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Chapter 1

Introduction

1.1 Why sustainable agriculture?

The world population is increasing (seemingly) “exponentially”. This population growth

has been accompanied by a concomitant increase in agricultural output, thanks to the

so-called “green revolution”, which introduced chemical pesticides, mineral fertilizers, and

new varieties. However, the green revolution contributed to several environmental prob-

lems including pollution and soil erosion. In particular, application of excess fertilizers

has led to eutrophication of rivers and lakes, which can lead to excessive algal growth,

oxygen depletion and fish death. Moreover, nitrogen fertilizers are energetically costly to

produce; they are derived from ammonia whose production necessitates high temperature

and pressure. In addition, phosphate fertilizers are mined; known reserves of rock phos-

phate are expected to become depleted in the next 50–100 years (Cordell et al., 2009).

Therefore, we need to find alternatives.

1.2 How sustainable agriculture?

One answer to these problems is called sustainable agriculture, also called conservation

agriculture. Novel practices include minimal mechanical soil disturbance, permanent soil

cover, and species diversification (Food and Agriculture Organization of the United Na-

tions, 2019). However, yields of sustainable agriculture are lower compared to intensive

agriculture. To compensate reduction of yields when reducing the amount of fertilizer,

several approaches are possible. For example, farmers can use alternative soil management
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2 CHAPTER 1. INTRODUCTION

such as no-till or reduced tillage in order to improve living conditions for soil microbes

participating in key soil functions such as decomposition and nutrient and carbon cycling.

A different approach is the direct inoculation with microbes that can better access other

resources of nutrients in the soil.

1.3 Arbuscular mycorrhizal fungi

One example of beneficial microbes are arbuscular mycorrhizal fungi (AMF). These are

fungi of the phylum Glomeromycota that colonize the inside of plant roots where they

form characteristic arbuscules (Figure 1.1). AMF form a symbiosis with about 80% of

plant species, where the fungi provide the plants with nutrients, in particular phosphorus

(P), in exchange for carbohydrates. When inoculation is successful, plants colonized with

mycorrhiza are larger compared to plants grown in the absence of mycorrhiza (Figure 1.1).

However, inoculation success is highly variable. Hoeksema et al. (2010) performed a meta-

analysis of the response to inoculation with mycorrhizal fungi and identified host plant and

nitrogen (N) fertilization as the most important factors. On the other hand, Zhang et al.

(2019) found no evidence for an effect of fertilization on inoculation success with a more

recent meta-analysis. By contrast, (Bender et al., 2019) recently shown that phosphorus

fertilization was an important factor for inoculation success.

Figure 1.1: (A) Plantago roots colonized with AMF (Photo by J. Hess). (B)
Maize plants grown in absence (left) or presence (right) of AMF in pots filled
with field soil without fertilizer addition (Photo by Dr. F. Bender).
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1.4 Goal of this thesis

AMF inoculate is costly to produce and to apply to crops; therefore, we need to be able

to predict whether the inoculation will be a success. Previous research has shown that

inoculation success depends on soil properties, but results were variable. Soil analyses are

relatively cheap; moreover, farmers regularly measure classical soil properties in order to

receive federal subsidies, so the data is readily available. In this thesis, we will attempt

to predict AMF community composition from soil properties. We hypothesize that AMF

inoculate will better establish in a soil when related species are already present. We call

this approach “soil microbiome diagnostics”. Based on the results of the soil analysis, we

will be able to recommend inoculation with AMF in order to reduce fertilizer application

and promote plant growth.
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Chapter 2

From soil samples to data

This chapter briefly outlines the field and laboratory procedures used to obtain the data

analyzed in this thesis. The goal of this thesis is to understand the relationship between

physical, chemical, and biological properties of the soil and the fungal community that

inhabits those soils; there are thus two sets of data. The soil physical, chemical, and

biological data was obtained using traditional methods from soil science while the fungal

community data was obtained using methods from molecular biology and bioinformatics

tools.

2.1 Soil sampling

We sampled soils of 22 maize fields in a radius of 30 kilometers around Zurich. Exact

GPS coordinates of those fields are available but not provided here for confidentiality

reasons. These fields were chosen for a series of inoculation experiments with arbuscular

mycorrhizal fungi (AMF). Sampling was performed with a tool called a hand auger, which

removes a small cylinder of soil at a depth of 20 cm. Sampling was repeated along a

transect on each field in order to collect about 4 kilograms of soil. Back in the lab, the soil

was sieved with a 2 mm sieve to remove stones and large plant debris and to homogenize

the samples. Finally, each sample was split in different fractions to be processed by several

laboratories specialized in the different analyses. The subsamples for nitrogen analysis

and DNA extraction were stored at –20◦C while the other subsamples were stored at 4◦C

until processing. The soil samples were analyzed at two laboratories, Labor für Boden-

und Umweltanalytik (lbu), a private company also used by farmers for soil analysis, and

5



6 CHAPTER 2. FROM SOIL SAMPLES TO DATA

Agroscope, which is affiliated with the Federal Office for Agriculture.

2.2 Soil parameters

Soil parameters, i.e., soil properties, are traditionally classified into three categories: phys-

ical, chemical and biological variables, see Table 2.1.

Physical properties include soil texture, which is the proportion of sand, silt and clay

particles (from largest to smallest). Soil texture was determined qualitatively by Labor für

Boden- und Umweltanalytik with the finger test whereas Agroscope used a quantitative

method based on wet sedimentation fractionation. Water holding capacity is defined as

the maximum amount of water retained in the soil, which is measured by comparing

the weight of the fully saturated soil sample with the weight of the dried sample. Soil

structure is a measurement of the degree of aggregation.

Chemical properties include pH, which is directly related to hydrogen (H) ion con-

centration (pH=− log(H+)), with pH=7 called neutral, pH<7 acidic, and pH>7 basic.

Soil pH is considered a very important parameter because it affects nutrient cycling and

determines whether the soil is suitable for plant growth (Blume et al., 2015).

The three most important nutrients for plant growth are nitrogen (N), phosphorous

(P), and potassium (K), they are called macronutrients. The amount of nitrogen avail-

able for plant growth is measured by quantifying nitrate (NO3) and ammonia (NH4) and

summing those measurements into a variable called Nmin. Calcium (Ca), sodium (Na)

and magnesium (Mg) are also considered macronutrients. Furthermore, other elements

important for plant growth are needed at much smaller concentrations and are thus called

micronutrients. These include manganese, iron, copper, zinc, and boron. All these nutri-

ents can be extracted from the soil with various methods based on different solvents that

have varying affinity for the elements.

Some nutrients are positively charged (for example Ca2+, Mg2+, K+, NH4
2+), so they

Table 2.1: Soil physical, chemical, and biological variables

physical chemical biological
soil texture pH respiration (SIR)

water holding capacity extractable nutrients (N, P, K, ...) biomass (C and N)
soil structure cation exchange capacity (CEC)

soil organic matter (humus)
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bind to negatively charged surfaces of the soil by electrostatic forces. The cations can

be easily exchanged for other ions; this process is called ion exchange. Cation exchange

capacity (CEC) is defined as the sum of the concentrations of sodium (Na), potassium

(K), magnesium (Mg), calcium (Ca), and hydrogen (H). According to Blume et al. (2015),

aluminum is usually included in CEC calculation but this ion was not measured by Agro-

scope. Base saturation (BS) is the fraction of CEC occupied with base cations. The

equation used at Agroscope for BS is (qCa + qK + qMg + qNa)/CEC × 100, where qi rep-

resents the concentration of exchangeable ions in moles per kg. At Agroscope, the CEC

was determined in a buffered solution of pH 7 and is thus called potential cation exchange

capacity.

Humus plays an important role for soil fertility thanks to its negative charges, which

increases the cation exchange capacity. Moreover, humus stabilizes the soil structure and

provides a source of nutrients for the soil fauna and microbes. Humus comes from decom-

posing plant and animal remains and is therefore also called soil organic matter. Humus

is quantified by first determining the total organic carbon (TOC), which is measured by

combustion and determination of the liberated CO2. TOC is multiplied by a constant

(usually 1.724) to obtain the humus content (Blume et al., 2015).

Soil organisms play an important role in soil functions, such as decomposition of

organic matter, structure formation, and nutrient cycling. The most commonly measured

biological properties are soil respiration and microbial biomass. Soil respiration can be

measured by substrate-induced respiration. First, a soil sample is saturated with water;

the sample is then incubated with a substrate, for example glucose, in a closed bottle

containing NaOH during 72 hours. The CO2 dissolves in NaOH and the amount of

CO2 is quantified by titration. Quantification of microbial biomass is determined with

a method called chloroform fumigation extraction. The soil samples are fumigated with

chloroform during 24 hours; the chloroform kills the cells and solubilizes organic C and

N, which are then extracted with potassium sulfate (K2SO4) and quantified by titration.

2.3 Fungal community

In this thesis, we used a DNA-based method to analyze the fungal community. When

analyzing microbial communities, several questions can be addressed. Who is present in
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small subunit RNA 
gene (18S)

large subunit RNA gene (26S)5.8 S

forward primer reverse primer

ITS1 ITS2

full ITS region

Figure 2.1: Internal transcribed spacer region (ITS) with PCR primers.

the sample (what is the taxonomy of the members of the community)? How many of each

species are present (what is the abundance of the different members of the community)?

The DNA of the samples was extracted with the soil DNA extraction kit from Macherey-

Nagel and then a marker gene was amplified by polymerase chain reaction (PCR). To

study fungal community composition, the marker gene most often used is the internal

transcribed spacer (ITS) region (Lindahl et al., 2013), which separates the genes encod-

ing the small subunit (18S) and the large subunit (28S) of the ribosome. The ITS region

is composed of two variable spacers called ITS1 and ITS2 surrounding the 5.8S gene (Fig-

ure 2.1). These ribosomal genes (18S, 5.8S and 28S) are conserved across the phylogenetic

tree thus providing ideal targets for PCR primers. On the other hand, ITS1 and ITS2 do

not code for a gene and as a result, they are more variable because of decreased selective

pressure on non-gene coding DNA; for this reason, ITS1 and ITS2 may allow classification

down to the species level.

In this thesis, we chose primers ITS1F (Gardes and Bruns, 1993) and ITS4 (White

et al., 1990) which amplify the full ITS region. Each PCR product was barcoded in a

second PCR reaction, following Herbold et al. (2015), so that each DNA sequence can

later be assigned to a sample (Figure 2.2). After purification, the DNA concentration

of the PCR products was quantified and the PCR products were pooled into one DNA

library in equimolar fashion. Finally, the DNA was sequenced at the Functional Genomics

Center Zurich (FGCZ) by single molecule real-time (SMRT) sequencing also called PacBio

sequencing. The library is prepared for sequencing and then placed inside a SMRT Cell,

which is a nano-fabricated device (or chip) with tiny wells where the real-time sequencing

is detected. The yield from the current SMRT sequencing technology (so-called Sequel)

is about 300,000 sequences per cell. In this study, the yield from one cell was too low,

therefore, the same library was sequenced in a second cell. The data from both sequencing

cells was combined before the bioinformatic analysis.

The sequencing data was then transferred to the server from the Genetic Diversity
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forward primer

reverse primer

PCR 1

barcoded primer

barcoded primer

PCR2

target geneconserved conserved

purification and quantification

purification

pooling and sequencing 

Figure 2.2: Library preparation with two-step barcoding.

Center (GDC). The different steps of the bioinformatic analysis are organized in so-called

pipelines, here we used USEARCH (Edgar, 2013). First, sequences which did not meet

certain quality thresholds were trimmed: for example, sequences with long stretches of

homopolymers or ambiguous bases, sequences shorter or longer than set parameters. Re-

maining sequences were then assigned to samples using the barcodes (this step is called

demultiplexing). The next step with USEARCH is called denoising, which is equivalent to

removing sequencing errors. Finally, sequences were clustered into operational taxonomic

units (OTU). These are groups of sequences similar to each other at a certain threshold;

typically 97% similarity is said to correspond to the species level (Schloss and Handels-

man, 2005). One representative sequence for each OTU was used to predict its taxonomy

with SINTAX (Edgar, 2016) using the SILVA database (Abarenkov et al., 2010). The re-

sults of the classifier depends on the chosen confidence value for SINTAX. In this thesis, we

chose a cutoff of 0.7, which resulted in 33% of the sequences unclassified at the phylum

level. Sequences were very rarely classified down to the species level, probably because

the databases are not yet complete and many microbes have not been sequenced.

The output from the bioinformatic analysis is two tables: the OTU table, which is

a matrix with the number of sequences per sample per OTU, and a taxonomy table,
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Figure 2.3: Microbiome data is usually organized in three tables.

which provides the information about the classification for each OTU (Figure 2.3). The

taxonomy table provides the answer to the first question (what is the taxonomy of the

members of the community), while the OTU table provides the answer to the second

question (what is the abundance of the different members of the community).

The two tables from the bioinformatic analysis are analyzed together with a third

table, containing all the information about the samples, including the barcodes used for

the PCR and the environmental data. The three tables can be conveniently combined

into one R object with the R package phyloseq (McMurdie and Holmes, 2019a).



Chapter 3

Soil data and variable reduction

This chapter focuses on the soil variables. We analyzed the soil physical, chemical and

biological properties of 22 agricultural soils in two different laboratories, Labor für Boden-

und Umweltanalytik (lbu) and Agroscope. We obtained 50 variables; however, there was

some redundancy because several variables were analyzed by both laboratories and most

nutrients were analyzed according to different protocols. In addition, some variables were

found to be a function of the other variables. In this chapter, the number of variables is

reduced from 50 to 9 with different methods, first by understanding the type of data and

then using literature, multivariate analysis and, finally, using the R package varrank.

3.1 Reducing the number of variables by understanding

the data

In this section, we will describe how the number of variables was reduced from 50 to 17

variables based on the information about the data. The variables are named by the mea-

surement followed by the laboratory (agro stands for Agroscope and lbu stands for Labor

für Boden- und Umweltanalytik) separated by an underscore. Further, for the chemical

element analysis, the name of the method used was abbreviated and placed between the

name of the element and the name of the laboratory. For example, phosphorus_H2O_lbu

stands for P analysis extracted with H2O by Labor für Boden- und Umweltanalytik.

11



12 CHAPTER 3. SOIL DATA AND VARIABLE REDUCTION

3.1.1 Physical variables

Soil texture is defined by the size of the particles, from the largest particles called sand,

then silt, and finally clay. In this study, two measurements for silt and clay were ob-

tained: Labor für Boden- und Umweltanalytik used the finger test, while Agroscope used

a quantitative method, therefore the measurements from Agroscope were retained.

We measured two other physical variables: aggregation and water holding capacity

(WHC). Aggregation is an important physical property related to soil structure. Higher

aggregation is an indicator of stronger biological activity; for example, soil microbes that

produce mucus or soil fauna such as earthworms that promote the formation of organo-

mineral compounds in their guts (Blume et al., 2015). WHC is also an important soil

property for agriculture because plants benefit from a soil with larger WHC by having

access to more water in times of drought. Therefore, both these variables were kept in

the data set.

3.1.2 Chemical variables

pH is directly related to the concentration of hydrogen: pH=− log(H+). Field 6 (F06)

was identified as outlier by plotting pH and hydrogen_agro (Figure 3.1). Since the

concentration of hydrogen is taken into account for the calculation of cation exchange

capacity (CEC) and base saturation (BS), the outlier was replaced with the estimate

from the linear regression and CEC and BS were calculated based on the corrected data.

Five variables are related to nitrogen (N) content. Ammonium and nitrate were mea-

sured at both laboratories. The samples measured by Agroscope were stored at –20◦C

before extraction, while the samples measured by Labor für Boden- und Umweltanalytik

were stored at room temperature; we assume that the values measured by Agroscope are

closer to the values in the field. Nmin is the sum of ammonium and nitrate; therefore we

keep only Nmin.

Five variables are related to phosphorus (P) content. Total P was measured at Agro-

scope, but this variable is not relevant for agriculture because most of this phosphorus

is not available for plants nor microbes. In addition, P was measured with four different

methods by Labor für Boden- und Umweltanalytik. Traditionally, Anglo-Saxons countries

favor the Olsen method (Blume et al., 2015), which extracts P with carbonate. The other

methods are named after the solvent used to extract the phosphorus. In Switzerland,
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Figure 3.1: Regression of hydrogen concentration and pH. The outlier
(Field 06) is shown in red. The estimate from the regression is shown in green.

extraction with CO2-saturated water is recommended for cereal crops, while H2O extrac-

tion is recommended for fruits and vegetables (Richner et al., 2017). The extraction with

the solvent containing EDTA (the full recipe is: 0.5 M ammonium-acetate, 0.5 M acetic

acid, 0.025 M ethylenediaminetetraacetic acid) gives variable results depending on the

type of soil; for example, in calcareous soil, results are not reproducible and therefore this

method is not recommended (Richner et al., 2017). In our sample set, the five measure-

ments for P correlated strongly with each other (Figure 3.2), so the analysis of extracts

with CO2-saturated water is retained. Similarly, we also keep measurements extracted

with CO2-saturated water for potassium, whereas for magnesium, the extraction with

CaCl2 is kept, and for calcium and sodium the extractions with H2O.

In addition to macronutrients, several micronutrients were also measured by Labor für

Boden- und Umweltanalytik: manganese, iron, copper, zinc, and boron. Micronutrients

are also called trace elements because plants only need minute amounts of them. A meta-

analysis showed that there was no effect of micronutrients on AMF inoculation success

(Zhang et al., 2019) so micronutrients were dropped from the reduced data set.

CEC is the sum of exchangeable cations (sodium, potassium, magnesium, calcium,

hydrogen) (Blume et al., 2015). At Agroscope, the measurement is done is a buffered

solution of pH 7, is is therefore called potential CEC. BS is defined by Agroscope as
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Figure 3.2: Scatterplots of five phosphorus measurements. Histograms are
shown in the diagonal. Correlations are shown in the upper panel. Scatterplots
are shown in the lower panel with red line LOWESS smoother.

the concentration of sodium, potassium, magnesium, and calcium over CEC. Both these

variables are kept in the reduced data set.

Three variables are related to organic matter: organic carbon, only provided by Agro-

scope, and humus, provided by both laboratories. Organic carbon and humus are re-

dundant because humus is obtained from organic carbon measurement by multiplying by

a constant, usually 1.724 (Blume et al., 2015). The two values for humus measured by

both laboratories are very similar, so humus_agro, measured by Agroscope is kept in the

reduced data set.
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3.1.3 Biological variables

Microbial biomass can be measured by quantifying either the amount of organic carbon

(Cmic) and organic nitrogen (Nmic). In our study, both measurements correlated quite

well; therefore, we keep only Cmic. In addition, respiration is also kept in the reduced

data set because it is an important soil function.

3.1.4 SOLVITA variables

Labor für Boden- und Umweltanalytik sells a new product called SOLVITA, which in-

cludes three variables: vast_lbu, respiration_lbu, slan_lbu and as well as a fourth

variable, a fertility index which is a combination of those three variables (fertility_lbu).

SLAN stands for “Solvita Labile Amino-Nitrogen” and is said to report the amount of or-

ganic nitrogen reserves. Solvita respiration, called C-Burst, measures CO2 release after

re-wetting, similarly to the respiration assay from Agroscope; however, instead of titra-

tion, the CO2 is quantified with a digital color reader. From the SOLVITA variables, only

vast_lbu is retained in the reduced data set because it is a physical variable which was not

measured otherwise. The other two SOLVITA variables are directly related to variables

measured by Agroscope, and since the protocol used by Agroscope is more quantitative,

vast_lbu, respiration_lbu and fertility_lbu variables were dropped.

3.2 Reducing the number of variables with literature

and varrank

At the end of the first section, 17 variables were selected (Table A.1). In this section, the

number of variables is further reduced to 9. The first step in the selection is based on

the literature. The second step is performed with principal component analysis and the

varrank approach implemented by package varrank (Kratzer and Furrer, 2018).

3.2.1 Literature research

Soil texture is an important soil parameter because it correlates with many other physical

properties such as load-bearing capacity, pore size distribution, and air storage capacity,

all of which are important for plant growth (Blume et al., 2015). These other parameters



16 CHAPTER 3. SOIL DATA AND VARIABLE REDUCTION

Table 3.1: Soil texture data classified with United States Department of Agri-
culture classification

class name number of samples
Cl clay 1
SiCl silty clay 0
SaCl sandy clay 0
ClLo clay loam 10
SiClLo silty clay loam 0
SaClLo sandy clay loam 2
Lo loam 9
SiLo silty loam 0
SaLo sandy loam 0
Si silt 0
LoSa loamy sand 0
Sa sand 0

were not assessed here, in part because they are difficult to measure. Therefore, we decide

to keep soil texture in the final data set. However, since the three variables of soil texture

together with humus add up to 100%, only silt, sand and humus were retained.

Soil texture data is often represented with a ternary plot with clay at the top, sand

on the left and silt on the right (Figure 3.3). Here we used the soiltexture package

(Moeys, 2018) to plot and classify the data. Most of the soil samples analyzed in this

study are found in the middle of the ternary plot, indicating that they are not extreme

soils (Figure 3.3). Most of the fields were clay loam or loam fields with three exceptions,

Field 15, a clay soil, and Field 5 and Field 18, sandy clay loam (Table 3.1). Humus content

can be plotted on top of the soil texture ternary plot, here with the size of the bubbles

(Figure 3.3). The mean for humus in the 22 fields was 3.07%. Field 15 was the field with

the highest SOM. Two other fields also had a humus content larger than 5% (Field 15

and Field 16), while only one field had a SOM content smaller than 1.5% (Field 20).

Soil pH is relevant for agriculture because of its direct and indirect effect on plant

growth. For example, pH affects CEC, and thus the availability of macronutrients (Blume

et al., 2015). In addition, pH is also known to be a major driver of bacterial community

composition (Lauber et al., 2009), as well as AMF community composition (Van Geel

et al., 2018). For all theses reasons, pH is retained in the final data set.

We chose to keep phosphorus_CO2_lbu and Nmin_agro in the data set because they

are the major plant nutrients. In addition, P is also important for AMF colonization.

Countless studies with pot experiments have shown that AMF colonization is inhibited
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Figure 3.3: Ternary plot of soil texture. The size of the bubbles represent the
concentration of soil organic matter. The name of the fields is indicated next to
the bubble in blue.

by high phosphorus concentration (for example, see Breuillin et al., 2010). More recently,

Bender et al. (2019) have shown that AMF colonization is affected by P content in the

soil in eight field experiments in Switzerland. In addition, N fertilization is an important

predictor of AMF inoculation success (Hoeksema et al., 2010).

3.2.2 Multivariate analysis

We used principal component analysis (PCA) to examine the relationship between the

17 variables remaining after the first step in variable reduction. The goal of PCA is to

reduce the number of variables by transforming the original variables with a set of linear

combinations to a new set of principal components (PCs), retaining as much variability
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as possible. The PCs are uncorrelated and ordered, so that the first PC accounts for

the most variation, the second PC accounts for the maximal proportion of the remaining

variance, etc. The number of components needed to summarize a given data set can be

chosen based on different methods (Everitt and Hothorn, 2011): here we decided to keep

the number of components that explain at least 70% of the total variation of the original

variables. In our study, we found that the first three components explain 73% of the

total variation of the original variables, so we present the results with PC1, PC2 and PC3

(Figure 3.4).

PC1 is negatively correlated with many variables typical of soils with high fertility

including humus, Nmin, respiration, CEC, Cmic, clay, aggregation, and WHC. By con-

trast, PC1 is positively correlated with sand. PC1 can be interpreted as measure of water

availability. PC2 is positively correlated with pH, phosphorus, potassium, and BS, while

it is negatively correlated with sodium and magnesium. PC2 can be interpreted as a

measure of nutrient availability. Finally, PC3 is positively correlated with phosphorus,

magnesium, and potassium while it is negatively correlated with silt. PC3 can also be

interpreted as a measure of nutrient availability. In conclusion, PCA further confirmed

the importance of pH, silt, sand, humus, Nmin, and P, which are the variables identified

to be important based on the literature.

3.2.3 Varrank

Finally, we used varrank::varrank() for variable selection. This package allows for

variable ranking with respect to a subset of important variables (Kratzer and Furrer,

2018). Here, the variable.important argument receives as input the list of variables

selected based on the literature. We chose to return only three variables (argument

n.var=3). The result from varrank was that Ca, Mg and WHC are the most relevant

variables after removing the redundancy shared with the selected variables.

3.3 Summary

In the first part of the chapter, the number of variables was reduced from 50 to 17 based

on the information about the data. In the second part of the chapter, the number of

variable was further reduced with two methods. Based on literature, six variables were
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chosen: sand, silt, humus, pH, P, Nmin. Based on varrank analysis, calcium, magnesium

and WHC were selected. The final soil data set is thus reduced to 9 variables (Table 3.2).

The variables are renamed to remove the name of the laboratory in order to simplify

subsequent plotting and analysis.

Table 3.2: 9 variables retained in the variable selection. “P-Testzahl” unit,
where 1 P-Testzahl = 0.155 mg P/kg soil (Richner et al., 2017).

sand silt humus P Nmin pH Mg Ca WHC
unit % % % P-Testzahl mg/kg unitless mg/kg mg/kg unitless
F01 30.3 38.2 3.17 24.6 38.5 7.3 16.9 124.6 0.607
F02 27.3 39.8 2.15 4.1 24.9 7.85 11.9 208.3 0.617
F03 42.3 32.4 2.58 11.1 34.1 7.5 6.4 188.1 0.582
F04 33.1 38.8 2.41 11.7 26.7 7.49 15.5 167.8 0.627
F05 55.8 21.2 3.44 15.2 23.9 7 7.5 75.38 0.678
F06 28.9 36.8 2.86 17.9 25.4 7.56 13.9 164.6 0.684
F07 23.5 42.1 2.83 21.4 25.4 6.95 16.9 118.4 0.593
F08 30.7 42.6 2.66 31.8 34.7 7.47 8.8 162.8 0.579
F09 33.1 44.1 1.59 5.3 9.2 6.69 10.8 52.81 0.471
F10 42.2 28.2 2.43 4.5 24.6 6.55 9.9 96.85 0.558
F11 29.7 39.7 3.12 8.4 33.2 7.22 12.9 122.8 0.657
F12 32.9 35.4 2.96 7.1 34.3 6.37 22 104.6 0.732
F13 31.6 35.4 2.51 4.4 22.7 7.51 5.2 194.5 0.62
F14 42.6 33.8 2.99 19.2 40.9 7.5 8.6 218.2 0.623
F15 16.7 33.7 5.62 4.9 47.8 7.4 15.7 308.1 1.068
F16 20.1 39.4 5.3 39.8 62.5 6.95 19 226.2 0.899
F17 27.8 44.2 3.82 7.2 51.5 7.59 8.9 266.9 0.805
F18 49.4 22.4 2.8 11 29.6 7.44 19.2 121 0.64
F19 30.4 41.1 2.55 7.1 30.4 6.23 10.9 88.87 0.644
F20 37.5 38.3 1.43 3.5 9.5 6.73 7 56.24 0.465
F21 40.5 32.2 2.92 30.5 37.5 7.18 13.2 121.9 0.618
F22 22.9 39 5.47 13.7 60.6 7.32 12.7 266.4 0.873
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Figure 3.4: Principal component analysis of 17 variables remaining after first
step of variable selection. Top: Biplot of the first and second principal compo-
nents. Bottom: Biplot of the first and third principal components.



Chapter 4

Methods to study ecological

communities

In this chapter, different methods to assess alpha diversity (within sample) and beta

diversity (between samples) are presented. The concept of alpha and beta diversity was

first defined by Whittaker in 1960 and further refined by him in 1972 (Whittaker, 1972).

According to Whittaker, alpha (α) diversity is the local diversity, beta (β) diversity the

spatial diversity and gamma (γ) is the regional diversity. They are related with this

equation: β = γ/α.

In addition, different ordination methods are presented in this chapter. First, un-

constrained methods are explained and limitations of those methods for community data

are described. Finally, three methods of constrained ordination, also called canonical

ordination, are described.

4.1 Alpha diversity

Alpha diversity is the diversity within sample. The most intuitive index of alpha diversity

is q, the richness or number of species (in the case of microbiome data, OTUs). However,

this number is actually the observed richness, because richness increases with the size of

the sample. In traditional ecology, this was the size of a lake or a quadrant; in the case

of microbiome data, it is the number of sequences per sample. Therefore, indices that

are not dependent on the size of the sample are preferred. The most used alpha diversity

21
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index is called Shannon diversity:

H = −
q∑

i=1

pi log pi,

where pi is the proportional abundance of species i and q represents the number of species.

This index takes into account both the number of species and the evenness of the species

frequency distribution (Borcard et al., 2018). Evenness is another important alpha di-

versity measure as it describes the shape of the rank abundance plot, where the species

are ranked by order of decreasing abundance on the x-axis and the log-transformed abun-

dance is plotted on the y-axis. In the most extreme case, a few species are dominant and

the others are rare, this community would be called uneven. At the other extreme (which

never happens in nature), all species have the same abundance and evenness equals one.

The maximum of H is when all species are presented at equal abundances:

Hmax = −
q∑

i=1

1

q
log

1

q
= log q.

The most commonly used index of evenness is called Pielou evenness:

J = H/Hmax = H/ log q.

However, this index is biased because it is dependent on species richness (Borcard et al.,

2018).

Jost (2007) proposed to use the “number equivalents” of diversity indices. They have

several advantages, including that they are more easily interpretable and are preferred

for linear modelling (Borcard et al., 2018). These numbers are also called Hill’s diversity

numbers. In this notation, N0 is species richness. The number equivalent of Shannon

diversity is:

N1 = exp(H), (4.1)

and the number equivalent of Shannon’s evenness is

E1 = N1/N0, (4.2)
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which is also called Sheldon evenness (Sheldon, 1969).

4.2 Beta diversity

Beta diversity indices can be computed with presence-absence data, see Koleff et al.

(2003) for the definition of 24 commonly used indices. An example is the Sørensen-Dice

coefficient:

SDC =
A+B − 2J

A+B
,

where A and B are the numbers of species at the two sites and J is the number of species

that occur at both sites.

Alternatively, dissimilarity indices can be computed with quantitative data. The per-

centage difference, also called Bray-Curtis dissimilarity, is the most popular among ecol-

ogists:

D12 =
( q∑

k=1

|y1k − y2k|
)/( q∑

k=1

(y1k + y2k)
)
, (4.3)

where y1k is the counts for site 1 of species k and y2k is the counts for site 2 of species k.

Both these indices are bounded between zero (the two sites share all the species) and one

(no species in common).

4.3 Unconstrained ordination

Multivariate analysis is often used to visualize and explore changes in community com-

position. In this section, three commonly used methods will be described: principal com-

ponent analysis (PCA), correspondence analysis (CA), and principal coordinate analysis

(PCoA).

4.3.1 Principal component analysis

PCA is generally not well adapted to the study of species abundance because species rarely

respond to environmental gradients in a linear fashion (Borcard et al., 2018). Moreover,

the so-called “double zero” problem occurs for PCA because PCA relies on Euclidean
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distance. The equation for Euclidean distance between sites 1 and 2 across q species is:

D12 =

√√√√ q∑
k=1

(y1k − y2k)2,

where y1k is the counts for site 1 of species k and y2k is the counts for site 2 of species k.

If a species is present at two sites, this indicates that the sites are similar and that they

provide conditions that allow both species to survive. On the other hand, if a species is

absent at two sites (double zero), this could be due to many different causes (Borcard

et al., 2018): for example, the species is present but was not detected (rare OTUs), the

conditions at both sites are not optimal (conditions could be either below the optimum or

above the optimum), the species has not reached the site even though the conditions are

suitable, the species’s niche is occupied by another equivalent species. All in all, absence

of one species at two sites may not mean that the two sites are similar because the absence

could be due to a different reason at the two sites.

To avoid the double zero problem and the issue of non-linear response to environmental

gradients, certain transformations can be used. Legendre and Gallagher (2001) showed

that both the Chord and the Hellinger distance are suitable for community data. To

calculate the Chord distance, the site vectors are normalized to 1 before calculating the

Euclidean distance (Borcard et al., 2018); for details, see Legendre and Gallagher (2001).

The Hellinger distance is equivalent to the Euclidean distance of data transformed with

the Hellinger transformation:

y′ik =

√
yik
yi+

, (4.4)

where yik is the counts for site i of species k and yi+ is the sum of all species at site i (in

the case of microbiome data, it is the number of sequences per sample).

The results from PCA can be presented with a biplot, which is a graphical represen-

tation of the data in two dimensions; the "bi" in the word does not stand for those two

dimensions but because the plot displays both the variances and the covariances of the

variables as well as the distances between samples, for details see Everitt and Hothorn

(2011). The samples are traditionally shown with points, the distance between points

indicates the distance between the samples, so samples which are more similar to each
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other are clustered closer to each other. On the other hand, the variables are often shown

with vectors, the length of the vector indicates the variance of that variable, while the

angle between two vectors reflect the correlation between them, so if the angle is small,

the two variables are strongly correlated.

4.3.2 Correspondence analysis

CA is recommended when species display a uni-modal relationship with the environmen-

tal gradient. Furthermore, CA is useful to address the question of whether certain species

occur at certain sites (Ramette, 2007). Correspondence analysis is an iterative method.

First, the data is transformed into a χ2 distance matrix and then singular value decom-

position is performed. The equation for χ2 distance between sites 1 and 2 across q species

is:

D12 =
√
y++

√√√√ q∑
k=1

1

y+k

(
y1k
y1+
− y2k
y2+

)2

,

where y++ is the sum of abundances, y+k is the sum of counts for species k, y1+ is the

sum of counts for site 1 and y2+ is the sum of counts for site 2. Legendre and Gallagher

(2001) point out that the inner part of the χ2 distance is the same as the Euclidean

distance calculated with relative abundance and weighted by the inverse of the species

sum. Therefore, a rare species, with small y+k, will contribute to a greater extent to the

sum of squares. On the other hand, χ2 distance is not sensitive to double zeros, so there is

no need for additional transformation. Note that in correspondence analysis, the overall

variance is called inertia.

4.3.3 Principal coordinate analysis

PCoA, also called multidimensional scaling (MDS), can be used to explore differences in

beta diversity because it can take any distance or dissimilarity matrix, for example Bray-

Curtis dissimilarity (Equation (4.3)). Similarly to PCA and CA, PCoA also produces a set

of orthogonal axes, with eigenvalues that provide information about how much variation

is explained by each axis. However, since the dissimilarity matrix only has the site names,

a biplot cannot be drawn directly from the output of the procedure but the weighted
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averages need to be calculated a posteriori, for details, see Legendre and Gallagher (2001).

With non-Euclidean distances, PCoA may produce negative eigenvalues (Borcard et al.,

2018). Several corrections have been developed that solve this problem. The Lingoes

correction adds a constant to the squared dissimilarities while the Caillez correction add

a constant to the dissimilarities.

4.4 Canonical ordination

Three methods are described in this section: redundancy analysis (RDA), canonical corre-

spondence analysis (CCA) and distance-based redundancy analysis (dbRDA). The family

of methods is called constrained ordination.

4.4.1 Redundancy Analysis

RDA combines regression and principal component analysis (Borcard et al., 2018). RDA

works with a matrix Y of centered response data (in our case the community data) and a

matrix X of centered explanatory variables (in our case the environmental data). First,

each centered y variable is regressed on the explanatory matrix X and for each, the ŷ

(fitted values) is computed. All ŷ vectors are combined in matrix Ŷ . A test should be

computed to test the relationship Y ∼ X. If X variables explain the variation of Y

more than random data would, a PCA of the matrix Ŷ is computed. As usual, the PCA

yields eigenvalues (called here canonical) and a matrix U of canonical eigenvectors. The

“site constraints (linear combination of constrained variables)” are computed with Ŷ U (in

vegan they are coded ‘lc’). The “site scores (weighted sums of site scores)” are computed

with Y U (in vegan they are coded ‘wa’). To summarize, the axes of RDA are a linear

combination of the explanatory variables (Borcard et al., 2018).

A triplot can be drawn to show the results of RDA for the first pair of axes. A triplot

represents the sites and the species, both usually with points, and the environmental

variables, usually with arrows.

4.4.2 Canonical Correspondence Analysis

CCA was first introduced by Ter Braak (1986), it combines regression with CA. The

abundance of a species can be described by a response function which relates its abun-
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dance to environmental scores (Zhang and Thas, 2016). The species scores from a CA

estimate the optima, which are the values on the axis for which the maximum is ob-

tained (Ter Braak, 1986). The ordination axis can be related to environmental variables

by multiple regression. In CCA, the species optima and the regression coefficients are

simultaneously estimated, for details see Ter Braak (1986). This is an iterative process:

1) start with arbitrary initial site scores, 2) the species scores are calculated by weighted

averaging of the site scores, 3) the site scores are calculated by weighted averaging of

the species score, 4) regression coefficients are obtained by multiple regression of the site

scores on the environmental variables, 5) new site scores are calculated (fitted values of

the regression), 6) site scores are centered and standardized, 7) stop when the new site

scores are close to the site scores obtained with the previous iteration.

Since it preserves the χ2 distance, CCA is well-adapted to species response curve which

are usually not expected to be linear in response to the environmental gradient (Borcard

et al., 2018). One of the major drawbacks of this method is that rare species influence

the results disproportionately; therefore, it is recommended to remove rare species before

applying CCA.

4.4.3 Distance-based redundancy analysis

PCA relies on Euclidean distance while CA relies on χ2 distance. However, many dissim-

ilarity indices are better suited for comparison of community composition; collectively,

these indices are called beta diversity indices (section 4.2), because they measure the di-

versity between samples. One example is the Bray-Curtis dissimilarity (Equation (4.3)).

Several ordination methods were developed to work with those dissimilarity indices, in-

cluding distance-based redundancy analysis and canonical analysis of principal coordi-

nates.

dbRDA was initially developed for testing multispecies responses in multifactorial

ecological experiments (Legendre and Anderson, 1999). First, a dissimilarity matrix is

computed using any one of the beta diversity indices. Second, PCoA is applied to this

matrix using the Lingoes correction for negative eigenvalues. Finally, RDA is run with

those principal coordinates instead of the usual species data and with X (explanatory

variables) as above. The output of the RDA (a matrix of principal coordinates) can

be used for testing multivariate hypothesis in multifactorial experiments. In their initial
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paper, Legendre and Anderson (1999) did not propose to do ordination with the results of

the RDA. Later, dbRDA was developed as an ordination method. Since the dissimilarity

matrix does not include the species, it was initially not possible to directly draw a triplot.

However, species score can be added to the plot as weighted average.

A few years later, Anderson and Willis (2003) presented canonical analysis of principal

coordinates (CAP). This method was specifically proposed as a constrained ordination

method. The first two steps are similar (dissimilarity matrix followed by PCoA); however,

the last step of CAP uses canonical discriminant analysis if there is any factor variable or

canonical correlation analysis for quantitative variables. Another difference to dbRDA is

that for CAP, the number m of axes needs to be chosen before the last step.

4.4.4 Permutation test

The function vegan::anova.cca() uses permutation test to assess the significance of the

constraints for all three constrained ordination methods described in this chapter. The

test statistic (called pseudo-F ) is defined as follows (Borcard et al., 2018):

F =
SS(Ŷ /m)

RSS/(n−m− 1)
,

where n is the number of objects, m is the number of canonical eigenvalues (degrees of

freedom), SS(Ŷ ) is the sum-of-squares of the table of fitted values (explained variation),

and RSS is the residual sum of squares. A reference distribution of the chosen statistic

(in our case the pseudo-F ) is generated by randomly permuting the data (the rows) a

large number of times (by default 999) and recomputing the statistic. The observed value

is compared to the reference distribution and the p-value is the proportion of permuted

values equal to or larger than the observed value. If this p-value is equal or smaller than

the significance level α, the null hypothesis is rejected.

4.4.5 Partitioning of variance

In constrained ordination, the variance is partitioned into constrained and unconstrained.

As explained by Borcard et al. (2018): “The constrained fraction is the amount of variance

of the Y matrix explained by the explanatory variables”. It is called R2 and is similar

to the R2 from multiple regression For the same reason, this R2 is biased: adding ex-
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planatory variables inflates the R2. Ezekiel’s formula to adjust the R2 is also valid for the

multivariate case:

R2
adj = 1− n− 1

n−m− 1
(1−R2),

where n is the number of objects, m is the number of degrees of freedom (the number of

quantitative explanatory variables). For CCA, variance is called inertia. The proportion

of inertia explained by the explanatory variables is also called R2; however, Ezekiel’s

formula cannot be used, so a bootstrap method has been developed to adjust the R2

(Borcard et al., 2018).

4.5 Summary

In this chapter, statistical methods to analyze microbial communities were discussed. Both

alpha diversity and beta diversity indices were defined. Three methods of unconstrained

and three methods of constrained ordination were briefly described.

The most useful R package for analysis of community data is called vegan (Oksanen

et al., 2019), which stands for vegetation analysis. The methods of vegan were initially

developed to analyze community data at the scale of plants or mites but the same methods

are also appropriate to study communities at the scale of microbes.
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Chapter 5

Description of the fungal community

data

In this chapter, the fungal community data obtained with the DNA sequencing approach

is described. First, rarefaction plots are produced to represent the sequencing effort.

Second, changes in alpha diversity across the different fields are investigated. Third, the

reasons for filtering of microbiome data are stated and community composition at the

phylum level is described. Finally, multivariate analysis of community composition and

beta diversity are shown.

5.1 Summary of sequencing results

To analyze the fungal community, the full ITS region was sequenced after amplification

by PCR. Briefly, four DNA extractions were performed for each soil sample. Each DNA

sample was barcoded during PCR. After pooling the 88 PCR products, the DNA library

was sequenced with SMRT sequencing in two cells. The output from the sequencing center

was two FASTQ files with a sum of 723,031 sequences. After filtering for quality and

demultiplexing, 484, 694 sequences remained, ranging from 1956 to 7806 with a median of

5551 sequences per sample. These sequences were clustered into operational taxonomic

units (OTUs) at 97% level, which typically correspond to the species level (Schloss and

Handelsman, 2005). The end product from the bioinformatic analysis is an OTU table

containing 88 rows (22 soil samples × 4 replicates) and 881 columns (OTU).

31
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5.2 Rarefaction curves

To investigate whether the sampling effort was sufficient to characterize the diversity of the

fungal community, rarefaction curves were plotted for each sample with vegan::rarecurve().

This is a plot of the expected number of species (here OTUs) as a function of number

of individuals (here sequences). At regular steps along the x-axis, a sub-sample of the

data is drawn and the number of OTUs (richness) is estimated with Hurlbert’s equation

(Borcard et al., 2018):

E(q′) =

q∑
i=1

[
1−

(
n−ni

n′

)(
n
n′

) ],
where n′ ≤ (n − n1), n1 is the number of individuals in the most abundant species.

This equation estimates the number q′ of species in a sampling unit of n′ individuals

based on the real sampling unit containing q species, n individuals and ni individuals

belonging to species i. For Figure 5.1, a step of 200 (i) and a standardized sampling

unit of 1000 (n′) were chosen because they produced a smooth line and did not take

too much computing time. The rarefaction curves are starting to level off around 4000

sequences; only six samples have less sequences. This indicates that the fungal community

is well characterized with this sequencing effort. However, a few samples are found in the

increasing part of the rarefaction curve, which indicates that the observed richness will

be lower than the true richness.

5.3 Alpha diversity

Next, we investigated alpha diversity, which is the diversity within a sample (Whittaker,

1972). Species richness (q) can be computed with colSums(otuTable>0). Shannon di-

versity (H) can be calculated with vegan::diversity(), from which Hill’s number was

computed with Equation (4.1). Finally, evenness was computed with Sheldon’s Equa-

tion (4.2).

The three indices differ across the different fields (Figure A.1). Species richness and

Shannon diversity were lowest in Field 17 and highest in Field 10, whereas Sheldon even-

ness was lowest in Field 12 and highest in Field 15. Both Shannon diversity and Sheldon

evenness plots indicate that one replicate for Field 14 is an outlier. This replicate is very
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Figure 5.1: Rarefaction curves. The vertical line marks the sample with the
smallest library size across all samples.

uneven, meaning that it is dominated by one OTU, OTU_10, which accounts for 4959

sequences out of 7137 sequences in that sample.

5.4 Filtering and transforming

Most OTUs are present in only a few samples, as is visible on the Figure A.2. This figure

presents 9 panels for each of the phyla present in this data set as well as the OTUs which

were not assigned any taxonomy at the phylum level. There are only a few OTUs for

Entorrhizomycota, Glomeromycota, Mucoromycota and Olpidiomycota. Most OTUs are

only present in a few samples, as can be seen from the heavy tail on the left of each plot.

Rare species can be truly rare, for example because they require specific environmental

conditions to thrive. On the other hand, rare species can be an artifact from the sampling

process. The first step in any amplicon library sequencing project is DNA extraction

which is known to impact both diversity and composition of soil microbial communities

(Martin-Laurent et al., 2001). The second step is PCR which introduces many sources
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Table 5.1: Summary of the data after filtering

number of OTUs number of sequences
before filtering 881 484694
after filtering 171 412311
percent kept 19 85

of bias: for example primers and polymerase that have different preferences for DNA

sequences (Gohl et al., 2016). In addition, rare species have too much influence on results

from correspondence analysis (Legendre and Gallagher, 2001). For all these reasons,

it is recommended to remove rare OTUs for the analysis of amplicon sequencing data.

However, we do not filter the data for alpha diversity, following recommendations by

phyloseq developers (McMurdie and Holmes, 2019b).

After experimenting with different filtering parameters, we chose to use the same filter-

ing thresholds used by McMurdie and Holmes (2013) in the paper presenting phyloseq:

“OTUs were trimmed that were not observed at least 3 times in 20% of samples”. There is

a trade-off between the number of OTUs which are retained and the number of sequences.

The aim of the filtering step is to remove the long tail of rare OTUs while retaining the

greatest number of sequences. After filtering, the number of OTUs was reduced to 171

while retaining 85% of the sequences as shown in Table 5.1.

Next the OTU table was transformed. The most common transformation is relative

abundance or proportion, whereby the species counts are divided by the total number

of sequences in each sample. Alternative transformations include log(1 + x) (Callahan

et al., 2016), where x is the species count, and Hellinger transformation, Equation (4.4),

for PCA and RDA (Legendre and Gallagher, 2001).

5.5 Community composition

Figure 5.2 shows the composition of the community at the phylum level. After averaging

the relative abundance of the four replicates for each field, the OTUs with the same tax-

onomy at the phylum level were merged with phyloseq::tax_glom(). Mortierellomycota

and Ascomycota are the two major phyla followed by Basidiomycota and Chytridiomycota.

In Field 12, Olpidiomycota are also quite abundant. In most fields, Mortierellomycota

sequences are more abundant than Basidiomycota, except in Field 2, where the opposite

pattern was observed.
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Figure 5.2: Community composition at the phylum level. Mean of four repli-
cates was calculated before merging OTUs with the same phylum.

5.6 Unconstrained ordination

The aim of ordination is to represent the data with less dimensions, constructed so that

the dimensions represent the main trends in the data. In this section, we present the

results of three methods, namely PCA, CA and PCoA.

5.6.1 Principal component analysis

PCA was computed with vegan::rda() with the filtered and Hellinger transformed data

set. The first component accounts for 14.2% of the variance while the second component

accounts for 10.4% of the variance (Figure 5.3). The first component separates well most

of the fields. The second component separates Field 2 from the others. Samples from

Field 7 and Field 9 are close to each other, on the left of the plot, indicating that they

have a similar species composition; similarly for samples from Field 12 and Field 19 at

the top of the plot. Most of the OTUs are centered at the origin, meaning that only a

few OTUs drive the differences between samples. Importantly, the four replicates of each

soil generally cluster together.
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Figure 5.3: Biplot of PCA computed with filtered and Hellinger transformed
data. The fields are shown as colored dots and the OTUs as grey crosses.

5.6.2 Correspondence analysis

CA was computed with vegan::cca() within phyloseq with the filtered and normalized

data set (relative abundance). The first axis accounts for 13.7% of the inertia and the

second axis accounts for 10.2% of the inertia. Most of the sites are grouped together,

except two field sites: the first axis separates the four replicates from Field 2 from the

others and the second axis separates two replicates of Field 12 from the others (Figure 5.4).

This is mainly driven by the abundance of two OTUs: OTU52 which is very abundant

in all 4 replicates of Field 2 (33.3% mean relative abundance) and which was assigned to

Basidiomycota, and OTU1420 which is very abundant in two replicates from site Field 12

(34.8 and 6.4% relative abundance) and which was assigned to Olpidiomycota.
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Figure 5.4: Biplot of CA computed with filtered and normalized data. The
fields are shown as colored dots and the OTUs as grey crosses. The two most
extreme OTUs are labeled with their name.

5.6.3 Principal coordinate analysis

First, the matrix of Bray-Curtis dissimilarity was computed with vegan::vegdist(); it

is the the default method. Next, PCoA was performed with cmdscale(). The first axis

accounts for 18.1% of the inertia and the second axis accounts for 12.6% of the inertia.

Similarly to PCA, the four replicates generally cluster together (Figure 5.5), indicating

that they are close in community composition. Field 7 and Field 9 are close together

on the right of the plot, likewise for Field 12 and Field 19 at the bottom of the plot,

which indicates that they share abundant species. The species score for the biplot need

to be calculated as weighted averages, for details see Legendre and Gallagher (2001). The

species on the PCoA are more spread out compared to PCA (Figure 5.3)
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Figure 5.5: Biplot of PCoA of Bray-Curtis dissimilarity matrix computed with
filtered and normalized data. The fields are shown as colored dots and the OTUs
as grey crosses.

5.7 Summary

In this chapter, we explored different ways to characterize community diversity, both

within sample (alpha diversity) and between sample (beta diversity). Three different

methods of unconstrained ordination were compared. There is variation across the fields

sampled in this thesis. However, the four replicates generally cluster well together.



Chapter 6

Combining soil and fungal community

data

In this chapter, we analyze together the two sets of data, the soil environmental data

(physical, chemical and biological parameters) and the fungal community data. The

fungal community data is the response data (Y matrix) and the soil data contains the ex-

planatory variables (X matrix). Possible methods include indirect comparison and direct

comparison. In indirect comparison, correlation of the ordination vectors is performed a

posteriori with the environmental variables. The matrix X does not participate in the

ordination of matrix Y . In direct comparison, matrix X participates in the ordination,

and forces the ordination vectors to be related to combinations of the variables of X

(Borcard et al., 2018).

For the fungal community data, four DNA extractions and PCR were performed for

each soil sample but the soil parameters were only measured once. Because the methods

from this chapter need to have the same number of samples for both sets of data, the

mean of the four technical replicates per field was calculated. The four replicates cluster

close together with PCA and PCoA, justifying our decision. Averaging was done with

the filtered and normalized data (relative abundance). For redundancy analysis, the data

was further transformed with the Hellinger transformation (square root of the relative

abundance).
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6.1 Indirect comparison

First, we examined whether any of the environmental variables showed a gradient across

the ordination with Bray-Curtis dissimilarities. Principal coordinate analysis was per-

formed with ape::pcoa() within phyloseq. Figure 6.1, made with the mean of 4 repli-

cates, is quite similar to Figure 5.5, where all the replicates are analyzed together, except

that they are mirrored. For example, on both plots, Field 2 is at the top, Field 7 and

Field 9 are very close to each other, indicating that they share a lot of species, and Field 12

and Field 19 are close to each other as well.

Each of the 9 variables selected in Chapter 3.2 was inspected by coloring the sites from

the PCoA with the variable as a gradient. There was a convincing gradient only with pH

(Figure 6.1): from the bottom-left corner (fields with lower pH) to the top-right corner

(fields with highest pH). Field 2 is the field with highest pH and is alone, away from the

others on the y axis, suggesting that: 1) this fields does not share a lot of species with the

other fields, and 2) there is another factor than pH explaining the changes in community

composition for that site.

Second, vegan::envfit() was tested. This function fits environmental vectors onto

an ordination. Furthermore, the function does a permutation test to assess significance of

the fitted vectors (by default, 999 permutations). The function works with any ordination

object from vegan and others as well. For example, vegan::envfit() was used with

cmdscale() which performed PCoA with the Bray-Curtis dissimilarities (Figure 6.1). On

this figure, only vectors with p-values < 0.1 are plotted. The evidence for a correlation of

the vector of pH with the ordination was moderate (p-value = 0.002). The evidence was

very weak for Nmin (p-value = 0.081) and P (p-value = 0.093). The arrow with pH points

to the top-right corner, confirming what was previously observed with the pH gradient

on Figure 6.1. The two plots were obtained with different functions, ape::pcoa() for top

and cmdscale() for bottom, but the results of the ordinations look identical.
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Figure 6.1: PCoA of filtered and normalized data (mean 4 replicates) with
Bray-Curtis dissimilarity. Top: Sites are colored by pH. Bottom: Environmen-
tal variables are fitted to the ordination with vegan::envfit(). Arrows show
variables with p-values < 0.1.
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6.2 Constrained analysis

In constrained analysis, the environmental data participates in the ordination of the com-

munity data.

6.2.1 Redundancy analysis

For RDA analysis, the community data needs to be transformed with the Hellinger trans-

formation for reasons described above (Chapter 4.3) and in Legendre and Gallagher

(2001). Afterwards, a global test of the RDA result was performed with vegan::anova.cca(),

which tests the significance of the relationship of the community data (Y ) with the

environmental data X. There is moderate evidence for the global test of RDA (p-

value = 0.001). The same function can be used to test for the significance of each axis.

The evidence for the first axis is moderate (p-value = 0.001) and weak for the second axis

(p-value = 0.044).

Next, the variance explained by the model was assessed. In RDA, the variance has

two components: constrained and unconstrained. The sum of the eigenvalues for all the

constrained axes is the constrained variance. In our case, the constrained variance is

13.285 and the total variance is 24.994, so the proportion of variance explained by the

constraints is 0.532, which is the R2. As noted above (Section 4.4.5), this R2 is biased

(Borcard et al., 2018). The adjusted R2, computed with vegan::RsquareAdj, was lower

(R2
adj = 0.18).

Finally, a triplot can be drawn to show the results of RDA (Figure 6.2). By default

with no argument, vegan::plot.cca() plots the species, ‘bp’ (the biplot arrows), and

‘wa’ (the weighted sums of site scores). However, plotting the ‘lc’, the linear constraints,

is preferred instead of plotting the ‘wa’ because the ‘lc’ represent the values constrained

by the model (Ŷ U), whereas ‘wa’ include the environmental noise (Y U) (Borcard et al.,

2018).

The interpretation of a triplot is similar to a biplot for species and sites; however, two

scalings are available, where either the species or sites scores are scaled by eigenvalues.

In this thesis, to simplify, only the scaling of 2 (or ‘species’) was represented. For the

interpretation of scaling of 1 (or ‘site’), see (Borcard et al., 2018). The scaling of 2

produces a “correlation” triplot. Here, the angle between the explanatory variables and
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Figure 6.2: Triplot of RDA analysis. Field are presented by colored points
and OTUs by grey crosses, environmental variables represented by blue arrows.
OTUs with cumulative goodness-of-fit larger than 0.5 (arbitrary) are labeled by
their name.

the species or between the explanatory variables indicates their correlation (the smaller

the angle, the stronger their correlation). Moreover, the projection of a site at at right

angle on a species vector or a quantitative explanatory vector approximates the value of

that site on those variables.

The largest arrow on Figure 6.2 is for Nmin while the second largest is the arrow for pH,

which suggest that both variables structures the community most strongly. By contrast,

the arrow for Mg is the smallest, indicating that this variable is not very important. The

Nmin arrow points towards the bottom-left corner, in the direction of Field 17, which

indicates the the value of Nmin is high in that field, as can be seen in Table 3.2. The

arrow for P points in the direction of Field 21, indicating the relatively high value of P

in the field. Close to that arrow are the arrows for humus and WHC, which are pointing

in the direction of Field 16. The angle between the arrows for humus and WHC is small,
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indicating their strong correlation with each other, as was also observed in Figure 3.4.

This is expected because the more soil organic matter in a soil, the more water it can

retain.

All the OTUs of the filtered data are plotted in grey Figure 6.2. They are mostly

clustered in the middle of the plot. A few OTUs were selected based on goodness-of-

fit with vegan::goodness.cca(). This function calculates the cumulative proportion of

variance accounted by each species on each axis. According to Borcard et al. (2018), “the

higher the goodness-of-fit, the better the species is fitted on the corresponding axis”. Five

OTU with cumulative goodness-of-fit larger than 0.5 (arbitrary) were identified: OTU 349,

OTU 313, OTU 211, OTU 55, and OTU 54). OTU 54 is the furthest away from the cluster

of OTUs, it is close to the x-axis and close to Field 7, Field 9 and Field 20, which indicates

that it is more abundant in those fields.

6.2.2 Canonical correspondence analysis

Canonical correspondence analysis (CCA) was run with vegan::cca(). For this analysis,

the filtered and normalized (relative abundance) data was used. The evidence for the

global test of the constraint was weak (p-value = 0.039). The constrained explained

inertia is 0.882 and the total inertia is 1.824, so the adjusted explained inertia is 0.483

(R2). In this case, Ezekiel’s formula cannot be used to compute the adjusted R2 so a

bootstrap procedure, with 1000 permutation by default, is used by vegan::RsquareAdj.

The adjusted R2 was much lower (R2
adj = 0.0957).

Similarly to RDA, a triplot can also be drawn to show the results of CCA (Figure 6.3).

Similar to RDA, the CCA triplot displays how the community is organized in relation to

the environmental constraints. An advantage of CCA is that species are “ordered along

the canonical axes following their ecological optima”. The two scalings are also available

with CCA. For interpretation of scaling 1 (by ‘sites’) and further details about CCA

triplot, see Borcard et al. (2018). With scaling 2 (by ‘species’), the projection of a

species at right angle on the environmental variable displays the optimum of a species.

The largest arrow on the CCA is pH. The OTUs on the CCA are more spread out than the

OTUs on the RDA (Figure 6.3). There were only three OTUs with a goodness-of-fit >0.5:

OTU 349, OTU 1 and OTU 54.
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Figure 6.3: Triplot of CCA analysis. Field are presented by colored points and
OTUs by grey crosses, environmental variables represented by blue arrows. Only
OTUs with cumulative goodness-of-fit larger than 0.5 (arbitrary) are labeled with
their name.

6.2.3 Distance-based redundancy analysis

Distance-based redundancy analysis (dbRDA) was run with vegan::capscale. Contrary

to what the name suggest, this function does not perform canonical analysis of principal

coordinates (CAP), initially described by Anderson and Willis (2003); nevertheless, the

axes from the output are called CAP1 and CAP2. dbRDA was performed with the filtered

and normalized (relative abundance) data. There is only moderate evidence for the global

test of RDA (p-value = 0.005), and only the first axis is significant (p-value = 0.004). The

R2 was 0.557, while the adjusted R2 was 0.225.

Finally, a triplot can be drawn to show the results of the dbRDA (Figure 6.4). The

species are plotted as weighted average species score. vegan::goodness.cca() was not

implemented for capscale. We noticed similarities between the RDA triplot and the

dbRDA triplot, but the signs of both coordinates needed to be inverted, which is allowed
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Figure 6.4: Triplot of dbRDA analysis. Field are presented by colored points
and OTUs by grey crosses, environmental variables represented by blue arrows.

since RDA which is sign-invariant. After this transformation, Figure 6.4 shares many

similarities with Figure 6.2: 1) arrows for pH and sand point to the top-left corner; 3)

arrows for humus, WHC, and Nmin point to the bottom-left corner where the same two

sites are found (Field 16, Field 17); 2) arrows for Mg and silt point to the bottom-left

corner, where the same two sites are found (Field 12, Field 19); 4) there are no arrows

pointing to the top-left corner and the same two sites are present there (Field 7, Field 9).

6.3 Summary

In this chapter, we combined the soil and the fungal data. We first explored two methods

of indirect comparison. Next, three methods of constrained ordination were compared.

We found that RDA and dbRDA produced similar results.



Chapter 7

Predicting community composition

In this chapter, we investigate the prediction tool from vegan. Leave-one-out validation

is used to compare results from RDA, CCA and dbRDA. Only constrained ordination is

explored because the goal of this thesis is to predict community composition from envi-

ronmental data. Nevertheless, prediction is also possible with unconstrained ordinations.

7.1 Description of vegan functions

Recall from Section 4.4.1, the first step of RDA is a regression of each column of Y , the

matrix of centered response data (community data) on X, the matrix of centered explana-

tory variables (environmental data). The result is Ŷ , the matrix of fitted values. Next,

PCA is applied to Ŷ , which yield eigenvalues and a matrix U of canonical eigenvectors.

This matrix is used to compute Ŷ U , the linear combinations.

The function vegan:fitted.cca() provides an approximation of the original data

matrix from the constrained ordination; the fitted results can be either scaled and centered

(type=‘working’), which is Ŷ , or in the original scale of the response (type=‘response’).

On the other hand, the function vegan::residuals.cca() provides an approximation of

the original data from the unconstrained ordination. The function vegan::scores() is

convenient to extract the scores if the user would like to plot by hand instead of using

vegan::plot.cca().

The function vegan::predict.cca() acts differently depending on the type and

newdata. First, it can predict sites scores from species (type = ‘wa’). For this ver-

sion, newdata contains new site(s) but all species from the original data must also be

47
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present in the new site(s). Second, predict.cca() can also predict species scores from

site constraints (type=‘species’). For example, RDA is run with the subset of most

abundant species. Then predict.cca() can be used to predict the species scores for the

subset of rare species using the RDA object obtained with the abundant species. For that

version, newdata may contain new species but all sites from the original data must be

present. Importantly, if the ordination is computed on transformed species abundance

data (for example, in the case of PCA or RDA, Hellinger transformation is typically

used), the new species should be transformed using the same transformation (square root

of relative abundance). Third, with type = ‘lc’, the function can predict the linear

combination scores (Ŷ U) from environmental data. In that version, newdata must con-

tain all the environmental variables of the original model. Lastly, the function can predict

the response data with type = ‘response’ or the scaled and centered community data

with type = ‘working’. For these two versions, newdata must either contain environ-

mental variables (X) in order to predict the constrained component or community data

matrix (Y ) in order to predict the unconstrained component. According to the help

for vegan::predict.cca(): with these two versions, the function first uses newdata to

find new ‘lc’ (constrained) or ‘wa’ scores (unconstrained), and from these, the function

computes the response or the working data.

In this thesis we will explore two versions of predict.cca(), both of them with

newdata that contains environmental data: 1) with type = ‘lc’, and 2) with type =

‘response’.

7.2 Predict linear combinations

Leave-one-out validation is used to compare the results from the prediction of the three

constrained ordination methods seen in Section 6.2. For leave-one-out validation, each

field is removed from both the community data matrix (Y ) and the environmental data

matrix (X). A new constrained ordination is run with the two smaller data sets. First

the linear combination scores are predicted from environmental data, so the third method

from predict was used with type = ‘lc’ and newdata being the environmental data of

the removed field. It is important to chose the same scaling for both prediction and

ordination of the complete data set (either 1 for site or 2 for species). This process
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was repeated for each 22 fields in this data set and the result was a matrix with 22

rows (the fields) and 9 columns (the canonical axes). The same process was performed

with RDA, CCA and dbRDA. To compare the predicted linear combination with the

observed, the site constraints of the ordination with the complete data set were obtained

with vegan::scores(). As before, Hellinger transformed data is used for RDA while the

filtered data is used for CCA and dbRDA.

Figure 7.1 shows the comparison of leave-one-out prediction and observed ordination

with RDA and dbRDA methods. ggplot2 was used to plot the data with coord_equal(

ratio =1) which fixes the coordinate system to a ratio of 1 in order to achieve the same

scale for both axes. The observed data are presented in red while the predicted data is

represented in blue. Similar to Figure 6.4, the signs of both coordinates of the dbRDA

were inverted in order to make the ordination more similar to RDA. In order to spread

out the points and to maximize space use, the two canonical axes were inverted for both

ordinations of Figure 7.1: the first canonical axis was plotted on the y-axis while the

second canonical axis was plotted on the x-axis. The observed ordination in red is the

same as Figure 6.2, respectively Figure 6.4, except for the rotation of the axes.

Figure 7.2 shows the comparison of leave-one-out prediction and observed ordination

with CCA, with the customary order of the axes. The observed ordination in red is exactly

the same as Figure 6.3.

In some cases, the predicted and observed coordinates are relatively close to each

other; for example, Field 9 and Field 21 in all three types of ordination. By contrast,

predicted and observed coordinates for Field 5 are far apart from each other for all three

ordinations.

7.3 Predict species

Leave-one-out validation was also performed for the last method of predict (type=‘response’).

Similarly to above, each field was removed, RDA was performed with the smaller data set

and a response vector was predicted from the environmental data of the removed field.

The response is in the same scale as the original data; moreover, scaling does not matter

with this method. Prediction is repeated for each field, which yields a matrix with 22

rows (the fields) and 171 columns (the OTUs).
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Figure 7.1: Leave-one-out prediction of linear combination scores. Red: ob-
served, blue: predicted. Top: RDA. Bottom: dbRDA.
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Figure 7.2: Leave-one-out prediction of linear combination scores. Red: ob-
served CCA, blue: predicted CCA.

Figure 7.3 shows the predicted response compared to the Y , in this case Hellinger

transformed data. Four sites are presented in Figure 7.3: on the top, the two fields

with lowest R2, and on the bottom, the two fields with the highest R2. Surprisingly, the

predicted response may be negative, even though abundance cannot be negative. Field 5

was the site which was most different in the prediction of linear combinations (Figure 7.1),

and it is also one of the field with lowest R2 for the prediction of the response (Figure 7.3).

Field 21 was one of the field for which the predicted linear coordinates were more similar

to the observed (Figure 7.1) and it is also the field with highest R2 for prediction of

response (Figure 7.3).

7.4 Summary

In this chapter, the predictions of linear combinations for the three methods of constrained

ordination were compared. Results were similar, with some fields having predicted co-

ordinates close to the observed and other fields having very different predictions. The
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Figure 7.3: Leave-one-out prediction of response. In each panel, the name of
the field is indicated in the top-left corner and the R2 is presented in the lower-
right corner. Further, the dotted line shows the identity function and the solid
line shows the estimate from the linear model with zero intercept. The color are
the same as throughout this thesis.

prediction tool with type=‘response’ has only been implemented with RDA. Similarly,

the predicted response was similar to the observed data for some fields, but not all.



Chapter 8

Discussion, Outlook, and Conclusion

8.1 Absence of Glomeromycota

The original goal of this thesis was to predict arbuscular mycorrhizal fungi (AMF) com-

munity composition; however, we obtained very little sequences for the AMF, which

belong to the phylum Glomeromycota. After removing rare OTUs, no Glomeromycota

sequences remain (Figure 5.2). Only three OTUs belonging to the phylum Glomeromy-

cota were observed in the unfiltered data (Figure A.2). This suggests that AMF are not

very abundant in these soils. Alternatively, their DNA is not well extracted by the DNA

extraction method used in this project and/or their DNA is not well amplified with this

PCR reaction.

DNA extraction is known to be biased (Martin-Laurent et al., 2001). The DNA of

certain species might not be extracted because, for example, some microbes have a very

tough cell wall which prevents efficient lysis. Another problem with DNA extraction is

that the amount of soil used for DNA extraction is generally quite small. For instance,

the kit used in this thesis allows from 250 mg up to 500 mg of soil. By contrast, classical

soil analysis are performed with larger amounts (for example 10 g for Nmin, or 20 g for

microbial biomass analysis). The small amount of soil used for DNA extraction might

not give an accurate representation of the full expanse of the soil microbial community,

especially for fungi which are usually larger than bacteria. Other DNA kits allow the

extraction of larger amounts of soil; for example, Frey et al. (2016) used the “Ultra Clean

Soil DNA Mega Prep kit” from MO-BIO, which can extract DNA from up to 10 g of soil.

This particular product does not exist anymore since MO-BIO, the company producing

53
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it, was since then bought by QIAGEN. Because some people prefer not to depend on

commercial products and because they would like to control the ingredients in the ex-

traction buffers, they extract DNA with homemade buffers, for example with a method

called CTAB. The first step of CTAB includes bead beating with a lysis buffer contain-

ing 0.2% hexadecyltrimethylammonium bromide (CTAB), followed by phenol-chloroform

extraction (Bürgmann et al., 2001). In addition, another advantage of homemade DNA

extraction protocol is that the volume of buffers can be adapted to the amount of soil;

for example, Brierley et al. (2009) extracted DNA from 60 g of soil using the CTAB

method. On the other hand, one disadvantage of homemade DNA extraction is that it

requires more skill to work with these solutions. In addition, most projects, including this

one, include several hundreds of samples, so the current trend is towards high-throughput

methods where DNA is extracted in parallel in 96-well plates, which is difficult with the

homemade extraction protocol and impossible with the commercial “mega” kit. In spring

2019, our technician compared different homemade extraction protocols but was not able

to increase the amount of AMF sequences with the primer pair used in this study; there-

fore, we decided to try another avenue.

PCR is also biased. Firstly, primers amplify some species preferably. For example,

Bellemain et al. (2010) have shown with in silico analysis that primer ITS1-F, used in

this study, amplifies preferably Basidiomycetes whereas primer ITS4, also used in this

study, amplifies preferably Ascomycetes. Secondly, polymerase might show a preference

for certain secondary structure or guanine cytosine (GC) content (Nichols et al., 2018);

GC content is the percentage of guanine cytosine nucleotides in a DNA molecule, this

affects the melting temperature. To enrich for Glomeromycota, we could use previously

published primers that specifically amplify AMF sequences (Schlaeppi et al., 2016). How-

ever, our technician tested these primers with samples from this thesis, but high yield

and reproducible amplification was not achieved with the original PCR conditions from

the paper. We are currently testing this primer pair with alternative polymerases and

different PCR conditions to improve the yield of the PCR.
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8.2 Variable selection

We measured soil parameters in two different laboratories and obtained 50 variables for

22 fields, so there are more than twice more variables than samples. The rule of thumb

for linear regression, is that there should be 5 times more samples than coefficients in the

model. In particular, the goal is to avoid collinearity, caused by correlated explanatory

variables, which leads to inaccurate estimation of the coefficients. For constrained ordi-

nation, there is no rule of thumb but note that in the classical example of Borcard et al.

(2018), the data has 29 sites and 10 environmental variables. Therefore, we attempted to

reduce the number of variables.

In Chapter 2, we reduced the number of variables to nine using different methods.

First, the data was sorted into three categories: chemical, physical, and biological proper-

ties. Some variables were redundant because they were measured by the two laboratories

(e.g. soil texture, nitrogen, humus, soil respiration); we kept the variables measured by

Agroscope because the methods used by this laboratory are more reliable. Most of the

macronutrients were extracted with different buffers; after checking for correlation of the

different extractions with one another, only one measurement was kept for each macronu-

trient. Next, the six most relevant variables were chosen based on the literature. Finally,

varrank was used to select three more variables.

Alternatively, we could have performed variable selection directly with constrained

ordination. Several functions in vegan and adespation are available for this purpose. For

example, vegan::vif.cca() computes the variance inflation factor (VIF). Variables with

a VIF above 10 should be avoided, because they indicate correlation between variables.

vegan::ordistep() can be used for forward and backward selection and it accepts also

factor explanatory variables; however, according to Borcard et al. (2018), this function

may be too liberal. Therefore, adespation::forward.sel() is preferred. On the other

hand, this function does not accept factor explanatory variables directly, these need to be

re-coded with dummy variables. A third option is adespation::ordiR2step(), which

does accept factor variable; however, this function can only do forward variable selection

and only works with RDA and dbRDA. In the future, we plan to refine our models using

variable selection with one of those procedures.
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8.3 Unconstrained ordination

In this thesis, three unconstrained ordination methods were compared (Table 8.1). Differ-

ent transformations are recommended depending on the ordination. For PCA and RDA,

appropriate transformations need to be used to avoid the double-zero problem, where two

samples sharing no species appear to be similar to each other even though the reasons

for not having that species are different. To avoid this problem, we used the Hellinger

transformation for PCA and RDA. However, in some cases, a double zero should be taken

into account, for example when analyzing data from synthetic community experiments,

where the starting community is the same for all the samples. In this case, PCA without

transformation would be suitable.

With unconstrained ordination, the community data is analyzed on its own; this cate-

gory of methods allows to see which sites are similar to each other and which species occurs

at which site. The results of PCA and PCoA were comparable once the sign for x-axis

and y-axis were inverted (Figure 5.3 and Figure 5.5). Field 2 is isolated from the other

fields, suggesting that it does not share many species with those fields. On the other hand,

Field 7 and Field 9, as well as Field 12 and Field 19, are close to each other, indicating

that these two pairs of fields share a common community composition. Although the two

plots were produced with different ordinations, distances and transformations, they are

similar. Similarly, Legendre and Gallagher (2001) also found that PCoA of Bray-Curtis

distance matrix is more similar to PCA with Hellinger transformation than CA.

By contrast the ordination of the species scores are very different between the ordi-

nation methods. With PCA, most of species are clustered around the origin, while with

PCoA, they are more spread out. Recall that the species scores for PCoA need to be

computed as weighted averages (Legendre and Gallagher, 2001).

The results of CA are very different from PCA and PCoA (Figure 5.4). Most of the

Table 8.1: Ordination methods in this thesis.

unconstrained constrained distance transformation R function
PCA RDA Euclidean Hellinger vegan::rda()

CA CCA χ2 relative
abundance vegan::cca()

PCoA dbRDA any relative
abundance

cmdscale(),
ape::pcoa(),
vegan::capscale()
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samples are clustered together around the origin, except for Field 2, which is separated

from the others on the first axis, and Field 12, on the second axis. Interestingly, these

were also the two fields most different from others on the barplot (Figure 5.2). Two OTUs

are driving these differences. Indeed, Field 12 was one of the field with lowest evenness

(Figure A.1), which indicates that this field is dominated by one ore more OTUs. CA

appears to be sensitive to extreme outliers. Other transformation such as log or square

root might help to improve the separation of the samples on the ordination.

Finally, we observed that that the four replicates are close to each other with PCA

and PCoA (Figure 5.3 and Figure 5.5). For each soil sample, four DNA extractions were

performed and one PCR reaction was prepared with each DNA template to prepare the

libary for sequencing, so there are four replicates for the fungal community. On the other

hand, the soil properties were only measured once for each field. Because the community

composition of the four replicates is similar, we can average the four replicates before

doing constrained ordination, in order to analyze the fungal data together with the soil

data.

8.4 Constrained ordination

We also compared the results of three constrained ordination methods (Table 8.1). In

constrained ordination, the environmental data participates in the ordination of the com-

munity data. The fraction of the variance of the community data which is explained by

the environmental data is called R2; however, the adjusted R2 is preferred because R2 is

biased. The adjusted R2 was highest for dbRDA, followed by RDA, finally CCA. Ecol-

ogists generally prefer to use dbRDA because this method works with any dissimilarity

matrix, including beta diversity indices and in particular the popular Bray-Curtis dissim-

ilarity. Triplots of RDA and dbRDA produced similar results for our data set (Figure 6.2

and Figure 6.4), after inverting the signs of the coordinates of dbRDA. On both plots,

the arrows for Nmin, WHC and humus are pointing towards the same direction, indicating

the strong correlation of those variables with each other, and these variables are close to

Field 16 and Field 17, suggesting they have high values in these fields. By contrast, the

results of RDA and dbRDA were different with the data set used in Borcard et al. (2018).
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pH was identified as one of the most important factor shaping the fungal commu-

nity of the fields sampled in this thesis. pH was the only variable which showed a visi-

ble gradient on the PCoA (Figure 6.1, top), as well as one of the variables selected by

vegan::envfit() to fit the PCoA ordination (Figure 6.1, bottom). Moreover, pH was

one of the largest arrow on the RDA (Figure 6.2), indicating that this variable has a large

variance. In previous studies, pH has been shown to be a major predictor of microbial

communities. For example, Lauber et al. (2009) have shown that pH shapes bacterial

communities at the continental scale. Fungal communities appear to be less affected by

pH compared to bacterial communities (Rousk et al., 2010). However, we did not assess

bacterial community composition in this project because the larger goal is to predict AMF

community composition in order to improve inoculation success. AMF communities are

also structured by pH (Van Geel et al., 2018), but we were not able to obtain enough

AMF sequences to confirm this result.

In the fields analyzed in this thesis, the two macronutrients N and P were identified

to be important factors shaping the fungal community. Nmin and P were both selected

by vegan::envfit() (Figure 6.1) and Nmin was the largest arrow on the RDA (Fig-

ure 6.2). Nitrogen is a well-known factor shaping soil bacterial communities, for example,

Fierer et al. (2012). Moreover, application of phosphorus and nitrogen induced commu-

nity shifts in soil bacterial and fungal communities (Leff et al., 2015). Macronutrient

levels are expected to affect community composition because high macronutrient levels

favor copiotrophic microbes, which are organisms that prefer nutrient-rich environment,

whereas low macronutrient levels favor oligotrophic microbes, which are organisms that

live in environments with low nutrients.

8.5 Missing variables

With all three constrained methods shown in this thesis, a relatively small proportion

of the variance was explained by the environmental constraints (for example, for RDA,

R2
adj = 0.18). By comparison, the proportion of variance explained by the environmental

variables was much higher for the data set used in Borcard et al. (2018), which are fish

communities along the Doubs river in France (for RDA, R2
adj = 0.522). In this thesis, we

considered fungi; probably less is known about the factors that affect microbial commu-
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nities. On the other hand, we might have failed to measure important soil properties.

In fact, not all the classical soil properties were measured in this thesis. In particular,

we did not measure bulk density which is known to be important for soil microbes. For

example, Hartmann et al. (2014) showed that forest microbes, and in particular fungi,

were affected by soil compaction. Similarly, Gattinger et al. (2002) showed that microbes

in agricultural fields are impacted by tractor driving. Our reasoning for not including bulk

density in the list of properties measured was that we expected soil compaction not to

vary much across the different fields because all fields in this study were tilled and tractor

driving during tillage is known to affect compaction. Moreover, we did not measure

bulk density because it is more difficult to measure and it is not part of the standard

soil analysis done by farmers. Nevertheless, bulk density might have been important in

structuring the fungal communities.

In addition, we did not take into account the environment (altitude, temperature,

micro-climate). In particular the amount of precipitation is known to affect microbial

community composition, for example, Naylor et al. (2017). Precipitation data is available

for over 260 automatic weather stations all over Switzerland from the Federal Office of

Meteorology and Climatology MeteoSwiss (2019). We could obtain precipitation data

from the closest weather-station for each field, but this might not be accurate because the

network of weather stations is not extensive

Finally, we did not consider farmer management of the fields. Management factors

expected to influence microbial communities include: pre-crop, cover crop, fertilizer type

and application, and compost application (Bender et al., 2016). Questionnaires were sent

to farmers to ask them how they had managed the fields sampled in this study in previous

years; unfortunately, only 90% of the farmers returned the completed form. In the future,

we will include information from the farmer questionnaires to further refine our model.

8.6 Prediction of communities

The main goal of this thesis was to predict community composition. Prediction with the

three constrained ordination methods was compared to observed data using leave-one-out

validation. All three constrained ordination methods presented in this thesis allow the

prediction of linear combinations, but only RDA can predict species abundance.
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Predicted and observed linear combinations were farthest apart for Field 5 for all the

ordination methods presented in this thesis (Figure 7.1 and Figure 7.2). Field 5 has a soil

texture classified as sandy clay loam (Figure 3.3). On the other hand, Field 18 has the

same soil texture but predicted and observed coordinates were much closer to each other.

Field 5 is not an outlier in any other parameters measured, either soil parameters (Figure

3.4) or alpha diversity (Figure A.1). This indicates that other factor(s), not measured

here, make prediction difficult for that field.

Predicted species abundances were relatively close to the observed values for most of

the fields, with the notable exception of Field 2 and Field 5. Field 2 was very far from

others on both PCA (Figure 5.3) and PCoA (Figure 5.5), indicating that it does not

share a lot of species with the other sites. Field 2 was also very different in composition

at the phylum level, with more abundant Basidiomycota compared to all the other sites

(Figure 5.2). Field 2 was the field with highest pH (Table 3.2), but it was not very different

from the other fields for the other environmental variables (Figure 3.4). Interestingly,

the prediction of species abundance for Field 2 was different from observed even though

prediction of linear combinations was similar to observed.

Prediction of both linear combinations and species abundance were surprisingly suc-

cessful for the other fields. One explanation is that fields sampled in this thesis are

relatively similar to each other: they are suitable for maize crop, they have mostly similar

texture (Figure 3.3), they were all regularly tilled. We excluded fields which were not

tilled or from organic farmers because we expected these fields to have different microbial

community composition (Banerjee et al., 2019). All in all, selecting only fields run un-

der conventional management (as opposed to organic or no-till) led to good prediction of

fungal communities based on soil properties.

8.7 Outlook

8.7.1 Improving the ordination

RDA was limited to the environmental variables measured in this thesis. Results could

be improved by including more variables (Section 8.5); in particular, answers of question-

naires about farm management will be taken into account. As noted above, the number

of fields was smaller than the number of soil variables measured. However, the number of
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sites will increase in the next years. This thesis is embedded in a three year project. In

the first year, 2018, 22 fields were sampled. In the spring of 2019, 25 fields were sampled;

data for these fields will become available in the fall. In 2020, 10 more fields will be

sampled. Altogether, there will be more than 60 sites. The new sites will be included

in the analysis presented in this thesis. Increasing the number of fields will improve the

prediction, although we will need to take into account year in the model as a random

factor. This is possible with vegan::rda() and is called “partial” RDA. The information

about the random factors is supplied as conditioning matrix Z. Partial RDA removes the

effect of the random variable(s).

8.7.2 Other transformations and ordinations

In this thesis, we used Hellinger transformation for PCA and RDA and relative abundance

for the other ordination methods. We did not try log-transformation of the data, which

was recommended for example by Callahan et al. (2016). Microbiome data typically

contains a lot of zero so a pseudo-count need to be added before log-transformation;

because the choice of pseudo-count is arbitrary, it can affect the ordination (Hawinkel

et al., 2019a).

Gloor and Reid (2016) have argued that microbiome data is compositional data, which

they defined as “a data set in which the parts in each sample have an arbitrary or non-

informative sum”. In the case of microbiome data, the sum is the number of sequences.

The problem with analyzing compositional data with relative abundance, is that if the

true abundance of one OTU in one sample increase, the relative abundance of that OTU

will increase as a result but the relative abundances of the other OTUs will appear to

decrease, because the number of sequences provided by the sequencing instrument is fixed.

This phenomenon is called “negative correlation bias” (Gloor and Reid, 2016). Aitchison

(1982) and others have developed different tools to deal with compositional data, this has

been called compositional data analysis (CoDA). The first step in CoDA is to convert the

relative abundance to ratios between all parts, for example using the centered log-ratio

transformation. Standard multivariate analysis techniques can then be applied to the

transformed data set.

We restricted the choice of methods to three unconstrained and three constrained ordi-

nations (Table 8.1). Canonical analysis of principal coordinates (CAP), initially described
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by Anderson and Willis (2003), is similar to dbRDA because both methods first compute

a distance matrix. CAP analysis is available with the popular program PRIMER-e, which

was developed for multivariate analysis for ecology (Clarke and Gorley, 2015). How-

ever, this program is not command-line and thus does not allow reproducible research.

According to its authors, BiodiversityR::CAPdiscrim()’s implementation is closer to

the method described by Anderson and Willis (2003); while the method implemented

by vegan::capscale() is closer to distance-based Redundancy Analysis (Legendre and

Anderson, 1999). However, BiodiversityR provides a Graphical User Interface (GUI)

for vegan and is thus also not command-line. There is no corresponding vegan function

for CAP.

Recently, Hawinkel et al. (2019a) introduced a new R package RCM (Hawinkel et al.,

2019b), which stands for Row-Column interaction model of dimension M; M is the number

of dimensions of the ordination, typically 2 or 3. The model RC(M) combines ideas of

dispersion estimation from sequencing data with flexible response function estimation.

Further, similar to RDA, it allows for conditioning of confounding variables as well as

constrained ordination. Finally, it provides diagnostic tools to check assumptions of the

model. We chose to only use methods available in the vegan package for this thesis, but

alternative transformations and ordinations should be tested in the future.

8.8 Conclusion

Unfortunately, we did not obtain enough Glomeromycota sequences to predict AMF com-

munity composition from soil data, the original goal of this thesis. We used the available

data about soil fungi to explore different methods of studying microbial communities.

We compared three unconstrained and three constrained ordination methods and we pre-

dicted species abundance from soil properties. In the future, we hope to obtain a better

data set with improved molecular methods and eventually to be able to use the methods

evaluated in this thesis to reach our initial goal.
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Appendix

This Appendix has two sections: the first section collects information about R version

and packages loaded in this thesis, the second section presents supplementary table and

figures.

A.1 sessionInfo()

## R version 3.6.1 (2019-07-05)

## Platform: x86_64-apple-darwin15.6.0 (64-bit)

## Running under: macOS Mojave 10.14.6

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

##

## Random number generation:

## RNG: Mersenne-Twister

## Normal: Inversion

## Sample: Rounding

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##
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## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] kableExtra_1.1.0 xtable_1.8-4 vegan_2.5-5

## [4] lattice_0.20-38 permute_0.9-5 varrank_0.2

## [7] plyr_1.8.4 phyloseq_1.28.0 forcats_0.4.0

## [10] stringr_1.4.0 dplyr_0.8.3 purrr_0.3.2

## [13] readr_1.3.1 tidyr_0.8.3 tibble_2.1.3

## [16] ggplot2_3.2.1 tidyverse_1.2.1 soiltexture_1.5.1

## [19] knitr_1.24

##

## loaded via a namespace (and not attached):

## [1] nlme_3.1-141 lubridate_1.7.4 webshot_0.5.1

## [4] httr_1.4.1 tools_3.6.1 backports_1.1.4

## [7] R6_2.4.0 lazyeval_0.2.2 BiocGenerics_0.30.0

## [10] mgcv_1.8-28 colorspace_1.4-1 ade4_1.7-13

## [13] withr_2.1.2 sp_1.3-1 tidyselect_0.2.5

## [16] compiler_3.6.1 cli_1.1.0 rvest_0.3.4

## [19] Biobase_2.44.0 xml2_1.2.2 scales_1.0.0

## [22] digest_0.6.20 rmarkdown_1.15 XVector_0.24.0

## [25] pkgconfig_2.0.2 htmltools_0.3.6 highr_0.8

## [28] rlang_0.4.0 readxl_1.3.1 rstudioapi_0.10

## [31] FNN_1.1.3 generics_0.0.2 jsonlite_1.6

## [34] magrittr_1.5 biomformat_1.12.0 Matrix_1.2-17

## [37] Rcpp_1.0.2 munsell_0.5.0 S4Vectors_0.22.0

## [40] Rhdf5lib_1.6.0 ape_5.3 stringi_1.4.3

## [43] MASS_7.3-51.4 zlibbioc_1.30.0 rhdf5_2.28.0

## [46] grid_3.6.1 parallel_3.6.1 crayon_1.3.4

## [49] Biostrings_2.52.0 haven_2.1.1 splines_3.6.1

## [52] multtest_2.40.0 hms_0.5.0 zeallot_0.1.0

## [55] pillar_1.4.2 tcltk_3.6.1 igraph_1.2.4.1
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## [58] reshape2_1.4.3 codetools_0.2-16 stats4_3.6.1

## [61] glue_1.3.1 evaluate_0.14 data.table_1.12.2

## [64] modelr_0.1.5 vctrs_0.2.0 foreach_1.4.7

## [67] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1

## [70] xfun_0.9 broom_0.5.2 survival_2.44-1.1

## [73] viridisLite_0.3.0 iterators_1.0.12 IRanges_2.18.1

## [76] cluster_2.1.0

A.2 Supplementary table and figures
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Table A.1: 50 variables measured but only 17 retained at the end of the 1st
step of variable reduction. The dropped variables are represented in grey. The
retained variables are represented in black.

variable type variable name
clay (%) physical clay_agro, clay_lbu
sand (%) physical sand_agro
silt (%) physical silt_agro, silt_lbu
aggregation physical vast_lbu
water holding capacity physical WHC_agro
organic matter chemical humus_agro, Corg_agro,

humus_lbu
pH chemical ph_lbu, hydrogen_agro
nitrogen chemical Nmin_agro,

ammonium_agro,
ammonium_H2O_lbu,

nitrate_agro,
nitrate_H2O_lbu,

slan_lbu
phosphorus chemical phosphorus_CO2_lbu,

P_tot_agro,
P_olsen_lbu,

phosphorus_EDTA_lbu,
phosphorus_H2O_lbu

potassium chemical potassium_CO2_lbu,
potassium_agro,

potassium_EDTA_lbu,
potassium_H2O_lbu

magnesium chemical magnesium_CC_lbu,
magnesium_agro,

magnesium_EDTA_lbu,
magnesium_H2O_lbu

calcium chemical calcium_H2O_lbu,
calcium_EDTA_lbu,

calcium_agro
sodium chemical sodium_H2O_lbu,

sodium_agro
micronutrients chemical

manganese_EDTA_lbu,
iron_EDTA_lbu,
iron_H2O_lbu,

copper_EDTA_lbu,
zinc_EDTA_lbu,

boron_EDTA_lbu,
boron_H2O_lbu

cation exchange capacity chemical CEC_agro, BS_agro
microbial biomass biological cMIC_agro, nMIC_agro
substrate induced
respiration

biological respiration_agro,
respiration_lbu
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Figure A.1: Three indices of alpha diversity. Top: OTU Richness (N0). Middle:
Exponential of Shannon diversity (N1 = exp(H)). Bottom: Sheldon evenness
(N1/N0). Black points represent the mean for each field.
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Figure A.2: Prevalence plot (made with R code from Callahan et al., 2016).
On the x-axis is the sum of the counts for each OTU and on the y-axis is the
proportion of samples where the OTU was found.
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