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Preface

Abstract

Researchers are increasingly evaluating non-mortality outcomes such as cognition, physical func-
tion and quality of life in RCTs of critically ill or older patients (Colantuoni et al., 2018). Out-
comes truncated by death are particularly common in such studies, and present a statistical
challenge since they are not missing in the usual sense. In their presence, a complete case anal-
ysis of the data could undermine the benefit of randomization and produce misleading results,
while an imputation of the data would create values that do not exist and is thus inappropriate.
A useful approach to handle them, yet not so well-known among clinical researchers and epi-
demiologists, is principal stratification (Frangakis and Rubin, 2002) and the concept of survivor
average causal effect (SACE, Rubin, 2006).
We implemented in R the SACE estimator proposed by Hayden et al. (2005) and we used it to
reanalyze a completed RCT on the effect of early prophylactic high-dose recombinant human
erythropoietin in very preterm infants on neurodevelopment at 2 years of age (Epo trial, Na-
talucci et al., 2016). The results obtained by SACE approach confirmed those reported in the
original publication, which were obtained by complete case analysis and by single imputation of
the worst observed outcome.
In addition, we conducted a simulation study to compare Hayden’s method with complete case
analysis and multiple imputation analysis under different scenarios. We evaluated the perfor-
mance of the three methods with respect to their three targeted estimands. In scenarios where
survival was not affected by treatment, the three methods yielded similar results and the es-
timates were unbiased with respect to all estimands. In these circumstances, complete case
analysis may be used to estimate the SACE. However, in scenarios where survival was affected
by treatment, the estimates derived by complete case analysis were biased with respect to the
estimands targeted by Hayden’s method and multiple imputation analysis, and/or vice versa.
Although the results gained by multiple imputation were similar to those obtained by SACE
approach, multiple imputation should not be used to analyze studies with outcomes truncated
by death, unless inference about an hypothetical population without deaths is desired.
Our findings highlighted the importance of aligning the choice of the statistical method to use
with the study research question, the targeted estimand and the expected scenario. In particu-
lar, possible post-randomization events such as death, together with strategies to address them,
should be explicitly defined at the planning stage of the study and determine choices about study
design, data collection and statistical analysis. (European Medicines Agency, 2017; US Food and
Drug Administration, 2017).
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Chapter 1

Introduction

Missing outcome measurements occur in most RCTs. In their presence, a complete case anal-
ysis of the data may undermine the benefit of randomization and produce misleading results.
Multiple imputation is usually the preferred approach to handle them (e.g. Vickers and Altman,
2013), and with the availability of software to generate imputations and to pool estimates of
effect sizes, this method has become increasingly popular.
Particularly challenging are outcomes truncated by death, which occur when some subjects die
after randomization, before their outcome of interest can be measured. These are common,
for example, in therapeutic trials of advanced-stage or rapidly fatal diseases and in studies to
compare non-mortality outcomes in older individuals, but similar truncations are also present
in other fields, such as economics (Rubin, 2006). Outcomes truncated by death are not missing
in the usual sense, i.e. outcomes not measured which could have been measured, since they do
not exist and could never be observed. Imputation of such data is not appropriate because it
would generate data that are not defined. Moreover, public-health decision makers may be more
interested in knowing the effective impact of a treatment in the real population, rather than in
a population that exists only statistically (Chaix et al., 2012).
Kurland et al. (2009) present an overview of the statistical models and estimands that have been
proposed to analyze longitudinal data with follow-up truncated by death. The issue seems well
recognized in the field of longitudinal data analysis, but less recognized and less often applied in
analyses of cross-sectional outcomes in RCTs.
One approach that can deal with outcomes truncated by death is principal stratification (Fran-
gakis and Rubin, 2002), and the concept of survivor average causal effect (SACE), introduced by
Rubin (2006). The SACE is defined as the average causal effect in the subgroup of patients that
would have survived under both treatment assignments. Because this subgroup is defined at the
baseline and is not affected by post-treatment events such as death, the benefit of randomization
is preserved and no non-existent data are created.
Unfortunately, the SACE is not identifiable without further assumptions (Zhang and Rubin,
2003). Several approaches have been proposed to enable the SACE identification and estima-
tion. We focus on the specific estimator proposed by Hayden et al. (2005), which exploits the
baseline covariates and makes the so-called explainable nonrandom survival assumption.
In particular, the purpose of our work is threefold. In the first place, to implement Hayden’s
SACE estimator in R (R Core Team, 2019). Secondly, to apply it to data from a completed
placebo-controlled, double-blind RCT on the effect of early prophylactic high-dose recombinant
human erythropoietin (rhEPO) in very preterm infants on neurodevelopment at 2 years of age
(Epo trial, Natalucci et al., 2016), and to compare the SACE estimate with the estimates re-
ported in the original publication. Lastly, to conduct a simulation study to compare Hayden’s
method with complete case analysis and analysis using multiple imputation under different sce-
narios. Although multiple imputation is inappropriate to analyze outcomes truncated by death,
we aim to assess how results gained with this method differ from those of the other methods,
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2 CHAPTER 1. INTRODUCTION

and whether the differences are large or actually quite small. In order to have clear objectives
and a well-designed study, we produce a protocol prior to the simulation study. Since the com-
pared methods estimate different quantities, we discuss the results of the simulation study with
reference to the topic of estimands.
The motivation for the present work came from a currently ongoing, similar RCT (EpoRepair
trial, Rüegger et al., 2015) to evaluate the effect of high-dose rhEPO on long-term neurocogni-
tive outcomes of very preterm infants suffering from intraventricular hemorrhage. The primary
outcome is IQ at 5 years of age. Since mortality up to term equivalent age of this vulnerable
population is around 15%, a relevant proportion of outcomes truncated by death is expected at 5
years of age. Moreover, there is currently limited awareness of the fact that outcomes truncated
by death are not missing data in the usual sense. With this work we hope to promote awareness
of the problem and methodological knowledge of how it could be dealt with.
The thesis is organized as follows. In the following sections, the approach of principal stratifi-
cation and the concept of survivor average causal effect are introduced, followed by an overview
of the different SACE estimators that have been proposed. Chapter 2 begins with a discussion
about the characteristics of the statistical methods considered in our work. Then, Hayden’s
method is presented, and the implementations in R of Hayden’s method and of multiple imputa-
tion are described. Finally, the methods used for the analysis of the Epo trial are reported, and
the protocol of the simulation study is presented. In Chapter 3, the results of the Epo trial anal-
ysis and the results of the simulation study are shown. The thesis ends with a discussion of the
results (Chapter 4), which comprises the interpretation, the limitations and the generalizability
of the findings.

1.1 Principal stratification framework

Principal stratification (Frangakis and Rubin, 2002) is a general framework to adjust for post-
randomization variables when comparing treatments. The key idea is to stratify patients with
respect to the joint potential values of the post-randomization variable under each of the com-
pared treatments, and then to compute causal effects only within the obtained strata.
In studies with outcomes truncated by death, the post-randomization variable is survival. To
illustrate the application of principal stratification to these studies, we consider the randomized
experiment described in Rubin (2006), which compares an active treatment, which we denote as
treatment 1, with the control treatment, which we denote as treatment 0. The primary outcome
is quality of life 2 years post-randomization and is denoted by Y . Many patients do not reach
the 2 years post-randomization endpoint, their outcome Y is thus truncated by death.
In this case, we stratify patients with respect to 2 years survival, but not on the observed survival,
which is generally affected by the treatment received, rather on the bivariate survival: survival if
assigned to the control treatment and survival if assigned to the active treatment. Because the
stratification with respect to the bivariate survival is not affected by the treatment received, even
though which of the two outcomes is actually observed is affected by the treatment received, the
randomization is preserved.
The four resulting strata are called principal strata and are defined as follows:

• Individuals who would live under either treatment assignment, LL

• Individuals who would die under control but live under the active treatment, DL

• Individuals who would die under either treatment assignment, DD

• Individuals who would live under control but die under the active treatment, LD

The strata represent different types of people. The LL subjects may be considered as the most
robust, the DL subjects to be of typical health status, the DD subjects as frail and the LD
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subjects as acutely ill patients who may be more susceptible to previously unrecognized adverse
effects of the treatment (Colantuoni et al., 2018), or as patients that feel so much better under
treatment (even if it does not affect their disease progression) that they “overdo” it (Rubin,
2006).
A causal effect must be a comparison of treatment potential outcomes and control potential
outcomes on a common subset of units (Rubin, 2006). We first define it at the individual
level, as the difference between the potential outcome under assignment to the active treatment,
Y (1), and the potential outcome under assignment to the control treatment, Y (0). The value
Y (1)−Y (0) is well-defined only for the subjects where both Y (1) and Y (0) are defined, i.e. for the
subject that would survive up to 2 years post-randomization under both treatment assignments.
Since a well-defined value for the causal effect exists only for the subjects of the LL group, the
computation of causal effects is restricted to this group. The average causal effect in this stratum
is obtained averaging the individual causal effects and is thus called the survivor average causal
effect.
The specific artificial case provided in Rubin (2006) is displayed in Table 1.1. For the LL people,
the average outcome Ȳ would be 900 if all were treated and 700 if no one was treated. Therefore,
the survivor average causal effect of the treatment is 900− 700 = 200.

Table 1.1: Principal strata defined by potential outcomes, and average causal effect.
Asterisks represent undefined values.

Principal Control treatment Active treatment Average causal
stratum S Ȳ S Ȳ effect on Y
LL 1 700 1 900 200
DL 0 * 1 600 *
DD 0 * 0 * *
LD 1 800 0 * *

However, we do not get to observe all the potential outcomes and thus all the values in Table
1.1. For patients who survived, we can only observe the outcome under the treatment they were
assigned to. Thus, we do not know the principal stratum to which each patient actually belongs:
if we observe that one patient did not survive, we know that he cannot be in the LL stratum,
but if we observe that he survived, we do not know whether he is in the LL stratum because we
do not know if he would have survived under the treatment he was not assigned to.
Therefore, we can not simply compute the difference between the average outcomes of the subjects
in the LL stratum. Some modelling assumptions are required to identify the patients in the LL
stratum and to estimate the SACE.

1.2 SACE estimators

In order to have an overview of the studies that have been conducted after the publication of
Hayden’s method, we collected the papers citing Hayden et al. (2005) from the Web of Science and
PubMed. We classified each of them as methodological, application or study protocol, depending
on whether the article discussed statistical methods, applied Hayden’s estimator or another
SACE estimator to analyze a study, or was a study protocol (Table A.1), respectively. Then, we
mainly examined the methodological studies and we used them to find out about the different
SACE estimators developed.
As observed by Jemiai et al. (2007), two approaches have been proposed to identify the SACE.
The first approach calculates bounds on the SACE (Zhang and Rubin, 2003; Chiba, 2012; Yang
and Small, 2016). The second approach makes assumptions that allow to identify and estimate
the SACE, and/or conducts sensitivity analyses around assumptions about the distribution of
the outcome or survival (Hayden et al., 2005; Egleston et al., 2006; Shepherd et al., 2006; Jemiai
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et al., 2007; Chiba and VanderWeele, 2011; Wang et al., 2017b). For example, Yang and Small
(2016) propose a set of assumptions that make use of survival information before and after the
measurement of the outcome to narrow the bounds on the SACE, and develop a programming
approach to obtain the closed form for the bounds under these assumptions. Wang et al. (2017b)
use a substitution variable in place of the latent membership to the LL group to enable the
SACE identification. They need some identification conditions for the substitution variable,
which are conceptually similar to conditions for a conditional instrumental variable. Chiba and
VanderWeele (2011) propose a method that is particularly simple to implement in practice and
does not require special statistical programming. They express the SACE as the difference
between the crude comparison of the outcomes among survivors and a sensitivity parameter,
which has to be set by the investigator according to what is thought plausible, and can be varied
to examine how conclusions vary under different values of the parameter. A limitation of this
method is that it gives a range of corrected values and not a single point estimate (Merchant
et al., 2018).
As previously discussed, the SACE is not identifiable without further assumptions. Common
assumptions are the stable unit treatment value assumption, the ranked average scores assumption
and the monotonicity assumption. Each of these may be more plausible in some contexts and less
in others. The stable unit treatment value assumption, developed by Rubin (Rubin, 1980, 1986),
states that there are no different forms or versions of the same treatment, and that the outcome
of an individual is unaffected by the treatment assignment to the other individuals. The ranked
average scores assumption is made e.g. by Zhang and Rubin (2003), Chiba (2012) and Yang
and Small (2016), and states that the LL patients have on average a better outcome than the
DL patients. The monotonicity assumption is made by many authors (Zhang and Rubin, 2003;
Egleston et al., 2006; Shepherd et al., 2006; Jemiai et al., 2007; Chiba and VanderWeele, 2011;
Chiba, 2012; Yang and Small, 2016) and states that survival under the active treatment is at least
as good as survival under the control treatment, or equivalently, that no LD patients are present.
As pointed out by Wang et al. (2017b), this assumption may be plausible in some observational
studies, for example in studies evaluating the effect of smoking on memory decline in an aged
population, where non-smoking is considered as the treatment, since it is commonly believed that
smoking is always bad for overall health and hence overall survival. However, it is questionable
in RCTs with acute diseases, because if researchers believe that one treatment benefits survival
a priori, a clinical trial would be unethical. Moreover, the monotonicity assumption may not be
appropriate if, instead of a treatment and placebo, two experimental treatments are compared
(Jemiai et al., 2007). Hayden et al. (2005) do neither impose monotonicity nor ranked average
scores, but assumes stable unit treatment value and explainable nonrandom survival, which is
described in Section 2.2.



Chapter 2

Methods

2.1 Characteristics of the statistical methods considered

Complete case analysis, multiple imputation analysis and single imputation analysis are com-
monly used approaches to analyze RCTs with missing outcome measurements. In the following,
we discuss their characteristics, in general and with respect to their application to studies with
outcomes truncated by death.

Complete case analysis is the simplest method. In general, complete case analysis does not
conform with the intention-to-treat (ITT) principle, since only a subset of the randomized pa-
tients is analyzed. The restriction to a subset of the randomized patients also decreases the
precision of the treatment effect estimate and the power of the study. Moreover, it is based on
a post-randomization event, the observation of the outcome, and thus undermines the benefit
of the randomization. If the missingness of the outcome is directly or indirectly related to the
baseline covariates as well as to the treatment group, a baseline imbalance among individuals
with observed outcomes is created, which may result in an incorrect estimate of treatment effect
(Groenwold et al., 2014). The dependence of the outcome missingness on the baseline covariates
is usually the case when the post-randomization event is survival, as in the case of studies with
outcomes truncated by death. Thus, if outcomes truncated by death are dependent on treatment,
the complete case analysis results are biased. For example, if the treatment benefits survival of
less healthy individuals, then patients who survive in the placebo group may be healthier than
the patients who survive in the treatment group (Colantuoni et al., 2018) and the treatment
effect may be underestimated. However, if survival is not affected by the treatment, then the
randomization is preserved and complete case analysis estimates the same quantity as the SACE
approach, as no DL and LD patients (only LL and DD) are present.
Multiple imputation is an ideal method to deal with missing data, especially when their amount
is extensive, since all the randomized patients can be analyzed, the randomization is preserved
and the analysis conforms with the ITT principle. The uncertainty associated with the missing
data can be taken into account using Rubin’s rules (Rubin, 1987) to combine the estimates from
the imputed data sets. However, when applied to analyze outcomes truncated by death, creates
data that do not exist. These are data that could not be observed and are not defined, which is
what makes this method inappropriate in our context.
Single imputation analysis is frequently used to deal with missing data, and imputation of the
“best” or “worst” outcome is often used as sensitivity analysis in RCTs (Sterne et al., 2009). Like
multiple imputation, it preserves the initial randomization and conforms with the ITT principle,
but, differently from multiple imputation, it fails to account for the uncertainty about the miss-
ing values and thus the estimated standard errors are often too small.
The SACE approach prevents the potential distortion of results of complete case analysis and
is particularly appropriate in case of truncation by death. In fact, in this case, it may be more
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6 CHAPTER 2. METHODS

clinically relevant than the previously discussed methods as it compares patients of the same
type (LL vs. LL, instead of LL + DL vs. LL + DL as complete case analysis) and does not
assume that the dead patients could still be alive (as multiple imputation and single imputation
do). Moreover, it estimates a causal effect, since it compares potential outcomes on a common
subset of units. The subgroup of patients analyzed is defined at the baseline and it is not affected
by post-randomization events, therefore the SACE approach preserves the initial randomization.
However, since a subset of the randomized patients is analyzed, it does not conform with the
ITT principle and loses some precision and power compared to the other methods. Also, the
SACE estimate is not identifiable from the data alone and requires strong assumptions that are
not testable on the data. On the other hand, some investigators have argued that the use of
relatively strong assumptions to identify the principal strata are justifiable (Kurland et al., 2009).
The characteristics of the discussed statistical methods, when used to analyze studies with out-
comes truncated by death, are summarized in Table 2.1.

Table 2.1: Summary of the characteristics of some methods when used to analyze
RCTs with outcomes truncated by death.

Complete case Multiple imputation Single imputation SACE
analysis analysis analysis approach

+ Simple + Randomization + Randomization + Randomization
- Randomization preserved preserved preserved
may not be + Conforms with + Conforms with + Causal effect
preserved ITT principle ITT principle - Does not conform

- Does not conform - Creates data that - Creates data that with ITT principle
with ITT principle could not be could not be - Less precision

- Less precision observed observed (without and power
and power accounting for - Non-testable

their uncertainty) assumptions

2.2 Hayden’s method

In the following, the derivation of the SACE estimator made by Hayden et al. (2005) is shown.
Before going into the details of the method, we briefly introduce the setting considered and some
notation.

Let us assume that we want to compare the effect of two treatments, denoted by z = 0, 1, on
an outcome of interest, denoted by Y , which is assessed at a later time. Suppose that patients
are randomly assigned to receive one of the treatments. For patients on treatment z:

• S(z) is the indicator of survival up to follow-up assessment under treatment z;

• Y (z) is the outcome of interest under treatment z assessed at follow-up, defined and ob-
servable only if S(z) = 1;

• S(1− z) is the indicator of survival up to follow-up assessment under treatment 1− z, not
observable;

• Y (1 − z) is the outcome of interest under treatment 1 − z assessed at follow-up, defined
only if S(1− z) = 1, not observable.

The SACE estimand is the outcome difference in the patients who would have survived under
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both treatments. Using the notation above, it can be expressed as

µ =
E{[Y (1)− Y (0)]S(0)S(1)}

E{S(0)S(1)}

=
E{Y (1)S(1)S(0)}

E{S(1)S(0)}
− E{Y (0)S(0)S(1)}

E{S(0)S(1)}
,

(2.1)

where S(0)S(1) = 1 if and only if a patient would have survived under both treatments, and is
0 otherwise. The quantity Y (z)S(z) is always defined: its value is equal to the value of Y (z) if
S(z) = 1 and is equal to 0 if S(z) = 0.
However, since each patient receives only one treatment, we only know if the patient survived
under that treatment and we do not know whether he would have survived under the other treat-
ment. Therefore, we can not observe the joint distributions in the numerator and denominator
of (2.1) and we can not directly identify µ from the data. Hayden et al. (2005) make use of the
baseline covariates, denoted by X, and make the following independence assumptions, which are
referred as explainable nonrandom survival:

A1) S(z) ⊥⊥ S(1− z) | X

A2) S(z) ⊥⊥ Y (1− z) | X, {S(1− z) = 1}

The first assumption states that, conditional on the baseline covariates, the survival status of
subjects under treatment z is independent of their survival status under treatment 1 − z. The
second assumption states that, conditional on surviving when assigned to treatment 1− z, and
on the baseline covariates, the survival status of subjects under treatment z is independent of
their outcome under treatment 1− z. These assumptions essentially mean that no unmeasured
confounders are present and, unfortunately, are not testable on the data. Thus, in order to make
them more plausible, one should collect and use baseline covariates which are strongly predictive
for survival, and ideally incorporate an analysis of sensitivity of results to departures from A1)
and A2).
Let p(z) = E{S(z) |X}. Then, if A1) and A2) hold, we have

E{Y (z)S(z)S(1− z) |X} = E{Y (z)S(z) |X}E{S(1− z) |X}
= E{Y (z)S(z) |X} p(1− z)
= E{Y (z)S(z) p(1− z) |X}.

(2.2)

At this point, the idea to estimate the SACE is simple. We want to compute the outcome mean
in those patients assigned to treatment 1 who survived and who we think are quite likely to
have survived had they been assigned to treatment 0, and the outcome mean in those patients
assigned to treatment 0 who survived and who we think are quite likely to have survived had
they been assigned to treatment 1.
To estimate the survival probability of each subject under the treatment not assigned, we fit two
logistic regression models for survival depending on the baseline covariates: one to the patients
assigned to treatment 1 and the other to the patients assigned to treatment 0. The model fitted
to patients assigned to treatment 1 is used to estimate the survival probability under treatment 1
of patients assigned to treatment 0. Similarly, the model fitted to patients assigned to treatment
0 is used to estimate the survival probability under treatment 0 of patients assigned to treatment
1.
Finally, the outcome mean under treatment 1 is computed in patients who survived under treat-
ment 1, weighting their outcome by their survival probability under treatment 0. Similarly,
the outcome mean under treatment 0 is computed in patients who survived under treatment 0,
weighting their outcome by their survival probability under treatment 1.
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Formally, from (2.2), conditional on X, and with a consistent estimator p̂(z) of p(z) for z = 0, 1,
a SACE estimator is given by the difference in the following weighted means:

µ̂ =

∑
i
Yi(1)Si(1)p̂i(0)∑
i
Si(1)p̂i(0)

−

∑
j
Yj(0)Sj(0)p̂j(1)∑
j
Sj(0)p̂j(1)

, (2.3)

where i indexes over patients assigned to arm z = 1 and j indexes over patients assigned to arm
z = 0.
The variance of (2.3) is calculated using an asymptotic approximation to p̂i(z) and by ap-
plication of the Delta method to the variance-covariance matrix of (µ1n, µ1d, µ0n, µ0d), where
µzn = E{Y (z)S(z)S(1− z)}, µzd = E{S(z)S(1− z)}, and thus µ = µ1n

µ1d
− µ0n

µ0d
.

In particular, the following expressions for (µ1n, µ1d, µ0n, µ0d) are given:

µ1n =

n1∑
i=1

Si(1)Yi(1)pi(0) +

n0∑
i=1

{
n1∑
k=1

Sk(1)Yk(1)pk(0)(1− pk(0))XT
k

}
× I−1

1 Xi(Si(0)− pi(0))

µ1d =

n1∑
i=1

Si(1)pi(0) +

n0∑
i=1

{
n1∑
k=1

Sk(1)pk(0)(1− pk(0))XT
k

}
× I−1

1 Xi(Si(0)− pi(0))

µ0n =

n1∑
i=1

{
n0∑
k=1

Sk(0)Yk(0)pk(1)(1− pk(1))XT
k

}
× I−1

0 Xi(Si(1)− pi(1)) +

n0∑
i=1

Si(0)Yi(0)pi(1)

µ0d =

n1∑
i=1

{
n0∑
k=1

Sk(0)pk(1)(1− pk(1))XT
k

}
× I−1

0 Xi(Si(1)− pi(1)) +

n0∑
i=1

Si(0)pi(1),

where XT
k is the k-th row of the design matrix XT , and I−1

z is the variance-covariance matrix of
the coefficients of the logistic model fit for treatment z. Each term is a sum of independent and
identically distributed random variables, the first being a summation over patients in treatment
group 1, the second over patients in treatment group 0.
pi(z) is replaced by p̂i(z) for z = 0, 1 and consequently expressions for (µ̂1n, µ̂1d, µ̂0n, µ̂0d) are
obtained. Then the n1 × 4 matrix C1 is constructed, with the first summands in each of these
expressions as columns. The n0 × 4 matrix C0 is constructed with the second summands of the
expressions as columns. Let Ez be the nz-column vector of ones and 1z the nz × nz identity
matrix for z = 0, 1. Then the variance-covariance matrix of (µ1n, µ1d, µ0n, µ0d) can be estimated
by

Σ = CT
1 (11 −E1E

T
1 /n1)C1 + CT

0 (10 −E0E
T
0 /n0)C0. (2.4)

The variance of (2.3) is then calculated from Σ and from the Jacobian matrix of h(µ1n, µ1d, µ0n, µ0d) =
µ1n
µ1d
− µ0n

µ0d
evaluated at (µ̂1n, µ̂1d, µ̂0n, µ̂0d), using the multivariate Delta method (Held and Sa-

banés Bové, 2014).
Alternatively, the variance of (2.3) can be calculated by bootstrap.
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2.3 Implementation of Hayden’s method in R

In this section, we describe the implementation of Hayden’s method in the R function saceEstimator().
For completeness, we start by decribing the functions resWithCI() and flac() that are used
in saceEstimator(). The corresponding R code can be found in Appendix A.2, while software
information is available in Appendix A.1.

The function resWithCI() simply computes the desired confidence interval from the given
estimate and standard error, and returns it with the other results as a list. The confidence inter-
val is computed assuming normality of the estimate unless some degrees of freedom are specified.
In that case, the quantile of the t-distribution is used. The significance level is assumed to be
0.05 unless otherwise specified. This function is used at the end of saceEstimator(), after that
the SACE estimate, its standard error and the effective sample size analyzed are obtained.
The function flac() is provided in the supplementary material of Puhr et al. (2017) and com-
putes Firth’s logistic regression with added covariate (FLAC) from a given outcome vector and
a matrix of covariate values. We added the last three lines of code to compute and extract the
variance-covariance matrix for the estimation of the SACE variance. flac is needed in case of
failure of the logistic regression models in saceEstimator() due to strata with few or no events.
In fact, Firth’s penalization (Firth, 1993) reduces the bias from the small-sample estimates in
logistic regression and prevents infinite coefficients to occur (Heinze and Schemper, 2002). The
“added covariate” correction removes the bias from the prediction probabilities created by Firth’s
logistic regression, introducing some bias in the effect estimates, which are however compensated
by a decrease in the mean square error (Puhr et al., 2017). The package logistf (Heinze and
Ploner, 2018) is required to fit the logistic regression model with Firth’s correction.
The saceEstimator() function takes as argument a data set dat, the name Z of the treatment
variable in dat, the names X of the baselines covariates in dat, the name Y of the outcome variable
in dat, the name S of the survival variable in dat, the significance level alpha (by default set
to 0.05), the degrees of freedom (by default set to NA) and the logical variable flac_corr (by
default set to FALSE), which allows to choose whether to use the FLAC correction or not. The
data types and the missing values are first checked. In particular, the columns of dat named Z,
Y, and S must be vectors. The columns named Z, X and S cannot have missing values and the
column named Y can have a missing value only when the respective value in the column named
S is 0. Then, the computation of the SACE estimate and of the SACE variance as proposed by
Hayden et al. (2005) begins. dat is divided into two data sets: i, containing the patients assigned
to treatment arm 1, and j, containing the patients assigned to treatment arm 0. Depending on
whether flac_corr is set to TRUE or FALSE, a logistic regression model or a FLAC model is fitted
for survival separately to i and j. The model fitted to i is then used to predict the survival of
the patients in j (who actually received treatment 0) under treatment 1. Similarly, the model
fitted to j is used to predict the survival of the patients in i (who actually received treatment
1) under treatment 0. The obtained survival probabilities pj.z1 and pi.z0 are used for the
calculation of the SACE estimate mu_sace=mu1-mu0. The sum of the denominators of mu1 and
mu0 is considered the effective sample size analyzed. For the computation of the SACE variance,
the variance-covariance matrices of i and j are extracted from the logistic regression models or
from the FLAC models, depending on the value assigned to flac_corr. The variance-covariance
matrices are needed for the computation of the matrices C0 and C1, together with the design
matrices of i and j, and the fitted values pi.z1 and pj.z0, as illustrated in Section 2.2. Once C0
and C1 are obtained, the variance-covariance matrix is easily estimated Sigma, as shown in (2.4).
Finally, we compute the Jacobian matrix of the function h(x)=x[1]/x[2]-x[3]/x[4] at (mu1n,
mu1d, mu0n, mu0d). This is done making use of the package numDeriv. The SACE variance is
then obtained applying the multivariate Delta method.
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2.4 Implementation of multiple imputation in R

To perform the multiple imputation analysis, we wrote the R function multipleImputation(),
which can be found in Appendix A.2.4.

The implemented function takes as arguments a data set dat, the name Y of the outcome
variable in dat, the name Z of the treatment variable in dat, the number of imputations m (by
default set to 5), the name(s) not_predictor of the variable(s) to remove from the predictor
matrix (by default set to NA), the confidence level alpha (by default set to 0.05) and the degrees
of freedom df (by default set to NA). We used the package mice (Van Buuren and Groothuis-
Oudshoorn, 2011) to generate multiple imputations, to analyze the imputed data and to pool
the analysis results. For the variable imputation, we used the pmm method, which implements
predictive mean matching (Little, 1988) and is the default method for numeric variables. The
results are returned making use of the function resWithCI() described in the previous section.

2.5 Methods for the Epo trial

In this section, we present the setting and the methods for the Epo trial. These are based on
the original publication (Natalucci et al., 2016) and on the corresponding study protocol.

Figure 2.1: Infant born four months too early, at 23 weeks of gestation.

The Epo trial was a randomized, double-blind, placebo-controlled, multi-center trial on the
effect of early prophylactic high-dose rhEPO in very preterm infants (Figure 2.1) on neurodevel-
opment at 2 years of age.
Preterm infants born between 26 weeks 0 days and 31 weeks 6 days gestation were eligible for
enrollment within the first 3 hours after birth, when informed parental consent was obtained.
Exclusion criteria were a genetically defined syndrome, a severe congenital malformation ad-
versely affecting life expectancy or neurodevelopment, severe intraventricular hemorrhage before
randomization, and a priori palliative care.
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Patients were recruited from three university hospitals (Basel, Geneva and Zurich) and two
district hospitals (Aarau and Chur) between 2005 and 2012, and the neurodevelopmental assess-
ments at 2 years of age were completed in 2014.
The following baseline characteristics were measured in all patients before the treatment admin-
istration: gestational age (in days), weight at birth (in g), head circumference at birth (in cm),
sex and Apgar score at 5 minutes (categorical, 11 categories from 0 to 10), which is a method
to quickly summarize the health of a newborn 5 minutes after birth. For easier reading, in the
following we will refer to the baseline characteristics simply as gestational age, weight, head
circumference, sex and Apgar score, respectively.
Participants were randomly assigned to receive either rhEPO or placebo intravenously within 3
hours, at 12 to 18 hours, and at 36 to 42 hours after birth. A single dose of the active treatment
consisted of 25 µg (3000 IU) rhEPO per kg of body weight dissolved in 1 mL distilled water.
Similarly, the placebo dose consisted of 1 mL of isotonic saline (NaCl, 0.9%) per kg of body
weight.
The primary outcome was cognitive development, assessed with the Mental Development Index
(MDI, higher values indicate better function) of the Bayley Scales of Infant Development II
(BSID II) at 2 years corrected age, i.e. 2 years after term (gestation week 40) equivalent age.
The flow of participants is illustrated in Figure 2.2 (for a more detailed diagram, see Natalucci
et al., 2016). 450 newborns were randomized to either rhEPO or placebo. 57 of these did not
receive the randomized treatment but were analyzed as they were intended to be treated. Two
infants were excluded after randomization as they were found to meet the exclusion criteria, 38
dropped out of the study and 20 were excluded because they underwent another developmental
test. Of the patients remaining in the study (204 of the rhEPO group and 186 of the placebo
group), 13 (6.4%) of the rhEPO group and 12 (6.5%) of the placebo group died before follow-up
assessment. The outcome of interest was collected at 2 years of age from 191 patients in the
rhEPO group and from 174 patients in the placebo group.

Figure 2.2: Participant flow in the Epo trial.

In the original publication, losses to follow-up were ignored. The unadjusted treatment effect
was determined using a linear regression model (equivalent to an unpaired t-test). A post hoc
sensitivity analysis including the infants who died before follow-up was performed by imputing
the worst observed outcome.
We reproduced the complete case analysis and the single imputation analysis reported in Na-
talucci et al. (2016). In addition, we analyzed the Epo trial using the implemented SACE
estimator. We included all the baseline variables (gestational age, weight, head circumference,



12 CHAPTER 2. METHODS

Table 2.2: Overview of the investigated scenarios.

Scenario Treatment effect on outcome Treatment effect on survival
A positive (MDI increased) positive (survival probability higher)
B positive (MDI increased) negative (survival probability lower)
C positive (MDI increased) no effect
D negative (MDI decreased) positive (survival probability higher)
E negative (MDI decreased) negative (survival probability lower)
F negative (MDI decreased) no effect
G no effect positive (survival probability higher)
H no effect negative (survival probability lower)
I no effect no effect

Apgar score and sex) as arguments in saceEstimator() and thus as predictors of survival. We
did not make use of the FLAC correction, since we did not expect failures with continuous
covariates and we preferred to avoid the introduction of bias from FLAC.

2.6 Methods for the simulation study

We wrote a protocol of the simulation study in order to improve the quality of the simulation
study itself. In fact, although often neglected by statisticians (Morris et al., 2019), the protocol
of a simulation study is as important as the protocol of a clinical trial, since it contributes to
provide well-conducted and credible research. Writing a protocol forces one to think more deeply
about the objectives of the study, to anticipate the possible obstacles that may be encountered, as
well as to think in advance about possible solutions to the problems that may occur. In our case,
before starting the actual simulation study, many questions arose about how the study should
be conducted, analyzed and reported. Of course, it takes time to focus on all these questions
without even seeing the code or the results, but this will be recovered in the simulation process,
which will be more fluid and less prone to errors. In fact, a well-designed protocol prevents
wasting time during the actual simulation, possible post-hoc changes and the repetition of the
simulation several times due to bad planning. For our protocol, which is reported in Appendix
A.4, we used the structure suggested by Burton et al. (2006).
The aim of our simulation study was to evaluate the performance of complete case analysis,
Hayden’s method and multiple imputation analysis in the estimation of a treatment effect from
an RCT with a relevant proportion of outcomes truncated by death. The performance of the
methods was evaluated under different scenarios in terms of bias, mean square error and coverage.
For each scenario, we simulated 1300 small data sets (each containing 500 observations), using
the Epo trial and the correlation structure of its variables as motivating example. For simplicity,
only three baseline covariates were simulated (gestational age, head circumference and Apgar
score). These were selected due to their importance for survival. All the data sets were analyzed
by the three methods.
Since the methods estimate different quantities, the estimated treatment effects were compared
with the “true values” of their respective estimands θ1 (treatment effect on survivors), θ2 (survivor
average causal effect) and θ3 (treatment effect on all patients, as if no one had died), which were
obtained from the simulation of two large data sets (each containing 1’000’000 observations) for
each scenario.
The investigated scenarios, in which we modeled different treatment effects on survival and on
the outcome, are shown in Table 2.2. In particular, we modeled treatment effects on the outcome
of -5, 0 or 5, and treatment effects on survival of −log(2), 0 or log(2) (corresponding to odds
ratios of 0.5, 1 and 2).
As first step of the simulation study, we generated a matrix containing the seeds for all the
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simulations. Each column of the matrix contained the seeds for one scenario. The first two rows
contained the seeds for the large data sets, the others contained seeds for the small data sets.
As explained in the study protocol, the seeds for the small data sets were separated at least by
their sample size, namely 500, and were separated from the seeds for the large data sets at least
by the sample size of the large data sets, namely 1’000’000. The R code used to generate the
matrix with the seeds is displayed in Appendix A.2.5.
The R function created for the simulation of the data sets is shown in Appendix A.2.6. The
necessary variable values were extracted from the Epo trial data and were included as function’s
arguments.
Each data set was analyzed immediately after its simulation. For the analysis with Hayden’s
method, we used the saceEstimator() function described in Section 2.3, including gestational
age, head circumference and Apgar score as baseline covariates. As for the analysis of the Epo
trial, the FLAC correction was not needed. For the multiple imputation analysis, we used the
multipleImputation() function described in Section 2.4, removing the survival variable from
the predictor matrix since in our case it was perfectly associated with the missingness of the
outcome and it was irrelevant as predictor of the outcome value. We used the default number
of multiple imputations of mice, namely 5, since we performed many simulations and a larger
number of imputed data sets was not necessary.
The seed, the mortality, the effective sample size analyzed by each method, and the results of the
three analyses were stored after each simulation. In this way, the data sets could be reproduced
and the storage of the whole data sets was not required.

2.6.1 Deviations from the protocol

The simulation study was not fully compliant with the protocol. Deviations from the protocol
include the modeled treatment effects on survival, which we planned to be odds ratios of 0.9,
1 and 1.1 (depending on scenario), and which we substituted with odds ratios of 0.5, 1 and
2, respectively. In fact, the planned treatment effect was too weak to sufficiently differentiate
between the performance of complete case analysis and Hayden’s method.
An unexpected complication occurred in the estimation of the SACE variance from the large
data sets (n =1’000’000). This was not achieved by the implemented saceEstimator(), since it
involved the multiplication of 500’000×500’000-matrices and we could not obtain the amount of
memory required. The SACE standard errors were estimated exploiting the “square-root law”,
which states that the accuracy of an estimator is inversely proportional to the square root of
the sample size, and the following idea from Heyard and Held (2019): since SE(n) = c ·

√
1/n,

we can estimate c using a weighted linear regression with outcome SE(n), explanatory variable√
1/n and weight equal to n (lm(se ∼ sqrt(1/n), weight=n) in R).

Moreover, in order to increase their precision, we estimated the true values of the estimands from
two data sets of n =1’000’000 instead of from one. The two estimates were combined into one
with the use of formulas from fixed effects meta-analysis.
Finally, the UZH math server for the simulation of the large data sets was not necessary and was
not used.
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Chapter 3

Results

3.1 Analysis of the Epo trial

In this section, the results of the Epo trial analysis are presented. After a descriptive analysis
of the data, the treatment effect estimate provided by SACE approach is compared with those
obtained by complete case analysis and by single imputation analysis.

Ideally, we would have analyzed all the 450 randomized patients, using multiple imputation for
the “observable” missing values and then applying Hayden’s method because of the 25 outcomes
truncated by death. However, in order to obtain a SACE estimate comparable with the estimates
reported in Natalucci et al. (2016), the randomized patients who survived but were lost to follow-
up were not analyzed. Consequently, the patients analyzed were 390: 191 survivors from the
rhEPO group, 174 survivors from the placebo group, 13 non-survivors from the rhEPO group
and 12 non-survivors from the placebo group.
The measure of head circumference was missing for 3 patients and that of Apgar score for 6
patients. For simplicity, these missing values were imputed using the mean of the observed
measurements (in the case of Apgar score the mean was rounded to the closest integer).
Table 3.1 shows the baseline characteristics (after the imputation of the 9 missing values) for
each treatment group.

Placebo rhEPO
n 186 204

Gestational age, days (mean (SD)) 204.10 (11.83) 203.95 (11.54)
Weight at birth, g (mean (SD)) 1197.77 (363.68) 1199.34 (319.67)

Head circumference at birth, cm (mean (SD)) 26.80 (2.35) 26.84 (2.02)
Sex = male (%) 111 (59.7) 122 (59.8)

Apgar score at 5 minutes (median [IQR]) 8.00 [6.00, 9.00] 8.00 [7.00, 9.00]

Table 3.1: Baseline characteristics in the treatment groups of the Epo trial.

The baseline characteristics were similar in the two groups. The distributions of gestational
age, weight and head circumference were normally shaped, while Apgar score had a left-skewed
distribution. The outcome of interest, MDI, was also normally distributed.
Figure 3.1 shows the association of survival up to 2 years of age with the treatment and the
baseline variables. From the figure it can be seen that the proportion of survivors in the Epo
trial was similar in the two treatment groups, as well as in male and female newborns. In contrast,
gestational age, weight and head circumference had higher median values in the patients who
survived. The distribution of Apgar score at 5 minutes also looked different in survivors and
non-survivors, but too few data were present for non-survivors. This analysis suggested that
gestational age, weight, head circumference and Apgar score could be predictive of survival up

15
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to 2 years of age.

Figure 3.1: Association of survival up to 2 years of age with the assigned treatment
and the baseline variables in the Epo trial.
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Figure 3.2: Association of the outcome of interest (MDI) with the assigned treatment
and the baseline variables in the Epo trial. As the outcome was truncated by death for
25 patients, only 365 observations were available.
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Figure 3.2 shows the association of the outcome of interest, MDI, with the treatment and
the baseline variables. From the figure, no correlation between MDI and gestational age, head
circumference, weight or Apgar score was visible. The distribution of MDI was similar in the
two treatment groups, as well as in male and female newborns.

The treatment effect estimates resulting from the three analyses performed are displayed in
Figure 3.3. With complete case analysis, a treatment effect on survivors of -1.02 (95% CI from
-4.51 to 2.47) was obtained. With Hayden’s estimator, a survivor average causal effect of -1.37
(95% CI from -4.83 to 2.09) was found. With the imputation of the worst observed outcome
value to all the missing outcome measurements, a treatment effect of -0.92 (95% CI from -4.86
to 3.02) was estimated. The results derived by complete case analysis and by single imputation
correspond to those reported in the original publication.

Figure 3.3: Estimates of the treatment effect on MDI at 2 years of age, derived by
three different methods.

The effective sample size of patients analyzed was 365 for complete case analysis (the patients
that survived up to 2 years of age), 339.6 for the analysis by Hayden’s method (the sum of the
survival probabilities under the treatment not assigned of patients who survived up to 2 years of
age), and 390 for the single imputation analysis (the total number of patients).
From Figure 3.3 it can be seen that the estimates of the treatment effect on MDI provided by the
three methods were similar. This was due to the fact that mortality in the Epo trial was low and
similar in the treatment groups (6.4% in the rhEPO group, 6.5% in the placebo group; see also
Figure 3.1, top left panel). As already discussed, when the treatment does not affect survival,
complete case analysis and Hayden’s method are expected to yield similar results. Moreover,
when the overall mortality is low, there is a small number of outcomes truncated by death and
the difference between the results provided by different methods to deal with them is obviously
small.
It can also be noted that the variance of the single imputation estimate was larger than the
others. This occurred because we imputed an extreme value to the missing data, which therefore
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increased the deviation from the mean outcome value.

3.2 Simulation study

3.2.1 Comparison between simulated data and Epo trial data

Figure 3.4 shows the distribution of the variables in a simulated data set (of sample size 500) and
in the Epo trial data set (of sample size 390). The simulated data set was the first simulation of
scenario I, where no treatment effects on the outcome and on survival were modeled (and thus
seems the scenario most similar to the reality of the Epo trial). The distribution of gestational
age in the Epo trial data was truncated due to the inclusion criteria. We relaxed the closeness
to the Epo trial, allowing also slightly more extreme measures.

3.2.2 Check of simulation results

Once all simulations and analyses were performed, the stored results were explored. No missing
values were present and no failures occurred. For each scenario and each method, the distributions
of the treatment effect estimates and of their standard errors were visualized (Figures A.1 and
A.2). No outliers or abnormalities were found.

3.2.3 True values of the estimands

Table 3.2 recalls the treatment effects modeled on the outcome (“T on O”) and on survival (“T
on S”) for each investigated scenario, and shows the true values of the estimands θ1 (treatment
effect on survivors), θ2 (survivor average causal effect) and θ3 (treatment effect on all patients,
as if no one had died) estimated from the large simulated data sets. Since the true values were
estimated from two data sets of sample size 1’000’000, the standard errors are reported.
We expected the true value of θ3 to be always the closest to the treatment effect modeled on
the outcome, but it was not always the case. This may be due to the weak association of
the outcome with the three covariates we used (see Figure 3.2). Ideally, for a proper multiple
imputation analysis, we should have simulated other covariates than those important for survival,
i.e. the variables associated with the outcome or potentially all the variables collected.
The true values of θ2 and θ3 were close in all scenarios, even though the estimands are different
quantities, while the true value of θ1 differed depending on the treatment effect modeled on
survival. When treatment had no effect on survival (scenarios C, F and I), all the true values of
the estimands were close.

Scenario T on O T on S θ1 (SE) θ2 (SE) θ3 (SE)
A 5 log2 4.901 (0.026) 5.011 (0.026) 5.024 (0.026)
B 5 -log2 5.124 (0.026) 5.008 (0.026) 5.014 (0.027)
C 5 0 5.008 (0.026) 5.008 (0.026) 5.015 (0.026)
D -5 log2 -5.091 (0.026) -4.976 (0.026) -4.986 (0.028)
E -5 -log2 -4.845 (0.026) -4.957 (0.027) -4.955 (0.026)
F -5 0 -5.007 (0.026) -5.009 (0.026) -5.007 (0.026)
G 0 log2 -0.106 (0.026) 0.009 (0.026) 0.006 (0.025)
H 0 -log2 0.132 (0.026) 0.017 (0.026) 0.013 (0.026)
I 0 0 0.007 (0.026) -0.002 (0.026) 0.013 (0.027)

Table 3.2: Treatment effect modeled on the outcome and on survival, and the true
values of the estimands θ1 (treatment effect on survivors), θ2 (survivor average causal
effect) and θ3 (treatment effect on all patients, as if no one had died) estimated from
the large simulated data sets.
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Figure 3.4: Distribution of the variables in a simulated data set from scenario I
(n = 500, left column) and in the Epo trial data set (n = 390, right column).



3.2. SIMULATION STUDY 21

3.2.4 Summary measures

Figure 3.5 shows the averages of the estimates provided by complete case analysis, Hayden’s
method and multiple imputation analysis, with the respective 95% confidence intervals, and the
true values of the estimands θ1, θ2 and θ3. It should be noted that, although the true values are
represented as point estimates, some uncertainty about them is present (see Table 3.2).
In scenarios A, D and G, where treatment had a positive effect on survival, complete case analysis
always resulted in more negative estimates than the SACE and multiple imputation estimates.
More precisely, complete case analysis underestimated the positive treatment effect on the out-
come (scenario A), overestimated the negative treatment effect (scenario D) and estimated a
small negative effect when there was actually no effect (scenario G). This is coherent with the
hypothesis that, since treatment increased survival, in the treatment group even less healthy
patients survived, resulting in a placebo group with healthier patients than the treatment group.
Consequently, complete case analysis estimated the treatment effect from non-comparable groups.
In contrast, in scenarios B, E and H, where treatment had a negative effect on survival, complete
case analysis always resulted in more positive estimates than the SACE and multiple imputation
estimates. More precisely, complete case analysis overestimated the positive treatment effect on
the outcome (scenario B), underestimated the negative treatment effect (scenario E) and esti-
mated a small positive effect when there was actually no effect (scenario H). This is coherent with
the hypothesis that, since treatment decreased survival, in the treatment group the less healthy
patients died, resulting in a treatment group with healthier patients than the placebo group.
Also in this case, complete case analysis estimated the treatment effect from non-comparable
groups.
As expected, in scenarios C, F and I, where treatment had no effect on survival, complete case
analysis and Hayden’s methods yielded similar results. In particular, in scenario I, where no
treatment effects on outcome and on survival were present, the three methods estimated very
similar treatment effects, even in presence of a significant proportion of outcomes truncated by
death. This is coherent with the observation that, since treatment did not affect survival and
the two groups had similar baseline characteristics due to randomization, the survivors also had
similar characteristics and the groups remained comparable.
In summary, the complete case analysis estimates were very sensitive to changes in the treatment
effect on survival, regardless of the treatment effect on the outcome, while the other methods
were fairly stable.
The numerical summary measures (average of the estimates, empirical standard error, average of
the standard errors), calculated for each scenario and each method, are displayed in Table A.2.

3.2.5 Performance measures

The performance of the methods was evaluated in terms of bias, MSE and coverage.

Bias

The bias of the three methods with respect to the three estimands θ1, θ2 and θ3, with the 95%
Monte Carlo confidence interval, is shown in Figure 3.6.
The methods were never found to be biased with respect to their targeted estimand, with the
exception of multiple imputation in scenario A, which was biased with respect to θ3. The reason
may be, as already observed in Section 3.2.3, the weak association of the outcome with the three
covariates we used, which did not allow multiple imputation to perform well.
As seen in the previous sections, in scenarios A, B, D, E, G and H, where a treatment effect on
survival different from zero was modeled, the complete case analysis estimands and estimates
substantially differed from those of Hayden’s method and multiple imputation. In Figure 3.6, it
is clearly visible that bias arose in these scenarios. More precisely, in scenarios A, B, D, G and
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H, complete case analysis was biased with respect to θ2 and θ3, while in scenarios B, E, G and H,
Hayden’s method and multiple imputation were biased with respect to θ1. Multiple imputation
was also biased with respect to θ1 in scenario D and with respect to θ2 in scenario A.
In scenarios C, F and I, where treatment had no effect on survival, no method was found to be
biased with respect to any estimand.
The numerical biases, calculated for each scenario and each method, are displayed in Table A.3.

MSE

Sometimes it is not possible to find an estimator that is both unbiased and has minimal variance.
The MSE is a useful measure for comparative purposes as incorporates both measures. The MSE
of the three methods with respect to the three estimands θ1, θ2 and θ3 is shown in Figure 3.7,
with the 95% Monte Carlo confidence interval.
From Figure 3.7, it can be seen that the MSE of the methods depended mainly on the scenario
and less on the targeted estimand. This happened because, since the bias was small in magnitude,
the variance of the estimate played a much larger role in the determination of the MSE. In fact,
the MSEs were similar to the squared empirical standard errors shown in Table A.2.
Interestingly, in terms of MSE, all methods performed at worst in scenario A, where positive
treatment effects on the outcome and on survival were modeled. In the same scenario, the
treatment effect estimates provided by the three methods showed larger empirical standard errors
(Table A.2).
The MSE of complete case analysis was always slightly smaller than that of Hayden’s method.
This may be caused by the fact that the effective sample size analyzed by complete case analysis
was always greater than or equal to that analyzed by Hayden’s method, and thus the variance
of the complete case analysis estimates was always less than or equal to the variance of the
Hayden’s method estimates.
The numerical MSEs, calculated for each scenario and each method, are displayed in Table A.4.

Coverage

The coverage of the three methods with respect to the three estimands θ1, θ2 and θ3 is shown in
Figure 3.8, with the 95% Monte Carlo confidence interval.
The nominal coverage was achieved in most cases. However, multiple imputation showed overcov-
erage with respect to all estimands in scenario G, and complete case analysis showed overcoverage
with respect to all estimands in scenario I. In scenario I, some tendency to overcoverage also by
the other methods was observable, even though their Monte Carlo confidence intervals contained
the nominal coverage of 95%. Overcoverage indicates that the results are too conservative, i.e.
that more simulations would not find a significant result when this is present (Burton et al.,
2006).
The numerical coverages, calculated for each scenario and each method, are displayed in Table
A.5.
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Figure 3.5: Averages of the treatment effect estimates (round points) provided by
three methods, with 95% confidence intervals. Diamonds represent the true values of
the respective estimands. The text “TposO”, “TnegO” or “TnoO” indicates whether the
treatment effect modeled on the outcome in the given scenario was positive, negative
or null, respectively. “TposS”, “TnegS” or “TnoS” indicates whether the treatment effect
modeled on survival in the given scenario was positive, negative or null. Note the
different x-axis scales for the three blocks of scenarios (A-C, D-F, G-I).
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Figure 3.6: Bias of three methods with respect to θ1 (treatment effect on survivors),
θ2 (survivor average causal effect) and θ3 (treatment effect on all patients), with 95%
Monte Carlo confidence interval. The dashed lines indicate no bias. In each subpanel,
the estimate of the method that targets the column estimand is made thicker. “TposO”,
“TnegO” or “TnoO” indicates whether the treatment effect modeled on the outcome was
positive, negative or null. “TposS”, “TnegS” or “TnoS” indicates whether the treatment
effect modeled on survival was positive, negative or null.
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Figure 3.7: MSE of three methods with respect to θ1 (treatment effect on survivors),
θ2 (survivor average causal effect) and θ3 (treatment effect on all patients), with 95%
Monte Carlo confidence interval. In each subpanel, the estimate of the method that
targets the column estimand is made thicker. “TposO”, “TnegO” or “TnoO” indicates
whether the treatment effect modeled on the outcome was positive, negative or null.
“TposS”, “TnegS” or “TnoS” indicates whether the treatment effect modeled on survival
was positive, negative or null.
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Figure 3.8: Coverage of three methods with respect to θ1 (treatment effect on sur-
vivors), θ2 (survivor average causal effect) and θ3 (treatment effect on all patients), with
95% Monte Carlo confidence interval. The dashed lines indicate the nominal coverage.
In each subpanel, the estimate of the method that targets the column estimand is made
thicker. “TposO”, “TnegO” or “TnoO” indicates whether the treatment effect modeled
on the outcome was positive, negative or null. “TposS”, “TnegS” or “TnoS” indicates
whether the treatment effect modeled on survival was positive, negative or null.
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Discussion

This thesis aimed to implement Hayden’s SACE estimator in R, to use it to reanalyze the Epo
trial, and to compare it with complete case analysis and multiple imputation analysis under
different scenarios through a simulation study.
Our findings from the Epo trial analysis confirmed those reported in Natalucci et al. (2016).
Among the preterm infants of the Epo trial who received rhEPO, compared with those who re-
ceived placebo, no evidence of a statistically significant difference on neurodevelopment at 2 years
of age was found. However, some cognitive and physical differences may become evident later
in life (Natalucci et al., 2016) and will be monitored with a follow-up up to 5 years of age. The
ongoing EpoRepair trial (Rüegger et al., 2015) will give more insight about the effect of rhEPO
on neurodevelopment at 5 years of age in very preterm infants suffering from intraventricular
hemorrhage. Since the overall mortality in the Epo trial was low and similar in the treatment
groups, the complete case analysis originally reported did not provide misleading results and
yielded similar results to the SACE approach.
Concerning the findings from the simulation study, the treatment effects estimated by the com-
pared methods varied between the scenarios and thus based on the modeled treatment effects.
The unsuitability of complete case analysis to analyze studies with outcomes truncated by death
was evident from the fact that the true value of its targeted estimand was very sensitive to
changes in the treatment effect on survival. The true values of the estimands targeted by Hay-
den’s method and multiple imputation were stable and similar to each other (even though the
estimands are different quantities). Nevertheless, when survival was not affected by treatment,
complete case analysis and Hayden’s method always yielded similar treatment effect estimates.
The same result was obtained by Colantuoni et al. (2018) when they compared complete case
analysis with the SACE approach of Chiba and VanderWeele (2011), and is due to the fact
that when survival is not affected by treatment the two methods estimate the same quantity.
These considerations suggest that although complete case analysis is not generally advisable
in the context of outcomes truncated by death, in some circumstances it may be able to esti-
mate the SACE. On the contrary, although multiple imputation often provided similar results
to the SACE approach, in the presence of truncation due to death it should be considered only
if inference about an hypothetical population without deaths is desired. The methods were not
biased with respect to their targeted estimands, except multiple imputation, which was biased
with respect to θ3 in scenario A, probably due to the weak association of the outcome with the
simulated covariates, which made the setting not ideal for the application of this method. Bias
with respect to the non-targeted estimands were present in scenarios where a treatment effect on
survival different from zero was modeled. More precisely, the estimates derived by complete case
analysis were biased with respect to the estimands targeted by Hayden’s method and multiple
imputation analysis, and/or vice versa. This result highlights the importance of choosing the
statistical method to use based on the target estimand and on the expected scenario. In terms
of MSE, the methods performed similarly across scenarios. The nominal coverage was achieved
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by all methods in all scenarios, except by multiple imputation in scenario G and complete case
analysis in scenario I, where they showed overcoverage.
The approach used in our study has some limitations. The first is the not strong enough asso-
ciation of the Epo trial covariates with survival (see Figure 3.1). Good prediction of survival
by covariates is necessary to make Hayden’s assumptions to identify the SACE more plausible.
Ideally, our analysis of the Epo trial should have been completed with a sensitivity analysis to
investigate the robustness of our results to departures from those assumptions. We have also
added a constant increase in mortality (to obtain 15% of outcomes truncated by death), which
may have lead to a survival model with even lower discrimination. Thus, the performance of
the SACE in both the analysis of the Epo trial and in the simulation study may have been de-
creased. If the use of Hayden’s estimator was planned from the beginning of the study, this issue
could have been reduced at the design stage, by collecting baseline variables that were likely to
be predictive of survival. Moreover, the performance of multiple imputation has been limited
due to the weak association of the Epo trial covariates with the outcome of interest (see Figure
3.2). As outlined by Sterne et al. (2009), for a proper multiple imputation analysis one should
include a wide range of variables in the imputation model, even if they are not of interest in the
substantive analysis, as failure to do so may mean that the missing at random assumption is not
plausible and the results of the substantive analysis are biased. For simplicity, the covariates to
be simulated in our study were selected by their importance for survival, and thus the created
setting was not ideal for multiple imputation. This could have been improved by additionally
simulating baseline variables that were likely to be predictive of the outcome and using them in
the multiple imputation analysis. Lastly, due to time constraints, we estimated the true values of
the estimands of interest from two data sets of sample size 1’000’000 per scenario. The variance
of these estimates may not have been small enough to be considered as negligible.
In general, we believe that the SACE is a valuable approach to consider for many reasons. First,
it provides a causal effect of the treatment. Second, the inference is made on a real population of
subjects rather than on an hypothetical population, which may also be more relevant from the
point of view of regulatory authorities. Moreover, as pointed out by Rubin (2006), the SACE
approach is appropriate even when conclusions from a certain population are to be generalized
to future healthier populations; a situation that can occur in real-world clinical trials, where
experimental drugs are first tried with sicker patients (on which the approval is based), but then
are used in broader and healthier populations. A point to consider is the fact that the SACE
only makes sense when one is potentially able to manipulate the exposure (Holland, 1986). This
is always the case in RCTs, but it would not be the case if one’s aim is, for example, to estimate
the SACE of age or sex on cognitive function, because it would not be ethical or possible to
manipulate these exposures (Wen et al., 2017).
We strongly recommend the SACE approach to analyze RCTs with outcomes truncated by death,
even though there is no universally perfect choice of the method to use. As already mentioned,
the choice should depend on the study research question and more specifically on the targeted
estimand, as well as on the expected scenario. The importance of clearly defined estimands, in
terms of targeted population, variable to measure, population level summary for the variable,
possible post-randomization events and strategies to address them, is reported in the addendum
on estimands and sensitivity analysis to the guideline on statistical principles for clinical trials
(European Medicines Agency, 2017; US Food and Drug Administration, 2017), where principal
stratification is one of the suggested strategies to deal with outcomes truncated by death. The
motivation for the addendum derived from the not clear connectivity between study objectives,
design, conduct, analysis and interpretation, and from the misalignment between missing data
approaches and estimands of interest, as post-randomization events have been often approached
as a missing data problematic (Lamarca, 2019). The final objective of a clinical trial must be to
provide clear information on the effects of the treatments to patients and to clinicians.
We believe that further work could be done to make the different SACE estimators available and
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to give detailed guidance about them. Contributions already provided in this direction include
the standalone application developed by Colantuoni et al. (2018), which implements the statis-
tical methods discussed in their paper to compare non-mortality outcomes in RCTs with high
mortality and can be found at https://www.improvelto.com/stats-tools/. The procedure
proposed by Wang et al. (2017a) for comparing treatments based on the composite endpoint of
both the functional outcome and survival is implemented in the R package idem. Their software
is also demonstrated at https://olssol.shinyapps.io/idem/. The method of Wang et al.
(2017b) to estimate the SACE with the use of a substitution variable is instead available in the
R package tbd. Chiba and VanderWeele (2011) developed their simple technique with the aim of
bringing the concepts of principal stratification to the epidemiology literature. We hope that our
work will help increase familiarity with the SACE approach and availability of Hayden’s method
to deal with outcomes truncated by death.

https://www.improvelto.com/stats-tools/
https://olssol.shinyapps.io/idem/
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Appendix A

Appendix

A.1 Software

All analyses were performed in the R programming language, R version 3.6.1 (2019-07-05), using
base packages and the following analysis-specific packages: ggplot2 3.2.1, mice 3.6.0, lattice 0.20-
38, numDeriv 2016.8-1.1, logistf 1.23, boot 1.3-22, truncnorm 1.0-8, MASS 7.3-51.4, fabricatr 0.10.0,
stringr 1.4.0, tableone 0.10.0, dplyr 0.8.3, plyr 1.8.4, xtable 1.8-4, knitr 1.24. The computing
environment on the author’s personal computer had the following specifications: macOS Mojave,
Version 10.14.6 (Operating system), 1.8 GHz Intel Core i5 (Processor) and 8 GB 1600 MHz DDR3
(Memory). This document was generated on January 7, 2020.

A.2 R code

A.2.1 Function resWithCI()

resWithCI <- function(est, se, m, alpha=0.05, df=NA) {
if (is.na(df)){

ci <- est+c(-1,1)*qnorm(1-alpha/2)*se
} else {

ci <- est+c(-1,1)*qt(p=1-alpha/2, df=df)*se
}
res <- list("estimate" = unname(est),

"se" = unname(se),
"ci" = ci,
"m" = m)

return(res)
}

A.2.2 Function flac()

library(logistf)

flac <- function(x,y) {
# to calculate diagonal elements of hat matrix
temp.fit1 <- logistf(y ~ x, pl=FALSE)
# indicator variable of the augmented data set
temp.pseudo <- c(rep(0,length(y)), rep(1, 2*length(y)))
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# weights of augmented data set
temp.neww <- c(rep(1,length(y)), temp.fit1$hat/2, temp.fit1$hat/2)
# ML estimation
temp.fit2 <- logistf(c(y,y,1-y)~rbind(x,x,x)+temp.pseudo,

weights=temp.neww,
family=binomial(logit),
firth=FALSE,
pl=TRUE)

# results
res <- list()
res$coefficients <- temp.fit2$coefficients[which(

"temp.pseudo"!= names(temp.fit2$coefficients) )]
res$fitted <- temp.fit2$predict[1:length(y)]
res$linear.predictors <- temp.fit2$linear.predictors[1:length(y)]
res$probabilities <- temp.fit2$probabilities[which(

"temp.pseudo"!= names(temp.fit2$prob) )]
res$ci.lower <- temp.fit2$ci.lower[which(

"temp.pseudo"!= names(temp.fit2$ci.lower)) ]
res$ci.upper <- temp.fit2$ci.upper[which(

"temp.pseudo"!= names(temp.fit2$ci.upper)) ]
vcov <- vcov(temp.fit2)
res$vcov <- vcov[which("temp.pseudo"!= names(temp.fit2$coefficients) ),

which("temp.pseudo"!= names(temp.fit2$coefficients) )]
return(res)

}

A.2.3 Function saceEstimator()

library(numDeriv)

saceEstimator <- function(Z, X, Y, S, alpha=0.05, flac_corr=FALSE,
df=NA, dat) {

####### 0) Check data type #######

if(!is.character(Z)) stop("Z should be a character.")
if(!is.character(X)) stop("X should be a character.")
if(!is.character(Y)) stop("Y should be a character.")
if(!is.character(S)) stop("S should be a character.")
if(alpha>1 | alpha<0) stop("alpha should be between 0 and 1.")
if(!(Z %in% colnames(dat))) stop("Z should be a column name of dat.")
if(sum(X %in% colnames(dat))<length(X)) stop("X should be a vector of

column names of dat.")
if(!(Y %in% colnames(dat))) stop("Y should be a column name of dat")
if(!(S %in% colnames(dat))) stop("S should be a column name of dat")
if(!is.vector(dat[ ,Z])) stop("dat[ ,Z] should be a vector.")
if(!is.vector(dat[ ,Y])) stop("dat[ ,Y] should be a vector.")
if(!is.vector(dat[ ,S])) stop("dat[ ,S] should be a vector.")
if(!is.data.frame(dat)) stop("dat should be a data.frame.")
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####### 1) Check missing values #######

if(sum(is.na(dat[ ,Z]))) stop("dat[ ,Z] should not have missing values.")
if(sum(is.na(dat[,X]))) stop("dat[ ,X] should not have missing values.")
if(sum(is.na(dat[ ,Y][dat[ ,S]==1]))) stop("dat[ ,Y] should not have

missing values where dat[ ,S]==1.")
if(sum(is.na(dat[ ,S]))) stop("dat[ ,S] should not have missing values.")

####### 2) Compute sace estimate #######

# split patients according to assigned treatment
i <- dat[dat[ ,Z] == 1, ] # treatment arm z=1
j <- dat[dat[ ,Z] == 0, ] # treatment arm z=0
n1 <- nrow(i)
n0 <- nrow(j)

# fitting model for survival under treatment z=0
my.formula <- formula(paste(S, " ~ ", paste(X, collapse = "+")))
design.matrix.j <- model.matrix(my.formula, data = j)
if (flac_corr==FALSE) {

mod.z0 <- glm(my.formula, data = j, family=binomial)
betas.z0 <- coef(mod.z0)

} else {
flac.z0 <- flac(design.matrix.j[,-1], j[,S])
betas.z0 <- flac.z0$coefficients

}

# fitting model for survival under treatment z=1
design.matrix.i <- model.matrix(my.formula, data = i)
if (flac_corr==FALSE) {

mod.z1 <- glm(my.formula, data = i, family=binomial)
betas.z1 <- coef(mod.z1)

} else {
flac.z1 <- flac(design.matrix.i[,-1], i[,S])
betas.z1 <- flac.z1$coefficients

}

# calculation of survival probability under treatment z=0
# for the patients (i) who actually received treatment z=1
i$pi.z0 <- as.numeric(1 / (1 + exp(-design.matrix.i %*% betas.z0)))

# calculation of survival probability under treatment z=1,
# for the patients (j) who actually received treatment z=0
j$pj.z1 <- as.numeric(1 / (1 + exp(-design.matrix.j %*% betas.z1)))

# sace estimate mu = mu1 - mu0
mu1 <- sum(i[,Y] * i[,S] * i$pi.z0, na.rm = TRUE) / sum(i[,S] * i$pi.z0)
mu0 <- sum(j[,Y] * j[,S] * j$pj.z1, na.rm = TRUE) / sum(j[,S] * j$pj.z1)
mu_sace <- mu1 - mu0
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# effective sample size analyzed
m_sace <- sum(i[,S] * i$pi.z0) + sum(j[,S] * j$pj.z1)

####### 3) Compute sace variance #######

# inverse information matrix for mod.z0
if (flac_corr==FALSE) {

I0_inv <- vcov(mod.z0)
} else {

I0_inv <- flac.z0$vcov
}

# inverse information matrix for mod.z1
if (flac_corr==FALSE) {

I1_inv <- vcov(mod.z1)
} else {

I1_inv <- flac.z1$vcov
}

# transposed design matrices
Xi <- t(design.matrix.i)
Xj <- t(design.matrix.j)

# prepare computation of long summands
# for mu1n
s1 <- i[,S] * i[,Y] * i$pi.z0 * (1 - i$pi.z0) * t(Xi)
ss1 <- t(apply(s1, 2, sum, na.rm = TRUE))
# for mu1d
s2 <- i[,S] * i$pi.z0 * (1 - i$pi.z0) * t(Xi)
ss2 <- t(apply(s2, 2, sum))
# for mu0n
s3 <- j[,S] * j[,Y] * j$pj.z1 * (1 - j$pj.z1) * t(Xj)
ss3 <- t(apply(s3, 2, sum, na.rm = TRUE))
# for mu0d
s4 <- j[,S] * j$pj.z1 * (1 - j$pj.z1) * t(Xj)
ss4 <- t(apply(s4, 2, sum))

# fitted survival probabilities pi1 and pj0
if (flac_corr==FALSE) {

j$pj.z0 <- mod.z0$fitted.values
i$pi.z1 <- mod.z1$fitted.values

} else {
j$pj.z0 <- flac.z0$fitted
i$pi.z1 <- flac.z1$fitted

}

# columns of C1
c11 <- i[,S] * i[,Y] * i$pi.z0
c11[which(is.na(c11))] <- 0 # S*Y=0 if S=0
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c12 <- i[,S] * i$pi.z0
c13 <- t(ss3 %*% I0_inv %*% Xi) * (i[,S] - i$pi.z1)
c14 <- t(ss4 %*% I0_inv %*% Xi) * (i[,S] - i$pi.z1)

# C1
C1 <- cbind(c11, c12, c13, c14)

# columns of C0
c01 <- t(ss1 %*% I1_inv %*% Xj) * (j[,S] - j$pj.z0)
c02 <- t(ss2 %*% I1_inv %*% Xj) * (j[,S] - j$pj.z0)
c03 <- j[,S] * j[,Y] * j$pj.z1
c03[which(is.na(c03))] <- 0 # S*Y=0 if S=0
c04 <- j[,S] * j$pj.z1

# C0
C0 <- cbind(c01, c02, c03, c04)

# E0, E1, id1, id0
E0 <- rep(1, n0)
E1 <- rep(1, n1)
id0 <- diag(n0)
id1 <- diag(n1)

# variance-covariance matrix of (mu1n, mu1d, mu0n, mu0d)
Sigma <- t(C1) %*% (id1 - E1 %*% t(E1) / n1) %*% C1 +

t(C0) %*% (id0 - E0 %*% t(E0) / n0) %*% C0

# Jacobian matrix of h(mu1n, mu1d, mu0n, mu0d) = mu1n/mu1d - mu0n/mu0d
mu1n <- sum(c11) + sum(c01)
mu1d <- sum(c12) + sum(c02)
mu0n <- sum(c13) + sum(c03)
mu0d <- sum(c14) + sum(c04)
x0 <- c(mu1n, mu1d, mu0n, mu0d)
h <- function(x) {x[1] / x[2] - x[3] / x[4]}
J <- jacobian(h, x0)

# Delta method
var_sace <- as.numeric(J %*% Sigma %*% t(J))

####### 4) Results #######
res <- resWithCI(mu_sace, sqrt(var_sace), m_sace, alpha, df)
return(res)

}
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A.2.4 Function multipleImputation()

library(mice)

multipleImputation <- function(Y, Z, dat, m=5, not_predictor=NA,
alpha=0.05, df=NA){

# preparation
dat <- dplyr::rename(dat,"Y"=Y, "Z"=Z)
ini <- mice(dat, m=m, print=FALSE, maxit=0)
pred <- ini$predictorMatrix
# remove specified variable(s) from predictor matrix
if (!is.na(not_predictor)) {

pred[, not_predictor] <- 0
}
# multiple imputations
dat.mice <- mice(dat, m=m, pred=pred, print=TRUE)
# analyze data sets
fit.mice <- with(data=dat.mice, exp=lm(Y~Z))
# pool estimates using Rubin's rules
pool.mice <- pool(fit.mice)
# results
est_mice <- summary(pool.mice)[2,1]
se_mice <- summary(pool.mice)[2,2]
res <- resWithCI(est_mice, se_mice, m=nrow(dat), alpha=alpha, df=df)
return(res)

}

A.2.5 Matrix with seeds for simulation

# Function to generate a vector of length n
# with integers separated at least by samplesize
generate_seeds <- function(n, samplesize) {

# deterministic part
det_part <- seq(1,

1 + (samplesize + 101) * (n - 1),
by = (samplesize + 101))

# random part
random_part <- round(runif(n, 0, 100))
# seeds
return(det_part + random_part)

}

nsim_plus <- 2000 # to have enough seeds in case of failures
n_small <- 500 # sample size of the small data sets
n_large <- 1000000 # sample size of the large data set
nscenarios <- 9 # number of columns of the matrix

# Generate matrix with seeds for the small data sets
set.seed(23092019)
m_seeds <- matrix(generate_seeds(n=nsim_plus*nscenarios, samplesize=n_small),
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nrow=nsim_plus, ncol=nscenarios)

# Seeds for the large data sets (first two rows)
m_seeds_large <- generate_seeds(nscenarios*2, samplesize=n_large)+

n_large+max(m_seeds)
m_seeds[1,] <- m_seeds_large[1:9]
m_seeds[2,] <- m_seeds_large[10:18]

A.2.6 Function simulate_dataset()

# Function of which we want to find the root with respect to c
# c will be added in the simulation to the linear predictor of
# survival to decrease survival to 85%
target <- function(c, eta, target.prob=0.85){

return(mean(inv.logit(eta+c)-target.prob))
}

library(fabricatr)
library(MASS)
library(truncnorm)
library(boot)

# Function to simulate one data set using the associations from the Epo trial
# data and specifying the direction of the treatment effects to model on the
# outcome and on survival

simulate_dataset <- function(n, # sample size of the data set to simulate
seed, # from the seeds matrix generated above
trt.eff.surv=c("pos", "neg", "no"),
trt.eff.out=c("pos", "neg", "no"),

# the values of the following variables are derived from the Epo trial data:
prop.apgar.epo, # distribution of apgar score
values.apgar.epo, # values of apgar score
mean.ga.apgarcat, # mean values of gestational
# age for each apgar category
mean.hc.apgarcat, # mean values of head circumference
# for each apgar category
Sigma.ga.hc, # covariance matrix of gest. age and head
# circumference
betas.out, # coefficients of covariates from the lm
# for the outcome
sigma.out, # residual standard deviation
# of the model for outcome
betas.surv){ # coefficients of covariates from the glm
# for survival

####### 0) Preparation #######

# treatment effects on survival and on outcome
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trt.eff.surv <- ifelse(trt.eff.surv=="no", 0,
ifelse(trt.eff.surv=="pos", log(2), -log(2)))

trt.eff.out <- ifelse(trt.eff.out=="no", 0,
ifelse(trt.eff.out=="pos", 5, -5))

# initiate dataset with baseline covariates
dt <- data.frame(apgar5=rep(NA, n), gest.age.days=rep(NA, n),

hc.birth.cm=rep(NA, n))

# set the seed
set.seed(seed)

####### 1) Simulation of covariates #######

# simulate apgar score with distribution as in Epo trial data
dt$apgar5 <- draw_categorical(N=n, prob = prop.apgar.epo)

# simulate gest.age.days and hc.birth.cm as multivariate normal
for (i in values.apgar.epo){

if(nrow(dt[dt$apgar5==i,])>0){
multivars <- matrix(mvrnorm(

n=nrow(dt[dt$apgar5==i,]),
mu=c(mean.ga.apgarcat[i], mean.hc.apgarcat[i]),
Sigma=Sigma.ga.hc), ncol=2)

dt$gest.age.days[dt$apgar5==i] <- round(multivars[,1])
dt$hc.birth.cm[dt$apgar5==i] <- round(multivars[,2],1)

}
}

####### 2) Simulation of treatment #######

EPOrows <- sample.int(n, n/2, replace = FALSE)
dt$treatment <- 0
dt$treatment[EPOrows] <- 1

####### 3) Simulation of outcome #######

design.m <- model.matrix(~ gest.age.days + hc.birth.cm + apgar5 +
treatment, data=dt)

# add treatment effect
betas.out.trt <- matrix(c(betas.out, trt.eff.out), 5, 1)

# linear predictor
eta.out <- design.m %*% betas.out.trt

# simulate outcome
dt$mdi <- rnorm(n, eta.out, sigma.out)

####### 4) Simulation of survival #######
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# add treatment effect
betas.surv.trt <- matrix(c(betas.surv, trt.eff.surv), 5, 1)

# linear predictor
xb <- design.m %*% betas.surv.trt

# uniroot searches in the interval from lower to upper for a root
# of the function specified, with respect to its first argument
res <- uniroot(target, eta=xb, lower=-10, upper=10)
c <- res$root # constant to add to the linear predictor
# new linear predictor with decreased survival probability (0.85).
eta.surv <- xb + c

# survival probabilities given the covariates
p <- inv.logit(eta.surv)

# simulate survival
dt$alive = rbinom(n = n, size = 1, prob = p)

####### 5) Simulation of outcomes truncated by death #######

dt$mdi[dt$alive==0] <- NA

####### 6) Return simulated dataset #######

return(dt)
}
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A.3 Figures and tables

Author Title Journal Year Type
1 Chaix et al. Weighing up the dead and missing: reflections on inverse probability weight-

ing and principal stratification to address truncation by death
Epidemiology 2012 Methodological

2 Checkley et al. Inference for mutually exclusive competing events through a mixture of gen-
eralized gamma distributions

Epidemiology 2010 Methodological

3 Chiba and Van-
derWeele

A simple method for principal strata effects when the outcome has been
truncated due to death

American Journal of Epidemiology 2011 Methodological

4 Chiba The large sample bounds on the principal strata effect with application to a
prostate cancer prevention trial

International Journal of Biostatistics 2012 Methodological

5 Chiba Kaplan-Meier curves for survivor causal effects with time-to-event outcomes Clinical Trials 2013 Methodological
6 Chiba Sharp nonparametric bounds and randomization inference for treatment ef-

fects on an ordinal outcome
Statistics in Medicine 2017 Methodological

7 Chiba Bayesian inference of causal effects for an ordinal outcome in randomized
trials

Journal of Causal Inference 2018 Methodological

8 Choi et al. Recurrent event frailty models reduced time-varying and other biases in
evaluating transfusion protocols for traumatic hemorrhage

Journal of Clinical Epidemiology 2016 Methodological

9 Colantuoni et al. Statistical methods to compare functional outcomes in randomized con-
trolled trials with high mortality

British Medical Journal 2018 Methodological

10 Dawson and La-
vori

Design and inference for the intent-to-treat principle using adaptive treat-
ment.

Statistics in Medicine 2015 Methodological

11 Egleston et al. Causal inference for non-mortality outcomes in the presence of death Biostatistics 2007 Methodological
12 Egleston et al. On estimation of the survivor average causal effect in observational studies

when important confounders are missing due to death
Biometrics 2009 Methodological

13 Egleston et al. A tutorial on principal stratification-based sensitivity analysis: application
to smoking cessation studies

Clinical Trials 2010 Methodological

14 Egleston et al. Latent class survival models linked by principal stratification to investigate
heterogenous survival subgroups among individuals with early-stage kidney
cancer

Journal of the American Statistical Asso-
ciation

2017 Methodological

15 Gilbert and Jin Semiparametric estimation of the average causal effect of treatment on an
outcome measured after a postrandomization event, with missing outcome
data

Biostatistics 2010 Methodological

16 Huang et al. Design and rationale of the reevaluation of systemic early neuromuscular
blockade trial for acute respiratory distress syndrome

Annals of the American Thoracic Society 2017 Study protocol

17 Jemiai et al. Serniparametric estimation of treatment effects given base-line covariates on
an outcome measured after a post-randomization event occurs

Journal of the Royal Statistical Society Se-
ries B-statistics methodology

2007 Methodological

18 Kurland et al. Longitudinal data with follow-up truncated by death: match the analysis
method to research aims

Statistical Science 2009 Methodological

19 Lee and Daniels Marginalized models for longitudinal ordinal data with application to quality
of life studies

Statistics in Medicine 2008 Methodological

20 Lee et al. Causal effects of treatments for informative missing data due to progres-
sion/death

Journal of the American Statistical Asso-
ciation

2010 Methodological

21 Leuchs et al. Disentangling estimands and the intention-to-treat principle Pharmaceutical Statistics 2017 Methodological
22 Liu and Ying Joint analysis of longitudinal data with informative right censoring Biometrics 2008 Methodological
23 Long and Hud-

gens
Comparing competing risk outcomes within principal strata, with applica-
tion to studies of mother-to-child transmission of HIV

Statistics in Medicine 2012 Methodological

24 Long et al. An investigation of selection bias in estimating racial disparity in stroke risk
factors: the REGARDS study

American Journal of Epidemiology 2019 Application

25 Lou et al. Estimation of causal effects in clinical endpoint bioequivalence studies in the
presence of intercurrent events: noncompliance and missing data

Journal of Biopharmaceutical Statistics 2019 Methodological

26 Lu et al. Rank-based principal stratum sensitivity analyses Statistics in Medicine 2013 Methodological
27 MacKenzie et al. The national study on costs and outcomes of trauma Journal of Trauma-Injury Infection and

Critical Care
2007 Application

28 MacKenzie et al. The impact of trauma-center care on functional outcomes following major
lower-limb trauma

Journal of Bone and Joint Surgery-
American Volume

2008 Application

29 Mark et al. Quality of life with defibrillator therapy or amiodarone in heart failure New England Journal of Medicine 2008 Application
30 Mark et al. Quality-of-life outcomes with coronary artery bypass graft surgery in is-

chemic left ventricular dysfunction: A randomized trial
Annals of Internal Medicine 2014 Application

31 Mark Assessing quality-of-life outcomes in cardiovascular clinical research Nature Reviews Cardiology 2016 Methodological
32 McGuinness et al. Survival bias when assessing risk factors for age-related macular degenera-

tion: A tutorial with application to the exposure of smoking
Ophtalmic Epidemiology 2017 Application

33 Mentz et al. The palliative care in heart failure trial: rationale and design American Hearth Journal 2014 Study protocol
34 Merchant et al. Periodontal treatment among mothers with mild to moderate periodontal

disease and preterm birth: reanalysis of OPT trial data accounting for se-
lective survival

International Journal of Epidemiology 2018 Application

35 Needham et al. Study protocol: the improving care of acute lung injury patients (ICAP)
study

Critical Care 2006 Study protocol

36 Needham Understanding and improving clinical trial outcome measures in acute res-
piratory failure

American Journal of Respiratory and Crit-
ical Care Medicine

2014 Methodological

37 Park et al. Integrating tobacco treatment into cancer care: study protocol for a ran-
domized controlled comparative effectiveness trial

Contemporary Clinical Trials 2016 Study protocol

38 Prada et al. Level-I trauma center effects on return-to-work outcomes Evaluation Review 2012 Application
39 Shardell et al. Doubly robust estimation and causal inference in longitudinal studies with

dropout and truncation by death
Biostatistics 2015 Methodological

40 Shepherd et al. Sensitivity analyses comparing outcomes only existing in a subset selected
post-randomization, conditional on covariates, with application to HIV vac-
cine trials

Biometrics 2006 Application

41 Shepherd et al. Does finasteride affect the severity of prostate cancer? A causal sensitivity
analysis

Journal of the American Statistical Asso-
ciation

2008 Application

42 Taguri and Chiba A principal stratification approach for evaluating natural direct and indirect
effects in the presence of treatment-induced intermediate confounding

Statistics in Medicine 2015 Methodological

43 Tchetgen Tchet-
gen

Identification and estimation of survivor average causal effects Statistics in Medicine 2014 Methodological

44 Tchetgen Tchet-
gen et al.

A simple regression-based approach to account for survival bias in birth
outcomes research

Epidemiology 2015 Methodological

45 Wang Inference in randomized trials with death and missingness Biometrics 2017 Methodological
46 Wang et al. Identification and estimation of causal effects with outcomes truncated by

death
Biometrika 2017 Methodological

47 Wen et al. Methods for handling longitudinal outcome processes truncated by dropout
and death

Biostatistics 2018 Methodological

48 Yang and Small Using post-outcome measurement information in censoring-by-death prob-
lems

Journal of the Royal Statistical Society Se-
ries B-statistics methodology

2016 Methodological

Table A.1: Papers citing Hayden et al. (2005), collected from the Web of Science and
PubMed.
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Figure A.1: Distribution of the 1300 treatment effect estimates provided by each
method in each scenario of the simulation study.
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Figure A.2: Distribution of the 1300 standard errors provided by each method in each
scenario of the simulation study.
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Method Average of estimates Empirical SE Average of SEs
Scenario A
Complete case analysis 4.865 1.684 1.647
Hayden’s method 4.972 1.699 1.662
Multiple imputation analysis 4.916 1.719 1.677
Scenario B
Complete case analysis 5.109 1.640 1.649
Hayden’s method 4.997 1.658 1.663
Multiple imputation analysis 4.970 1.662 1.682
Scenario C
Complete case analysis 4.980 1.598 1.646
Hayden’s method 4.983 1.604 1.659
Multiple imputation analysis 4.935 1.638 1.672
Scenario D
Complete case analysis -5.138 1.601 1.651
Hayden’s method -5.025 1.612 1.667
Multiple imputation analysis -4.992 1.640 1.678
Scenario E
Complete case analysis -4.900 1.654 1.649
Hayden’s method -5.025 1.672 1.663
Multiple imputation analysis -4.961 1.679 1.684
Scenario F
Complete case analysis -5.061 1.635 1.646
Hayden’s method -5.061 1.647 1.660
Multiple imputation analysis -5.005 1.680 1.682
Scenario G
Complete case analysis -0.130 1.632 1.646
Hayden’s method -0.014 1.656 1.660
Multiple imputation analysis -0.015 1.622 1.672
Scenario H
Complete case analysis 0.107 1.627 1.648
Hayden’s method -0.025 1.640 1.663
Multiple imputation analysis -0.004 1.633 1.670
Scenario I
Complete case analysis -0.007 1.624 1.647
Hayden’s method -0.015 1.636 1.661
Multiple imputation analysis -0.005 1.614 1.666

Table A.2: Summary measures of the analyses of simulated data sets (nsim = 1300 for
each scenario) performed by three methods.
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Method θ1 (MC SE) θ2 (MC SE) θ3 (MC SE)
Scenario A
Complete case analysis -0.037 (0.047) -0.146 (0.047) -0.159 (0.047)
Hayden’s method 0.070 (0.047) -0.039 (0.047) -0.052 (0.047)
Multiple imputation analysis 0.014 (0.048) -0.094 (0.048) -0.108 (0.048)
Scenario B
Complete case analysis -0.015 (0.045) 0.101 (0.045) 0.097 (0.045)
Hayden’s method -0.127 (0.046) -0.012 (0.046) -0.015 (0.046)
Multiple imputation analysis -0.154 (0.046) -0.038 (0.046) -0.042 (0.046)
Scenario C
Complete case analysis -0.027 (0.044) -0.028 (0.044) -0.036 (0.044)
Hayden’s method -0.025 (0.044) -0.026 (0.044) -0.033 (0.044)
Multiple imputation analysis -0.073 (0.045) -0.073 (0.045) -0.081 (0.045)
Scenario D
Complete case analysis -0.047 (0.044) -0.162 (0.044) -0.153 (0.044)
Hayden’s method 0.066 (0.045) -0.049 (0.045) -0.040 (0.045)
Multiple imputation analysis 0.099 (0.045) -0.016 (0.045) -0.007 (0.045)
Scenario E
Complete case analysis -0.055 (0.046) 0.057 (0.046) 0.053 (0.046)
Hayden’s method -0.180 (0.046) -0.068 (0.046) -0.072 (0.046)
Multiple imputation analysis -0.116 (0.047) -0.004 (0.047) -0.008 (0.047)
Scenario F
Complete case analysis -0.054 (0.045) -0.052 (0.045) -0.055 (0.045)
Hayden’s method -0.054 (0.046) -0.052 (0.046) -0.054 (0.046)
Multiple imputation analysis 0.003 (0.047) 0.005 (0.047) 0.002 (0.047)
Scenario G
Complete case analysis -0.024 (0.045) -0.139 (0.045) -0.138 (0.045)
Hayden’s method 0.092 (0.046) -0.022 (0.046) -0.022 (0.046)
Multiple imputation analysis 0.091 (0.045) -0.023 (0.045) -0.023 (0.045)
Scenario H
Complete case analysis -0.024 (0.045) 0.090 (0.045) 0.095 (0.045)
Hayden’s method -0.156 (0.045) -0.042 (0.045) -0.037 (0.045)
Multiple imputation analysis -0.136 (0.045) -0.021 (0.045) -0.017 (0.045)
Scenario I
Complete case analysis -0.013 (0.045) -0.005 (0.045) -0.016 (0.045)
Hayden’s method -0.022 (0.045) -0.014 (0.045) -0.025 (0.045)
Multiple imputation analysis -0.011 (0.045) -0.003 (0.045) -0.014 (0.045)

Table A.3: Bias of the three methods compared in the simulation study with respect to
the three estimands θ1 (treatment effect on survivors), θ2 (survivor average causal effect)
and θ3 (treatment effect on all patients, as if no one had died), with the corresponding
Monte Carlo standard error.
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Method θ1 (MC SE) θ2 (MC SE) θ3 (MC SE)
Scenario A
Complete case analysis 2.835 (0.116) 2.855 (0.116) 2.859 (0.116)
Hayden’s method 2.891 (0.117) 2.887 (0.116) 2.889 (0.116)
Multiple imputation analysis 2.953 (0.121) 2.962 (0.120) 2.965 (0.120)
Scenario B
Complete case analysis 2.687 (0.105) 2.697 (0.105) 2.696 (0.105)
Hayden’s method 2.761 (0.108) 2.745 (0.107) 2.746 (0.107)
Multiple imputation analysis 2.784 (0.109) 2.762 (0.108) 2.762 (0.108)
Scenario C
Complete case analysis 2.554 (0.103) 2.554 (0.103) 2.554 (0.103)
Hayden’s method 2.571 (0.105) 2.571 (0.105) 2.572 (0.105)
Multiple imputation analysis 2.685 (0.107) 2.686 (0.107) 2.687 (0.107)
Scenario D
Complete case analysis 2.563 (0.100) 2.587 (0.100) 2.584 (0.100)
Hayden’s method 2.602 (0.102) 2.600 (0.101) 2.599 (0.101)
Multiple imputation analysis 2.696 (0.107) 2.687 (0.105) 2.687 (0.105)
Scenario E
Complete case analysis 2.736 (0.103) 2.736 (0.103) 2.735 (0.103)
Hayden’s method 2.827 (0.107) 2.799 (0.106) 2.800 (0.106)
Multiple imputation analysis 2.829 (0.108) 2.815 (0.107) 2.815 (0.107)
Scenario F
Complete case analysis 2.675 (0.101) 2.674 (0.101) 2.675 (0.101)
Hayden’s method 2.714 (0.103) 2.714 (0.103) 2.714 (0.103)
Multiple imputation analysis 2.821 (0.107) 2.821 (0.107) 2.821 (0.107)
Scenario G
Complete case analysis 2.661 (0.101) 2.679 (0.101) 2.679 (0.101)
Hayden’s method 2.749 (0.104) 2.741 (0.104) 2.741 (0.104)
Multiple imputation analysis 2.636 (0.100) 2.628 (0.100) 2.628 (0.100)
Scenario H
Complete case analysis 2.644 (0.099) 2.652 (0.100) 2.653 (0.100)
Hayden’s method 2.713 (0.101) 2.690 (0.100) 2.690 (0.100)
Multiple imputation analysis 2.684 (0.103) 2.666 (0.102) 2.666 (0.102)
Scenario I
Complete case analysis 2.634 (0.105) 2.634 (0.105) 2.634 (0.105)
Hayden’s method 2.676 (0.107) 2.676 (0.107) 2.676 (0.107)
Multiple imputation analysis 2.605 (0.104) 2.605 (0.104) 2.605 (0.104)

Table A.4: MSE of the three methods compared in the simulation study with respect to
the three estimands θ1 (treatment effect on survivors), θ2 (survivor average causal effect)
and θ3 (treatment effect on all patients, as if no one had died), with the corresponding
Monte Carlo standard error.
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Method θ1 (MC SE) θ2 (MC SE) θ3 (MC SE)
Scenario A
Complete case analysis 0.942 (0.006) 0.942 (0.006) 0.942 (0.007)
Hayden’s method 0.943 (0.006) 0.947 (0.006) 0.945 (0.006)
Multiple imputation analysis 0.938 (0.007) 0.942 (0.007) 0.942 (0.007)
Scenario B
Complete case analysis 0.956 (0.006) 0.954 (0.006) 0.954 (0.006)
Hayden’s method 0.951 (0.006) 0.954 (0.006) 0.953 (0.006)
Multiple imputation analysis 0.952 (0.006) 0.949 (0.006) 0.949 (0.006)
Scenario C
Complete case analysis 0.950 (0.006) 0.950 (0.006) 0.950 (0.006)
Hayden’s method 0.954 (0.006) 0.954 (0.006) 0.954 (0.006)
Multiple imputation analysis 0.951 (0.006) 0.950 (0.006) 0.949 (0.006)
Scenario D
Complete case analysis 0.954 (0.006) 0.952 (0.006) 0.952 (0.006)
Hayden’s method 0.953 (0.006) 0.954 (0.006) 0.955 (0.006)
Multiple imputation analysis 0.945 (0.006) 0.947 (0.006) 0.947 (0.006)
Scenario E
Complete case analysis 0.948 (0.006) 0.949 (0.006) 0.949 (0.006)
Hayden’s method 0.952 (0.006) 0.953 (0.006) 0.952 (0.006)
Multiple imputation analysis 0.947 (0.006) 0.949 (0.006) 0.949 (0.006)
Scenario F
Complete case analysis 0.952 (0.006) 0.952 (0.006) 0.952 (0.006)
Hayden’s method 0.950 (0.006) 0.950 (0.006) 0.950 (0.006)
Multiple imputation analysis 0.948 (0.006) 0.948 (0.006) 0.948 (0.006)
Scenario G
Complete case analysis 0.955 (0.006) 0.957 (0.006) 0.957 (0.006)
Hayden’s method 0.954 (0.006) 0.952 (0.006) 0.952 (0.006)
Multiple imputation analysis 0.963 (0.005) 0.965 (0.005) 0.965 (0.005)
Scenario H
Complete case analysis 0.951 (0.006) 0.955 (0.006) 0.955 (0.006)
Hayden’s method 0.954 (0.006) 0.951 (0.006) 0.951 (0.006)
Multiple imputation analysis 0.955 (0.006) 0.953 (0.006) 0.952 (0.006)
Scenario I
Complete case analysis 0.961 (0.005) 0.961 (0.005) 0.961 (0.005)
Hayden’s method 0.959 (0.005) 0.959 (0.005) 0.959 (0.005)
Multiple imputation analysis 0.956 (0.006) 0.956 (0.006) 0.957 (0.006)

Table A.5: Coverage of the three methods compared in the simulation study with
respect to the three estimands θ1 (treatment effect on survivors), θ2 (survivor average
causal effect) and θ3 (treatment effect on all patients, as if no one had died), with the
corresponding Monte Carlo standard error.
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A.4 Protocol of the simulation study

A.4.1 Aims and objectives

The aim of our simulation study is to evaluate the performance of three different methods in
estimating the treatment effect from an RCT comparing an intervention with placebo, when the
primary outcome is truncated by death for a relevant proportion of the patients randomized.
Estimates of the treatment effect will be derived by complete case analysis, by Hayden’s method
(Hayden et al., 2005), and by an analysis involving multiple imputation of missing values. The
estimates will be compared in terms of bias, mean square error and coverage. Since the compared
methods estimate different quantities, we will discuss the results with reference to the topic of
estimands. The estimands may be described as follows:

• Complete case analysis: treatment effect on the survivors, θ1.

• Hayden’s method: survivor average causal effect (SACE), which is the treatment effect on
the subgroup of patients who would have survived under both treatments, θ2.

• Analysis of multiply imputed data sets: treatment effect on all patients, as if no one had
died (assuming all patients could have survived), θ3.

As a subset of the randomized patients is analyzed, complete case analysis and Hayden’s method
do not conform with the ITT principle. In contrast, multiple imputation conforms with the ITT
principle but creates data that could not be observed.
For each of the scenarios investigated, we will use one very large data set (of sample size 1’000’000)
to obtain the “true” values of θ1, θ2, θ3, and many smaller data sets, with realistic sample size,
to compare the performance of the three methods.

A.4.2 Simulation procedures

Level of dependence between simulated datasets

For each scenario, we will simulate many data sets that will be analyzed by all three methods.
We will employ “moderately independent” simulations (Burton et al., 2006): we will use the
same set of simulated independent data sets to compare the three statistical methods, but will
generate a different set of independent data sets for each scenario investigated.

Allowance for failures

Failures may occur primarily for Hayden’s method since involves fitting logistic regression models
on survival in both treatment arms, which are used to predict survival probabilities of patients
under the respective other treatment. Logistic regression models may fail to converge or yield
very large standard errors in case of strata with few events. Samples with failures will be
discarded and replaced. However, if we discard samples with failures, we may bias our results, as
the simulated data sets will not cover the whole range we intend. Therefore, we implement Firth
logistic regression with added covariate (FLAC, Puhr et al., 2017) to reduce this problem. We
currently do not expect failures for the other two methods. The number of failures, the reason
and the method for which it occurred will be recorded.

Software to perform simulations

The simulation study will be performed in R version 3.6.1, with the exception of the simulation
of the large data sets, which will be executed on the UZH math server, in R version 3.5.0. We
will make use of the packages boot, fabricatr, MASS, mice, truncnorm.
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Random number generator to use

We will use the default random number generator implemented in R, which is the “Mersenne-
Twister” (Matsumoto and Nishimura, 1998).

Specification of starting seeds

For each simulation we will use starting seeds that are separated by at least the sample size of
the simulated data sets. For example, if each simulated data set has a sample size of 500, then
each simulation requires 500 random numbers, therefore the starting seed for each simulation
should be separated by at least 500 (Burton et al., 2006). We will generate all the necessary
seeds in advance, we will store them in a matrix and then will choose them one after the other
for each simulation. We will generate 2000 seeds for each scenario, more than nsim, in order to
have them available in case of failures.

A.4.3 Methods for generating the datasets

We will use the Epo trial (Natalucci et al., 2016) as motivating example, but will modify some
aspects of the data set to create different scenarios for our simulation study.
We will use a selection of the observed baseline covariates and the correlation structure among
them as given, and will randomly allocate patients to treatment (rhEPO vs. Placebo). This first
step will be the same in all scenarios.
We will then simulate the outcome, using the associations of the outcome with the covariates as
observed in the Epo trial. In addition, we will model a treatment effect on the outcome which
will vary between scenarios (positive effect, negative effect, no effect; note that the observed
treatment effect in the Epo trial was neglectable).
Further, we will simulate survival up to 2 years follow-up, using the associations of death with
the covariates as observed in the Epo trial and model a treatment effect on survival which will
vary between scenarios (positive effect, negative effect, no effect). The proportion of children
who died before 2 years of age will be increased for our simulation study, from an observed rate of
around 6% in the Epo trial to 15%. The latter rate is expected in the EpoRepair trial, a similar,
still ongoing RCT on long-term neurocognitive outcomes of very preterm infants suffering from
intraventricular hemorrhage (Rüegger et al., 2015).

Description of the Epo trial data

Baseline variables important for survival:

• Gestational age in days: normal (mean: 204.0, sd: 11.7)

• Head circumference at birth in cm: normal (mean: 26.8, sd: 2.2)

• Apgar score at 5 min after birth: categorical (categories from 0 to 10: 0% 0, 1% 1, 1% 2,
3% 3, 5% 4, 5% 5, 10% 6, 17% 7, 24% 8, 29% 9, 5% 10)

We will not simulate the variables sex and weight at birth: the first does not seem to be important
for survival, while the second is strongly correlated with head circumference.
Treatment: binary (48% placebo, 52% rhEPO)
Outcome (MDI): normal (mean: 93.9, sd: 16.9)
Survival: binary (6% no, 94% yes)

Simulation of the data

For all scenarios we will simulate data sets with a sample size of 500, which is similar to the
sample size of our real data set.
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We will first simulate the Apgar score, with the same distribution as observed in the Epo trial.
From the Epo trial data, we will also derive the mean gestational age and the mean head cir-
cumference for each Apgar score category, and we will use them to simulate gestational age and
head circumference as multivariate normal variables in each Apgar score category. We will use
the same variance (again derived from the Epo trial data) for all categories, to avoid a too data-
driven simulation.
The patients will be randomly assigned to treatment. One half of the patients (250 patients)
will receive rhEPO, one half will receive placebo.
The outcome will be simulated using the association with the covariates of the Epo trial and a
treatment effect on the outcome of -5, 0 or 5, depending on the scenario considered.
Survival will be simulated using the association with the covariates of the Epo trial and a treat-
ment effect on survival of -0.1, 0 or 0.1, depending on the scenario considered. The specified
values are on the logit scale, and correspond to odds ratios of 0.9, 1 and 1.1, respectively. The
overall survival probability will be 85%.

A.4.4 Scenarios to be investigated

Table A.6 shows the treatment effects on outcome and survival that we will assess in our simu-
lation study. These effects will be examined in a fully factorial arrangement.

Table A.6: Overview of the planned simulation scenarios.

Scenario Treatment effect on Outcome Treatment effect on Survival
A positive (MDI increased) positive (survival probability higher)
B positive (MDI increased) negative (survival probability lower)
C positive (MDI increased) no effect
D negative (MDI decreased) positive (survival probability higher)
E negative (MDI decreased) negative (survival probability lower)
F negative (MDI decreased) no effect
G no effect positive (survival probability higher)
H no effect negative (survival probability lower)
I no effect no effect

For simplicity, we will assume no drop-outs due to withdrawal of informed consent or loss to
follow-up for other reasons than death.
If treatment increases survival of less healthy individuals (possible in scenarios A, D, G), com-
plete case analysis may underestimate the SACE (Colantuoni et al., 2018). In fact, the survivors
in the control group may be healthier than the survivors in the treatment group. If treatment
decreases survival (scenarios B, E, H), the monotonicity assumption (survival under treatment
is always at least as good as survival under control) does not hold. In reality this can happen,
for example, if a treatment has unexpected negative side effects for a subgroup of people (Rubin,
2006). In this case, we expect the survivors in the treatment group to be healthier than the
survivors in the placebo, and thus complete case analysis to overestimate the SACE.
If treatment has no effect on survival, complete case analysis provides an estimate of the causal
effect of the treatment on the always survivors (Colantuoni et al., 2018). Therefore, we expect
complete case analysis and Hayden’s method to yield similar results in scenarios C, F, I.

A.4.5 Statistical methods to be evaluated

1. “Naive” estimator of the treatment effect on survivors (complete cases analysis).

2. Hayden’s estimator of the SACE (survivor average causal effect).
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3. Estimator of the treatment effect on all patients with multiple imputation. 5 imputed data
sets will be generated for each simulation and the estimates will be combined using Rubin’s
rule.

A.4.6 Estimates to be stored for each simulation and summary measures to
be calculated over all simulations

For each simulation i = {1, . . . , nsim} and each method j = {1, 2, 3} we will store:

• the seed si,

• the proportion of deaths di

• the treatment effect estimate θ̂ij ,

• the standard error of the treatment effect estimate SE(θ̂ij).

• the effective number of patients analyzed mij .

mij will be the number of patients alive for the complete case method, the total number of
patients for multiple imputation and a non-integer number for Hayden’s method (the sum of the
survival probabilities under the not assigned treatment of the patients alive).
Once all simulations will be performed, we will compute for all combinations of scenario and
method j:

• the average of the treatment effect estimates, ¯̂
θj = 1

nsim

nsim∑
i=1

θ̂ij ,

• the empirical SE (standard deviation of the estimates)

√
1

nsim−1

nsim∑
i=1

(θ̂ij − ¯̂
θj)2,

• the average of the estimated within simulation SEs of the estimates, 1
nsim

nsim∑
i=1

SE(θ̂ij),

following the formulas of Burton et al. (2006).

A.4.7 Number of simulations to be performed

The number of simulations to perform for each scenario is based on the accuracy of the estimate
of interest. The number of simulations nsim is calculated using

nsim =

(
Z1−α/2 · σ

δ

)2

where δ is the specified level of accuracy of the estimate of interest we are willing to accept,
i.e. the permissible difference from the true value, Z1−α/2 is the quantile of the standard normal
distribution and σ2 is the variance of the parameter of interest, which can be obtained from the
real data (Burton et al., 2006).
From the Epo trial we estimate a standard error of the SACE of σ = 1.763 (which may vary
depending on the model used) and a standard error of the naive estimator of σ = (2.5+4.5)/(2∗
1.96) = 1.786 (confidence interval also reported in Natalucci et al., 2016). We take the larger value
of 1.8 to ensure an adequate number of simulations. Since we simulate data with a treatment
effect of 5 (or 0 or -5) and we aim to have an accuracy of 2%, we have to perform at least
1245 simulations (if we would aim to have an accuracy of 1%, we would perform at least 4979
simulations). We decided to round it up and to perform nsim = 1300 simulations.
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Table A.7: Performance measures of method j with respect to estimand θk: estimates
and Monte Carlo standard errors.

Performance measure Estimate Monte Carlo SE of estimate

Bias 1
nsim

nsim∑
i=1

θ̂ij − θk

√
1

nsim(nsim−1)

nsim∑
i=1

(θ̂ij − ¯̂
θj)2

Mean square error (MSE) 1
nsim

nsim∑
i=1

(θ̂ij − θk)2

√
nsim∑
i=1

[
(θ̂ij−θk)2−M̂SE

]2
nsim(nsim−1)

Coverage 1
nsim

nsim∑
i=1

1(θ̂low,ij ≤ θk ≤ θ̂upp,ij)
√

̂Coverage(1− ̂Coverage)
nsim

A.4.8 Criteria to evaluate the performance of statistical methods for different
scenarios

As mentioned above, the “true” value of each θk, k = {1, 2, 3}, will be computed using a data
set of sample size 1’000’000. We expect the true value of θ3 to be the closest to the treatment
effect that we model on the outcome. The performance of each statistical method j with respect
to the estimand θk on the smaller data sets will be evaluated using the criteria summarized in
Table A.7, following the definitions given in Morris et al. (2019). In formulas of Table A.7, θk is
intended as the true value of the estimand θk.

A.4.9 Presentation of the simulation results

For each scenario and each performance measure, we will summarize the results in tables com-
bining the different methods with the different estimands. An example for the presentation of
the results in terms of bias is given in Table A.8. The entries in italics display the bias magnitude
that we expect and they will be substituted with the numeric values that will be found. The
same kind of table will be created for the mean square error and the coverage.

Table A.8: Bias for scenario A, where a treatment effect on survival of 0.1 and a
treatment effect on the outcome of 5 are modeled.

θ1 θ2 θ3
Complete case analysis small larger larger
Hayden’s method larger small larger
Multiple imputation analysis larger larger small
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