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We follow the notation of FGN as closely as possible. The proof of Proposition 1 is as follows.

Proof. Without loss of generality, we suppose that a = 1 and so f1,(|w|) = M1/(1+]|w|?)* 42, v > 0.
We need to prove that the limit
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exists and is not zero. As the spectral densities are radially symmetric, we choose an arbitrary direction

for w and we set ||| = r||u| and ||w| = p||v]|, with ||u|| = ||v|| = 1. The convolution reduces to
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where 0B, is the surface of the unit sphere in R? and U is the uniform probability measure on dBgy. In
what follows let p > 0. Recall that fi,(p) is monotonically decreasing in p and for all 0 < r < b < p,
p—b<|[ru—pvl]| <p+b.

We separate the inner integral of into five integrals whose bounds are given by [0, /p], [\/p, p/2],
(p/2,p— /P, [p— /P, o+ /P)s [P+ /P o0). We consider now these five cases for sufficiently large p.

Case r € [0,/p]: We have
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and by a similar argument, (3 is bounded below by
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By the Modified Taper Condition, the limit of fs(p)p?* exists and this implies that is equal to zero
if k> v+d/2 and equal to M/M; if k =v +d/2.

Case r € [\/p, p/2]: Given that |[ru — pv|| > p/2, we have
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The first limit is finite by the Modified Taper Condition and the second vanishes for p tending to infinity.
Case r € [p/2,p — /p]: We have
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The first limit is finite by the Modified Taper Condition and the second vanishes for p tending to infinity.

Case r € [p — /p, p + 1/p]: Again using the monotonicity of f,, we have
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because fy is a density in R%. Similarly, has a lower bound
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Case r € [p+ /p,00): We have
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As p tends to infinity, the integral will tend to zero.

Thus, collecting all five cases, equation is equal to 1 if & > v + d/2 and equal to M/M; + 1 if
k=v+d/2. O

Remark: In the proof of FGN, only three annuli were used, which resulted in limits of the form

lim, 00 p? 74/ (p/2)? T4 = 22+ In order to avoid the fraction in the denominator, two additional

annuli are required.



