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Abstract

The appropriate use of historical information can lead to more ethical and powerful trial designs,
however, with a subsequent risk of a type I error inflation.

This master thesis looks at the power prior Bayesian approach applied to a normally dis-
tributed outcome and explores operating characteristics and related rejection ratio. The critical
factor, which was considered in this thesis, influencing power and type I error, is a bias between
historical and current data. Three methods determine the influence of historical information
in a power prior design: a conditional power prior, an empirical Bayesian and a fully Bayesian
approaches.

We considered two common scenarios of borrowing information: one arm and two arm set-
tings. In the one arm setting historical data is available for the treatment effect. In the two
arm setting it is available for a control arm only. The influence of historical estimate on the
posterior distribution of a treatment effect differs between these two scenarios. As a result, the
dependence of operating characteristics on the bias between historical and current data is also
different. In addition, we considered both types of historical estimates: a fixed and a randomly
distributed around a true value.

Further, we inspected two posterior distribution critical values used in Bayesian testing. A
critical value, which depends only on the data from the current experiment, can lead to a type I
error inflation. Another critical value, which depends on historical data and the data from the
current experiment, allows strict control of type I error, however with a cost of no power gain.

We concluded that integration of historical information could give a simultaneous gain in
power and type I error under the three critical conditions. First, it can happen only in the two
arm setting. Second, the bias between a historical and current experiment should be minimal.
Third, the critical value of a decision rule should depend only on the data from the current
experiment.
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Chapter 1

Introduction

Interest in incorporating historical data into an analysis of a new experiment in clinical trials is

growing year by year. The expression ”historical data” is used in this master thesis to refer to any

extra information available outside of the current experiment. Usually, it is information from the

previous studies, or can also be from a different sub-population. For example, it often happens

that multiple randomized control trials (RCT) are available for a particular disease, where

control arms are represented by identical ”standards of care” treatment. All this information for

a control arm can be combined and used as prior knowledge for a current experiment. Another

example might be an implementation of adult sub-population data into an analysis of pediatric

trials.

The appropriate use of historical data can lead to a reduction in sample size or improved

operating characteristics. At the same time, disregard of extra information can cause the conduct

of an unethical trial. For a highly effective drug, it might be unethical to have an equal number

of patients in a control arm and a treated arm. With the integration of historical controls, the

sample size of a control arm in a new experiment might be reduced, and more patients might

be allocated to a treatment group.

However, one should be aware of possible bias between new and historical information, which

can lead to the loss of all advantages of using historical data or even to a wrong conclusion from

a new experiment. A combination of historical information with a randomized clinical trial is a

very complex task, and currently, there is no uniform solution. Multiple ways were invented to

adapt the use of historical information according to the bias, which are called dynamic borrowing

approaches.

The frequentist approach Test-then-pool combines historical and randomized controls if the

difference between groups is not significant. Robust MAP uses an extra parameter to adapt

the variance of the prior depending on the bias Neuenschwander et al. (2010), Schmidli et al.

(2014). In the Commensurate prior approach a parameter of interest from historical data is

connected to a new experiment through a link function Hobbs et al. (2012). In Power prior

extra parameter related to the likelihood of the historical information defines the influence of

historical information Gravestock and Held (2017), Gravestock and Held (2018).

There are numerous papers that compare different methods. In the paper Viele et al. (2014)

authors considered ”dynamic” and ”static” borrowing designs for a binary endpoint. They exam-

ined the influence of the bias on mean squared error, power, and type I error. They emphasized

the importance of the analysis of determining where historical data is similar to the current

experiment. In the paper Dejardin et al. (2018), authors also compared different dynamic bor-

rowing approaches, such as test and pool, power prior, commensurate prior and robust mixture

3



4 CHAPTER 1. INTRODUCTION

prior for a binary endpoint with a single historical dataset. They concluded that methods are

comparable, but the robust mixture prior is the easiest to implement. Similarly, in the paper

van Rosmalen et al. (2018) authors also investigated different methods for multiple historical

studies for a time to event endpoint.

In my master thesis, we focused on the power prior approach and a single historical study.

The following research questions were explored:

Question 1: Explore the influence of bias between historical and current experiments on

different operating characteristics in the power prior setting for a normal outcome. A similar

analysis was performed for a binary outcome in Gravestock and Held (2017).

There are different ways to integrate historical information, and we explored one arm and two

arm scenarios. Historical data in the one arm case influence a treatment effect directly. In the two

arm case, it also influences a treatment effect, but through a change in the posterior distribution

of an outcome in a control arm (Fig. 1.1). Therefore, operating characteristics for these two

scenarios change differently depending on the bias between historical and current experiments.

The impact of the type of a historical estimate, fixed or random, was also investigated. First, we

examined the situation where we have one fixed estimate from one historical study, and, second,

we considered if estimates would be randomly normally distributed around a true value.

Question 2: Is it true that borrowing information cannot lead to an increased power while

strictly controlling type I error? This question was inspired by the paper Kopp-Schneider et al.

(2019), where the authors concluded based on the uniformly most powerful (UMP) test that no

power gain is possible when strictly controlling type I error.

Power and type I error strongly depend on the chosen hypothesis test and related critical

value of a decision rule. In Bayesian testing, we considered two different critical values. First, we

examined the situation when the critical value is a function of current data. In this case, using

historical information can cause type I error inflation. Second, we examined the situation when

the critical value is a function of historical and current data, such that, it gives a fixed value of

type I error. Further, we explored how these critical values influenced power of a related tests.

One arm and two arm setting have different structures of hierarchical models and related pa-

rameters. Related mathematical derivations were divided into two separate chapters (chapter 2

and chapter 3). Derivations for a random effect of historical data were added after each deriva-

tion for a fixed case. Three main ways to deal with a nuisance power parameter in Bayesian

setting were considered: fixed values of a parameter, an empirical Bayesian and a fully Bayesian

approaches for each setting. The main function of interest was H0 rejection rate given effect. It

was derived mathematically or using simulation techniques for each scenario. Resulting type I

error, power, and rejection ratio plots are shown in chapter 4.1. The UMP and Bayesian testing

are considered in chapter 5. The conclusion for each research question is given in chapter 6.

Figure 1.1: One arm and two arm setting



Chapter 2

One arm setting

In this chapter, we were looking at the scenario when historical information is available directly

for a treatment effect. For example, when we have an estimate of a treatment effect from an

adult trial, and we would like to use it as prior information for our new experiment for pediatric

patients. The outcome estimate, we are referring to in this chapter, is the difference between

sample means of a normally distributed relevant measure in a treatment group and a control

group from related experiments. The relevant measure is a patient-level biological measure of

the disease progression, for example, blood pressure, weight, or others.

In this scenario, the next parameters influence H0 rejection rate: true treatment effect in

historical and current experiments, a sample size in a historical trial, a sample size of a new

experiment, the bias between historical and current data, and variance of the relevant measure.

Since we are interested in the influence of bias on operating characteristics, we made some

simplifying assumptions for other parameters. We set identical variances of the outcome measure

and identical sample sizes in historical and current experiments.

� Historical data: Y0 ∼ N
(

∆0,
σ2

m0

)
, where y0 is effect estimate, m0 is the parameter related

to the number of patients and ∆0 is a true treatment effect from historical experiment

� New data: Y? ∼ N
(

∆?,
σ2

m?

)
, where y? is effect estimate, m? is the parameter related to

the number of patients and ∆? is a true treatment effect from a new experiment

� For our simulation study we used m0 = 50, m? = 50 and variance as σ = 1

� With mentioned above sample sizes we reach a power of 80% with a significance level of

5% for an one-sided test when the treatment effect under H1 is 0.35 in RCT setting

� We varied ∆? from -0.2 to 0.45 to see the influence of the treatment effect on H0 rejection

rate

� We varied y0 = from -0.2 to 0.44 to see the influence of bias on power and type I error

The difference between estimates y0 and y? is the measure for the bias between historical

and current experiments. In the situation, when historical estimate is fixed, the bias depends

only on one random variable: y0 − Y? ∼ N(y0 − ∆?,
σ2

n?
). When random historical estimate is

random, the bias estimate depends on two random variables: Y0 − Y? ∼ N(∆0 −∆?,
σ2

n?
+ σ2

n0
).

5



6 CHAPTER 2. ONE ARM SETTING

2.1 Power parameter in a power prior

We use power prior to include historical data in the analysis:

p(∆ | y0) ∝ L(y0 |∆)δp(∆) (2.1)

∆ | y0, δ ∼ N

(
y0,

σ2

δm0

)
, (2.2)

where ∆ is the parameter of interest and δ is a nuisance power parameter, which determines

the weight of the prior information.

For further analysis of the operating characteristics, we need to compute the marginal pos-

terior of the treatment effect p(∆ | y0, y?). There are three ways to deal with the nuisance power

parameter δ: to fix δ based on an available assumption (a conditional power prior), the empirical

Bayes and full Bayes approaches. The posterior distributions for the treatment effect, which are

derived by using each method and related H0 rejection rates, are summarized in the Table 2.1.

2.1.1 Conditional power prior

In the conditional power prior approach, δ is considered as a fixed value, determined by an

existing belief about the compatibility of the historical and the new experiments. In our analysis,

we considered the next δ: 0, 0.2, 0.4, 0.6, 0.8, 1 for estimation of operation characteristics.

The posterior distribution of the treatment effect ∆, which combines the historical power

prior with the current likelihood is:

p (∆ | y0, y?) ∝ p(∆ | y0, δ)L(y? |∆) (2.3)

p(∆ | y0, y∗) ∝ p(∆)

(
1√

2πσ2/m0

exp

(
−m0

2

(∆− y0)2

σ2

))δ (
1√

2πσ2/m?

exp

(
−m?

2

(y? −∆)2

σ2

))

Using quadratic formula available in the App. 1.

p(∆ | y0, y?, δ) ∝
(

1√
2πσ2

)δm0+m?

exp

(
− 1

2σ2
(δm0 +m?)

(
∆− δm0y0 +m?y?

δm0 +m?

)2
)

Thus, in the case of a fixed power parameter, the posterior distribution of a treatment effect

for the one arm case has a normal shape:

∆ | y0, y?, δ ∼ N

(
δm0y0 +m?y?
δm0 +m?

,
σ2

δm0 +m?

)
(2.4)

2.1.2 Empirical Bayes approach

In this approach, the nuisance power parameter δ is estimated based on the data, using maximum

likelihood estimate (MLE) of the marginal likelihood of L(y0, y? | δ).
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δ̂(yo, y∗) = argmax
δ∈[0,1]

L(y?, y0 | δ) (2.5)

By the law of total probability:

L(y? | δ, y0) =

∫
L(y? |∆)p(∆ | δ, y0)d∆

=

∫
N

(
y? |∆,

σ2

m?

)
N

(
∆ | y0,

σ2

δm0

)
d∆

=

√
m?δm0

2πσ2

∫
exp

(
− 1

2σ2

(
m?(y? −∆)2 + δm0(∆− y0)2

))
d∆

∝
∫

exp

(
− 1

2σ2
(m? + δm0)

(
∆− m?y? + δm0y0

m? + δm0

))
exp

(
− 1

2σ2

δm0m?

m? + δm0
(y? − y0)2

)
d∆

Since this has the form of a normal likelihood, invariance property of the maximal likelihood

estimate (y? − y0)2 can be applied.

σ2

(
1

δm0
+

1

m?

)
= (y? − y0)2 (2.6)

δ̂ =
1

m0
· σ2m?

m?(y? − y0)2 − σ2
(2.7)

We need to respect the condition that 0 ≤ δ ≤ 1, what leads to (y? − y0)2 > σ2

m?
and when

this condition is not met δ̂ = 1.

1 fun.delta.EB <- function(x_star , x_0, sigma , n_star , n_0) {

2 if ( (x_star - x_0)^2 >= sigma^2/n_star + sigma^2/n_0) {

3 delta.hat <- (1/n_0) * (sigma ^2) * n_star / (n_star*(x_star - x_0)^2 - sigma

^2)

4 } else {delta.hat <- 1}

5 return(delta.hat)

6 }

Thus, the bigger the difference between the historical and the current estimate (y? − y0)2,

the smaller the estimate of the power parameter δ̂, and therefore the smaller the influence of

historical data. The left plot of the Figure 2.1 shows the variability of estimation of δ̂ depending

on the true value of effect ∆?, when y0 is fixed and equal to 0. The higher the value of ∆?, the

higher the related simulated value y? ∼ N
(

∆?,
σ2

m?

)
, and therefore, the bias is higher too. The

right plot shows an average over multiple simulations.
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Figure 2.1: A power parameter δ̂ based on the empirical Bayes approach. A) Box
plots for 100 simulations of y? for each value of ∆? and fixed y0 = 0 B) δ̂ averaged over
multiple simulations

If we substitute the derived estimate of δ̂ to the posterior distribution for fixed δ, we obtain

the next posterior distribution for treatment effect using the empirical Bayes approach:

∆ | y?, y0, δ̂ =


N
(

σ2

m?(y0−y?) + y?,
σ2

m?

(
1− σ2

m?(y?−y0)2

))
if (y? − y0)2 > σ2

m?

N
(
m0y0+m?y?
m0+m?

, σ2

m0+m?

)
if (y? − y0)2 ≤ σ2

m?

(2.8)

2.1.3 Normalized power prior

In the full Bayes approach, we treat δ as an extra parameter with its own prior distribution:

δ ∼ Be(α, β), where α, β are hyper-parameters. For our analysis we have used α = 0.5 and

β = 0.5.

The joint power prior based on the definition of the conditional density is:

p(∆, δ | y0) = p(∆ | y0, δ)p(δ | y0) (2.9)

where p(δ | y0) = p(δ) since a prior distribution δ ∼ Be(α, β).

Using Bayesian theorem we can write the the next formula for p(∆ | y0, δ):

p(∆ | y0, δ) =
L(y0 |∆)δp(∆)∫
L(y0 |∆)δp(∆)d∆

Thus, considering p(∆) as non-informative the joint posterior is:
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p(∆, δ | y0, y?) ∝ L(y? |∆)p(∆, δ | y0)

p(∆, δ | y0, y?) ∝ L(y? |∆)p(∆ | y0, δ)p(δ)

p(∆, δ | y0, y?) ∝ L(y? |∆)L(y0 |∆)δp(∆)p(δ)

p(∆, δ | y0, y?) ∝ L(y? |∆)L(y0 |∆)δp(δ)

p(∆, δ | y0, y?) ∝ N∆

(
y0,

σ2

δm0

)
N∆

(
y?,

σ2

m?

)
Be(α, β)

and marginal posterior for ∆ is:

p(∆ | y0, y?) ∝
∫ 1

0
p(∆, δ | y0, y?)dδ ∝

∫ 1

0
L(y? |∆)L(y0 |∆)δp(δ)dδ

Thus, the marginal posterior for the treatment effect is p(∆ | y0, y?) in this case is:

p(∆ | y0, y?) ∝
∫ 1

0
N∆

(
y0,

σ2

δm0

)
N∆

(
y?,

σ2

m?

)
Beδ(α, β)dδ (2.10)

1 poster.control.FB <- function (theta , x_0, x_star , alpha , beta , n_star ,

2 n_0, sigma) {

3 # d - delta(power parameter) over what we integrate

4 # y - theta(effect) parameter of our interest

5 dens <- function (d,y) {

6 dnorm(y, mean = x_0,sd = sqrt(sigma^2/(n_0*d)))*dnorm(y, mean = x_star ,sd =

sqrt(sigma^2/(n_star)))*dbeta(d, alpha , beta)}

7 return(sapply(theta , function(z){integrate(dens ,0,1, y = z)$value}))

8 #as return we have function (theta)

9 #for each theta we integrate over delta

10 }

And marginal posterior for the power parameter p(δ | y0, y?) is

p(δ | y0, y?) ∝
∫ ∞
∞

N∆

(
y0,

σ2

δm0

)
N∆

(
y?,

σ2

m?

)
Beδ(α, β)d∆ (2.11)

1 #Marginal for delta one arm

2 margin.poster.FB.delta <- function (delta , x_0, x_star ,

3 alpha , beta , n_star ,

4 n_0, sigma) {

5 # d - delta(power parameter)

6 # y - theta(effect) parameter of our interest

7 dens <- function (d,y) {

8 dnorm(y, mean = x_0,sd = sqrt(sigma^2/(n_0*d)))*dnorm(y, mean = x_star ,sd =

sqrt(sigma^2/(n_star)))*dbeta(d, alpha , beta)}

9 return(sapply(delta , function(z){integrate(dens ,-Inf ,Inf , d = z)$value}))

10 #as return we have function (delta)

11 #for each delta we integrate over theta/y

12 }

The marginal distribution for p(δ | y0, y?) depends on the difference between historical and

new experiment estimates (y0−y?)2, thus the full Bayes approach is also an adaptable, dynamic
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borrowing approach. Figure 2.2 shows the marginal posterior distribution for the treatment

effect for large (A) and small (B) bias values. When the bias is large, the marginal posterior

distribution has a bigger variance and is shifted towards a new experiment.

Figure 2.2: The marginal posterior distribution for the treatment effect under using
the full Bayes approach: A) With a large bias B) With a small bias

Adaptability, according to the bias, can also be seen on the marginal posterior of the power

parameter p(δ | y0, y?). Figure 2.3 shows the prior distribution for δ ∼ Be(0.5, 0.5) and how

the shape of the marginal posterior distribution is changed according to the difference between

historical and new experiment estimates (y0 − y?)2. When the difference is large, higher values

of the density are concentrated in the region 0 < δ < 0.5.

Figure 2.4 shows the change in the median point of the marginal posterior distribution for

the power parameter δ according to the bias. The higher the bias, the bigger the shift of a

median point towards lower values.
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Figure 2.3: The marginal posterior distribution for the power parameter δ using the
full Bayes approach under a large (red line) and a small (pink line) bias

Figure 2.4: Median estimates for the marginal posterior distribution of δ. A) Boxplots
for 100 simulations for different values of ∆? and fixed y0 = 0 B) Averaged over multiple
simulations
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Posterior distributions of a treatment effect for one simulation of y?

Figure 2.5 shows the posterior distributions of a treatment effect using different approaches for

one simulation of y? under ∆ = ∆H1 and a fixed value y0 = 0. Different shadows of grey lines

demonstrate how the posterior distribution shifts towards the likelihood of a new experiment

when δ is getting smaller. The red line is for posterior distribution with the power parameter

estimated with the empirical Bayes approach. For this simulation, the difference between y0 and

y? is large and consequently, a the value of δ̂ is small. The blue line shows the posterior under the

full Bayes approach, which is located between the prior distribution and the current likelihood

with a higher variance also due to a high difference between historical and new experiment

estimates.

Figure 2.5: The posterior distributions of a treatment effect for one simulation of y?
under ∆ = ∆H1 and a fixed value y0 = 0



2.2. H0 REJECTION RATE 13

2.2 H0 rejection rate

For estimation of operating characteristics we need to derive the H0 rejection rate conditional

on a treatment effect ∆. We test the following hypotheses H0 : ∆ ≤ 0 and H1 : ∆ > 0.

Even though we apply a Bayesian approach, the frequentist‘s operating characteristics are

required to answer our research questions: power and type I error. Hence ∆H0 and ∆H1 should

be established. Based on the established hypotheses ∆H0 is 0. For determining ∆H1 we fixed the

target power of 80% with significance level of 5%. Thus, for the one-sided test in RCT setting

∆H1 is 0.35 conditional on m0 = 50, m? = 50 and variance σ = 1.

� Type I error: H0 rejection rate (how often we reject H0) when H0 is true.

In a Bayesian setting how often Pr(∆ > 0 |data) > 1 − α or Pr(∆ ≤ 0 | data) ≤ α under

the condition ∆ = ∆H0

� Power: H0 rejection rate (how often we reject H0) when H1 is true.

In a Bayesian setting how often Pr(∆ > 0 |data) > 1 − α or Pr(∆ ≤ 0 | data) ≤ α under

the condition ∆ = ∆H1

where we fixed the significance level α as 5% for our analysis.

2.2.1 Classical approach

Power estimation in classical RCT setting was taken from Spiegelhalter et al. (2004). Under

classical analysis, H0 is rejected if a sample value Y? is below a specific critical value.

Y? > −zασ
√

1

m?
, (2.12)

where zα is quantile of a prescpecified significance level (Type I error).

PrC(reject H0 |∆) = Pr

(
Y? > −zασ

√
1

m?

∣∣∣ ∆

)
= 1− Pr

(
Y? ≤ −

√
1

m?
zασ

∣∣∣ ∆

)
= Φ

[
∆

σ

√
m? + zα

]
(2.13)

1 #Conditional classical power for 1 arm

2 one.arm.cond.class.power <- function (n_new , ze, effect , sigma){

3 out <- pnorm(effect*sqrt(n_new)/sigma + ze)

4 return (out)

5 }

2.2.2 Bayesian approach

In a Bayesian approach, the goal is to incorporate prior (historical) information to make a better

decision. We are interested in how often we reject H0 based on a Bayesian decision rule when

testing the null hypothesis : ∆ ≤ 0 against an alternative HA : ∆ > 0. In the Bayesian

setting, the decision depends on the posterior distribution of the parameter of interest, which is
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a treatment effect inferred from historical and current experiments p(∆ | y?, y0). The resulting

H0 rejection rate and related operating characteristics strongly depend on the approach chosen

for the derivation of the posterior distribution of the treatment effect, which we considered in

section 2.1.

Fixed power parameter

The derivation of the H0 rejection rate for a normal prior in the one arm case was shown in

Spiegelhalter et al. (2004). We adapted this derivation for a power prior with a fixed power

parameter.

As it was derived above (2.4) the posterior distribution of the treatment effect is in conditional

power prior setting:

∆ | y?, y0, δ ∼ N

(
δm0y0 +m?y?
δm0 +m?

,
σ2

δm0 +m?

)
In order to estimate the H0 rejection rate, we need to see how often Pr(∆ ≤ 0 | data) ≤ α,

where by data we mean a historical outcome estimate y0 and a current experiment estimate y?
or Pr(∆ > 0 | data) > 1− α.

Pr(∆ ≤ 0 | y0, y?, δ) ≤ α

Φ

[
− δm0y0+m?y?

δm0+m?

σ
√

1/(δm0 +m?)

]
≤ α

− δm0y0+m?y?
δm0+m?

σ
√

1/(δm0 +m?)
≤ zα

Thus, the next condition for Y? can be derived, which causes a significant result, namely H0

rejection:

Y? ≥
1

m?

(
−zασ

√
δm0 +m? − δm0y0

)
(2.14)

Since Y? ∼ N
(

∆?,
σ2

m?

)
we can derive the conditional H0 rejection rate for a fixed historical

outcome estimate y0.

PrB(rejectH0 |∆?) = 1− Φ

[
1
m?

(
−zασ

√
δm0 +m? − δm0y0

)
−∆?

σ/
√
m?

]

= Φ

[
1
m?

(
zασ
√
δm0 +m? + δm0y0

)
+ ∆?

σ/
√
m?

]
(2.15)

1 #Conditional bayesian power for 1 arm

2 one.arm.cond.bayes.power <- function (delta , n_0, y_0, n_new , ze, effect , sigma)

{

3 out <- pnorm(sqrt(n_new) * effect / sigma + delta * n_0 * y_0 / (sigma * sqrt(

n_new)) +sqrt((delta * n_0 + n_new) / n_new) * ze

4 )

5 return (out)

6 }
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Using this formula (2.15) we estimated the H0 rejection rate depending on the true treatment

effect in a new experiment ∆?, the bias, the value of y0, and the value of fixed δ.

1 Pr.B.rej.H0.given.effect.f1 <-

2 function (x, y, z) {

3 one.arm.cond.bayes.power(

4 delta = z,

5 n_0 = m_0,

6 y_0 = y,

7 n_new = m_star ,

8 ze = qnorm (0.05) ,

9 effect = x,

10 sigma = sd_0

11 )

12 }

13 one.arm.H0.rej.cond.bayes <-

14 array(do.call(Pr.B.rej.H0.given.effect.f1, c(expand.grid(

15 list(x = effect_star , y = y_0, z = deltas.fixed)

16 ))),

17 dim = c(length(effect_star), length(y_0), length(deltas.fixed)))

In the case when y0 is a random variable, instead of one fixed value y0, we explore what

happens if Y0 ∼ N
(

∆0,
σ2

m0

)
. Similar to a fixed scenario, different ∆0 are considered to be able

to see the influence of the bias ∆0 −∆?. An estimate of the bias for each simulation is y0 − y?.

PrB(rejectH0 |∆) =

∫
Φ

[
1
m?

(
zασ
√
δm0 +m? + δm0y0

)
+ ∆

σ/
√
m?

]
φy0

(
y0,

σ
√
m0

)
dy0 (2.16)

We estimated H0 rejection rate depending on the true treatment effect in a new experiment

∆? for each value of ∆0 and fixed δ, using the formula (2.16),

1 #we estimate P(rejec H0) for a range of y0, effects and fixed delta values

2 Pr.B.rej.H0.given.effect.f1.y0rv <-

3 function (x, y, z) {

4 Pow.y_0 <- function(y0) {

5 one.arm.cond.bayes.power(

6 y_0 = y0,

7 delta = z,

8 n_0 = m_0,

9 n_new = m_star ,

10 ze = qnorm (0.05) ,

11 effect = x,

12 sigma = sd_0

13 ) * dnorm(y0, mean = y, sd = sd_0 / sqrt(m_0))

14 }

15 out <-

16 integrate(Vectorize(Pow.y_0), -Inf , Inf , abs.tol = 0)$value

17 return(out)

18 }

19 par <- expand.grid(x = effect_star , y = y_0, z = deltas.fixed)

20 one.arm.H0.rej.cond.bayes.y0rv <- array(

21 mapply(Pr.B.rej.H0.given.effect.f1.y0rv , par$x, par$y, par$z),

22 dim = c(length(effect_star), length(y_0), length(deltas.fixed))

23 )

The resulting plots, which show H0 rejection rate and related operating characteristics, can

be found in chapter 4.1.



16 CHAPTER 2. ONE ARM SETTING

Empirical Bayes

Similarly to the conditional power prior case, we need to find which Y? leads to H0 rejection :

Pr(∆ ≤ 0 | y?, y0) ≤ α. First, we consider the situation when (y? − y0)2 > σ2

m?
:

Pr(∆ ≤ 0 | data) ≤ α

Φ

 0− σ2

m?(y0−y?) − y?√
σ2

m?

(
1− σ2

m?(y?−y0)2

)
 ≤ α

σ2

m?(y0−y?) + y?√
σ2

m?

(
1− σ2

m?(y?−y0)2

) ≤ zα
σ2m? + y?m

2
?(y0 − y?)√

σ2m?(y0 − y?)2 − σ4
≤ zα

To have a closed-form solution for the H0 rejection rate, we need to solve this inequality

in terms of y?. Since there is no simple way to do that, we applied simulation techniques:

simulations for y? with the following estimation of δ̂ and averaging over simulations to estimate

H0 rejection rate.

Similarly to the conditional power prior case, we considered different values for the true

treatment effect in a new experiment ∆? and different values of historical estimate y0. The bias

for this scenario is y0 −∆?, with a bias estimate, which depends only on one random variable,

y0 − y?.

1 for (n.sim in c(1:sim.N)) {

2 print(n.sim)

3 for (n.effect_star in c(1: length(effect_star))) {

4 #1. simulate y_star

5 y_star_sim <-

6 rnorm(1, effect_star[n.effect_star], sd_0 / sqrt(m_star))

7 for (n.y_0 in c(1: length(y_0))) {

8 #2. estimate delta.hat

9 delta.hat <- fun.delta.EB(

10 x_star = y_star_sim ,

11 x_0 = y_0[n.y_0],

12 sigma = sd_0,

13 n_star = m_star ,

14 n_0 = m_0

15 )

16 one.arm.delta.EB[n.sim , n.effect_star , n.y_0] <- delta.hat

17 #3. Derive mean and variance of EB posterior of p(effect)

18 post.mean.fixed <-

19 (delta.hat * m_0 * y_0[n.y_0] + m_star * y_star_sim) / (delta.hat * m_0

+ m_star)

20 post.sd.fixed <- sd_0 / sqrt(delta.hat * m_0 + m_star)

21 #P(Delta >0)

22 One.arm.P.EB[n.sim , n.effect_star , n.y_0] <-

23 1 - pnorm(0, mean = post.mean.fixed , sd = post.sd.fixed)

24 }

25 }

26 }
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27 #4. Estimate H0 rejection rate

28 One.arm.H0.rej.rate.EB <-

29 array(apply(One.arm.P.EB > 0.95, c(2,3), FUN = mean), dim = c(length(effect_

star),length(y_0)))

In the case when y0 is random, an additional simulation of y0 is required. y0 was simulated

from N
(

∆0,
σ2

m0

)
.

1 for (n.sim in c(1:sim.N)) {

2 print(n.sim)

3 for (n.effect_star in c(1: length(effect_star))) {

4 for (n.y_0 in c(1: length(y_0))) {

5 #1. simulate y_star and y_0

6 y_star_sim <-

7 rnorm(1, effect_star[n.effect_star], sd_0 / sqrt(m_star))

8 y_0_sim <- rnorm(1, y_0[n.y_0], sd_0 / sqrt(m_0))

9 #2. estimate delta.hat

10 delta.hat <- fun.delta.EB(

11 x_star = y_star_sim ,

12 x_0 = y_0_sim ,

13 sigma = sd_0,

14 n_star = m_star ,

15 n_0 = m_0

16 )

17 one.arm.delta.EB.y0rv[n.sim , n.effect_star , n.y_0] <-

18 delta.hat

19 #3. Derive mean and variance of EB posterior of p(effect)

20 post.mean.fixed <-

21 (delta.hat * m_0 * y_0_sim + m_star * y_star_sim) / (delta.hat * m_0 + m

_star)

22 post.sd.fixed <- sd_0 / sqrt(delta.hat * m_0 + m_star)

23 #P(delta >0)

24 One.arm.P.EB.y0rv[n.sim , n.effect_star , n.y_0] <- +

25 1-pnorm(0, mean = post.mean.fixed , sd = post.sd.fixed)

26 }

27 }

28 }

29 #4. Estimate H0 rejection rate

30 One.arm.H0.rej.rate.EB.y0rv <-

31 array(apply(One.arm.P.EB.y0rv > 0.95, c(2,3), FUN = mean),

32 dim = c(length(effect_star),length(y_0)))

Full Bayes

As it was derived above (2.11), the posterior distribution for a treatment effect for the full Bayes

approach:

p(∆ | y0, y?) ∝
∫ 1

0
N∆

(
y0,

σ2

δm0

)
N∆

(
y?,

σ2

m?

)
Beδ(α, β)dδ

For calculation of H0 rejection rate, we simulated y? with the following derivation of the

marginal posterior distribution of the treatment effect p(∆ | y0, y?). Further, we calculated how

often p(∆ > 0 | y0, y?) > 1− α.

1 foreach(n.sim = c(1:sim.N)) %do% {

2 print(n.sim)
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3 one.arm.Pr.rej.H0 <- function(x, y) {

4 #1. simulate y_star

5 y_star <-

6 rnorm(1, x, sd_0 / sqrt(m_star))

7 #2. Derive marginal FB posterior(effect)

8 poster.effect.FB <-

9 function (eff) {

10 poster.control.FB (

11 theta = eff ,

12 x_0 = y,

13 x_star = y_star ,

14 alpha = 0.5,

15 beta = 0.5,

16 n_star = m_star ,

17 n_0 = m_0,

18 sigma = sd_0

19 )

20 }

21 out <-

22 integrate(Vectorize(poster.effect.FB), 0, Inf , abs.tol = 0)$value/

integrate(Vectorize(poster.effect.FB), -Inf , Inf , abs.tol = 0)$value

23 return(out)

24 }

25 #3.P(delta >0)

26 one.arm.P.FB[n.sim , ,] <-

27 (outer(effect_star2 , y_0, FUN = Vectorize(one.arm.Pr.rej.H0)))

28 }

29 #4.H0 rejection rate: how often P(delta >0) > 95%

30 one.arm.rej.H0.FB <-

31 array(apply(one.arm.P.FB > 0.95, c(2,3), FUN = mean , na.rm = TRUE),

32 dim = c(length(effect_star2),length(y_0)))

For random historical data we also simulated different values of y0 ∼ N
(

∆0,
σ2

m0

)
.

1 foreach(n.sim = c(1:sim.N)) %do% {

2 print(n.sim)

3 one.arm.Pr.rej.H0.y0rv <- function(x, y) {

4 #1. simulate y_star and y_0

5 y_star <-

6 rnorm(1, x, sd_0 / sqrt(m_star))

7 y_0_sim <-

8 rnorm(1, y, sd_0 / sqrt(m_0))

9 #2. Derive marginal FB posterior(effect)

10 poster.effect.FB.y0rv <-

11 function (eff) {

12 poster.control.FB (

13 theta = eff ,

14 x_0 = y_0_sim ,

15 x_star = y_star ,

16 alpha = 0.5,

17 beta = 0.5,

18 n_star = m_star ,

19 n_0 = m_0,

20 sigma = sd_0

21 )

22 }

23 out <-

24 integrate(Vectorize(poster.effect.FB.y0rv), 0, Inf , abs.tol = 0)$value/
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integrate(Vectorize(poster.effect.FB.y0rv), -Inf , Inf , abs.tol = 0)$value

25 return(out)

26 }

27 #3.P(delta >0)

28 one.arm.P.FB.y0rv[n.sim , ,] <-

29 (outer(effect_star2 , y_0, FUN = Vectorize(one.arm.Pr.rej.H0.y0rv)))

30 }

31 #4.H0 rejection rate: how often P(delta >0) > 95%

32 one.arm.rej.H0.FB.y0rv <-

33 array(apply(one.arm.P.FB.y0rv > 0.95, c(2,3), FUN = mean , na.rm = TRUE),

34 dim = c(length(effect_star2),length(y_0)))

Summary

The resulting posterior distributions and H0 rejection rates are shown in the Table 2.1. Related

operating characteristics are shown on the plots in chapter 4.1.
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Type The posterior distribution p(∆ | y0, y?)
Calculation of the H0 Rejection rate (fixed
y0) conditional on the treatment effect ∆

Calculation of the H0 Rejection rate (random y0) con-
ditional on the treatment effect ∆

Fixed N
(
δm0y0+m?y?
δm0+m?

, σ2

δm0+m?

)
Φ

[
1
m?

(zασ
√
δm0+m?+δm0y0)+∆

σ/
√
m?

] ∫
Φ

[
1
m?

(zασ
√
δm0+m?+δm0y0)+∆

σ/
√
m?

]
φy0

(
y0,

σ√
m0

)
dy0

EB



N
(

σ2

m?(y0−y?) + y?,
σ2

m?

(
1− σ2

m?(y?−y0)2

))
,

if (y? − y0)2 > σ2

m?

N
(
m0y0+m?y?
m0+m?

, σ2

m0+m?

)
,

if (y? − y0)2 ≤ σ2

m?

1. Simulate y?

2. Estimate δ̂

3. Derive mean and variance of Normal
EB posterior p(∆ | y0, y?)

4. Estimate H0 rejection rate |∆: Check
how often Pr(∆ > 0 | y0, y?) > 1 − α
over simulations

1. Simulate y? and y0

2. Estimate δ̂

3. Derive mean and variance of Normal EB posterior
p(∆ > 0 | y0, y?)

4. Estimate H0 rejection rate |∆: Check how often
Pr(∆ > 0 | y0, y?) > 1− α over simulations

FB
∫ 1

0 N∆

(
y0,

σ2

δm0

)
N∆

(
y?,

σ2

m?

)
Beδ(α, β)dδ

1. Simulate y?

2. Derive marginal FB posterior
p(∆ | y0, y?)

3. Pr(∆ > 0 | y0, y?) =
∫∞

0 p(∆ | y0, y?)d∆

4. Power: how often Pr(∆ > 0 | y0, y?) >
1−α under ∆Ha and Type I error: how
often Pr(∆ > 0 | y0, y?) > 1 − α under
∆H0

1. Simulate y? and y0

2. Derive marginal FB posterior p(∆ | y0, y?)

3. Pr(∆ > 0 | y0, y?) =
∫∞

0 p(∆ | y0, y?)d∆

4. Power: how often Pr(∆ > 0 | y0, y?) > 1 − α un-
der ∆Ha and Type I error: how often Pr(∆ >
0 | y0, y?) > 1− α under ∆H0

Table 2.1: Posterior distributions and H0 rejection rates for the one arm setting



Chapter 3

Two arm setting

In the two arm case, we are interested in the scenario of a new clinical study, which aims to

compare normally distributed outcomes for control and treatment arms, however additional

historical information is available only for a control arm. For example, such a situation can

happen when there are multiple RCT for a particular disease with a control arm as standards of

care. Available information for the control arm from different studies can be analyzed together.

Thus, in a new experiment, a prior distribution for an outcome in a control arm can be based

on historical information. For a treatment arm, a non-informative prior can be applied. In this

chapter, the outcome estimate is the sample mean of a normally distributed relevant measure in

a group of interest.

Similarly, like in the one arm scenario 2, we established an identical variance of the outcome

measure for both arms in a new experiment and in a control arm of the historical experiment.

Besides, we also fixed the same sample sizes of the control and the treated groups of a new study

and in a historical control group.

� Historical data: X0 ∼ N
(
θ0,

σ2

n0

)
, where x0 is the outcome estimate, n0 is the sample size

and θ0 is the true outcome in historical control group

� New control data: X? ∼ N
(
θ?,

σ2

n?

)
, where x? is the outcome estimate, n? is the sample

size and θ? is the true value of the outcome in a control group of a new experiment

� We use the notation θc for the true treatment effect in the control group, when we did the

inference using both, historical and new experiment data together

� New treated data: Xt ∼ N
(
θt,

σ2

nt

)
, θt = θ? + ∆, where xt is the outcome estimate in a

current treated group, nt is the sample size in the current treated group

� For our simulation study we fixed n? = 100, n0 = 100, nt = 100 and variance as σ = 1

� Fixed historical estimate was x0 = 10 and for the case when historical data is random, we

used: x0 ∼ N(θ0,
σ2

n0
), θ0 = 10

� We varied θ? for a new experiment from 9.5 to 10.5 to see the influence of the bias in a

fixed historical estimate case: x0 − θ? and in random: θ0 − θ? on operating characteristics

� We varied ∆ from -0.2 to 0.45 to see the influence of the treatment effect on the H0

rejection rate and have estimates of type I error and a power for a particular values of ∆

� With the mentioned above sample sizes we reach power of 80% with a significance level of

5% for one-sided test when a treatment effect under H1 is 0.35 in the RCT setting

21
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3.1 Power parameter in a power prior

3.1.1 Conditional power prior

To derive the posterior distribution for a treatment effect, first, we need to have a posterior

distribution for an outcome measure for each arm separately. For a treated group, a non-

informative prior was used, and the posterior distribution of an outcome was derived using

Bayes theorem.

p(θt |xt) =
L(xt | θt)p(θt)∫
L(xt | θt)p(θt)dθt

p(θt |xt) ∼ N

(
xt,

σ2

nt

)
(3.1)

Similarly to the derivation of (2.3) we have the next posterior distribution of the outcome

in a control group:

p(θc |x0, x?, δ) ∼ N

(
δn0x0 + n?x?
δn0 + n?

,
σ2

δn0 + n?

)
The posterior distribution of a treatment effect: ∆ = θt − θc. Thus, it can be derived as the

difference of two normal distributions:

∆ |xt, x0, x? = θt |xt − θc |x0, x?

∆ |xt, x?, x0, δ ∼ N

(
xt −

δn0x0 + n?x?
δn0 + n?

,
σ2

nt
+

σ2

δn0 + n?

)
(3.2)

3.1.2 Empirical Bayes approach

Similar to the derivation in the one arm case (2.5), the posterior distribution of the outcome in

a control group is:

θc |x0, x? ∼


N
(

σ2

n?(x0−x?) + x?,
σ2

n?

(
1− σ2

n?(x?−x0)2

))
, if (x? − x0)2 > σ2

n?

N
(
n0x0+n?x?
n0+n?

, σ2

n0+n?

)
, if (x? − x0)2 ≤ σ2

n?

And, consequently, the posterior distribution of the treatment effect ∆ = θt−θc again as the

difference of the two normal distributions can be easily derived:
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∆ |xt, x?, x0, δ̂ ∼


N
(
xt − σ2

n?(x0−x?) − x?,
σ2

nt
+ σ2

n?

(
1− σ2

n?(x?−x0)2

))
, if (x? − x0)2 > σ2

n?

N
(
xt − n0x0+n?x?

n0+n?
, σ

2

nt
+ σ2

n0+n?

)
, if (x? − x0)2 ≤ σ2

n?

(3.3)

3.1.3 Normalized power prior

Similar to the derivation for one arm case (2.9), the posterior distribution of an outcome in the

control group is:

p(θc |x0, x?) ∝
∫ 1

0
Nθc

(
x0,

σ2

δn0

)
Nθc

(
x?,

σ2

n?

)
Beδ(α, β)dδ (3.4)

Posterior distribution of the treatment effect is now the difference of two random variables

∆ |xt, x0, x? = θt |xt−θc |x0, x?, one of them is normal, and the other has a more complex shape

(3.4). Using the formula of the difference between two random variables available in the App.

2, we derive the next formula for the posterior distribution of the treatment effect:

p(∆ |xt, x0, x?) =

∫ ∞
∞

Nθt

(
xt,

σ2

nt

)
pθc |x0,x?(θt −∆)dθt

3.2 H0 rejection rate

Analogously to the one arm scenario, we test the following hypotheses H0 : ∆ ≤ 0 and H1 : ∆ >

0. The treatment effect under the null hypothesis is ∆H0 = 0. The treatment effect under the

alternative hypothesis is ∆H1 = 0.35, as estimated for a target power of 80% with significance

level 5% in one-sided test in the RCT setting conditional on n0 = 100, n? = 100, nt = 100 and

variance as σ = 1.

Operating characteristics were defined in the same way as in chapter 2.2. For the estimation

of operating characteristics, we need to derive H0 rejection rate conditional on a treatment effect

∆ = θt − θc.

3.2.1 Classical approach

Similar to the derivation for the one arm scenario (2.13), a classical power for two arm test is:

xt − x? > −zασ
√
n? + nt
n?nt

(3.5)

where zα is a quantile of a prescpecified significance level (Type I error)

Thus, H0 rejection rate in the classical RCT approach without the use of historical data is:
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PrC(reject H0 |∆?) = Pr(xt − x? > −zασ
√
n? + nt
n?nt

∣∣∣ ∆)

= 1− Pr(xt − x? ≤ −
√
n? + nt
n?nt

zασ
∣∣∣ ∆)

= 1− Φ

[−zασ/√n?+nt
n?nt

−∆

σ/
√

n?+nt
n?nt

]

= Φ

[zεσ/√n?+nt
n?nt

+ ∆

σ/
√

n?+nt
n?nt

]

= Φ

[
∆

σ

√
n?nt
n? + nt

+ zα

]
(3.6)

1 #Conditional classical power for 2 arms

2 two.arm.cond.class.power <- function (n_c,n_t, ze, effect , sigma){

3 out <- pnorm(( effect/sigma)*sqrt((n_c * n_t)/(n_c + n_t)) + ze)

4 return (out)

5 }

1 #Classical approach

2 two.arm.H0.rej.cond.class <-

3 sapply(effects , two.arm.cond.class.power.effect)

3.2.2 Bayesian approach

In a Bayesian approach, we are integrating historical information into the analysis. We derive

a H0 rejection rate function for each approach of dealing with a nuisance power parameter: a

conditional power prior, the empirical Bayes, and the full Bayes approaches.

Conditional power prior

The posterior for the effect was derived in (3.1.1):

∆ |xt, x?, x0, δ ∼ N

(
xt −

δn0x0 + n?x?
δn0 + n?

,
σ2

nt
+

σ2

δn0 + n?

)
Similar to the one arm scenario (2.2.2), we need to find for which x? the result is significant:

Pr(∆ < 0 |x?, x0, xt, δ) ≤ α

Φ

[
0− xt + δn0x0+n?x?

δn0+n?

σ
√

1/(δn0 + n?) + 1/nt

]
≤ α

0− xt + δn0x0+n?x?
δn0+n?

σ
√

1/(δn0 + n?) + 1/nt
≤ zα

Thus:
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X? ≤
1

n?

{
(δn0 + n?)

(
xt + zασ

√
1

δn0 + n?
+

1

nt

)
− δn0x0

}
(3.7)

Since X? ∼ N
(
θ?,

σ2

n?

)
, the H0 rejection rate for a fixed historical estimate is:

Pr(rejectH0 | θ?,∆, xt) = Φ

 1
n?

{
(δn0 + n?)

(
xt + zσ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

}
− θ?

σ/
√
n?


= Φ

[
δn0 + n?
σ
√
n?

(
xt + zασ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

σ
√
n?
−
θ?
√
n?

σ

]

which is still dependent on xt and we know that Xt ∼ N
(
θ? + ∆, σ

2

nt

)
. So, we can apply the

law of the total probability and integrate over the space of xt :

Pr(reject H0 | θ?,∆) =∫
Φ

[
δn0 + n?
σ
√
n?

(
xt + zασ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

σ
√
n?
−
θ?
√
n?

σ

]
φxt

(
θ? + ∆,

σ2

nt

)
dxt

1 #Bayesian H0 rejection rate given effect

2 two.arm.bayes.power.given.effect.xt.var <- function (delta , x_0, x_t, n_t, n_0,

n_c, ze, sigma , effect , theta_star){

3 out <- pnorm( ((delta*n_0 + n_c)/(sigma*sqrt(n_c)))*(x_t + ze*sigma*sqrt(1/(

delta*n_0+n_c) + 1/n_t)) - delta*n_0*x_0/(sigma*sqrt(n_c)) - theta_star *

sqrt(n_star)/sigma ) * dnorm(x_t, mean = theta_star + effect , sd = sigma/

sqrt(n_t))

4 return (out)

5 }

We applied this formula to different values of ∆ to investigate the H0 rejection rate depending

on a treatment effect. We also explored different values of θ? to examine the influence of the

bias between historical and current experiments. Besides, we considered different values of δ to

investigate the influence of a power parameter in a conditional power prior approach.

1 #Bayesian approach with fixed power parameter

2 B.Pr.rej.Ho.f1 <-

3 function (x, y, z) {

4 Pow.x_t_delta <- function(xt) {

5 two.arm.bayes.power.given.effect.xt.var(

6 x_t = xt,

7 delta = z,

8 x_0 = x_0,

9 n_0 = n_0,

10 n_c = n_star ,

11 n_t = n_t,

12 ze = qnorm (0.05) ,

13 theta_star = y,

14 sigma = sd_0,

15 effect = x

16 )

17 }
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18 out <- integrate(Pow.x_t_delta , -Inf , Inf , abs.tol = 0)$value

19 return(out)

20 }

21 par <- expand.grid(x = effects , y = theta_star , z = deltas.fixed)

22 two.arm.H0.rej.cond.bayes <- array(mapply(B.Pr.rej.Ho.f1, par$x, par$y, par$z),

23 dim = c(length(effects), length(theta_star),

length(deltas.fixed)))

In the case of random historical data, we again can apply the law of total probability and

update the H0 rejection function, considering the randomness of X0 ∼ (θ0,
σ2

n0
):

Pr(reject H0 |∆) =

∫ ∫
Φ

[
δn0 + n?
σ
√
n?

(
xt + zασ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

σ
√
n?
−
θc
√
n?
σ

]
φ

(
θ0,

σ2

n0

)
φ

(
θc + ∆,

σ2

nt

)
dx0dxt

1 f1 <-

2 function (x, y, z) {

3 #H0 rejection rate depending on two variables xt and xo

4 Pow.x_t_x_0 <- function(xt1 , xo1) {

5 two.arm.bayes.power.given.effect.xt.var(

6 x_t = xt1 ,

7 delta = z,

8 x_0 = xo1 ,

9 n_0 = n_0,

10 n_c = n_star[1],

11 n_t = n_t,

12 ze = qnorm (0.05) ,

13 theta_star = y,

14 sigma = sd_0,

15 effect = x

16 )

17 }

18 #Now we perform a double integration over xo and xt :

19 #First , we integrate over xt

20 # xt random

21 # xo random

22 Pow.x_t <- function (x0) {

23 # d delta over what we integrate

24 # y theta parameter of interest

25 dens <- function (x0, xt) {

26 Pow.x_t_x_0(xt1 = xt, xo1 = x0) * dnorm(x0, mean = x_0, sd = sd_0 / sqrt

(n_0))

27 }

28 return(sapply(x0, function(z) {

29 integrate(dens , 5, Inf , abs.tol = 0, xt = z)$value

30 }))

31 #for each x0 we integrate over xt

32 }

33 #Second , we integrate over x0

34 out <- integrate(Pow.x_t, 5, Inf , abs.tol = 0)$value

35 return(out)

36 }

37 par <- expand.grid(x = effects , y = theta_star , z = deltas.fixed)

38 two.arm.H0.rej.cond.bayes.xorv <-

39 array(mapply(f1, par$x, par$y, par$z),
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40 dim = c(length(effects), length(theta_star), length(deltas.fixed)))

Empirical Bayes

Similar to the one arm case (2.2.2), the closed-form solution for the H0 rejection rate is not

easily obtained, so we used simulations techniques to asses operating characteristics.

When historical data x0 is fixed, we simulated x? and xt, derived the posterior distribution

for a treatment effect using the formula from above (3.3), estimated Pr(∆ > 0 |x0, x?, xt), and

calculated how often H0 is rejected : Pr(∆ > 0 |x0, x?, xt) > 0.95

1 ######################################## For fixed and EB:

2 for (n.sim in c(1:sim.N)) {

3 print(n.sim)

4 for (n.theta_star in c(1: length(theta_star))) {

5 for (n.effect in c(1: length(effects))) {

6 #1. simulate x_star

7 x_star1 <- rnorm (1, theta_star[n.theta_star] ,

8 sd_0 / sqrt(n_star[n.n_star]))

9 #2. simulate x_t

10 x_new_t <-

11 rnorm (1, theta_star[n.theta_star] + effects[n.effect],

12 sd_0 / sqrt(n_t))

13

14 #3. estimate delta.hat

15 delta.hat <-

16 fun.delta.EB(

17 x_star = x_star1 ,

18 x_0 = x_0,

19 sigma = sd_0,

20 n_star = n_star ,

21 n_0 = n_0

22 )

23 #4. Derive mean and variance of EB posterior of p(effect)

24 mean_post.2arm.simul.EB <-

25 (delta.hat * x_0 * n_0 + x_star1 * n_star) / (n_star + delta.hat *

26 n_0)

27 sd_post.2arm.simul.EB <-

28 sqrt(sd_0 ^ 2 / (n_star + delta.hat * n_0))

29 #P(Delta >0)

30 P.EB[n.sim , n.theta_star , n.effect] <- +

31 1 - pnorm(0, x_new_t - mean_post.2arm.simul.EB,

32 sqrt(sd_0 ^ 2 / (n_t) + sd_post.2arm.simul.EB ^ 2))

33

34 }

35 }

36 }

37 Reject.H0.EB <-

38 array(apply(P.EB > 0.95, c(2,3), FUN = mean , na.rm = TRUE),

39 dim = c(length(theta_star),length(effects)))

In the case with random historical data x0 ∼ N
(
θ0,

σ2

n0

)
, we additionally simulated a histor-

ical estimate.

1 for (n.sim in c(1:sim.N)) {

2 print(n.sim)

3 #1. simulate x_0

4 x_0_sim <- rnorm(1, x_0, sd = sd_0 / sqrt(n_0))
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5 for (n.theta_star in c(1: length(theta_star))) {

6 for (n.effect in c(1: length(effects))) {

7 #2. simulate x_t and x_star

8 x_new_t <-

9 rnorm (1, theta_star[n.theta_star] + effects[n.effect], sd_0 / sqrt(n_t)

)

10 x_star1 <-

11 rnorm (1, theta_star[n.theta_star] , sd_0 / sqrt(n_star)) #New control

12 #3. estimate delta.hat

13 delta.hat <-

14 fun.delta.EB(

15 x_star = x_star1 ,

16 x_0 = x_0_sim ,

17 sigma = sd_0,

18 n_star = n_star ,

19 n_0 = n_0

20 )

21 #4. Derive mean and variance of EB posterior of p(effect)

22 mean_post.2arm.simul.EB.xorv <-

23 (delta.hat * x_0_sim * n_0 + x_star1 * n_star) / (n_star + delta.hat *

24 n_0)

25 sd_post.2arm.simul.EB.xorv <-

26 sqrt(sd_0 ^ 2 / (n_star + delta.hat * n_0))

27 #P(Delta >0)

28 P.EB.xorv[n.sim , n.theta_star , n.effect] <- 1 - pnorm(

29 0,

30 x_new_t - mean_post.2arm.simul.EB.xorv ,

31 sqrt(sd_0 ^ 2 / (n_t) + sd_post.2arm.simul.EB.xorv ^ 2)

32 )

33 }

34 }

35 }

36 #5.how often we reject H0: P(Delta >0) >95%

37 Reject.H0.EB.xorv <-

38 array(apply(P.EB.xorv > 0.95, c(2,3), FUN = mean , na.rm = TRUE),

39 dim = c(length(theta_star),length(effects)))

Full Bayes

As it was shown before, the posterior distribution of a treatment effect has a complex shape (3.5).

Thus, a two-step approach: first, derive the posterior distribution of a treatment effect and then

estimate P (∆ > 0 |xt, x0, x?) would require numerous numerical integrations and consequently,

a lot of time. Therefore, we focused on the direct derivation of P (∆ > 0 |xt, x0, x?) using the

normality of the posterior distribution of an outcome in a treated group.
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P (∆ > 0 |xt, x0, x?) =

P ((θt |xt − θc |x0, x?) > 0) =

P (θt |xt > θc |x0, x?) =

1− P (θt |xt ≤ θc |x0, x?) =

1− Φ

[
θc |x0, x? − xt√

σ2/nt

]
=

Φ

[
xt − θc |x0, x?√

σ2/nt

]

Now, applying the law of total probability, we need to integrate over the space of the param-

eter θc :

Pr(∆ > 0 |xt, x0, x?) =

∫
Φ

[
xt − θc√
σ2/nt

]
p(θc |x0, x?)dθc

In order to get the H0 rejection rate, we needed to see how often Pr(∆ > 0 |xt, x0, x?) > 0.95,

depending on different simulations of xt and x?. This approach was also computationally time-

consuming, so we looked only at the ∆ = ∆H0 and ∆ = ∆H1 , since our primary interest is power

and type I error. We also considered different values for θ? to investigate the influence of the

bias x0 − θ?.

1 foreach(n.sim = c(1:sim.N)) %do% {

2 print(n.sim)

3 #Under H0

4 f1.H0 <- function (t) {

5 #1. simulate x_star

6 x_star1 <-

7 rnorm (1, t , sd_0 / sqrt(n_star))

8 #2. Derive marginal posterior p(theta_c given x_star , x_0)

9 post.theta.control <- function(theta) {

10 poster.control.FB(

11 theta = theta ,

12 x_0 = x_0,

13 x_star = x_star1 ,

14 alpha = 0.5,

15 beta = 0.5,

16 n_star = n_star ,

17 n_0 = n_0,

18 sigma = sd_0

19 )

20 }

21 K<-1/integrate(Vectorize(post.theta.control), -Inf , Inf , abs.tol = 0)$value

22 #3. simulate x_t given H0

23 x_new_t.H0 <- rnorm (1, t + effect.H0,

24 sd_0 / sqrt(n_t))

25

26 #4. Derive P(delta >0) under H0

27 ## First we derive p(effect >0) as function of theta_c under H0

28 r.v.diff.H0.FB <- function(theta_c) {

29 pnorm((x_new_t.H0 - theta_c) / sqrt(sd_0 ^ 2 / (n_t)), 0, 1) * post.theta.
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control(theta_c)*K

30 }

31 out <- integrate(r.v.diff.H0.FB, -Inf , Inf , abs.tol = 0)$value

32 return(out)

33 }

34 P.under.H0.FB[n.sim , ] <- sapply(theta_star , Vectorize(f1.H0))

35 #Under Ha

36 f1.Ha <- function (t) {

37 #1. simulate x_star

38 x_star1 <-

39 rnorm (1, t , sd_0 / sqrt(n_star))

40 #2. Derive marginal posterior p(theta_c given x_star , x_0)

41 post.theta.control <- function(theta) {

42 poster.control.FB(

43 theta = theta ,

44 x_0 = x_0,

45 x_star = x_star1 ,

46 alpha = 0.5,

47 beta = 0.5,

48 n_star = n_star ,

49 n_0 = n_0,

50 sigma = sd_0

51 )

52 }

53 K<-1/integrate(Vectorize(post.theta.control), -Inf , Inf , abs.tol = 0)$value

54 #3. simulate x_t given H1

55 x_new_t.Ha <- rnorm (1, t + effect.Ha,

56 sd_0 / sqrt(n_t))

57 #4. Derive P(delta >0) under H1

58 ## First we derive p(effect >0) as function of theta_c under H1

59 r.v.diff.Ha.FB <- function(theta_c) {

60 pnorm((x_new_t.Ha - theta_c) / sqrt(sd_0 ^ 2 / (n_t)), 0, 1) *post.theta.

control(theta_c)*K

61 }

62 ## Then we integrate over the space of theta_c

63 out <-

64 integrate(r.v.diff.Ha.FB, -Inf , Inf , abs.tol = 0)$value

65 return(out)

66 }

67 P.under.Ha.FB[n.sim , ] <- sapply(theta_star , Vectorize(f1.Ha))

68 }

69 TPR.FB <- apply (P.under.Ha.FB > 0.95,2,mean , na.rm = TRUE)

70 FPR.FB <- apply (P.under.H0.FB > 0.95,2,mean , na.rm = TRUE)

For the case with random historical estimate, we just added an extra line of code allowing

random simulation of a historical estimate x0 ∼ N(θ0,
σ2

n0
). Here we also considered different

values of θ? to investigate the bias θ0 − θ?.

Summary

The resulting posterior distributions and the H0 rejection rates are shown in the tables 3.1 and

3.2. Related operating characteristics are shown on the plots in chapter 4.2.
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Type Posterior of an outcome in control arm p(θc |x0, x?) Posterior of an effect p(∆ |x0, x?, xt)

Fixed N
(
δn0x0+n?x?
δn0+n?

, σ2

δn0+n?

)
N
(
xt − δn0x0+n?x?

δn0+n?
, σ

2

nt
+ σ2

δn0+n?

)

EB N
(

σ2

n?(x0−x?) + x?,
σ2

n?

(
1− σ2

n?(x?−x0)2

))
, when (x?−x0)2 > σ2

n?
N
(
xt − σ2

n?(x0−x?) + x?,
σ2

nt
+ σ2

n?

(
1− σ2

n?(x?−x0)2

))
, when (x?−x0)2 > σ2

n?

FB
∫ 1

0 Nθc

(
x0,

σ2

δn0

)
Nθc

(
x?,

σ2

n?

)
Beδ(α, β)dδ p(∆ |xt, x0, x?) =

∫∞
∞ Nθt

(
xt,

σ2

nt

)
pθc |x0,x?(θt −∆)dθt

Table 3.1: Posterior distributions for the two arm setting
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Type Calculation of H0 rejection rate (fixed x0) Calculation of H0 rejection rate (random x0)

Fixed

∫
Φ

[
δn0 + n?
σ
√
n?

(
xt + zασ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

σ
√
n?
−
θ?
√
n?

σ

]
∗

φxt

(
θ? + ∆,

σ2

nt

)
dxt

∫ ∫
Φ

[
δn0 + n?
σ
√
n?

(
xt + zασ

√
1/(δn0 + n?) + 1/nt

)
− δn0x0

σ
√
n?
−
θ?
√
n?

σ

]
∗

φx0

(
x0,

σ2

n0

)
φxt

(
θ? + ∆,

σ2

nt

)
dx0dxt

EB

1. Simulate xt and x?

2. Estimate δ̂

3. Derive mean and variance of Normal EB posterior Pr(∆ |x0, x?, xt)

4. Estimate H0 rejection rate: Check how often Pr(∆ >
0 |x0, x?, xt) > 1− α

1. Simulate x0

2. Simulate xt and x?

3. Estimate δ̂

4. Derive mean and variance of Normal EB posterior Pr(∆ |x0, x?, xt)

5. Estimate H0 rejection rate: Check how often Pr(∆ > 0 |x0, x?, xt) >
1− α

FB

1. Simulate x?

2. Derive the marginal posterior p(θc |x0, x?)

3. Simulate xt |∆Ha and xt |∆H0

4. Derive Pr(∆ > 0 |xt, x0, x?) =
∫

Φ

[
xt−θc√
(σ2/(nt)

]
p(θc |x0, x?)dθc for

each xt |∆Ha and xt |∆H0

5. Power: how often Pr(∆ > 0 |x0, x?, xt) > 1 − α under ∆Ha and
Type I error: how often Pr(∆ > 0 |x0, x?, xt) > 1− α under ∆H0

1. Simulate x? and x0

2. Derive the marginal posterior p(θc |x0, x?)

3. Simulate xt |∆Ha and xt |∆H0

4. Derive Pr(∆ > 0 |xt, x0, x?) =
∫

Φ

[
xt−θc√
(σ2/(nt)

]
p(θc |x0, x?)dθc for

each xt |∆Ha and xt |∆H0

5. Power: how often Pr(∆ > 0 |x0, x?, xt) > 1− α under ∆Ha and Type
I error: how often Pr(∆ > 0 |x0, x?, xt) > 1− α under ∆H0

Table 3.2: H0 rejection rates for two arm setting
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Additional characteristics for the two arm case

We analysed a few additional characteristics in order to explore the influence of a bias in the

two arm scenario.

MSE

The MSE is the expected value of the squared error of a point estimate of θc compared to

the true value in a control group.

E(θ̂c − θ?)2

where θc is the posterior mean estimate of an outcome in a control group and θ? is a true value

of an outcome in a control group of a new experiment.

Coverage

We estimated 95% equi-tailed credible intervals of the posterior distribution of θc, to judge

about the influence of historical estimate on the shape of the distribution.

Bias of an estimate of an outcome in a control group

We analysed the influence of historical data on an estimate of an outcome in a control group,

derived as a mean estimate from posterior distribution. Bias is calculated as the expected

difference between this posterior mean and the true outcome in a control group.

E(θ̂c − θ?)

The results of simulation and estimation of these characteristics are shown in the figure 4.15.
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Chapter 4

Results

4.1 One arm setting

Figure 4.1 shows the dependence of the H0 rejection rate on the treatment effect ∆? in a new

experiment. The black line is for the RCT setting when no historical data was used, and

expectedly, if ∆? = 0 the H0 rejection rate is 5% and if ∆? = 0.35 the H0 rejection rate is 80%.

The purple lines highlight ∆H0 = 0 and ∆H1 = 0.35. Different shades of grey lines show the H0

rejection rate using a conditional power prior approach for different values of a fixed δ. The red

line is for an empirical Bayes approach.

The two upper plots present the case when historical data is in favor of a negative effect,

namely the null hypothesis. Thus, using historical data leads to a decrease in type I error with a

simultaneous decrease in power depending on the impact of historical data, which is determined

by the power parameter δ. The smaller the value of δ, the closer the H0 rejection rate to the

RCT values.

The lower plots show the situation when historical data shows evidence of a treatment effect.

In this case, the use of historical data leads to an increase in power with a simultaneous increase

in a type I error. The influence of historical data is similarly determined by the power parameter

δ.

An important difference between a fixed and a random case can be observed on these plots.

In a fixed case scenario, on the left plots, the H0 rejection functions change similarly to the

RCT setting, the increase in power is similar to the increase in type I error. However, for a

random case scenario, the H0 rejection functions change differently. The increase in power is

significantly smaller than the increase in a type I error in the lower plot for a random case.

Figure 4.2 shows the dependence of a power and a type I error on historical data also for

fixed and random cases. In both cases, historical estimates, which are in favor of H1, increase

power and type I error. Historical estimates, which are in favor of H0, decrease power and

type I error. Adaptable methods as the empirical Bayes and full Bayes approaches show similar

dependence. However, the influence of historical data decreases with the growth of the bias for

these methods, and consequently, operating characteristics converge to RCT values.

In short, if we have historical information that favors the null hypothesis, and we integrate

this information in the analysis, we decrease the posterior value of a treatment effect and, con-

sequently, decrease type I error and power. And the other way around, if historical information

favors alternative hypothesis, integration of this information shifts the posterior estimate of the

effect towards bigger values, which leads to an increase in power and type I error. This behavior

is well known as power and type I error trade-off.

35
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On figure 4.4, on the upper two plots, power and a type I error are shown together, where the

trade-off is clearly seen. The critical y0 value where the power of the Bayesian approach exceeds

the RCT power is very close to the critical y0 value of the type I error when the RCT type

I error exceeds the Bayesian type I error. For a random case, these critical values are further

apart, type I error rises above the RCT value of 5% faster than power reach 80%. Overall, for

both cases, there is no set of historical estimates where they both would outperform RCT.

Lower two plots of figure 4.4 show the rejection ratio. It is a summary measure for operating

characteristics, which shows the ratio between power and type I error. Naturally, the higher the

value of the rejection ratio, the better the trade-off between power and type I error in the test.

However, very high values of the ratio, when historical estimates favor the null hypothesis, are

caused by very low values of type I error, which are accompanied by the lower values of power.

Hence, when comparing different tests and methods, analysis of only rejection ratio is not enough,

and power and type I error should be analyzed additionally. A conditional power prior method

shows a strong dependence on bias and does not have good operating characteristics when the

bias is too large. The rejection ratio of an empirical Bayesian and a fully Bayesian methods do

not migrate far from the RCT level, which proves their adaptability. A Fully Bayesian method

has a slightly better type I error and power trade-off for both fixed and random y0 case. Both

adaptable methods outperform RCT in terms of rejection ratio and type I error when historical

estimates favor the null hypothesis; however, with a cost of a strong decline in power.
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Figure 4.1: The H0 rejection rate depending on the true effect of a new experiment
when A. a historical estimate in H1 region B. a historical estimate in H0 region.
Fixed: for a fixed historical estimate y0. Random: for a randomly simulated historical
estimate y0 ∼ N(∆0,

σ2

m0
)
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Figure 4.2: A. Power and B. type I error depending on the value of historical data.
Fixed: for a fixed historical estimate y0. Random: for randomly simulated historical
estimate y0 ∼ N(∆0,

σ2

m0
). Grey squares show the area, which is shown on figure 4.3
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Figure 4.3: ”Zoomed in”part of the figure 4.2. A. Power and B. type I error depending
on the value of historical data. Fixed: for a fixed historical estimate y0. Random:
for randomly simulated historical estimate y0 ∼ N(∆0,

σ2

m0
)
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Figure 4.4: A. Power and type I error trade-off and B. Rejection ratio depending
on historical data. Fixed: for fixed historical estimate y0. Random: for randomly
simulated historical estimate y0 ∼ N(∆0,

σ2

m0
)
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4.2 Two arm setting

The same plots as for the one arm setting were created for the two arm setting, and are presented

on the figures on figures 4.5, 4.6, 4.8. However, there is an important difference between these

two scenarios, which is reflected in the H0 rejection rate function. In two arm setting, bias

influences the posterior distribution of an outcome in a control arm and further on the posterior

distribution of a treatment effect. In the one arm setting, bias influences directly on the posterior

distribution of a treatment effect.

Figure 4.5 shows the H0 rejection rate depending on the treatment effect ∆ = θc−θ?. Upper

plots show the situation when the historical outcome estimate in the control arm is smaller than

in a new experiment. The posterior distribution is shifted towards smaller values, and it leads

to a shift of the posterior distribution for treatment effect towards larger values. It causes an

increase in power accompanied by an increase in type I error. The lower plot shows an inverse

situation when the outcome estimate in the control group from historical data is higher than

from a new experiment. Then the posterior distribution of a treatment effect is shifted towards

smaller values, which causes a decrease in power and type I error. In addition, power increases

faster on the upper plots than type I error, and slower on the lower plots.

Figure 4.6 shows the dependence of power and type I error on the bias between historical

and control data. Empirical Bayes and the full Bayes methods show adaptability in the case of

high values of bias similar to the one arm case: the higher the bias, the less influence of historical

information and power and type I error of these methods converge to the RCT values.

Figure 4.8 shows power and type I error trade-off on the upper plots and rejection ratio

on the lower plots. Opposite to the one arm scenario, there is a little region around historical

estimate where the integration of historical information increases power, while type I error is

still below 5%. Thus, the Bayesian methods outperform RCT for these conditions. This region

still exists when a historical estimate is generated randomly; however, it is smaller than for a

fixed value. Empirical Bayes and the full Bayes approaches show better rejection ratio than

RCT when the true value of a control group in a new experiment θ? is below the historical true

value θ0 = 10 for a random case. Thus, power decreases slower than type I error, what could be

an advantage for some studies.

In conclusion, in the one arm setting, there is no region of bias between historical and current

experiment, where Bayesian methods would outperform RCT methods in power and type I error,

however, in the two arm case, such a region can exist.
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Figure 4.5: The H0 rejection rate when historical estimate is A. lower than new
true value in a control group: θ? = 10.15 and x0 = 10 B. higher than new true value
in a control group: θ? = 9.73 and x0 = 10. Fixed: for fixed historical estimate x0.
Random: for randomly simulated historical estimate x0 ∼ N(10, σ

2

n0
)
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Figure 4.6: A. Power and B. Type I error depending on bias between historical
estimate and new true value in a control group. Fixed: for fixed historical estimate.
Random: for randomly simulated historical estimate. Grey squares show the area,
which is shown on figure 4.7
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Figure 4.7: ”Zoomed in” part of the figure 4.6. A. Power and B. Type I error
depending on bias between historical estimate and new true value in a control group.
Fixed: for fixed historical estimate. Random: for randomly simulated historical
estimate.
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Figure 4.8: A. Power and type I error trade-off and B. Rejection ratio depending on
bias between a historical estimate and a new true value in a control group. Fixed: for
fixed historical estimate. Random: for randomly simulated historical estimate
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4.3 Difference between the one arm and two arm settings

Different results for the trade-off between power and type I error in the one arm and two arm

settings is connected to the way historical information influence the posterior distribution of

a treatment effect. In this section we explain this difference for the conditional power prior

method.

Figures 4.9, 4.10, 4.11, 4.12 show the results of multiple simulations of posterior distributions

of a treatment effect in the one arm and two arm settings under null and alternative hypotheses.

Based on Bayesian approach, we would reject H0 hypothesis, where probability to have positive

treatment effect is more than 95%. Since the variance of these posterior distributions stays

constant for each simulation, it is enough to look at the distributions of the posterior means to

understand the H0 rejection rate of these simulations. In other words, if a posterior mean is

above a test critical value, then H0 is rejected.

Taking into account results of the derivation for the distributions of the posterior treatment

effect from chapters 2 and 3, we can derive the distribution for the posterior means for the

conditional power prior approach:

One arm :

E(∆̂) ∼ N

(
m?

δm0 +m?
∆?+

δm0

δm0 +m?
y0,

σ2m?

(δm0 +m?)2

)
,

explanations for the notations can be found in section 2.

Two arm :

E(∆̂) ∼ N

(
∆ +

δn0

δn0 + n?
(θ? − x0),

σ2n?
(δn0 + n?)2

+
σ2

nt

)
,

explanations for the notations can be found in section 3.

Figure 4.13 shows the distribution of posterior means for the one arm and two arm settings.

In one arm scenario, historical estimate exist directly for an effect and consequently can favor

null or an alternative hypothesis but never both simultaneously. Thus, if the power increases,

type I error increases too, and the other way around, if power decreases, type I error decreases.

In the two arm settings, the historical data influence on the posterior distribution of the outcome

in the control arm. When the bias is small, the variance of the outcome in the control arm is

reduced, what leads to a smaller variance of the posterior distribution of the treatment effect

under both, null and alternative hypotheses. Thus, in this situation, simultaneous improvement

of power and type I error becomes possible. However, when the bias is large, posterior mean of

the outcome shifts far from the true value and it leads to simultaneous increase (or decrease) in

type I error and power.

Figure 4.14 shows the change of the H0 rejection function when historical data is integrated.

In one arm setting, a historical estimate can favor or null or alternative hypothesis, which causes

a shift of the H0 rejection function upwards or downwards from the RCT line. In the two arm

setting, under the condition of a small bias between current and historical experiments, the H0

rejection function changes its shape, which can lead to a simultaneous gain in power and type I

error.
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Figure 4.9: Posterior distributions of the treatment effect for 100 simulations of y?
without taking into account historical data.
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Figure 4.10: Posterior distributions of the treatment effect for 100 simulations of y?
with taking into account historical data using conditional power prior method
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Figure 4.11: Posterior distributions of the treatment effect for 100 simulations of x?
and xt without taking into account historical data.
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Figure 4.12: Posterior distributions of the treatment effect for 100 simulations of x?
and xt with taking into account historical data using conditional power prior method.
No bias between historical data and true value of current control was taken for this
simulations.
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Figure 4.13: The distribution of posterior means of the treatment effect in the one
arm and two arm settings
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Figure 4.14: The difference in the influence of historical information on posterior
distributions for one and two arm case. Historical information in one arm settings is
available for the effect and can favor only the null or alternative hypothesis. In the
two arm scenario, historical information can reduce the variance of the outcome in
the control arm under the condition of the small bias, which leads to a simultaneous
improvement of type I error and power
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Additional characteristics for the two arm case

All approaches that incorporate historical data shift the posterior distribution towards the his-

torical estimate, which causes adverse effects when the bias between a historical and a current

experiment is high.

Figure 4.15 shows additional performance characteristics for the fixed power parameter and

empirical Bayes approaches. When the bias between a historical estimate and a true value

of a new experiment is small, the incorporation of historical information improves additional

characteristics: bias between a true value and an inferred value (posterior mean), mean squared

error (MSE) and coverage. However, when the bias is increasing, only an adaptive empirical

Bayes method reduces the weight of historical data and mitigates the adverse effects of the bias.

Figure 4.15: Additional performance characteristics of the Bayesian approaches
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Chapter 5

Hypotheses testing with conditional

power prior

In this chapter, we would like to explore the importance of a decision rule applied in our hy-

potheses testing. The results shown in the chapter 4 were created using the decision rule, where

critical value depends on a new experiment only, what can lead to the inflation of type I error

when historical information is used. However, it is possible to have a strict control of type I

error if the decision rule is adapted for the historical estimate.

The decision rule of the test is defined by a value C, which is a critical value of a test statistic.

For the hypotheses H0 : ∆ ≤ 0 and H1 : ∆ > 0, if the test statistic T (y?) of an experiment

exceeds a critical value then H0 is rejected. The probability of a type I error, rejection of true

H0 is the (nominal) size of the test. The power of the test is the probability of the rejection of

a false H0.

α = Pr(reject H0 : T (y?) > C |H0)

1− β = Pr(reject H0 : T (y?) ≤ C |H1)

Type I error and power are connected through a critical value C. Thus, decrease in the value

C causes decrease in α and increase in β. A usual solution is to fix α and then to find related

C and β.

In order to visually understand the difference between two decision rules considered in this

master thesis, we need to look again at the distribution of the posterior means described in the

section 4.3. Figure 5.1 shows the distribution for the posterior means for the one arm settings,

when historical estimate favors H1 hypothesis. Blue line shows the critical value, which depends

only on the current experiment. If we continue to use this critical value and integrate historical

information, then we allow inflation of type I error. The second decision rule, which is adaptable

for a historical estimate, allows a strict control of type I error. Related critical values are shown

with different shadow of grey.

5.1 One arm case

5.1.1 UMP test

A uniformly most powerful (UMP) test is a hypothesis test that has the greatest power 1 − β
among all possible tests of a given size α.

55
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Figure 5.1: The distribution of posterior means of the treatment effect in the one
arm settings and two different types of the decision rules: dependent and independent
of historical information

φUMP (y?) =

{
1 if Y? > C

0 if Y? ≤ C
(5.1)

where 1 is for a decision to reject H0 and 0 is for a decision not to reject H0, Y? is a sufficient

statistics. In the one arm scenario, where Y? is the effect estimate from a new experiment, C

can be defined such that this test controls type I error at the level α.

α = Pr(Y? > C |H0)

= 1− Pr

(
Y? −∆?

σ/
√
m?

<
C −∆?

σ/
√
m?
|H0

)
= 1− Φ

[
C

σ/
√
m?

]

Thus,

C = −Φ−1(α)
σ
√
m?

(5.2)

The UMP test decision rule for the one arm case is :
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φUMP (y?) =

{
1 if Y? > −Φ−1(α) σ√

m?

0 if Y? ≤ −Φ−1(α) σ√
m?

(5.3)

where α is a prescpecified significance level of the test.

φUMP (y?) =


1 Φ

[
y?
√
m?
σ

]
> 1− α

0 Φ
[
y?
√
m?
σ

]
≤ 1− α

(5.4)

5.1.2 Bayesian test with no historical data

In the supplementary materials of the paper Psioda and Ibrahim (2019), it is shown that in the

one arm scenario, in order to ensure a strict frequentist type I error control prior information

should not be used. We repeat here their proof for a fixed δ, adapting it for our notations.

The decision rule of the Bayesian approach depends on the posterior distribution of the

treatment effect:

φB(y?) =

{
1 if P (∆ > 0 | y?) > φ0

0 if P (∆ > 0 | y?) ≤ φ0
(5.5)

where φ0 is the posterior probability critical value, which is independent of historical infor-

mation.

First, authors Psioda and Ibrahim (2019) proved that: ”Inference based on the Bayesian

rejection rule is identical to the frequentist one sided, level α UMP test when φ0 = 1− α”.

The type I error of the test is E[1{P (∆ > 0 | y?) ≥ φ0 |H0}]. We need to find φ0 such that

type I error of the test = α.

P (∆ > 0 | y?) ≥ φ0 ⇔ P

(
∆− y?
σ/
√
m?

>
0− y?
σ/
√
m?

∣∣∣ y?) ≥ φ0

⇔ P

(
Z1 >

0− y?
σ/
√
m?

∣∣∣ y?) ≥ φ0

⇔ P

(
Z2 <

y?
σ/
√
m?

∣∣∣ y?) ≥ φ0

Φ

[
y?
√
m?

σ

]
≥ φ0,

where Z1 and Z2 are standard normal random variables.

The last equality is the same as in the one sided normal UMP test (5.4). Thus, the authors

Psioda and Ibrahim (2019) concluded that : ”optimal choice of φ0 that satisfies Φ−1(φ0) = Z1−α,

which implies φ0 = 1− α”.

In short, it was shown that when no historical information is used, δ = 0, then the most

unbiased Bayesian test procedure requires φ0 = 1− α.
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5.1.3 Bayesian test with historical data

The Bayesian decision rule, which incorporates historical data, is :

φBδ(y?, y0) =

{
1 if P (∆ > 0 | y?, y0, δ) > φδ
0 if P (∆ > 0 | y?, y0, δ) ≤ φδ

(5.6)

where ∆ | y0, y?, δ ∼ N(µ0?, σ0?) with µ0? = δm0y0+m?y?
δm0+m?

and σ0? = σ2

δm0+m?
; φδ is the posterior

probability critical value dependent on the historical information.

Authors Psioda and Ibrahim (2019) showed that, for a strict control of type I error at level

α in a Bayesian testing, a critical value φδ is Φ
[(

Φ−1(1−α)
√
m?

σ + y0δm0

σ2

)
σ√

δm0+m?

]
.

Again, we fix type I error of the test as α:

E[1{P (∆ > 0 | y?, y0, δ) ≥ φδ |∆true = 0, y0, δ}] = α

P (∆ > 0 | y?, y0, δ ≥ φδ)⇔ P

(
∆− µ0?

σ0?
>

0− µ0?

σ0?

∣∣∣ y?, y0, δ

)
≥ φδ

⇔ P

(
Z1 >

0− µ0?

σ0?

∣∣∣ y?, y0, δ

)
≥ φδ

⇔ P

(
Z2 <

µ0?

σ0?

∣∣∣ y?, y0, δ

)
≥ φδ

⇔ Φ

[
µ0?

σ0?

]
≥ φδ

⇔ µ0?

σ0?
≥ Φ−1(φδ)

⇔ δm0y0 +m?y?
δm0 +m?

≥ Φ−1(φδ)
σ√

δm0 +m?

⇔ δm0y0 +m?y? ≥ Φ−1(φδ)σ
√
δm0 +m?

⇔
y?
√
m?

σ
≥ 1

σ
√
m?

(
Φ−1(φδ)σ

√
δm0 +m? − δm0y0

)
⇔

y?
√
m?

σ
≥ σ
√
m?

(
Φ−1(φδ)

σ/
√
δm0 +m?

− y0

σ2/δm0

)
This inequality is also a rejection rule for the one-sided frequentist UMP test. Thus:

Z1−α = Φ−1(1− α) =
σ
√
m?

(
Φ−1(φδ)

σ/
√
δm0 +m?

− y0

σ2/δm0

)
We can derive an updated posterior probability critical value φδ :

φδ = Φ

[(
Φ−1(1− α)

√
m?

σ
+
y0δm0

σ2

)
σ√

δm0 +m?

]
= Φ

[
Φ−1(1− α)

(√
m?

σ
+

y0δm0

σ2Φ−1(1− α)

)
σ√

δm0 +m?

]
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Naturally, the power function also changes when the posterior probability critical value is

changed from φ0 to φδ. Authors Psioda and Ibrahim (2019) showed, that: ”the power functions

for the set of Bayesian hypothesis tests based on the rejection rules P (∆ > 0 | y?, y0, δ) ≥ φδ, δ ∈
[0, 1] are identical”. It means that power function for any arbitrary δ is identical to the power

function with δ = 0 if the posterior probability critical value φδ, which is dependent on historical

data, is used. Thus, historical information is not used when the rejection rule is adapted to ensure

a strict control of type I error for any δ ∈ [0, 1] .

P (∆ > 0 | y?, y0, δ) ≥ φδ ⇔ Φ

[
µ0?

σ0?

]
≥ Φ

[(
Φ−1(1− α)

√
m?

σ
+
y0δm0

σ2

)
σ√

δm0 +m?

]
⇔ δm0y0 +m?y?

δm0 +m?
≥
(

Φ−1(1− α)
√
m?

σ
+
y0δm0

σ2

)
σ2

δm0 +m?

⇔
y?
√
m?

σ
≥ Φ−1(1− α)

⇔ P (∆ > 0 | y?) ≥ φ0

In short, if type I error has to be strictly fixed as α (for example 5%), then the Bayesian

decision rule should be updated according to historical information. However it leads to a

simultaneous update of the power function, which, in turn, will be equal to the power function

without any extra information.

Summary table

Table 5.1 shows different approach to hypotheses testing in the one arm scenario.
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UMP test Bayesian decision rule with no hist. data Bayesian decision rule with hist.data and fixed δ

φUMP (y?) =


1 Φ

[
Y?
√
m?
σ

]
> 1− α

0 Φ
[
Y?
√
m?
σ

]
≤ 1− α

φB(y?) =

{
1 if P (∆ > 0 | y?) > φ0

0 if P (∆ > 0 | y?) ≤ φ0

where φ0 = 1− α

If the critical value of
a decision rule is independent of hist. data

φB0(y?, y0) =

{
1 if P (∆ > 0 | y?, y0, δ) > φ0

0 if P (∆ > 0 | y?, y0, δ) ≤ φ0

where φ0 = 1− α

If the decision rule is adapted according to
hist. data to have a strict control of type I error

φBδ(y?, y0) =

{
1 if P (∆ > 0 | y?, y0, δ) > φδ
0 if P (∆ > 0 | y?, y0, δ) ≤ φδ

where φδ = Φ
[(

Φ−1(1−α)
√
m?

σ + y0δm0

σ2

)
σ√

δm0+m?

]
Table 5.1: Hypotheses testing for one arm case
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Figure 5.2 shows the results of the simulation. Left plots show the case, when the posterior

probability critical value is adapted for historical information, thus the decision rule strictly

controls type I error. Right plots show the situation, when the posterior probability critical

value depends only on a current experiment, thus type I error is inflated when the bias is large

between historical and current experiment.

Figure 5.2: Change of power and type I error for different values of historical data
depending on decision rule for the one arm setting. Upper plots show power and type
I error trade off. Lower plots show the H0 rejection function
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5.2 Two arm case

5.2.1 UMP test

Similarly to the one arm scenario the decision rule for UMP test was derived for two-arm case,

using the condition that the test controls type I error at the level α.

α = Pr

(
(xt − x?)

σ
√

(nt + n?)/ntn?
> C

∣∣∣ H0

)

= 1− Pr

(
(xt − x?)−∆?

σ
√

(nt + n?)/ntn?
<

C −∆?

σ
√

(nt + n?)/ntn?

∣∣∣ H0

)

= 1− Φ

[
C

σ
√

(nt + n?)/ntn?

]

Thus,

C = −Φ−1(α)
σ√

ntn?/(nt + n?)

and the rule can be rewritten :

φUMP (y?) =

 1 xt − x? > −Φ−1(α) σ√
ntn?/(nt+n?)

0 xt − x? ≤ −Φ−1(α) σ√
ntn?/(nt+n?)

(5.7)

φUMP (y?) =


1 Φ

[
xt−x?
σ

√
ntn?
nt+n?)

]
> 1− α

0 Φ

[
xt−x?
σ

√
ntn?
nt+n?)

]
≤ 1− α

(5.8)

5.2.2 Bayesian test with no historical data

Since only the variance has changed for the two arm case, and we consider it as fixed value, the

decision rule is as in the one arm case.

φB(y?) =

{
1 if P (∆ > 0 |xt, x?) > φ0

0 if P (∆ > 0 |xt, x?) ≤ φ0
,

where φ0 = 1− α

5.2.3 Bayesian test with historical data

We adapted the derivation used in the one arm case, which were based on the supplementary

materials of the paper Psioda and Ibrahim (2019) for the two arm case.

The Bayesian decision rule for the analysis with historical information is:
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φBδ(xt, x?, x0, δ) =

{
1 if P (∆ > 0 |xt, x?, x0, δ) > φδ
0 if P (∆ > 0 |xt, x?, x0, δ) ≤ φδ

, (5.9)

where ∆ |xt, x?, x0, δ ∼ N(µ0?, σ0?) with µ0? = xt − δn0x0+n?x?
δn0+n?

and σ0? = σ2

nt
+ σ2

δn0+n?
, φδ is the

posterior probability critical value established to control type I error at the level α.

To find φδ we must solve this equation:

E[1{P (∆ > 0 |xt, x?, x0, δ) ≥ φδ |∆true = 0, x0, δ}] = α (5.10)

P (∆ > 0 |xt, x?, x0, δ) ≥ φδ ⇔ P

(
∆− µ0?

σ0?
>

0− µ0?

σ0?

∣∣∣ xt, x?, x0, δ

)
≥ φδ

⇔ P

(
Z1 >

0− µ0?

σ0?

∣∣∣ xt, x?, x0, δ

)
≥ φδ

⇔ P

(
Z2 <

µ0?

σ0?

∣∣∣ xt, x?, x0, δ

)
≥ φδ

⇔ Φ

[
µ0?

σ0?

]
≥ φδ

⇔ µ0?

σ0?
≥ Φ−1(φδ)

⇔ xt −
δn0x0 + n?x?
δn0 + n?

≥ Φ−1(φδ)σ

√
1

nt
+

1

δn0 + n?

If we try to revise this formula into the decision rule for the UMP test for two arm scenario

(5.8):

xt − x?
σ

√
ntn?
nt + n?

≥
√

ntn?
nt + n?

(
Φ−1(φδ)

(
δn0

n?
+ 1

)√
1

nt
+

1

δn0 + n?
− δn0(xt − x0)

σn?

)
We see, that the right side still contains xt. Technically, we could still derive φδ, which would

give a strict control of type I error, but would still depend on xt. Thus, this calculated decision

rule can be developed only after conducting an experiment.

Φ−1(1− α) =

√
ntn?
nt + n?

(
Φ−1(φδ)

(
δn0

n?
+ 1

)√
1

nt
+

1

δn0 + n?
− δn0(xt − x0)

σn?

)

φδ = Φ

[√
n?(nt + n?)

(δn0 + n?)(δn0 + n? + nt)

(
Φ−1(1− α) +

xt − x0

σ

δn0
√
nt√

n?(nt + n?)

)]

The attempt to derive the UMP test analogy in the Bayesian settings for two arm scenario

with a conditional power prior was not successful in this master thesis. However, the general case

for all settings was considered in the paper Kopp-Schneider et al. (2019), where it was shown

that gain in power is not possible if the decision rule is dependent on the historical information
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and a strict control of type I error is required, meaning the decision rule with the posterior

probability critical value φδ is applied.

Summary table

Table 5.2 shows the different approach to hypotheses testing in the one arm scenario.
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UMP test Bayesian decision rule with no hist. data Bayesian decision rule with hist.data and fixed δ

φ(xt, x?) =


1 if Φ

[
xt−x?
σ

√
ntn?
nt+n?)

]
> 1− α

0 if Φ

[
xt−x?
σ

√
ntn?
nt+n?)

]
≤ 1− α

φB(xt, x?) =

{
1 if P (∆ > 0 |xt, x?) > φ0

0 if P (∆ > 0 |xt, x?) ≤ φ0

where φ0 = 1− α

If the critical value of
a decision rule is independent of hist. data

φB0(xt, x?, x0, δ) =

{
1 if P (∆ > 0 |xt, x?, x0, δ) > φ0

0 if P (∆ > 0 |xt, x?, x0, δ) ≤ φ0

where φ0 = 1− α

If the decision rule is adapted according to
hist. data to have a strict control of type I error

φBδ(xt, x?, x0, δ) =

{
1 if P (∆ > 0 |xt, x?, x0, δ) > φδ
0 if P (∆ > 0 |xt, x?, x0, δ) ≤ φδ

φδ = Φ

[√
n?(nt+n?)

(δn0+n?)(δn0+n?+nt)

(
Φ−1(1− α) + xt−x0

σ
δn0
√
nt√

n?(nt+n?)

)]
,

which depends on xt and can be defined only
after conducting an experiment

Table 5.2: Hypotheses testing for the two arm case
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Chapter 6

Conclusions

Question 1: Explore the influence of the bias between historical and new data on the different

operating characteristics in a power prior settings for a normal outcome.

The dependence of operating characteristics on the bias between a historical estimate and a

new true value was shown in chapter 4. In both one-arm and two-arm settings, there is a trade-

off between type I error and power: the higher the power, the higher type I error. Adaptive

methods, such as empirical Bayes and full Bayes reduce the influence of historical data when the

bias is large, discarding historical information, what causes type I error and power convergence

to the RCT values.

Question 2: Is it true that borrowing of information cannot lead to an increased power

while strictly controlling type I error?

Answer to this question depends on the prior knowledge about the bias between a historical

and a current experiment, since it determines the decision rule and related type I error. If we

do not have a prior knowledge of the bias and we want a strict control of type I error, then

the posterior probability critical value should be adapted for a historical estimate. Although,

it would lead to the power of the test being determined only by the data from the current

experiment.

However, if we know, that the bias is minimal and historical information is available for the

control arm only, then we can expect that type I error does not go above a specified significance

level. In this case, we can apply the posterior probability critical value, which does not depend

on a historical estimate. Under these conditions, integration of historical information would lead

to a simultaneous gain of type I error and power.
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Appendix

Combining quadratic forms

A(x− a)2 +B(x− b)2 = C(x− c)2 +
AB

C
(a− b)2, c =

Aa+Bb

C
,C = A+B (1)

Formula of the density of the difference between two random

variables

Z = X − Y

fz(z) =

∫ ∞
∞

fx(x)fy(x− z)dx (2)
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