11] respectively, can be seen as complementary maximizers

of J(q, θ). Since each step only maximizes J(q, θ) with respect to either q or θ, the steps can

only increase J(q, θ) (or keep it constant), thus giving us the inequalities in equations [3.12] and

[3.13]. Moreover, since the lower bound on the likelihood can only increase, the likelihood can

only increase, thus demonstrating that the EM algorithm converges to at least a local maximum.

q(t) = argmax
q

J(q, θ(t)) (3.10)

10 CHAPTER 3. AN OVERVIEW OF CONTRIBUTING MODELS AND ESTIMATORS

θ(t+1) = argmax
θ

J(q(t), θ) (3.11)

J(q(t), θ(t)) ≥ J(q(t−1), θ(t)) (3.12)

J(q(t), θ(t+1)) ≥ J(q(t), θ(t)) (3.13)

Model-Based Generation and Prediction in Mixtures of Regressions

In typical mixture model frameworks, the model estimate permits the calculation of uncon-

ditioned joint distributions of the data and marginal distributions of any given variable. By

extension, such typical models permit the generation of new pseudo-observations that conform

with the model structure. The mixture of regressions model does not permit this type of gener-

ativity unless the distribution of the covariates is known a priori, since the distribution of the

covariates is not estimated as a part of the model. The mixture of regressions model thus requires

a covariate vector ~x in order to produce the marginal distribution of Y .

Similarly, whereas typical mixture models can classify new observations in a Bayesian manner

by summing over the product of the mixture prior and the density at the new observed data

(equation [3.14]), a mixture of regressions model must classify by summing over the density given

the observed data (equation [3.15]).

p(Y = y) =

K∑
k=1

πkpk(~Y = ~y |θk) (3.14)

p(Z = j|X = x, θ) =
πjpj(y | X = x, θj)∑K
k=1 πkpk(y | X = x, θk)

(3.15)

This is simply the standard application of Bayes’ theorem (equation [3.16]), where the densi-

ties of y|X = x for each component k are multiplied by the uninformed priors πk and normalized

over the marginal distribution of y|X = x.

p(θ|X) =
p(X|θ)p(θ)∫
θ p(X|θ)p(θ)

(3.16)

3.0.2 Partially Linear Models

Additive Linear Models

The general partial linear model is an additive regression model with some finite combination of

linear and non-linear components, which can be denoted thus:

Y =

p∑
h=1

gh(Zh) +

q∑
j=1

βjXj + ε (3.17)

11

where the model has h non-linear covariates and j linear covariates, where each gh() is some

nonparametric function of Zh, and where ε is a random variable with mean 0.

This model overlaps broadly with Generalized Additive Models (GAMs), but differs critically

in that we place no restriction on the smoothness of the non-linear components. GAMs are,

however, instructive in that they are partly motivated by the difficulty in estimating non-additive,

non-parametric models, and the additive structure of our partially linear model is similarly

motivated.

More specifically, although nonparametric methods exist for multiple regression, they are

faced with the well-known “curse of dimensionality” (Geenens (2011)). The slow convergence

associated with the curse of dimensionality is avoided by fitting the less general, additive model,

where each term is fit within one dimension. Both GAMs and partial linear models can be

estimated using the backfitting algorithm (Breiman and Friedman (1985)), which iteratively

estimates the individual terms of an additive model and, up to a user-specified threshold, deter-

mines an optimal solution.

Partially Linear Models with Monotone Constraints

The partial linear model that we apply in the proposed model of this paper can be denoted thus:

Y =

p∑
h=1

gh(Zh) +

q∑
j=1

βjXj + ε (3.18)

where the model has h non-linear covariates with monotone shape constraints and j linear

covariates, and where ε ∼ Normal(0, σ2). The parameters ~β and the functions g1(·), ...gp(·)
are determined as the minimizers of the quadratic loss function, shown in equation [3.19]. The

estimation of the functions g1(·), ...gp(·) is a problem of additive isotonic regression, discussed in

the next subsection.

{~̂β, ĝ1, ..., ĝp} = argmin
~β,g1:gp

n∑
i=1

(yi −
p∑

h=1

gh(zih) −
q∑
j=1

βjxij)
2 (3.19)

The MLE of the entire partial linear model is obtained via the backfitting algorithm, iterating

through the two-step process (equations [3.20], [3.21]) until convergence.

(I) {ĝ1, ..., ĝp} = argmin
g1:gp

n∑
i=1

yi − q∑
j=1

βjxij −
p∑

h=1

gh(zih)

 holding ~β fixed

(3.20)

(II) ~̂β = argmin
~β

n∑
i=1

yi − p∑
h=1

gh(zih)−
q∑
j=1

βjxij

 holding {g1, ..., gp} fixed

(3.21)

12 CHAPTER 3. AN OVERVIEW OF CONTRIBUTING MODELS AND ESTIMATORS

This model and estimator is thoroughly explored by Cheng (2009), where it is shown that,

under certain conditions (see section [A.1] of the appendix), β̂n is
√
n-consistent (equation [3.23]),

while the estimates {ĝ1, ..., ĝp} converge in distribution as to a two-sided brownian motion plus

a parabola (equation [3.22]).

n1/3 (2pZh
(zh))1/3

σ2/3gh(zh)1/3
[ĝh(zh)− gh(zh)]

d−→ GCM(Z(t) + t2)

where pZh
(zh) is the density of Zh evaluated at zh,

GCM(Z(t)) is the greatest convex minorant of Z(t)

and Z(t) is a two-sided Brownian motion

(3.22)

√
n(β̂n − β0)

d−→ N(0,Σ)

where Σ = σ2[E(X −
p∑

h=1

E(X|Zh))⊗2]−1

and σ2 = V ar(ε)

(3.23)

The asymptotic distribution of β̂ evidently has a larger variance than in the case of the

ordinary least squares estimate. As Cheng points out, this can be considered the cost of including

non-parametric terms in the regression model.

The rate of convergence for the non-parametric terms is slower than that of the linear terms,

as expected, but significantly faster than would be the case if the nonparametric terms were

multivariate monotone rather than univariate monotone and additive. Moreover, Cheng demon-

strates that in the additive case, the estimators {ĝ1, ..., ĝp} possess the oracle property, meaning

each ĝ(·) can be estimated as well as it could be if all other components, including all other ĝ(·),
are known. Thus the rate of convergence of any ĝ(·) is not diminished by the inclusion of other

monotone terms.

3.0.3 Isotonic Regression

Univariate Isotonic Regression

At the most basic level, with univariate x and y and a simple ordering amongst x such that

x1 ≤ x2 ≤ ... ≤ xn for all xi ∈ X, isotonic regression determines a non-decreasing function

g(·) such that g(x1) ≤ g(x2) ≤ ... ≤ g(xn) and for which ĝ(·) = argming
∑n

i=1 ||g(xi) − xi||L
for some loss function || · ||L. If observations are weighted, the objective function becomes

ĝ(·) = argming
∑n

i=1wi||g(xi)− xi||L for weights w. In the so-called antitonic case, the function

g(·) is non-increasing such that g(x1) ≥ g(x2) ≥ ... ≥ g(xn). Without loss of generality, from

this point on we are only concerned with the non-decreasing case.

If we consider specifically the squared error loss, our risk function and weighted risk func-

tion become equations [3.24] and [3.25] respectively. Equation [3.25] can alternately be written

13

explicitly in the form of a min-max formula, as in equation [3.26] (Jordan et al. (2019)), giving

it a characterization which facilitates the study of the properties of the estimator ĝ(·). Equa-

tion [3.26] breaks the function g(·) into non-decreasing “blocks”, and assigns to each block the

weighted mean of the values x contained in that block.

ĝ(·) = argmin
g

n∑
i=1

(g(xi)− xi)2 (3.24)

ĝ(·) = argmin
g

n∑
i=1

wi(g(xi)− xi)2 (3.25)

ĝ(xi) = min
j≥i

max
k≤j

∑j
k=k wkxk∑j
k=k wk

, i = 1, ..., n (3.26)

One can see from equation [3.26] that determining the estimate ĝ(·) for the least square

isotonic regression returns a step function, and requires no tuning parameter.

The Pool Adjacent Violators Algorithm

A well-known and efficient way to obtain the least square estimate of g() is through the Pool

Adjacent Violators Algorithm (PAVA). The PAVA – for univariate monotone regression (equation

[3.27]) – returns a step-function fit without either having to select a bandwidth or having to set

a congergence tolerance parameter. For multivariable monotone regression (equation [3.28]),

one must take a different approach, suggested by Bacchetti, called the Cyclic Pool Adjacent

Violators Algorithm (CPAV). Within the CPAV, one iterates through each univariate function

sequentially and update univariate monotone functions until convergence, returning the additive

model of equation [3.28].

Y = g(X) + ε (3.27)

Y =

p∑
h=1

gh(Xh) + ε (3.28)

14 CHAPTER 3. AN OVERVIEW OF CONTRIBUTING MODELS AND ESTIMATORS

Chapter 4

Proposed Model

4.0.1 Model Definition

The model proposed in this article has the following structure:

Y =



p∑
h=1

gh1(Zh) +

q∑
j=1

βj1Xj + ε1 with probability π1;

...
p∑

h=1

ghk(Zh) +

q∑
j=1

βjkXj + εk with probability πk;

(4.1)

where πk represents the prior probability of mixture component k; ghk(·) represents the

monotone function of variable h within component k; βjk represents the linear effect of variable

j within mixture component k; and εk represents the error associated with component k. All εk
are assumed to be normally distributed with mean 0, and are assumed to be independent of the

covariates (X,Z) . All πk are assumed to be unknown constants, and all πk ∈ (0, 1) such that∑K πk = 1.

There is no requirement that the K regression functions in model [4.1] be identical. Specif-

ically, ghk() for any h ∈ p and any k ∈ K can be set as monotone non-increasing, monotone

non-decreasing, or absent, regardless of the other ghk. Likewise, the number of linear effects βj ,

including the intercept β0, need not be same across different components k.

4.0.2 Model Estimation

The proposed model is obtained from a series of nested, iterative algorithms, described below.

Algorithm 1 describes the EM algorithm for fitting mixture priors and observation posteriors.

Algorithm 2 describes the weighted partial linear regression for the fitting of each component

within each M-step of the EM algorithm. Algorithm 3 describes the weighted, cyclic pool adjacent

violators algorithm for cases where there is more than one monotone function fit within a single

partial linear regression. Algorithm 4 describes the weighted pool adjacent violators algorithm

for fitting a single monotone regression. In all cases, convergence thresholds are set by the user.

15

16 CHAPTER 4. PROPOSED MODEL

Algorithm 1 EM algorithm for Finite Mixtures of Regressions
Require:

x — an n× p matrix (independent variables with no shape constraint)
z — an n× q matrix (independent variables with monotone shape constraint)
y — an n× 1 matrix (dependent variable)
k — a positive integer representing the number of categories of latent variable L

Result:
Λ — an n × k matrix representing the posterior probability of observation i = 1, ..., n be-
longing to latent category j = 1, ..., k. Additionally, for all i = 1, ..., n and j = 1, ..., k, Λij is
a real number in the range [0, 1], and

∑k
j=1 Λij = 1

~π — a vector π1, ..., πk of prior probabilities representing the mixing proportions of each
component in the larger mixture model
~Θ — a set of parameters Θk for each regression component k

1: Set iteration index d← 1
2: for i ∈ 1, ...n do
3: With uniform probability across k, assign one of the elements of [Λi1, ...,Λik] to 1 and all

other to 0, such that Λi = [0, ..., 1, ..., 0]
4: end for
5: while algorithm is not converged do
6: for j ∈ 1, ..., k do . Begin M-step

7: Set prior mixture proportion π(d)
j ←

1

n

n∑
i=1

Λ
(d−1)
ij

8: Set weighted partial linear model regression parameters such that

[β̂j , ĝj]
(d) ← argmin

β,g

n∑
i=1

Λ
(d−1)
ij (y − xβj − gj(z))2 (See Algorithm 2, WPLR)

9: end for . End M-step
10: for i ∈ 1, ..., n do . Begin E-step
11: for j ∈ 1, ..., k do
12: Set Λ

(d)
ij ← π

(d)
j p(yi|xi, β(d)

j , g
(d)
j (zi)), where p(yi|xi, β(d)

j , g
(d)
j (zi)) is the density of

a Normal distribution with µ = xiβ
(d)
j + g

(d)
j (zi) and σ =

√∑
wir2/w̄

n−rk(X)

13: end for

14: Normalize the posterior probabilities [Λi1, ...,Λik]
(d) such that

k∑
j=1

Λ
(d)
ij = 1

15: end for . End E-step
16: d = d+ 1
17: end while

17

Algorithm 2 Weighted Partial Linear Regression
Require:

x — an n× p matrix (independent variables with no shape constraint)
z — an n× q matrix (independent variables with monotone shape constraint)
y — an n× 1 matrix (dependent variable)
w — an n× 1 matrix (observation weights)

Result:

β̂, ĝ1, ..., ĝq such that [β̂, ĝ1, ..., ĝq] = argmin
β,g1,...,gq

n∑
i=1

wi(yi −
q∑

h=1

gh(zih)− xiβ)2

1: Set iteration index b← 1

2: Set β̂(0) ← βx, where [βx, βz] = argmin
βx,βz

n∑
i=1

wi(yi − ziβz − xiβx)2

3: while algorithm is not converged do
4: if z is univariate then . See Algorithm 4, PAVA

5: Set ĝ(b) ← argmin
g

n∑
i=1

wi([yi − xiβ(b−1)]− g(zi))
2 holding β(b−1) fixed.

6: else . See Algorithm 3, CPAV

7: Set
q∑

h=1

ĝ
(b)
h ← argmin

g1,...,gq

n∑
i=1

wi([yi − xiβ(b−1)]−
q∑

h=1

gh(zih))2 holding β(b−1) fixed.

8: end if

9: Set β̂(b) ← argmin
β

n∑
i=1

wi([yi − g(b)(zi)]− xiβ)2 holding g(b) fixed.

10: b = b+ 1
11: end while

Algorithm 3 Weighted Cyclic Pool Adjacent Violators Algorithm
Require:

x — an n× q matrix (independent variables)
z — an n× 1 vector (observation weights)
y — an n× 1 vector (dependent variable)

Result:
A set of non-decreasing functions f̂1, ...f̂q such that

[f̂1, ...f̂q] = argmin
f1,...fq]

n∑
i=1

wi(yi −
q∑

h=1

fh(xih))2

1: Set iteration index m← 1
2: while algorithm is not converged do
3: for h ∈ 1, ..., q do . See Algorithm 4, PAVA

4: Set f̂h ← argmin
fh

n∑
i=1

wi([yi −
q∑
j=1
j 6=h

fj(xih)]− fh(xih))2 holding all fj(), j 6= h fixed

5: end for
6: m = m+ 1
7: end while

18 CHAPTER 4. PROPOSED MODEL

Algorithm 4 Weighted Pool Adjacent Violators Algorithm
Require:

x — an n× 1 vector (independent variable)
w — an n× 1 vector (observation weights)
y — an n× 1 vector (dependent variable)

Result:

A non-decreasing function f̂(·) = argmin
f

n∑
i=1

wi(yi − f(xi))
2

1: Set iteration index l← 0
2: Set blocks r ← 1, ..., B where at l = 0, B = n
3: Set f (l=0)(xi)← yi
4: Set initial block membership f (l=0)(xi) ∈ ri
5: while any f lr(x) ≥ f lr+1(x) do
6: if f lr(x) > f lr+1(x) then
7: Merge blocks r and r + 1
8: end if

9: Solve f (l)
r () for block r as the weighted mean, i.e, fr() =

1∑n
i=1wi

n∑
i=1

wi(yi) for all x ∈ r

10: l = l + 1
11: end while

4.0.3 Asymptotic Properties of Model and Estimator

Under various sets of regularity assumptions, other authors have been able to derive analytically

the asymptotic variance of estimators for mixtures of various types of non-parametric and semi-

parametric regressions (see, for example, the publications of Zhang and Zheng (2018), Huang

et al. (2013), Zhang and Pan (2020)). This can be helpful if the analytic variance allows for the

construction of simple, parametrized confidence intervals for model coefficients, or if the analytic

representation gives some insight into the asymptotic shape and spread of the variance.

We know that the asymptotic variance of the model will be some function of the asymptotic

variance of the model components. We therefore know that in this case, given the findings of

Cheng (2009), the asymptotic variance of the model will be functions of a tensor power of a

sum over the expectations of the linear covariates given the non-linear covariates (see equations

[3.22] and [3.23] for the complete variance as proven by Guang). As Guang points out, these

expectations (i.e.,
∑p

h=1E(X|Zh) can be estimated by a kernel method.

This means that calculating the analytic variance of the model would require the selection of

a tuning parameter, whereas one of our model’s primary strengths is its lack of tuning parame-

ters. Moreover, the variance of both the linear coefficients and the nonparametric functions, as

presented by Guang, are sufficiently complex as to offer little in the way of intuitive understand-

ing. For these reasons, we opt to forego the analytic demonstration of the model variance and

instead calculate the distributions of model estimates via the bootstrap.

19

4.0.4 Confidence Intervals via Bootstrapping

We opt to implement and demonstrate the proposed model with confidence intervals calculated

via bootstrapping. Although the ordinary bootstrap applied to mixture models delivers all

the typical advantages of bootstrapping for determining parameter confidence intervals (Efron

(1979)), it runs into the well-known label-switching problem inherent in clustering algorithms

(Grün and Leisch (2009)). Specifically, when the mixture model is run multiple times, as with

the bootstrap, the labeling of the resulting clusters is random and there is no guarantee that

clusters with the same labels in two different models will represent the same underlying mixture

component.

One partial solution to this problem, which we apply in the current paper, is to select the

estimated parameters and non-parametric functions of the complete model as the starting values

when estimating each of the bootstrapped models. This results in both a decreased computa-

tional burden in calculating the bootstrapped estimates, and the bypassing of the label-switching

problem, since bootstrap-estimated components will likely share the same label as the component

from which their starting values were drawn. This is the solution proposed by Grün and Leisch

(2009) and implemented in the Flexmix package (see section [A.2]).

The disadvantage of this approach is that it ignores the possibility of bootstrap-estimated

parameters reaching local likelihood maxima. For this reason, this approach underestimates the

parameter variance. Moreover, if the first model which one fit returned estimates from a local

likelihood maximum instead of a global maximum, subsequent bootstrap estimates may likewise

be caught in the same local maximum. Parameter distributions from such a bootstrap might

then be heavily biased.

An alternative to the bootstrap paradigm is motivated by the selective inference approach for

clustering, introduced by Gao et al. (2020). The approach of Gao et al. dispenses with the need

for bootstrapping and instead provides an exact, finite-sample test for the difference in means

between two components of a fitted cluster model, e.g., C1 and C2 ∈ C(x). The test depends

upon the computation of a set of “perturbed” datasets S in which the observations belonging to

clusters C1 and C2 are “pushed” or “pulled” apart (with respect to a predefined distance measure)

but for which C1 and C2 still emerge as clusters. Although several difficulties remain in applying

such an approach to our proposed model – namely, selecting an appropriate distance measure,

computing the set S, and generalizing the approach to clusters of more than two components

– the application of such an approach would yield exact inference and solve the label-switching

problem, as well as possibly decreasing the computational burden. We leave this problem to

future research.

4.0.5 Computational Complexity of Estimator

A common concern amongst users of this model will be the speed of the estimator, and by

extension, the computational complexity of the estimator. The complexity of our estimator is

O(aknb(q2 + cp)), where a is the number of iterations of the EM algorithm, b is the number of

20 CHAPTER 4. PROPOSED MODEL

iterations of the weighted partial linear regression algorithm, c is the number of iterations of the

CPAV algorithm, n is the total number of observations, k is the number of components, p is

the number of monotone terms in each component, and q is the number of linear terms in each

component. Since the complexity of the PAVA algorithm is O(n) and the complexity of linear

regression is O(nq2) (Best and Chakravarti (1990), Trip (2018)), the complexity of our estimator

is quadratic only in q, the number of linear terms per component, and linear in all other terms.

However, the complexity of the estimator can easily come to be dominated by the iteration

terms a, b, and c, making the practical complexity difficult to anticipate given that the number

of iterations within each optimization step of the algorithm is problem-dependent. For a more

intuitive understanding of the estimator complexity, we compare the complexity empirically for

different types and numbers of features within the sub-component regression models via timed

applications on pseudo-data. In the benchmarking table below, we compare the run-time of the

estimation of 4 models – with one monotone covariate and no linear effects; with two monotone

covariates and no linear effects; with one monotone covariate and four linear effects; with two

monotone covariates and three linear effects – and all with the number of components, 4, known

a priori.

Test Replications Elapsed Relative

Bivariate monotone with linear effects 50 664.342 38.430
Bivariate monotone without linear effects 50 782.844 45.285
Univariate monotone with linear effects 50 17.287 1.000
Univariate monotone without linear effects 50 25.740 1.489

Table 4.1: Elapsed time for four different types of model constructions – with and
without linear effects, and with and without multiple monotone terms.

One can see that – for a model with 4 latent components – adding a second monotone

nonparametric effect within each component multiplies the computation time by approximately

50. This is an indication of the heavy cost of increasing even slightly the dimensionality of the

non-parametric estimation within each component model.

By comparison, adding linear effects within the component models comes essentially for free.

In fact, the estimation of models with univariate monotone effects and 4 linear effects is faster

than the complementary model without linear effects.

As stated previously, the difference in speed between fitting models with monovariate and

multivariate monotone terms is a function of the maximum number of iterations and the tolerance

threshold set on the EM algorithm, the backfitting sequence in the partial linear model estimator,

and the backfitting sequence in the CPAV sub-estimator (see algorithms [2] and [3]). All of these

parameters are set by the user, and there is as of yet no automated way of selecting parameters

for the optimal convergence rate of the algorithm. We leave this problem to future research.

Chapter 5

Model Applications

5.0.1 Simulated Data

In this section, we demonstrate the application of the proposed model by fitting it to randomly

generated pseudo-data. We begin by modeling 1000 observations generated from 2 latent cate-

gories with the following underlying structure:

Y1 = 50 +X3 + ε1

Y2 = −50 + 0.04 ·X5 + 30 ·X + ε2
(5.1)

where
ε1 ∼ N(0, 200)

ε2 ∼ N(0, 300)
(5.2)

and
π1 = 0.65

π2 = 0.35
(5.3)

and

X ∼ Uniform(−10, 10) (5.4)

We proceed to estimate a mixture of univariate regressions (model [5.5]), with the number

of components known a priori as 2. The fitted model includes only monotone non-decreasing

function of covariate X, and no intercept. The regression models are identical for each of the 2

components.

Y =
2∑

k=1

πk(gk(X) + εk) (5.5)

21

22 CHAPTER 5. MODEL APPLICATIONS

100

200

300

400

0.00 0.25 0.50 0.75 1.00
Posteriors

C
ou

nt
 (

sq
ua

re
 r

oo
t)

Cluster

1

2

Rootogram (square root scale)

Figure 5.1: The rootogram of the two-component mixture model shows the distri-
bution of posterior probabilities with reference to the binary latent variable, for all
observations used to fit the model. The model indicates higher confidence in the iden-
tification of clusters and the classification of individual observations when the obser-
vations accumulate near the limits of the rootogram, at 0 and 1. Conversely, greater
mass at the center of the rootogram represents observations that are less confidently
classified.

−1000

−500

0

500

1000

−10 −5 0 5 10
X

Y

Cluster

1

2

Monotone Component

Figure 5.2: The estimated monotone functions of the two-component mixture model,
with overlaid, dotted black lines representing the true functions. The confidence inter-
vals are generated by 500 iterations of an ordinary (non-parametric) bootstrap.

As can be seen from figure [5.2], the algorithm is more biased in its estimate where the true

data generating functions run in parallel.

We continue the demonstration with the inclusion of linear effects. For the next model, we

23

generate pseudo-data from 4 latent categories with the following underlying structure:

Y1 = 10 +X3
1 + 1.5 ·X2 − 1.5 ·X3 −X4 +X5 + ε1

Y2 = −10 + 40 ·X1 + 3 ·X2 + 2 ·X3 − 2 ·X4 + 2 ·X5 + ε2

Y3 = −4 + 2 · (X3
1)− 2 ·X2 −X3 + 2 ·X4 + 4 ·X5 + ε3

Y4 = 4 + 0.1 · (X5
1)− 3 ·X2 − 3 ·X3 − 3 ·X4 + 3 ·X5 + ε4

(5.6)

where

ε1 ∼ N(0, 50)

ε2 ∼ N(0, 60)

ε3 ∼ N(0, 60)

ε4 ∼ N(0, 40)

X1 ∼ Uniform(−5, 5)

X2 ∼ Uniform(−10, 10)

X3 ∼ Uniform(−100, 100)

X4 ∼ Uniform(−100, 100)

X5 ∼ Uniform(−100, 100)

(5.7)

and

π1 = π2 = π3 = π4 (5.8)

We proceed to estimate a mixture of partial linear regressions (model [5.9]), with the number

of components known a priori as 4. The fitted model includes one monotone non-decreasing

function of covariate X1, an intercept, and a linear effect for each of X2, ..., X5. The regression

models are identical for each of the 4 components.

Y =

4∑
k=1

πk(gk(X1) + β0,k + β1,k ·X2 + β2,k ·X3 + β3,k ·X4 + β4,k ·X5 + εk) (5.9)

Tables [5.1] through [5.5] show 89 % confidence intervals for the estimates of the linear effects

and priors of model [5.9]. It should be noted that, since these estimates are derived from the

nonparametric bootstrap, there are no constraints on the shape of the estimate distributions,

meaning they may not be either symmetric or unimodal, and information is therefore lost by

summarizing their complete distributions by means and confidence intervals. Moreover, since

each bootstrap repetition returns an associated set of estimates, there is known covariance be-

tween the estimates. One may represent both full distributions and covariance of up to three

linear effects at a time with three-dimensional plots of the covariate space, though with more

than three linear effects the interpretation of such plots becomes more difficult. We choose no

to report the covariance structure here, though users may find it useful in other applications.

24 CHAPTER 5. MODEL APPLICATIONS

10000

20000

30000

0.00 0.25 0.50 0.75 1.00
Posteriors

C
ou

nt
 (

sq
ua

re
 r

oo
t)

Cluster

1

2

3

4

Rootogram (square root scale)

Figure 5.3: The rootogram of the four-component mixture model represented by
equation [5.9].

−200

0

200

−5.0 −2.5 0.0 2.5 5.0
X1

Y

Cluster

1

2

3

4

Monotone Component

Figure 5.4: The estimated monotone functions of the four-component mixture model,
with overlaid, dotted black lines representing the true functions. The confidence inter-
vals are generated by 500 iterations of an ordinary (non-parametric) bootstrap.

Table 5.1: Component 1

lower mean upper

(Intercept) -11.91 -7.37 -3.21
X2 -2.63 -1.43 -0.21
X3 -1.11 -1.01 -0.90
X4 1.95 2.04 2.13
X5 3.91 4.02 4.12

sigma 61.00 65.48 68.74

Table 5.2: Component 2

lower mean upper

(Intercept) -0.71 9.91 19.79
X2 0.20 1.93 3.45
X3 -1.67 -1.44 -1.10
X4 -1.17 -0.88 -0.59
X5 0.53 0.72 0.94

sigma 123.67 131.94 141.23

25

Table 5.3: Component 3

lower mean upper

(Intercept) -24.97 -17.84 -8.91
X2 0.32 1.73 2.92
X3 1.79 1.89 2.03
X4 -2.14 -2.04 -1.93
X5 1.95 2.10 2.24

sigma 91.67 97.09 102.44

Table 5.4: Component 4

lower mean upper

(Intercept) -6.48 -1.66 5.21
X2 -4.64 -3.22 -2.18
X3 -3.18 -3.09 -3.02
X4 -3.20 -3.12 -3.05
X5 2.80 2.94 3.05

sigma 67.87 74.42 79.18

Table 5.5: Priors

lower mean upper

0.22 0.24 0.26
0.21 0.23 0.26
0.25 0.27 0.28
0.25 0.26 0.28

5.0.2 Algorithm Comparisons with Simulated Data

Here, we empirically compare the behaviour of our proposed model with that of the Zhang et

al. model. We fit both models on four separate datasets, each with two components. The first

dataset is generated from a model where the true priors of the mixture components πk, as well as

the true variance of those components σk, are functions of observed covariates, i.e., πk(X) and

σk(X). The second dataset is generated from a model where the true priors and true variances,

πk and σk, are constant. The third dataset is generated from a model with constant true priors

and true variances, as well as much “jagged” true underlying functions. The fourth dataset,

again, is generated from a model with constant true priors and true variances, as well as true

underlying functions that twice intersect. Because of the label-switching problem, we choose to

plot and compare the resulting fitted models without reference to the component labels. Instead,

we overlay component mean estimates sequentially in order to try to compare the general bias

and variance behaviours of the two respective model classes. In each pair of comparison plots,

the true underlying functions are represented by dotted black lines.

The models resulting from the first dataset, seen in figure [5.5], show that the Zhang et al.

model produces tight fits around the true functions, with very low variance. Our proposed model

also fits tightly around the true functions when its component estimates are well-separated, but

it frequently encounters a component-switching problem where the function estimate is in fact

a hybrid of the underlying true functions. When the underlying model has constant true priors

and variances, as in figure [5.6], our model is slightly better behaved, although the component-

switching problem remains.

In the third dataset, shown in figure [5.7], our model follows the jagged breaks and changes

in the true underlying functions with no visible increase in variance. The Zhang et al. estimator,

on the other hand, become severely biased and confidently estimates an incorrect pair of func-

26 CHAPTER 5. MODEL APPLICATIONS

tions. When the Zhang et al. estimator does estimate the correct function neighbourhood, it

smooths over the sharp edges of the underlying function. In the fourth dataset, shown in figure

[5.8], where the true functions intersect, the Zhang et al. model confidently estimates smooth,

non-intersecting functions. Our model, on the other hand, correctly identifies the function inter-

sections.

Algorithm Comparison for Conditional True Priors and Variances

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

Zhang et al. Model

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

Authors' Model

Figure 5.5: The Zhang et al. model and the authors’ model, fit to data generated
from an underlying model with conditional true priors and variances.

Algorithm Comparison for Separated True Functions

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Zhang et al. Model

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Authors' Model

Figure 5.6: The Zhang et al. model and the authors’ model, fit to data generated
from an underlying model with constant true priors and variances.

27

Algorithm Comparison for Jagged True Functions

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Zhang et al. Model

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Authors' Model

Figure 5.7: The Zhang et al. model and the authors’ model, fit to data generated
from an underlying model with constant true priors and variances, as well as “jagged”
underlying true functions.

Algorithm Comparison for Overlapping True Functions

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Zhang et al. Model

0.0 0.2 0.4 0.6 0.8 1.0

Authors' Model

Figure 5.8: The Zhang et al. model and the authors’ model, fit to data generated
from an underlying model with constant true priors and variances, as well as intersecting
underlying true functions.

5.0.3 Real Data: Global Life Expectancy

In this section, we apply the mixture of monotone regressions to global life expectancy data.

Consider data on ’GDP per person’ and ’Life expectancy’ for all countries between the years 1960

and 2018, drawn from the free online resources of the World Bank (Bank (2018)). Specifically,

28 CHAPTER 5. MODEL APPLICATIONS

the data consists of n observations (y1, ~x1), ..., (yn, ~xn), where Y represents Life Expectancy and

the vector ~X represents both GDP and Year.

Moreover, this data has two properties that are very common in real world data:

1. Missing Data: Not all countries have data for all years, and several have gaps due to years

of conflict in which data was not collected.

2. A priori Groupings: This data contains multiple observations per country, but we expect

that our model will constrain countries to be clustered together.

On a first pass visualization of this data, we find a mostly linear relationship between Life

Expectancy & Year (figure [5.9]), and a mostly logarithmic relationship between Life Expectancy

& GDP (figure [5.10]).

40

50

60

70

80

1960 1980 2000 2020
Year

Li
fe

 E
xp

ec
ta

nc
y

(y
ea

rs
) Regions

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

Life Expectancy by Global Region

Figure 5.9: The relationships between Life Expectancy and time are largely linear
across all global regions. Sub-saharan Africa uniquely demonstrates what appears to
be a cubic relationship over time.

29

40

50

60

70

80

6 8 10
GDP per Capita (current USD, log scale)

Li
fe

 E
xp

ec
ta

nc
y

(y
ea

rs
) Regions

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

GDP per Capita by Global Region (log scale)

Figure 5.10: The relationships between Life Expectancy and GDP per capita are
largely log-linear across global regions. Nearly all regions feature brief noisy sections
surrounded by notably larger smooth sections.

For the purposes of demonstration, we choose to model this data without log-transforming

the GDP data in order to preserve its highly non-linear relationship with Life Expectancy. We

proceed by building two step models: with and without an intercept, and each with ‘GDP‘ as the

monotone covariate. Each model is in fact a series of 27 mixture models, 3 for each of k = 1, ..., 9.

These models have the form of equations [5.10] and [5.11] respectively.

Y =
K∑
k=1

πk(gk(GDP) + βk · Y ear + εk) (5.10)

Y =
K∑
k=1

πk(gk(GDP) + β0,k + β1,k · Y ear + εk) (5.11)

For each series, we plot the AIC and BIC per k, the rootogram of the model with the lowest

AIC, and the fitted monotone functions for the model with the lowest AIC. In the plots of fitted

monotone functions, since the Y -value only represents the additive contribution of the monotone

term, the range of the Y axis spans across 0 and into negative real numbers.

30 CHAPTER 5. MODEL APPLICATIONS

2 4 6 8

55
00

0
65

00
0

AIC / BIC / ICL in Model 42 by Number of Components

Number of Components

AIC
BIC
ICL

Figure 5.11: Here we observe the various model selection metrics – AIC, BIC and ICL
– for models represented by equation [5.10], constructed with each of k components.

1e+05

2e+05

3e+05

4e+05

5e+05

0.00 0.25 0.50 0.75 1.00
Posteriors

C
ou

nt
 (

sq
ua

re
 r

oo
t)

Cluster

1

2

3

4

5

6

7

Rootogram (square root scale)

Figure 5.12: Here we observe the rootogram of model [5.10] with the lowest AIC.
The high proportion of observations classed near the outer limits of 0 and 1 indicate a
well-separated model.

31

−20

0

20

1e+02 1e+03 1e+04 1e+05
GDP

Li
fe

E
xp

ec
ta

nc
y

Cluster

1

2

3

4

5

6

7

Monotone Component

Figure 5.13: Here we observe the monotone functions for all components in the fit-
ted model [5.10] with lowest AIC. Observed values are overlaid in the colour of the
component to which each country is assigned.

2 4 6 8

55
00

0
65

00
0

AIC / BIC / ICL in Model 43 by Number of Components

Number of Components

AIC
BIC
ICL

Figure 5.14: Here we observe the various model selection metrics – AIC, BIC and ICL
– for models represented by equation [5.11], constructed with each of k components.

32 CHAPTER 5. MODEL APPLICATIONS

1e+05

2e+05

3e+05

4e+05

5e+05

0.00 0.25 0.50 0.75 1.00
Posteriors

C
ou

nt
 (

sq
ua

re
 r

oo
t)

Cluster

1

2

3

4

5

6

7

Rootogram (square root scale)

Figure 5.15: Here we observe the rootogram of model [5.11] with the lowest AIC.
Again, the distribution of the rootogram indicates a well-separated model.

−40

−20

0

20

1e+02 1e+03 1e+04 1e+05
GDP

Li
fe

E
xp

ec
ta

nc
y

Cluster

1

2

3

4

5

6

7

Monotone Component

Figure 5.16: Here we observe the monotone functions for all components in the fit-
ted model [5.11] with lowest AIC. Observed values are overlaid in the colour of the
component to which each country is assigned.

Next, we would typically plot the distribution of clusters within the lowest-AIC model of each

step-model series, projected onto a world map. For demonstration purposes, we instead plot the

4-component model from each series. In these world map plots, the colors of each cluster span a

spectrum from white to full-color, representing the strength of the posterior and the confidence

of the model in placing a given country within a given cluster. The world-maps indicate what the

rootograms had previously indicated, namely that the resulting models are extremely confident

about the clustering of nearly all countries.

33

120°W 60°W 0° 60°E 120°E

0.00 0.25 0.50 0.75 1.00
Cluster 2

Posterior

0.00 0.25 0.50 0.75 1.00
Cluster 1

0.00 0.25 0.50 0.75 1.00
Cluster 4

0.00 0.25 0.50 0.75 1.00
Cluster 3

Map of Country Clusters in Model 42

Figure 5.17: Here we observe the world map with colour code corresponding to the
results of model [5.10].

120°W 60°W 0° 60°E 120°E

0.00 0.25 0.50 0.75 1.00
Cluster 2

Posterior

0.00 0.25 0.50 0.75 1.00
Cluster 1

0.00 0.25 0.50 0.75 1.00
Cluster 4

0.00 0.25 0.50 0.75 1.00
Cluster 3

Map of Country Clusters in Model 43

Figure 5.18: Here we observe the world map with colour code corresponding to the
results of model [5.11].

Finally, we iteratively refit model [5.10] while excluding all observations from a series of

countries – Argentina, Canada, Iran, Senegal, Switzerland, Thailand, chosen to represent a

variety of countries from different regions – in order to demonstrate the predictive capacities

of the mixture model. As stated previously, in section [3.0.1], there are two possible contexts

in which one might use the mixture model predictively. One may have a complete observation

or set of observations, e.g., the Year, GDP and Life Expectancy data for a given country

over several years, in which case one could use the mixture model to generate a set of posterior

34 CHAPTER 5. MODEL APPLICATIONS

probabilities representing the probability of that country belonging to each of the model clusters.

Alternately, one may have an incomplete observation or set of observations, e.g., the Year and

GDP data (but not Life Expectancy) for a country over several years, in which case one could

use the mixture model to generate a conditional marginal distribution of Life Expectancy

for the given country. In figure [5.19], we demonstrate the latter.

1960 1980 2000

4
0

6
0

8
0

Canada

L
ife

 E
xp

e
ct

a
n

cy

1990 2000 2010

4
0

6
0

8
0

Iran

1970 1990 2010

4
0

6
0

8
0

Paraguay

1960 1980 2000

4
0

6
0

8
0

Senegal

Year

L
ife

 E
xp

e
ct

a
n

cy

1960 1980 2000

4
0

6
0

8
0

Switzerland

Year

1960 1980 2000

4
0

6
0

8
0

Thailand

Year

Figure 5.19: Marginal distributions of Life Expectancy over time for each country,
corresponding to the results of model [5.10]. Observed Life Expectancy values are
superimposed in black.

The marginal distributions produced by model [5.10] illustrate the flexibility of the model,

and at the same time highlight some of its crucial assumptions. First, the must-link constraints,

which form the groupings of the model and ensure that all observations from a single country

are clustered together, assume rather minimally that observations from a single country are

i.i.d. and drawn from some common underlying distribution. In this case, that is an untenable

assumption since observations were in fact drawn sequentially, and one should therefore assume

autocorrelation among the observations, as with any time-series data.

Second, as discussed in section [3.0.1], the model is constructed such that the posterior prob-

abilities of an observation (Λi for some i, to keep with earlier notation) depend on covariates

Xi only through dependent variable Yi. The simplicity of this dependence structure is advan-

tageous, but for the predictive task of determining a marginal distribution of Y for an observed

X = x, the resulting distribution is a mixture proportionate only to the uninformed priors.

Thus, although in model [5.10] countries are clearly being clustered with respect to economic

development and therefore, in some way, with respect to GDP per capita, the marginal distribu-

35

tions of Life Expectancy for a wealthy country such as Switzerland and a poorer country such as

Senegal will have the same mixing proportions regardless of observed GDP per capita. A clear

solution to this would be to model the priors π of the mixture model as additionally dependent

on covariates X, as is typically done in mixture-of-expert models (c.f., section [3.0.1]).

36 CHAPTER 5. MODEL APPLICATIONS

Chapter 6

Discussion

The model presented in this paper provides a general and robust option for representing mixtures

of regressions where some, or all, of the regression terms are non-parametric, monotone functions.

There are several advantages to this implementation which make it simpler and more versatile.

First, this model generalizes univariate mixtures of monotone regressions to the multivariate

case, where any finite number of both linear and monotone terms can be specified within each

mixture component. Second, this estimator is free of any tuning parameters in the component

regression functions, which allows the overall model to be computationally simpler and leaves

fewer modelling decision to the user. Finally, this estimator fits each monotone term in its

mixture components in a single step, thereby avoiding the bias inherent in a two-step process,

and giving the model flexibility in fitting data for which the true underlying functions are jagged

and/or intersect. This flexibility is especially important for modelling in contexts where assuming

that the model components are well separated or divisible by a hyperplane is unrealistic.

6.0.1 Weaknesses

Although the model presented in this paper makes some substantial improvements on its pre-

decessor, the Zhang et al. model, these improvements are conditional upon the data being

modelled. The Zhang et al. model still has lower variance in contexts where the true underlying

components have sufficiently smooth monotone terms and are sufficiently well-separated. When

these are reasonable assumptions to make, the Zhang et al. model is clearly preferable. More-

over, given that users may have little reason to believe that these assumptions are or are not

reasonable, deciding which model to use may be difficult.

Another weakness of our model is that the monotone component of each regression is not

a smooth function but rather a step-wise function. For cases in which a smooth function is

required, this is prohibitive. However, where smooth monotone functions are not required, the

advantages of our model may outweigh this cost.

37

38 CHAPTER 6. DISCUSSION

6.0.2 Future Developments

There are three clear directions for future development with respect to the model presented in this

paper. First, the model could be generalized to accept alternate types of shape constraints – for

example, convex or k -monotone constraints. This would greatly extend the model’s applicability,

especially in cases where model components might combine nonparametric terms with different

types of shape constraint.

Second, the model could be generalized to fit regressions with non-normal conditional errors.

Since mixtures of generalized linear models have previously been implemented (see, for example,

Grün and Leisch (2008)) and the MLE isotonic estimator has already been generalized to non-

normal errors (see De Leeuw et al. (2009)), we expect that this would be a simple practical

extension. The clearest advantage to such an extension would be the ability to model mixtures

of partially monotone logistic regressions. Such models would have ready applications in, for

example, epidemiological studies like Morton-Jones et al. (2000) where the outcomes are binary

disease states instead of continuous disease severities.

Third, the model could be generalized to fit mixtures with coefficient-dependent priors, as

do the model of Zhang et al. and other variations of the mixture-of-experts model. Although

such models do not necessarily have interpretable prior parameters, they are much better suited

to applications that place high importance on prediction.

Finally, an exact, finite-sample approach in the style of Gao et al. (2020) could be developed

for the inference of confidence intervals. The successful application of such an approach would

solve the label-switching problem explored in section [4.0.4] without adding bias to the parameter

estimates.

Appendix A

Appendix

A.1 Asymptotic Behaviour of Partially Linear Models with Mono-

tone Constraints

As discussed in section [3.0.2], the asymptotic behaviour of partially linear models with monotone

constraints described by Cheng (2009) requires that the assumptions below hold.

Let the estimators β̂n, ĥ1, ..., ĥJ be defined as the minimizer of

Sn(β, h1, ..., hj) = n−1
n∑
i=1

(Yi −X ′iβ −
J∑
j=1

hj(Wij))
2 (A.1)

where each hj is a monotone function with bounded derivative and
∫
hj(wj)dwj = 0. Then,

the following are regularity conditions for 1 ≤ j ≤ J :

1. The function hj satisfies the condition that

inf|wj−w′
j |≥δ |hj(wj)− hj(w

′
j)| ≥ C1δ

γ (A.2)

for any δ > 0 and some constants C1, γ > 0.

2. The density for Wj , denoted as pwj , is assumed to be bounded away from zero and infinity,

and fulfills the below Lipschitz condition

sup−1≤wj ,w′
j≤1 |pwj (wj)− pwj (w

′
j)| ≤ M |wj − w′j |ρ (A.3)

for some constants M,ρ > 0.

3. The function ζj(w) ≡ E(X|Wj = w) satisfies the condition

||ζj(wj)− ζj(w′j)|| ≤ C2|wj − w′j | (A.4)

for some constant C2 > 0.

39

40 APPENDIX A. APPENDIX

4. E(X −
∑J

j=1E(X|Wj))
⊗2 is strictly positive.

A.2 Flexmix Extension

All results in this paper were produced by an extension of Flexmix, a flexible implementation of

generalized finite mixture models created by Bettina Grun and Friedrich Leisch (Leisch (2004)).

The package provides a framework for implementing specific types of mixture models based on a

central, universal framework. It is thus intended to allow users to elaborate a specific estimator

or “driver” for the modeling of mixture components, while the more abstract behaviours are

managed by the Flexmix backend. More specifically, Flexmix implements:

1. The universal functions of the EM algorithm for assigning prior values πk to each of the

mixture components and posterior values Λi to each of the observations upon each iteration

of the EM algorithm;

2. Threshold constants for the convergence of the EM algorithm;

3. Restrictions on the model estimate, e.g., restricting components to have an estimated prior

above a certain threshhold;

4. Ordinary- and parametric-bootstrap methods for the estimation of confidence intervals

with respect to each component.

Conversely, the user must provide a model estimator and a model object with a log-likelihood

method, logLik(), which returns the density of an observation given a component’s parame-

ters, and a prediction function, predict(), which gives an expected value of an observation’s

dependent variable given the observed independent variables.

To implement the Flexmix extension, one must call flexmix() from the Flexmix package

with mono_reg() as the model argument. E.g., the following call to flexmix() produces a

model with 6 components, each of which is a partial linear model regressing Y on all other vari-

ables of df, excluding an intercept. The mon_inc_index argument to mono_reg() instructs

the function to estimate an isotonic function on the second independent variable in df.

mod <- flexmix(Y ~ .-1, data = df, k = 6, model =

mono_reg(mon_inc_index = 2))

It should be noted that the indexing arguments passed to mono_reg() are indices of the

design matrix constructed by the formula passed to flexmix(), so they change based on the

design matrix. For example, without an intercept, mono_inc_index = 2 refers to the 2nd

independent variable of the data frame; when an intercept is included, mono_inc_index =

2 refers to the 1st independent variable of the data frame df. It is therefore safer and rec-

ommended that the user specify the monotone terms by name using the mono_inc_names or

mono_dec_names arguments, as below.

A.2. FLEXMIX EXTENSION 41

mod <- flexmix(Y ~ ., data = df, k = 6, model =

mono_reg(mon_inc_names = "Var_2"))

The extension allows the user to include any number of isotonic and/or antitonic (monotone-

non-decreasing, monotone-non-increasing) variables in the call to mono_reg, as demonstrated

below.

mod <- flexmix(Y ~ ., data = df, k = 6, model =

mono_reg(mon_inc_names = c("Var_2", "Var_4"),

mon_dec_names = c("Var_3", "Var_6")))

Flexmix also allows the construction of multiple mixture models within a single object. The

following call to stepFlexmix() builds 25 mixture models. For each of k equal to 1 through

5 components, nrep specifies the construction of 5 models. Each model contains 2 monotone

components – a monotone-non-decreasing, or isotonic, relationship between Y and Var_2, and

a monotone-non-increasing, or antitonic, relationship between Y and Var_3.

m2 <- stepFlexmix(Y ~ ., data = df, model =

mono_reg(mon_inc_names = "Var_2",

mon_dec_names = "Var_3"), k = 1:5, nrep = 5)

A notable weakness in the Flexmix architecture is that the structure of all components must

be specified identically within a given model. Thus, whereas in theory one could fit a mixture

of monotone regressions where different components have different monotone directions – e.g.,

the first component is monotone non-decreasing and the second component is monotone non-

increasing – this is not possible with the current instantiation of Flexmix.

For further discussion of the use of the Flexmix package, see the guides at https://ro.

uow.edu.au/cgi/viewcontent.cgi?article=3410&context=commpapers and https:

//cran.rapporter.net/web/packages/flexmix/vignettes/mixture-regressions.

pdf.

The complete code for the extension of Flexmix for modelling mixtures of partially-linear

monotone regressions is included below. The first code block implements the partial linear model

with monotone shape constraints; the second code block integrates the partial linear model with

the Flexmix framework; the third code block provides additional functions for the visualization

of results.

A.2.1 Code for the Estimation of Partial Linear Models

define estimator for partial linear model with arbitrary monoto-

ne-constrained component

https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3410&context=commpapers
https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3410&context=commpapers
https://cran.rapporter.net/web/packages/flexmix/vignettes/mixture-regressions.pdf
https://cran.rapporter.net/web/packages/flexmix/vignettes/mixture-regressions.pdf
https://cran.rapporter.net/web/packages/flexmix/vignettes/mixture-regressions.pdf

42 APPENDIX A. APPENDIX

cpav <- function(x_mat, y, weights, inc_index=NULL, dec_index=NULL

, max_iters_cpav=NULL, max_delta_cpav=NULL){

joint_ind <- c(inc_index, dec_index)

if(!is.matrix(x_mat)) stop("x_mat is not of class matrix, and

will be rejected by lm.wfit")

if(any(weights == 0)) stop("monoreg(), and therefore cpav(),

cannot take weights of 0!")

if(length(y) != length(weights) | length(y) !=

dim(x_mat)[1]) stop("The dimension of the inputs is not

equal to the dimension

of the weights")

if there is only 1 monotone component, apply ordinary

monotone regression

if(length(joint_ind) == 1){

if(length(inc_index) == 1){ # the component is monotone

increasing

return(# cast the monoreg object as a matrix, with all

#attributes as rows in the first column

matrix(suppressWarnings(monoreg(x = x_mat[,inc_index],

y = y, w = weights)),

dimnames = list(c("x", "y", "w", "yf", "type",

"call")))

)}

else{ # the component is monotone decreasing

return(# cast the monoreg object as a matrix, with all

#attributes as rows in the first column

matrix(suppressWarnings(monoreg(x = x_mat[,dec_index],

y = y, w = weights, type =

"antitonic")),

dimnames = list(c("x", "y", "w", "yf", "type",

"call")))

) } }

else{ # the monotone components are multiple, so continue with

cyclic algorithm

A.2. FLEXMIX EXTENSION 43

fit ordinary lm on x_mat and y

start_betas <- coef(lm.wfit(x=x_mat[,joint_ind], y=y,

w=weights))

set initial monotone reg estimates by calling each monoreg()

#against y - lm.predict(all other vars)

mr_fits <- sapply(1:length(joint_ind), function(i)

if(joint_ind[i] %in% inc_index){

i apologize to anyone trying to read this line,

but think: the columns of the x_matrix

indicated by join_ind, except the value of joint_ind at

the ith place in joint_ind

suppressWarnings(monoreg(x = x_mat[,joint_ind[i]],

y = (y - (as.matrix(x_mat[,joint_ind[-i]]) %*%

start_betas[-i])), w = weights,

type = "isotonic"))

}

else if(joint_ind[i] %in% dec_index){

suppressWarnings(monoreg(x = x_mat[,joint_ind[i]],

y = (y - (as.matrix(x_mat[,joint_ind[-i]]) %*%

start_betas[-i])), w = weights,

type = "antitonic"))

})

iterate through mr_fits. each column of mr_fits (e.g.,

mr_fits[,1]) is a monoreg fitted object,

and its attributes can be called (e.g., mr_fits[,1]$yf)

iters <- 0

delta <- 0.5

if(is.null(max_iters_cpav)){

max_iters_cpav <- 100

}

if(is.null(max_delta_cpav)){

max_delta_cpav <- 0.00001}

while(abs(delta) > max_delta_cpav & iters < max_iters_cpav){

old_SS <- mean((y - get_pred(mr_fits, x_mat[,joint_ind]))^2)

44 APPENDIX A. APPENDIX

for(i in 1:length(joint_ind)){

if(joint_ind[i] %in% inc_index){

i apologize to anyone trying to read this line, but

think: the columns of the x_matrix

indicated by join_ind, except the value of joint_ind

at the ith place in joint_ind

mr_fits[,i] <- suppressWarnings(monoreg(x =

x_mat[,joint_ind[i]],

y = (y - get_pred(mr_fits[,-i],

x_mat[,joint_ind[-i]])),

w = weights, type = "isotonic"))}

else if(joint_ind[i] %in% dec_index){

mr_fits[,i] <- suppressWarnings(monoreg(x =

x_mat[,joint_ind[i]],

y = (y - get_pred(mr_fits[,-i],

x_mat[,joint_ind[-i]])),

w = weights, type = "antitonic"))}}

new_SS <- mean((y - get_pred(mr_fits, x_mat[,joint_ind]))^2)

delta <- (old_SS - new_SS)/old_SS

iters <- iters + 1 }

return(mr_fits)

}}

first, define function for obtaining f(x_new) for monotone

regression f()

get_pred returns a vector of length = nrows(xvals), ie, a value

for each observation of xvals

get_pred <- function(mr_obj, xvals){

xvals <- as.matrix(xvals)

mr_obj <- as.matrix(mr_obj)

if(dim(mr_obj)[2] != dim(xvals)[2]) stop("get_pred() must take

an X-matrix with as many columns

as monoreg() objects")

if(dim(xvals)[1] == 1){ # if xvals is a single observation

sapply(1:ncol(xvals), function(j)

A.2. FLEXMIX EXTENSION 45

mr_obj[,j]$yf[sapply(xvals[,j], function(z)

ifelse(z < mr_obj[,j]$x[1], 1,

ifelse(z >= tail(mr_obj[,j]$x, n=1),

length(mr_obj[,j]$x),

which.min(mr_obj[,j]$x <= z)-1)))])}

else{

apply(sapply(1:ncol(xvals), function(j)

mr_obj[,j]$yf[sapply(xvals[,j], function(z)

ifelse(z < mr_obj[,j]$x[1], 1,

ifelse(z >= tail(mr_obj[,j]$x, n=1),

length(mr_obj[,j]$x),

which.min(mr_obj[,j]$x <= z)-1)))]

), 1, function(h) sum(h))}}

define partial linear regression of y on x with weights w

inputs are: x, y, wates, mon_inc_index, mon_dec_index, max_iter

part_fit <- function(x, y, wates = NULL, mon_inc_index=NULL,

mon_dec_index=NULL, max_iter=NULL,

component = NULL, na.rm=T,

mon_inc_names = NULL,

mon_dec_names = NULL, start_fit = NULL, ...){

cast x to matrix

x <- as.matrix(x)

set default weights

if(is.null(wates)) wates <- rep(1, length(y))

remove incomplete cases

if(T){ # for now, there is no alternative to na.rm=T. All

incomplete cases are removed.

cc <- complete.cases(y) & complete.cases(x) &

complete.cases(wates)

y <- y[cc]

x <- x[cc,, drop=FALSE]

wates <- wates[cc]

cc <- NULL}

x <- as.matrix(x) # cast again. hacky but apparently necessary

46 APPENDIX A. APPENDIX

make sure y and wates is not multivariate

if(length(y) != dim(x)[1] | length(y) != length(wates)) stop(

"Inputs are not of the same dimension!")

take monotone indices of previous component

if(!is.null(component)){

inc_ind <- component$mon_inc_index

dec_ind <- component$mon_dec_index}

else{

if(is.null(mon_inc_index) & is.null(mon_dec_index) &

is.null(mon_inc_names) & is.null(mon_dec_names)){

stop("Some monotone index or name must be specified")

}

if(!is.null(mon_inc_names)){ # add names to index list

mon_inc_index <- unique(c(mon_inc_index, which(colnames(x)

%in% mon_inc_names)))

}

if(!is.null(mon_dec_names)){

mon_dec_index <- unique(c(mon_dec_index, which(colnames(x)

%in% mon_dec_names)))

}

transfer inc_names to inc_index

inc_ind <- mon_inc_index

dec_ind <- mon_dec_index}

throw warning if there are duplicates in inc_ind or dec_ind,

and then remove

if(anyDuplicated(inc_ind) | anyDuplicated(dec_ind)){

warning("There are duplicate index instructions; Duplicates

are being removed.")

inc_ind <- unique(inc_ind)

dec_ind <- unique(dec_ind)}

throw error if indices overlap

if(length(intersect(inc_ind, dec_ind)) > 0) stop("At least one

variable was marked as BOTH

monotone increasing

and monotone decreasing.")

A.2. FLEXMIX EXTENSION 47

throw error if indices are not integers

if(!is.null(inc_ind)){

if(any(inc_ind != as.integer(inc_ind))) stop("Monotone

increasing indices are not integers.")

}

if(!is.null(dec_ind)){

if(any(dec_ind != as.integer(dec_ind))) stop("Monotone

decreasing indices are not integers.")}

throw error if indices are not positive

if(any(c(inc_ind, dec_ind) < 1)) stop("all monotone component

indices must be positive")

throw error if the number of indices exceeds columns of x

if(length(c(inc_ind, dec_ind)) > ncol(x)) stop("Number of

proposed monotonic relationships exceeds columns of x.")

If there is an intercept but no other linear effects, stop

if((length(c(inc_ind, dec_ind))+1) == ncol(x) & "(Intercept)"

%in% colnames(x)){

stop("For identifiability purposes, you cannot build a

part_fit with only an intercept as a linear component.")}

If start_fit is specified, make sure it has only part_fit

elements with the appropriate dimensions

if(!is.null(start_fit)){

if(!is(start_fit, "list")) stop("start_fit must be a list of

part_fit attributes")

if("coef" %in% names(start_fit)){

if(length(start_fit$coef) != (dim(x)[2] - length(c(inc_ind,

dec_ind)))){

stop("Not the right number of coefficients in

starting values")

}

if(!all(names(start_fit$coef) %in% colnames(x)[-c(inc_ind,

dec_ind)])){

stop("Some coefficient(s) in starting values have

incorrect names")

48 APPENDIX A. APPENDIX

}

if(!all(colnames(x)[-c(inc_ind, dec_ind)] %in%

names(start_fit$coef))){

stop("Some coefficient(s) in starting values are missing")

}

if(!all(names(start_fit$coef) == colnames(x)[-c(inc_ind,

dec_ind)])){

start_fit$coef <- start_fit$coef[

match(colnames(x)[-c(inc_ind,

dec_ind)],start_fit$coef)] }}}

option for fit with no linear independent components and one

or multiple monotone components:

if(length(c(inc_ind, dec_ind)) == ncol(x)){

yhat <- cpav(x_mat = as.matrix(x[wates != 0,]), y =

y[wates != 0],

weights = wates[wates != 0],

inc_index = inc_ind, dec_index = dec_ind)

get residuals of model

resids <- y - get_pred(yhat, x[,c(inc_ind, dec_ind)])

mod must have: coef attribute, sigma attribute, cov

attribute, df attribute, ..., and

may have mon_inc_index and mon_dec_index attributes

mod <- list(coef = NULL, fitted_pava = NULL, sigma = NULL,

df = NULL, mon_inc_index = NULL,

mon_dec_index = NULL,

iterations = NULL,

mon_inc_names = NULL, mon_dec_names = NULL)

mod$coef <- NULL

mod$fitted_pava <- yhat

mod$mon_inc_index <- inc_ind

mod$mon_dec_index <- dec_ind

mod$sigma <- sqrt(sum(wates * (resids)^2 /

mean(wates))/ (nrow(x)-qr(x)$rank))

mod$df <- ncol(x)+1

A.2. FLEXMIX EXTENSION 49

class(mod) <- "part_fit"

return(mod)

}

else{

for starting values, fit a regular lm or use starting values

if(!is.null(start_fit) && "coef" %in% names(start_fit)){

betas <- start_fit$coef

}

else{

fit <- lm.wfit(x=x, y=y, w=wates)

betas <- coef(fit)[-c(inc_ind, dec_ind)]}

set maximum iterations for convergence

if(!is.null(max_iter) & !is.list(max_iter)){

if(max_iter < 1) stop("max_iter must be positive")

maxiter <- max_iter

}

else{

maxiter <- 200 }

set while loop initial values

iter <- 0

delta <- 10

iterate between pava and linear model

set while loop condition(s).

delta works well enough with delta > 1e-12.

while(delta > 1e-6 & iter < maxiter){

yhat <- cpav(x_mat = as.matrix(x[wates != 0,]), y =

(y[wates != 0] - (as.matrix(x[wates != 0,

-c(inc_ind, dec_ind)]) %*% betas)),

weights = wates[wates != 0], inc_index =

inc_ind, dec_index = dec_ind)

save old betas for distance calculation

old_betas <- betas

to retrieve old ordering of y for fitted values, we use

y[match(x, sorted_x)]

50 APPENDIX A. APPENDIX

betas <- coef(lm.wfit(x=as.matrix(x[,-c(inc_ind, dec_ind)]),

y= (y - get_pred(yhat,

x[,c(inc_ind, dec_ind)])), w=wates))

quantify change in yhat vals and beta vals

get euclidian distance between betas

transformed into unit vectors

delta <- dist(rbind(as.vector(betas)/norm(as.vector(betas),

type ="2"),

as.vector(old_betas)/norm(as.vector(old_betas),

type="2")

))

iter <- iter + 1 # iterate maxiter

}

}

get residuals of model

resids <- y - (get_pred(yhat, x[,c(inc_ind, dec_ind)]) +

(as.matrix(x[,-c(inc_ind, dec_ind)]) %*% betas))

mod must have: coef attribute, sigma attribute, cov attribute,

df attribute, ..., and may have mon_inc_index and

mon_dec_index attributes

mod <- list(coef = NULL, fitted_pava = NULL, sigma = NULL,

df = NULL, mon_inc_index = NULL, mon_dec_index =

NULL, iterations = NULL, mon_inc_names = NULL,

mon_dec_names = NULL)

mod$coef <- betas

mod$fitted_pava <- yhat

mod$iterations <- iter

mod$mon_inc_index <- inc_ind

mod$mon_dec_index <- dec_ind

mod$sigma <- sqrt(sum(wates * (resids)^2 /

mean(wates))/ (nrow(x)-qr(x)$rank))

mod$df <- ncol(x)+1

class(mod) <- "part_fit"

A.2. FLEXMIX EXTENSION 51

return(mod)

}

write plot method for objects returned from part_fit()

append_suffix <- function(num){

suff <- case_when(num %in% c(11,12,13) ~ "th",

num %% 10 == 1 ~ 'st',

num %% 10 == 2 ~ 'nd',

num %% 10 == 3 ~'rd',

TRUE ~ "th")

paste0(num, suff)

}

plot.part_fit <- function(z){

if(dim(as.matrix(z$fitted_pava))[2] > 1){

temp <- list()

for(i in 1:dim(as.matrix(z$fitted_pava))[2]){

temp[[i]] <- ggplotGrob(ggplot() +

geom_line(aes(x = z$fitted_pava[,i]$x, y =

z$fitted_pava[,i]$yf)) +

theme_bw() +

labs(title = paste(append_suffix(i),

" Monotone Regression"),

x = "X",

y = "Y"))

}

return(grid.arrange(grobs=temp, ncol=1))

}

else{

temp <- ggplot() +

geom_line(aes(x = z$fitted_pava[,1]$x,

y = z$fitted_pava[,1]$yf)) +

theme_bw() +

labs(title = "Monotone Regression",

x = "X",

y = "Y")

return(temp)

}

52 APPENDIX A. APPENDIX

}

A.2.2 Code for the M-step Driver

allow slots defined for numeric to accept NULL

setClassUnion("numericOrNULL",members=c("numeric", "NULL"))

setClassUnion("characterOrNULL",

members = c("character", "NULL"))

setOldClass("monoreg")

setClassUnion("matrixOrMonoreg",

members = c("matrix", "monoreg"))

Define new classes

setClass(

"FLX_monoreg_component",

contains="FLXcomponent",

allow mon_index to take either numeric or NULL

slots=c(mon_inc_index="numericOrNULL",

mon_dec_index="numericOrNULL",

mon_obj="matrix",

mon_inc_names="characterOrNULL",

mon_dec_names="characterOrNULL"

))

Define FLXM_monoreg

setClass("FLXM_monoreg",

contains = "FLXM",

slots = c(mon_inc_index="numericOrNULL",

mon_dec_index="numericOrNULL",

mon_inc_names="characterOrNULL",

mon_dec_names="characterOrNULL"))

definition of monotone regression model.

mono_reg <- function (formula = .~., mon_inc_names = NULL,

mon_dec_names = NULL, mon_inc_index=NULL,

mon_dec_index=NULL, ...) {

only names or indices can be indicated, not both

if((!is.null(mon_inc_names)|!is.null(mon_dec_names)) &

A.2. FLEXMIX EXTENSION 53

(!is.null(mon_inc_index)|!is.null(mon_dec_index))) stop(

"mono_reg() can accept either monotone

names or indices can be chosen, but not both.")

retval <- new("FLXM_monoreg", weighted = TRUE,

formula = formula,

name = "partially linear monotonic regression",

mon_inc_index= sort(mon_inc_index),

mon_dec_index= sort(mon_dec_index),

mon_inc_names= mon_inc_names,

mon_dec_names= mon_dec_names)

@defineComponent: Expression or function constructing the

object of class FLXcomponent fit must have attributes:

coef, sigma, cov, df, ..., and

may have mon_inc_index and mon_dec_index attributes

... all must be defined by fit() function

retval@defineComponent <- function(fit, ...) {

@logLik: A function(x,y) returning the

log-likelihood for observations in matrices x and y

logLik <- function(x, y) {

dnorm(y, mean=predict(x, ...), sd=fit$sigma,

log=TRUE)}

@predict: A function(x) predicting y given x.

predict <- function(x) {

x <- as.matrix(x)

inc_ind <- fit$mon_inc_index

dec_ind <- fit$mon_dec_index

p <- get_pred(fit$fitted_pava, x[,c(inc_ind,

dec_ind)])

if(!is.null(fit$coef)){

p <- p + (as.matrix(x[,-c(inc_ind,

dec_ind)]) %*% fit$coef)

}

p

}

return new FLX_monoreg_component object

new("FLX_monoreg_component", parameters =

54 APPENDIX A. APPENDIX

list(coef = fit$coef, sigma = fit$sigma,

mon_obj = fit$fitted_pava),

df = fit$df, logLik = logLik, predict =

predict, mon_inc_index =

fit$mon_inc_index, mon_dec_index =

fit$mon_dec_index,

mon_obj = fit$fitted_pava,

mon_inc_names = fit$mon_inc_names,

mon_dec_names = fit$mon_dec_names)

}

@fit: A function(x,y,w) returning an object of

class "FLXcomponent"

retval@fit <- function(x, y, w, component, mon_inc_index =

retval@mon_inc_index,

mon_dec_index = retval@mon_dec_index,

mon_inc_names = retval@mon_inc_names,

mon_dec_names = retval@mon_dec_names,

...) {

if(is.null(mon_inc_index) &

is.null(mon_dec_index)){

if not all monotone names are in the design

matrix, stop & print the name that is missing

if(!all(c(mon_inc_names, mon_dec_names) %in%

colnames(x))){

stop(paste(setdiff(c(mon_inc_names,

mon_dec_names), colnames(x)),

"could not be found in the model

matrix. Check your spelling."))

}

Discover correct monotone indices

if(any(colnames(x) %in% mon_inc_names)){

mon_inc_index <- which(colnames(x) %in%

mon_inc_names)

}

if(any(colnames(x) %in% mon_dec_names)){

mon_dec_index <- which(colnames(x)

A.2. FLEXMIX EXTENSION 55

%in% mon_dec_names)

}

}

if(is.null(mon_inc_names) &

is.null(mon_dec_names)){

Discover correct monotone names

mon_inc_names <- colnames(x)[

sort(mon_inc_index)]

mon_dec_names <- colnames(x)[

sort(mon_dec_index)]

}

fit <- part_fit(x, y, w, component,

mon_inc_index=mon_inc_index,

mon_dec_index=mon_dec_index, ...)

retval@defineComponent(fit, ...)

}

retval

}

A.2.3 Code for Wrapper Functions

Wrapper functions for Flexmix objects with monoreg components

import libraries

library(ggplot2)

library(grid)

library(gridExtra)

library(RColorBrewer)

Multiple plot function

#

ggplot objects can be passed in ..., or to plotlist (as a list

of ggplot objects)

#

multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {

library(grid)

56 APPENDIX A. APPENDIX

Make a list from the ... arguments and plotlist

plots <- c(list(...), plotlist)

numPlots = length(plots)

If layout is NULL, then use 'cols' to determine layout

if (is.null(layout)) {

Make the panel

ncol: Number of columns of plots

nrow: Number of rows needed, calculated from # of cols

layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),

ncol = cols, nrow = ceiling(numPlots/cols))

}

if (numPlots==1) {

print(plots[[1]])

} else {

Set up the page

grid.newpage()

pushViewport(viewport(layout = grid.layout(nrow(layout),

ncol(layout))))

Make each plot, in the correct location

for (i in 1:numPlots) {

Get the i,j matrix positions of the regions

that contain this subplot

matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,

layout.pos.col = matchidx$col))

}

}

}

####

overwrite method for plot.flexmix

A.2. FLEXMIX EXTENSION 57

setMethod('plot', signature(x="flexmix", y="missing"),

function(x, mark=NULL, markcol=NULL, col=NULL,

eps=1e-4, root=TRUE, ylim=NULL, xlim=NULL,

main=NULL, xlab=NULL, ylab=NULL,

as.table = TRUE, endpoints = c(-0.04, 1.04),

rootogram=F, palet = NULL,

root_scale = "unscaled", subplot=NULL, ...) {

if(is.null(palet)){

palet <- "Accent"

}

check that this is a mixture of part_fits

assign appropriate names for graph labelling

if(is(x@components[[1]][[1]], "FLX_monoreg_component")){

if(is.null(c(x@model[[1]]@mon_inc_names,

x@model[[1]]@mon_dec_names))){

xnames <- sapply(1:dim(x@components[[1]][[1]]@mon_obj)[2],

function(x) paste0("X", x))

mono_names <- c("Y", xnames)

}

else{

mono_names <- c(x@formula[[2]], c(x@model[[1]]@mon_inc_names,

x@model[[1]]@mon_dec_names))

}

get dimension of monotone components by reading

columns of fitted_pava object

if(dim(x@components[[1]][[1]]@mon_obj)[2] > 1){

np <- list()

for(i in 1:dim(x@components[[1]][[1]]@mon_obj)[2]){

holder <- ggplot()

if(length(x@components) == 1){

holder <- holder +

geom_line(aes(x =

x@components[[1]][[1]]@mon_obj[,i]$x,

y =

x@components[[1]][[1]]@mon_obj[,i]$yf))

58 APPENDIX A. APPENDIX

+ theme_bw() +

labs(title = paste(append_suffix(i),

" Monotone Regression"),

x = mono_names[i+1],

y = mono_names[1])

}

if(length(x@components) > 1){

monlist <- list()

for(b in 1:length(x@components)){

monlist[[b]] <- data.frame(x =

x@components[[b]][[1]]@mon_obj[,i]$x,

yf =

x@components[[b]][[1]]@mon_obj[,i]$yf)

}

mondf <- cbind(Cluster=

rep(1:length(x@components),

sapply(monlist,nrow)),

do.call(rbind,monlist))

mondf$Cluster <- as.factor(mondf$Cluster)

holder <- holder + geom_line(mondf, mapping =

aes(x,yf, color=Cluster))

+ scale_color_brewer(palette=palet) +

theme_bw() +

labs(title = paste(append_suffix(i),

" Monotone Regression"),

x = mono_names[i+1],

y = mono_names[1])

}

if(!is.null(ylim)){

if(length(ylim) != dim(

x@components[[1]][[1]]@mon_obj)[2] |

length(ylim[[1]]) != 2){

stop("If you pass a ylim argument, it must have

as many element pairs as the model has monotone

A.2. FLEXMIX EXTENSION 59

components. Try formulating the argument

as: ylim = list(c(i,j), c(i,j), ...)")}

holder <- holder + ylim(ylim[[i]])

}

if(!is.null(xlim)){

if(length(xlim) != dim(

x@components[[1]][[1]]@mon_obj)[2] |

length(xlim[[1]]) != 2){

stop("If you pass a xlim argument, it must have

as many element pairs as the model has monotone

components. Try formulating the argument

as: xlim = list(c(i,j), c(i,j), ...)")}

holder <- holder + xlim(xlim[[i]])

}

if(!is.null(ylab)){

if(length(ylab) != dim(

x@components[[1]][[1]]@mon_obj)[2]){

stop("If you pass a ylab argument, it must have

as many elements as the model has monotone

components. Try formulating the argument

as: ylab = c(\"first\",\"second\",...)")}

holder <- holder + ylab(ylab[[i]])

}

if(!is.null(xlab)){

if(length(xlab) != dim(

x@components[[1]][[1]]@mon_obj)[2]){

stop("If you pass a xlab argument, it must have

as many elements as the model has monotone

components. Try formulating the argument

as: xlab = c(\"first\",\"second\",...)")}

holder <- holder + xlab(xlab[[i]])

}

if(!is.null(main)){

if(length(main) != dim(

x@components[[1]][[1]]@mon_obj)[2]){

stop("If you pass a main argument, it must have

as many elements as the model has monotone

components. Try formulating the argument

as: main = c(\"first\",\"second\",...)")}

60 APPENDIX A. APPENDIX

holder <- holder + ggtitle(main[[i]])

}

np[[i]] <- holder

}

return(grid.arrange(grobs=np, ncol=1))

return(grid.arrange(grobs=np, ncol=1))

}

else{

np <- ggplot()

if(length(x@components) == 1){

np <- np + geom_line(aes(x =

x@components[[1]][[1]]@mon_obj[,1]$x, y =

x@components[[1]][[1]]@mon_obj[,1]$yf)) +

theme_bw() +

labs(title = "Monotone Component",

x = mono_names[2],

y = mono_names[1])

}

if(length(x@components) > 1){

monlist <- list()

for(b in 1:length(x@components)){

monlist[[b]] <- data.frame(x =

x@components[[b]][[1]]@mon_obj[,1]$x,

yf =

x@components[[b]][[1]]@mon_obj[,1]$yf)

}

mondf <- cbind(Cluster=rep(1:length(x@components),

sapply(monlist,nrow)),

do.call(rbind, monlist))

mondf$Cluster <- as.factor(mondf$Cluster)

np <- np + geom_line(mondf, mapping = aes(x,yf,

A.2. FLEXMIX EXTENSION 61

color=Cluster)) +

scale_color_brewer(palette=palet) +

theme_bw() +

labs(title = "Monotone Component",

x = mono_names[2],

y = mono_names[1])

}

if(!is.null(ylim)){

np <- np + ylim(ylim)

}

if(!is.null(xlim)){

np <- np + xlim(xlim)

}

if(!is.null(ylab)){

np <- np + ylab(ylab)

}

if(!is.null(xlab)){

np <- np + xlab(xlab)

}

if(!is.null(main)){

np <- np + ggtitle(main)

}

return(np)

}

}

plot and append rootogram

collect posteriors

post <- data.frame(x@posterior$scaled)

change columns of posteriors to cluster numbers

names(post) <- 1:dim(post)[2]

post <- melt(setDT(post), measure.vars =

c(1:dim(post)[2]), variable.name = "Cluster")

plot rootogram, with color indicating cluster

62 APPENDIX A. APPENDIX

rg <- ggplot(post, aes(x=value, fill=Cluster)) +

geom_histogram(binwidth = 0.05) +

scale_fill_brewer(palette=palet) +

theme_bw() +

labs(title = "Rootogram",

x = "Posteriors",

y = "Count")

if(root_scale == "sqrt"){rg <- rg +

scale_y_sqrt() +

labs(title = "Rootogram (square root scale)",

x = "Posteriors",

y = "Count (square root)")}

if(root_scale == "log"){rg <- rg +

scale_y_log10() +

labs(title = "Rootogram (log scale)",

x = "Posteriors",

y = "Count (log)")}

if(!is.null(subplot)){

return(list(rg, np)[[subplot[1]]])

}

else{

multiplot(rg, np)

}

}

)

Bibliography

Ait-Sahalia, Y. and Duarte, J. (2003). Nonparametric option pricing under shape restrictions.

Journal of Econometrics, 116(1):9–47. Frontiers of financial econometrics and financial engi-

neering. 1

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955). An Empirical

Distribution Function for Sampling with Incomplete Information. The Annals of Mathematical

Statistics, 26(4):641 – 647. 4

Bank, W. (2018). World bank open data. https://data.worldbank.org/indicator/

NY.GDP.PCAP.CD. 27

Best, M. and Chakravarti, N. (1990). Active set algorithms for isotonic regression; a unifying

framework. Math. Program., 47:425–439. 20

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple re-

gression and correlation. Journal of the American Statistical Association, 80(391):580–598. 4,

11

Brunk, H. D. (1958). On the Estimation of Parameters Restricted by Inequalities. The Annals

of Mathematical Statistics, 29(2):437 – 454. 4

Cai, B. and Dunson, D. B. (2007). Bayesian multivariate isotonic regression splines: Applications

to carcinogenicity studies. Journal of the American Statistical Association, 102:1158–1171. 1

Cheng, G. (2009). Semiparametric additive isotonic regression. Journal of Statistical Planning

and Inference, 139:1980–1991. 12, 18, 39

Cheng, K.-F. and Lin, P.-E. (1981). Nonparametric estimation of a regression function: Limiting

distribution2. Australian Journal of Statistics, 23(2):186–195. 4

De Leeuw, J., Kurt, H., and Mair, P. (2009). Isotone optimization in r: Pool-adjacent-violators

algorithm (pava) and active set methods. Journal of Statistical Software, 32. 38

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1):1–38. 5

63

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

64 BIBLIOGRAPHY

Diggle, P., Morris, S., Elliott, P., and Shaddick, G. (1997). Regression modelling of disease risk

in relation to point sources. Journal of the Royal Statistical Society. Series A (Statistics in

Society), 160(3):491–505. 3

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,

7(1):1 – 26. 19

Engle, R. F., Granger, C. W. J., Rice, J., and Weiss, A. (1986). Semiparametric estimates of the

relation between weather and electricity sales. Journal of the American Statistical Association,

81(394):310–320. 4

Fraley, C. and Rafter, A. (2012). Mclust version 3 for r: Normal mixture modeling and model-

based clustering. Technical Report, Department of Statistics, University of Washington, 504.

5

Friedman, J. and Tibshirani, R. (1984). The monotone smoothing of scatterplots. Technometrics,

26(3):243–250. 4

Frisen, M. (1986). Unimodal regression. Journal of the Royal Statistical Society. Series D (The

Statistician), 35(4):479–485. 3

Gao, L. L., Bien, J., and Witten, D. (2020). Selective inference for hierarchical clustering. 19,

38

Geenens, G. (2011). Curse of dimensionality and related issues in nonparametric functional

regression. Statistics Surveys, 5(none):30 – 43. 11

Gormley, I. C. and Frühwirth-Schnatter, S. (2018). Mixtures of experts models. 9

Grenander, U. (1956). On the theory of mortality measurement. Scandinavian Actuarial Journal,

1956(1):70–96. 4

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2001). Estimation of a Convex Function:

Characterizations and Asymptotic Theory. The Annals of Statistics, 29(6):1653 – 1698. 3

Grün, B. and Leisch, F. (2008). Finite Mixtures of Generalized Linear Regression Models, pages

205–230. Physica-Verlag HD, Heidelberg. 38

Grün, B. and Leisch, F. (2009). Dealing with label switching in mixture models under genuine

multimodality. Journal of Multivariate Analysis, 100(5):851–861. 19

Grün, B., Leisch, F., Shalabh, S., and Heumann, C. (2008). Finite Mixtures of Generalized

Linear Regression Models, pages 205–230. 5

Guntuboyina, A. and Sen, B. (2018). Nonparametric shape-restricted regression. 3

Hamilton, S. A. and Truong, Y. K. (1997). Local linear estimation in partly linear models.

Journal of Multivariate Analysis, 60(1):1–19. 4

BIBLIOGRAPHY 65

Hanson, D. L. and Pledger, G. (1976). Consistency in Concave Regression. The Annals of

Statistics, 4(6):1038 – 1050. 3

Hastie, T. and Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, 1(3):297

– 310. 4

Hildreth, C. (1954). Point estimates of ordinates of concave functions. Journal of the American

Statistical Association, 49(267):598–619. 3

Hu, J., Kapoor, M., Zhang, W., Hamilton, S. R., and Coombes, K. R. (2005). Analysis of

dose–response effects on gene expression data with comparison of two microarray platforms.

Bioinformatics, 21(17):3524–3529. 3

Huang, M., Li, R., and Wang, S. (2013). Nonparametric mixture of regression models. Journal

of the American Statistical Association, 108(503):929–941. 5, 18

Hurn, M., Justel, A., and Robert, C. P. (2003). Estimating mixtures of regressions. Journal of

Computational and Graphical Statistics, 12(1):55–79. 5

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégualités entre les valeurs Moyennes.

9

Jordan, A., Mühlemann, A., and Ziegel, J. (2019). Optimal solutions to the isotonic regression

problem. 13

Kiri Wagstaff, C. C. (2000). Clustering with instance-level constraints. Proceedings of the Sev-

enteenth International Conference on Machine Learning, pages 1103–1110. 5

Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares. The

Econometrics Journal, 11(2):308–325. 3

Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class

regression in R. Journal of Statistical Software, 11(8):1–18. 40

Liang, H. (2006). Estimation in partially linear models and numerical comparisons. Computa-

tional Statistics & Data Analysis, 50(3):675–687. 4

Luss, R., Rosset, S., and Shahar, M. (2012). Efficient regularized isotonic regression with appli-

cation to gene–gene interaction search. The Annals of Applied Statistics, 6(1). 3

Mammen, E. (1991a). Estimating a Smooth Monotone Regression Function. The Annals of

Statistics, 19(2):724 – 740. 4

Mammen, E. (1991b). Nonparametric Regression Under Qualitative Smoothness Assumptions.

The Annals of Statistics, 19(2):741 – 759. 3

Marin, J.-M., Mengersen, K., and Robert, C. (2005). Bayesian modelling and inference on

mixtures of distributions. Handbook of Statistics, 25. 5

66 BIBLIOGRAPHY

Mazumder, R., Choudhury, A., Iyengar, G., and Sen, B. (2015). A computational framework for

multivariate convex regression and its variants. 3

McLachlan, G. and Peel, D. (1999). The emmix algorithm for the fitting of normal and t-

components. Journal of Statistical Software, Articles, 4(2):1–14. 5

Morton-Jones, T., Diggle, P., Parker, L., Dickinson, H. O., and Binks, K. (2000). Additive

isotonic regression models in epidemiology. Statistics in Medicine, 19(6):849–859. 1, 38

Newcomb, S. (1886). A generalized theory of the combination of observations so as to obtain the

best result. American Journal of Mathematics, 8(4):343–366. 5

Oussalah, A., Gleye, S., clerc urmès, I., Laugel, E., Barbé, F., Orlowski, S., Malaplate, C.,

Aimone-Gastin, I., Caillierez, B., Merten, M., Jeannesson, E., Kormann, R., Olivier, J.-L.,

Rodriguez-Guéant, R.-M., Namour, F., Bevilacqua, S., Thilly, N., Losser, M.-R., Kimmoun,

A., and Guéant, J.-L. (2020). The spectrum of biochemical alterations associated with organ

dysfunction and inflammatory status and their association with disease outcomes in severe

covid-19: A longitudinal cohort and time-series design study. EClinicalMedicine, 27:100554. 1

Pearson, K. (1894). Contributions to the mathematical theory of evolution. ii. skew variation in

homogeneous material. Philosophical Transactions of the Royal Society of London, 186:343–

414. 5

Rasmussen, C. (2000). The infinite gaussian mixture model. Advances in Neural Information

Processing Systems 12, pages 554–560. 5

Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex

regression function. The Annals of Statistics, 39(3):1633 – 1657. 3

Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical

Society: Series B (Methodological), 50(3):413–436. 4

Trip, T. K. (2018). Computational complexity of machine learning algorithms. 20

Viele, K. and Tong, B. (2002). Modeling with mixtures of linear regressions. Statistics and

Computing, 12:315–330. 5

Wright, F. T. (1981). The Asymptotic Behavior of Monotone Regression Estimates. The Annals

of Statistics, 9(2):443 – 448. 4

Wu, X. and Liu, T. (2017). Estimation and testing for semiparametric mixtures of partially

linear models. Communications in Statistics - Theory and Methods, 46(17):8690–8705. 5

Xiang, S. and Yao, W. (2016). Mixture of regression models with single-index. 5

Zhang, Y. and Pan, W. (2020). Estimation and inference for mixture of partially linear additive

models. Communications in Statistics - Theory and Methods, 0(0):1–15. 5, 18

BIBLIOGRAPHY 67

Zhang, Y. and Zheng, Q. (2018). Non parametric mixture of strictly monotone regression models.

Communications in Statistics - Theory and Methods, 47(2):415–426. iii, 1, 18

68 BIBLIOGRAPHY

	Abstract
	Acknowledgments
	Introduction
	Previous Work
	An Overview of Contributing Models and Estimators
	Proposed Model
	Model Applications
	Discussion
	Appendix
	Asymptotic Behaviour of Partially Linear Models with Monotone Constraints
	Flexmix Extension

	Bibliography

