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Preface

Abstract

As a consequence of the so-called ‘replication crisis’ (Ioannidis, 2005), an increasing number
of replication studies have been conducted to determine the reliability of the original findings.
Ideally, the procedures of the replication study should be as closely matched to the original
study as possible. However, selecting the same sample size in the replication study as in the
original study may lead to a severely underpowered design and as a result, true effects may not
be detected. Furthermore, using standard sample size calculations is not well suited because the
uncertainty of the original effect estimate is ignored.

One way of tackling this issue is to use Bayesian approaches by incorporating a normal
prior centered around the original effect estimate and with variance inversely proportional to the
original sample size (Spiegelhalter et al., 2004). This corresponds to the concept of predictive
power and generally leads to larger sample sizes than the standard method. Furthermore, the
resulting power tends to one minus the one-sided p-value of the original study as the replication
sample size increases. When the normal prior is also incorporated in the analysis of the replication
study, the resulting Bayesian power increases as a function of the replication sample size for non-
significant original studies. However, adding more subjects to the replication study may lead to
a decrease of the Bayesian power if the p-value of the original study is only ‘suggestive’, i.e. only
slightly below the significance level.

In a second part, we investigate an approach to declare replication success based on the
sceptical p-value, a new metric introduced by Held (2019b). Conditional and predictive power
calculations to reach replication success lead to larger sample sizes and emphasize the importance
of intrinsically credible original studies (Held, 2019a; Matthews, 2018). We illustrate these prop-
erties using data from the Open Science Collaboration project on the replicability of psychological
science (Open Science Collaboration, 2015).
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Chapter 1

Introduction

The replicability of research findings is a defining feature of science. However, many of the
scientific claims are false and thus irreplicable, as shown by Ioannidis (2005). One reason for
this so-called ‘replication crisis’ is the use of low-powered study designs. Underpowered studies
combined with the use of thresholds for statistical significance lead to inflated effect estimates
(Ioannidis, 2008). Moreover, publication bias is more likely to affect small underpowered studies
(Button et al., 2013).

The rising awareness of the low replicability of scientific findings has led to a substantial
increase of replication projects in various fields. These include psychology (Open Science Col-
laboration, 2015; Johnson et al., 2017), social sciences (Camerer et al., 2018) and economics
(Camerer et al., 2016) among others. Such efforts help to determine whether claims of new
discoveries can be confirmed in independent replication studies whose procedures are as closely
matched to the original studies as possible (Held, 2019b).

In the design phase of a replication study, the sample size determination is a crucial step. A
replication study with low power to detect an effect may result in a waste of time and money.
Using the same sample size as in the original study may lead to a severely underpowered repli-
cation study, even if the original study correctly estimated the true effect size (Goodman, 1992).
The common approach is to use standard power calculations to estimate the sample size that
is necessary to achieve a certain level of power in the replication study. In this approach, the
probability of rejecting the null hypothesis H0 given that the alternative hypothesis H1 is true
is computed. When used in the context of replication studies, the probability of rejecting H0 is
conditioned on the effect estimate of the original study which is assumed to be the true effect.
However, this approach is not well suited as it ignores the uncertainty which accompanies the
original effect estimate. Addressing this issue, my Master thesis aims to optimize the design of
replication studies focusing on reasonable approaches for power calculation and thus sample size
recommendations.

The uncertainty of the original effect estimate is taken into account by incorporating a normal
prior centered around the original effect estimate and with variance inversely proportional to the
original sample size (Spiegelhalter et al., 2004). This corresponds to the concept of predictive
power. Chapter 2 presents and deepens this approach in the context of a replication study aiming
at reaching significance at a pre-specified level. Because of the lack of a single standard to assess
if the replication was successful, Held (2019b) proposes the sceptical p-value, a new metric to
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2 CHAPTER 1. INTRODUCTION

define replication success. This approach gives rise to new methods of calculating conditional and
predictive power, as further investigated in Chapter 3. The obtained findings are illustrated using
data from the Open Science Collaboration (2015) on the replicability of psychological science.
In Chapter 4, the relevance of each power calculation method in the replication framework is
assessed.

For simplicity, we will mostly refer to the power formulas in this report. By fixing this power
to the desired level, the sample size required in the replication study can be computed.



Chapter 2

Power for Significance

In this chapter, we focus on methods calculating the power for significance of the replication
study. Power calculations for significance aim to detect the effect estimate from the original study
with a standard two-sided significance test. The replication study is then declared significant
if the p-value of the replication study is smaller than or equal to the significance level, namely
pr ≤ α. Section 2.1 specifies the notation used in this chapter. In Section 2.2, the standard power
formula is derived and followed by alternative methods that acknowledge the uncertainty of the
original effect estimate θ̂o. These different methods of power calculation are studied in detail in
Section 2.3. Using the Open Science Collaboration (2015) data, the findings are then illustrated
in Section 2.4. Formulas of this chapter are based on Spiegelhalter et al. (2004, Sections 6.5 &
6.6) and adapted to the replication framework.

2.1 Notation

Table 2.1 presents the notation which will be followed in this chapter.

Notation Meaning
no sample size of original study
nr sample size of replication study
c relative sample size nr/no
θ true effect size
θ̂o effect estimate of the original study
Y1:nr future data of the replication study
Ynr future parameter estimate of the replication study
σ common standard deviation of one observation

2ε = α significance level
zε ε-quantile of the standard normal distribution
to test statistic of the original study
tr test statistic of the replication study
po two-sided p-value of the original study
pr two-sided p-value of the replication study

Table 2.1: Table presenting the notation.

3



4 CHAPTER 2. POWER FOR SIGNIFICANCE

2.2 Theory

This section gathers the formulas of the standard, hybrid, Bayesian and conditional Bayesian
power and explains the related theory.

2.2.1 Standard method

Suppose researchers conducted a study and declared the results significant at a pre-specified level
α = 2ε. In order to confirm this finding, a replication study is planned. Let us assume that the
future data of the replication study are normally distributed as follows,

Y1, . . . , Ynr

iid∼ N
(
θ, σ2

)
,

where θ is the true effect size and σ is the known standard deviation of one observation. Let
the sample mean of Y1:nr be the parameter estimate of the replication study. The parameter
estimate Ynr has distribution

Ynr ∼ N

(
θ,
σ2

nr

)
, (2.1)

with nr being the planned sample size in the replication study. Let us suppose the null hypothesis
of the replication study is H0: θ = 0 and we want to detect an alternative hypothesis H1:
θ = θ̂o > 0, where θ̂o is the effect estimate of the original study. The corresponding standardized
test statistic tr is Ynr

√
nr/σ and we declare the result statistically significant at the two-sided

α = 2ε level if |tr| > z1−α/2 = −zε. In the following, we focus on tr > −zε as tr < zε is relatively
small for θ̂o > 0. H0 will thus be rejected when the parameter estimate Ynr obeys

Ynr > −
1
√
nr
zεσ . (2.2)

This event is denoted by SCε and is called the ‘Classical significance’ as a classical (frequentist)
analysis will be conducted at the end of the replication study and is opposed to ‘Bayesian
significance’ which will become a relevant concept later in this report. Under H1, Ynr is normally
distributed with mean E

(
Ynr

)
= θ̂o and variance Var

(
Ynr

)
= σ2/nr. In order to calculate the

power of the replication study, we compute the probability of Classical significance given that
the effect estimate of the original study is the true effect,

Pr
(
SCε | θ = θ̂o

)
= Pr

(
Ynr > −

1
√
nr
zεσ

)
= 1− Pr

(
Ynr ≤ −

1
√
nr
zεσ

)

= 1− Pr

Ynr − E(Ynr)√
Var(Ynr)

≤
−zεσ/

√
nr − E(Ynr)√

Var(Ynr)


= 1− Φ

−zεσ/√nr − E(Ynr)√
Var(Ynr)
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= Φ

zεσ/√nr + E(Ynr)√
Var(Ynr)


= Φ

[
zεσ/
√
nr + θ̂o√
σ2/nr

]

= Φ

[
θ̂o
√
nr

σ
+ zε

]
. (2.3)

Equation (2.3) specifies the conditional power of a replication study with nr subjects assuming
a classical analysis of the results. The necessary sample size to achieve a pre-specified level of
power in the replication study can be derived from equation (2.3) and is given by

nr =
(z1−β − zε)2σ2

θ̂2o
,

where 1−β denotes the power and z1−β the (1−β)-quantile of the standard normal distribution
for notational simplicity.

As stated in Chapter 1, conditioning the power on the original effect estimate θ̂o, which
is assumed to be the true effect size, ignores the uncertainty surrounding the estimate and
may contribute to sub-optimal designs of replication studies. This issue motivates the need for
alternative power calculation methods taking this uncertainty into account.

2.2.2 Alternative methods acknowledging the uncertainty of the original ef-
fect estimate θ̂o

One way of incorporating the uncertainty of the original effect estimate θ̂o in the power calculation
of the replication study is to consider the use of a normal prior for the true effect size,

θ ∼ N

(
θ̂o,

σ2

no

)
, (2.4)

which is centered around the original effect estimate θ̂o and with variance inversely proportional
to the original sample size no. This prior can be used as a design, but also as an analysis prior
(O’Hagan and Stevens, 2001). The design prior, also called sampling prior by some authors
(Wang and Gelfand, 2002; Sahu and Smith, 2006), is used before the data are collected in order
to quantify prior beliefs about the true effect size (Schönbrodt and Wagenmakers, 2018). It
contributes to the study design but is not used in the subsequent statistical analysis. In our
case, a point design prior at θ = θ̂o corresponds to the concept of conditional power while the
normal design prior (2.4) corresponds to the concept of predictive power (Spiegelhalter et al.,
1986). The predictive power averages the conditional power over the possible values of the true
effect according to its prior distribution. Conversely, the analysis prior determines the type of
analysis which will be used after the data collection. If a flat analysis prior is used, a classical
analysis takes place when reporting the results whereas using the normal prior (2.4) as an analysis
prior indicates a Bayesian analysis approach. Table 2.2 summarizes the four methods of power
calculation resulting from the different combinations of design and analysis priors.
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The standard method, as explored in Section 2.2.1, computes a conditional power and assumes
a classical analysis at the end of the replication study. Both the hybrid and the Bayesian methods
can be used to compute the predictive power but the hybrid method assumes a classical analysis
while the Bayesian method will carry out a Bayesian analysis at the end of the replication study.
Alternative names for predictive power in the literature are assurance (O’Hagan et al., 2005),
probability of study success (Wang et al., 2013) and Bayesian predictive power (Spiegelhalter
et al., 1986). Finally, the conditional Bayesian method does not acknowledge the uncertainty
of the original effect estimate θ̂o and assumes a Bayesian analysis at the end of the replication
study.

Analysis
Flat prior Normal prior

D
es
ig
n Point

prior Standard Conditional
Bayesian

Normal
prior Hybrid Bayesian

Table 2.2: Table summarizing the methods of power calculation resulting from the
different combinations of design and analysis priors.

Derivation of power formulas

In the following, the hybrid, Bayesian and conditional Bayesian power formulas are derived. In
order to make the understanding of the derivations easier, we present here the key steps that will
systematically be followed in each derivation. For the sake of consistency with the derivation
order, we first cover the analysis phase and then the design phase.

As mentioned before, using a flat analysis prior is equivalent to performing a classical analysis.
Classical significance SCε is declared if Ynr > −zεσ/

√
nr, as stated in equation (2.2). The power

is then obtained by calculating the probability Pr
(
SCε
)
of this event happening. On the other

hand, using a normal analysis prior introduces a new concept, the ‘Bayesian significance’ denoted
by SBε . Such power is then obtained by calculating the probability Pr

(
SBε
)
of the event SBε .

Using a point design prior is equivalent to conditioning the power on the original effect
estimate θ̂o, which is assumed to be the true effect size. The resulting power is thus a conditional
power. On the contrary, incorporating the uncertainty of θ̂o in the design results in a predictive
power. In terms of calculation, the conditional power needs to be integrated with respect to
the design prior in (2.4). Integration can be demanding and a more direct way is to use the
predictive distribution of Ynr ,

Ynr ∼ N

(
θ̂o, σ

2

(
1

no
+

1

nr

))
, (2.5)

obtained by combining the prior (2.4) and the likelihood (2.1).
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Hybrid method

The hybrid approach is used when we want to include the uncertainty of the original effect
estimate θ̂o in the design, while performing a classical analysis at the end of the replication
study. Hence this method is a hybrid of Bayesian and classical methods. As a classical analysis
will be performed at the end of the replication study, we look at the probability of Classical
significance,

Pr
(
SCε
)

= Pr

(
Ynr > −

1
√
nr
zεσ

)
.

We incorporate the design prior by using the predictive distribution (2.5) of Ynr ,

Pr
(
SCε
)

= 1− Φ

−zεσ/√nr − E(Ynr)√
Var(Ynr)


= Φ

[
zεσ/
√
nr + θ̂o

σ
√

1/no + 1/nr

]

= Φ

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]
. (2.6)

Equation (2.6) specifies the predictive power of a replication study with nr subjects assuming
a classical analysis of the results. By fixing the hybrid power Pr

(
SCε
)
to the desired value, we

can calculate the required sample size nr in the replication study. Unlike the standard method,
the hybrid method has no closed-form expression of the sample size nr for a fixed hybrid power
Pr
(
SCε
)
. Applications of root-finding algorithms are required.

Bayesian method

Incorporating the prior (2.4) not only in the design but also in the analysis of the replication study
gives rise to the Bayesian method, a new approach to power calculation. ‘Bayesian significance’
is denoted as

SBε = Pr (θ < 0 | replication data) < ε

and is the predictive probability of obtaining a significant Bayesian result when testing the null
hypothesis θ < 0 against an alternative θ > 0. Assuming a future parameter estimate Ynr , the
posterior distribution of θ is given by

θ |Ynr ∼ N

(
noθ̂o + nrYnr

no + nr
,

σ2

no + nr

)
. (2.7)

From (2.7) we can deduce that SBε will occur when the parameter estimate Ynr obeys

Ynr >
−
√
no + nrzεσ − noθ̂o

nr
. (2.8)

Derivation details are omitted here and can be found in Appendix A.1. The Bayesian power is
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given by the probability of SBε ,

Pr
(
SBε
)

= Pr

(
Ynr >

−
√
no + nrzεσ − noθ̂o

nr

)
.

We again incorporate the design prior by using the predictive distribution (2.5) of Ynr ,

Pr
(
SBε
)

= 1− Φ

−√no + nrzεσ − noθ̂o − nr E(Ynr)

nr

√
Var(Ynr)


= 1− Φ

[
−
√
no + nrzεσ − noθ̂o − nrθ̂o
nrσ

√
(no + nr)/nrno

]

= Φ

[
θ̂o
√
no
√
no + nr

σ
√
nr

+

√
no
nr
zε

]
. (2.9)

Equation (2.9) specifies the predictive power of a replication study with nr subjects assuming a
Bayesian analysis of the results. By fixing the Bayesian power Pr

(
SBε
)
, we are able to calculate

the required sample size nr in the replication study with root-finding algorithms.

Conditional Bayesian method

The conditional Bayesian method assumes a Bayesian analysis at the end of the replication study
but conditions the power on the original effect estimate θ̂o, which is assumed to be the true effect
size. This approach has not been described in Spiegelhalter et al. (2004). This is a new method
we design and briefly present in order to have the fourth combination of design and analysis priors
exposed in Table 2.2. The conditional Bayesian power is the probability of SBε conditioned on
θ = θ̂o,

Pr
(
SBε | θ = θ̂o

)
= Pr

(
Ynr >

−
√
no + nrzεσ − noθ̂o

nr

)

= 1− Φ

−√no + nrzεσ − noθ̂o − nr E(Ynr)

nr

√
Var(Ynr)


= 1− Φ

[
−
√
no + nrzεσ − noθ̂o − nrθ̂o

nrσ/
√
nr

]

= Φ

[√
no + nr
nr

zε +
θ̂o(no + nr)

σ
√
nr

]
. (2.10)

Equation (2.10) is the conditional power of a replication study with nr subjects assuming a
Bayesian analysis of the results. By fixing the conditional Bayesian power Pr

(
SBε | θ̂o

)
, the

required sample size in the replication study can be calculated with root-finding algorithms. As
the uncertainty incorporation is the main goal of this thesis, the conditional Bayesian method
will not be as thoroughly investigated as the other methods.
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2.3 Results

In this section, we present our findings concerning the different methods of power calculation. We
outline their properties, their differences, their common characteristics and examine the behavior
of the power curves under special circumstances.

2.3.1 Alternative expressions based on the relative sample size c and the
original p-value po

For a fixed significance level α = 2ε, the standard, the hybrid and the Bayesian power formulas
can be rewritten as a function of the original test statistic to = θ̂o

√
nr/σ and the relative sample

size c = nr/no only. The test statistic to can easily be transformed into the two-sided p-value po
with

po = 2 (1− Φ[to]) .

The standard power formula becomes

Pr
(
SCε | θ = θ̂o

)
= Φ

[
to
√
c+ zε

]
, (2.11)

the hybrid power formula becomes

Pr
(
SCε
)

= Φ

[√
1

c+ 1

(
to
√
c+ zε

)]
, (2.12)

and finally, the Bayesian power formula becomes

Pr
(
SBε
)

= Φ

[
to

√
1 +

1

c
+

√
1

c
zε

]
. (2.13)

Similarly, it can be deduced that for a fixed significance level α = 2ε, the relative sample size c
only depends on the original test statistic to and the power. This interesting property reduces
the number of arguments needed in the power calculation. Based on the context, we will either
use the initial or the alternative formulas in the following.

Illustration Let us consider two hypothetical studies, study A and study B. They have
already been conducted and were declared significant at the 5% level with a p-value of 0.02.
Suppose the two studies have different sample sizes, effect sizes and standard deviations, see
Table 2.3. We now want to conduct two replication studies in order to confirm the findings of
the two studies. For each replication study, we calculate the replication power as a function
of the relative sample size c, as shown in Figure 2.1. We see that for each method, the same
replication power is achieved given the same relative sample size c in both replication studies.
This example illustrates the dependence of the power on the original p-value po and the relative
sample size c only.
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A B
no 26 240
θ̂o 0.5 0.15
σ 1.1 1

p-value 0.02 0.02

Table 2.3: Original sample size, effect estimate, standard deviation and p-value of
studies A and B.
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Figure 2.1: Replication power with the standard, the hybrid and the Bayesian methods
as a function of the relative sample size c for studies A and B.

2.3.2 Manipulation of the original study

In this part, we investigate how the replication power changes in the hypothetical situation where
we could manipulate the settings of the original study.

Replication power as a function of the original p-value po

The standard, the hybrid and the Bayesian formulas in (2.11), (2.12) and (2.13) imply that the
power will increase as the original test statistic to increases. This entails that for a fixed relative
sample size c, more convincing original studies (smaller p-value po) will lead to more powerful
replication studies. Similarly, the required sample size to achieve a certain power will get smaller
when the original p-value po decreases. This property is illustrated in Figures 2.2 and 2.3.

Illustration In Figure 2.2, the replication study is assumed to have the same size as the
original study (c = 1). Less convincing original studies lead to a non-negligible lower power than
more convincing original studies. Although we do not obtain the same power with the three
methods, the observed trend is respected in all of them. Remarkably, an original finding with a
p-value po = 0.05 will reach a replication power of only 50% with the standard and the hybrid
methods if the same sample size is used as in the original study. The Bayesian method returns
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the largest power for all shown original p-values po. In Figure 2.3, the relative sample size c to
reach a power of 90% with the different methods is shown. As expected, original studies with
larger p-values po need larger sample sizes than more convincing original studies. Remarkably,
the difference between the standard and the hybrid sample sizes increases as po gets larger.
Moreover, there is no replication sample size for small original p-value po with the Bayesian
method. This feature is investigated later.

0

20

40

60

80

100

Two−sided p−value of the original study po

P
ow

er
 (

in
 %

)

Standard
Hybrid
Bayesian

0.00 0.01 0.02 0.03 0.04 0.05

50

Figure 2.2: Power calculation with the standard, the hybrid and the Bayesian methods
for a replication study with sample size equal to the original sample size (c = 1) as a
function of the original p-value po at the traditional 5% level. The vertical red line
indicates a p-value po of 0.05 and the horizontal red line a power of 50%.
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Figure 2.3: Relative sample size c to achieve a power of 90% as a function of the
original p-value po with the standard, the hybrid and the Bayesian methods at the
traditional 5% level.

Replication power as a function of the original sample size no

Here we investigate the power with the hybrid and the Bayesian methods in the hypothetical
situation of an original study with infinitely large sample size. For this task, we use the initial
formulas (2.6) and (2.9), where we let the original sample size no go to infinity.

For an infinitely large original sample size no, the hybrid power tends to the standard power,

lim
no→+∞

Φ

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]
= Φ

[
θo
√
nr

σ
+ zε

]
.

This is reasonable since the prior (2.4) variance tends to zero as no tends to infinity and the normal
prior becomes then a point prior at θ = θ̂o. However, the Bayesian power behaves differently.
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The Bayesian replication power of an infinitely large original study is 100%, as outlined by

lim
no→+∞

Φ

[
θ̂o
√
no
√
no + nr

σ
√
nr

+

√
no
nr
zε

]
= 1 .

This is an intriguing property of the Bayesian power, as it means that a replication study will
always reach a large Bayesian power if the original study is large enough.
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Figure 2.4: Power calculation with the standard, the hybrid and the Bayesian methods
as a function of the original sample size no assuming θ̂o = 1, σ = 1 and nr = 10 at the
5% level.

Illustration Figure 2.4 illustrates the behavior of the power with the hybrid and the Bayesian
methods as a function of the original sample size no and compares it to the power with the
standard method. Suppose we conducted an original study which detected an effect estimate
θ̂o = 1, with σ = 1. We now plan a replication study with a sample size nr of ten. With the
standard method, the power is 88.5% regardless of the original sample size. In contrast, the
hybrid power is 54.8% if only one subject was included in the original experiment and increases
until it meets the standard power for large values of no. The Bayesian power rapidly increases
to 100% as no increases.
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2.3.3 Manipulation of the replication study

Here we investigate the more interesting situation where the original study has already been
conducted and we are planning the replication study. In order to choose the most adequate
sample size for the replication study, we examine the hybrid and the Bayesian power formulas
as a function of the replication sample size nr or analogously of the relative sample size c. The
important results are first briefly summarized and then derived in detail.

Hybrid power

– monotonically increasing
– limiting value: 1− po/2
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Bayesian power for non-significant original studies

– monotonically increasing
– limiting value: 1− po/2

0 10 20 30 40 50 60

0

20

40

60

80

100

Relative sample size c
P

ow
er

 (
in

 %
)

Hybrid power

As a first step, we compute the power of a replication study with no subject. It may seem
meaningless to investigate this situation as it will never happen in practice. However, it will
become an interesting property in the Bayesian method. The replication power of a study
without subjects is found by replacing nr with 0 in equation (2.6),

Φ

[√
no

no + 0

(
θ̂o
√

0

σ
+ zε

)]
= Φ [zε] = ε ,

and is the significance level divided by two. If we assume a 5% significance level, the replication
power of a study without subjects is still 2.5%. Similarly, we want to know the hybrid power of
a replication study with an infinitely large sample size,

lim
nr→+∞

Φ

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]
= Φ

[
lim

nr→+∞

(√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

))]

= Φ

[
lim

nr→+∞

(
θ̂o
√
no

σ

√
nr√

no + nr
+

√
nozε√

no + nr

)]

= Φ

[
θ̂o
√
no

σ

]
. (2.14)

As θ̂o
√
no/σ is the test statistic to of the original study, we have

Φ

[
θ̂o
√
no

σ

]
= Φ [to]
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= 1− Φ [−to]

= 1− po/2 .

The same result is obtained with the alternative formula of the hybrid power (2.12),

lim
c→+∞

Φ

[√
1

c+ 1

(
to
√
c+ zε

)]
= Φ[to] .

This result implies that by increasing the replication sample size, the hybrid power tends to
1−po/2, one minus the one-sided p-value of the original study. The more conclusive the original
study, the larger power the replication study can achieve.

Illustration Figure 2.5 illustrates the dependence of the limiting hybrid power on the original
one-sided p-value po/2. The hybrid power of three hypothetical studies with po = 0.08, 0.03 and
0.005 is plotted as a function of the relative sample size c. With a sufficiently large relative
sample size c, each study reaches a power of 1− po/2. A larger relative sample size c is required
in less convincing studies.
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Figure 2.5: Hybrid power as a function of the relative sample size c for three hypo-
thetical studies with po = 0.08, 0.03 and 0.005 respectively and at the 5% level. The
red, blue and green horizontal dashed lines indicate 1− po/2, (1 - 0.04), (1 - 0.015) and
(1 - 0.0025) respectively.
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We know now the hybrid power of a study without subjects and of a study with an infinite
number of subjects. However, we do not know the behavior of hybrid power between these two
extremes. In the following, we prove the monotonicity of the hybrid power as a function of the
relative sample size c. We first recall the formula of the hybrid power:

Pr
(
SCε
)

= Φ

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]
.

Since the function Φ[·] is monotonically increasing, we only need to show that its argument is
monotone in nr. To do so, we take the first partial derivative with respect to nr,

d

dnr

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]
=

(no/(nr + no))
3/2(θ̂ono −

√
nrσzε)

2(
√
nrnoσ)

. (2.15)

Throughout the thesis, we assume positive values for no and nr. As the alternative hypothesis
H1 is θ = θ̂o > 0 and as there would not be much interest in replicating a study with a negative
effect, we assume that θ̂o is also positive. Moreover, zε is always negative and is equal to zero
in the extreme case of ε = 0.5 meaning α = 1. Hence equation (2.15) is always positive and
the replication power with the hybrid method is monotonically increasing as a function of the
replication sample size nr. In other words, increasing the replication sample size cannot decrease
the hybrid power. This last statement may seem trivial but its relevance will become clear when
investigating the monotonicity of the Bayesian power curve.

Bayesian power

The same procedure is applied to the Bayesian power formula. We first look at the Bayesian power
in the hypothetical case of a replication study without subjects. For simplicity, let us consider
the alternative Bayesian formula (2.13) here and calculate its limit as the relative sample size c
tends to zero,

lim
c→0

Φ

[
to

√
1 +

1

c
+

√
1

c
zε

]
= Φ

[
lim
c→0

(
to

√
1 +

1

c
+

√
1

c
zε

)]
= Φ [(to − |zε|)∞]

=


0 if to < |zε|
1 if to > |zε|
0.5 if to = |zε| .

The replication power when the relative sample size c tends to zero is 0% for non-significant
original studies, 100% for significant original studies and 50% for original studies with p-values
equal to the significance level. This intriguing property highlights the relevance of studying the
power of a replication study without subjects.
—–
—–
—–
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In a second step, we look at the Bayesian power of a study with an infinitely large replication
sample size nr,

lim
nr→+∞

Φ

[
θ̂o
√
no + nr

√
no

σ
√
nr

+

√
no
nr
zε

]
= Φ

[
lim

nr→+∞

(
θ̂o
√
no + nr

√
no

σ
√
nr

+

√
no
nr
zε

)]

= Φ

[
θ̂o
√
no

σ

]
= 1− po/2 . (2.16)

The limiting power with the Bayesian method is the same as with the hybrid method. This
property implies that irrespective of the magnitude of the replication sample size, certain levels
of power cannot be reached with the hybrid and the Bayesian methods.

Illustration Figure 2.6 represents the Bayesian replication power of the same three original
studies as in Figure 2.5.
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Figure 2.6: Bayesian power as a function of the relative sample size c for three hypo-
thetical studies with po = 0.08, 0.03 and 0.005 respectively and at the 5% level. The
red, blue and green horizontal dashed lines indicate (1 - 0.04), (1 - 0.015) and (1 -
0.0025) respectively.

We also notice in Figure 2.6 that the Bayesian replication power as a function of the relative
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sample size c can be non-monotone. We investigate this property in the following. Derivation
details can be found in Appendix A.2. By taking the first derivative of the Bayesian power
formula, we learn that the Bayesian power is minimal when

nr = no

[
θ̂2ono
σ2z2ε

− 1

]
⇔ c =

t2o
z2ε
− 1 .

The corresponding Bayesian power is given by

Pr
(
SBε
)

= Φ
[√

t2o − z2ε
]
.

We can again identify three cases. When to > |zε|, the minimum Bayesian power is Φ
[√

t2o − z2ε
]

and corresponds to c = t2o/z
2
ε − 1. Remarkably, the minimum Bayesian power increases for

increasing evidence in the original study (increasing original test statistic to). In contrast, when
to < |zε|, the relative sample size c corresponding to the minimum Bayesian power is negative.
In this instance, the power curve is monotonically increasing for every c ≥ 0. When to = |zε|,
the minimum power is 50% and corresponds to a relative sample size of zero.
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Figure 2.7: Bayesian power as a function of the relative sample size c for one significant
and one non-significant original study at the traditional 5% level. In each study the
horizontal red line indicates 1− po/2.

Altogether, our findings concerning the Bayesian power can be summarized in two main
categories illustrated in Figure 2.7.

For a significant original study, the Bayesian replication power as a function of the relative
sample size c starts at 100%, decreases to Φ

[√
t2o − z2ε

]
and increases up to 1 − po/2. The

range of values the Bayesian power can reach gets narrower with decreasing original p-values
po. Notably, the replication power of a very convincing original study will always be 100% as
the minimum and the limiting power converge to 100% when the original p-value po decreases.
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We now understand why a power of 90% could not be reached with the Bayesian method when
the evidence from the original study was very convincing in Figure 2.3. With such low original
p-values po, any replication sample size results in a Bayesian power larger than 90%.

For a non-significant original study, the Bayesian replication power as a function of the
relative sample size c begins at 0% and then monotonically increases up to the limiting value of
1 − po/2. An original study with p-value po equal to the significance level α can be considered
as a special case of the non-significant original studies. In such an instance, the power begins at
50% and then monotonically increases to 1− po/2.

Intersection of the power curves

It is interesting to calculate under which circumstances a given method gives a larger power than
another for the same replication sample size. As a first step, we compare the standard and the
hybrid methods. We want to know from which replication sample size the standard power is
larger than the hybrid power. Once again, as the function Φ[·] is monotonically increasing, we
can focus on its argument in the calculation. We want to know when Pr

(
SCε | θ = θ̂o

)
≥ Pr

(
SCε
)
,

which is equivalent to

Φ

[
θ̂o
√
nr

σ
+ zε

]
≥ Φ

[√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)]

⇔
θ̂o
√
nr

σ
+ zε ≥

√
no

no + nr

(
θ̂o
√
nr

σ
+ zε

)

⇔ nr ≤ 0 or nr ≥
σ2z2ε

θ̂2o

⇔ c ≤ 0 or c ≥ z2ε
t2o
.

These results show that for a replication sample size below 0 or above σ2z2ε /θ̂o, the standard
power is larger than the hybrid power. However, as a negative sample size is not of interest, we
focus on the second case. By plugging σ2z2ε /θ̂o in the standard (or hybrid) power formula, we
obtain the replication power corresponding to the intersection of both power curves,

Φ

[
θ̂o
√
nr

σ
+ zε

]
= Φ

 θ̂o
√
σ2z2ε /θ̂

2
o

σ
+ zε


= Φ

 θ̂o
∣∣∣σzε/θ̂o∣∣∣
σ

+ zε


= Φ [|zε|+ zε]

= 0.5 . (2.17)

Because σ is always positive, zε is always negative and θ̂o is assumed to be positive, the formula
can be simplified. This result formally shows that the standard method will return a larger
power than the hybrid method for the same replication sample size provided the standard power
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is larger than 50%. Both power curves cross at power of 50% for nr = σ2z2ε /θ̂
2
o or equivalently

c = z2ε /t
2
o. This means that the larger the evidence in the original study, the earlier the two

curves cross. If we now think in terms of sample size calculation, as the target power is usually
above 50%, the hybrid method will in principle require a larger sample size in the replication
study than the standard method.

The same procedure is carried out for the intersection of the Bayesian and the conditional
Bayesian power curves. We want to know when Pr

(
SBε | θ = θ̂o

)
≥ Pr

(
SBε
)
, which is equivalent

to

Φ

[√
no + nr
nr

zε +
θ̂o(no + nr)

σ
√
nr

]
≥ Φ

[
θ̂o
√
no
√
no + nr

σ
√
nr

+

√
no
nr
zε

]

⇔
√
no + nr
nr

zε +
θ̂o(no + nr)

σ
√
nr

≥
θ̂o
√
no
√
no + nr

σ
√
nr

+

√
no
nr
zε

⇔ nr ≥ σ2z2ε − θ̂2ono
θ̂2o

⇔ c ≥ z2ε
t2o
− 1 . (2.18)

By plugging the replication sample size corresponding to (2.18) in the Bayesian power formula
(2.13), we once again retrieve a power of 50%. This result states that the conditional Bayesian
power is larger than the Bayesian power for the same relative sample size c provided that the
Bayesian power is larger than 50%. However, in the case of a significant original study (to >
|zε|), the sample size c where the Bayesian and the conditional Bayesian power curves cross
is negative and the power is above 50% for every replication sample size larger than 0. As a
result, the conditional Bayesian power is always larger than the Bayesian power in this situation.
Remarkably, the Bayesian and the conditional Bayesian power attain 50% one unit of relative
sample size before the standard and the hybrid power.

Illustration Figure 2.8 presents the power of a replication study based on a non-significant
original study (po = 0.13) as a function of the relative sample size c with the standard, hybrid,
Bayesian and conditional Bayesian methods. As expected, the standard and the hybrid power
curves and the Bayesian and the conditional Bayesian power curves cross at a power of 50% and
at c = z2ε /t

2
o and c = z2ε /t

2
o − 1, respectively.

2.3.4 Predictive power at an interim analysis

In sequential trials, the data are regularly analyzed at interim and the study is stopped if suffi-
ciently convincing results are obtained (Spiegelhalter et al., 2004). In the previous sections, we
were in the setting of two non-sequential trials. We had an original study and in order to assess
its reliability we intended to conduct a replication study. The aim of this very short section is to
show how the Bayesian power calculation for replication studies is related to power calculation
at an interim analysis.

Suppose we are conducting a clinical trial and after collecting the data of a certain number
of subjects we decide to perform an interim analysis. Let m denote the number of subjects
at interim, n the number of additional subjects to be collected after the interim analysis, ym
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Figure 2.8: Power of a replication study based on a non-significant original study
(po = 0.13) as a function of the relative sample size c with the four methods and at
the traditional 5% level. The horizontal red line indicates a power of 50% and the two
vertical lines indicate c = z2ε /t

2
o (black) and c = z2ε /t

2
o − 1 (pink).

the effect size at interim, σ the common standard deviation of one observation and θ the true
unknown effect size. We want to know the power of the study, given the data so far. In order
to calculate the predictive power, we need to select a prior distribution for θ, independent of the
data. When using an uninformative prior, the predictive power is

Pr
(
SCε | ym

)
= Φ

[√
m+ n√
n

√
mym
σ

+

√
m

n
zε

]
. (2.19)

This formula is the classical predictive power in Spiegelhalter et al. (2004). Remarkably, if we
assume that the current sample size m is the sample size of the original study no, the number
of additional subjects n is the sample size of the replication study nr and the effect estimate at
interim ym is the original effect estimate θ̂o, the predictive power formula at interim (2.19) is
identical to the Bayesian power formula (2.9). This last statement indicates that the Bayesian
method does not consider the original and replication study as two independent studies, but as
one pooled study including an interim analysis.
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2.4 Application

In the following, we illustrate the methods discussed in the previous sections using real data from
a large replication project.

The Open Science Collaboration (2015) conducted a large-scale, multi-year project on the
replicability of psychological science. They replicated 100 experimental and correlational studies
published in 2008 in three major psychological journals. Replication teams were formed and
matched with studies according to their interests, resources and expertise. Each team conducted
their study, analyzed their data and wrote a summary report. The results confirm the concerns
of the replication crisis (Ioannidis, 2005). The replication effects were half the magnitude of the
original effects. Moreover, only 36% of the replication studies were statistically significant against
97% of the original studies. For 73 studies, it was possible to transform the effect sizes to the
correlation scale, forming the so-called Meta-Analytic (MA) subset (Johnson et al., 2017). After
application of Fisher’s z-transformation θ = tanh−1(r) to the estimated correlation coefficient
r̂, a normal assumption is justified and the standard error is a function of the nominal study
sample size n only, se(θ) = 1/

√
n− 3. Because the standard errors of the 27 remaining studies

are not available, we do not include them in this work. The effective sample sizes n − 3 are
used in our calculation and we computed the two-sided p-values po and pr taking advantage of
the normality of the test statistics to = θ̂o/ se(θ̂o) and tr = θ̂r/ se(θ̂r), respectively. However,
the p-values reported in the original paper by the Open Science Collaboration (2015) are one-
sided. Replication reports, as well as data, were made available on the Open Science Framework
(http://osf.io/ezcuj). In this application, we focus on the dataset called final which can be
extracted from the MASTER file.

2.4.1 Exploratory Data Analysis

First, we briefly present the data and results of the studies of the MA subset. The original and
replication effect sizes are compared, as well as the original and replication sample sizes.

Figure 2.9 is a scatterplot of the original and replication effect estimates. It shows that most
of the original studies were significant (82%), whereas this is the case for less than one-third
of the replication studies. The difference between these percentages and the percentages in the
paper comes from the fact that we used two-sided instead of one-sided p-values. Although these
results are of great interest and we could discuss different ways of assessing if the replication was
a success, this is not the aim of this thesis. We focus on an earlier phase of the process, namely
the determination of the replication sample size.

Figure 2.10 shows the original sample sizes versus the replication sample sizes of the studies of
the MA subset. No significant trend can be detected: the replication sample sizes are sometimes
larger (46 studies), sometimes smaller (18 studies) and sometimes the same (9 studies) as the
original sample sizes.

http://osf.io/ezcuj
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Figure 2.9: Original study effect estimate versus replication study effect estimate
(Fisher z-transformed correlation coefficient). Each circle represents one study and the
circle size indicates the power at the traditional 5% level. The diagonal line indicates a
replication effect estimate equal to the original effect estimate. The horizontal dashed
line shows a replication effect estimate of 0. The colors represent the significance of the
original and replication studies.

2.4.2 Power calculation

We now apply the different methods of power calculation to the studies of the MA subset. We
assume a 5% significance level and a one-sample design. In a first part, we compare the power
calculated by the replication teams, which we call the nominal power, with the power calculated
by the standard method. We then compute the power with the hybrid, Bayesian and conditional
Bayesian methods and compare it to the standard power. In a third part, we investigate the
behavior of the different power curves as a function of the relative sample size c for four selected
studies.
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Figure 2.10: Original sample size versus replication sample size. Each circle represents
a study and the circle size is proportional to the original effect estimate. The diagonal
line indicates a replication sample size equal to the original sample size.

Nominal versus standard power

Each replication team calculated and reported the power of their replication study using the
G∗ Power software (Erdfelder et al., 1996). The primary original effect estimates were used in
their calculation, including Cohen’s d, Cohen’s f and η2 for example. In contrast, we used the
transformed correlation coefficient θ̂o in our power calculation. Figure 2.11 shows the nominal
power and the power with the standard method of the 73 studies. Although they are supposed to
correspond for every particular study, the standard power tends to be smaller than the nominal
power. Some studies show a considerable discrepancy between the nominal and the standard
power. Table 2.4 presents the eight studies where this discrepancy exceeds 20%.

In order to investigate these studies in greater detail, we examined the replication reports. For
each study, we identified the primary original effect estimate and transformed it using Fisher’s
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Figure 2.11: Nominal power and power with the standard method for the 73 studies
of the MA subset. Each circle represents a study and the lines link the same studies.
Studies where the discrepancy in power exceeds 20% are in red. The horizontal red line
indicates a power of 50%.

Study Nominal power Standard power Power difference nr θ̂o
3 95 70 25 33 0.454
20 92 65 27 108 0.228
26 95 34 61 94 0.162
52 95 59 36 113 0.209
56 95 68 27 40 0.399
89 80 10 70 28 0.141
115 90 31 59 10 0.552
135 99 5 94 3513.1 0.005

Table 2.4: Study number, nominal power, standard power, power difference, replica-
tion sample size and original effect estimate of the studies with the largest discrepancy
in power.

z-transformation. For five studies, this recalculated original effect estimate corresponds to the
effect estimate reported in the final dataset. Hence the difference in power for those five
studies is not a consequence of an inaccurate conversion of effect estimates. For the remaining
studies, we compute the power with the recalculated effect estimate. The newly calculated
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power corresponds to the nominal power for two studies. For the last study, however, the power
still does not correspond even after using the recalculated original effect estimate. Figure 2.12
recapitulates the procedure.

In summary, we could find an explanation of the large discrepancy for only two of the studies.
For the other six studies, the reason for this large difference is still unclear and may come from
the use of the G∗ Power software.

Do the effect
estimates agree?

Studies 3,
20, 52, 56,
115

Does the power
correspond when
the recalculated
effect estimate
is used in the
calculation?

Studies 26, 135Study 89

yesno

yesno

Figure 2.12: Investigation of the discrepancy between the nominal and the standard
power.

Power calculation with the four methods

The four methods of power calculation are now used to obtain the power of the 73 replication
studies belonging to the MA subset, see Figure 2.13, using the sample size that was chosen
by the replication teams. As expected, the replication studies reach a larger power with the
standard than with the hybrid method when the power is larger than 50%. This means that a
larger number of subjects are required to reach the same level of power if the uncertainty of θ̂o
is incorporated in the design. The power with the Bayesian method is in general larger than
with the standard and the hybrid methods. This is not surprising as the Bayesian replication
power of significant original studies is ensured to be between 50% (for po = 0.05) and 100%.
The replication studies reach a larger power with the conditional Bayesian method than with the
Bayesian method when the power is larger than 50%. The conditional Bayesian method gives
rise to an extremely large median power (99.9%).

Power calculation as a function of the relative sample size c

We now select four studies and pretend the respective replication studies have not been conducted
yet. Information about these studies can be found in Table 2.5. For each study, we compute the
replication power as a function of the relative sample size c, see Figure 2.14. A 5% significance
level is considered.
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Figure 2.13: Replication power with the standard, the hybrid, the Bayesian and the
conditional Bayesian methods for the 73 studies of the MA subset. Each circle represents
a study and the lines link the same studies. The horizontal red line indicates a power
of 50%.

Study 24 Study 106 Study 82 Study 26
no 154 36 43 96
θ̂o 0.38 0.40 0.31 0.16
σ 1.01 1.04 1.04 1.02
po < 0.0001 0.021 0.051 0.117

Table 2.5: Description of study 24, 106, 82 and 26.

As a general observation, the standard and the hybrid power curves always cross at a power
of 50%, as well as the Bayesian and the conditional Bayesian power curves for non-significant
original studies. There is always a difference of one unit between the two intersections. Moreover,
the plots make clear that the power for large relative sample size c tends to 100% with the
standard method while it is bounded to a lower limit with the hybrid and the Bayesian methods.
In the following, we describe the results for each study separately.

Study 24 has a really small p-value po. With the standard and the hybrid methods, the
replication power rapidly reaches 100% with a small relative sample size c. The power with the
Bayesian and the conditional Bayesian methods is very close to 100% for all relative sample sizes.
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Figure 2.14: Replication power as a function of the relative sample size c for four
studies of the MA subset at the 5% level. The vertical lines are plotted at the inter-
section of the standard and the hybrid power curves (black) and at the intersection of
the Bayesian and conditional Bayesian power curves (pink). The horizontal red line
indicates a power of 50%.

Study 106 is significant but has a larger p-value po than study 24. The power curves behave
in a similar way as for the latter study with the difference that the standard and the hybrid
power curves are flatter and the range of the Bayesian and the conditional Bayesian power is
now larger. This means that more subjects are needed as compared to study 24 to reach the
same level of standard or hybrid power and that the power with the Bayesian and the conditional
Bayesian methods is not guaranteed to be 100%. However, it is still large for all values of the
relative sample size c.

Study 82 is a non-significant study with p-value po close to 0.05. Regarding the power with
the standard and the hybrid methods, more subjects are necessary to reach the same level of
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power than in study 106. Remarkably, we observe a considerable change in behavior for the
Bayesian and the conditional Bayesian power curves. The replication study can now reach any
level of Bayesian and conditional Bayesian power.

Study 26 is non-significant. The situation is very similar to study 82 with the difference that
all the curves are now flatter, meaning that more subjects are required to reach the same level
of power than in study 82.

These results can be generalized to other studies with similar original p-values po as these
four studies.



Chapter 3

Power for Replication Success

Statistical significance and p-values seem to be well-apprehended concepts but are in reality
widely misunderstood, misinterpreted and misused (Cohen, 1994; Greenland et al., 2016). In
2016, the American Statistical Association issued a Statement encouraging researchers to steer
research into a ‘post p < 0.05’ era (Wasserstein and Lazar, 2016). Some authors suggested to
lower the threshold for significance to p = 0.005 for claims of new discoveries (Johnson, 2013;
Benjamin et al., 2017; Ioannidis, 2018). Held (2019a) provides an additional argument for this
new threshold with the p = 0.0056 threshold for intrinsic credibility. Intrinsic credibility is
a concept proposed by Matthews (2018) in order to assess the credibility of ‘out of the blue’
findings without any prior support. Matthews found that the threshold for α = 0.05 corresponds
to the conventional p-value being lower than 0.01266. However, Matthews does not take all
the uncertainty into account in his calculation, whereas Held does. In the following, we use the
terminology Held’s and Matthews’ threshold to refer to p = 0.0056 and p = 0.01266, respectively.

Using standard significance of the replication study to assess replication success has also
been questioned and has been shown to easily lead to conclusions opposite to what the evidence
warrants (Simonsohn, 2015). As a result and in order to rectify the lack of a unified definition
of replicability (Goodman et al., 2016), new standards for evaluating replication success are
emerging. In this chapter, we focus on a reverse-Bayes approach proposed by Held (2019b),
which combines the Analysis of Credibility (Matthews, 2018) and the Box (1980) prior criticism
approach to give rise to a new quantitative measure of replication success, the sceptical p-value
pS . While the main task of Chapter 2 was to design significant replication studies, in the following
we aim at designing successful replication studies. Similarly to significance at a pre-specified level
α which was equivalent to p ≤ α, replication success at level α is equivalent to pS ≤ α. The
computation of the power or the required sample size to achieve replication success is challenging
and no closed form expression exists.

3.1 Theory

In this section, we briefly present the formulas and properties of the sceptical p-value pS . We
refer to Held (2019b) for the detailed derivations. In the following, let us assume that θ̂o and θ̂r
are the effect estimates of the original and replication study, respectively, with the corresponding
variance σ2o and σ2r . Let c = σ2o/σ

2
r denote the ratio of these variances and to = θ̂o/σo and
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tr = θ̂r/σr the test statistics of the original and replication study, respectively.

The sceptical p-value pS is defined as

pS = 2 [1− Φ(zS)] ,

with

z2S =

 t2H/2 for c = 1 and
1
c−1

{√
t2A
[
t2A + (c− 1)t2H

]
− t2A

}
for c 6= 1 .

(3.1)

In equation (3.1), t2A = (t2o+ t2r)/2 is the arithmetic and t2H = 2/(1/t2o+1/t2r) the harmonic mean
of the squared test statistics t2o and t2r .

A central requirement of the sceptical p-value pS is that z2S < min{t2o, t2r}. Hence the sceptical
p-value pS is always larger than the original and replication p-values po and pr. Moreover, the
sceptical p-value pS takes into account the results from both the original and the replication
study.

3.2 Results

In this section, we present the main findings about the power for replication success. While
in Chapter 2 we could support our findings with formulas, we mostly base our reasoning on
observations here, as no closed form expression exists. Just as the uncertainty of θ̂o can be ignored
or taken into account in the power calculation for significance, we distinguish here between
conditional and predictive power for replication success. The conditional power for replication
success uses a point prior at θ = θ̂o and thus does not take the uncertainty of θ̂o into account.
In contrast, the predictive power for replication success uses a normal prior θ ∼ N(θ̂o, σ

2
o) and

hence acknowledges the uncertainty surrounding the original effect estimate θ̂o. Suppose no and
nr are the sample sizes of the original and replication studies, respectively, so σ2o = σ2/no and
σ2r = σ2/nr where σ is the common standard deviation of one observation. Hence c = σ2o/σ

2
r

becomes c = nr/no, the relative sample size.

3.2.1 Dependence on the original p-value po and the relative sample size c

For a pre-specified significance level, the power for replication success only depends on the original
p-value po (or equivalently the original test statistic to) and the relative sample size c. Similarly,
for a pre-specified significance level, the sample size for replication success only depends on the
power and the p-value po of the original study. Derivation details are omitted here.

Illustration We reconsider the two studies from Table 2.3 and calculate the conditional and
the predictive power for replication success as a function of the relative sample size c for both
studies, see Figure 3.1. We see that despite having different effect sizes and standard errors, the
two replication studies reach the same conditional and predictive power for the same relative
sample size c.
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Figure 3.1: Conditional and predictive power for replication success as a function of
the relative sample size c for studies A and B from Table 2.3 at the 5% level.

3.2.2 Power for replication success as a function of the original p-value po

We calculate the conditional and the predictive power for replication success as a function of
the original p-value po for a replication study of the same size as the original study (c = 1)
and compare it to the power for significance, see Figure 3.2. The Bayesian and the conditional
Bayesian methods are not considered here. The sceptical p-value pS is always larger than the
original p-value po. It thus makes sense that if there is strong evidence in the original study (po
very small), the power for replication success for a fixed c will be larger than if po is relatively
large. The conditional and the predictive power for replication success rapidly drops to 0% as
the original p-value po increases. While an original p-value po of 0.05 corresponds to a replication
power of 50% with the standard and the hybrid methods, it corresponds to a conditional and
predictive power for replication success of 0%. This property makes sense since the significance
of the original study is a sine qua non condition to achieve replication success. A study will
reach a conditional and predictive power for replication success of 50% if the original p-value po
is 0.0056, Held’s threshold for intrinsic credibility.

Figure 3.3 illustrates the difficulty to reach replication success at the pre-specified 90% power.
Remarkably, while it is always possible to reach the pre-specified power with the standard and
the hybrid methods with a sufficiently large relative sample size c, some original studies do not
allow replication success regardless of the relative sample size c. For example, for intrinsically
credible original studies (po = 0.0056), a relative sample size of slightly above four is required
in order to achieve replication success under the point prior, but replication success cannot be
achieved under the normal prior.
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Figure 3.2: Power calculation for a replication study with sample size equal to the
original sample size (c = 1) as a function of the original p-value po with the standard
and the hybrid methods and with the conditional and the predictive replication success
methods at the 5% level. The horizontal red line indicates a power of 50% and the
vertical red line indicates po = 0.0056.

3.2.3 Power for replication success as a function of the relative sample size c

As explained in Chapter 2, although the behavior of the power with varying po might be of great
interest, it is not the main focus of this work. We want to make the design of the replication study
as efficient as possible and to do so, we investigate the behavior of the power for replication success
as a function of the relative sample size c. As the power for replication success only depends on
the original p-value po and the relative sample size c, by varying po and looking at the power
as a function of the relative sample size c we are able to observe the most important features.
Figure 3.4 shows the power calculations of four studies with original p-values po = 0.03, 0.02, 0.01
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Figure 3.3: Relative sample size c to reach a power of 90% with the standard and the
hybrid methods and with the conditional and the predictive replication success methods
as a function of the original p-value po at the 5% level. The vertical red line indicates
po = 0.0056.

and 0.001. The original p-value po seems to dictate the shape of the power curve. The lower the
original p-value po, the steeper the curve. Moreover, the original p-value po appears to influence
the monotonicity of the curve. Larger original p-values po generate non-monotone replication
power curves while smaller p-values po give rise to monotonically increasing power curves. In
addition, this threshold for monotonicity appears to be different for conditional and predictive
power for replication success.
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Figure 3.4: Conditional and predictive power for replication success as a function
of the relative sample size c for different original p-values po at the 5% level. The
horizontal red line indicates a power of 50%.

Conditional power for replication success

After examining original studies with different p-values po and looking at the (non-)monotonicity
of the power curves as a function of the relative sample size c, it appears that original studies with
p-values po smaller than 0.01266 generate monotonically increasing conditional power curves,
whereas original studies with p-values po larger than 0.01266 generate non-monotone conditional
power curves. Remarkably, the threshold for monotonicity of conditional power for replication
success corresponds to Matthews’ threshold for intrinsic credibility. We could also notice that the
conditional and the predictive power curves cross when the power is 50%. Figure 3.5 presents
the power calculations for po = 0.0126 and po = 0.0127. For original p-value po just above
Matthews’ threshold, the conditional power for replication success reaches a maximum value
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Figure 3.5: Conditional and predictive power for replication success as a function of
the relative sample size c for original p-values just above and just below the threshold
for monotonicity of the conditional power at the 5% level. The horizontal red line
indicates a power of 50%.

slightly below 50% and then slightly decreases. For original p-values po just below the threshold,
the power for replication success keeps increasing, but at a slower rate for large values of c. For
information, the predictive power is also shown and we notice that the limiting predictive power
for po = 0.0127 is 50%.

Predictive power for replication success

The threshold for monotonicity of the predictive power is larger than the threshold for mono-
tonicity of the conditional power. Studies whose original p-value po is below 0.023 generate a
monotonically increasing power curve. In contrast, studies whose original p-value po is above
0.026 generate a non-monotone power curve. Figure 3.6 presents the power calculations for
po = 0.026 and po = 0.023. The pattern is different than for conditional power. For original
p-values po just above the threshold, the power for replication success reaches a maximum value
largely below 50% and rapidly decreases to a plateau. For original p-values po just below the
threshold, the power for replication success is monotone but rapidly reaches a plateau and stops
increasing. The conditional power is also shown. One notices that the conditional power rapidly
decreases to 0% for increasing c with such large original p-values po.

3.3 Application

In this section, we re-use the data from Section 2.4 to illustrate our findings about the power
for replication success. Figure 3.7 shows the conditional and the predictive power for replication
success of the 73 studies of the MA subset computed with their effective original and replication
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Figure 3.6: Conditional and predictive power for replication success as a function of
the relative sample size c for original p-values po just above and just below the threshold
for monotonicity of the predictive power at the 5% level

sample sizes at the 5% level. In both cases, the median power is below 50% and a considerable
number of studies have a power for replication success close to 0%. Furthermore, we observe the
same property as in Figure 2.13 with the standard and the hybrid power for replication success:
when the power is above 50%, the conditional power is larger than the predictive power and this
trend is reversed when the power is below 50%.

We then calculated the power for replication success as a function of the relative sample size
c for the 73 studies of the MA subset. We could observe several interesting features which are
well illustrated in four studies, see Figure 3.8.

In study 15, the conditional and predictive power for replication success is always 0% as the
original study is not significant.

Study 53 is intrinsically credible neither with Matthews’ threshold nor with Held’s. While
the standard and the hybrid methods lead to a large power with sufficiently large relative sample
size c, the conditional and predictive power for replication success stays very low and decreases
in both cases.

As the p-value po of study 1 is between the thresholds for monotonicity of the conditional
and of the predictive power for replication success, the predictive power for replication success
is monotone while the conditional is not.

Lastly, the original p-value po of study 2 is very small and the power curves for replication
success behave in a similar way as the standard and the hybrid power curves.
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Figure 3.7: Conditional and predictive power for replication success of the 73 studies
of the MA subset. The horizontal red line indicates a power of 50%.
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Figure 3.8: Replication power as a function of the relative sample size c for four studies
of the MA subset with the standard and the hybrid methods and with the conditional
and the predictive replication success methods at the 5% level. The red line indicates
a power of 50%.



Chapter 4

Discussion

In this chapter, we summarize and discuss our findings concerning the power for significance and
the power for replication success.

4.1 Power for significance

Our findings confirm that using the same sample size in the replication study as in the original
study may lead to severely underpowered study designs when the evidence from the original study
is only suggestive, even if the original study accurately estimated the true effect size. Moreover,
as the true effect size may be smaller than reported by the original study due to publication bias
for example, the power is likely to be even lower (Button et al., 2013).

The hybrid method of power calculation acknowledges the uncertainty surrounding the orig-
inal effect estimate θ̂o. As a result, larger sample sizes are required to achieve the same level
of power than with the standard method. This applies only if the desired power is larger than
50%, which is usually the case. One could argue that if the original effect estimate θ̂o is indeed
the true effect size, this approach results in a loss of resources. However, this loss of resources
is negligible as compared to missing a true, smaller effect because of a low-powered replication
study which ignores the uncertainty of the original effect estimate. In addition, the hybrid power
is an unconditional power and thus the plausibility of the alternative hypothesis H1 is taken into
account. This prevents the design of studies aiming at detecting implausible effects (Spiegel-
halter et al., 2004). The fact that the hybrid power cannot exceed a certain limit dictated by
the p-value po of the original study indicates that some replication studies are not worth being
conducted. This property does not apply to the standard power which goes to 100% with a
sufficiently large replication sample size. In summary, the hybrid power gives a more realistic
evaluation of the chances of a replication study with nr subjects to reject the null hypothesis H0.
Grouin et al. (2007) investigate the use of predictive power in clinical trials and regret that this
method is rarely used to design the trials. We think that it is really important to be aware that
predictive power is a different concept than standard power and is better suited for the design
of replication studies.

Our investigations demonstrate that the Bayesian method, even if it incorporates the uncer-
tainty of the original effect estimate θ̂o, is not suited for power calculation in replication studies.
The Bayesian replication power of significant original studies is always 100% for a replication
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sample size tending to zero and is 100% for any replication sample size if the original study is
very convincing. In fact, by planning a Bayesian analysis, the original and replication studies
are not considered as two distinct studies, but as one pooled study where an interim analysis is
conducted after no subjects. This is shown by the Bayesian power formula being the same as
the formula of the predictive power at an interim analysis. Dallow and Fina (2011) explain the
decreasing property of the predictive power in interim analyses by the potential threat any addi-
tional subject represents, able to damage the current results rather than bringing more power to
the analysis if the interim analysis is very good. However, although the Bayesian method per se
cannot be used to calculate the sample size of replication studies, it could be extended to perform
interim analyses during the replication study. Spiegelhalter et al. (2004) present the concepts
of Bayesian and hybrid predictive power which incorporate an independent prior in the analysis
and/or in the design at an interim analysis. By incorporating the knowledge of the original study
in the independent prior, one could perform interim analyses within the replication study. This
approach can be useful in order to save money and time.

The conditional Bayesian method is actually the worst method to calculate the power of a
replication study. It involves the same drawbacks as the Bayesian method but also does not
take the uncertainty of the original effect estimate θ̂o into account. The replication power of
convincing original studies is extremely high with this method, regardless of the sample size.

One common limitation of these methods is that they ignore a possible inflation of the original
effect size θ̂o. This issue could be handled in future research with shrinkage methods for example.

4.2 Power for replication success

As we pointed out the irrelevance of the Bayesian and the conditional Bayesian methods in
sample size calculation of replication studies, they are not mentioned in the following and ‘power
for significance’ refers to the standard and the hybrid methods only.

Achieving replication success is more challenging than achieving significance of the replication
study. Only original studies with very convincing p-values po lead to a reasonable power to
achieve replication success. While an original study with p-value po = 0.05 ensures a power for
significance of 50% with the same sample size in the replication as in the original study, this
very same original study does not allow the success of the replication study whatever replication
sample size is chosen. The power for replication success introduces smaller thresholds than
the standard p ≤ 0.05, namely the thresholds for intrinsic credibility. If the original study is
intrinsically credible at Held’s threshold (po ≤ 0.0056), the conditional and predictive power
for replication success is 50% for a replication study the same size as the original. But if the
original study is not intrinsically credible at Matthews’ threshold (po > 0.01266), then the
conditional and predictive power for replication success will never be larger than 50% whatever
the replication sample size. These findings show that only intrinsically credible original studies
lead to replication success at an acceptable power and should encourage researchers to lower the
significance threshold for claims of new discoveries.

The incorporation of the uncertainty of the original effect estimate θ̂o in the calculation of
the power for replication success gives similar results as in the calculation of the power for signif-
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icance. First, the predictive power is also smaller than the conditional power provided that the
conditional power is larger than 50%. Second, while the conditional power for replication success
(assuming the original study is intrinsically credible at Matthews’ threshold, po ≤ 0.01266) in-
creases with increasing sample size to reach a power of 100%, the predictive power for replication
success is limited and this limit appears to be a function of the p-value po. However, this limit
is drastically lower than for significance.

The non-monotonicity property of the power for replication success as a function of the
relative sample size c reminds of the non-monotonicity property of the Bayesian power curve.
However, the two situations differ in several points. First, the Bayesian power curve is non-
monotone when po is below a certain level (po < 0.05 for the traditional 5% level). A non-
monotone Bayesian power curve is a good sign, meaning the original experiment is significant. In
contrast, the power for replication success is non-monotone when po is above a certain level (po >
0.01266 and po > 0.026 for conditional and predictive power, respectively). A non-monotone
power curve for replication success already indicates that a replication study will probably not
be successful. Moreover, the non-monotone Bayesian power curve is convex whereas the non-
monotone power for replication success curve is concave.

In this thesis, we investigated the power for replication success in the setting of a superiority
study. This approach could be extended in future research to equivalence studies, studies with
small sample sizes and multivariate outcomes.
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Chapter 5

Software

All analyses were performed in the R system of statistical software (R version 3.5.1 (2018-07-02)),
freely available at http://www.r-project.org/. The following packages sampleSize, pCalibrate,
ggplot2, reporttools, lattice, xtable and knitr and the base packages stats, graphics, grDevices,
utils, datasets, methods and base were used for the analysis of the compilation of this report.
The computing environment on the author’s personal computer had the following specifications:
OSX Mojave, Version 10.14.4 (Operating system), 2,7 GHz Intel Core i5 (Processor) and 8 Go
1867 MHz DDR3 (Memory). This document was generated on May 31, 2019 at 07:52.
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Appendix A

Appendix

A.1 Derivation of the Bayesian significance

Bayesian significance SBε means that the ε-quantile of the posterior distribution θ |Ynr given in
(2.7) is larger than zero. Let zε be the ε-quantile of the standard normal distribution. By using
the equation (2.7), it turns out that

zεσ√
no + nr

+
noθ̂o + nrYnr

no + nr

is the ε-quantile of θ |Ynr .We then have

SBε ⇔
zεσ√
no + nr

+
noθ̂o + nrYnr

no + nr
> 0

which can be rearranged as

Ynr >
−
√
no + nrzεσ − noθ̂o

nr
.

A.2 Derivation of the minimum Bayesian power

As the function Φ[·] is monotonically increasing, considering its argument is sufficient when
manipulating it. The first derivative of the Bayesian power formula is

d

dnr

(
θ̂o
√
no
√
no + nr

σ
√
nr

+

√
no
nr
zε

)
=

θ̂o
√
no(

1
2(no + nr)

−1/2σ
√
nr − 1/2(no + nr)

1/2)

σ2nr
+
√
nozεn

−3/2
r

[
−1

2

]
=

1/2
√
non

−3/2
r

[
θ̂onr(no + nr)

− 1
2

σ
− θ̂o(no + nr)

1/2

σ
− zε

]
.
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By setting it to 0 and solving for nr, we obtain the replication sample size nr needed to reach
the minimum power, which turns out to be

1

2

√
non

− 3
2

r

[
θ̂onr(no + nr)

− 1
2

σ
− θ̂o(no + nr)

1
2

σ
− zε

]
= 0 ⇔ nr = no

[
θ̂2ono
σ2z2ε

− 1

]

⇔ c =
t2o
z2ε
− 1 . (A.1)

By plugging (A.1) in the alternative Bayesian power formula given in (2.13), we find the corre-
sponding minimum Bayesian power which is

Pr(SBε ) = Φ
[√

t2o − z2ε
]
.
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