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Abstract

Transformation models provide a general and flexible approach to model the distribution function
of the response variable of interest. The maximum likelihood estimation described by Hothorn
et al. (2018) assumes independent observations, and thus needs to be modified to accommodate
data with correlated outcomes, which are abundant in the statistical practice. This master thesis
proposes a possible extension of the model class to incorporate mixed effects that can be used
to estimate transformation models on grouped data. We also implement maximum likelihood
estimation and inference in this set of models using the Template Model Builder package by
Kristensen et al. (2016) in the R programming language. Our implementation provides a formula-
based interface to specify stratified linear transformation mixed models with complex random
effects structures. Through a series of examples on various datasets and model specifications,
we present the features of our package and compare the results to estimates from available
alternatives. The new mixed effects transformation model approach not only poses a viable
general alternative of several popular mixed effects regression packages, but also provides features
that are not available elsewhere.
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Chapter 1

Introduction

All regression models aim to capture some important aspect of a conditional distribution. Some
approaches model the conditional mean (e.g. normal linear regression), while others parameterize
different properties of the distribution, such as the odds, the hazard, quantile, or the density.
The choice of this characteristic implies the properties of the resulting statistical model as well as
the conditions the model has to fulfill. In the paper Most Likely Transformations, Hothorn et al.
(2018) describe a general approach that parameterizes the cumulative distribution function of
an outcome variable directly, using a flexible monotone increasing transformation function that
is estimated from the data. They not only show that many regression approaches for at least
ordered outcomes can be regarded as special cases of the transformation model framework, but
also provide a full likelihood procedure to estimate models of this class.

In modern applied statistical practice, problems involving grouped data structures are very
common. Longitudinal studies, hierarchical designs, multiple measurements can all give rise
to grouped data. A common property of these potentially complicated structures is that the
observations are expected to be correlated within groups defined by some grouping factors and
cannot be treated as independent. To make the inference valid, the statistical model has to
somehow take the correlation structure of the observations into account. One common approach
to incorporate the correlation into the statistical model is the use of mixed effects, where the
model includes random common effects that take on the same values for observations in the same
group. This way not only the correlation structure of the data can be modelled, but also various
sources of variabilities (group-level or idiosyncratic) can be distinguished.

The goal of this study is to provide an extension to the transformation model framework for
grouped data, where the observations within groups are correlated, by introducing mixed effects.
Moreover, we aim to implement the extended framework in the statistical software R using the
Template Model Builder by Kristensen et al. (2016). Finally, as a proof of concept, we compare
results calculated with our implementation to those from other available R packages.

1.1 Outline

The structure of the thesis is as follows: Chapter 2 gives a quick overview of transformation
models and introduces a possible extension of the model with mixed effects. Numerical aspects
of the maximum likelihood estimation and inference are also discussed. In Chapter 3, we out-
line a possible implementation of the estimation of the proposed mixed effects model in the R
programming language. Chapter 4 demonstrates, through a series of examples, that our im-
plementation is a viable alternative of various other R packages in estimating different types of
regression models, furthermore, for some specific problems, it is the only currently available tool.
Chapter 5 lays out possible directions for future work and concludes.
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2 CHAPTER 1. INTRODUCTION

1.2 Notation

The mathematical notation used in the study is standard in the statistical literature. Latin
letters typically denote data, while Greek letters specify parameters. To distinguish from scalar
values, we use boldface letters for vectors, e.g. ϑ and ϑ. Parameters with hats (e.g. ϑ̂) indicate
estimates. Random variables are denoted by capital letters, and boldface capitals stand for, in
most of the cases, random vectors, e.g. Γ = (Γ1,Γ2, . . . ,Γq)

>. In some exceptional cases, boldface
capital letters can also indicate constant matrices, which are always explicitly indicated.

FY |X=x (y | x ) stands for the cumulative distribution function of the conditional distribution
of Y , i.e. FY |X=x (y | x ) = P(Y ≤ y | X = x ). Similarly, fY |X=x (y | x ) denotes the conditional
probability density (or mass) function.

General mixed effects models are usually defined using only one set of random effects. The
reason for this is that the case with arbitrary number of grouping factors is notationally cum-
bersome, and the simplification normally does not lose the generality of the definition.

1.3 Software

The calculations in this study are carried out using the R statistical software (R Core Team,
2018). Further details on packages and software versions are given below.

• R version 3.5.2 (2018-12-20), x86_64-apple-darwin18.2.0

• Running under: macOS Mojave 10.14.5

• Matrix products: default

• BLAS/LAPACK:
/usr/local/Cellar/openblas/0.3.5/lib/libopenblasp-r0.3.5.dylib

• Base packages: base, datasets, graphics, grDevices, methods, splines, stats, utils

• Other packages: basefun 1.0-4, bdsmatrix 1.3-3, boot 1.3-20, coxme 2.2-10, Deriv 3.8.5,
knitr 1.21, lme4 1.1-21, Matrix 1.2-15, mlt 1.0-4, optimx 2018-7.10, ordinal 2019.3-9,
ordinalCont 2.0.1, parfm 2.7.6, survival 2.43-3, TMB 1.7.15, tram 0.2-5,
tramm 0.0.0.9000, variables 1.0-1, xtable 1.8-3

• Loaded via a namespace (and not attached): alabama 2015.3-1, BB 2014.10-1,
codetools 0.2-16, compiler 3.5.2, coneproj 1.14, digest 0.6.18, evaluate 0.12, expm 0.999-4,
Formula 1.2-3, grid 3.5.2, highr 0.7, lattice 0.20-38, magrittr 1.5, MASS 7.3-51.1,
minqa 1.2.4, mnormt 1.5-5, msm 1.6.7, multcomp 1.4-10, mvtnorm 1.0-10, nlme 3.1-137,
nloptr 1.2.1, numDeriv 2016.8-1, orthopolynom 1.0-5, polynom 1.4-0, quadprog 1.5-5,
Rcpp 1.0.1, sandwich 2.5-1, sn 1.5-3, stats4 3.5.2, stringi 1.2.4, stringr 1.3.1,
TH.data 1.0-10, tools 3.5.2, ucminf 1.1-4, xfun 0.4, zoo 1.8-5



Chapter 2

Mixed Effects Transformation Models

This chapter provides an overview of the class of transformation models, and proposes a possible
extension to include mixed effects. By introducing random effects in the transformation model
framework, we can account for correlated observations. Section 2.1 summarizes the concept of
transformation models with a focus on linear transformation models. Section 2.2 introduces
mixed effects in this latter model class. Section 2.3 describes the theory of maximum likelihood
estimation of these models.

2.1 Transformation Models

The concept of transformation models was first described in the seminal paper by Box and Cox
(1964), who introduced non-linear transformations of the response variable to conform to the
normality assumption of a regression model. Since then, the idea has been generalized and
extended to other functional forms and distributional assumptions. In fact, many of the most
commonly applied statistical models can be interpreted as transformation models.

Hothorn et al. (2018) summarize the core idea of transformation models as reformulating an
unknown distribution function by the application of a strictly monotonic transformation, h(y),
i.e. P(Y ≤ y) = P(h(Y ) ≤ h(y)), where the transformation function itself is estimated from the
data.

In the context of regression models, transformation models can be understood as models that
directly parameterize the conditional cumulative distribution function of an outcome variable,
Y , by introducing an unknown, non-linear transformation, h(y | x ), which is estimated from the
data:

P (Y ≤ y | X = x ) = FZ(h(y | x )). (2.1)

The term h(y | x ) in (2.1) is referred to as the (conditional) transformation function, which
typically maps from the sample space of Y , Ξ, to R. The function FZ is assumed to be strictly
monotonic increasing on the interval (−∞,∞), with FZ(−∞) = 0 and FZ(∞) = 1, and has a
known functional form. The typical choices of FZ are the cumulative distribution function of
the standard normal, standard logistic, minimum extreme value, and maximum extreme value
distributions, hence FZ is often called the error distribution.

The conditional transformation function can take on various forms, and treatments of the
general case can be found for example in Hothorn et al. (2014) or Hothorn et al. (2018). In
this thesis, we focus on (partially) linear transformation models, where h(y | x ) has an additive
structure: h(y | x ) = hY (y) + hx (x ). More specifically, we consider the linear transformation
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4 CHAPTER 2. MIXED EFFECTS TRANSFORMATION MODELS

models,

P (Y ≤ y | X = x ) = FZ(h(y | x ))

= FZ(hY (y)− x>β)

= FZ(a(y)>ϑ− x>β). (2.2)

As Hothorn et al. (2018) point out, the transformation model can be represented by the triple
(FZ , (a>, x>)>, (ϑ>,−β>)>), which in turn fully defines the conditional distribution FY |X=x .

In (2.2), the baseline transformation function is reformulated with the help of a basis transfor-
mation of the outcome variable: hY (y) = a(y)>ϑ. The actual choice of a(y) depends on the type
of the response variable and the complexity of the model. While for certain classes of models,
such as regression models for ordinal responses, explicit parametrization is common in the litera-
ture (see e.g. Tutz (2011), Chapter 9), other cases call for less restrictive formulations. Hothorn
(2018) approximates the unknown baseline transformation with a general, flexible, and smooth
function using the Bernstein polynomials. The various choices of the basis transformations in
some specific cases are discussed in more detail in Chapter 4.

In the linear transformation model given by (2.2), the higher moments of the conditional
distribution FY |X=x are fully determined by the baseline transformation function, hY (y), and are
not affected by the explanatory variables (X) of the model, which only act as shifting factors on
the location of the distribution. To relax this restrictive assumption, Hothorn (2019) introduces
stratum variables (S) in the model:

P (Y ≤ y | S = s,X = x ) = FZ(hY (y | s)− x>β)

= FZ(c(y, s)>ϑ− x>β),

where c(y, s) = a(y) ⊗ b(s), i.e. the Kronecker product between the baseline transformation
of the outcome variable and a basis function of the stratum variable. In the specific case of a
discrete factor S, b(s) represents a row of the design matrix corresponding to the coding of the
given stratum variable.

The direct estimation of the conditional distribution function of Y requires additional re-
strictions on the model parameters: To ensure that FY |X=x is monotonic increasing, the baseline
transformation needs to be a monotone increasing function of y, which in turn introduces restric-
tions on the ϑ parameters in (2.2). When the basis a(y) is defined by the Bernstein polynomials
of order M , i.e. a = aBs,M , hY (y) is monotonic increasing when the elements of ϑ are monotone
increasing.

2.2 Mixed Effects Transformation Models

Grouped data structures are very common in applied statistics, which can arise from repeated
measurements, longitudinal studies, and hierarchical designs. An important property of these
structures is that the observations within groups are correlated, and cannot be treated as inde-
pendent if we want to make valid inference based on them. Mixed effects models have become
important tools to deal with correlated observations. Moreover, as Demidenko (2004, Chapter
1) points out, with mixed effects models, we can distinguish different sources of variations, deal
with parameter multidimensionality, and they represent a compromise between frequentist and
Bayesian approaches by obtaining shrinkage estimates of regression coefficients.

The linear transformation model can be extended to include mixed effects in a straightforward
way: Assuming a single grouping factor for the random effects (and ignoring stratification),

P (Yij ≤ yij | Xij = x ij ,Γi = γi) = FZ(hY (yij)− x ij>β − u ij>γi), (2.3)
Γi ∼ Nq (0,Σ) ,

i = 1, . . . ,m, j = 1, . . . , ni,
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where, for measurement j in group i, x ij and u ij denote the covariate vectors corresponding to
the fixed and random effects, respectively. Γi is the vector of random effects for the group (or
subject) i, and it can contain (possibly correlated) random intercepts and slopes.

An important aspect of the model described in (2.3) is the independence of the random effects
between various groups. The assumption that Γi is uncorrelated with Γi′ can be restrictive in
certain cases. In Section 4.4.2 we will present such a case, and show how the implementation
used throughout this thesis can be modified to accommodate this extension. Otherwise we will
restrict our attention to the models with independent identically distributed random effects.

The mixed effects transformation model in (2.3) is not the only conceivable way of extending
the transformation model framework to incorporate random effects. Due to its additive structure,
the random effects, just as the fixed effects, do not affect the higher moments of the conditional
distribution of the outcome variable. One of the main advantages of this structure is that we
do not have to introduce additional restrictions on the values of the random effects in order to
maintain the monotonicity of the conditional distribution function.

Although the assumption that the random effects are normally distributed is very common in
the literature of mixed effects models, in some specific model classes, e.g. frailty models for time-
to-event outcomes, other distribution types are also frequently used. Nevertheless, the normally
distributed random effects offer a general and numerically appealing option, hence we focus only
on them.

In this thesis we will concentrate solely on models described in (2.3), and leave the possible
extensions to other directions for further research. In any case, as we will see, this model structure
provides great flexibility and several widely applied regression models can be regarded as its
special cases. The various models that arise from the specific choices of the error distribution
(FZ) and baseline transformation (hY (y)) as well as the structure of the covariance matrix of
the random effects (Σ) are discussed in more detail in Chapter 4.

The mixed effects transformation models are conditional models, in the sense that, by the
inclusion of random effects, we are conditioning on the unobserved characteristics of the groups.
The observations are assumed to be conditionally (i.e. conditioned on the random effects) inde-
pendent. This is in contrast with the marginal models, which represent the other main approach
of modeling grouped data. Marginal models do not condition on group-specific random effects,
and do not assume conditional independence of the observations, but treat their covariance struc-
ture as nuisance parameters of the model. In their comparison of the two modeling types, Muff
et al. (2016) explain that the main difference lies in the interpretation of the fixed effects pa-
rameters: In marginal models, the parameters can be regarded as averaged (over various groups)
effects, which are sometimes, and somewhat misleadingly, interpreted as population averages. In
contrast, fixed effects coefficients in conditional models, i.e. β parameters in the transformation
model (2.3), must be interpreted conditionally on the group-specific values of the random effects
(γi).

2.3 Estimation and Inference

2.3.1 Log-likelihood Function

Hothorn et al. (2018) describe the maximum likelihood estimation and inference in the class
of transformation models with fixed effects only. In this section, we adapt the most important
results of the article to mixed effects transformation models as presented in Equation 2.3.

The marginal log-likelihood function of a general (and possibly non-linear) mixed effects
model can be derived by integrating the joint likelihood over the random effects, as described
e.g. by McCulloch and Searle (2001, Section 8.4) in the context of generalized linear mixed
models. Without explicitly conditioning on the fixed vector x ij , we can write the log-likelihood
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function, given the data, as

`(ϑ,β,Σ) = log

 m∏
i=1

∫
γi∈Rq

ni∏
j=1

fYij |Γi=γi
(yij | γi;ϑ,β)fΓi(γi; Σ) dγi

 . (2.4)

To derive the conditional likelihood contribution of a singe observation, i.e. Lij(ϑ,β | γi) =
fYij |Γi=γi

(yij | γi;ϑ,β) in the context of transformation models, under an independent censoring
mechanism, we distinguish among four cases: In the case of “exact continuous” observations, we
can measure the outcome variable precisely. In the case of “right censored” observations, we only
know that the outcome is larger than a certain value, i.e. yij ∈ (

¯
yij ,∞). Conversely, with “left

censored” data we have yij ∈ (−∞, ȳij ], while the “interval censored” case can be considered
as the combination of the latter two: Instead of directly observing the value of yij , we only
know that it falls within the interval (

¯
yij , ȳij ]. Since the mixed effects transformation model

parameterizes the conditional distribution function of the outcome variable, the censored cases
can be expressed easily, and the “exact continuous” observations can be regarded as special cases
of the “interval censored” observations on an infinitesimally short interval. Using basic properties
of the cumulative distribution function, the likelihood contributions are

Lij(ϑ,β | γi) =



fZ(hY (yij)− x ij
>β − u ij

>γi)h
′
Y (yij) yij ∈ Ξ ‘exact continuous’

1− FZ(hY (
¯
yij)− x ij

>β − u ij
>γi) yij ∈ (

¯
yij ,∞) ∩ Ξ ‘right censored’

FZ(hY (ȳij)− x ij
>β − u ij

>γi) yij ∈ (−∞, ȳij ] ∩ Ξ ‘left censored’

FZ(hY (ȳij)− x ij
>β − u ij

>γi)

− FZ(hY (
¯
yij)− x ij

>β − u ij
>γi)

yij ∈ (
¯
yij , ȳij ] ∩ Ξ ‘interval censored’,

where fZ denotes the probability density function of the error distribution.
The likelihood contributions can be modified to include truncated observations in the interval

(
¯
y∗ij , ȳ

∗
ij ] ⊂ Ξ as

L∗ij(ϑ,β | γi) =
Lij(ϑ,β | γi)

FZ(hY (ȳ∗ij)− x ij>β − u ij>γi)− FZ(hY (
¯
y∗ij)− x ij>β − u ij>γi)

,

when
¯
y∗ij <

¯
yij < ȳij ≤ ȳ∗ij .

By incorporating these special cases, mixed effects transformation models can be applied on a
broad range of problems in practice. The fact that the suitable conditional likelihood contribution
can be plugged into (2.4) depending on whether the corresponding observation is exact, censored
or truncated, highlights that these details only concern the estimation of the statistical model
in question and they are not essential parts of it. This approach, which is ultimately due to
defining our statistical model by parameterizing the cumulative distribution function, lends a
great flexibility to the model class described in this thesis.

2.3.2 Laplace Approximation

The possibly multidimensional integral in (2.4) is analytically intractable in the general case, and
requires numerical techniques to be evaluated. One of the most common methods to numerically
evaluate such integrals in mixed effects models is the Laplace approximation.

Pinheiro and Bates (1995) give a detailed description of the method in the context of non-
linear mixed effects models. They point out that the Laplacian approximation is based on the
quadratic Taylor expansion of the logarithm of the joint likelihood function (i.e. the integrand
in (2.4)) about its mode. Let γ = (γ1

>,γ2
>, . . . ,γm

>)>, moreover, let θ denote all of the model
parameters to be estimated, i.e. θ = (ϑ>,β>, vech(Σ)>)>. The marginal likelihood of the model
can be written then as

L(θ) =

∫
γ∈Rmq

L(θ,γ) dγ. (2.5)
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The conditional mode of the random effects as a function of θ is given by

γ̂(θ) = argmax
γ

L(θ,γ),

and the second order Taylor expansion of the joint log-likelihood about this mode is

`(θ,γ) ≈ `(θ, γ̂(θ))− 1

2
(γ − γ̂(θ))>H(θ)(γ − γ̂(θ)), (2.6)

where

H(θ) = −∂
2`(θ,γ)

∂γ2

∣∣∣∣
γ=γ̂(θ)

.

Note, that the first order term disappears from the Taylor approximation, because γ̂(θ) is also
a maximizer of `(θ,γ) = logL(θ,γ), hence ∂`(θ,γ)/∂γ|γ=γ̂(θ) = 0.

Using (2.6), we get the approximation of (2.5) as

LLA(θ) ≈
∫
γ∈Rmq

L(θ,γ) dγ

≈
∫
γ∈Rmq

e`(θ,γ̂(θ))−
1
2
(γ−γ̂(θ))>H(θ)(γ−γ̂(θ)) dγ

= L(θ, γ̂(θ))

∫
γ∈Rmq

e−
1
2
(γ−γ̂(θ))>H(θ)(γ−γ̂(θ)) dγ (2.7)

= L(θ, γ̂(θ))|H(θ)−1|
1
2 (2π)

mq
2

= L(θ, γ̂(θ))|H(θ)|−
1
2 (2π)

mq
2 . (2.8)

The integrand in (2.7) is the kernel of a multivariate Gaussian distribution with the precision
matrix H(θ). By multiplying and dividing by a suitable normalizing constant, we arrive at the
expression in Equation (2.8).

When the log of the integrand to be approximated by Laplace’s method is quadratic in the
random effects, i.e. the integrand L(θ,γ) is the kernel of a multivariate normal distribution, as
it is in the case of normal linear mixed effects models, the approximation is exact. In other cases
maximizing the marginal likelihood approximated with this method will result in some errors
in the parameter estimates. While the Laplace approximation is asymptotically exact, i.e. the
joint log-likelihood converges to a quadratic function as the number of observations per group
increases, in practical applications the accuracy of the approximation can be imprecise, especially
when the outcome variable is discrete or the group sizes are small. For detailed evaluations of
the accuracy of this method, see Pinheiro and Chao (2006) and Joe (2008).

One of the main advantages of using Laplace’s method over its alternatives, such as adaptive
Gaussian quadrature algorithms, is that it is computationally very efficient. For this reason, it is
used in many of the most popular software implementations to estimate non-linear mixed effects
models. In the implementation to be presented in Chapter 3, we also use the Laplace approxi-
mation to evaluate the integral in the log-likelihood function of the mixed effects transformation
models.

2.3.3 Maximum Likelihood Estimation and Inference

Given the data, the baseline transformation (hY ), and the error distribution (FZ), the parameters
of the mixed effects transformation model in (2.4) can be estimated by numerically maximizing
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the log of the Laplace-approximated marginal likelihood in (2.8),

θ̂ML = argmax
θ

`LA(θ),

`LA(θ) = `(θ, γ̂(θ))− 1

2
log |H(θ)|+ mq

2
log(2π),

θ = (ϑ>,β>, vech(Σ)>)>.

Some additional details about the numerical optimization are discussed in Chapter 3, where we
present the computer implementation of the estimation procedure.

Since the model proposed in this study is fully parametric, standard asymptotic maximum
likelihood theory may be employed to test hypotheses and calculate confidence intervals of the
parameters, with the additional assumption that the error distribution is log-concave. The
covariance matrix of the parameters can be estimated as the inverse of the Fisher information
matrix evaluated at θ̂ML:

Cov
(
θ̂ML

)
= −

(
∂2`LA(θ)

∂θ2

∣∣∣∣
θ=θ̂ML

)−1
.

In Chapter 4, by demonstrating the features of the computer implementation, we give ex-
amples how standard likelihood methods can be applied to make inference in the class of mixed
effects transformation models.



Chapter 3

Implementation

This chapter presents the implementation of the estimation and inference in mixed effects trans-
formation models in the R programming language. First, the main building blocks of our approach
are discussed: Section 3.1 gives a description of the R packages mlt and tram that provide a ver-
satile and flexible framework for defining and estimating fixed effects transformation models.
Section 3.2 presents the Template Model Builder, a tool for estimating general and possibly
highly complex, non-linear mixed effects models in R, which is the main workhorse behind our
implementation of transformation mixed model estimation. Section 3.3 summarises the formula
module of the package lme4 that allows the user to define mixed effects models in an intuitive
way by extending the model formulas of base R. Finally, in Section 3.4 we introduce the package
tramm that combines the functionalities of the previous three building blocks to implement esti-
mation and inference in the class of mixed effects transformation models of the form presented
in Chapter 2.

3.1 Transformation Models with the mlt and tram Packages

The mlt package by Hothorn (2018) implements the maximum likelihood estimation in transfor-
mation models, which is described by Hothorn et al. (2018). The framework allows the user to
specify and estimate either unconditional (i.e. FY (y) = FZ(hY (y))) or conditional transforma-
tion models (FY |X=x (y | x ) = FZ(hY (y | x ))). In addition to model specification and estimation,
mlt also provides tools for model diagnostics, interpretation, inference, and simulation.

Building on the infrastructure implemented by the helper package basefun, the user can
specify flexible transformation models based on various basis functions. Applying either discrete
basis functions to discrete or discretized continuous responses, or Bernstein bases to continuous
outcomes, results in very flexible statistical models that do not impose excessively restrictive
assumptions on the unconditional or conditional transformation functions. These models can
potentially capture very complex relationships between the dependent variable and covariates in
a regression setting.

With the help of the variables package, the properties (such as its support, bounds and unit)
of the outcome variable can be defined in advance of the actual modeling phase. Moreover, mlt
allows the user to define censored or truncated values for the outcome variable. Since transfor-
mation models parameterize the cumulative distribution function of the outcome, the evaluation
of this function, and hence the estimation on censored and truncated data is straightforward and
computationally inexpensive.

The tram package by Hothorn (2019), building on the functionality of mlt, provides a formula-
based interface for specifying a broad range of stratified linear transformation models. The
package focuses on the most useful types of specifications that fit in the class of transformation
models defined in Section 2.1. The estimation and inference of the specified models are done
using the functions of the mlt package.

9
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The main advantage of tram is that it makes it easier for the user to specify the models.
Utilizing formulas, extended with a notation to incorporate stratum variables, stratified linear
specifications can take the form

resp | s1 + ... + sk ~ x1 + ... + xn

where resp indicates the response variable, s1 + ... + sk denotes the specification of the
stratum variables and x1 + ... + xn defines the specification of the shift effects.

The choice of the error distribution and the baseline transformation is specified through
various functions in tram. Table 3.1 summarizes the available choices in the form of the triple
(FZ , (a>, x>)>, (ϑ>,β>)>) for the general model P(Y ≤ y | X = x ) = FZ(a(y)>ϑ+ x>β).

Table 3.1: Model specifications available in the tram package. Error distributions: Φ
denotes the normal cumulative distribution function, FSL the standard logistic, FMEV

the minimum extreme value, and FGumbel the maximum extreme value (Gumbel) dis-
tribution. FZ indicates that multiple options are available in the given model class.
Baseline transformations: aBs,M stands for the Bernstein basis of order M , eK−1(k)
denotes the discrete basis of K levels, while a indicates that multiple options are avail-
able in the given model class.

Function Name Specification

Lm Normal linear regression (Φ, (y, 1, x>)>, (ϑ1, ϑ2,−β>)>)

BoxCox Box-Cox model (Φ, (aBs,M
>, x>)>, (ϑ>,−β>)>)

Colr Continuous outcome logistic regression (FSL, (aBs,M
>, x>)>, (ϑ>,β>)>)

Polr Regression models for ordinal outcomes (FZ , (eK−1(k)>, x>)>, (ϑ>,−β>)>)

Coxph Cox proportional hazards model (FMEV , (aBs,M
>, x>)>, (ϑ>,β>)>)

Survreg Parametric survival models (FZ , (a>, x>)>, (ϑ>,−β>)>)

Lehmann Lehmann-alternative linear regression (FGumbel, (aBs,M
>, x>)>, (ϑ>,−β>)>)

As Table 3.1 shows, many different types of regression models can be estimated within the
tram framework. Some of the functions estimate models implied by a specific choice of error
distribution and baseline transformation pair, such as Lm (Gaussian error, linear transformation),
Colr (standard logistic error, Bernstein polynomial basis) or Coxph (minimum extreme value error
distribution, Bernstein polynomial basis). Other functions allow to select the error distribution
or the baseline transformation: Depending on the choice of FZ , Polr estimates the proportional
odds logistic regression, probit regression, or proportional hazards regression (i.e. sequential
model) for ordinal outcomes. The function Survreg specifies various well known parametric
survival regression models, for example Weibull, exponential, Rayleigh, log-normal, log-logistic,
etc.

More details on the various model types and the interpretations of the parameters are dis-
cussed in Chapter 4, where we consider the same model specifications extended with random
effects.

3.2 Template Model Builder

The Template Model Builder (TMB) by Kristensen et al. (2016) is an R package for fitting general
non-linear mixed effects models. It was built on state-of-the-art C++ libraries (such as CppAD,
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Eigen), and as a result, it estimates statistical models with possibly complex random effects
structures very efficiently. For this reason, TMB has become a popular tool for estimating mixed
models, and even some R packages build on its functionality. A notable example is the glmmTMB
package by Brooks et al. (2017).

In essence, the TMB package performs two tasks: First, it integrates out the random effects
of a given model by approximating the marginal likelihood using Laplace’s method. Section 2.3
described the Laplace approximation in the context of a general mixed effects model and applied
it to the problem of estimating transformation mixed models.

Moreover, TMB calculates the first and second derivatives of the objective function with auto-
matic (or algorithmic) differentiation (AD). Unlike symbolic differentiation, AD calculates the
even higher derivatives of general functions efficiently; and in contrast with numerical differen-
tiation techniques (e.g. finite differences), AD does not suffer from truncation and cancellation
errors. AD evaluates the derivatives of a function given by a computer program by breaking
it down to basic computational steps and elementary functions and applying the chain rule to
numerical values at each of these steps. The various modes and technical details of AD can be
found in many textbooks, interested readers are referred to, for example, Griewank and Walther
(2008).

The user has to supply the objective function, i.e. the negative log-likelihood, written in
C++, but the processing of the data before model fitting and the post-processing of the results is
typically done in R through the interface TMB provides to it. Using AD, the program calculates
the gradient and Hessian functions, which can be used in turn to find the parameter estimates
utilizing standard R optimization functions. Moreover, TMB provides methods to calculate param-
eter covariance matrices, standard errors of derived parameters using the delta method, as well
as methods for calculating profile likelihoods. With this functionality, it is possible to perform
asymptotic likelihood inference on the models estimated with this package.

3.2.1 A Simple Simulated Example

To demonstrate the usage of the TMB package, we estimate the simple random effects model,

Yij | Ui = ui = µ+ ui + εij ,

Ui ∼ N (0, σu),

εij ∼ N (0, σε),

on a simulated dataset.
The negative log-likelihood function is defined in C++:

if (!file.exists("code/re1w.cpp")) {
writeLines({"
// One-way random effects model
#include <TMB.hpp>

template<class Type>
Type objective_function<Type>::operator() ()
{

DATA_VECTOR(y); // Data vector from R
DATA_FACTOR(group); // Group vector from R
PARAMETER(mu); // Population mean
PARAMETER_VECTOR(u); // Random effects
PARAMETER(log_sig_u); // log-SD of u
PARAMETER(log_sig_e); // log-SD of e
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Type sigma_u = exp(log_sig_u);
Type sigma_e = exp(log_sig_e);
ADREPORT(sigma_u); // Report the transformed parameters
ADREPORT(sigma_e);

Type nll = Type(0); // negative log-likelihood
nll -= dnorm(u, Type(0), Type(1), true).sum();
for (int i = 0; i < y.size(); i++) {

nll -= dnorm(y(i), mu + sigma_u * u(group(i)), sigma_e, true);
}
return nll;

}
"}, con = "code/re1w.cpp")

}

Note, that the model is parameterized using the logarithms of the standard deviations in order
to avoid optimizing over a restricted parameter space. These parameters are then transformed
back to their original scale by the program.

A balanced dataset of 40 groups and five observations per group is generated using R.

set.seed(123)
n <- 40 ## # of groups
k <- 5 ## # of observations
sig_u <- 1.5
sig_e <- 1
mu <- 1
u <- rep(rnorm(n, 0, sig_u), each = k)
y <- mu + u + rnorm(n*k, 0, sig_e)

To use the previously defined objective function, we need to compile and load the C++ code.

library("TMB")
invisible(capture.output(compile("code/re1w.cpp")))
dyn.load(dynlib("code/re1w"))

Finally, we have to define the data structure and the initial values of the parameters. It
should be noted that so far we have not distinguished between random effects and fixed effects.
To get the (negative) marginal log-likelihood, we have to indicate which parameters shall be
treated as random effects (in our case u) and integrated out from the joint log-likelihood using
the Laplace approximation (see Section 2.3 for more details).

data <- list(y = y, group = factor(rep(1:n, each = k)))
pars <- list(mu = 0, u = rep(0, n), log_sig_u = 0, log_sig_e = 0)
obj <- MakeADFun(data, pars, random = "u", DLL = "re1w", silent = TRUE)
opt <- nlminb(obj$par, obj$fn, obj$gr)
rep <- sdreport(obj)

As the example shows, we use a standard R optimization function, nlminb, to find the maximum
likelihood estimates. Of course, other optimization libraries could also be applied, since TMB
provides access to the objective function and its gradient (and also its Hessian) within R.

The estimated value of the population mean (µ̂) and its standard error are
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c(rep$par.fixed["mu"], sqrt(diag(rep$cov.fixed)["mu"]))

## mu mu
## 1.0522821 0.2288484

while the point estimates of the variance components (σ̂2u and σ̂2ε ) are

rep$value^2

## sigma_u sigma_e
## 1.9030215 0.9592136

3.3 Model Formulation

The R package lme4 by Bates et al. (2015), which implements the estimation of linear and
generalized linear mixed effects models, uses a special notation to define the random effects
structure. As an extension of the original Wilkinson-Rogers type notation of base R (R Core
Team, 2018), the (expr | group) syntax was originally introduced by Pinheiro et al. (2018) in
the nlme package.

By using the (expr | group) operator, the formula module of lme4 defines the interaction
between the model matrix implied by the expression expr and the grouping factor group. With
these interactions, the columns of the model matrix get different effect sizes for each level of the
grouping variable. In this regard, the random effects are similar to any other fixed effects of the
model. The main difference is in how the random effects are treated in the estimation of the
model.

A general mixed effects model using the formula notation could be written as

resp ~ FE_expr + (RE_expr1 | group1) + (RE_expr2 | group2) + ...

where resp is the response variable, FE_expr stands for the fixed effects structure, and the model
contains fully crossed random effects defined by the grouping variables group1, group2.

Table 3.2 summarizes the main options of random effects specifications using the formula
module of lme4. These basic structures can then be combined to define more complex mixed
effects models.

Table 3.2: Examples of mixed effects specifications using the formula module of lme4.
x denotes a covariate, while group, group1, group2 are grouping factors for random
effects.

Formula Specification

(1 | group) Random intercept

x + (x | group) Correlated random intercept and slope

x + (x || group) Uncorrelated random intercept and slope

(1 | group1) + (1 | group2) Crossed random intercepts

(1 | group1/group2) Nested random intercepts (group2 within
group1)
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3.4 The tramm Package

In this section, we introduce an implementation of the mixed effects transformation model esti-
mation discussed in Section 2.2 and Section 2.3. The R code accompanying this thesis is organized
into a package called tramm, standing for “transformation mixed models”.

The package utilizes the functionalities discussed in the previous three sections to provide a set
of functions with formula-based interfaces to define and estimate models of the form (2.3). Note
that, as it was discussed is Section 2.2, the random effects only enter the transformation model
specification as shift terms, and in turn they do not affect the higher moments of the conditional
distribution of the outcome. Furthermore, the current implementation of the estimation only
allows normally distributed random effects.

Combining the formula capabilities of the tram and lme4 packages, we can define stratified
linear transformation mixed models with the notation

resp | s1 + ... + sk ~ x1 + ... + xn + (RE_spec1 | group1) +
(RE_spec2 | group2) + ...

where resp is the response variable, s1 + ... + sk and x1 + ... + xn denote the specifi-
cation of the stratum variables and fixed shift effects, respectively, while (RE_spec1 | group1)
+ (RE_spec2 | group2) + ... stands for crossed random effects defined by various grouping
factors.

The choice of error distributions and baseline transformations, just as in the tram package,
is specified through various function calls. In fact, tramm can be regarded as an extension of the
tram package, which contains the same functions, with an extra ME suffix (i.e. LmME, ColrME,
CoxphME, etc.).

Programmatically, the design matrix corresponding to the random effects structure is cre-
ated by the formula module of lme4, while the model matrices implied by the specifications of
the baseline transformation and the fixed effect shift terms are generated by the mlt package.
Moreover, to set up the necessary data structures for the mixed effects model, in the first step,
a fixed effects only tram model is estimated. The parameter estimates of this model are used as
initial values for the numerical optimization of the corresponding transformation mixed model.

The numerical evaluation of the marginal log-likelihood function and its gradient, using
automatic differentiation, is done by the TMB package. Accordingly, the negative log-likelihood
function of the mixed effects transformation model is specified in C++. Appendix A.1 presents
the program code used in the tramm package. The inputs of the log-likelihood function, i.e. the
data vectors and matrices along with the parameter vectors, are defined and pre-processed in R.
The C++ code then evaluates the negative log-likelihood, given a set of fixed and random effects
parameters, allowing potentially correlated random effects. Finally, it returns the value of the
negative log-likelihood, alongside the transformed values of some of the parameters that can be
used in R for optimization and reporting purposes.

Since the parameters in the vector ϑ have to be monotone increasing in order to ensure the
monotonicity of the conditional cumulative distribution function, we have to use a constrained
optimization algorithm to find the maximum likelihood estimates. The tramm package, similarly
to mlt, uses the Augmented Lagrangian and Adaptive Barrier Minimization Algorithm for this
task, which is implemented by the function auglag of the R package alabama by Varadhan (2015).

The set of inferential and model checking tools currently available in the tramm package is
restricted. The inference is primarily done using asymptotic likelihood theory. The values of the
likelihood functions and likelihood ratio tests are applied for model comparisons. Besides the
point estimates of the parameters, their covariance matrix is also available, which is calculated
from the Hessian matrix of the log-likelihood supplied by the Template Model Builder. Wald and
profile confidence intervals are used for inference on model parameters. Since the individual values
of the parameters in the baseline transformation function (ϑ) are usually not of interest, the whole
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transformation function, which is a linear combination of these parameters, i.e. hY (y) = a(y)>ϑ,
can be evaluated at a grid of y values and plotted alongside its pointwise confidence interval.

Examples for the usage of the functions in the tramm package, along with demonstration of
other features, are presented in Chapter 4. There we also give comparisons with other available
R implementations for certain specific regression models.
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Chapter 4

Applications

The goal of this chapter is twofold: First, we want to showcase the features of the tramm package
using a series of regression problems with different types of outcome variables and various model
complexities. Moreover, when it is possible, we compare our implementation with alternative
packages to test the correctness of tramm.

For this reason, we first estimate normal linear mixed effects models in Section 4.1, which is
extended in Section 4.2 with general baseline transformation to get a flexible parametric version
of the Box-Cox mixed regression model. By changing the error distribution to standard logistic,
we arrive at the continuous outcome logistic mixed model, which is discussed in Section 4.3.
Mixed effects regression models for discrete ordinal outcomes are presented through two examples
in Section 4.4. Finally, we estimate models for time-to-event outcomes (Cox regression and
parametric survival models) in Section 4.5.

It must be emphasised that the examples presented here are, by no means, intended as
complete analyses. In many cases, the modeling choices were driven by illustration purposes,
and the interpretations of the results are omitted. The broad range of applications presented
in the chapter demonstrates the versatility of the mixed effects transformation model approach,
which is not only a viable alternative of several packages, but also represents an extension on
the mixed effects regression models currently available in R.

4.1 Normal Linear Mixed Model

The first example is the normal linear regression model with mixed effects. The conditional
model can be written as

Yij | Xij = x ij , Γ̃i = γ̃i = α+ x ij>β̃ + u ij>γ̃i + εij , (4.1)

Γ̃i ∼ Nq
(
0, Σ̃

)
,

εij ∼ N (0, σ2),

where u ij denotes the covariates associated with the random effects, and Γ̃i the q dimensional
vector of normally distributed random effects for group i. The normal linear mixed model
described in (4.1) can be reformulated as a transformation model,

P (Yij ≤ yij | Xij = x ij ,Γi = γi) = Φ

(
yij − α− x ij>β̃ − u ij>γ̃i

σ

)
= Φ(ϑ1yij + ϑ2 − x ij>β − u ij>γi), (4.2)

Γi ∼ Nq (0,Σ) ,

17
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with Φ denoting the cumulative distribution function of the standard normal. Based on (4.1)
and (4.2), the parameters of the two formulations can be expressed from each other as ϑ1 = σ−1,
ϑ2 = −σ−1α, β = σ−1β̃, γi = σ−1γ̃i, and Σ = σ−2Σ̃.

The R package lme4 by Bates et al. (2015) implements estimation procedures for (generalized)
linear mixed effects models. We will compare estimation results from the transformation model
approach to estimates obtained by lme4, using the sleepstudy example dataset of this package.
The dataset contains ten observations for each of the participants of a sleep deprivation study.
The continuous outcome variable is the reaction time and the only covariate denotes the number
of days of sleep deprivation.

The normal linear mixed regression is estimated with the function lmer as

library("lme4")
fit_lmer <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy,

REML = FALSE)

The model contains correlated random intercepts and slopes for each individual in the study.
Note, that with the REML = FALSE option, we get the maximum likelihood estimates instead of
the default restricted likelihood ones to make the results comparable to the transformation mixed
model approach.

To define the equivalent mixed effects transformation model, we can use the same notation
as in the previous case:

library("tramm")
fit_tramm <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy)

Both approaches use the Laplace approximation to evaluate the integral in the likelihood function
(2.4), which gives the exact value in the normal linear case (see Section 2.3 for more details).
Hence, although the two implementations rely on different optimization algorithms, the results
should be numerically comparable.

Table 4.1: Comparison of parameter estimates, standard errors, and the values of
the log-likelihood using lme4 and the transformation model approach (tramm) on the
sleepstudy dataset. The estimated parameters are the coefficients, the maximum like-
lihood estimate of the standard deviation of the error term (σ̂), the standard deviations
of the random intercepts (θ̂0) and slopes (θ̂1), and the correlation between the latter
two (ρ̂).

lme4 tramm
coef SE coef SE

Intercept 251.4051 6.6321 251.4051 6.6323
Days 10.4673 1.5022 10.4673 1.5022
σ̂ 25.5919 25.5918
θ̂0 23.7798 23.7806
θ̂1 5.7168 5.7168
ρ̂ 0.0813 0.0803
Log-likelihood -875.9697 -875.9697

Table 4.1 shows the parameter estimates, standard errors, as well as the values of the log-
likelihood from the two approaches up to four decimal places. The parameter estimates of
the mixed effects transformation model are rescaled with the error standard deviation to be
comparable with the lme4 parameters. The standard errors of these transformed parameters
are calculated using the delta method (see e.g. Held and Bové (2014), p. 331). The results
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are very close to each other and the discrepancies can be attributed to the different numerical
optimization algorithms.

Based on the results in Table 4.1, the estimated correlation between the random intercepts
and slopes is very small. We can investigate whether a model with independent random effects
terms, gives a significantly different model fit. In the notation of lme4, we can define such model
with the ( || ) operator, which is also available in the tramm package. Calling the method
anova on the resulting models returns the information criteria as well as the likelihood ratio test
for these nested specifications.

fit_lmer2 <- lmer(Reaction ~ Days + (Days || Subject), data = sleepstudy,
REML = FALSE)

fit_tramm2 <- LmME(Reaction ~ Days + (Days || Subject), data = sleepstudy)
sel_lmer <- anova(fit_lmer, fit_lmer2)
sel_tramm <- anova(fit_tramm, fit_tramm2)

The model comparisons, presented in Table 4.2, show once again identical results up to four
digits for the two implementations. The likelihood ratio test supports the more parsimonious
model, i.e. the one with independent random slopes and intercepts.

Table 4.2: Comparison of models with and without correlated random intercepts and
slopes using lme4 and tramm.

df Log-likelihood AIC BIC χ2 df(χ2) p-value
fit_lmer2 5 -876.0016 1762.0033 1777.9680
fit_lmer 6 -875.9697 1763.9393 1783.0971 0.0639 1 0.8004

fit_tramm2 5 -876.0016 1762.0033 1777.9680
fit_tramm 6 -875.9697 1763.9393 1783.0971 0.0639 1 0.8004

An advantage of writing the normal linear mixed effects model in its transformation model
form, i.e. parameterizing the cumulative distribution function directly, is that it makes it easy
to incorporate censored or truncated observations in the estimation. The following hypothetical
scenario can serve as a demonstration: Let us assume that the shortest reaction time the timer
could measure is 250 milliseconds. Moreover, we also want to take into account the fact that
reaction times cannot take on negative values. In this setting, we have either exact observations,
where the reaction time exceeds 250 ms, or interval-censored outcomes, where we only know that
the actual reaction time falls somewhere between zero and 250 ms. The transformation model
described in (4.2) is able to take this information into account in the estimation as it was detailed
in Section 2.3. It is clear that treating these 36 observations out of the total 180 data points
as exact observations would lead to biased estimates. For defining censored observations for the
outcome variable, we can use the Surv function of the survival package.

library("survival")
sleepstudy$lc <- sleepstudy$rc <- sleepstudy$Reaction
sleepstudy$lc[sleepstudy$Reaction <= 250] <- 0
sleepstudy$rc[sleepstudy$Reaction <= 250] <- 250
sleepstudy$Reactionc <- with(sleepstudy, Surv(time = lc, time2 = rc,

type = "interval2")) ## censoring
fit_nocens <- lmer(rc ~ Days + (Days | Subject), data = sleepstudy,

REML = FALSE)
fit_cens <- LmME(Reactionc ~ Days + (Days | Subject), data = sleepstudy)
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As Table 4.3 shows, the parameter estimates from the transformation model approach, which
takes the censored nature of the observations correctly into account, differ from the naive ap-
proach.

Table 4.3: Comparison of results from approaches without taking (estimated with
lme4) and taking censoring (tramm) into account using the sleepstudy dataset with
censored observations at ≤ 250. The parameters are the coefficients, the maximum like-
lihood estimate of the standard deviation of the error term (σ̂), the standard deviations
of the random intercepts (θ̂0) and slopes (θ̂1), and the correlation between the latter
two (ρ̂).

No censoring Censoring
coef SE coef SE

Intercept 259.2287 4.8090 247.6452 8.6083
Days 9.6902 1.5272 10.6398 1.8173
σ̂ 24.9021 27.3654
θ̂0 14.2147 30.256
θ̂1 5.8709 6.7787
ρ̂ 0.0022 -0.1094
Log-likelihood -866.1154 -733.8499

4.2 Box-Cox Mixed Model

A possible extension of the normal linear mixed effects model as formulated in (4.2) allows the
baseline transformation, which was linear in yij in the normal linear case, i.e. hY (yij) = ϑ1yij+ϑ2,
to be a flexible, smooth function of the outcome. The tram and tramm packages both use
Bernstein polynomials to capture this general function. With this generalization, (4.2) becomes

P (Yij ≤ yij | Xij = x ij ,Γi = γi) = Φ
(
hY (yij)− x ij>β − u ij>γi

)
,

= Φ
(
aBs,M

>ϑ− x ij>β − u ij>γi
)
, (4.3)

which can be regarded as an extension to the approach that Box and Cox (1964) proposed in
their seminal article.

Fitting the Box-Cox mixed effects regression model to the sleepstudy dataset and compar-
ing the results to the normal linear regression approach allows us to inspect deviations of the
conditional distribution of the outcome from normality.

data("sleepstudy", package = "lme4")
fit_nl <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy)
fit_bc <- BoxCoxME(Reaction ~ Days + (Days | Subject), data = sleepstudy,

order = 6)

Note that the attribute order in the function call BoxCoxME sets the order of the Bernstein
polynomials (M).

Figure 4.1 depicts the baseline transformation function in the Box-Cox model. Small depar-
ture normality can be detected, especially in the lower tail of the conditional distribution, as the
baseline transformation does not fall on a straight line.

Table 4.4 compares the estimation results of the normal linear and Box-Cox mixed effects
regression models. Although the fixed effect estimates are very close to each other, the correla-
tions of the random effects differ between the two models. The higher value of the log-likelihood
suggests that the Box-Cox model fits the data better than the normal linear approach.
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Figure 4.1: Baseline transformation in the Box-Cox model of the sleepstudy dataset.
The solid line denotes the point estimate and the blue area is the 95% pointwise confi-
dence interval.

Table 4.4: Comparison of the normal linear mixed effects transformation model and
the Box-Cox regression model of the sleepstudy dataset. The estimated parameters
are the coefficients, the standard deviations of the random intercepts (σ̂0) and slopes
(σ̂1), and the correlation between the latter two (ρ̂).

LmME BoxCoxME
coef SE coef SE

Days 0.4090 0.0635 0.4147 0.0641
σ̂0 0.9292 1.612
σ̂1 0.2234 0.2236
ρ̂ 0.0803 -0.1956
Log-likelihood -875.9697 -859.5455

4.3 Continuous Outcome Logistic Regression

A disadvantage of the Box-Cox model in (4.3), compared to the normal linear mixed model,
is that the direct interpretation of the fixed effects coefficients is cumbersome. As a possible
solution, one can change the error distribution, FZ , to the standard logistic distribution and
switch the signs of the fixed and random effects,

P (Yij ≤ yij | Xij = x ij ,Γi = γi) = FSL

(
hY (yij) + x ij>β + u ij>γi

)
,

=
exp

(
hY (yij) + x ij>β + u ij>γi

)
1− exp (hY (yij) + x ij>β + u ij>γi)

, (4.4)
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to get the mixed effects version of the continuous outcome logistic regression by Lohse et al.
(2017). Using the Bernstein polynomial representation of the unknown baseline transformation
function, the equation (4.4) can be rewritten as

P (Yij ≤ yij | Xij = x ij ,Γi = γi)

P (Yij > yij | Xij = x ij ,Γi = γi)
= exp

(
aBs,M

>ϑ+ x ij>β + u ij>γi
)
,

which describes the conditional odds at every possible cut-off points, yij . From this form it
follows that the fixed effects parameters denote log-odds ratios simultaneously for all possible
logistic regressions with cut-points yij , conditionally on the vector of random effects. Moreover,
the baseline transformation function, hY (y) = aBs,M

>ϑ, maps the individual cut-points to the
intercepts in the corresponding logistic regressions.

The model in (4.4) is very similar to the ordinal regression for continuous variables proposed
by Manuguerra and Heller (2010) to analyze outcomes from visual analog scales. The main
difference between their approach and the transformation model implementation of tramm is
in the approximation of the baseline transformation function: While Manuguerra and Heller
(2010) use B-splines to approximate hY (y), tramm utilizes Bernstein polynomials as proposed by
Hothorn et al. (2018). Manuguerra et al. (2017) describe the penalized likelihood approach to
estimate such models with the R package ordinalCont. Because the approach used in the tramm
package is very similar to the model in ordinalCont, we can compare estimation results from
the two using an example.

The dataset neck_pain in the ordinalCont package consists of repeated measurements of
88 individuals with chronic neck pain in a randomized, placebo-controlled study of low-level
laser therapy. The outcome variable is the self-recorded neck pain on a visual analogue scale,
normalized to (0, 1). The measurements were recorded at baseline, after 7 weeks (at the end of
the treatment), and after 12 weeks.

We estimate continuous outcome logistic mixed regression models using the functions ocm
and ColrME in the packages ordinalCont and tramm, respectively.

library("ordinalCont")
fit_ocm <- ocm(vas ~ laser * time + (1 | id), data = neck_pain, scale = c(0, 1))
fit_tramm <- ColrME(vas ~ laser * time + (1 | id), data = neck_pain,

bounds = c(0, 1), support = c(0, 1))

Note that we are using the default settings of both implementations to model the baseline
transformation, and explicitly stating the bounds of the scale of the outcome variable in the two
function calls.

Table 4.5 compares the parameter estimates, the standard errors and the general model fit
based on log-likelihood values. The model estimates are similar, but not exactly the same, which
is not surprising, given that the two implementations differ in how they capture the baseline
transformation. The higher log-likelihood value of the model implemented by ordinalCont::ocm
indicates better model fit, but this may be due to the higher model complexity of this approach.

The baseline transformations approximated by the two approaches are plotted in Figure 4.2.
As the two curves show, the fitted baseline function using the default setting (order=6) of the
transformation model framework is much smoother than the other one based on splines, which
indicates different levels of default model complexity in the two implementations.

Figure 4.3 compares the estimated log-odds ratios and their 95% Wald confidence intervals
from the two approaches. As in the case of the baseline transformations, the estimates are very
close to each other, although some differences can be observed. The log-odds ratios associated
with the interaction terms suggest that the laser treatment increases the odds for a patient to
have a lower pain level after the treatment, even in the presence of some baseline imbalances.
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Table 4.5: Comparison of model estimates using ordinalCont and tramm packages on
the neck_pain dataset. The estimated parameters are the coefficients and the standard
deviations of the random intercepts (σ̂).

ordinalCont tramm
coef SE coef SE

laser = yes -2.1374 0.6388 -2.3421 0.7037
time = 2 -0.5929 0.3528 -0.6540 0.3772
time = 3 -0.1898 0.3443 -0.2076 0.3684
(laser = yes) (time = 2) 4.4547 0.5556 4.9432 0.6195
(laser = yes) (time = 3) 3.3787 0.5184 3.7474 0.5725
σ̂ 2.4638 2.7277
Log-likelihood 205.5287 84.1368
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Figure 4.2: Baseline transformations in continuous outcome logistic regressions esti-
mated with the tramm and ordinalCont packages on the neck_pain dataset. The solid
lines denote the point estimates and the areas indicate the 95% point-wise confidence
intervals.
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Figure 4.3: Point estimates and 95% Wald confidence intervals of the log-odds ra-
tios from the continuous outcome logistic regressions estimated with the tramm and
ordinalCont packages on the neck_pain dataset.

4.4 Mixed Models for Ordinal Outcomes

For ordered categorical responses with K levels, y1 < y2 < · · · < yK , one can write a mixed
effects regression model in the transformation model form as

P (Yij ≤ yk | Xij = x ij ,Γi = γi) = FZ

(
hY (yk)− x ij>β − u ij>γi

)
= FZ

(
ϑk − x ij>β − u ij>γi

)
, (4.5)

1 ≤ k < K,

ϑ1 <ϑ2 < · · · < ϑK−1.

The baseline transformation (hY (yk)) maps each level — except the last one — to a separate
parameter, with the additional restriction that the values of these parameters are increasing.

By specifying the error distribution, FZ in (4.5), we get various familiar mixed effects regres-
sion models for ordinal outcomes: Setting FZ to the standard logistic distribution, the resulting
model is the proportional odds model. With FZ = FMEV we arrive at the discrete version of the
proportional hazards model, while FZ = Φ results in the cumulative probit model. See e.g. Tutz
(2011, Chapter 9) for a discussion of the various types of ordinal regression models.

4.4.1 Comparison with the ordinal Package

The ordinal package by Christensen (2019) implements various types of mixed effects models
for ordered categorical outcomes. In the following section we compare estimates from the mixed
effects transformation model approach to the results calculated with this package.

One of the example datasets in the ordinal package is called wine that collects five-level
ratings of wines by nine judges at different levels of two treatment factors (temperature and
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contact). We can estimate a cumulative probit model with random intercepts for the judges
using the function ordinal::clmm2.

library("ordinal")
fit_clmm <- clmm2(rating ~ temp + contact, random = judge, data = wine,

Hess = TRUE, nAGQ = 1, link = "probit")

By explicitly setting nAGQ = 1 in the function call, we use the Laplace-approximated values of the
marginal likelihood function for the estimation to make the results comparable to the estimates
from TMB.

The same mixed effects model can be fitted using the transformation model implementation.
By setting the method attribute of the PolrME function of tramm, we can specify the error
distribution in the model.

fit_tramm <- PolrME(rating ~ temp + contact + (1 | judge), data = wine,
method = "probit")

Table 4.6 compares the parameter estimates, the standard errors, and the values of the log-
likelihood function from the two approaches up to four decimal places.

Table 4.6: Comparison of parameter estimates, standard errors, and the values of the
log-likelihood using ordinal::clmm2 and tramm::PolrME. The parameters ϑi denote
the threshold parameters, and σ is the standard deviation of the random intercept.

ordinal tramm
coef SE coef SE

ϑ̂1 -0.9265 0.3882 -0.9265 0.3882
ϑ̂2 0.8894 0.3485 0.8894 0.3485
ϑ̂3 2.4676 0.4469 2.4676 0.4469
ϑ̂4 3.5367 0.5256 3.5367 0.5256
temp = warm 1.8000 0.3269 1.8000 0.3269
contact = yes 1.0482 0.2855 1.0482 0.2855
σ̂ 0.6632 0.6625
Log-likelihood -80.9306 -80.9306

The model in (4.5) can be extended to incorporate nominal effects, i.e. effect sizes that
change with the level of the outcome variable for certain nominal covariates. These nominal
effects correspond to partial proportional odds in the ordinal logistic regression framework (i.e.
when the error distribution is the standard logistic). This can be implemented by assigning
separate sets of threshold parameters (ϑi) to the different levels of the given variable, which
is basically equivalent to stratifying the baseline transformation by the nominal variable. The
tramm package uses the same notation as tram to specify stratum variables.

fit_tramm2 <- PolrME(rating | contact ~ temp + (1 | judge), data = wine,
method = "probit")

fit_clmm2 <- clmm2(rating ~ temp, nominal = ~ contact, random = judge,
data = wine, Hess = TRUE, nAGQ = 1, link = "probit")

sel_clmm <- anova(fit_clmm, fit_clmm2)
sel_tramm <- anova(fit_tramm, fit_tramm2)

In our example, we stratify on the variable contact. As Table 4.7 shows, the estimation
results are, once again, essentially the same. Similarly, the likelihood-ratio tests that compare



26 CHAPTER 4. APPLICATIONS

the stratified and non-stratified specifications are also the same (Table 4.8). Based on these tests,
there is no evidence that the saturated model fits the data better, hence the results favor the
more parsimonious model.

Table 4.7: Comparison of parameter estimates, standard errors, and the values of the
log-likelihood using ordinal::clmm2 and tramm::PolrME. The parameters ϑi,j denote
the stratified threshold parameters, and σ is the standard deviation of the random
intercept.

ordinal tramm
coef SE coef SE

ϑ̂0,1 -0.9610 0.4266 -0.9610 0.4266
ϑ̂0,2 0.9056 0.3669 0.9056 0.3669
ϑ̂0,3 2.5725 0.4955 2.5725 0.4955
ϑ̂0,4 3.3716 0.5986 3.3716 0.5986
ϑ̂1,1 -0.9175 0.6256 -0.9176 0.6256
ϑ̂1,2 -1.0698 0.3789 -1.0698 0.3789
ϑ̂1,3 -1.2147 0.4296 -1.2147 0.4296
ϑ̂1,4 -0.8045 0.5405 -0.8045 0.5405
temp = warm 1.8077 0.3293 1.8077 0.3293
σ̂ 0.6571 0.6564
Log-likelihood -80.6175 -80.6175

Table 4.8: Comparison of models with and without stratifying on the variable contact
using ordinal and tramm.

df Log-likelihood AIC BIC χ2 df(χ2) p-value
fit_clmm 7 -80.9306 175.8612 191.7979

fit_clmm2 10 -80.6175 181.2350 204.0017 0.6262 3 0.8904
fit_tramm 7 -80.9306 175.8612 191.7979

fit_tramm2 10 -80.6175 181.2350 204.0017 0.6262 3 0.8904

4.4.2 Reproducing the Results by Seibold et al. (2015)

As a second example for mixed effects transformation models for ordinal outcomes, we reproduce
the estimation results by Seibold et al. (2015) using tramm.

The authors model the extinction risk of 1025 saproxylic beetle species using the German Red
List extinction risk status as an ordinal outcome, and include various covariates describing the
species’ biology, required resources, and distributions as fixed effects, along with phylogenetically
correlated random effects in a proportional odds logistic regression framework.

The model described in (4.5) needs to be sightly changed in order to accommodate correlated
random effects. The modified specification for this setting can be written in its vectorized form
as

P(Y ≤ yk | X, Γ̃ = γ̃) = FSL (ϑk + Xβ + σURγ̃) , (4.6)

Γ̃ ∼ N1025 (0, I1025) ,

where U denotes the 1025 × 1025 design matrix of random effects, R is the 1025 × 1025 lower
triangular Cholesky factor of the fixed phylogenetic correlation matrix, σ is the (scalar) standard
deviation of the random intercepts, Γ̃ is a column vector of independent standard normal random
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variables, and FSL indicates the cumulative distribution function of the standard logistic. The
vector of random intercepts, Γ = σRΓ̃, will then be correlated with a correlation matrix RR>

and variance σ2.
Seibold et al. (2015) estimate the regression model in (4.6) by modifying the clmm function of

the ordinal package to include correlated random effects. The procedure is described in detail
in Seibold et al. (2015, Appendix 2).

Appendix A.2 presents the code that modifies the basic functionality of the tramm package
to incorporate correlated random effects with a fixed correlation matrix. Table 4.9 shows the
results of the estimation. The parameter estimates and the standard errors as well as the value of
the log-likelihood function at its maximum are essentially the same as the results of the article.
The profile confidence interval of the standard deviation of the random effect confirms one of
the main findings of the analysis that polygenetic information introduces a significant source of
variability in the extinction risk status of the various species.

Table 4.9: Estimation results from the transformation model to reproduce the results
by Seibold et al. (2015). The parameter σ denotes the standard deviation of the random
effects.

coef SE
mean body size 0.0689 0.0209
mean elev -0.4847 0.1888
tree = l 0.6525 0.3237
tree = n -1.4840 0.421
flowers -0.4247 0.2811
feeding = d 0.8069 0.7652
feeding = m -0.2064 0.4869
feeding = x 0.5682 0.3723
habitat = wood and bark -0.7519 0.4163
habitat = fungi -0.0560 0.5555
niche = decay -0.0750 0.1723
niche = diam 1.1030 0.1649
niche = canopy -0.9371 0.2815
distribution -0.3656 0.0252

param 95% CI
σ̂ 1.4034 from 0.94 to 1.96
Log-likelihood -837.1604

4.5 Mixed Models for Time-to-Event Data

Various types of regression models for time-to-event outcomes can also be expressed in the
transformation model framework. By setting FZ to the minimum extreme value distribution, we
get models that satisfy the assumption of proportional hazards. Ignoring the random effects and
the indices for the sake of brevity, and without the loss of generality, the conditional cumulative
distribution function in this case is

FY (y | x ) = FMEV

(
hY (y) + x>β

)
= 1− exp

(
− exp(hY (y) + x>β)

)
,
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and thus the conditional survivor function, probability density function, and the hazard function
become

SY (y | x ) = exp
(
− exp(hY (y) + x>β)

)
,

fY (y | x ) =
d

dy
FY (y | x )

= − exp
(
− exp(hY (y) + x>β)

)(
− exp(hY (y) + x>β)

)
h′Y (y),

λY (y | x ) =
fY (y | x )

SY (y | x )

= exp(hY (y))h′Y (y) exp(x>β), (4.7)

respectively. From (4.7) it can be seen, that the changes in the covariates affect the conditional
hazard proportionally. The baseline hazard is λY (y) = exp(hY (y))h′Y (y) hence the baseline
transformation function, hY (y), denotes the log of the cumulative baseline hazard.

By capturing hY (y) with a general, smooth function using the Bernstein polynomials, we
arrive at the fully parameterized version of the Cox proportional hazards model:

P(Yij ≤ yij | Xij = x ij ,Γi = γi) = FMEV

(
hY (yij) + x ij>β + u ijγi

)
= 1− exp

(
− exp(aBs,k(yij)

>ϑ+ x ij>β + u ij>γi)
)
. (4.8)

Note the slight difference between the model in Equation (4.8), which gives a fully parametric
description of the cumulative density function of Y , and the “classical” Cox model, which leaves
the baseline function, hY (y), unspecified and estimates the parameters of interest using the
partial likelihood approach.

4.5.1 Comparison with the coxme Package

The R package coxme by Therneau (2018) implements the Cox proportional hazards model with
Gaussian random effects terms. Its approach is very similar in nature to the transformation
model presented by (4.8), except the fact that it estimates the model parameters by integrating
(using Laplace approximation) and maximizing the partial likelihood, and leaving the baseline
hazards unspecified. The parameter estimates from the two implementations should be close to
each other, nevertheless.

The eortc dataset in the coxme package is a simulated example based on the outcomes of
breast cancer trial by the European Organization for Research and Treatment of Cancer. It
contains observations from 37 enrolling centers, two treatment arms, and a total of 2323 data
points. All the observations in the dataset are either right censored or exactly indicating the
time of death.

We first estimate Cox proportional hazards models that include random intercepts for the
various centers.

library("coxme")
eortc$trt <- factor(eortc$trt)
eortc$center <- factor(eortc$center)
fit_coxme1 <- coxme(Surv(y, uncens) ~ trt + (1 | center), data = eortc)
fit_tramm1 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center), data = eortc,

log_first = TRUE, order = 10)

Note the two extra arguments in the Coxph function call: log_first = TRUE tells tramm to take
the logarithm of the dependent variable before applying the Bernstein polynomials. Setting this
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option usually results in better model fits in the case of time-to-event data. The order of the
Bernstein polynomials, which are used to fit the baseline transformation, is set to a higher value
with the option order=10 to increase model flexibility.

The estimation results of the two approaches are presented in Table 4.10. As the results
show, we get very similar estimates for the model parameters in this example. Since the objective
function of the estimation is different in the two approaches — coxme uses the partial likelihood,
while tramm maximizes the (log-)likelihood — model comparison based on the value of the
objective function at its maximum is not meaningful. For this reason we omit the log-likelihood
values from the table.

Table 4.10: Comparison of parameter estimates from coxme and tramm on the eortc
dataset. The parameter σ denotes the standard deviation of the random intercept.

coxme tramm
coef SE coef SE

trt = 1 0.7086 0.0642 0.7090 0.0643
σ̂ 0.3292 0.3238

An advantage of the fully parametric approach of tramm is that we can estimate the base-
line transformations (i.e. the log-cumulative hazards) — given the vector of random effects —
easily. To check whether the proportional hazards assumption holds for the treatment effect, we
re-estimate the model stratifying for the treatment indicator and compare the baseline transfro-
mations for the two strata.

fit_tramm1b <- CoxphME(Surv(y, uncens) | 0 + trt ~ 1 + (1 | center),
data = eortc, log_first = TRUE, order = 10)

As it can be seen in Figure 4.4, the two (conditional) log-cumulative hazards are parallel,
i.e. the treatment effect is not dependent on survival time. When the mixed effects Cox model
is estimated using the partial likelihood approach, as in the case of coxme, where the baseline
hazard function is unspecified, this kind of visual comparison of the cumulative hazard functions
is conceptually more complicated and currently not readily feasible in the coxme package.

A possible extension random effects model considered in this subsection adds nested random
intercepts for the treatments within each center. This way, center-level heterogeneity of treatment
effects can be introduced in the model. Nested random effects can be formulated by the operator
(1 | center/trt) both in coxme and tramm.

fit_coxme2 <- coxme(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc)
fit_tramm2 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,

log_first = TRUE, order = 10)

We find slightly larger differences in the parameter estimates in the case of the extended
models than previously (Table 4.11), which can be attributed to the increased model complexity.

Figure 4.5 shows the log-cumulative hazard, i.e. the baseline transformation, of the nested
random effects model plotted against log-time. The linear relationship between these two mea-
sures suggests that the conditional distribution of the event times is very close to the Weibull
distribution. Since the eortc dataset is a simulated dataset, Figure 4.5 indicates that the data
may have been simulated from the Weibull distribution.

The Weibull regression can be written in its mixed transfromation model form as

P(Yij ≤ yij | Xij = x ij ,Γj = γi) = FMEV

(
hY (yij)− x ij>β − u ijγi

)
= 1− exp

(
− exp(ϑ1 + ϑ2 log(yij)− x ij>β − u ij>γi)

)
. (4.9)
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Figure 4.4: Log-cumulative baseline hazard functions in the stratified model of the
eortc data. The solid lines denote the point estimates and the areas the 95% point-wise
confidence intervals.

Table 4.11: Comparison of parameter estimates from coxme and tramm on the eortc
dataset. The parameters σ1 and σ2 denote the standard deviations of the random center
effect and the nested random treatment effect, respectively.

coxme tramm
coef SE coef SE

trt = 1 0.7420 0.0827 0.7538 0.0852
σ̂1 0.2627 0.2541
σ̂2 0.2045 0.2084

Using the SurvregME function of the tramm package, we can fit the mixed effects Weibull
regression to the eortc dataset, including random intercepts to account for center-level correla-
tions in the data, and nested treatment intercepts to allow for variability in the treatment effects
across enrolling centers.

fit_weibull <- SurvregME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,
dist = "weibull")

Table 4.12 compares the parameter estimates as well as the values of the likelihood function
of the Weibull regression and the fully parameterized version of the Cox proportional hazards
model. Note that the opposite signs of the treatment effects are due to the fact that (4.9) is
parameterized with negative signs of fixed and random effects. The parameter estimates and
standard errors are very similar in the two models, while the log-likelihood value is higher in the
case of the Weibull regression.
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Figure 4.5: Log-cumulative baseline hazard function plotted against log-time in the
nested random intercepts model of the eortc data. The solid line denotes the point
estimates and the area the 95% point-wise confidence interval.

Table 4.12: Comparison of estimates from the fully parameterized mixed effects Cox
proportional hazards model (tramm::CoxphME) and the mixed effects Weibull regression
model (tramm::SurvregME) on the eortc dataset. The parameters σ1 and σ2 denote
the standard deviations of the random center effect and the nested random treatment
effect, respectively.

CoxphME SurvregME
coef SE coef SE

trt = 1 0.7538 0.0852 -0.7531 0.0851
σ̂1 0.2541 0.2549
σ̂2 0.2084 0.2079
Log-likelihood -13243.1237 -13032.0305

4.5.2 Comparison with the parfm Package

The parfm package by Munda et al. (2012) implements parametric frailty models for survival
data. It provides several parametric hazard specifications and frailty distributions, but it only
allows a single grouping factor to define the frailty terms, i.e. only a random intercept model can
be specified within the framework. As a result, the parfm package is only partially comparable
with our SurvregME function. The mixed effects Weibull regression with normally distributed
random intercepts is a specification that can be estimated with both implementations, and hence
it will serve as the basis of comparison in this subsection. As a special case of the mixed effects
Weibull regression, the model is given by 4.9 with u ij>γi = γi.

The kidney dataset is an example dataset in the survival package. It contains 76 observa-
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tions, two for each of the 38 patients with portable dialysis equipment. The outcome variable
measures the recurrence time of kidney infection, and some of the observations are right censored.
The age and gender of the patients as well as the disease type are also included in the dataset.

We can estimate a Weibull regression with random intercepts for patients, and age and sex
as fixed effects in parfm and tramm as

library("parfm")
data("kidney", package = "survival")
kidney$sex <- factor(kidney$sex, levels = c(1, 2), labels = c("male", "female"))

fit_parfm <- parfm(Surv(time, status) ~ sex + age, cluster = "id",
data = kidney, dist = "weibull", frailty = "lognormal")

fit_tramm <- SurvregME(Surv(time, status) ~ sex + age + (1 | id),
data = kidney, dist = "weibull")

Note that the log-normal frailty term in parfm means an identical specification to a Weibull
regression in tramm with normally distributed random intercepts. Since parfm also uses Laplace
approximation to evaluate the marginal likelihood, the results from the two packages should be
numerically comparable. Table 4.13 summarizes the coefficient estimates, their standard errors,
the standard deviations of the random effects, and the log-likelihood values. As the results show,
the two functions give very similar estimates for the Weibull mixed regression model.

Table 4.13: Comparison of the estimates from the parfm and tramm packages on the
kidney dataset. The parameter σ stands for the standard deviation of the random
effect term.

parfm tramm
coef SE coef SE

sex = female 1.6264 0.4884 1.6264 0.4881
age -0.0060 0.0114 -0.0060 0.0126
σ̂ 0.7677 0.7669
Log-likelihood -332.8629 -332.8629

The examples presented in this section included either exactly observed or right-censored
event times. Both coxme and parfm can only deal with these two types of observations. In
practice, many time-to-event datasets contain interval-censored event times, since in many cases
ascertaining the status of the subjects is only possible at some fixed time points. This problem
can, of course, be present in the case of other regression settings, too, but it is most pronounced
in survival modeling. One of the main advantages of using the transformation model approach
is that estimation for any form of (independent) censoring or truncation is available without any
additional computational costs.
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Discussion

The model introduced in Chapter 2 builds on the transformation model approach by Hothorn
et al. (2018), and extends the framework to incorporate mixed effects. This way the model class
becomes applicable to grouped data, where the correlation between observations in the same
group should be taken into account in order to do valid inference.

Chapter 3 described an approach to implement this model class in R. First, it summarized the
main components that are used to create a package (tramm) for estimating transformation mixed
models: The packages tram and lme4 (by Hothorn (2019) and Bates et al. (2015), respectively)
can be utilized to define stratified linear transformation models with mixed effects. The func-
tionality of the mlt package by Hothorn (2018) is then applied to generate the design matrices
corresponding to the baseline transformation and the fixed effects. The estimation of the result-
ing non-linear mixed model is done by the Template Model Builder (TMB) by Kristensen et al.
(2016), which utilizes Laplace approximation to marginalize the log-likelihood over the random
effects, and automatic differentiation to return numeric values of the gradients of the objective
function.

In Chapter 4, with the help of several examples, we demonstrated the main features of the
implementation, and compared the results to those from available alternative R packages. Some
of these alternative implementations were directly comparable to our approach (e.g. lme4 in
the case of the normal linear mixed model, or ordinal in the case of proportional odds logistic
mixed model), while in other cases the alternatives were very similar to our modeling approach
(coxme and the fully parametric Cox proportional hazards mixed model, or the ordinalCont
package and our continuous outcome logistic mixed model). In the examples, we considered
several datasets and model structures, and saw that the numerical results were reasonably close
to the ones calculated with the alternative packages.

As the results of the comparisons suggest, the transformation mixed model approach is a
viable general framework for a range of regression models for grouped data. Moreover, compared
to its alternatives, it has some additional advantages: Since the model directly parameterizes the
conditional cumulative distribution of the response, censored (assuming an independent censoring
mechanism) and truncated observations can be easily accommodated, without additional compu-
tational costs. Furthermore, the model is fully parametric, and as a result, inference, simulation,
and prediction is relatively straightforward. Finally, as a general modeling approach for uncondi-
tional and conditional analysis, the class of transformation models can be easily extended to new
problems by carefully selecting the error distribution and the baseline transformation function.

5.1 Limitations

The mixed effects model considered in this thesis is not the only conceivable extension of trans-
formation models with random effects. Although the additive structure of the model is compu-
tationally as well as conceptually convenient, it is also restrictive. The random effects in this

33
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model only act as shifting factors on the conditional distribution of the outcome, and do not
affect its higher moments. Further generalizations of the model class is left for future research.

Using the Template Model Builder for the computationally intensive calculations leads to
great efficiency gains. However, one disadvantage of the approach is that TMB uses the Laplace
approximation to marginalize over the random effects. In some cases, e.g. with discrete outcomes
or small group sizes, this method can lead to numerical inaccuracies (see for example Joe, 2008).
Although TMB offers access to some more advanced numerical integration methods, due to the
loss in computational efficiency and increased complexity of the code, we have not included these
in our implementation.

The tramm package in under ongoing development. In its current state, the package is lacking
some important features for presenting the results, checking the model specifications, creating
predictions, and doing simulations. Moreover, only asymptotic methods are currently available
for inference.

5.2 Future Work

In this thesis, we have shown that our implementation of the transformation mixed model class
gives the same estimates (i.e. the differences are within reasonably low tolerance levels) as other
well established and tested packages for certain specific cases. Other examples did not allow for
direct comparisons, as the alternative implementations differed slightly from the transformation
model approach. As the results of Chapter 4 suggest, even in these cases, we get similar estimates.
Carefully designed simulations could help to compare our implementation to these alternatives
under various conditions and data structures. Moreover, simulation studies could also help to
uncover efficiency gains from using the TMB in the case of various data structures and model
complexities.

Currently, the tramm package lacks some important functionality that should be added to
make it suitable for rigorous analyses. Simulation capabilities with efficient re-estimation meth-
ods would provide a basis for parametric bootstrap inference, similarly to the tools available in
the mlt package by Hothorn (2018) or in lme4 by Bates et al. (2015). In many cases, the goal
of the statistical modeling is to calculate predictions rather than making inference based on an
estimated model. Methods for point predictions and corresponding intervals would make a very
useful extension of the current implementation. Moreover, additional methods for presenting the
results and checking the model specifications would also be necessary to create a fully functional
package.

The restricted maximum likelihood (REML) estimator provides unbiased estimates of the
variance components in the linear model. With a slight modification of the current implementa-
tion we can calculate REML estimates for this subclass of mixed effects transformation models.
Additionally, the concept could be extended to the general case of transformation mixed models,
but the benefits of it are not clear and should be examined beforehand.

The accuracy of the Laplace approximation should be evaluated in various model settings.
When necessary, other numerical techniques (e.g. adaptive Gaussian quadrature methods, im-
portance sampling, MCMC) should also be considered in order to improve model estimations.
Due to the broad range of possible model settings, the most suitable method might depend on
the model complexity or the type of the response variable.

Other possible direction for extending our mixed effects model is to consider non-normal ran-
dom effects distributions. In some specific cases non-normal random effects could be meaningful,
such as Gamma-distributed frailty terms in proportional hazards models. Furthermore, complex
dependence structures among random effects, e.g. defined by time series processes or spatial
structures, play an important role in many fields of applied statistics. As a notable example,
Brooks et al. (2017) provide an extension to generalized linear mixed models to incorporate such
random effect structures in their glmmTMB package. Allowing for complex covariance structures
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would make transformation models applicable in many interesting problems.
Finally, as we discussed it before, the additive structure of the transformation mixed models

considered in this thesis is rather restrictive. Extension to more general cases, where the random
effects also affect the higher moments of the conditional distribution of the response variable,
should be the topic of future research.

5.3 Conclusions

In this thesis, we proposed a possible extension of the transformation models, as described by
Hothorn et al. (2018), to include mixed effects terms. With the resulting specification, the trans-
formation model approach can be applied on grouped data, where the observations within groups
are correlated. Using the Template Model Builder, we provided a feasible way of implementing
this class of non-linear mixed models in R. The resulting code is organized into the tramm pack-
age, which also builds on the packages mlt and tram, as well as lme4. As a proof of concept, we
presented a series of examples for a broad range of regression problems, where specific versions
of our mixed effects model were compared to available alternative implementations. The results
suggest that our approach is a viable alternative of these packages. Moreover, the transforma-
tion mixed model approach provides some additional features that are currently not available
elsewhere.
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Appendix A

Computer Code

A.1 C++ Implementation of the Negative Log-likelihood

This code specifies the objective function for the tramm package in C++, which is then called
by TMB to numerically evaluate the marginal log-likelihood, its gradient and the Hessian using
Laplace approximation and automatic differentiation.

/* ==================================================================
Transformation model: F_Y(y|x,gamma) = F_Z(h(y|x,gamma))
Structure of ME: h(y|x,gamma) = (a(y)', b(x) ') * beta + Z * gamma
==================================================================

*/

#include <TMB.hpp >

// Model types
enum valid_modtype {

Lm = 0
};

// Valid error distributions
enum valid_errdist {

Normal = 0, Logistic = 1, MinExtrVal = 2, MaxExtrVal = 3
};

// F_Z(h(y)), cens: censoring indicator , if not finite , return value
template <class Type >
Type cdf(Type hy , Type cens , Type value , int errdist) {

Type out = value;
if (fabs(cens) < INFINITY) {

switch (errdist) {
case Normal:

out = pnorm(hy);
break;

case Logistic:
out = Type(1) / (Type(1) + exp(-hy));
break;

case MinExtrVal:
out = Type(1) - exp(-exp(hy));
break;

case MaxExtrVal:
out = exp(-exp(-hy));
break;

default:

37
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error("Unknown error distribution!");
}

}
return out;

}

// log -density error function
template <class Type >
Type ldens(Type hy , int errdist) {

Type out;
switch (errdist) {

case Normal:
out = dnorm(hy , Type(0), Type(1), true);
break;

case Logistic:
out = dlogis(hy , Type(0), Type(1), true);
break;

case MinExtrVal:
out = hy - exp(hy);
break;

case MaxExtrVal:
out = - hy - exp(-hy);
break;

default:
error("Unknown error distribution!");

}
return out;

}

GVECTORIZE(ldens , V, I, N, N, N, N);

// Covariance terms of the random effects
template <class Type >
struct re_cov_term {

vector <Type > sd;
matrix <Type > corr;

};

// Negative log -density of the random effects
template <class Type > Type re_nldens(vector <Type > gamma ,

vector <Type > theta , int blocksize , re_cov_term <Type >& term) {
Type ans = 0;
if (blocksize == 1) { // diagonal cov matrix of the term

//Type sd = theta [0];
Type sd = exp(theta[0]); // parateterized w/ log(sd)
ans -= dnorm(gamma , Type(0), sd , true).sum();
//term.sd = theta;
term.sd = exp(theta);
matrix <Type > corr(1,1);
term.corr = corr.setIdentity(1,1);

} else { // correlated random effects (unstructured corr mat)
int nblocks = gamma.size() / blocksize;
vector <Type > sd = exp(theta.head(blocksize));
vector <Type > corr_tr = theta.tail(theta.size() - blocksize);
density :: UNSTRUCTURED_CORR_t <Type > nldens(corr_tr);
density ::VECSCALE_t <density :: UNSTRUCTURED_CORR_t <Type > >

scnldens = density :: VECSCALE(nldens , sd);
for (int i = 0; i < nblocks; i++) {
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ans += scnldens(gamma.segment(i * blocksize , blocksize));
}
term.sd = sd;
term.corr = nldens.cov();

}
return ans;

}

template <class Type >
Type objective_function <Type >:: operator () ()
{

DATA_INTEGER(modtype); // model type for outputs
DATA_INTEGER(errdist); // Type of error distribution
DATA_MATRIX(MMl); // left -hand side model matrix (a(y), b(x))
DATA_MATRIX(MMr); // right -hand side model matrix
DATA_MATRIX(MMe); // model matrix for exact observations
DATA_MATRIX(MMeprime); // for constructing h(y)'
DATA_VECTOR(offsetc); // offset for censored (same for l and r)
DATA_VECTOR(offsete); // offset for exact
DATA_VECTOR(weightsc);
DATA_VECTOR(weightse);
DATA_SPARSE_MATRIX(Zc); // design matrix of random effects -- censored
DATA_SPARSE_MATRIX(Ze); // design matrix of random effects -- exact
DATA_VECTOR(cl); // censoring indicators:
DATA_VECTOR(cr); // cl == -Inf: left cens , cr == Inf: right cens
DATA_IVECTOR(re_termsize); // number of REs corresponding one term
DATA_IVECTOR(re_blocksize); // in the cov matrix of REs

PARAMETER_VECTOR(beta); // fixed effects
PARAMETER_VECTOR(gamma); // random effects
PARAMETER_VECTOR(theta); // covariance parameters

parallel_accumulator <Type > nll(this); // negative log -likelihood

vector <re_cov_term <Type > > re_cov(re_termsize.size());

// ====== Likelihood contributions of RE terms
int cum_ts = 0;
int cum_bs = 0;
for (int i = 0; i < re_termsize.size(); i++) {

int nth = re_blocksize(i) * (re_blocksize(i)+1) / 2; // cov params
vector <Type > gamma_s = gamma.segment(cum_ts , re_termsize(i));
vector <Type > theta_s = theta.segment(cum_bs , nth);
nll += re_nldens(gamma_s , theta_s , re_blocksize(i), re_cov(i));
cum_ts += re_termsize(i);
cum_bs += nth;

}

// ====== Likelihood contributions of observations
// === Censored observations
if (MMl.rows() > 0) {

vector <Type > hl = MMl * beta + Zc * gamma + offsetc;
vector <Type > hr = MMr * beta + Zc * gamma + offsetc;
for (int i = 0; i < MMl.rows(); i++) {

nll -= log(cdf(hr(i), cr(i), Type(1), errdist) -
cdf(hl(i), cl(i), Type(0), errdist)) * weightsc(i);

}
}
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// === Exact observations
if (MMe.rows() > 0) {

vector <Type > he = MMe * beta + Ze * gamma + offsete;
vector <Type > hprime = MMeprime * beta;
nll -= ((ldens(he , errdist) + log(hprime)) * weightse).sum();

}

// ====== Reporting SD and correlation matrices of random effects
vector <matrix <Type > > corr_rep(re_cov.size());
vector <vector <Type > > sd_rep(re_cov.size());
for(int i = 0; i < re_cov.size(); i++) {

corr_rep(i) = re_cov(i).corr;
sd_rep(i) = re_cov(i).sd;

}
REPORT(corr_rep);
REPORT(sd_rep);

// ====== Report transformed paremeters for specific model types
if (modtype == Lm) {

int p = beta.size() - 1;
Type sigma = 1 / beta[1];
vector <Type > b(p);
b(0) = -beta(0) * sigma;
b.tail(p-1) = beta.tail(p-1) * sigma;
ADREPORT(b);
ADREPORT(sigma);

}

return nll;
}

A.2 Code for Reproducing the Red List Example

This code reproduces the model estimation of Seibold et al. (2015) using the functionality of the
tramm package.

if (!file.exists("results/Seibold2015.rda")) {
library("tramm")
library("Matrix")

### publication: https://doi.org/10.1111/cobi.12427
dir <- system.file("rda", package = "TH.data")
load(file.path(dir, "beetles.rda"))

ldata <- bmodel
ldata$TS <- NULL

phylo_corr <- solve(Ainv)

## Model specification: fixed effects only
mfr <- RL ~ mean_body_size + mean_elev + tree + flowers + feeding +

habitat + niche_decay + niche_diam + niche_canopy + distribution
fit_ind <- Polr(mfr, data = ldata)
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## load dlls for custom use of tramm functionality
tr <- system.file("libs", package = "tramm")
dyn.load(TMB::dynlib(paste0(tr, "/tramm")))

## Set up the ME model manually
fe_data <- tramm:::get_data_tram(fit_ind)
## --- Constraints
ui <- as.matrix(bdiag(fe_data$constr$ui, 1))
ci <- c(fe_data$constr$ci, -Inf)

## --- Mixed-effects model specification
mfr_me <- update(mfr, . ~ . + (1 | species))
rt <- tramm::get_re_struct(mfr_me, ldata, na.action = na.omit, negative = TRUE)
R <- as(t(chol(phylo_corr)), class(rt$Z))
Zc <- rt$Z %*% R
datalist <- list(modtype = 5L, errdist = 1L, cl = fe_data$cl, cr = fe_data$cr,

MMl = fe_data$MMl, MMr = fe_data$MMr,
MMe = fe_data$MMe, MMeprime = fe_data$MMeprime,
Zc = Zc,
Ze = Matrix(0, nrow = 0, ncol = 0, sparse = TRUE),
re_termsize = rt$re_termsize, re_blocksize = rt$re_blocksize,
offsetc = fe_data$offsetc, offsete = fe_data$offsete,
weightsc = fe_data$weightsc, weightse = fe_data$weightse)

## --- Model
model_structure <- list(formula = mfr_me,

restrictions = list(ui = ui, ci = ci),
re = rt, fe = fe_data, tram_model = fit_ind)

params <- list(beta = fe_data$beta, gamma = rep(0, nrow(ldata)), theta = 0)
obj <- TMB::MakeADFun(data = datalist, parameters = params, random = "gamma",

DLL = "tramm", silent = TRUE)
## --- Optimization
opt <- alabama::auglag(par = obj$par, fn = obj$fn, gr = obj$gr,

hin = function(par) ui %*% par - ci,
hin.jac = function(par) ui,
control.outer = list(method = "nlminb", kkt2.check = FALSE, trace = FALSE))

rep <- TMB::sdreport(obj)
tmb_mod <- list(tmb_object = obj, data = datalist,

model_structure = model_structure, opt = opt, sdrep = rep)
class(tmb_mod) <- "tramm"
ci_prof <- exp(TMB::tmbroot(tmb_mod$tmb_obj, length(tmb_mod$sdrep$par.fixed),

target = 0.5 * qchisq(0.95, df = 1), trace = FALSE))
save(tmb_mod, ci_prof, file = "results/Seibold2015.rda")

} else {
load("results/Seibold2015.rda")

}
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