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Chapter 1

Introduction

1.1 Observational studies

The gold standard to investigate the e�cacy of a speci�c treatment in humans are randomized

controlled trials. The goal of randomization is to obtain groups of patients which di�er only by
their exposure to the treatment (Silverman, 2009). This maximizes internal validity, a measure
for the correctness of the estimand in the study population. In an ideal (but impossible) study
we would compare the outcome of the same individual with and without treatment at the same
time point. In randomized controlled trials the e�ect of a treatment on a well de�ned study
population can be examined. The application of the treatment is dictated in detail and there
is strong motivation for compliance. But randomized controlled studies have also limitations.
Because of highly selected patients, it may be hard to draw conclusions for a general population.
There are situations where an experimental study may be unnecessary, inappropriate, impossible,
or inadequate (Black, 1996). As an example, clinical trials are inappropriate to examine rare and
long-term outcomes, since resources and feasibility limit the number of included patients and the
duration of an experiment. Randomized controlled trials can be impossible because of ethical
reasons. No one could randomize patients to organ transplantation versus medical management
and people could not be forced to expose themselves to toxins like cigarette smoke.

In circumstances where randomized experiments are not suitable, observational studies are
often a good alternative. Subjects are studied prospectively or retrospectively and patient char-
acteristics and outcomes are reported. Observational studies achieve a smaller internal validity
but in exchange a better external validity compared to randomized controlled trials. The ex-
ternal validity is a measure for how good an estimate of a study corresponds to the truth in
the whole population of interest. Observational studies can observe a larger and more diverse
population in real clinical settings and for a longer time (Silverman, 2009). Sometimes obser-
vational studies or data from registries identify questions and outcomes which can be assessed
further by a clinical experiment. Additionally, they are used in later stages of drug development
to get information about rare side e�ects and e�ectiveness in di�erent patient subgroups, after
randomized controlled trials have shown a treatment e�ect in a well de�ned patient collective
that typically excludes patients with many comorbidities or at higher ages.

To be able to estimate the true treatment e�ect, we try to �nd groups of treated and control
patients that are very similar (Stuart, 2010). This thesis focuses on the case with two treatment
groups. In observational studies we do not have control over the treatment allocation (Rosen-
baum et al., 2010). At best, the assignment seems random, thus being as close as possible to a
randomized study, or the decision for treatment can be explained based on available information.

Confounding variables potentially in�uence the treatment assignment, may in�uence the out-
come and are measured before treatment (Heinze and Jüni, 2011). The most popular strategies
to reduce bias of confounding variables are regression (adjusting for confounders) and matching

1



2 CHAPTER 1. INTRODUCTION

(Cochrane and Rubin, 1973). Citing Rosenbaum et al. (2010), �adjustments for observed covari-
ates should be simple, transparent and convincing�. Methods to achieve this objective will be
described on the next pages.

There are some assumptions typically made for observational studies:

� absence of unmeasured confounding, also called �ignorability� or �omitted variable bias�
(Ho et al., 2007),

� there is a positive probability of receiving each treatment for all combinations of covariate
values, meaning that every subject could get either treatment (Stuart, 2010; Schafer and
Kang, 2008),

� the stable unit treatment value assumption (SUTVA) (Rubin, 1980). It says that the
outcome of an individual only depends on his or her treatment and is not in�uenced by
the treatment allocation of other individuals.

A common critique of adjustment approaches is that it is never possible to know if there
are unmeasured variables which in�uence the treatment and the outcome strongly. But using
�eld knowledge, experts should be able to judge if there is a high probability for unmeasured
confounders to be stronger than the observed variables. Moreover, sensitivity analysis can help
to investigate on this.

1.2 Description of the motivating example for the simulation

study

Cytosorb is a hemoadsorption device which can be used in clinical conditions with high cy-
tokine levels (Ankawi et al., 2019). There is experience in the use of Cytosorb in sepsis, cardiac
surgery, and drug removal. Cytosorb cartridges contain biocompatible polystyrene divinylben-
zene copolymer beads that are capable of removing a wide range of molecules from the blood:
pro- and anti-in�ammatory cytokines, bilirubin, myoglobin, exotoxins, and drugs (Poli et al.,
2019).

Ankawi et al. (2019) summarized the evidence of Cytosorb in septic patients. The rational of
this therapy is to restore a balanced proin�ammatory and anti-in�ammatory mediators' response.
The use of Cytosorb seems to decrease interleukin-6 levels, but there is very little evidence for
reduced mortality. Ankawi et al. (2019) concluded that the utilization of Cytosorb is safe and has
potential bene�ts. Lacking international validated protocols or guidelines, up to now the decision
to employ hemoadsorption remains fully at the discretion of the treating clinician. So further
studies are needed to decide who could really bene�t from this therapy and which patients have
to be monitored carefully during Cytosorb application.

In this thesis we analyze data from patients with therapy refractory septic shock, treated by
Cytosorb at the University Hospital Zurich additionally to standard of care or by standard of
care only. Moreover, our simulation study is based on this data base.

1.3 Application to a clinical example: lumbar spinal stenosis out-

come study

In order to compare the results from the simulation study to real data, we reanalyze data of
patients with degenerative lumbar spinal stenosis (Held et al., 2019). This diagnosis describes
a substantial narrowing of the spinal canal, which causes buttock or lower extremity pain with
or without low back pain (Steurer et al., 2010). The e�ect of a nonsurgical treatment with drug
therapy and physiotherapy was compared to decompression surgery by the in�uence on quality
of life as well as on improvement of symptoms and function at a 12-month follow-up.



Chapter 2

Methods

2.1 Matching

The term matching indicates any method used to make treatment groups similar in regard to
their covariate distributions (Stuart, 2010). Its goal is to select suitable control patients for the
treated individuals. Matching can be used in the beginning of a study to select similar groups,
but in this work we will focus on its application after data accumulation facilitating non-biased
analysis.

Stuart (2010) described in detail the 4 steps of matching:

1. select covariates to be included and choose a distance measure,

2. implement a matching algorithm,

3. check the quality of the matching by balance measurements,

4. estimate the treatment e�ect by analyzing the matched data.

In the end, these steps should be complemented by a sensitivity analysis (Caliendo and
Kopeinig, 2008). However, in this thesis we con�ne us to the 4 steps mentioned above.

2.1.1 Distance measures

By the distance Dij the similarity of two individuals i and j in respect of their considered
covariates X is determined. Common distance measures are (Stuart, 2010):

� Exact: Covariate values correspond exactly. This method is often appropriate for factorial
variables with only a few levels.

Dij =

{
0, if Xi = Xj

∞, Xi 6= Xj .

� Absolute di�erence in value (only for 1 covariate) (Rubin, 1973).

� Euclidean distance: Dij = ||Xi −Xj || (O'neill, 2006).

� Mahalanobis distance:

Dij = (Xi −Xj)
ᵀΣ−1(Xi −Xj),

where Σ is the variance covariance matrix. The Mahalanobis distance takes the correlations
between covariates into account (Gu and Rosenbaum, 1993; Rosenbaum et al., 2010).

3



4 CHAPTER 2. METHODS

� Propensity score: the probability of receiving the treatment conditional on patients
characteristics (Rosenbaum and Rubin, 1983). It is a balancing score, yielding balanced
distributions in the two treatment groups of all considered covariates when matching is
done by minimizing the propensity score di�erence within matched pairs.

� Linear propensity score: log propensity score
1−propensity score

(Rosenbaum and Rubin, 1985).

� Prognostic score: the predicted response when getting the control treatment (Stuart,
2010; Hansen, 2008).

The propensity score predicts the probability of receiving the treatment T = 1 conditional
on the considered covariates, ps(X) = P (T = 1|X) (Rosenbaum and Rubin, 1983). It can be
calculated by a logistic model or alternatively by a probit model or by non-parametric methods
(Stuart, 2010). In contrast to outcome models, the amount of covariates to be included in the
propensity score model is not limited by the number of outcome events (Heinze and Jüni, 2011;
Glynn et al., 2006). The propensity score is able to better handle not-normally distributed
variables than the Mahalanobis distance. If a covariate distribution has long tails, its variance is
larger and thus the Mahalanobis distance will tend to ignore that variable in the matching process.
In the same way, Mahalanobis distance gives more attention to binary variables with uneven
categories than to variables with a 50:50 distribution (Rosenbaum, 2020). If the assumption of
strongly ignorable treatment assignment holds, analysis using the propensity score can provide
unbiased estimates of the treatment e�ect (Shadish and Steiner, 2010). This assumption means
that the treatment assignment and the outcome are independent conditional on the observed
covariates. It is given if all confounders (related to the treatment assignment and the outcome) are
included in the propensity score model as covariates and if there are no unmeasured confounders
(Lee and Little, 2017). As there exists no method to test this assumption empirically, it is
important to measure exactly potentially in�uential values and to include all important variables
related to the selection process (Shadish and Steiner, 2010). A sensitivity analysis can help to
support the assumption that all relevant variables are considered (Caliendo and Kopeinig, 2008).

Rubin (2001) suggested the use of the linear propensity score. The logit of the propensity
score tends to have a more symmetric distribution and is more appropriate to assess the e�cacy
of linear modeling adjustments.

The selection of controls can be restricted by a caliper. A caliper is the width of the distance
measure which is maximally allowed (Rosenbaum et al., 2010). Individuals having a larger
distance between each other than the caliper width can not be matched, resulting in closer pairs.
Rosenbaum et al. (2010) suggested a caliper width of 20% of the standard deviation of the
propensity score. Austin (2011b) recommended to match on the logit of the propensity score
and to use a caliper of 20% of the standard deviation thereof.

The propensity score can not only be used for matching, but as well for strati�cation, or
it can be included as a covariate in regression analysis (D'Agostino Jr, 1998). Including the
propensity score in a regression assumes a linear relationship of the propensity score with the
outcome (Glynn et al., 2006) and does not clearly separate the design part from the analysis
(Harder et al., 2010). These are disadvantages compared to the other methods mentioned.
Strati�cation into subclasses was shown to be less precise than matching on the propensity
score (Austin et al., 2007). Yet another application of propensity scores is inverse probability of

received treatment weighting (IPTW) (Heinze and Jüni, 2011; Desai and Franklin, 2019). There,
treated subjects get a weight of the inverse of their propensity score and the control patients
get a weight of 1

1−propensity score
. In the case of IPTW the correct speci�cation of the propensity

score is important. An advantage of IPTW is that all information is used without discarding
any individuals from the analysis. It is similar to full matching which is described later.

There are advancements by combining strategies like coarsened exact matching and methods
yielding �ne balance (see Section 2.3 for an explanation thereof). In the case of coarsened exact

matching the covariate values are coarsened into strata and then exact matching is performed



2.1. MATCHING 5

respecting these strata (Iacus et al., 2012). Furthermore, combinations of distance measures can
be used, as for example Mahalanobis matching within propensity score calipers (Stuart, 2010).

2.1.2 Matching algorithms

After deciding which distance measure to use, the researcher has the choice of di�erent matching
algorithms that have been developed over the last decades.

The oldest and probably easiest to understand approach is greedy 1:1 nearest neighbor match-

ing. There, one treated individual after the other is considered and the most similar control is
selected to each. The result of this process depends on the order in which the subjects are looked
at.

Optimal matching solves this problem by looking at the whole data set and guarantees to
�nd the best available 1:1 matching (pair matching). It is an optimization problem that can be
solved by network �ow theory (Rosenbaum, 1989). Bertsekas (1981, 1990) called his algorithm
to perform this task the �auction algorithm�.

If matching with replacement is used, there is no di�erence between optimal and greedy
matching, because independent of the order for every treated individual the best control is
chosen. The drawback is a smaller total sample size and controls which are not independent of
each other. The analysis has to consider this dependence (Stuart, 2010).

Instead of 1:1, optimal matching can also be used for 1:k matching (Rosenbaum et al., 2010).
There, for every treated subject k controls are selected. This is especially useful, if many more
controls than treated subjects are available. The advantage of a larger total sample size needs
to be evaluated against the disadvantage of having not only the best, but the k best matched
controls.

To achieve exact balance on some covariates, exact matching can be done. Often this is only
feasible for binary variables such as gender, if at all. For example exact matching on gender and
otherwise matching on propensity score can be done. This is performed by adding an in�nite
penalty to the propensity score of all pairs that mismatch on gender. If one would like to have
exact matches, but it is not possible without discarding several observations, near-exact matching

is an alternative. Thereby mismatching is only allowed if it is not avoidable. Practically it is
done by adding a large penalty to mismatches instead of an in�nite one (Rosenbaum, 2020).

Matching all treated to a control and similarly using all controls to match to a treated unit
is called full matching. It is a strati�cation that makes the two treatment groups as similar as
possible (Rosenbaum et al., 2010). It can achieve a better balance than 1:k matching, because
also strata with only 1 control but multiple treated are possible. Depending on the composition of
a stratum, matching weights are given to the individuals. As an example, in a stratum consisting
of 1 control and 3 treated subjects, the control gets a weight of 1 and the treated ones each get
a weight of 1

3 . These weights must be taken into account for the balance diagnostics as well as
for the outcome analysis (Rosenbaum, 1991; Hansen, 2004).

Since nowadays computational power is much higher than in the last millennium, more com-
plicated evolutionary algorithms can be used for matching, too (Mebane Jr et al., 2011). Such
an approach is genetic matching. The R function Matching::GenMatch uses a generalized Ma-
halanobis distance metric including weights for every covariate,
Dij = (Xi −Xj)

ᵀ(Σ−1/2)ᵀWΣ−1/2(Xi −Xj), where W is the diagonal weight matrix. These
weights are determined by an automated search algorithm to achieve the best covariate balance
(Radice et al., 2012). At every round of the iteration a new group, a so called generation, of
weight matrices is generated and the resulting balance tested. Then the next generation is pro-
duced in a way that the weight matrices tend to yield more balanced matched samples. The
group size is called population size and should not be too small (Sekhon, 2011a). When after
a de�ned amount of new generations no better result can be found, the algorithm is stopped
and the best weight matrix and the corresponding distance metric is used to construct the �nal
matching. In the end it is a nearest neighbor matching, just with a special distance metric. An
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advantage of genetic matching is that it is not prone to misspeci�cation of the propensity score
(Radice et al., 2012).

2.1.3 Balance diagnostics

After matching the achieved balance, meaning the similarity of the treatment groups, needs to
be examined. If satisfactory balance is not achieved, the matching should be improved before
going further towards analysis of the outcome. As long as one has not looked at the outcome, it
is allowed to try as many matching strategies as required for a good balance.

Let us have a look at the variety of diagnostics to assess balance. Usually, the marginal
distribution of each covariate is assessed, because it is not feasible to consider the overall, joint
distribution of all considered variables (Stuart, 2010). In addition to look at the single covariates,
one can also asses the balance of the distance measure, for example of the propensity score.

There are numerical diagnostics like:

� Standardized mean di�erence (SMD): The di�erence in means of the two groups is
divided by the standard deviation. Stuart (2010) suggested to use the standard devia-
tion in the treatment group, whereas Flury and Riedwyl (1986), Zhang et al. (2019) and
Austin (2008) used the pooled standard deviation in the two matched groups. Stuart
(2008) recommended to use the standard deviation in the full sample to have the same
denominator before and after matching, even if treated individuals are discarded by the
matching algorithm.

� Variance ratios: (Rubin, 2001) It is the ratio of the variance in the treated group to
the variance in the control group. The distribution of the estimated ratio follows an F -
distribution under the null hypothesis of equal variances in the two groups (Austin, 2009).

� Five-number summary of the covariates composed of minimum, �rst quartile, median,
third quartile and maximum (Austin, 2009).

� C-statistic: the estimated area under the receiver operating characteristic (ROC) curve
from a propensity score model (Franklin et al., 2014). The value corresponds to the esti-
mated probability of a treated subject to have a larger propensity score than a randomly
chosen control individual (Heinze and Jüni, 2011). According to Austin (2009) this is not
a reliable diagnostic.

� Overlapping coe�cient (OVL): the overlap of two densities is estimated by kernel
densities (Belitser et al., 2011).

� Kolmogorov-Smirnov distance is the maximum vertical distance between the cumula-
tive distribution functions of the two groups (Belitser et al., 2011). Smaller values indicate
better balance.

� Lévy distance: is the side length of the largest square (with sides parallel to the coordinate
axes) that can be drawn between the two cumulative distribution curves (Belitser et al.,
2011).

The three last diagnostics are only useful for continuous variables. As the variance of a binary
variable is only a function of the proportions of the two values that this variable can take, it is not
very informative. Thus the consideration of variance ratios and of standardized mean di�erences
does not provide more information than looking at simple mean di�erences of a binary variable.

It is not recommended to use t-tests and the associated p-values for the evaluation of balance
(Imai et al., 2008). The main problem of hypothesis tests is their dependency on sample size
(Austin, 2009).
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Another possibility is the use of graphic representation. Density plots can compare the
distribution of a variable in the two groups and show changes after matching. To compare
the empirical distributions in the groups, Q-Q-plots or plots of the empirical cumulative

distribution functions are an option (Stuart, 2010; Austin, 2009).

Relating to the numerical �ve-number summary boxplots of the distributions in each group
can be drawn for comparison (Austin, 2009).

Ahmed et al. (2006a,b) were about the �rst to show numerical diagnostics in form of a
plot. Thomas E. Love became in this way the name giver of the Love plot. This plot shows
standardized mean di�erences or other diagnostics for every considered variable. Di�erences
between the original and the matched data set in respect to balance can easily be seen. It is also
a good way to recognize covariates with a standardized mean di�erence above a certain threshold.
As an example, it can be decided to use covariates with a standardized mean di�erence higher
than 0.1 for additional adjustment in the subsequent regression (Nguyen et al., 2017). Others
used a threshold of 0.25 to judge if balance was achieved, while emphasizing that a smaller value
might be better (Harder et al., 2010). However, there is no clear opinion about such a threshold
(Austin, 2009).

Instead of calculating the standardized mean di�erence for the whole matched sample, it can
also be done strata-wise (Lee and Little, 2017; Harder et al., 2010).

For all balance diagnostics there exists no general answer to the question what value is good
enough. Rubin (2001) listed three conditions which are necessary for regression analyses to be
trustworthy: small di�erences in the means of the propensity score in the two groups, a ratio
of the variance of the propensity score close to one, and a ratio of the variances of the residuals
of the covariates after adjustment for the propensity score close to one (values of 1/2 or 2 are
too far away). These criteria could be used as well to decide if the matching was successful
and whether the data is ready for analysis of the outcomes. It is recommended that only e�ect
estimates should be reported which were calculated on balanced matched groups (Harder et al.,
2010).

In contrast to the analysis of the outcomes, the matching process does not face a problem of
multiplicity if various options of matching are tried. It is just forbidden to look at the outcome
before matching is completed (Rubin, 2007). Matching belongs to the design part of a study
(Rosenbaum et al., 2010). Afterwards the analysis of the outcome takes place (Stuart, 2010).

2.2 Analysis of the outcome after matching

The quickest approach is to take the matched sample and analyze the outcome by simply calcu-
lating a di�erence in means, odds ratio, or another appropriate measure. But Ho et al. (2007)
recommended to apply the same analytical method to the matched data as would be done with-
out preprocessing by matching. So regression approaches with adjustment for covariates are
better suited (Rubin, 973b; Rubin and Thomas, 2000). Without that, independence of the co-
variates and the treatment would be assumed, what only holds for the special case of exact
matching on all relevant covariates (Ho et al., 2007). Adjustment for covariates in a matched
sample can have the same advantages as regression adjustment in a randomized experiment. It
can remove residual bias still remaining after matching, enlarge power and decrease variability
(Schafer and Kang, 2008; Osborne, 2008). However, there is no general consensus on the need
and the extent of covariate adjustment after matching. Successful matching cuts the association
between a covariate and the treatment assignment, thus the covariate does not ful�ll the criteria
to be a confounder anymore (Sjölander and Greenland, 2013). Sjölander and Greenland (2013)
con�rmed that in the absence of additional covariates (which are not matched for), it is correct
to ignore the matching variables in the analysis.

One should not forget that in small samples not too many covariates should be included in
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the regression because of the risk of over�tting and of biased e�ect estimates (Peduzzi et al.,
1996; Chen et al., 2016).

Another point of discussion is the question if matched data should be seen as independent
or if a correlation structure has to be taken into account, and thus how variances should be
calculated for propensity score methods. Austin (2011a) argued that matched subjects resemble
one another more than randomly selected ones, because they have a similar propensity score value
and so their covariate values originate from the same multivariate distribution. Also Abadie and
Spiess (2021) said that matching produces dependence if the outcome depends on the matching
variables. They suggested to use clustered standard errors, because standard error estimation
without consideration of the matching process is not generally valid in the case of a misspeci�ed
regression model (Abadie and Spiess, 2021). On the other hand, Schafer and Kang (2008)
did not see any emergence of correlation in matched groups, and Stuart (2010) emphasized
that propensity score matching does not yield pairs of individuals sharing the same values of
all covariates, but only matched treatment groups with similar covariate distributions. If one
believed in correlated pairs, pairs should also be considered for balance diagnostics (Stuart, 2008).

Special methods of analysis are required after full matching, strati�cation, and matching with
replacement. Here, weights should be used in the analysis to account for di�erent numbers of
treated and controls in speci�c strata (Osborne, 2008). In the case of subclassi�cation, estimation
should be done in each subclass separately and then aggregated. For example, after full matching
Stuart and Green (2008) performed logistic regression with weights, but without taking into
account any potential dependence.

Greifer (2020b) emphasized that robust standard errors should be used, when weights are
included in the analysis. To consider both matching weights and subclass membership, cluster
robust standard errors are the method of choice. In R they can be computed by the function
vcovCL of the sandwich package.

2.2.1 Heteroscedasticity consistent and cluster robust standard errors

Looking at the linear regression model, y = Xβ + ε, the ordinary least squares estimator β̂ has
the following variance:

Var(β̂) = (XᵀX)−1XᵀΩX(XᵀX)−1, (2.1)

where Ω is a positive de�nite matrix.

An important assumption in linear regression is the one of homoscedasticity, saying that
the distributions of all errors have the same variance. If one is not sure if this assumption is
met, a heteroscedasticity consistent (HC) covariance matrix can be used to calculate standard
errors. The HC estimator can be constructed by replacing Ω in equation 2.1 by the estimator
Ω̂ = diag(ω1, . . . , ωn) for n observations i. For the HC0 estimator, also known as the White,
Eicker, Huber or simple �sandwich� estimator, one takes ωi = r̂2i , r̂i being the residuals. The

HC3 estimator should perform better for small samples and is calculated by taking ωi =
r̂2i

(1−hi)2 ,

where hi = Hii are the diagonal elements of the hat matrix (Long and Ervin, 2000; Zeileis, 2004).

In the case of general linear models and hence for logistic regression the sandwich estimator
for the variance is:

Var(β̂) = BMB, (2.2)

where B is the �bread� B = (−L(β̂)′′)−1 with L(β̂)′′ being the second derivative of the log-
likelihood with respect to the parameter β, and M is the �meat�
M = Cov(L′(β0)) =

∑n
i=1 gi(Yi|β̂)ᵀgi(Yi|β̂) with gi(y|β) =

δ
δβ logfi(y|β) (Zeileis, 2006; Freedman,

2006).
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If there are clusters, it is assumed that samples within the same cluster are not independent,
whereas di�erent clusters are independent of each other. For the calculation of cluster robust

standard errors the �meat� M in equation 2.2 changes to M =
∑m

j=1

∑
i∈cj gi(Yi|β̂)

ᵀgi(Yi|β̂),
where it is �rst summed over the m clusters cj , instead of summing over each individual (Freed-
man, 2006; Zeileis et al., 2020). When each observation forms its own cluster, the cluster robust
standard error simpli�es to the (HC0) sandwich standard error.

Other possibilities to deal with clustered correlations are random e�ects model and general-
ized estimating equations (GEE). The advantage of robust standard errors, as described above,
is that the parameter estimation by regression is not changed but only the covariance matrix
is adjusted (Zeileis et al., 2020). This assumes that the score function and thus the parameter
estimation is correct. In this work, we decided to use the approach of sandwich standard errors,
because in this way it is possible to compute all treatment e�ect estimates in the same way and
then to look at di�erent standard errors. This seems necessary, as not by all matching algorithms
clusters are formed, but for others like full matching the resulted subclasses should be considered
for inference.

2.2.2 ATE vs. ATT

We need to introduce some notation to explain the di�erent types of treatment e�ect estimands.
According to the Roy-Rubin model (Rubin, 1974), each individual has two potential outcomes,
one if it gets the treatment (T = 1), and one without treatment (T = 0) (Caliendo and Kopeinig,
2008). Of course, only one of these potential outcomes can really be observed. Following the
notation of Ho et al. (2007), we de�ne the outcome of individual i getting the treatment T = 1
as yi(T = 1) = yi(1) and equivalently its outcome getting the control procedure as yi(T = 0) =
yi(0). If the outcomes are considered as random variables, the mean causal e�ect is obtained,
shown in equation (2.3).

E[Yi(1)− Yi(0)] = µ1 − µ0, (2.3)

where µ1 = E[Yi(1)] and µ0 = E[Yi(0)].
In practice the interest is usually in average treatment e�ects. The average treatment e�ect

(ATE) describes the mean e�ect on the considered population and is de�ned in equation (2.4),
where Xi represents the covariate characteristics.

ATE =
1

n

n∑
i=1

E[Yi(1)− Yi(0)|Xi] =
1

n

n∑
i=1

[µ1(Xi)− µ0(Xi)] (2.4)

The average treatment e�ect on the treated (ATT) (equation (2.5)) looks only at the estimated
e�ect in the patient group which gets the treatment.

ATT =
1∑n
i=1 Ti

n∑
i=1

Ti · E[Yi(1)− Yi(0)|Xi] =
1∑n
i=1 Ti

n∑
i=1

Ti · [µ1(Xi)− µ0(Xi)]. (2.5)

The ATE estimates the e�ect of a treatment if subjects are randomized to it (Caliendo and
Kopeinig, 2008). It is the �the di�erence between the expected outcome if everyone was exposed
and the expected outcome if everyone was unexposed� (Woodward, 2014). Applying matching
yields estimates of the ATT if a match is found for each treated patient out of the control group.
Conversely, strati�cation and inverse weighting methods estimate the ATE (Desai and Franklin,
2019).

In a randomized controlled trial the ATT and the ATE are identical (Shadish and Steiner,
2010).

If some treated individuals are discarded, the ATT of the whole population is no longer
possible to estimate. In this way, the common support region of the propensity score has impact
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on the population for which the result can be generalized (Thoemmes and Kim, 2011; Harder
et al., 2010).

If the ATE or the ATT better answers the question of a researcher can be decided by asking
if it would be possible to give the treatment to all patients included in the study (Desai and
Franklin, 2019). The aim of the study in�uences this choice as well (Lee and Little, 2017).

2.2.3 Non-collapsibility of odds ratios

In contrast to for instance risk di�erences, odds ratios are not collapsible. This means that even
if the conditional estimates in di�erent strata are the same, they do not in general correspond to
the marginal e�ect estimate (Hernán et al., 2011). A conditional odds ratio is always further away
of the null e�ect (OR = 1) than the marginal odds ratio in the absence of e�ect modi�cation.
Whereas marginal odds ratios compare all patients with the treatment and all patients without,
conditional odds ratios compare the treatment e�ect in patients with similar covariates (Samuel
et al., 2017).

Pure propensity score methods estimate the marginal e�ect, the unadjusted e�ect, without
considering covariates and concentrating on the similarity of treatment groups (Martens et al.,
2008). In contrast, logistic regression methods with consideration of covariates model the out-
come, and thus estimate a conditional treatment e�ect. This is subject-speci�c and clinicians
can take it into account to make treatment decisions for individual patients (Martens et al.,
2008). After matching conditional treatment e�ects can be calculated by regression considering
covariates (Austin, 2008).

2.3 Matching in R

We decided to use the R package MatchIt (Ho et al., 2011, 2007) for our analyses. This package
provides many matching algorithms and the matched data set can easily be extracted. For full
matching and for optimal matching it calls automatically the function fullmatch of the package
optmatch (Hansen and Klopfer, 2006). The optmatch package could also be used for optimal
1:1 and 1:k matching as well as for exact matching. To apply genetic matching MatchIt calls
the package Matching (Sekhon, 2011b). Its function GenMatch uses a genetic search algorithm
executed by the function Genoud from the package rgenoud (Mebane Jr et al., 2011) to assign
each individual a weight leading to matched groups with the best balance (Diamond and Sekhon,
2013). Matching could be used as well for various other matching methods, but in contrast to
MatchIt, it performs matching imputation instead of matching in the sense of a nonparametric
preprocessing for subset selection.

Matching with �ne balance or with re�ned covariate balance constraints can be conducted
with the package rcbalance (Pimentel, 2016). Fine balance in a variable means that the two
treatment groups have the same overall distribution of this variable. It can happen that this is
not possible with a given data set, for example if there are more treated females than the total
number of females in the control group. In such a case near �ne balance could be achieved by
selecting all control females, and thus achieving the best possible balance of the variable sex.
To �nd re�ned covariate balance, the covariates are prioritized and then near �ne balance is
searched for one after the other (Pimentel, 2016).

Another package for propensity score methods is twang (Ridgeway et al., 2014). Its default
version uses generalized boosted regression (as implemented in the package gbm (Greenwell et al.,
2020)) to estimate the propensity scores, and assigns weights to the controls. In this way the
ATT can be estimated. twang can also be used for estimation of the ATE by weighting both
treated and control subjects. This method of inverse probability weighting has some similarity
to full matching. This package can as well be used for weighting more than two treatment groups
(McCa�rey et al., 2015).
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To asses the balance in the matched groups, we used the R package cobalt (Greifer, 2020a).
This package o�ers convenient functions to calculate and graphically present balance diagnostics.
It can be used to evaluate results from di�erent matching packages, like MatchIt, optmatch,
Matching, and twang.

2.4 Guidelines

2.4.1 Literature about matching and propensity score analysis

In the last years some overview articles were published which compare di�erent methods and
give recommendations to researches. Stuart (2010) wrote an exhaustive review article, whereas
Thoemmes and Kim (2011) focused on the application in social science and what should be
reported when doing a propensity score analysis. Lee and Little (2017) provided a step-by-step
guidance including R code. A comparison of di�erent ways to estimate the propensity score as
well as instructions for practitioners was made available by Harder et al. (2010) with focus on
psychological research.

2.4.2 Reporting guidelines in observational studies

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guide-
lines give advice what should be reported about an observational study in the article's title
and abstract, the introduction, methods, results, and discussion sections as well as on funding
(Vandenbroucke et al., 2007; Von Elm et al., 2014).

Yao et al. (2017) provided adjusted guidelines to help researches to correctly report a propen-
sity score analysis. The most important points to mention for propensity score matching are:

� model used to estimate the propensity score,

� variable selection for propensity score model,

� matching algorithm, distance measure, matching ratio, whether sampling with or without
replacement, the statistical methods for the analysis of matched data, the package used,
and methods for assessing the balance between the matched groups,

� examination of assumption of propensity score analysis,

� handling of missing data,

� sample size before and after matching,

� baseline characterstics in each group before and after matching,

� estimates with con�dence interval after matching and unadjusted estimates,

� discussion of remaining imbalance after matching,

� discussion of incomplete matching and potential in�uence of discarded observations.

2.5 Data used for the simulation study

2.5.1 Data

The data includes patients, who were admitted to the medical intensive care unit of the University
Hospital Zurich between 2011 and 2018.

The whole data set consists of 250 patients. After exclusion of patients with missing data for
important covariates (namely VPI, Lactate and IL-6), we used 208 patients for the analysis.
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The data contains information about therapy, length of in-hospital stay and survival as well
as demographic and laboratory values. The ones that were used for our analysis are shown in
Table 2.1 including the explanation of special scores (Jones et al., 2009; Le Gall et al., 1993).

Variable Units /
levels

Description Rationale

PAT_Nr patient ID subject
Filter Cytosorb

or control
treatment treatment

Age years age demographic baseline

BMI kg/m2 BMI = weight / height2, body mass
index

demographic baseline

Sex female or
male

sex demographic baseline

SOFA 0 - 24 Sequential Organ Failure Assess-
ment (SOFA) score: assesses num-
ber and severity of organ dysfunc-
tion in six organ systems (respira-
tory, coagulatory, liver, cardiovascu-
lar, renal, and neurologic)

validated severity score of the ICU

SAPS 0 - 163 Simpli�ed Acute Physiology Score
(SAPS II): includes 12 physiolog-
ical variables, age, type of ad-
mission and three underlying dis-
ease variables (acquired immunod-
e�ciency syndrome, metastatic can-
cer, and hematologic malignancy)

validated severity score of the ICU

IL6 pg/ml interleukin-6 blood level main target of Cytosorb therapy
VPI vasopressor index * value for the cumulative demand

for vasopressors on a target MAP
of 65 mmHg

PCT ng/ml procalcitonin blood level biomarker in septic shock
Lactate mmol/l lactate blood level marker for tissue perfusion and in

general for microcirculation dis-
turbances

Table 2.1: List of variables of the Cytosorb data. MAP: mean arterial pressure.
* VPI = Dobutrex+(Noradrenaline+Pitressin·1000)·100+Adrenaline·100

Weight
10

MAP
.

2.5.2 Outcome

The in-hospital mortality was used as outcome. Thus patients who died during their stay in the
intensive care unit or in the normal ward are considered to have encountered the event.

2.5.3 Statistical analysis

We used �ve di�erent matching algorithms with the objective of obtaining comparable treatment
groups. The �ve matching methods were: nearest, optimal, caliper (nearest matching with a
caliper of 20% of the standard deviation of the propensity score), full, and genetic matching. All
were implemented with the R package MatchIt. The following covariates were used for matching:
Age, BMI, IL6, Lactate, PCT, SAPS, Sex and SOFA. Neither interactions nor e�ects of higher
order were included.

Descriptive statistics included absolute standardized mean di�erences, variance ratios, and
Kolmogorov-Smirnov statistics.

The raw as well as all the matched data sets were used for logistic regression to compute the
odds ratio for in-hospital mortality. The regression was once done without adjustment and in
addition with covariate adjustment for the same variables which were used for matching, thus
yielding a marginal and a conditional treatment e�ect estimate, respectively. Standard errors
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were calculated as �simple� standard errors for the unmatched sample, while for the data originat-
ing from optimal, nearest, caliper, and genetic matching HC0 standard errors were determined.
After full matching cluster robust standard errors were computed.

2.6 Simulation study

We wrote a protocol for the simulation study which is shown in Section A.2 and was uploaded
to https://osf.io/unbka/ on January 27, 2021. Like prior to randomized controlled studies
a protocol should be made before conducting a simulation study (Burton et al., 2006). For our
protocol we followed the structure proposed by Burton et al. (2006).

We used the motivating example of the Cytosorb data as template and simulated data con-
sisting of the treatment Filter, the outcome Death and four covariates: Sex, Age, SOFA and IL6
(interleukin-6).

We analyzed the simulated data using �ve di�erent matching algorithms o�ered by the R
package MatchIt: nearest, optimal, caliper, full and genetic matching. Afterwards, we compared
the estimated conditional odds ratios as well as the marginal odds ratios. As a logistic model
was used to simulate the treatment and the outcome, the true conditional treatment e�ect was
determined in advance. The corresponding marginal e�ect was assessed by the simulation of
100'000 data sets consisting of 10'000 individuals each and the formula in equation (2.6) using
the β-parameters a�ecting the outcome (Austin and Sta�ord, 2008).

ORmarginal =
p1/(1− p1)
p0/(1− p0)

, (2.6)

pi,1 =
1

1+exp(−(β0+βtreat+β1 xi,1+···+β4 xi,4)) , pi,0 =
1

1+exp(−(β0+β1 xi,1+···+β4 xi,4)) ,

To compare the di�erent algorithms, the bias of the estimates and coverage were considered.
We also had a look at the time needed for computation, the proportion of treated individuals
who were discarded during matching as well as false negative and false positive results.

2.6.1 Implementation in R

The code of the programmed functions dat_simulate and match_analyze can be found in Sec-
tion A.5.

2.6.2 Deviations from the protocol

We were able to stick to the protocol and no errors did occur during simulation. Only the
line-plots were not drawn, because they would be too crowded to show information.

Like written in the protocol, the summary statistics of the weights generated by full matching
were stored but they were not analyzed further.

https://osf.io/unbka/
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Chapter 3

Results

3.1 Results of the motivating example: Cytosorb

3.1.1 Descriptive statistics

Table 3.1 shows the patient characteristics at baseline for the unmatched data. In the Ap-
pendix A.1 tables with the corresponding values after matching can be found.

In Figure 3.1 the distributions of the two treatment groups of the continuous variables are
presented. The variables Lactate, IL6, PCT, and VPI seem not to be normally distributed.

3.1.2 Balance

Figure 3.2 and Figure 3.3 show Love plots comparing the di�erent matching algorithms which
were applied to the data.

Overall, all matching algorithms yielded a smaller standardized mean di�erence (SMD). The
SMD was calculated by using the standard deviation of the full sample as the denominator. Only
for the variables Sex and BMI nearest, optimal, and nearest matching with a caliper enlarged
the SMD and for PCT the unmatched data had the smallest SMD of all. From the Figure 3.2 it
can be seen that matching algorithms tend in particular to minimize the SMD of variables with
relative large SMDs before matching. Genetic matching was able to achieve SMDs smaller than
0.1 for all variables, thus providing the best result in balance measured by SMD.

Looking at the variance ratios, for most variables the matching algorithms could improve the
balance. For PCT, VPI, SAPS, and Age the values of the unmatched data was already quite
close to 1 and the matching algorithms led to a worsening.

Table 3.1: Patient characteristics of the Cytosorb data. Here, IQR denotes the �rst
and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 208 160 48
Age (mean (SD)) 61 (16) 63 (15) 57 (16) 0.362
Sex (%) f 64 (30.8) 47 (29.4) 17 (35.4) 0.129

m 144 (69.2) 113 (70.6) 31 (64.6)
BMI (mean (SD)) 26 (6) 26 (5) 26 (7) 0.083
SAPS (mean (SD)) 63 (19) 62 (19) 68 (18) 0.307
SOFA (mean (SD)) 12 (4) 12 (4) 14 (3) 0.769
Lactate (median [IQR]) 3 [2, 6] 2 [2, 5] 4 [2, 8] 0.391
IL6 (median [IQR]) 1369 [446, 1369] 1037 [302, 1369] 1369 [1369, 1369] 0.988
PCT (median [IQR]) 11 [3, 35] 10 [3, 28] 18 [6, 56] 0.062
VPI (median [IQR]) 6 [3, 12] 5 [3, 10] 10 [4, 20] 0.507

15
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Figure 3.1: Density plots of the continuous variables comparing the control group and
the group treated with the Cytosorb �lter.
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Figure 3.2: Love plot showing the absolute standardized mean di�erences (SMD) be-
tween the treatment groups before (unmatched) and after using 5 matching algorithms.
The vertical dashed line marks a SMD of 0.1.
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Figure 3.3: Love plot showing the variance ratios and the Kolmogorov-Smirnov statis-
tics between the treatment groups before (unmatched) and after using 5 matching algo-
rithms. The vertical dashed lines mark a variance ratio of 2 and a Kolmogorov-Smirnov
statistic of 0.1.

For all variables except BMI, matching decreased the Kolmogorov-Smirnov distance. The
result looks quite similar between the di�erent algorithms. Caliper matching performed a bit
less well for the variable Sex.
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Figure 3.4: Histograms showing the distribution of the propensity score values be-
fore (unmatched) and after using 5 matching algorithms. Turquoise: �lter group, red:
control group.
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Another characteristic, that should be looked at, is the common support of the propensity
score. Figure 3.4 displays the estimated propensity scores of the matched individuals after
applying the di�erent algorithms. In this regard, all matching algorithms seem to perform well.

The number of control individuals contained in the sample di�ers after the various matching
algorithms. Nearest and optimal matching let 48 controls in the sample, which equals the amount
of treated individuals. After full matching all 160 and after genetic matching only 35 controls
were included in the resulting data set. Caliper matching was the only algorithm also discarding
treated patients, in this way including only 43 observations per treatment group.

3.1.3 Treatment e�ect

Figure 3.5 and Figure 3.6 show the estimated odds ratios (OR) of the Cytosorb �lter on in-
hospital mortality after unadjusted and multiple adjusted logistic regression, respectively.

All resulting ORs are above 1 stating that treatment by Cytosorb could be rather harmful.
Half of the unadjusted estimates are not signi�cant, whereas all odds ratios adjusted for Age,
BMI, Sex, SOFA, SAPS, VPI, IL6, PCT, and Lactate are signi�cant on the 5%-level. It is
immediately visible, that the marginal treatment e�ect estimates get smaller after matching,
while matching tends to enlarge the conditional estimates.
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Figure 3.5: Estimated marginal OR without matching and after using 5 matching
algorithms, including the 95%-con�dence intervals.

3.1.4 Discussion of the motivating example

In the Cytosorb data set there were 42 (17%) observations having missing values for IL6, VPI
and Lactate. By exclusion of these patients from the analysis, information and consequently
power were lost, even though only 3 of the exclusions were treated patients. We assume that the
missing values were missing at random and thus the exclusion should not have included bias.

In Figure 3.1 it can be clearly seen that IL6 and PCT were not normally distributed. So this
assumption of the logistic propensity score model and of the logistic outcome model was violated.
To solve this problem a transformation of these variables could be a possibility. However, if
the balance after matching is good, a misspeci�cation of the propensity score model should be
negligible.

The distributions of the propensity score in the two groups were very similar after all matching
algorithms. Additionally, the propensity score seems to be more or less normally distributed.
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Figure 3.6: Estimated OR without matching and after using 5 matching algorithms,
all adjusted for (thus conditional on) Age, BMI, Sex, SOFA, SAPS, VPI, IL6, PCT,
and Lactate, including the 95%-con�dence intervals.

This con�rms that in this case the usage of the linear propensity score would not be more suitable.
Looking at the achieved balance after the di�erent matching algorithms, most variables had

SMDs smaller than 0.1. For a better interpretation of balance, clinical knowledge could help. It
is desirable that especially variables with a big in�uence on both treatment decision and outcome
are well balanced between the groups (Adelson et al., 2017).

The Kolmogorov-Smirnov statistic of the variable Sex was almost zero after genetic and full
matching. It is not surprising that the best value was achieved for a binary variable, because the
cumulative distribution of a binary variable only depends on one single value.

Our results suggest that the treatment with the Cytosorb �lter has a negative impact on
in-hospital survival. Inspecting the unmatched and unadjusted analysis, one could think that
the high odds ratio could be caused by selection bias. It is likely that the �lter is used more in
severely ill patients with a low survival prognosis than in less critically ill patients. The analysis
with the matched data sets yielded lower odds ratios and in this way supported this hypothesis.
However, double adjustment (matching and covariate adjusted regression) resulted in even higher
estimates of the odds ratio, although wider con�dence intervals. Here, it must not be forgotten
that the unknown true conditional treatment e�ect is not the same as the true marginal e�ect
(Samuel et al., 2017). For the inclusion of variables in the logistic outcome model the correct
speci�cation of the model is more crucial than for the propensity score model. This could be a
source of bias in the analysis, because we do not know if all considered variables in reality are
confounders and if they all a�ect the log odds ratio in a linear way.

Our results are consistent with the ones of Schädler et al. (2017) who could �nd a non-
signi�cant but mortality increasing e�ect of Cytosorb in septic patients. Even though there are
not many reports of side e�ects (Poli et al., 2019), it could be imagined that the �lter also absorbs
molecules with a positive e�ect on the disease, thus impairing patient conditions.
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3.2 Results of the simulation study

3.2.1 Computation time and matching success

Five di�erent matching algorithms were applied and Table 3.2 summarizes how long the compu-
tations needed. Nearest matching without and with caliper was the fastest algorithm, followed
by optimal and full matching. Genetic matching took the most time.

As the running time of genetic matching depends strongly on pop.size, the di�erence to
other algorithms could even be much larger. We used a rather small value in order to ensure
that the whole simulation study does not take too long. However, the recommendation is to
choose a larger value to get a better matching result (Sekhon, 2011a).

Table 3.2: Average time in seconds needed to run the matching algorithms.

optimal nearest genetic full caliper

OR=2 0.14 0.04 7.18 0.11 0.04
OR=5 0.11 0.03 5.58 0.09 0.03
OR=1 0.15 0.04 7.58 0.11 0.04

Caliper matching (with a caliper width of 20% of the standard deviation of the propensity
score) is the only algorithm that was not able to match all treated individuals to a control. On
average, 18% of the treated group were discarded by caliper matching.

3.2.2 Balance

To give an impression of the balance achieved after matching, Figure 3.7 shows the Love plot of
the scenario with the true odds ratio OR = 2. The plots for the other scenarios look the same
and are therefore not shown.

It can be seen that optimal and nearest matching were not able to reduce the SMDs as much
as the other matching algorithms, especially for variables which were highly unbalanced in the
original data set.

3.2.3 Marginal e�ect estimation

The marginal odds ratios of the treatment on mortality estimated without using any regres-
sion adjustment of all three scenarios are shown in Figure 3.8. The logarithmic average of the
treatment e�ect estimates, their standard errors (SE), the bias, the proportion of false nega-
tives or positives (depending on the scenario) as well as the coverage are shown in Table 3.3.
The 95%-con�dence intervals for the computation of coverage and the decision of signi�cance
were calculated by calculating the cluster robust standard errors (which coincide with the simple
sandwich standard errors for samples without subclasses) and applying the Wald method.

On average, all estimates are larger than the true value. Comparing the di�erent matching
algorithms, the same result can be seen in all three scenarios. The unmatched dataset led to
highly overestimated odds ratios and its estimates are much further away from the true than
the ones from all matched samples. The estimates after nearest and optimal matching are on
average less close to the truth than the estimates after matching with caliper, full matching, or
genetic matching. As seen in Figure 3.8, the estimates after full and genetic matching spread
more than after the other algorithms.

3.2.4 Conditional e�ect estimation

Table 3.4 displays the logarithmic average of the conditional treatment e�ect estimates, their
standard errors (SE), the bias, the proportion of false negatives or positives (depending on the
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Figure 3.7: Love plot of the scenario OR = 2 showing box plots of the absolute
standardized mean di�erences (SMD) between treated and controls before (unmatched)
and after using 5 matching algorithms. The vertical dashed line marks a SMD of 0.1.

scenario) as well as the coverage. In Figure 3.9 the estimated ORs of the treatment on mortality
conditional on age, sex, SOFA score and interleukin-6 are presented.

In all scenarios, the averages of the conditional estimates are much closer to the true value
than the marginal ones and all matching algorithms as well as the conditional logistic regression
without matching yielded similar results. But it is striking that the results of the single simulation
runs spread even more than for the marginal estimates.
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Table 3.3: Average of the marginal estimates of the log odds ratios θ̂j , their SE as
well as bias δj , proportion of false negatives or positives and the coverage.
* The proportion of false negatives for the scenarios OR=2 and OR=5 and the proportion of false
positives for the scenario OR=1 are based on 95%-con�dence intervals.

Scenario Matching
algorithm

θ̂j SE(θ̂j) Bias Proportion of false
negatives/positives*

Coverage

OR=2 unmatched 1.091 0.216 0.538 0.001 0.290
optimal 0.696 0.246 0.142 0.215 0.927
nearest 0.698 0.248 0.144 0.221 0.931
genetic 0.592 0.321 0.038 0.601 0.964
full 0.587 0.317 0.033 0.561 0.949
caliper 0.605 0.262 0.051 0.432 0.970

OR=5 unmatched 1.861 0.242 0.569 0.000 0.340
optimal 1.466 0.266 0.174 0.000 0.926
nearest 1.468 0.268 0.176 0.000 0.927
genetic 1.362 0.336 0.070 0.024 0.968
full 1.356 0.333 0.064 0.011 0.950
caliper 1.379 0.285 0.087 0.003 0.960

OR=1 unmatched 0.528 0.214 0.528 0.700 0.300
optimal 0.133 0.246 0.133 0.080 0.920
nearest 0.135 0.248 0.135 0.079 0.921
genetic 0.029 0.325 0.029 0.039 0.961
full 0.023 0.318 0.023 0.053 0.947
caliper 0.037 0.263 0.037 0.034 0.966

Table 3.4: Average of the conditional estimates of the log odds ratios θ̂j , their SE as
well as bias δj , proportion of false negatives or positives and the coverage.
* The proportion of false negatives for the scenarios OR=2 and OR=5 and the proportion of false
positives for the scenario OR=1 are based on 95%-con�dence intervals.

Scenario Matching
algorithm

θ̂j SE(θ̂j) Bias Proportion of false
negatives/positives*

Coverage

OR=2 unmatched 0.705 0.263 0.012 0.242 0.950
optimal 0.718 0.297 0.025 0.318 0.949
nearest 0.719 0.301 0.026 0.315 0.949
genetic 0.726 0.390 0.033 0.496 0.937
full 0.734 0.374 0.041 0.425 0.932
caliper 0.724 0.326 0.031 0.380 0.952

OR=5 unmatched 1.643 0.290 0.034 0.000 0.955
optimal 1.670 0.328 0.061 0.000 0.951
nearest 1.671 0.333 0.061 0.000 0.952
genetic 1.694 0.415 0.084 0.011 0.947
full 1.719 0.398 0.109 0.007 0.936
caliper 1.680 0.363 0.071 0.002 0.954

OR=1 unmatched 0.003 0.268 0.003 0.057 0.943
optimal 0.008 0.300 0.008 0.056 0.944
nearest 0.009 0.304 0.009 0.056 0.944
genetic 0.009 0.402 0.009 0.068 0.932
full 0.004 0.388 0.004 0.075 0.925
caliper 0.011 0.322 0.011 0.045 0.955
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    Scenario: conditional OR = 2 (marginal OR = 1.74)
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    Scenario: conditional OR = 5 (marginal OR = 3.64)
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    Scenario: conditional OR = marginal OR = 1

Figure 3.8: Estimated marginal OR of the simulation study.
In the second plot 27 observations are not displayed, because their values are greater than the upper
limit of the �gure.
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Figure 3.9: Estimated conditional OR of the simulation study.
In the second plot 252 observations are not displayed, because their values are greater than the upper
limit of the �gure.
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3.2.5 Standard errors

In Table 3.5 and Table 3.6 the di�erent standard errors are compared. In the case of full and
genetic matching the robust standard errors are substantially larger than the �simple� ones. For
the other matching algorithms as well as for the logistic regression of the unmatched sample the
di�erences are only small, leaving the usage of non-robust standard errors acceptable.

The standard errors depicted as �simple� were calculated with the assumption of independent
and homoscedastic errors, just applying the summary function on the glm object. The HC3
standard errors take into account that the errors could be heteroscedastic. Lastly, the cluster
robust standard errors incorporate a dependency between the observations in the same subclass.
As subclasses are only generated by optimal and full matching, for the other matching algorithms
these standard errors are just computed as sandwich standard errors.

The sandwich standard errors (HC0) for the unmatched sample as well as after nearest and
caliper matching are exactly the same as the �simple� standard errors, on average. They only
di�er after genetic matching where not all observations have the same weight. Excluding full
and genetic matching, also the HC3 standard errors are just minimally larger than the �simple�
ones. This suggests that the assumption of homoscedasticity is met in these samples and thus
�simple� standard errors are su�cient.

After full and genetic matching the usage of robust standard errors seems to be necessary
since they are considerably larger.

Table 3.5: Comparison of di�erent standard errors (se) of the marginal e�ect esti-
mation by the simulation study. In parentheses the standard errors of the observed
standard errors are shown.
* Cluster robust standard error for optimal and full matching and HC0 standard error for all others.

Scenario Matching algorithm Simple se HC3 se Cluster robust se*

OR=2 unmatched 0.215 (0.007) 0.217 (0.007) 0.215 (0.007)
optimal 0.260 (0.011) 0.262 (0.011) 0.256 (0.016)
nearest 0.260 (0.011) 0.262 (0.011) 0.260 (0.011)
genetic 0.295 (0.011) 0.354 (0.030) 0.344 (0.024)
full 0.213 (0.007) 0.343 (0.044) 0.319 (0.052)
caliper 0.286 (0.013) 0.289 (0.013) 0.286 (0.013)

OR=5 unmatched 0.243 (0.014) 0.244 (0.014) 0.243 (0.014)
optimal 0.283 (0.015) 0.285 (0.015) 0.279 (0.019)
nearest 0.283 (0.015) 0.286 (0.015) 0.283 (0.015)
genetic 0.316 (0.015) 0.372 (0.030) 0.362 (0.025)
full 0.241 (0.014) 0.362 (0.044) 0.337 (0.051)
caliper 0.309 (0.018) 0.312 (0.018) 0.309 (0.018)

OR=1 unmatched 0.211 (0.006) 0.212 (0.006) 0.211 (0.006)
optimal 0.256 (0.010) 0.259 (0.010) 0.253 (0.015)
nearest 0.257 (0.010) 0.259 (0.010) 0.257 (0.010)
genetic 0.292 (0.011) 0.352 (0.030) 0.341 (0.024)
full 0.209 (0.006) 0.341 (0.044) 0.316 (0.054)
caliper 0.285 (0.013) 0.288 (0.013) 0.285 (0.013)

In the Appendix A.3 the Monte Carlo standard errors of the coverage are displayed. All errors
are smaller than 1%, what was the goal in the sample size calculations (protocol in Section A.2).
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Table 3.6: Comparison of di�erent standard errors (se) of the conditional e�ect es-
timation by the simulation study. In parentheses the standard errors of the observed
standard errors are shown.
* Cluster robust standard error for optimal and full matching and HC0 standard error for all others.

Scenario Matching algorithm Simple se HC3 se Cluster robust se*

OR=2 unmatched 0.267 (0.010) 0.271 (0.012) 0.267 (0.012)
optimal 0.295 (0.015) 0.303 (0.017) 0.295 (0.020)
nearest 0.295 (0.015) 0.303 (0.017) 0.295 (0.016)
genetic 0.333 (0.019) 0.402 (0.042) 0.374 (0.029)
full 0.245 (0.014) 0.385 (0.060) 0.347 (0.047)
caliper 0.324 (0.020) 0.334 (0.021) 0.324 (0.020)

OR=5 unmatched 0.292 (0.016) 0.297 (0.019) 0.292 (0.018)
optimal 0.327 (0.023) 0.335 (0.025) 0.327 (0.028)
nearest 0.327 (0.024) 0.335 (0.025) 0.327 (0.024)
genetic 0.369 (0.030) 0.430 (0.046) 0.402 (0.035)
full 0.280 (0.022) 0.412 (0.070) 0.373 (0.054)
caliper 0.359 (0.029) 0.370 (0.032) 0.359 (0.031)

OR=1 unmatched 0.266 (0.010) 0.270 (0.012) 0.266 (0.012)
optimal 0.292 (0.014) 0.299 (0.016) 0.292 (0.020)
nearest 0.292 (0.015) 0.300 (0.016) 0.292 (0.015)
genetic 0.327 (0.018) 0.401 (0.045) 0.372 (0.031)
full 0.239 (0.012) 0.390 (0.061) 0.351 (0.048)
caliper 0.320 (0.019) 0.330 (0.020) 0.320 (0.019)



Chapter 4

Clinical example: nonoperative

treatment compared with surgery in

patients with lumbar spinal stenosis

In this chapter we reanalyze data which was �rst published by Held et al. (2019).

In the Lumbar Stenosis Outcome Study, a prospective multicenter observational cohort study,
408 patients with degenerative lumbar spinal stenosis were included. The e�ect of conservative
nonsurgical treatment compared to surgery was studied on quality of life, pain, and disability at
one year follow-up time.

4.1 Methods of the clinical example

Three outcomes were examined. First, the EQ-5D-3L was considered which is a score for quality
of life with higher scores indicating higher quality of life. The value at the 12-month follow-
up was assessed. Additionally, the Spinal Stenosis Measure (SSM) assessing both symptoms
and function was considered. For the SSM symptoms a minimal clinically important di�erence
(MCID) is de�ned as an improvement by at least 0.48 points. A MCID in SSM function is de�ned
as an improvement by at least 0.52 points (Stucki et al., 1996). At the 12-month follow-up it
was determined if the two SSM, separately, had reached a MCID compared to the individual's
baseline value.

Various baseline characteristics were used for matching. The baseline values of the three
outcomes were considered, as well as demographic and disease speci�c patients characteristics.
Table 4.1 lists the variables that were used for the analysis.

Matching was done by the following algorithms: optimal, optimal with a 1:2 ratio, nearest,
caliper, full and genetic matching. In comparison to the simulation study, the 1:2 ratio matching
was included here, because there are more than twice as many controls as treated subjects.
Because there were more patients with conservative treatment than who underwent surgery,
this nonoperated group was taken as the treatment group. All the matching algorithms were
computed by the R function matchit. The optimal, nearest, and caliper matching were all
performed with a ratio of 1:1, so having as many controls as treated patients in the matched
data set. A caliper of 0.1 standard deviations of the propensity score was used, while the matching
was done with the optimal algorithm. For the genetic algorithm a population size of 500 was
used.

After matching the balance was checked by looking at the standardized mean di�erence
which was calculated using the standard deviation of the treated group (without surgery) in the
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denominator. This is well suited for this comparison, because all matching algorithms retained
all the treated individuals in the data.

For the sake of completeness we calculated the outcomes of all matched data sets, even though
in a practical setting one would probably only use the matched data with the best balance.

The �rst outcome, EQ-5D-3L, was analyzed by linear regression, whereas the odds ratios
for an improvement of the SSM function and SSM symptoms scores were computed by logistic
regression. All regressions were once done with the treatment as the only independent variable,
and once by including the other covariates which were used for the matching. After full and
genetic matching the obtained weights were included in the regression analyses. In the analysis
of the full matched data cluster robust standard errors were used in order to account for the
subclasses. Robust standard errors (HC3) were also calculated for the results after genetic
matching to consider the matching weights. For all other analyses �simple� standard errors were
computed. For interested readers other types of standard errors for the EQ5D outcome are shown
in Table A.13 in Section A.4.

Table 4.1: List of baseline variables of the lumbar spinal stenosis data.
HADS = Hospital Anxiety and Depression Scale, SSM = Spinal Stenosis Measure.

Variable Label Units / levels Description

age Age years age
female Female female or male sex
diabetes Diabetes yes or no diagnosis of diabetes
bmi BMI kg/m2 BMI = weight / height2

smoking Smoking yes or no smoker
education_risk Education risk yes or no compulsory school only
civil_risk Civil risk yes or no social risk
duration_symptoms_3mo Duration symptoms yes or no duration of symptoms >3 months
cirs CIRS score Chronic In�ammatory Response Syndrome
hads_anx_risk HADS anxiety yes or no HADS anxiety score ≥ 8
hads_dep_risk HADS depression yes or no HADS depression score ≥ 8
ssm_sy SSM symptoms score SSM sympton severity scale
ssm_fu SSM function score SSM function scale
eq5d_ssc EQ5D score EQ-5D-3L sum score
listhese_risk Listhese risk yes or no degenerative spondylolisthesis

4.2 Results of the clinical example

The results of the caliper algorithm are not shown, because optimal matching with a caliper of
0.1 standard deviations of the propensity score did not discard any treated patients and yielded
exactly the same matched data set as optimal matching without caliper.

Table 4.2 shows the patient characteristics at baseline. The responding tables after matching
can be found in Section A.4.

The achieved balance is displayed in Figure 4.1 and Figure 4.2 by showing the absolute
standardized mean di�erences, and the variance ratios and Kolmogorov-Smirnov statistics, re-
spectively.

Even before matching the balance was not too bad with all variables having a SMD below 0.2
and a variance ratio below 2. The variance ratios could on average not be lowered by matching
and genetic matching was the only algorithm which clearly achieved lower SMDs for all except
one variable.

In Figure 4.3 to Figure 4.5 the results of the outcome regressions are shown.
As it can be seen in Figure 4.3, a conservative treatment leads on average to a lower EQ-

5D-3L sum score after 12 month compared to surgery. This means that lumbar spinal stenosis
patients can expect a better quality of life after surgery.
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Table 4.2: Baseline characteristics of the patients in the spinal stenosis study.

Overall OP no OP SMD

No. of patients 408 297 111
Mean age, years (SD) 72.7 (8.2) 72.3 (8.0) 73.8 (8.4) 0.176
Female, n (%) 210 (51.5) 150 (50.5) 60 (54.1) 0.035
Diabetes, n (%) 46 (11.3) 34 (11.4) 12 (10.8) 0.006
Mean BMI (SD) 27.6 (4.8) 27.4 (4.4) 28.0 (5.6) 0.103
Smoking, n (%) 62 (15.2) 45 (15.2) 17 (15.3) 0.002
Education: compulsory school only, n (%) 94 (23.0) 67 (22.6) 27 (24.3) 0.018
Social risk, n (%) 148 (36.3) 103 (34.7) 45 (40.5) 0.059
Duration of symptoms >3 months, n (%) 368 (90.2) 272 (91.6) 96 (86.5) 0.051
Mean CIRS (SD) 9.3 (3.9) 9.4 (3.9) 9.1 (4.1) 0.087
HADS anxiety score ≥ 8, n(%) 77 (18.9) 57 (19.2) 20 (18.0) 0.012
HADS depression score ≥ 8, n(%) 72 (17.6) 49 (16.5) 23 (20.7) 0.042
Mean SSM symptoms (SD) 3.1 (0.6) 3.1 (0.6) 3.0 (0.7) 0.137
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.6) 2.2 (0.8) 0.067
Mean EQ-5D-3L sum score (SD) 69.1 (15.8) 68.6 (15.1) 70.6 (17.5) 0.119
Degenerative spondylolisthesis, n (%) 246 (60.3) 186 (62.6) 60 (54.1) 0.086
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Figure 4.1: Love plot showing the absolute standardized mean di�erences (SMD) be-
tween the treatment groups before (unmatched) and after using 5 matching algorithms.

The odds ratios to gain a clinically signi�cant improvement in both the SSM function and
SSM symptoms score after 12 months are below 1 for the nonsurgical treatment compared to
surgery, as depicted in Figure 4.4 and Figure 4.5. So there is evidence that patients without an
operation have lower chances to reach an improvement.
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Figure 4.2: Love plot showing the variance ratios and the Kolmogorov-Smirnov statis-
tics between the treatment groups before (unmatched) and after using 5 matching al-
gorithms.
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Figure 4.3: The estimated di�erence at the 12-month follow-up in EQ5D between pa-
tients with conservative treatment and patients with surgery, analyzed without match-
ing and after the di�erent matching algorithms, showing the 95%-con�dence intervals.
Plot A without further covariate adjustment and lower plot B with adjustment for
(thus conditional on) age, sex, diabetes, BMI, smoking, education, social risk, duration
of symptoms, CIRS, HADS anxiety score, HADS depression score, degenerative spondy-
lolisthesis, baseline SSM symptons, baseline SSM function, and baseline EQ-5D-3L sum
score.
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Figure 4.4: The estimated odds ratio (OR) of patients with conservative treatment
as compared to patients with surgery for achieving a clinically relevant improvement in
SSM symptoms without matching and after the di�erent matching algorithms, showing
the 95%-con�dence intervals. Plot A without further covariate adjustment (yielding
a marginal estimate) and plot B with adjustment for (thus conditional on) age, sex,
diabetes, BMI, smoking, education, social risk, duration of symptoms, CIRS, HADS
anxiety score, HADS depression score, degenerative spondylolisthesis, baseline SSM
symptons, baseline SSM function, and baseline EQ-5D-3L sum score.



4.2. RESULTS OF THE CLINICAL EXAMPLE 33

0.25

0.27

0.27

0.27

0.24

0.25genetic

full

nearest

ratio1to2

optimal

unmatched

0.2 0.5 1.0 1.5
OR

M
at

ch
in

g 
al

go
rit

hm

A

0.2

0.17

0.2

0.17

0.15

0.15genetic

full

nearest

ratio1to2

optimal

unmatched

0.2 0.5 1.0 1.5
OR

M
at

ch
in

g 
al

go
rit

hm

B

Figure 4.5: The estimated OR of patients with conservative treatment as compared
to patients with surgery for achieving a clinically relevant improvement in SSM func-
tion without matching and after the di�erent matching algorithms, showing the 95%-
con�dence intervals. Plot A without further covariate adjustment (yielding a marginal
estimate) and plot B with adjustment for (thus conditional on) age, sex, diabetes, BMI,
smoking, education, social risk, duration of symptoms, CIRS, HADS anxiety score,
HADS depression score, degenerative spondylolisthesis, baseline SSM symptons, base-
line SSM function, and baseline EQ-5D-3L sum score.
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4.3 Discussion of the clinical example

In this study the patients getting a nonoperative treatment had a lower EQ-5D-3L score 12
months afterwards than patients undergoing surgery, controlling for demographic and clinical
covariates. As well, the patients without surgery had smaller chances to gain an improvement in
the SSM symptoms and SSM function scores at the 12-month follow-up.

It is standing out that for the EQ-5D-3L analysis all matching algorithms yielded a less
extreme result than the regression of the unmatched data with the exception of genetic matching.
Genetic matching provided the largest di�erence, but as well the widest con�dence interval.
Probably, the reason for that is that the genetic algorithm only chose 93 controls for the 111
treated patients, leading to a smaller sample size and thus to more uncertainty. Of course, this
characteristic regarding the uncertainty applies as well to the other outcome analyses.

The estimates considering the SSM function and symptoms scores are all very similar, no
matter which matching algorithm was applied. Furthermore, the double adjustment does not
seem to change the results much. Most of them got a little bit extremer what is caused by the
di�erence of looking at conditional instead of considering marginal odds ratios. Like already seen
in the simulation study, the con�dence intervals got larger after double adjustment.



Chapter 5

Discussion

5.1 Summary of �ndings

The simulation study showed that genetic, full and caliper matching could decrease the standard-
ized mean di�erence of unbalanced variables much more than optimal and nearest matching. In
order to be able to estimate unbiased treatment e�ects, the SMD should be as small as possible
(Harder et al., 2010).

The size of the bias and the coverage of the marginal e�ect estimates re�ected the achieved
balance. The unmatched samples yielded the most biased results, followed by the samples of
optimal and nearest matching.

On average, the conditional estimates were closer to the truth for all matching algorithms.
But attention should be payed to the larger variability of the estimates. By double adjustment
the chance to get a result close to the truth is not higher than without. This fact is also depicted
by the coverage rates which are smaller for the conditional estimates than for the marginal ones
after genetic, full, and caliper matching.

Looking at the conditional treatment e�ect, the multiple adjusted regression on the un-
matched sample yielded the most unbiased result. But it should also be asked, how represen-
tative the results are for which population. In the case of matching without discarding treated
individuals the average treatment e�ect on the treated (ATT) is estimated, and thus conclusions
can be drawn on patients who typically qualify for the treatment. A drawback of simple regres-
sion on data with only a few observations on the edges of a population, for example controls
with a very small propensity score, is that the computation relies heavily on extrapolation (Ho
et al., 2007). Additionally, the good result of the multiple adjusted regression without matching
is caused by the setup of the simulation study. The data was simulated on this model. If real
data is looked at, we never now the true underlying structure and it is not easy at all to know
which covariates have to be included in what type of model.

All coverage rates were between 92% and 97% with the only exception after the unmatched
unadjusted analysis. As an optimal coverage is 95% when using 95%-con�dence intervals, this
�nding encourages the application of matching to analyze observational data.

On average 18% of the treatment group were discarded by caliper matching. When a con-
siderable proportion of the treated is discarded, one has to be careful to whom �ndings can be
generalized to. If all treated patients are kept, the ATT is estimated. Usually this is desirable,
because clinicians want to know the e�ect in patients who qualify for the treatment.

A disadvantage of genetic matching is the time it takes. For the matching of large data sets
the di�erence to other algorithms will probably be much larger than in this simulation study
with a sample size of 500.
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5.2 Summary of �ndings in the light of existing literature

5.2.1 Propensity score

To use propensity score matching in the analysis of observational studies is a good possibility
to directly target confounding by indication (Glynn et al., 2006). It is able to balance the two
treatment groups in a way that an unbiased outcome analysis can be done. The graphical display
of the propensity score distribution can detect non-overlapping groups easily (Glynn et al., 2006).
This can prevent from wrong conclusions made by comparing apples with pears. Additionally
Glynn et al. (2006) stated: "Comparison of the distributions of the propensity score between
exposed and unexposed subjects can identify those with absolute indications or contra-indications
to therapy for whom no comparison may be available.

When deciding which covariates to include in the propensity score model, the ones with high
association to both treatment and outcome are most important and they enrich the propensity
score model (Adelson et al., 2017). In general it is advisable to include as many covariates as
were measured with the exception of variables with a high association to treatment assignment
but nearly no association to the outcome because they can bias the e�ect estimation (Adelson
et al., 2017). As the propensity score is a summary score, it is a simple approach to reduce
dimensionality of confounders (Glynn et al., 2006).

Harder et al. (2010) remembered that even after achieving perfect balance, there could be
hidden bias due to unmeasured confounders. This would mean that the ignorability assumption
was not ful�lled.

5.2.2 Advantages and limitations of matching

A disadvantage of matching compared to multiple adjusted regression is that no estimation of the
e�ect of covariates is possible (Heinze and Jüni, 2011). Furthermore, the purpose of matching
methods is not prediction but the estimation of a minimally biased treatment e�ect, and thus it
is not meaningful to predict the predictive accuracy (Heinze and Jüni, 2011).

King and Nielsen (2019) suggested to prefer coarsened exact matching or Mahalanobis dis-
tance matching over propensity score matching. The reason is the di�erence of what experimental
design the di�erent methods imitate. Propensity score matching mimics a completely randomized
experiment, whereas coarsened exact matching and Mahalanobis distance matching approximate
a fully blocked randomized experimental design. The latter has in general more power and is
more e�cient. Furthermore, one should keep in mind the counterweights of getting more sim-
ilar treatment groups and of losing information by discarding extreme observations. King and
Nielsen (2019) found that the turning point for propensity score matching is reached faster than
for other methods and afterwards imbalance can increase. Thus it should be taken care to really
�nd the best balance between the treatment groups.

5.2.3 Choice of the algorithm

Austin (2014) found that matching with a caliper performs better than simple optimal and
nearest neighbor matching. This corresponds to our result. In addition, full and genetic matching
are valuable options to get well balanced treatment groups.

I think the developers of R packages, like MatchIt and of cobalt, did a great job to make
available easy-to-use software for researchers in practice. It is really helpful if di�erent methods
can be applied by a single package and so only one syntax has to be known. It is worth running
more than one matching algorithm and then choosing the one yielding the best balance.
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5.3 Limitations and strengths

We only used a linear model for propensity score calculation. One could examine as well di�erent
propensity score models, for example including interactions or non-linear terms (Heinze and Jüni,
2011). It might make sense to look both at di�erent propensity score estimation models and
various matching algorithms (Harder et al., 2010).

Some matching algorithms have many options which can be changed and which we did not
examine. If there are many more controls than treated individuals, another ratio than 1:1 can be
used. This option is basically available for all algorithms. A special case is full matching which
always builds subclasses with various numbers of treated and control individuals per matched
group. But also for full matching it is possible to restrict the treated-to-control ratios (Hansen,
2004). Matching using a caliper can be done by optimal or nearest neighbor matching. In our
simulation study only nearest matching was examined this way. Furthermore, di�erent caliper
widths could be taken. In the case of genetic matching, the population size can be chosen by
�nding a trade-o� between better results and shorter computation time (Sekhon, 2011a).

A strength of our work is that the simulation study was planned in detail and a protocol was
prepared before the simulation was performed, as it was recommended by Burton et al. (2006).
Even if this preparation takes a lot of time, it pays o� in the end when the execution is fast and
goes smoothly without requiring bug �xes.

5.4 Implications for further research

A question that should be investigated more, is the correct way of calculating the precision of
estimates after matching (Shadish and Steiner, 2010). What standard errors are appropriate?
For �xed ratio matching, like optimal or nearest matching, our results reinforce the statement of
Stuart (2010) and Schafer and Kang (2008) that �simple� standard errors are su�cient. There
is no apparent need to correct for dependence between observations or for heteroscedasticity.
On the other hand, it seems important to not only consider the weights in the analysis but
also to calculate robust standard errors after full matching. As we found as well a substantial
di�erence between the heteroscedasticity consistent standard errors and the �simple� ones, it
should be further investigated if cluster robust standard errors with additional consideration of
heteroscedasticity (for example with HC3) could be a even better approach. Greifer (2020b)
stressed the importance of robust standard errors when using matching weights in regression,
but it remains the question which calculation method suits best.

It would be interesting what the impact of double adjustment is if the outcome model is
misspeci�ed. In this simulation study the same model was used for the multiple adjusted outcome
regression as was applied for the simulation of the data. Thus it was not expected to insert bias
by double adjustment. Conversely, for real data the true underlying structure is not known.

Next to matching, there exist other interesting methods based on the propensity scores. Desai
and Franklin (2019) gave a summary of di�erent weighting methods using the propensity score.

In this thesis the focus lies on matching of two treatment groups considering a set of pre-
treatment covariates. Additionally, matching and other propensitiy score methods can also be
applied to multiple treatment groups as well as to address time-varying confounding (Desai and
Franklin, 2019).

Matching can only account for confounding by variables which were observed. In contrast,
by randomization all patient characteristics are balanced on average. In observational studies
it is recommended to assess the risk of confounding by unmeasured variables by a sensitivity
analysis (Caliendo and Kopeinig, 2008). Simulating unobserved variables by ignoring them in
the matching algorithm could be another idea for a simulation study to examine their impact on
the resulting estimates.
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5.5 Implications for practice

Based on the simulation study, the suggestion of Stuart (2010) for the usage of full matching can
be supported. Also genetic and caliper matching were able to choose well balanced treatment
groups. It is really important that after matching the balance is checked. Only with a satisfying
balance the further analysis of outcomes should be started.

Like Nguyen et al. (2017) recommended, it seems to be a good idea to adjust also in the
regression for variables that still had a standardized mean di�erence above 0.1 after matching.
If the balance is really good for all variables double adjustment is not surely able to improve the
results.

Summarizing, I would suggest to try to get balanced data by using full matching. If this is
not successful, one can try genetic or caliper matching. Attention has to be payed on potentially
discarded observations. If only a small number of variables stay unbalanced, I would recommend
to also adjust for these in the regression analysis of the outcome.

5.6 Conclusion

In conclusion, matching is a powerful tool for the analysis of observational studies, nonetheless the
matching algorithms, potential loss of power and unmeasurable confounding should be considered
when assessing the results for generalizability. Matching begins by forcing the researcher to look
in-depth at the di�erences between treatment groups. After matching, balance and included
observations should be examined carefully to allow the right interpretation in the end. By
publishing similar results obtained by for example multiple adjusted regression and additionally
by usage of one or two matching algorithms the plausibility of a study can be improved.



Appendix

A.1 Additional tables of the motivating example of Cytosorb

Table A.1: Patient characteristics of the Cytosorb data after optimal matching. Here,
IQR denotes the �rst and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 96 48 48
Age (mean (SD)) 57 (14) 57 (13) 57 (16) 0.040
Sex (%) f 37 (38.5) 20 (41.7) 17 (35.4) 0.129

m 59 (61.5) 28 (58.3) 31 (64.6)
BMI (mean (SD)) 26 (6) 25 (6) 26 (7) 0.149
SAPS (mean (SD)) 66 (18) 65 (18) 68 (18) 0.140
SOFA (mean (SD)) 14 (4) 14 (4) 14 (3) <0.001
Lactate (median [IQR]) 5 [2, 8] 5 [2, 7] 4 [2, 8] 0.029
IL6 (median [IQR]) 1369 [1369, 1369] 1369 [1369, 1369] 1369 [1369, 1369] 0.027
PCT (median [IQR]) 17 [6, 56] 17 [8, 55] 18 [6, 56] 0.179
VPI (median [IQR]) 8 [4, 17] 8 [4, 14] 10 [4, 20] 0.044

Table A.2: Patient characteristics of the Cytosorb data after nearest matching. Here,
IQR denotes the �rst and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 96 48 48
Age (mean (SD)) 58 (14) 58 (13) 57 (16) 0.102
Sex (%) f 37 (38.5) 20 (41.7) 17 (35.4) 0.129

m 59 (61.5) 28 (58.3) 31 (64.6)
BMI (mean (SD)) 26 (6) 26 (6) 26 (7) 0.140
SAPS (mean (SD)) 67 (17) 66 (17) 68 (18) 0.096
SOFA (mean (SD)) 14 (4) 15 (4) 14 (3) 0.024
Lactate (median [IQR]) 4 [2, 8] 4 [2, 7] 4 [2, 8] 0.027
IL6 (median [IQR]) 1369 [1369, 1369] 1369 [1369, 1369] 1369 [1369, 1369] 0.027
PCT (median [IQR]) 17 [6, 49] 15 [8, 39] 18 [6, 56] 0.150
VPI (median [IQR]) 8 [4, 17] 8 [4, 15] 10 [4, 20] 0.014
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Table A.3: Patient characteristics of the Cytosorb data after genetic matching. Here,
IQR denotes the �rst and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 83 35 48
Age (mean (SD)) 57 (15) 58 (13) 57 (16) 0.050
Sex (%) f 28 (33.7) 11 (31.4) 17 (35.4) 0.085

m 55 (66.3) 24 (68.6) 31 (64.6)
BMI (mean (SD)) 26 (6) 26 (5) 26 (7) 0.042
SAPS (mean (SD)) 67 (17) 67 (16) 68 (18) 0.038
SOFA (mean (SD)) 14 (3) 14 (3) 14 (3) 0.113
Lactate (median [IQR]) 4 [2, 7] 5 [2, 7] 4 [2, 8] 0.073
IL6 (median [IQR]) 1369 [1369, 1369] 1369 [1369, 1369] 1369 [1369, 1369] 0.002
PCT (median [IQR]) 18 [7, 51] 16 [9, 47] 18 [6, 56] 0.046
VPI (median [IQR]) 9 [5, 16] 9 [5, 14] 10 [4, 20] 0.157

Table A.4: Patient characteristics of the Cytosorb data after full matching. Here,
IQR denotes the �rst and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 208 160 48
Age (mean (SD)) 61 (16) 63 (15) 57 (16) 0.362
Sex (%) f 64 (30.8) 47 (29.4) 17 (35.4) 0.129

m 144 (69.2) 113 (70.6) 31 (64.6)
BMI (mean (SD)) 26 (6) 26 (5) 26 (7) 0.083
SAPS (mean (SD)) 63 (19) 62 (19) 68 (18) 0.307
SOFA (mean (SD)) 12 (4) 12 (4) 14 (3) 0.769
Lactate (median [IQR]) 3 [2, 6] 2 [2, 5] 4 [2, 8] 0.391
IL6 (median [IQR]) 1369 [446, 1369] 1037 [302, 1369] 1369 [1369, 1369] 0.988
PCT (median [IQR]) 11 [3, 35] 10 [3, 28] 18 [6, 56] 0.062
VPI (median [IQR]) 6 [3, 12] 5 [3, 10] 10 [4, 20] 0.507

Table A.5: Patient characteristics of the Cytosorb data after caliper matching. Here,
IQR denotes the �rst and third quartiles, which are given as a range in brackets.

Variable Level Overall Filter Control SMD

n 86 43 43
Age (mean (SD)) 59 (14) 60 (14) 58 (15) 0.100
Sex (%) f 34 (39.5) 19 (44.2) 15 (34.9) 0.191

m 52 (60.5) 24 (55.8) 28 (65.1)
BMI (mean (SD)) 26 (7) 26 (6) 26 (7) 0.080
SAPS (mean (SD)) 67 (17) 68 (16) 66 (17) 0.073
SOFA (mean (SD)) 14 (4) 14 (4) 14 (3) 0.148
Lactate (median [IQR]) 5 [2, 8] 5 [2, 7] 4 [2, 8] 0.004
IL6 (median [IQR]) 1369 [1369, 1369] 1369 [1369, 1369] 1369 [1369, 1369] 0.123
PCT (median [IQR]) 17 [7, 64] 17 [7, 80] 18 [6, 56] 0.211
VPI (median [IQR]) 9 [5, 17] 9 [4, 15] 10 [5, 20] 0.036
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A.2 Protocol of the simulation study

A.2.1 Aims and objectives

The aim of our simulation study is to see how di�erent matching procedures a�ect the estimated
treatment e�ect from an observational study. The treatment e�ect of interest is the odds ratio
of the Cytosorb �lter on in-hospital mortality. The following matching algorithms are compared:

1. nearest neighbor matching,

2. nearest neighbor matching with a caliper,

3. optimal matching,

4. full matching,

5. genetic matching.

All of these are computed by the R package MatchIt.

A.2.2 Simulation procedures

Level of dependence between simulated datasets

We will apply each of the aforementioned matching algorithms to all simulated data sets. For
di�erent scenarios we will generate di�erent independent data sets. This procedure corresponds
to �moderately independent� simulations (Burton et al., 2006).

Allowance for failures

Failure could occur if the logistic model for e�ect estimation does not converge. When a failure
occurs, the concerned sample will be discarded and replaced. We will record the number of
failures, the reason and the method for which it occurred.

Software to perform simulations

The simulation study will be performed in R version 4.0.2 using base and tidyverse packages as
well as the following packages: MASS, MatchIt, rgenoud, cobalt, sandwich, lmtest.

Random number generator to use

The default random number generator implemented in R is used, which is the �Mersenne- Twister�
(Matsumoto and Nishimura, 1998).

Speci�cation of starting seeds

We will use one input seed, namely �202011�. Then we will store the state of the random-number
generator at the beginning of each repetition, as suggested by Morris et al. (2019).

A.2.3 Methods for generating the datasets

We will us the Cytosorb data set as a motivating example. Data are simulated on nobs = 500
patients, representing the size of a typical observational study in the �eld, which the original
cytosorb study belongs to. For the sake of some simpli�cation, we will only use the covariates
IL-6 (with units ng/ml), SOFA, Age (years) and Sex.

To generate the 3 continuous covariates, we will take the values for the means, standard
deviations and correlations similar to the ones of the Cytosorb data. Theses values are shown in
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Table A.6: Mean, standard deviation and correlation of covariates.

Variable Mean Variance Covariance
to IL-6

Covariance
to SOFA

Covariance
to Age

IL-6 1 0.3 - 0.6 -0.2
SOFA 12 17 0.6 - -1
Age 60 200 -0.2 -1 -

table A.6. Assuming a multivariate normal distribution we will generate the data for simulation.
The binary covariate Sex will be simulated using a Bernoullli distribution with a probability for
female of 0.3.

We will use the logistic link function (see equation (A.1)) to determine the subject-speci�c
probability of treatment. For each subject, an indicator variable for treatment status is gen-
erated from a Bernoulli distribution with the appropriate subject-speci�c probability. Using
formula (A.2) the subject-speci�c probability of the outcome is generated and �nally, we will
generate an outcome for each subject from a Bernoulli distribution with the subject-speci�c
parameter determined in the prior step.

logit(ptreatment) = β(0,treatment)

+ β(IL6, treatment)XIL6 + β(SOFA, treatment)XSOFA

+ β(Age, treatment)XAge + β(Sex, treatment)XSex,

(A.1)

logit(poutcome) = β(0, outcome) + β(treatment, outcome)T

+ β(IL6, outcome)XIL6 + β(SOFA, outcome)XSOFA

+ β(Age, outcome)XAge + β(Sex, outcome)XSex,

(A.2)

whereas T = 1 for the treated and T = 0 for the control group.

This method of data generation is inspired by Austin (2010).

A.2.4 Scenarios to be investigated

1. No treatment e�ect, conditional OR = 1.

2. Moderate treatment e�ect as is, conditional OR = 2.

3. Strong treatment e�ect, conditional OR = 5.

A.2.5 Statistical methods to be evaluated

1. Nearest neighbor matching on propensity score with the order from the largest value of the
distance measure to the smallest.

2. Nearest neighbor matching on propensity score with a caliper of 0.2 standard deviations.

3. Optimal matching (loading the add-on package optmatch) on propensity score.

4. Full matching (loading the add-on package optmatch) on propensity score.

5. Genetic matching (loading the package Matching) with a 1:1 ratio of controls to treated
units and a population size of 100.
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After matching the conditional treatment e�ect is estimated by logistic regression adjusted
for the 4 covariates. After full matching and genetic matching we will incorporate the weights
(which in these two cases do not equal 1) in the regression. In addition to the simple standard
errors given by the glm function, heteroscedasticity-consistent robust standard errors (HC3) and
cluster robust standard errors are computed by the R package sandwich and the help of the
function coeftest from the package lmtest for all analyses (Zeileis, 2004; Zeileis et al., 2020).
To further calculate the 95%-con�dence intervals the cluster robust standard errors are used.

The marginal treatment e�ect is calculated without including the covariates in the regression.
To determine the true marginal e�ect we simulate 100'000 data sets of 10'000 observations and
calculate their marginal odds ratio.

A.2.6 Estimates to be stored for each simulation and summary measures to

be calculated over all simulations

For each simulation i = 1, . . . , nsim and each method j = 1, . . . , 5 we will store:

� the time needed for the matching algorithm,

� number of treated individuals which are discarded,

� absolute standardized di�erences, a measure for the balance of the covariates, SMD =
X1−X2

s , where s is the standard deviation in the full sample (before matching),

� estimated conditional and marginal treatment e�ect, θij , expressed as log odds ratio
(whereof we can calculate the odds ratio afterwards),

� 95% con�dence interval of the estimated treatment e�ect,

� summary of weights obtained by full matching (minimum, maximum, �rst and third quar-
tile, median and mean),

� failures (specify, when details of potential failures known).

Once all simulations have been performed, we will summarize these estimates for all combi-
nations of scenario and method j:

� the average of the treatment e�ect estimates, θ̂j =
∑nsim

i=1
θ̂ij
nsim

,

� the SE, calculated as the standard deviation of the estimates, ŜE =

√
1

nsim−1
∑nsim

i=1 (θ̂ij − θ̂j)2,

� the bias, δj = θ̂j − θ,

� proportion of false positives (in case of a true zero treatment e�ect) and false negatives (in
case of a true treatment e�ect) using a signi�cance level of α = 0.05,

� coverage, meaning the proportion of times the con�dence interval includes the true treat-
ment e�ect, P (θ̂low < θ < θ̂upp).

For all performance measures the Monte Carlo standard error will be calculated to quantify
simulation uncertainty (Morris et al., 2019).

A.2.7 Number of simulations to be performed

The required number of simulations are calculated by taking into account the Monte Carlo
standard error (SE) (Morris et al., 2019). We want the Monte Carlo SE of coverage to be lower
than 1%. It maximizes for a coverage of 50%, leading to

nsim = E(coverage)(1−E(coverage))
(Monte Carlo SEmax)2

= 0.5(1−0.5)
0.012

= 2500.



44 CHAPTER 5. DISCUSSION

A.2.8 Criteria to evaluate the performance of statistical methods for di�erent

scenarios

� Variation of the treatment e�ect.

� How often is there a treatment e�ect in the scenario "no treatment e�ect"?

� How often is there no treatment e�ect in the scenario "treatment e�ect"?

A.2.9 Presentation of the simulation results

We will show scatterplots of the estimated treatment e�ects for the three scenarios, which show
the mean estimate and the true value as well. To make comparison of single data sets possible,
we will also look at a line plot. A table will show the summarized estimates of all scenarios, as
mentioned in Section A.2.6.

A.3 Additional results of the simulation study

Table A.7: Monte Carlo standard errors of coverage.

Scenario unmatched optimal nearest caliper full genetic

OR=2, marginal 0.0091 0.0049 0.0051 0.0034 0.008 0.0052
OR=2, conditional 0.0044 0.0043 0.0043 0.0043 0.0081 0.0057
OR=5, marginal 0.0095 0.005 0.0052 0.0039 0.0072 0.0049
OR=5, conditional 0.0041 0.0042 0.0043 0.0043 0.0074 0.0052
OR=1, marginal 0.0092 0.0051 0.0054 0.0036 0.0079 0.0054
OR=1, conditional 0.0046 0.0046 0.0046 0.0042 0.0083 0.0061

A.4 Additional tables of the clinical example: lumbar spinal steno-

sis data

Table A.8: Baseline characteristics of the patients after optimal matching.

Overall OP no OP SMD

No. of patients 222 111 111
Mean age, years (SD) 74.2 (8.1) 74.5 (7.8) 73.8 (8.4) 0.089
Female, n (%) 123 (55.4) 63 (56.8) 60 (54.1) 0.027
Diabetes, n (%) 27 (12.2) 15 (13.5) 12 (10.8) 0.027
Mean BMI (SD) 27.7 (5.1) 27.3 (4.5) 28.0 (5.6) 0.125
Smoking, n (%) 36 (16.2) 19 (17.1) 17 (15.3) 0.018
Education: compulsory school only, n (%) 57 (25.7) 30 (27.0) 27 (24.3) 0.027
Social risk, n (%) 94 (42.3) 49 (44.1) 45 (40.5) 0.036
Duration of symptoms >3 months, n (%) 194 (87.4) 98 (88.3) 96 (86.5) 0.018
Mean CIRS (SD) 9.2 (3.7) 9.4 (3.3) 9.1 (4.1) 0.077
HADS anxiety score ≥ 8, n(%) 40 (18.0) 20 (18.0) 20 (18.0) 0
HADS depression score ≥ 8, n(%) 48 (21.6) 25 (22.5) 23 (20.7) 0.018
Mean no. of SSM symptoms (SD) 3.0 (0.6) 3.0 (0.6) 3.0 (0.7) 0.025
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.7) 2.2 (0.8) 0.004
Mean EQ-5D-3L sum score (SD) 71.1 (15.9) 71.5 (14.3) 70.6 (17.5) 0.052
Degenerative spondylolisthesis, n (%) 121 (54.5) 61 (55.0) 60 (54.1) 0.009
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Table A.9: Baseline characteristics of the patients after ratio 1:2 matching.

Overall OP no OP SMD

No. of patients 333 222 111
Mean age, years (SD) 73.6 (7.9) 73.5 (7.6) 73.8 (8.4) 0.032
Female, n (%) 180 (54.1) 120 (54.1) 60 (54.1) 0
Diabetes, n (%) 37 (11.1) 25 (11.3) 12 (10.8) 0.005
Mean BMI (SD) 27.8 (4.9) 27.6 (4.4) 28.0 (5.6) 0.067
Smoking, n (%) 51 (15.3) 34 (15.3) 17 (15.3) 0
Education: compulsory school only, n (%) 76 (22.8) 49 (22.1) 27 (24.3) 0.023
Social risk, n (%) 134 (40.2) 89 (40.1) 45 (40.5) 0.005
Duration of symptoms >3 months, n (%) 295 (88.6) 199 (89.6) 96 (86.5) 0.032
Mean CIRS (SD) 9.0 (3.8) 9.0 (3.6) 9.1 (4.1) 0.029
HADS anxiety score ≥ 8, n(%) 64 (19.2) 44 (19.8) 20 (18.0) 0.018
HADS depression score ≥ 8, n(%) 67 (20.1) 44 (19.8) 23 (20.7) 0.009
Mean no. of SSM symptoms (SD) 3.0 (0.6) 3.0 (0.6) 3.0 (0.7) 0.006
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.6) 2.2 (0.8) 0.001
Mean EQ-5D-3L sum score (SD) 70.5 (16.0) 70.5 (15.2) 70.6 (17.5) 0.01
Degenerative spondylolisthesis, n (%) 188 (56.5) 128 (57.7) 60 (54.1) 0.036

Table A.10: Baseline characteristics of the patients after nearest matching.

Overall OP no OP SMD

No. of patients 222 111 111
Mean age, years (SD) 74.5 (8.0) 75.2 (7.5) 73.8 (8.4) 0.166
Female, n (%) 122 (55.0) 62 (55.9) 60 (54.1) 0.018
Diabetes, n (%) 24 (10.8) 12 (10.8) 12 (10.8) 0
Mean BMI (SD) 27.7 (5.1) 27.5 (4.6) 28.0 (5.6) 0.099
Smoking, n (%) 35 (15.8) 18 (16.2) 17 (15.3) 0.009
Education: compulsory school only, n (%) 55 (24.8) 28 (25.2) 27 (24.3) 0.009
Social risk, n (%) 92 (41.4) 47 (42.3) 45 (40.5) 0.018
Duration of symptoms >3 months, n (%) 194 (87.4) 98 (88.3) 96 (86.5) 0.018
Mean CIRS (SD) 9.2 (3.7) 9.4 (3.3) 9.1 (4.1) 0.068
HADS anxiety score ≥ 8, n(%) 39 (17.6) 19 (17.1) 20 (18.0) 0.009
HADS depression score ≥ 8, n(%) 44 (19.8) 21 (18.9) 23 (20.7) 0.018
Mean no. of SSM symptoms (SD) 3.1 (0.6) 3.1 (0.6) 3.0 (0.7) 0.112
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.7) 2.2 (0.8) 0.053
Mean EQ-5D-3L sum score (SD) 70.9 (16.1) 71.3 (14.6) 70.6 (17.5) 0.036
Degenerative spondylolisthesis, n (%) 118 (53.2) 58 (52.3) 60 (54.1) 0.018

Table A.11: Baseline characteristics of the patients after full matching.

Overall OP no OP SMD

No. of patients 408 297 111
Mean age, years (SD) 72.7 (8.2) 72.3 (8.0) 73.8 (8.4) 0.176
Female, n (%) 210 (51.5) 150 (50.5) 60 (54.1) 0.035
Diabetes, n (%) 46 (11.3) 34 (11.4) 12 (10.8) 0.006
Mean BMI (SD) 27.6 (4.8) 27.4 (4.4) 28.0 (5.6) 0.103
Smoking, n (%) 62 (15.2) 45 (15.2) 17 (15.3) 0.002
Education: compulsory school only, n (%) 94 (23.0) 67 (22.6) 27 (24.3) 0.018
Social risk, n (%) 148 (36.3) 103 (34.7) 45 (40.5) 0.059
Duration of symptoms >3 months, n (%) 368 (90.2) 272 (91.6) 96 (86.5) 0.051
Mean CIRS (SD) 9.3 (3.9) 9.4 (3.9) 9.1 (4.1) 0.087
HADS anxiety score ≥ 8, n(%) 77 (18.9) 57 (19.2) 20 (18.0) 0.012
HADS depression score ≥ 8, n(%) 72 (17.6) 49 (16.5) 23 (20.7) 0.042
Mean no. of SSM symptoms (SD) 3.1 (0.6) 3.1 (0.6) 3.0 (0.7) 0.137
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.6) 2.2 (0.8) 0.067
Mean EQ-5D-3L sum score (SD) 69.1 (15.8) 68.6 (15.1) 70.6 (17.5) 0.119
Degenerative spondylolisthesis, n (%) 246 (60.3) 186 (62.6) 60 (54.1) 0.086
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Table A.12: Baseline characteristics of the patients after genetic matching.

Overall OP no OP SMD

No. of patients 204 93 111
Mean age, years (SD) 73.6 (8.1) 73.4 (7.6) 73.8 (8.4) 0.053
Female, n (%) 112 (54.9) 52 (55.9) 60 (54.1) 0.019
Diabetes, n (%) 22 (10.8) 10 (10.8) 12 (10.8) 0.001
Mean BMI (SD) 28.0 (5.0) 27.9 (4.2) 28.0 (5.6) 0.015
Smoking, n (%) 32 (15.7) 15 (16.1) 17 (15.3) 0.008
Education: compulsory school only, n (%) 49 (24.0) 22 (23.7) 27 (24.3) 0.007
Social risk, n (%) 83 (40.7) 38 (40.9) 45 (40.5) 0.003
Duration of symptoms >3 months, n (%) 177 (86.8) 81 (87.1) 96 (86.5) 0.006
Mean CIRS (SD) 9.1 (3.7) 9.1 (3.3) 9.1 (4.1) 0.006
HADS anxiety score ≥ 8, n(%) 36 (17.6) 16 (17.2) 20 (18.0) 0.008
HADS depression score ≥ 8, n(%) 40 (19.6) 17 (18.3) 23 (20.7) 0.024
Mean no. of SSM symptoms (SD) 3.0 (0.6) 3.0 (0.6) 3.0 (0.7) 0.031
Mean SSM function (SD) 2.2 (0.7) 2.2 (0.6) 2.2 (0.8) 0.006
Mean EQ-5D-3L sum score (SD) 70.5 (16.7) 70.3 (15.9) 70.6 (17.5) 0.018
Degenerative spondylolisthesis, n (%) 114 (55.9) 54 (58.1) 60 (54.1) 0.04

Table A.13: Comparison of di�erent standard errors computed by the analysis of the
continuous outcome EQ-5D-3L of the lumbar spinal stenosis data.

normal HC1 HC3 cluster

unmatched 1.63 1.66 1.72
optimal 1.98 1.97 2.07 1.78
ratio1to2 1.70 1.72 1.78 1.72
nearest 1.96 1.98 2.08
full 1.64 1.91 2.05 1.83
genetic 2.08 2.09 2.23



A.5. R CODE 47

A.5 R code

R functions used in the simulation study.

##############################################

####### functions used in simulation study

##############################################

####### simulation of data

###########################

simulate_data <- function(n_obs,

mean_Age,

mean_SOFA,

mean_IL6,

cov_matr,

beta_treat_0,

beta_treat_Age,

beta_treat_IL6,

beta_treat_SOFA,

beta_treat_Sex,

beta_out_0,

beta_out_Age,

beta_out_IL6,

beta_out_SOFA,

beta_out_Sex,

beta_out_treat){

### simulation of covariates

multivars <- matrix(mvrnorm(n = n_obs,

mu = c(mean_Age, mean_IL6, mean_SOFA),

Sigma = cov_matr),

ncol = 3)

multivars <- ifelse(multivars < 0, 0, multivars) # no negative values

sim_dat <- data.frame(multivars)

colnames(sim_dat) <- c("Age", "IL6", "SOFA")

sim_dat$SOFA <- round(sim_dat$SOFA, 0)

# binary variable "Sex" with proportion p(f) = 0.3

sim_dat$Sex <- rbinom(n_obs, 1, 0.3) %>%

as.factor()

levels(sim_dat$Sex) <- c("m", "f")

### simulation of treatment

sim_dat$Filter_prob <- plogis(beta_treat_0 + beta_treat_IL6 * sim_dat$IL6 +

beta_treat_SOFA * sim_dat$SOFA +

beta_treat_Age * sim_dat$Age +

beta_treat_Sex * (as.numeric(sim_dat$Sex) - 1))

sim_dat$Filter <- rbinom(n_obs, 1, sim_dat$Filter_prob)

### simulation of outcome

sim_dat$Death_prob <- plogis(beta_out_0 + beta_out_treat * sim_dat$Filter +

beta_out_IL6 * sim_dat$IL6 +

beta_out_SOFA * sim_dat$SOFA +

beta_out_Age * sim_dat$Age +

beta_out_Sex * (as.numeric(sim_dat$Sex) - 1))

sim_dat$Death <- rbinom(n_obs, 1, sim_dat$Death_prob)

### return simulated dataset

return(sim_dat)

}

####### matching and analysis

#############################
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match_analyze <- function(sim_dat) {

### before matching

n_treated <- nrow(sim_dat[sim_dat$Filter == 1, ])

### matching

start_time <- Sys.time()

matchit_optimal <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "optimal")

end_time <- Sys.time()

time_optimal <- as.numeric(end_time - start_time)

dat_matchit_optimal <- match.data(matchit_optimal)

n_treated_discard_optimal <- summary(matchit_optimal)$nn[3, 2]

n_control_optimal <- summary(matchit_optimal)$nn[2, 1]

start_time <- Sys.time()

matchit_nearest <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "nearest", m.order = "largest")

end_time <- Sys.time()

time_nearest <- as.numeric(end_time - start_time)

dat_matchit_nearest <- match.data(matchit_nearest)

n_treated_discard_nearest <- summary(matchit_nearest)$nn[3, 2]

n_control_nearest <- summary(matchit_nearest)$nn[2, 1]

start_time <- Sys.time()

matchit_caliper <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "nearest", m.order = "largest", caliper = 0.2)

end_time <- Sys.time()

time_caliper <- as.numeric(end_time - start_time)

dat_matchit_caliper <- match.data(matchit_caliper)

n_treated_discard_caliper <- summary(matchit_caliper)$nn[3, 2]

n_control_caliper <- summary(matchit_caliper)$nn[2, 1]

start_time <- Sys.time()

matchit_full <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "full", estimand = "ATT")

end_time <- Sys.time()

time_full <- as.numeric(end_time - start_time)

dat_matchit_full <- match.data(matchit_full)

n_treated_discard_full <- summary(matchit_full)$nn[3, 2]

n_control_full <- summary(matchit_full)$nn[2, 1]

subclasses_full <- length(unique(matchit_full$subclass))

weights_full <- summary(dat_matchit_full[dat_matchit_full$Filter == 0, ]$weights)

start_time <- Sys.time()

matchit_ATE <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "full", estimand = "ATE") # not further used

end_time <- Sys.time() # because full matching with "ATE" or "ATT" as estimand

time_ATE <- as.numeric(end_time - start_time) # -> same weights

dat_matchit_ATE <- match.data(matchit_ATE)

n_treated_discard_ATE <- summary(matchit_ATE)$nn[3, 2]

n_control_ATE <- summary(matchit_ATE)$nn[2, 1]

weights_ATE <- summary(dat_matchit_ATE[dat_matchit_ATE$Filter == 0, ]$weights)

start_time <- Sys.time()

matchit_genetic <- matchit(Filter ~ Age + Sex + SOFA + IL6, data = sim_dat,

method = "genetic", ratio = 1, pop.size = 100,

print.level = 0) # default pop.size

end_time <- Sys.time()

time_genetic <- as.numeric(end_time - start_time)

dat_matchit_genetic <- match.data(matchit_genetic)

n_treated_discard_genetic <- summary(matchit_genetic)$nn[3, 2]
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n_control_genetic <- summary(matchit_genetic)$nn[2, 1]

### balance

# standardized mean differences (for distance, Age, Sex, SOFA and IL-6)

smd_unmatched <- bal.tab(matchit_optimal, abs = TRUE, s.d.denom = "all",

binary = "std", un = TRUE)$Balance$Diff.Un

smd_optimal <- bal.tab(matchit_optimal, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

smd_nearest <- bal.tab(matchit_nearest, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

smd_caliper <- bal.tab(matchit_caliper, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

smd_full <- bal.tab(matchit_full, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

smd_ATE <- bal.tab(matchit_ATE, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

smd_genetic <- bal.tab(matchit_genetic, abs = TRUE, s.d.denom = "all",

binary = "std")$Balance$Diff.Adj

### analysis with covariate adjustment -> conditional odds ratio

fit_unmatched <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

data = sim_dat, family = binomial(link = "logit"))

fit_optimal <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

data = dat_matchit_optimal, family = binomial(link = "logit"))

fit_nearest <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

data = dat_matchit_nearest, family = binomial(link = "logit"))

fit_caliper <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

data = dat_matchit_caliper, family = binomial(link = "logit"))

fit_full <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

weights = weights,

data = dat_matchit_full, family = binomial(link = "logit"))

fit_genetic <- glm(Death ~ Filter + Age + Sex + SOFA + IL6,

weights = weights,

data = dat_matchit_genetic, family = binomial(link = "logit"))

logOR_cond_unmatched <- coef(fit_unmatched)[[2]]

logOR_cond_optimal <- coef(fit_optimal)[[2]]

logOR_cond_nearest <- coef(fit_nearest)[[2]]

logOR_cond_caliper <- coef(fit_caliper)[[2]]

logOR_cond_full <- coef(fit_full)[[2]]

logOR_cond_genetic <- coef(fit_genetic)[[2]]

se_cond_unmatched <- summary(fit_unmatched)$coefficient[2,2]

se_cond_optimal <- summary(fit_optimal)$coefficient[2,2]

se_cond_nearest <- summary(fit_nearest)$coefficient[2,2]

se_cond_caliper <- summary(fit_caliper)$coefficient[2,2]

se_cond_full <- summary(fit_full)$coefficient[2,2]

se_cond_genetic <- summary(fit_genetic)$coefficient[2,2]

# robust standard errors

rse_cond_unmatched <- coeftest(fit_unmatched, vcov. = vcovHC)[2,2]

rse_cond_optimal <- coeftest(fit_optimal, vcov. = vcovHC)[2,2]

rse_cond_nearest <- coeftest(fit_nearest, vcov. = vcovHC)[2,2]

rse_cond_caliper <- coeftest(fit_caliper, vcov. = vcovHC)[2,2]

rse_cond_full <- coeftest(fit_full, vcov. = vcovHC)[2,2]

rse_cond_genetic <- coeftest(fit_genetic, vcov. = vcovHC)[2,2]

# cluster robust standard errors

crse_cond_unmatched <- coeftest(fit_unmatched, vcov. = vcovCL, cadjust = FALSE)[2,2]

crse_cond_optimal <- coeftest(fit_optimal, vcov. = vcovCL,

cluster = ~subclass, cadjust = FALSE)[2,2]

crse_cond_nearest <- coeftest(fit_nearest, vcov. = vcovCL, cadjust = FALSE)[2,2]

crse_cond_caliper <- coeftest(fit_caliper, vcov. = vcovCL, cadjust = FALSE)[2,2]
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crse_cond_full <- coeftest(fit_full, vcov. = vcovCL,

cluster = ~subclass, cadjust = FALSE)[2,2]

crse_cond_genetic <- coeftest(fit_genetic, vcov. = vcovCL, cadjust = FALSE)[2,2]

### analysis without covariate adjustment -> marginal odds ratio

fit_unmatched <- glm(Death ~ Filter,

data = sim_dat, family = binomial(link = "logit"))

fit_optimal <- glm(Death ~ Filter,

data = dat_matchit_optimal, family = binomial(link = "logit"))

fit_nearest <- glm(Death ~ Filter,

data = dat_matchit_nearest, family = binomial(link = "logit"))

fit_caliper <- glm(Death ~ Filter,

data = dat_matchit_caliper, family = binomial(link = "logit"))

fit_full <- glm(Death ~ Filter, weights = weights,

data = dat_matchit_full, family = binomial(link = "logit"))

fit_genetic<- glm(Death ~ Filter, weights = weights,

data = dat_matchit_genetic, family = binomial(link = "logit"))

logOR_marg_unmatched <- coef(fit_unmatched)[[2]]

logOR_marg_optimal <- coef(fit_optimal)[[2]]

logOR_marg_nearest <- coef(fit_nearest)[[2]]

logOR_marg_caliper <- coef(fit_caliper)[[2]]

logOR_marg_full <- coef(fit_full)[[2]]

logOR_marg_genetic <- coef(fit_genetic)[[2]]

se_marg_unmatched <- summary(fit_unmatched)$coefficient[2,2]

se_marg_optimal <- summary(fit_optimal)$coefficient[2,2]

se_marg_nearest <- summary(fit_nearest)$coefficient[2,2]

se_marg_caliper <- summary(fit_caliper)$coefficient[2,2]

se_marg_full <- summary(fit_full)$coefficient[2,2]

se_marg_genetic <- summary(fit_genetic)$coefficient[2,2]

# robust standard errors

rse_marg_unmatched <- coeftest(fit_unmatched, vcov. = vcovHC)[2,2]

rse_marg_optimal <- coeftest(fit_optimal, vcov. = vcovHC)[2,2]

rse_marg_nearest <- coeftest(fit_nearest, vcov. = vcovHC)[2,2]

rse_marg_caliper <- coeftest(fit_caliper, vcov. = vcovHC)[2,2]

rse_marg_full <- coeftest(fit_full, vcov. = vcovHC)[2,2]

rse_marg_genetic <- coeftest(fit_genetic, vcov. = vcovHC)[2,2]

# cluster robust standard errors

crse_marg_unmatched <- coeftest(fit_unmatched, vcov. = vcovCL, cadjust = FALSE)[2,2]

crse_marg_optimal <- coeftest(fit_optimal, vcov. = vcovCL,

cluster = ~subclass, cadjust = FALSE)[2,2]

crse_marg_nearest <- coeftest(fit_nearest, vcov. = vcovCL, cadjust = FALSE)[2,2]

crse_marg_caliper <- coeftest(fit_caliper, vcov. = vcovCL, cadjust = FALSE)[2,2]

crse_marg_full <- coeftest(fit_full, vcov. = vcovCL,

cluster = ~subclass, cadjust = FALSE)[2,2]

crse_marg_genetic <- coeftest(fit_genetic, vcov. = vcovCL, cadjust = FALSE)[2,2]

### return results

return(c(n_treated, smd_unmatched,

logOR_cond_unmatched, se_cond_unmatched, rse_cond_unmatched,

crse_cond_unmatched, logOR_marg_unmatched, se_marg_unmatched,

rse_marg_unmatched, crse_marg_unmatched,

time_optimal, n_treated_discard_optimal, n_control_optimal,

smd_optimal, logOR_cond_optimal, se_cond_optimal, rse_cond_optimal,

crse_cond_optimal,

logOR_marg_optimal, se_marg_optimal, rse_marg_optimal, crse_marg_optimal,

time_nearest, n_treated_discard_nearest, n_control_nearest,

smd_nearest, logOR_cond_nearest, se_cond_nearest, rse_cond_nearest,

crse_cond_nearest,

logOR_marg_nearest, se_marg_nearest, rse_marg_nearest, crse_marg_nearest,
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time_caliper, n_treated_discard_caliper, n_control_caliper,

smd_caliper, logOR_cond_caliper, se_cond_caliper, rse_cond_caliper,

crse_cond_caliper,

logOR_marg_caliper, se_marg_caliper, rse_marg_caliper, crse_marg_caliper,

time_full, n_treated_discard_full, n_control_full, subclasses_full,

smd_full, logOR_cond_full, se_cond_full, rse_cond_full, crse_cond_full,

logOR_marg_full, se_marg_full, rse_marg_full, crse_marg_full,

time_genetic, n_treated_discard_genetic, n_control_genetic,

smd_genetic, logOR_cond_genetic, se_cond_genetic, rse_cond_genetic,

crse_cond_genetic,

logOR_marg_genetic, se_marg_genetic, rse_marg_genetic, crse_marg_genetic,

weights_full))

}

A.6 Session info

R version and packages used to generate this report:

R version: R version 4.0.2 (2020-06-22)
Base packages: stats, graphics, grDevices, utils, datasets, methods, base
Other packages: EValue 4.1.1, obsSens 1.3, rbounds 2.1, Matching 4.9-7, MASS 7.3-51.6, sandwich 3.0-0, lmtest
0.9-38, zoo 1.8-8, reshape2 1.4.4, cobalt 4.2.3, rgenoud 5.8-3.0, optmatch 0.9-13, MatchIt 3.0.2, gridExtra 2.3, tidyr
1.1.2, dplyr 1.0.2, plyr 1.8.6, readxl 1.3.1, ggplot2 3.3.2, biostatUZH 1.8.0, survival 3.1-12, xtable 1.8-4, tableone
0.12.0, RColorBrewer 1.1-2, knitr 1.29
This document was generated on March 30, 2021 at 09:32.



52 CHAPTER 5. DISCUSSION



Bibliography

Abadie, A. and Spiess, J. (2021). Robust post-matching inference. Journal of the American Statistical Association,
0, 1�13.

Adelson, J. L., McCoach, D., Rogers, H., Adelson, J. A., and Sauer, T. M. (2017). Developing and applying the
propensity score to make causal inferences: variable selection and strati�cation. Frontiers in Psychology, 8,
1413.

Ahmed, A., Husain, A., Love, T. E., Gambassi, G., Dell'Italia, L. J., Francis, G. S., Gheorghiade, M., Allman,
R. M., Meleth, S., and Bourge, R. C. (2006a). Heart failure, chronic diuretic use, and increase in mortality
and hospitalization: an observational study using propensity score methods. European Heart Journal, 27,
1431�1439.

Ahmed, A., Perry, G. J., Fleg, J. L., Love, T. E., Go� Jr, D. C., and Kitzman, D. W. (2006b). Outcomes in
ambulatory chronic systolic and diastolic heart failure: a propensity score analysis. American Heart Journal,
152, 956�966.

Ankawi, G., Xie, Y., Yang, B., Xie, Y., Xie, P., and Ronco, C. (2019). What have we learned about the use of
cytosorb adsorption columns? Blood Puri�cation, 48, 196�202.

Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and
2003. Statistics in medicine, 27, 2037�2049.

Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment
groups in propensity-score matched samples. Statistics in Medicine, 28, 3083�3107.

Austin, P. C. (2010). A data-generation process for data with speci�ed risk di�erences or numbers needed to
treat. Communications in Statistics�Simulation and Computation, 39, 563�577.

Austin, P. C. (2011a). An introduction to propensity score methods for reducing the e�ects of confounding in
observational studies. Multivariate behavioral research, 46, 399�424.

Austin, P. C. (2011b). Optimal caliper widths for propensity-score matching when estimating di�erences in means
and di�erences in proportions in observational studies. Pharmaceutical Statistics, 10, 150�161.

Austin, P. C. (2014). A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine,
33, 1057�1069.

Austin, P. C., Grootendorst, P., and Anderson, G. M. (2007). A comparison of the ability of di�erent propensity
score models to balance measured variables between treated and untreated subjects: a monte carlo study.
Statistics in Medicine, 26, 734�753.

Austin, P. C. and Sta�ord, J. (2008). The performance of two data-generation processes for data with speci�ed
marginal treatment odds ratios. Communications in Statistics�Simulation and Computation, 37, 1039�1051.

Belitser, S. V., Martens, E. P., Pestman, W. R., Groenwold, R. H., De Boer, A., and Klungel, O. H. (2011).
Measuring balance and model selection in propensity score methods. Pharmacoepidemiology and Drug Safety,
20, 1115�1129.

Bertsekas, D. P. (1981). A new algorithm for the assignment problem. Mathematical Programming, 21, 152�171.

Bertsekas, D. P. (1990). The auction algorithm for assignment and other network �ow problems: A tutorial.
Interfaces, 20, 133�149.

Black, N. (1996). Why we need observational studies to evaluate the e�ectiveness of health care. BMJ, 312,
1215�1218.



BIBLIOGRAPHY

Burton, A., Altman, D. G., Royston, P., and Holder, R. L. (2006). The design of simulation studies in medical
statistics. Statistics in Medicine, 25, 4279�4292.

Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score
matching. Journal of Economic Surveys, 22, 31�72.

Chen, Q., Nian, H., Zhu, Y., Talbot, H. K., Gri�n, M. R., and Harrell Jr, F. E. (2016). Too many covariates and
too few cases?�a comparative study. Statistics in Medicine, 35, 4546�4558.

Cochrane, W. and Rubin, D. (1973). Controlling bias in observational studies. Sankhya: The Indian Journal of
Statistics, 35, 417�446.

D'Agostino Jr, R. B. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a
non-randomized control group. Statistics in Medicine, 17, 2265�2281.

Desai, R. J. and Franklin, J. M. (2019). Alternative approaches for confounding adjustment in observational
studies using weighting based on the propensity score: a primer for practitioners. BMJ, 367, l5657.

Diamond, A. and Sekhon, J. S. (2013). Genetic matching for estimating causal e�ects: A general multivariate
matching method for achieving balance in observational studies. The Review of Economics and Statistics, 95,
932�945.

Flury, B. K. and Riedwyl, H. (1986). Standard distance in univariate and multivariate analysis. The American
Statistician, 40, 249�251.

Franklin, J. M., Rassen, J. A., Ackermann, D., Bartels, D. B., and Schneeweiss, S. (2014). Metrics for covariate
balance in cohort studies of causal e�ects. Statistics in Medicine, 33, 1685�1699.

Freedman, D. A. (2006). On the so-called Huber sandwich estimator and robust standard errors. The American
Statistician, 60, 299�302.

Glynn, R. J., Schneeweiss, S., and Stürmer, T. (2006). Indications for propensity scores and review of their use
in pharmacoepidemiology. Basic & Clinical Pharmacology & Toxicology, 98, 253�259.

Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G. (2020). gbm: Generalized Boosted Regression
Models. R package version 2.1.8.

Greifer, N. (2020a). cobalt: Covariate Balance Tables and Plots. R package version 4.2.3.

Greifer, N. (2020b). Vignette MatchIt: Estimating e�ects after matching.

Gu, X. S. and Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances,
and algorithms. Journal of Computational and Graphical Statistics, 2, 405�420.

Hansen, B. B. (2004). Full matching in an observational study of coaching for the sat. Journal of the American
Statistical Association, 99, 609�618.

Hansen, B. B. (2008). The prognostic analogue of the propensity score. Biometrika, 95, 481�488.

Hansen, B. B. and Klopfer, S. O. (2006). Optimal full matching and related designs via network �ows. Journal
of Computational and Graphical Statistics, 15, 609�627.

Harder, V. S., Stuart, E. A., and Anthony, J. C. (2010). Propensity score techniques and the assessment of
measured covariate balance to test causal associations in psychological research. Psychological Methods, 15,
234�249.

Heinze, G. and Jüni, P. (2011). An overview of the objectives of and the approaches to propensity score analyses.
European Heart Journal, 32, 1704�1708.

Held, U., Steurer, J., Pichierri, G., Wertli, M. M., Farshad, M., Brunner, F., Guggenberger, R., Porchet, F.,
Fekete, T. F., Schmid, U. D.,et al. (2019). What is the treatment e�ect of surgery compared with nonoperative
treatment in patients with lumbar spinal stenosis at 1-year follow-up? Journal of Neurosurgery: Spine, 31,
185�193.

Hernán, M. A., Clayton, D., and Keiding, N. (2011). The Simpson's paradox unraveled. International Journal of
Epidemiology, 40, 780�785.



BIBLIOGRAPHY

Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing
model dependence in parametric causal inference. Political Analysis, 15, 199�236.

Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2011). MatchIt: Nonparametric preprocessing for parametric
causal inference. Journal of Statistical Software, 42, 1�28.

Iacus, S. M., King, G., and Porro, G. (2012). Causal inference without balance checking: Coarsened exact
matching. Political Analysis, 20, 1�24.

Imai, K., King, G., and Stuart, E. A. (2008). Misunderstandings between experimentalists and observationalists
about causal inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171, 481�502.

Jones, A. E., Trzeciak, S., and Kline, J. A. (2009). The sequential organ failure assessment score for predicting
outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department
presentation. Critical Care Medicine, 37, 1649�1654.

King, G. and Nielsen, R. A. (2019). Why propensity scores should not be used for matching. Political Analysis,
27, 435�454.

Le Gall, J.-R., Lemeshow, S., and Saulnier, F. (1993). A new simpli�ed acute physiology score (saps ii) based on
a european/north american multicenter study. Jama, 270, 2957�2963.

Lee, J. and Little, T. D. (2017). A practical guide to propensity score analysis for applied clinical research.
Behaviour Research and Therapy, 98, 76�90.

Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression
model. The American Statistician, 54, 217�224.

Martens, E. P., Pestman, W. R., de Boer, A., Belitser, S. V., and Klungel, O. H. (2008). Systematic di�erences
in treatment e�ect estimates between propensity score methods and logistic regression. International Journal
of Epidemiology, 37, 1142�1147.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Modeling and Computer Simulation, 8, 3�30.

McCa�rey, D., Burgette, L., Gri�n, B. A., and Martin, C. (2015). Propensity scores for multiple treatments: A
tutorial for the mnps function in the twang package.

Mebane Jr, W. R., Sekhon, J. S.,et al. (2011). Genetic optimization using derivatives: the rgenoud package for
R. Journal of Statistical Software, 42, 1�26.

Morris, T. P., White, I. R., and Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods.
Statistics in Medicine, 38, 2074�2102.

Nguyen, T.-L., Collins, G. S., Spence, J., Daurès, J.-P., Devereaux, P., Landais, P., and Le Manach, Y. (2017).
Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbal-
ance. BMC Medical Research Methodology, 17, 1�8.

O'neill, B. (2006). Elementary di�erential geometry. Elsevier, 2 edition.

Osborne, J. W. (2008). Best practices in quantitative methods, chapter 11: Best practices in quasi-experimental
designs: Matching methods for causal inference, 155�176. Sage Thousand Oaks, CA.

Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., and Feinstein, A. R. (1996). A simulation study of the
number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 1373�1379.

Pimentel, S. D. (2016). Large, sparse optimal matching with r package rcbalance. Observational Studies, 2, 4�23.

Poli, E. C., Rimmele, T., and Schneider, A. G. (2019). Hemoadsorption with cytosorb. Intensive Care Medicine,
45, 236�239.

Radice, R., Ramsahai, R., Grieve, R., Kreif, N., Sadique, Z., and Sekhon, J. S. (2012). Evaluating treatment
e�ectiveness in patient subgroups: a comparison of propensity score methods with an automated matching
approach. The international Journal of Biostatistics, 8, 25.

Ridgeway, G., McCa�rey, D., Morral, A., Burgette, L., and Gri�n, B. A. (2014). Toolkit for weighting and
analysis of nonequivalent groups: A tutorial for the twang package.



BIBLIOGRAPHY

Rosenbaum, P. R. (1989). Optimal matching for observational studies. Journal of the American Statistical
Association, 84, 1024�1032.

Rosenbaum, P. R. (1991). A characterization of optimal designs for observational studies. Journal of the Royal
Statistical Society: Series B (Methodological), 53, 597�610.

Rosenbaum, P. R. (2020). Modern algorithms for matching in observational studies. Annual Review of Statistics
and its Application, 7, 143�176.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for
causal e�ects. Biometrika, 70, 41�55.

Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling
methods that incorporate the propensity score. The American Statistician, 39, 33�38.

Rosenbaum, P. R.et al. (2010). Design of observational studies. Springer.

Rubin, D. B. (1973). Matching to remove bias in observational studies. Biometrics, 29, 159�183.

Rubin, D. B. (1973b). The use of matched sampling and regression adjustment to remove bias in observational
studies. Biometrics, 29, 185�203.

Rubin, D. B. (1974). Estimating causal e�ects of treatments in randomized and nonrandomized studies. Journal
of Educational Psychology, 66, 688�701.

Rubin, D. B. (1980). Randomization analysis of experimental data: The �sher randomization test comment.
Journal of the American Statistical Association, 75, 591�593.

Rubin, D. B. (2001). Using propensity scores to help design observational studies: application to the tobacco
litigation. Health Services and Outcomes Research Methodology, 2, 169�188.

Rubin, D. B. (2007). The design versus the analysis of observational studies for causal e�ects: parallels with the
design of randomized trials. Statistics in Medicine, 26, 20�36.

Rubin, D. B. and Thomas, N. (2000). Combining propensity score matching with additional adjustments for
prognostic covariates. Journal of the American Statistical Association, 95, 573�585.

Samuel, M., Schuster, T., Kaufman, J. S., Platt, R. W., and Brophy, J. M. (2017). Di�erences between condi-
tional and marginal propensity score estimates: a real-world application. Journal of the American College of
Cardiology, 70, 117�117.

Schädler, D., Pausch, C., Heise, D., Meier-Hellmann, A., Brederlau, J., Weiler, N., Marx, G., Putensen, C.,
Spies, C., Jörres, A.,et al. (2017). The e�ect of a novel extracorporeal cytokine hemoadsorption device on il-6
elimination in septic patients: a randomized controlled trial. PloS one, 12, 10.

Schafer, J. L. and Kang, J. (2008). Average causal e�ects from nonrandomized studies: a practical guide and
simulated example. Psychological Methods, 13, 279�313.

Sekhon, J. S. (2011a). Multivariate and propensity score matching software with automated balance optimization:
the matching package for r. Journal of Statistical Software, 42, .

Sekhon, J. S. (2011b). Multivariate and propensity score matching software with automated balance optimization:
The Matching package for R. Journal of Statistical Software, 42, 1�52.

Shadish, W. R. and Steiner, P. M. (2010). A primer on propensity score analysis. Newborn and Infant Nursing
Reviews, 10, 19�26.

Silverman, S. L. (2009). From randomized controlled trials to observational studies. The American Journal of
Medicine, 122, 114�120.

Sjölander, A. and Greenland, S. (2013). Ignoring the matching variables in cohort studies � when is it valid and
why? Statistics in Medicine, 32, 4696�4708.

Steurer, J., Nydegger, A., Held, U., Brunner, F., Hodler, J., Porchet, F., Min, K., Mannion, A. F., and Michel,
B. (2010). Lumbsten: the lumbar spinal stenosis outcome study. BMC Musculoskeletal Disorders, 11, 254.

Stuart, E. A. (2008). Developing practical recommendations for the use of propensity scores: Discussion of `A
critical appraisal of propensity score matching in the medical literature between 1996 and 2003' by Peter
Austin, statistics in medicine. Statistics in Medicine, 27, 2062�2065.



BIBLIOGRAPHY

Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science,
25, 1�21.

Stuart, E. A. and Green, K. M. (2008). Using full matching to estimate causal e�ects in nonexperimental studies:
examining the relationship between adolescent marijuana use and adult outcomes. Developmental Psychology,
44, 395�406.

Stucki, G., Daltroy, L., Liang, M. H., Lipson, S. J., Fossel, A. H., and Katz, J. N. (1996). Measurement properties
of a self-administered outcome measure in lumbar spinal stenosis. Spine, 21, 796�803.

Thoemmes, F. J. and Kim, E. S. (2011). A systematic review of propensity score methods in the social sciences.
Multivariate Behavioral Research, 46, 90�118.

Vandenbroucke, J. P., Von Elm, E., Altman, D. G., Gøtzsche, P. C., Mulrow, C. D., Pocock, S. J., Poole, C.,
Schlesselman, J. J., Egger, M., and Initiative, S. (2007). Strengthening the reporting of observational studies
in epidemiology (STROBE): explanation and elaboration. PLOS Medicine, 4, 10.

Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., Initiative, S.,et al.
(2014). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guide-
lines for reporting observational studies. International Journal of Surgery, 12, 1495�1499.

Woodward, M. (2014). Epidemiology: study design and data analysis. CRC press.

Yao, X. I., Wang, X., Speicher, P. J., Hwang, E. S., Cheng, P., Harpole, D. H., Berry, M. F., Schrag, D., and
Pang, H. H. (2017). Reporting and guidelines in propensity score analysis: a systematic review of cancer and
cancer surgical studies. JNCI: Journal of the National Cancer Institute, 109, 8.

Zeileis, A. (2004). Econometric computing with hc and hac covariance matrix estimators. Journal of Statistical
Software, 11, 10.

Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16, 1�16.

Zeileis, A., Köll, S., and Graham, N. (2020). Various versatile variances: An object-oriented implementation of
clustered covariances in R. Journal of Statistical Software, 95, 1�36.

Zhang, Z., Kim, H. J., Lonjon, G., Zhu, Y.,et al. (2019). Balance diagnostics after propensity score matching.
Annals of Translational Medicine, 7, 1.



BIBLIOGRAPHY


	Acknowledgements
	Introduction
	Observational studies
	Description of the motivating example for the simulation study
	Application to a clinical example: lumbar spinal stenosis outcome study

	Methods
	Matching
	Analysis of the outcome after matching
	Matching in R
	Guidelines
	Data used for the simulation study
	Simulation study

	Results
	Results of the motivating example: Cytosorb
	Results of the simulation study

	Clinical example
	Methods of the clinical example
	Results of the clinical example
	Discussion of the clinical example

	Discussion
	Summary of findings
	Summary of findings in the light of existing literature
	Limitations and strengths
	Implications for further research
	Implications for practice
	Conclusion

	Appendix
	Additional tables of the motivating example of Cytosorb
	Protocol of the simulation study
	Additional results of the simulation study
	Additional tables of the clinical example: lumbar spinal stenosis data
	R code
	Session info

	Bibliography

