
Home 
Schedule 
Talks
Tim Browning (Bristol): How frequently does the Hasse principle fail?
Abstract: Counterexamples to the Hasse principle are known for many families of geometrically rational varieties. We discuss how often such failures arise for Chatelet surfaces and, if time permits, for certain higherdimensional hypersurfaces. This is joint work with Regis de la Breteche.
Ulrich Derenthal (LMU München): Values of quadratic polynomials represented by norms
Abstract: Let K/k be an extension of number fields. When can values of a
quadratic polynomial P(t) over k be represented by norms of elements
of K? To answer this question, we will discuss the Hasse principle and
weak approximation for the affine variety defined by
P(t)=Norm_{K/k}(x), in particular in the case [K:k]=4. This is joint
work with A. Smeets and D. Wei, extending recent work of T. D.
Browning and D. R. HeathBrown.
Gerd Faltings (MPI Bonn): Mathematics around Kim's method
Abstract: I give the background from the theory of
crystalline Galoisrepresentations used in Kim's proof
of finiteness of integral points.
Wojtek Gajda (AMU Poznań): Independence of
ladic representations over function fields
David Harari (Orsay): The unramified Brauer group of a homogeneous space
Abstract: This is joint work with C. Demarche and M. Borovoi.
We compute the unramified Brauer group of certain homogeneous spaces
over various fields (algebraically closed, local, global, finite), using
arithmetical methods.
Yonatan Harpaz (Hebrew University Jerusalem): The Relative Étale Shape and Rational Points
Abstract: In this talk we will describe some on going work relating homotopy theoretic
properties of schemes and varieties to the study of rational points on them.
We will introduce a generalization of the étale homotopy type of Artin and
Mazur to a relative setting X → S and explain how one can apply homotopy
theory to it in order to study Srational points of X. In the case where
S is the spectrum of a number field the theory can be used to obtain a
unified view of classical arithmetic obstructions such as the BrauerManin
obstruction and descent obstructions. This is joint work with Tomer Schlank.
Nick Katz (Princeton): TBA
Yongqi Liang (Orsay): BrauerManin obstruction for zerocycles on rationally connected
varieties defined over number fields
Abstract: In this talk, we consider rationally connected varieties defined over
number fields. We will state a general relation between the
localglobal principle for rational points and for zerocycles. As an
application, we prove the exactness of a sequence of localglobal type
for homogeneous spaces of linear algebraic groups.
Max Lieblich (University of Washington): TBA
Dino Lorenzini (University of Georgia): An Avoidance Lemma and a Moving Lemma for families
Abstract: Given a projective morphism X→S over an affine base,
I'll discuss a technique for proving the existence of hypersurfaces H in X
with various favorable properties. Applications, for some classes of X→S,
include an Avoidance lemma in families, the existence of finite quasisections for X→S,
the existence of a finite morphism from X to a projective nspace over S, and a moving lemma for horizontal 1cycles.
This is joint work with O. Gabber and Q. Liu.
Lilian Matthiesen (Bristol): Rational points on conic bundle surfaces via
additive combinatorics (joint work with Tim Browning and Alexei Skorobogatov)
Ambrus Pál (Imperial College London): TBA
Jakob Stix (Heidelberg): On the birational section conjecture with local conditions
Abstract: Grothendieck's section conjecture predicts a description of rational
points of a hyperbolic curve entirely in terms of profinite
(fundamental) groups.
We will present and prove a version of the conjecture that assumes
additional mainly local properties for the sections involved.
Bianca Viray (Brown University): Vertical Brauer elements and del Pezzo surfaces of degree 4
Olivier Wittenberg (ENS Paris): Divisibility of Chow groups of 0cycles of varieties over strictly local fields
Abstract: Let X be a smooth projective variety defined over the maximal unramified
extension of a padic field, or over k((t)) with k algebraically closed of
characteristic p. S. Saito and K. Sato have proved that the Chow group of
zerocycles of degree 0 on X up to rational equivalence is the direct sum
of a finite group and a group which is divisible by any prime different
from p. We study this finite group and show that it vanishes for simply
connected surfaces with geometric genus zero as well as for K3 surfaces
with semistable reduction if p=0, but that it does not vanish for
arbitrary simply connected surfaces. In particular, the cycle class map
with finite (prime to p) coefficients need not be injective. (Joint work
with H. Esnault.)
Trevor Wooley (Bristol): Weak approximation for rational morphisms from the projective line
to a diagonal hypersurface
Abstract: We investigate the space of rational morphisms from the
projective line to a hypersurface defined by a diagonal equation of degree
d in n+1 variables. Provided that n is large enough in terms of d and the
degree of the rational morphism, one can establish a weak approximation
property. It transpires that recent work on "efficient congruencing" shows
that "large enough" is not particularly large. This is joint work with
Scott Parsell and Sean Prendiville.

