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We study estimation and prediction of Gaussian random fields with co-
variance models belonging to the generalized Wendland (GW) class, under
fixed domain asymptotics. As for the Matérn case, this class allows for a con-
tinuous parameterization of smoothness of the underlying Gaussian random
field, being additionally compactly supported. The paper is divided into three
parts: first, we characterize the equivalence of two Gaussian measures with
GW covariance function, and we provide sufficient conditions for the equiv-
alence of two Gaussian measures with Matérn and GW covariance functions.
In the second part, we establish strong consistency and asymptotic distri-
bution of the maximum likelihood estimator of the microergodic parameter
associated to GW covariance model, under fixed domain asymptotics. The
third part elucidates the consequences of our results in terms of (misspec-
ified) best linear unbiased predictor, under fixed domain asymptotics. Our
findings are illustrated through a simulation study: the former compares the
finite sample behavior of the maximum likelihood estimation of the microer-
godic parameter with the given asymptotic distribution. The latter compares
the finite-sample behavior of the prediction and its associated mean square
error when using two equivalent Gaussian measures with Matérn and GW
covariance models, using covariance tapering as benchmark.

1. Introduction. Covariance functions cover a central aspect of inference and
prediction of Gaussian fields defined over some (compact) set of Rd . For instance,
the best linear unbiased prediction at an unobserved site depends on the knowledge
of the covariance function. Since a covariance function must be positive definite,
practical estimation generally requires the selection of some parametric classes of
covariances and the corresponding estimation of these parameters.
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The maximum likelihood (ML) estimation method is generally considered best
for estimating the parameters of covariance models. The study of asymptotic prop-
erties of ML estimators is complicated by the fact that more than one asymptotic
framework can be considered when observing a single realization from a Gaussian
field. In particular, under fixed domain asymptotics, one supposes that the sampling
domain is bounded and that the sampling set becomes increasingly dense. Under
increasing domain asymptotics, the sampling domain increases with the number
of observed data, and the distance between any two sampling locations is bounded
away from zero.

The asymptotic behavior of ML estimators of the covariance parameters can be
quite different under these two frameworks [Zhang and Zimmerman (2005)]. Un-
der increasing domain asymptotic framework and some mild regularity conditions,
Mardia and Marshall (1984) give a general result. Specifically, they show that ML
estimators are consistent and asymptotically Gaussian, with asymptotic covariance
matrix equal to the inverse of the Fisher information matrix.

Equivalence of Gaussian measures [Ibragimov and Rozanov (1978), Skorokhod
and Yadrenko (1973)] represents an essential tool to establish the asymptotic prop-
erties of both prediction and estimation of Gaussian fields under fixed domain
asymptotics. In his tour de force, Stein (1988, 1990, 1993, 1999a, 2004) provides
conditions under which predictions under a misspecified covariance function are
asymptotically efficient, and mean square errors converge almost surely to their
targets. Since Gaussian measures depend exclusively on their mean and covari-
ance functions, practical evaluation of Stein’s conditions translates into the fact
that the true and the misspecified covariances must be compatible, that is, the in-
duced Gaussian measures are equivalent.

Under fixed domain asymptotics, no general results are available for the asymp-
totic properties of ML estimators. Yet, some results have been obtained when as-
suming that the covariance belongs to the parametric family of Matérn covariance
functions [Matérn (1960)] that has been very popular in spatial statistics for its
flexibility with respect to continuous parameterization of smoothness, in the mean
square sense, of the underlying Gaussian field. For a Gaussian field defined over a
bounded and infinite set of Rd , Zhang (2004) shows that when the smoothness pa-
rameter is known and fixed, not all parameters can be estimated consistently when
d = 1,2,3. Instead, the ratio of variance and scale (to the power of the smooth-
ing parameter), sometimes called microergodic parameter [Stein (1999b), Zhang
and Zimmerman (2005)], is consistently estimable. In contrast for d ≥ 5, Anderes
(2010) proved the orthogonality of two Gaussian measures with different Matérn
covariance functions, and hence, in this case, all the parameters can be consistently
estimated under fixed-domain asymptotics. The case d = 4 is still open.

Asymptotic results for the ML estimator of the microergodic parameter of the
Matérn model can be found in Zhang (2004), Du, Zhang and Mandrekar (2009),
Wang and Loh (2011) and Kaufman and Shaby (2013). In particular, Kaufman
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and Shaby (2013) give strong consistency and asymptotic distribution of the mi-
croergodic parameter when estimating jointly the scale and variance parameters,
generalizing previous results in Zhang (2004) and Wang and Loh (2011) where the
scale parameter is assumed known and fixed. Kaufman and Shaby (2013) show by
means of simulation study that asymptotic approximation using a fixed scale pa-
rameter can be problematic when applied to finite samples, even for large sample
sizes. In contrast, they show that performance is improved and asymptotic approx-
imations are applicable for smaller sample sizes when the parameters are jointly
estimated.

Under the Matérn family, similar results have been obtained for the covariance
tapering (CT) method of estimation, as originally proposed in Kaufman, Schervish
and Nychka (2008) and consisting of setting to zero the dependence after a given
distance. This is in turn achieved by multiplying the Matérn covariance with a
taper function, that is, a correlation function being additionally compactly sup-
ported over a ball with given radius. Thus, the resulting covariance tapered matrix
is sparse, with the level of sparseness depending on the radius of compact support.
Sparse matrix algorithms can then be used to evaluate efficiently an approximate
likelihood where the original covariance matrix is replaced by the tapered matrix.
The results proposed in Kaufman, Schervish and Nychka (2008) have then in-
spired the works in Du, Zhang and Mandrekar (2009), Wang and Loh (2011) and
Kaufman and Shaby (2013), where asymptotic properties of the CT estimator of
the Matérn microergodic parameter are given.

Using the Matérn family, Furrer, Genton and Nychka (2006) study CT when
applied to the best unbiased linear predictor and show that under fixed domain
asymptotics and some specific conditions of the taper function, asymptotically ef-
ficient prediction and asymptotically correct estimation of mean square error can
be achieved using a tapered Matérn covariance function. Extensions have been
discussed by, for example, Stein (2013) and Hirano and Yajima (2013). The basic
message of CT method is that large data sets can be handled both for estimation
and prediction exploiting sparse matrix algorithms when using the Matérn model.

Inspired by this idea, we focus on a covariance model that offers the strength
of the Matérn family and allows the use of sparse matrices. Specifically, we study
estimation and prediction of Gaussian fields under fixed domain asymptotics, using
the generalized Wendland (GW) class of covariance functions [Gneiting (2002a),
Zastavnyi (2006)], the members of which are compactly supported over balls of
R

d with arbitrary radii, and additionally allows for a continuous parameterization
of differentiability at the origin, in a similar way to the Matérn family.

In particular, we provide the following results. First, we characterize the equiv-
alence of two Gaussian measures with covariance functions belonging to the GW
class and sharing the same smoothness parameter. A consequence of this result
is that, as in the Matérn case [Zhang (2004)], when the smoothness parameter is
known and fixed, not all parameters can be estimated consistently under fixed do-
main asymptotics. Then we give sufficient conditions for the equivalence of two
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Gaussian measures where the state of truth is represented by a member of the
Matérn family and the other measure has a GW covariance model and vice versa.

We assess the asymptotic properties of the ML estimator of the microergodic pa-
rameter associated to the GW class. Specifically, for a fixed smoothness parameter,
we establish strong consistency and asymptotic distribution of the microergodic
parameter estimate assuming the compact support parameter fixed and known.
Then we generalize these results when jointly estimating with ML the variance
and the compact support parameter.

Finally, using results in Stein (1988, 1993), we study the implications of our
results on prediction under fixed domain asymptotics. One remarkable implication
is that when the true covariance belongs to the Matérn family, asymptotic effi-
ciency prediction and asymptotically correct estimation of mean square error can
be achieved using a compatible GW covariance model.

The remainder of the paper is organized as follows. In Section 2, we review
some results of Matérn and GW covariance models. In Section 3, we first char-
acterize the equivalence of Gaussian measure under the GW covariance model.
Then we find a sufficient condition for the equivalence of two Gaussian measures
with Matérn and GW covariance models. In Section 4, we establish strong consis-
tency and asymptotic distribution of the ML estimator of the microergodic param-
eter of the GW models, under fixed domain asymptotics. Section 5 discusses the
consequences of the results in Section 3 on prediction under fixed domain asymp-
totics. Section 6 provides two simulation studies: The first shows how well the
given asymptotic distribution of the microergodic parameter applies to finite sam-
ple cases when estimating with ML a GW covariance model under fixed domain
asymptotics. The second compares the finite-sample behavior of the prediction
when using two compatible Matérn and GW models, using CT as a benchmark.
The final section provides discussion on the consequence of our results and iden-
tifies problems for future research.

2. Matérn and generalized Wendland covariance models. We denote
{Z(s), s ∈ D} a zero mean Gaussian field on a bounded set D of R

d , with sta-
tionary covariance function C : Rd → R. We consider the class �d of continuous
mappings φ : [0,∞) →R with φ(0) > 0, such that

cov
(
Z(s),Z

(
s′)) = C

(
s′ − s

) = φ
(∥∥s′ − s

∥∥)
,

with s, s′ ∈ D, and ‖ · ‖ denoting the Euclidean norm. Gaussian fields with such
covariance functions are called weakly stationary and isotropic.

Schoenberg (1938) characterized the class �d as scale mixtures of the charac-
teristic functions of random vectors uniformly distributed on the spherical shell of
R

d , with any positive measure, F :

φ(r) =
∫ ∞

0
�d(rξ)F (dξ), r ≥ 0,
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with �d(r) = r1−d/2Jd/2−1(r) and Jν a Bessel function of order ν. The class �d

is nested, with the inclusion relation �1 ⊃ �2 ⊃ · · · ⊃ �∞ being strict, and where
�∞ := ⋂

d≥1 �d is the class of continuous mappings φ, the radial version of which
is positive definite on any d-dimensional Euclidean space.

The Matérn function, defined as

Mν,α,σ 2(r) = σ 2 21−ν

	(ν)

(
r

α

)ν

Kν

(
r

α

)
, r ≥ 0,

is a member of the class �∞ for any positive values of α and ν. Here, Kν is a
modified Bessel function of the second kind of order ν, σ 2 is the variance and
α a positive scaling parameter. The parameter ν characterizes the differentiability
at the origin and, as a consequence, the differentiability of the associated sample
paths. In particular for a positive integer k, the sample paths are k times differen-
tiable, in any direction, if and only if ν > k.

When ν = 1/2 + m and m is a nonnegative integer, the Matérn function simpli-
fies to the product of a negative exponential with a polynomial of degree m, and
for ν tending to infinity, a rescaled version of the Matérn converges to a squared
exponential model being infinitely differentiable at the origin. Thus, the Matérn
function allows for a continuous parameterization of its associated Gaussian field
in terms of smoothness.

We also define �b
d as the class that consists of members of �d being additionally

compactly supported on a given interval, [0, b], b > 0. Clearly, their radial versions
are compactly supported over balls of Rd with radius b.

We now define GW correlation functions ϕμ,κ as introduced by Gneiting
(2002b), Zastavnyi (2006) and Chernih and Hubbert (2014). For κ > 0, we de-
fine

(1) ϕμ,κ(r) :=
⎧⎪⎨⎪⎩

1

B(2κ,μ + 1)

∫ 1

r
u
(
u2 − r2)κ−1

(1 − u)μ du, 0 ≤ r < 1,

0, r ≥ 1,

with B denoting the beta function. Arguments in Gneiting (2002b) and Zastavnyi
(2006) show that, for a given κ > 0, ϕμ,κ ∈ �1

d if and only if

(2) μ ≥ λ(d, κ) := (d + 1)/2 + κ.

Throughout, we use λ instead of λ(d, κ) whenever no confusion arises. Integration
by parts shows that the first part of (1) can also be written as

1

B(1 + 2κ,μ)

∫ 1

r

(
u2 − r2)κ

(1 − u)μ−1 du, 0 ≤ r < 1.

Note that ϕμ,0 is not defined because κ must be strictly positive. In this special
case, we consider the Askey function [Askey (1973)]

Aμ(r) = (1 − r)
μ
+ =

{
(1 − r)μ, 0 ≤ r < 1,

0, r ≥ 1,



GENERALIZED WENDLAND COVARIANCE FUNCTIONS 833

where (·)+ denotes the positive part. Arguments in Golubov (1981) show that
Aμ ∈ �1

d if and only if μ ≥ (d + 1)/2 and we define ϕμ,0 := Aμ.
Finally, we define the GW covariance function, with compact support β > 0,

variance σ 2 and smoothness parameter κ > 0 as

(3) ϕμ,κ,β,σ 2(r) := σ 2ϕμ,κ(r/β), r ≥ 0,

and ϕμ,κ,β,σ 2 ∈ �
β
d if and only if μ ≥ λ. Accordingly, for κ = 0, we define

(4) ϕμ,0,β,σ 2(r) := σ 2ϕμ,0(r/β), r ≥ 0.

When computing (3), numerical integration is obviously feasible, but could
be cumbersome to (spatial) statisticians used to handle closed-form parametric
covariance model. Nevertheless, closed-form solution of the integral in equa-
tion (1) can be obtained when κ = k, a positive integer. In this case, ϕμ,k,1,1(r) =
Aμ+k(r)Pk(r), with Pk a polynomial of order k. These functions, termed (original)
Wendland functions, were originally proposed by Wendland (1995). Other closed-
form solutions of integral (1) can be obtained when κ = k+0.5, using some results
in Schaback (2011). Such solutions are called missing Wendland functions.

Recently, Porcu, Zastavnyi and Bevilacqua (2017) have shown that the GW
class includes almost all classes of covariance functions with compact supports
known to the geostatistical and numerical analysis communities. Not only origi-
nal and Wendland functions, but also Wu’s functions [Wu (1995)], which in turn
include the spherical model [Wackernagel (2003)], as well as the Trigub splines
[Zastavnyi (2006)]. Finally, Chernih, Sloan and Womersley (2014) show that, for
κ tending to infinity, a rescaled version of the GW model converges to a squared
exponential covariance model.

As noted by Gneiting (2002a), GW and Matérn functions exhibit the same be-
havior at the origin, with the smoothness parameters of the two covariance models
related by the equation ν = κ + 1/2.

Fourier transforms of radial versions of members of �d , for a given d , have a
simple expression, as reported in Yaglom (1987) or Stein (1999b). For a member
φ of the class �d , we define its isotropic spectral density as

(5) φ̂(z) = z1−d/2

(2π)d

∫ ∞
0

ud/2Jd/2−1(uz)φ(u)du, z ≥ 0,

and throughout the paper, we use the notation: M̂ν,α,σ 2 , and ϕ̂μ,κ,β,σ 2 for the radial
parts of Fourier transforms of Mν,α,σ 2 and ϕμ,κ,β,σ 2 , respectively.

A well-known result about the spectral density of the Matérn model is the fol-
lowing:

(6) M̂ν,α,σ 2(z) = 	(ν + d/2)

πd/2	(ν)

σ 2αd

(1 + α2z2)ν+d/2 , z ≥ 0.
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For two given nonnegative functions g1(x) and g2(x), with g1(x) � g2(x) we
mean that there exist two constants c and C such that 0 < c < C < ∞ and
cg2(x) ≤ g1(x) ≤ Cg2(x) for each x. The next result follows from Zastavnyi
(2006), Chernih and Hubbert (2014) and from standard properties of Fourier trans-
forms. Their proofs are thus omitted. Let us first define the function 1F2 as

1F2(a;b, c; z) =
∞∑

k=0

(a)kz
k

(b)k(c)kk! , z ∈ R,

which is a special case of the generalized hypergeometric functions qFp

[Abramowitz and Stegun (1965)], with (q)k = 	(q + k)/	(q) for k ∈ N ∪ {0},
being the Pochhammer symbol.

THEOREM 1. Let ϕμ,κ,β,σ 2 be the function defined at equation (3) and let λ

as defined through equation (2). Then, for κ,σ 2, β > 0 and μ ≥ λ:

1. ϕ̂μ,κ,β,σ 2(z) = σ 2Lςβd
1F2(λ;λ + μ

2 , λ + μ
2 + 1

2 ;− (zβ)2

4 ), z > 0;
2. ϕ̂μ,κ,β,σ 2(z) = σ 2Lςβd [cς

3 (zβ)−2λ{1 + O(z−2)} + c
ς
4 (zβ)−(μ+λ){cos(zβ −

c
ς
5 ) +O(z−1)}], for z → ∞;

3. ϕ̂μ,κ,β,σ 2(z) � z−2λ, for z → ∞,

where c
ς
3 = 	(μ+2λ)

	(μ)
, c

ς
4 = 	(μ+2λ)

	(λ)2λ−1 , c
ς
5 = π

2 (μ + λ), Lς = Kς	(κ)

21−κB(2κ,μ+1)
and

Kς = 2−κ−d+1π− d
2 	(μ + 1)	(2κ + d)

	(κ + d
2 )	(μ + 2λ)

,

where ς := (μ, κ, d)′.

Point 1 has been shown by Zastavnyi (2006). Points 2 and 3 can be found in
Chernih and Hubbert (2014). Note that the case κ = 0 is not included in Theorem 1.
We consider it in the following result, whose proof follows the lines of Zastavnyi
(2006) and Chernih and Hubbert (2014) for the case κ > 0.

THEOREM 2. Let ϕμ,0,β,σ 2 as being defined at equation (4). Then, for σ 2, β >

0, μ ≥ (d + 1)/2:

1. ϕ̂μ,0,β,σ 2(z) = σ 2Kςβd
1F2(

d+1
2 ; d+1

2 + μ
2 , d+1

2 + μ
2 + 1

2 ;− (zβ)2

4 ), z > 0;
2. ϕ̂μ,0,β,σ 2(z) = σ 2Kςβd [cς

3 (zβ)−(d+1){1 + O(z−2)} + c
ς
4 (zβ)−(μ+(d+1)/2) ×

{cos(zβ − c
ς
5 ) +O(z−1)}], for z → ∞;

3. ϕ̂μ,0,β,σ 2(z) � z−(d+1), for z → ∞,

with c
ς
3 , c

ς
4 , c

ς
5 and Kς defined as in Theorem 1 but with ς := (μ,0, d)′.
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TABLE 1
GW correlation ϕμ,κ,1,1(r) and Matérn correlation Mν,1,1(r) with increasing smoothness

parameters κ and ν. SP(k) means that the sample paths of the associated Gaussian field are k times
differentiable

κ ϕμ,κ,1,1(r) ν Mν,1,1(r) SP(k)

0 (1 − r)
μ
+ 0.5 e−r 0

1 (1 − r)
μ+1
+ (1 + r(μ + 1)) 1.5 e−r (1 + r) 1

2 (1 − r)
μ+2
+ (1 + r(μ + 2) + r2(μ2 + 4μ + 3) 1

3 ) 2.5 e−r (1 + r + r2

3 ) 2

3 (1 − r)
μ+3
+ (1 + r(μ + 3) + r2(2μ2 + 12μ + 15) 1

5 3.5 e−r (1 + r
2 + r2 6

15 + r3

15 ) 3
+ r3(μ3 + 9μ2 + 23μ + 15) 1

15 )

The spectral density and its decay for z → ∞ in Theorems 1 and 2 are useful
when studying some geometrical properties of a Gaussian field or its associated
sample paths [Adler (1981)]. For instance, using Theorem 1 Point 1 or Theorem 2
Point 1, it is easy to prove that for a positive integer k, the sample paths of a
Gaussian field with GW function are k times differentiable, in any direction, if and
only if κ > k − 1/2. Table 1 compares the GW ϕμ,κ,1,1(r) for κ = 0,1,2,3 with
Mν,1,1(r) for ν = 0.5,1.5,2.5,3.5 with the associated degree of sample paths
differentiability.

3. Equivalence of Gaussian measures with GW models. Equivalence and
orthogonality of probability measures are useful tools when assessing the asymp-
totic properties of both prediction and estimation for Gaussian fields. Denote with
Pi , i = 0,1, two probability measures defined on the same measurable space
{�,F}. P0 and P1 are called equivalent (denoted P0 ≡ P1) if P1(A) = 1 for
any A ∈ F implies P0(A) = 1 and vice versa. On the other hand, P0 and P1

are orthogonal (denoted P0 ⊥ P1) if there exists an event A such that P1(A) = 1
but P0(A) = 0. For a stochastic process {Z(s), s ∈ R

d}, to define previous con-
cepts, we restrict the event A to the σ -algebra generated by {Z(s), s ∈ D}, where
D ⊂ R

d . We emphasize this restriction by saying that the two measures are equiv-
alent on the paths of {Z(s), s ∈ D}.

Gaussian measures are completely characterized by their mean and covariance
function. We write P(ρ) for a Gaussian measure with zero mean and covariance
function ρ. It is well known that two Gaussian measures are either equivalent or
orthogonal on the paths of {Z(s), s ∈ D} [Ibragimov and Rozanov (1978)].

Let P(ρi), i = 0,1 be two zero mean Gaussian measures with isotropic covari-
ance function ρi and associated spectral density ρ̂i , i = 0,1, as defined through (5).
Using results in Skorokhod and Yadrenko (1973) and Ibragimov and Rozanov
(1978), Stein (2004) has shown that, if for some a > 0, ρ̂0(z)z

a is bounded away
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from 0 and ∞ as z → ∞, and for some finite and positive c,

(7)
∫ ∞
c

zd−1
{

ρ̂1(z) − ρ̂0(z)

ρ̂0(z)

}2
dz < ∞,

then for any bounded subset D ⊂ R
d , P(ρ0) ≡ P(ρ1) on the paths of Z(s), s ∈ D.

For the reminder of the paper, we denote with P(Mν,α,σ 2) a zero mean Gaus-
sian measure induced by a Matérn covariance function with associated spectral
density M̂ν,α,σ 2 , and with P(ϕμ,κ,β,σ 2) a zero mean Gaussian measure induced
by a GW covariance function with associated spectral density ϕ̂μ,κ,β,σ 2 .

Using (7) and (6), Zhang (2004) established the following characterization con-
cerning the equivalent conditions of two Gaussian measures with Matérn covari-
ance models.

THEOREM 3 [Zhang (2004)]. For a given ν > 0, let P(Mν,αi ,σ
2
i
), i = 0,1,

be two zero mean Gaussian measures. For any bounded infinite set D ⊂ R
d , d =

1,2,3, P(Mν,α0,σ
2
0
) ≡ P(Mν,α1,σ

2
1
) on the paths of Z(s), s ∈ D, if and only if

(8) σ 2
0 /α2ν

0 = σ 2
1 /α2ν

1 .

The first relevant result of this paper concerns the characterization of the equiv-
alence of two zero mean Gaussian measures under GW functions. The crux of the
proof is the arguments in equation (7), coupled with the asymptotic expansion of
the spectral density as in Theorems 1 and 2.

THEOREM 4. For a given κ ≥ 0, let P(ϕμ,κ,βi ,σ
2
i
), i = 0,1, be two zero mean

Gaussian measures and let μ > λ + d/2, with λ as defined through equation (2).
For any bounded infinite set D ⊂ R

d , d = 1,2,3, P(ϕμ,κ,β0,σ
2
0
) ≡ P(ϕμ,κ,β1,σ

2
1
)

on the paths of Z(s), s ∈ D if and only if

(9) σ 2
0 /β2κ+1

0 = σ 2
1 /β2κ+1

1 .

PROOF. We first consider the case κ > 0. Let us start with the sufficient part
of the assertion. From Theorem 1 (Point 3), there exist two positive constants ci

and Ci such that

ci ≤ z2λϕ̂μ,κ,βi ,σ
2
i
(z) ≤ Ci, i = 0,1.

In order to prove the sufficient part, we need to find conditions such that, for some
positive and finite c,

(10)
∫ ∞
c

zd−1
( ϕ̂μ,κ,β1,σ

2
1
(z) − ϕ̂μ,κ,β0,σ

2
0
(z)

ϕ̂μ,κ,β0,σ
2
0
(z)

)2
dz < ∞.
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We proceed by direct construction and, using Theorem 1 (Points 1 and 2), we
find that, as z → ∞,∣∣∣∣ ϕ̂μ,κ,β1,σ

2
1
(z) − ϕ̂μ,κ,β0,σ

2
0
(z)

ϕ̂μ,κ,β0,σ
2
0
(z)

∣∣∣∣
≤ Lςc−1

0 z2λ
∣∣σ 2

1 βd
1
[
c
ς
3 (β1z)

−2λ{
1 +O

(
z−2)}

+ c
ς
4 (zβ1)

−(μ+λ){cos
(
β1z − c

ς
5

) +O
(
z−1)}]

− σ 2
0 βd

0
[
c
ς
3 (β0z)

−2λ{
1 +O

(
z−2)}

+ c
ς
4 (zβ0)

−(μ+λ){cos
(
β0z − c

ς
5

) +O
(
z−1)}]∣∣

≤ Lςc−1
0

∣∣cς
3

[
σ 2

1 β
−(1+2κ)
1 − σ 2

0 β
−(1+2κ)
0

] +O
(
z−2)

+ c
ς
4 zλ−μ[

σ 2
1 βλ̃

1 cos
(
β1z − c

ς
5

) − σ 2
0 βλ̃

0 cos
(
β0z − c

ς
5

)]
+ c

ς
4 zλ−μO

(
z−1){

σ 2
1 βλ̃

1 − σ 2
0 βλ̃

0
}∣∣,

where λ̃ = d − (μ + λ). Let us now write

A(z) = c
ς
3

[
σ 2

1 β
−(1+2κ)
1 − σ 2

0 β
−(1+2κ)
0

] +O
(
z−2)

,

B(z) = c
ς
4 zλ−μ[

σ 2
1 βλ̃

1 cos
(
β1z − c

ς
5

) − σ 2
0 βλ̃

0 cos
(
β0z − c

ς
5

)]
, and

D(z) = c
ς
4 zλ−μO

(
z−1){

σ 2
1 βλ̃

1 − σ 2
0 βλ̃

0
}
.

Then a sufficient condition for (10) is the following:

(11)
(
Lς/c0

)2
∫ ∞
c

zd−1(
A(z) + B(z) + D(z)

)2 dz < ∞.

Note that A(z) is of order O(z−2) under Condition (9). We claim that (11) is sat-
isfied if σ 2

1 β
−(1+2κ)
1 = σ 2

0 β
−(1+2κ)
0 for μ > λ + d/2, d = 1,2,3.

In fact, we have, for z → ∞,∣∣B(z)
∣∣ ≤ c

ς
4 zλ−μ[

σ 2
1 βλ̃

1 + σ 2
0 βλ̃

0
] ≤ c6z

λ−μ

and ∣∣D(z)
∣∣ ≤ c

ς
4 zλ−μO

(
z−1){

σ 2
1 βλ̃

1 + σ 2
0 βλ̃

0
}

≤ c7c
ς
4 zλ−μ−1{

σ 2
1 βλ̃

1 + σ 2
0 βλ̃

0
}

≤ c8z
λ−μ−1

with c6, c7 and c8 being positive and finite constants. Expanding (11), we notice
that the dominant terms are A2 and B2, independently on the cross products. These
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are respectively of the order O(z−4) and O(z2(λ−μ)). This in turn implies that the
integral (11) is finite if σ 2

1 β
−(1+2κ)
1 = σ 2

0 β
−(1+2κ)
0 , for μ > λ+d/2 and d = 1,2,3

and this implies that (10) is satisfied under the same conditions. The sufficient part
of our claim is thus proved.

The necessary part follows the proof of Zhang (2004). For μ > λ+d/2 and d =
1,2,3, we suppose σ 2

1 β
−(1+2κ)
1 �= σ 2

0 β
−(1+2κ)
0 and let σ 2

2 = σ 2
0 (β0/β1)

−(1+2κ).
Then ϕμ,κ,β0,σ

2
0

and ϕμ,κ,β1,σ
2
2

define two equivalent Gaussian measures. We need
to show that ϕμ,κ,β1,σ

2
2

and ϕμ,κ,β1,σ
2
1

define two orthogonal Gaussian measures.
The rest of the proof follows the same arguments in Zhang (2004).

We omit the proof of the special case κ = 0, since is similar to the case κ > 0,
but using the arguments in Theorem 2. �

An immediate consequence of Theorem 4 is that for fixed κ and μ, the β and σ 2

parameters cannot be estimated consistently [Zhang (2004)]. Instead, the microer-
godic parameter σ 2β−(1+2κ) is consistently estimable. In Section 4, we establish
the asymptotic properties of ML estimation associated to the microergodic param-
eter.

The next result depicts an interesting scenario in which a GW and Matérn model
are considered and gives sufficient conditions for the compatibility of these two
covariance models. We offer a constructive proof, the crux of the argument being
again equation (7). We treat the cases κ > 0 and κ = 0 separately.

THEOREM 5. For given ν > 1/2 and κ > 0, let P(Mν,α,σ 2
0
) and P(ϕμ,κ,β,σ 2

1
)

be two zero mean Gaussian measures. If ν = κ + 1/2, μ > λ + d/2, with λ as
defined through equation (2), and

(12) σ 2
0 α−2ν = Cν,κ,μσ 2

1 β−(1+2κ),

where Cν,κ,μ = μ2−d	(ν)	(κ)	(2κ+d)
	(ν+d/2)	(κ+d/2)B(2κ,μ+1)

, then for any bounded infinite set D ⊂
R

d , d = 1,2,3, P(Mν,α,σ 2
0
) ≡ P(ϕμ,κ,β,σ 2

1
) on the paths of Z(s), s ∈ D.

PROOF. In order to prove Theorem 5, we need to find conditions such that for
some positive and finite c,

(13)
∫ ∞
c

zd−1
( ϕ̂ν,κ,β,σ 2

1
(z) − M̂ν,α,σ 2

0
(z)

M̂ν,α,σ 2
0
(z)

)2
dz < ∞.

It is known that M̂ν,α,σ 2
0
(z)za is bounded away from 0 and ∞ as z → ∞ for

some a > 0 [Zhang (2004)]. Using (6) and Theorem 1 (Points 1 and 2), we have,
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as z → ∞,∣∣∣∣ ϕ̂μ,κ,β,σ 2
1
(z) − M̂ν,α,σ 2

0
(z)

M̂ν,α,σ 2
0
(z)

∣∣∣∣
=

∣∣∣∣ σ 2
1 βd	(ν)Lς

	(ν + d/2)σ 2
0 α−2νπ− d

2

[
c
ς
3 (βz)−2λ{

1 +O
(
z−2)}

+ c
ς
4 (zβ)−(μ+λ)){cos

(
βz − c

ς
5

) +O
(
z−1)}](

α−2 + z2)ν+ d
2 − 1

∣∣∣∣
=

∣∣∣∣ σ 2
1 βd	(ν)Lς

	(ν + d/2)σ 2
0 α−2νπ− d

2

[
c
ς
3 (βz)−2λ{

1 +O
(
z−2)}

+ c
ς
4 (zβ)−(μ+λ){cos

(
βz − c

ς
5

) +O
(
z−1)}]

z2ν+d(
(αz)−2 + 1

)ν+ d
2 − 1

∣∣∣∣
= ∣∣w1z

−2λ{
1 +O

(
z−2)}

z2ν+d[
1 + (ν + d/2)(αz)−2 +O

(
z−2)]

+ w2z
−(μ+λ)z2ν+d[

1 + (ν + d/2)(αz)−2 +O
(
z−2)]

× {
cos

(
βz − c

ς
5

) +O
(
z−1)} − 1

∣∣,
where w1 = Lςσ 2

1 β−(1+2κ)	(ν)c
ς
3

	(ν+d/2)σ 2
0 α−2νπ−d/2 , w2 = w1c

ς
4 βλ−μ/c

ς
3 . Since z2ν+d [(ν + d/2) ×

(αz)−2 +O(z−2)] = O(z2ν+d−2), we have∫ ∞
c

zd−1
∣∣∣∣ ϕ̂μ,κ,β,σ 2

1
(z) − M̂ν,α,σ 2

0
(z)

M̂ν,α,σ 2
0
(z)

∣∣∣∣2 dz

=
∫ ∞
c

zd−1∣∣w1z
−2λO

(
z2ν+d−2) + {

w1z
2ν−(1+2κ) − 1

}
+ w1z

−2λ{
O

(
z2ν+d−2) +O

(
z2ν+d−4)}

+ w2z
−(μ+λ){O(

z2ν+d−2) + z2ν+d}{
cos

(
βz − c

ς
5

) +O
(
z−1)}∣∣2 dz.

For assessing the last integral, the following is relevant:

(i) w1z
2ν−(1+2κ) − 1 = 0 if ν = κ + 1/2 and w1 = 1.

(ii)
∫ ∞
c zd−1(w1z

−2λO(z2ν+d−2))2 dz < ∞ if d = 1,2,3 and ν = κ + 1/2.
(iii)

∫ ∞
c zd−1(w1z

−2λ{O(z2ν+d−2) +O(z2ν+d−4)})2 dz < ∞ if d = 1,2,3 and
ν = κ + 1/2.

(iv)∫ ∞
c

zd−1(
w2z

−(μ+λ){O(
z2ν+d−2) + z2ν+d}{

cos
(
βz − c

ς
5

) +O
(
z−1)})2 dz < ∞

if μ > λ + d/2 and ν = κ + 1/2.
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(v)∫ ∞
c

zd−1(
w1z

−2λO
(
z2ν+d−2))(

w1z
−2λO

(
z−2)(

O
(
z2ν+d−2) + z2ν+d))

dz < ∞
if d = 1,2,3 and ν = κ + 1/2.

(vi)
∫ ∞
c zd−1(w1z

−2λO(z2ν+d−2))(w2z
−(μ+λ){O(z2ν+d−2)+z2ν+d}{cos(βz−

c
ς
5 ) +O(z−1)})dz < ∞ if μ > λ + d − 2 and ν = κ + 1/2.

(vii)∫ ∞
c

zd−1(
w1z

−2λO
(
z−2){

O
(
z2ν+d−2) + z2ν+d})

× (
w2z

−(μ+λ){O(
z2ν+d−2) + z2ν+d}{

cos
(
βz − c

ς
5

) +O
(
z−1)})

dz < ∞
if μ > λ + d − 2 and ν = κ + 1/2.

This allows us to conclude that, for a given κ > 0, if w1 = 1, ν = κ + 1/2, μ >

λ + d/2 and d = 1,2,3, then (13) holds and thus P(Mν,α,σ 2
0
) ≡ P(ϕμ,κ,β,σ 2

1
).

Condition w1 = 1 is equivalent to

Lςc
ς
3 σ 2

1 β−(1+2κ) = π−d/2	(ν + d/2)	(ν)−1σ 2
0 α−2ν,

and from the definition of c
ς
3 and Lς , the previous condition can be rewritten as

σ 2
0 α−2ν = Cν,κ,μσ 2

1 β−(1+2κ). �

THEOREM 6. Let P(M1/2,α,σ 2
0
) and P(ϕμ,0,β,σ 2

1
) be two zero mean Gaussian

measures. If μ > d + 1/2 and

(14) σ 2
0 α−2ν = Rμσ 2

1 β−1,

where Rμ = μ21−d	(1/2)	(d)
	(1/2+d/2)	(d/2)

, then for any bounded infinite set D ⊂ R
d , d =

1,2,3, P(M1/2,α,σ 2
0
) ≡ P(ϕμ,0,β,σ 2

1
) on the paths of Z(s), s ∈ D.

PROOF. The proof follows the same arguments exposed for the case κ > 0
in Theorem 5, but using (6) and Theorem 2 (Points 1 and 2). In this case, it can

be shown that if μ > d + 1/2, d = 1,2,3 and (
μ21−d	(1/2)	(d)
	(1/2+d/2)	(d/2)

)σ 2
1 β−1 = σ 2

0 α−2ν

then (13) holds. �

REMARK. In Theorems 5 and 6 since ν = κ + 1/2 for κ ≥ 0, using the
duplication formula of the gamma function, we easily obtain Cκ+1/2,κ,μ =
μ	(2κ + μ + 1)/	(μ + 1), and Rμ = μ in (12) and (14), respectively. Then the
sufficient condition for P(Mν,α,σ 2

0
) ≡ P(ϕμ,κ,β,σ 2

1
) can be simplified as

(15) σ 2
0 α−2ν =

(
μ	(2κ + μ + 1)

	(μ + 1)

)
σ 2

1 β−(1+2κ),

ν = κ + 1/2, μ > λ + d/2 and d = 1,2,3 for κ ≥ 0.
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4. Asymptotic properties of the ML estimation for the GW model. We
now focus on the microergodic parameter σ 2β−(1+2κ) associated to the GW fam-
ily. The following results fix the asymptotic properties of its ML estimator. In
particular, we will show that the microergodic parameter can be estimated consis-
tently, and then we will assess the asymptotic distribution of the ML estimator.

Let D ⊂ R
d be a bounded subset of Rd and Sn = {s1, . . . , sn ∈ D ⊂R

d} denote
any set of distinct locations. Let Zn = (Z(s1), . . . ,Z(sn))

′ be a finite realization of
a zero mean stationary Gaussian field with a given parametric covariance function
σ 2φ(·;τ ), with σ 2 > 0, τ a parameter vector and φ a member of the class �d ,
with φ(0;τ ) = 1.

We then write Rn(τ ) = [φ(‖si − sj‖;τ )]ni,j=1 for the associated correlation
matrix. The Gaussian log-likelihood function is defined as

(16) Ln

(
σ 2,τ

) = −1

2

(
n log

(
2πσ 2) + log

(∣∣Rn(τ )
∣∣) + 1

σ 2 Z′
nRn(τ )−1Zn

)
.

Under the Matérn model, the Gaussian log-likelihood is obtained with φ(·;τ ) ≡
Mν,α,1 and τ = (ν,α)′. Since in what follows ν is assumed known and fixed, for
notation convenience, we write τ = α. Let σ̂ 2

n and α̂n be the maximum likelihood
estimator obtained maximizing Ln(σ

2, α) for a fixed ν.
Below, we report a result that establishes strong consistency and asymptotic

distribution of the ML estimation of the microergodic parameter of the Matérn
model.

THEOREM 7 [Kaufman and Shaby (2013)]. Let Z(s), s ∈ D ⊂R
d , d = 1,2,3,

be a zero mean Gaussian field with a Matérn covariance model Mν,α0,σ
2
0
. Suppose

(σ 2
0 , α0)

′ ∈ (0,∞) × [αL,αU ], for any 0 < αL < αU < ∞. Let (σ̂ 2
n , α̂n)

′ maxi-
mize (16) over (0,∞) × [αL,αU ]. Then as n → ∞:

1. σ̂ 2
n /α̂2ν

n

a.s.−→ σ 2
0 /α2ν

0 , and

2.
√

n(σ̂ 2
n /α̂2ν

n − σ 2
0 /α2ν

0 )
D−→ N (0,2(σ 2

0 /α2ν
0 )2).

Analogous results can be found in [Wang and Loh (2011), Zhang (2004)], when
α̂n is replaced by α, an arbitrary positive fixed constant. Kaufman and Shaby
(2013) show, through simulation study, that asymptotic approximation using a
fixed scale parameter can be problematic when applied to finite samples, even
for large sample sizes. In contrast, they show that performance is improved and
asymptotic approximations are applicable for smaller sample sizes, when the pa-
rameters are jointly estimated.

Now, let us consider the Gaussian log-likelihood under the GW model, so that
τ = (μ, κ,β)′ and φ(·;τ ) = ϕμ,κ,β,1(·) according to the previous notation. Since
in what follows κ and μ are assumed known and fixed, for notation convenience we
write τ = β . To prove the analogue of Theorem 7 for the GW case, we consider
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two types of estimators. The first maximizes (16) with respect to σ 2 for a fixed
arbitrary compact support β > 0, obtaining the following estimator:

(17) σ̂ 2
n (β) = arg max

σ 2
Ln

(
σ 2, β

) = Z′
nRn(β)−1Zn/n.

Here, Rn(β) is the correlation matrix coming from the GW family ϕμ,κ,β,1. The
following result offers some asymptotic properties of the sequence of random vari-
ables σ̂ 2

n (β)/β(1+2κ).

THEOREM 8. Let Z(s), s ∈ D ⊂ R
d , d = 1,2,3, be a zero mean Gaussian

field with GW covariance model ϕμ,κ,β0,σ
2
0
, with μ > λ + d/2. Suppose (σ 2

0 , β0) ∈
(0,∞) × (0,∞). For a fixed β > 0, let σ̂ 2

n (β) as defined through equation (17).
Then, as n → ∞:

1. σ̂ 2
n (β)/β1+2κ a.s.−→ σ 2

0 (β0)/β
1+2κ
0 and

2.
√

n(σ̂ 2
n (β)/β1+2κ − σ 2

0 (β0)/β
1+2κ
0 )

D−→ N (0,2(σ 2
0 (β0)/β

1+2κ
0 )2).

PROOF. The proof of the first assertion follows the same arguments of the
proof of Theorem 3 in Zhang (2004), and we omit it. The proof of the second
assertion is quite technical and long and it has been deferred to the Supplementary
Materials [Bevilacqua et al. (2019)]. �

The second type of estimation technique considers the joint maximization
of (16) with respect to (σ 2, β) ∈ (0,∞) × I , where I = [βL,βU ] and 0 < βL <

βU < ∞. The solution of this optimization problem is given by (σ̂ 2
n (β̂n), β̂n) where

σ̂ 2
n (β̂n) = Z′

nRn(β̂n)
−1Zn/n

and β̂n = arg maxβ∈I PLn(β). Here, PLn(β) is the profile log-likelihood:

(18) PLn(β) = −1

2

(
log(2π) + n log

(
σ̂ 2

n (β)
) + log

∣∣Rn(β)
∣∣ + n

)
.

In order to establish strong consistency and asymptotic distribution of the sequence
of random variables σ̂ 2

n (β̂n)/β̂
1+2κ
n , we use the following lemma that establishes

the monotone behavior of σ̂ 2
n (β)/β1+2κ when viewed as a function of β ∈ I under

specific condition on the μ parameter.

LEMMA 1. For any β1 < β2 ∈ I and for each n, σ̂ 2
n (β1)/β

1+2κ
1 ≤ σ̂ 2

n (β2)/

β1+2κ
2 if and only if μ ≥ λ + 3.

PROOF. The proof follows Kaufman and Shaby (2013). Let 0 < β1 < β2, with
β1, β2 ∈ I . Then, for any Zn,

σ̂ 2
n (β1)/β

1+2κ
1 − σ̂ 2

n (β2)/β
1+2κ
2

= 1

n
Z′

n

(
Rn(β1)

−1β
−(1+2κ)
1 − Rn(β2)

−1β
−(1+2κ)
2

)
Zn



GENERALIZED WENDLAND COVARIANCE FUNCTIONS 843

is nonnegative if the matrix Rn(β1)
−1β

−(1+2κ)
1 − Rn(β2)

−1β
−(1+2κ)
2 is positive

semidefinite and this happens if and only if the matrix B = Rn(β2)β
1+2κ
2 −

Rn(β1)β
1+2κ
1 with generic element

Bij = β1+2κ
2 ϕμ,κ,β2,1

(‖si − sj‖) − β1+2κ
1 ϕμ,κ,β1,1

(‖si − sj‖)
is positive semidefinite. From Theorem 2 in Porcu, Zastavnyi and Bevilacqua
(2017), this happens if and only if μ ≥ λ + 3. �

THEOREM 9. Let Z(s), s ∈ D ⊂ R
d , d = 1,2,3, be a zero mean Gaus-

sian field with a GW covariance model ϕμ,κ,β0,σ
2
0

with μ ≥ λ + 3. Suppose

(σ 2
0 , β0) ∈ (0,∞) × I where I = [βL,βU ] with 0 < βL < βU < ∞. Let (σ̂ 2

n , β̂n)
′

maximize (16) over (0,∞) × I . Then as n → ∞:

1. σ̂ 2
n (β̂n)/β̂

1+2κ
n

a.s.−→ σ 2
0 (β0)/β

1+2κ
0 and

2.
√

n(σ̂ 2
n (β̂n)/β̂

1+2κ
n − σ 2

0 (β0)/β
1+2κ
0 )

D−→ N (0,2(σ 2
0 (β0)/β

1+2κ
0 )2).

PROOF. The proof follows Kaufman and Shaby (2013) which uses the same
arguments in the Matérn case. Let Gn(x) = σ̂ 2

n (x)/x1+2κ and define the sequences
Gn(βL) and Gn(βU). Since βL ≤ β̂n ≤ βU for every n, then using Lemma 1,
Gn(βU) ≤ Gn(β̂n) ≤ Gn(βL) for all n with probability one. Combining this with
Theorem 8 implies the result. �

5. Prediction using GW model. We now consider prediction of a Gaussian
field at a new location s0, using the GW model, under fixed domain asymp-
totics. Specifically, we focus on two properties: asymptotic efficiency prediction
and asymptotically correct estimation of prediction variance. Stein (1988) shows
that both asymptotic properties hold when the Gaussian measures are equiva-
lent. Let P(ϕμ,κ,βi ,σ

2
i
), i = 1,2, be two probability zero mean Gaussian mea-

sures. Under P(ϕμ,κ,β0,σ
2
0
), and using Theorem 4, both properties hold when

σ 2
0 β

−(1+2κ)
0 = σ 2

1 β
−(1+2κ)
1 , μ > λ + d/2 and d = 1,2,3.

Similarly, let P(Mν,α,σ 2
2
) and P(ϕμ,κ,β1,σ

2
1
) be two Gaussian measures with

the Matérn and GW model. Under P(Mν,α,σ 2
2
), both properties hold when (15) is

true, μ > λ + d/2, d = 1,2,3. Actually, Stein (1993) gives a substantially weaker
condition for asymptotic efficiency prediction based on the asymptotic behavior of
the ratio of the isotropic spectral densities. Now, let

(19) Ẑn(μ, κ,β) = cn(μ, κ,β)′Rn(μ,κ,β)−1Zn

be the best linear unbiased predictor at an unknown location s0 ∈ D ⊂ R
d , under

the misspecified model P(ϕμ,κ,β,σ 2), where cn(μ, κ,β) = [ϕμ,κ,β,1(‖s0 −si‖)]ni=1
and Rn(μ,κ,β) = [ϕμ,κ,β,1(‖si − sj‖)]ni,j=1 is the correlation matrix.
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If the correct model is P(ϕμ,κ,β0,σ
2
0
), then the mean squared error of the predic-

tor is given by

Varμ,κ,β0,σ
2
0

[
Ẑn(μ, κ,β) − Z(s0)

]
= σ 2

0
(
1 − 2cn(μ, κ,β)′Rn(μ,κ,β)−1cn(μ, κ,β0)(20)

+ cn(μ, κ,β)′Rn(μ,κ,β)−1Rn(μ,κ,β0)Rn(μ, κ,β)−1cn(μ, κ,β)
)
.

In the case that β0 = β , that is, true and wrong models coincide, this expression
simplifies to

Varμ,κ,β0,σ
2
0

[
Ẑn(μ, κ,β0) − Z(s0)

]
(21)

= σ 2
0
(
1 − cn(μ, κ,β0)

′Rn(μ,κ,β0)
−1cn(μ, κ,β0)

)
.

Similarly, Varν,α,σ 2
2
[Ẑn(μ, κ,β) − Z(s0)] and Varν,α,σ 2

2
[Ẑn(ν,α) − Z(s0)] can be

defined under P(Mν,α,σ 2
2
), where Ẑn(ν,α) is the best linear unbiased predictor

using the Matérn model. The following results are an application of Theorems 1
and 2 of Stein (1993).

THEOREM 10. Let P(ϕμ,κ,β0,σ
2
0
), P(ϕμ,κ,β1,σ

2
1
), P(Mν,α,σ 2

2
) be three Gaus-

sian probability measures on D ⊂ R
d and let μ > λ. Then, for all s0 ∈ D:

1. Under P(ϕμ,κ,β0,σ
2
0
), as n → ∞,

(22)
Varμ,κ,β0,σ

2
0
[Ẑn(μ, κ,β1) − Z(s0)]

Varμ,κ,β0,σ
2
0
[Ẑn(μ, κ,β0) − Z(s0)] −→1,

for any fixed β1 > 0.
2. Under P(Mν,α,σ 2

2
), if ν = κ + 1/2 as n → ∞,

(23)
Varν,α,σ 2

2
[Ẑn(μ, κ,β1) − Z(s0)]

Varν,α,σ 2
2
[Ẑn(ν,α) − Z(s0)] −→1,

for any fixed β1 > 0.
3. Under P(ϕμ,κ,β0,σ

2
0
), if σ 2

0 β
−(1+2κ)
0 = σ 2

1 β
−(1+2κ)
1 , then as n → ∞,

(24)
Varμ,κ,β1,σ

2
1
[Ẑn(μ, κ,β1) − Z(s0)]

Varμ,κ,β0,σ
2
0
[Ẑn(μ, κ,β1) − Z(s0)] −→1.

4. Under P(Mν,α,σ 2
2
), if μ	(2κ + μ + 1)/	(μ + 1) × σ 2

1 β
−(1+2κ)
1 = σ 2

2 α−2ν ,
ν = κ + 1/2, then as n → ∞,

(25)
Varμ,κ,β1,σ

2
1
[Ẑn(μ, κ,β1) − Z(s0)]

Varν,α,σ 2
2
[Ẑn(μ, κ,β1) − Z(s0)] −→1.
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PROOF. Since ϕ̂μ,κ,β0,σ
2
0
(z) is bounded away from zero and infinity and as

z → ∞,

ϕ̂μ,κ,β1,σ
2
1
(z)

ϕ̂μ,κ,β0,σ
2
0
(z)

= σ 2
1 βd

1 [cς
3 β−2λ

1 {1 +O(z−2)} + c
ς
4 β

−(μ+λ)
1 zλ−μ{cos(zβ1 − c

ς
5 ) +O(z−1)}]

σ 2
0 βd

0 [cς
3 β−2λ

0 {1 +O(z−2)} + c
ς
4 β

−(μ+λ)
0 zλ−μ{cos(zβ0 − c

ς
5 ) +O(z−1)}]

then, for μ > λ, we have

(26) lim
z→∞

ϕ̂μ,κ,β1,σ
2
1
(z)

ϕ̂μ,κ,β0,σ
2
0
(z)

= σ 2
1 β

−(1+2κ)
1

σ 2
0 β

−(1+2κ)
0

and, using Theorem 1 of Stein (1993), we obtain (22). If σ 2
1 β

−(1+2κ)
1 = σ 2

0 β
−(1+2κ)
0

and using Theorem 2 of Stein (1993), we obtain (24).
Similarly, since M̂ν,α,σ 2

2
(z) is bounded away from zero and infinity and as z →

∞,

ϕ̂μ,κ,β1,σ
2
1
(z)

M̂ν,α,σ 2
2
(z)

= σ 2
1 βd	(ν)Lς

	(ν + d/2)σ 2
0 α−2νπ− d

2

[
c
ς
3 (βz)−2λ{

1 +O
(
z−2)} + c

ς
4 (zβ)−(μ+λ)

× {
cos

(
βz − c

ς
5

) +O
(
z−1)}](

α−2 + z2)ν+ d
2

= σ 2
1 βd	(ν)Lς

	(ν + d/2)σ 2
0 α−2νπ− d

2

[
c
ς
3 (βz)−2λ{

1 +O
(
z−2)} + c

ς
4 (zβ)−(μ+λ)

× {
cos

(
βz − c

ς
5

) +O
(
z−1)}]

z2ν+d[
1 + (ν + d/2)(αz)−2 +O

(
z−2)]

= σ 2
1 βd	(ν)Lς

	(ν + d/2)σ 2
0 α−2νπ− d

2

[
c
ς
3 β−2λz2ν−2λ+d{

1 +O
(
z−2)}

+ c
ς
4 β−(μ+λ)z2ν−(μ+λ)+d{

cos
(
βz − c

ς
5

) +O
(
z−1)}]

× [
1 + (ν + d/2)(αz)−2 +O

(
z−2)]

then, if 2ν + d = 2λ, that is, κ + 1/2 = ν, μ > λ and considering the Remark then

(27) lim
z→∞

ϕ̂μ,κ,β1,σ
2
1
(z)

M̂ν,α,σ 2
2
(z)

= σ 2
1 β

−(1+2κ)
1

σ 2
2 α−2ν

(
μ

	(2κ + μ + 1)

	(μ + 1)

)
.

Using Theorem 1 of Stein (1993), we obtain (23). If σ 2
1 β

−(1+2κ)
1 (μ

	(2κ+μ+1)
	(μ+1)

) =
σ 2

2 α−2ν and using Theorem 2 of Stein (1993), we obtain (25). �
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The implication of Point 1 is that under P(ϕμ,κ,β0,σ
2
0
), prediction with ϕμ,κ,β1,σ

2
0

with an arbitrary β1 > 0 gives asymptotic prediction efficiency, if the correct value
of κ and μ are used and μ > λ. By virtue of Point 2, under P(Mν,α,σ 2

2
), prediction

with ϕμ,κ,β1,σ
2
0
, with an arbitrary β1 > 0, gives asymptotic prediction efficiency, if

ν = κ + 1/2, μ > λ. For instance, if σ 2
2 e−r/α is the true covariance, asymptotic

prediction efficiency can be achieved with σ 2
0 (1 − r/β1)

μ
+, using an arbitrary β1,

and μ > 1.5 when d = 2. In view of Point 3, under P(ϕμ,κ,β0,σ
2
0
), prediction with

ϕμ,κ,β1,σ
2
1
, when σ 2

0 β
−(1+2κ)
0 = σ 2

1 β
−(1+2κ)
1 provides asymptotic prediction effi-

ciency and asymptotically correct estimates of error variance, if μ > λ. Finally,
Point 4 implies that under P(Mν,α,σ 2

2
), prediction using ϕμ,κ,β1,σ

2
1
, under the con-

ditions μ	(2κ + μ + 1)/	(μ + 1)σ 2
1 β

−(1+2κ)
1 = σ 2

2 α−2ν , ν = κ +1/2 and μ > λ,
provides asymptotic prediction efficiency and asymptotically correct estimates of
error variance.

For instance, if σ 2
2 e−r/α is the true covariance and d = 2, asymptotic prediction

efficiency and asymptotically correct estimates of variance error can be achieved
with σ 2

1 (1 − r/β1)
μ
+ setting β1 = μασ 2

1 σ−2
2 , and μ > 1.5. Setting σ 2

2 = σ 2
1 = 1,

μ = 3, α = x/3 (x in this case is the so-called practical range, that is, the corre-
lation is lower than 0.05 when r > x), the equivalent compact support is β1 = x.
Note that in this special case, the practical range of the exponential model and
the compact support of the Askey function coincide. Figure 1 shows the Matérn
correlation model with ν = 0.5,1,1.5 and practical range equal to 0.6, and two
compatible GW correlation models when d = 2 with κ = ν − 0.5, μ = λ + 1 + x,
with x = 0.5,2 and the associated compact supports are obtained using the equiva-
lence condition. They are 0.601, 0.595, 0.624 for κ = 0,0.5,1, respectively, when
x = 0.5 and 0.901, 0.821, 0.815 for κ = 0,0.5,1, respectively, when x = 2.

In practice, covariance parameters are unknown, so it is common to estimate
them and then plug into (19) and (21). Nevertheless, the asymptotic properties of

FIG. 1. Compatible correlation models for the case d = 2: The Matérn model when ν = 0.5,1,1.5
(from left to right) and the practical range is 0.6 and two compatibles GW models. For the GW
models κ = ν − 0.5, μ = λ + 1 + x, with x = 0.5,2 and the compact support is fixed using the
equivalence condition.
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this procedure are quite difficult to obtain [Putter and Young (2001)]. Instead, most
theoretical results have been given under a framework in which plug-in parameters
are fixed, rather than being estimated from observations.

As in Theorem 4 of Kaufman and Shaby (2013), our Points 3 and 4 may be
extended to include estimation of the variance parameter. Specifically, let σ̂ 2

n =
Z′

nRn(μ,κ,β1)
−1Zn/n. Then as n → ∞,

Varμ,κ,β1,σ̂
2
n
[Ẑn(μ, κ,β1) − Z(s0)]

Varμ,κ,β0,σ
2
0
[Ẑn(μ, κ,β1) − Z(s0)]→1,(28)

Varμ,κ,β1,σ̂
2
n
[Ẑn(μ, κ,β1) − Z(s0)]

Varν,α,σ 2
2
[Ẑn(μ, κ,β1) − Z(s0)] →1.(29)

The proof follows the lines of Kaufman and Shaby (2013), and we omit it. As
outlined in Kaufman and Shaby (2013), we also conjecture that (28) and (29) hold
if β1 is replaced by its maximum likelihood estimator.

6. Simulations and illustrations. The main goals of this section are twofold:
on the one hand, we compare the finite sample behavior of the ML estimation of the
microergodic parameter of the GW model with the asymptotic distributions given
in Theorems 8 and 9. On the other hand, we compare the finite sample behavior
of MSE prediction of a zero mean Gaussian field with Matérn covariance model,
using both a Matérn and a compatible GW covariance model, using CT applied to
a Matérn model as a benchmark.

Regarding the first goal, we simulate, using Cholesky decomposition, and then
we estimate with ML, 1000 realizations from a zero mean Gaussian field with GW
model. Sampling locations are constructed as in Kaufman, Schervish and Nychka
(2008), using a perturbed regular grid. A perturbed grid helps to get more stable
estimates because different sets of small distances are available to estimate the pa-
rameters. Specifically, we have considered a regular grid with increments 0.03 over
[0,1]d , d = 2. Then the grid points have been perturbed, adding a uniform random
value on [−0.01,0.01] to each coordinate. Figure 2 shows the perturbed grid con-
sidered, from which we randomly choose n = 50,100,250,500,1000 locations
without replacement.

For the GW covariance model ϕμ,κ,β0,σ
2
0
, we use different values of the compact

support and smoothness parameters, that is, β0 = 0.2,0.4,0.6, κ = 0,0.5,1, and
fix σ 2

0 = 1 and, in view of Theorem 9, μ = λ(2, κ) + 3. For each simulation, we
consider κ and μ as known and fixed, and we estimate with ML the variance and
compact support parameters, obtaining σ̂ 2

i and β̂i , i = 1, . . . ,1000. To estimate, we
first maximize the profile log-likelihood (18) to get β̂i . Then we obtain σ̂ 2

i (β̂i) =
z′
iR(β̂i)

−1zi/n, where zi is the data vector of simulation i.
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FIG. 2. Perturbated grid consisting of n = 1156 considered in the simulation study. The black dot
has coordinates (0.26,0.48). In the circles (from smaller to larger), the location sites involved in
prediction with GW with compact support equal to 0.1,0.2,0.4.

Optimization was carried out using the R [R Development Core Team (2016)]
function optimize where, following Kaufman and Shaby (2013), the compact sup-
port parameter was restricted to the interval [ε,15β] and ε is slightly larger than
machine precision, about 10−15 here.

Using the asymptotic distributions stated in Theorems 8 and 9, Table 2 compares
the sample quantiles of order 0.05,0.25,0.5,0.75,0.95, mean and variance of√

n/2(σ̂ 2
i (x)β1+2κ

0 /(σ 2
0 x1+2κ) − 1) for x = β̂i , β0,0.5β0,2β0 with the associated

theoretical values of the standard Gaussian distribution, for β0 = 0.4, κ = 0,0.5,1
and n = 250,500,1000.

As expected, the best approximation is achieved overall when using the true
compact support, that is, x = β0, with little difference between the different values
of β and κ . In the case of x = β̂i , the asymptotic distribution given in Theorem 9 is
a satisfactory approximation of the sample distribution, visually improving when
increasing n. The value of κ has less impact compared to β0. In general, smaller
values lead to better results.

When using compact supports that are too small or too large with respect to the
true compact support (x = 0.5β0,2β0), the convergence of the asymptotic distri-
bution given in Theorem 8 is very slow. In particular, when x = 0.5β0, the asymp-
totic approximation is not satisfactory even for n = 1000. In other words, confi-
dence intervals for the microergodic parameter, based on Theorem 8, that is, fixing
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TABLE 2
Sample quantiles, mean and variance of

√
n/2(σ̂ 2

i (x)β1+2κ
0 /(σ 2

0 x1+2κ ) − 1), i = 1, . . . ,1000, for
x = β̂i , β0,0.5β0,2β0 for different values of κ , when β0 = 0.4 and n = 250,500,1000, compared

with the associated theoretical values of the standard Gaussian distribution

κ x n 5% 25% 50% 75% 95% Mean Var

0 250 −1.699 −0.721 −0.020 0.798 2.084 0.072 1.375
β̂ 500 −1.680 −0.677 0.027 0.758 1.966 0.071 1.212

1000 −1.614 −0.666 0.062 0.767 1.788 0.057 1.104

250 −1.548 −0.670 −0.039 0.675 1.833 0.025 1.058
β0 500 −1.632 −0.665 0.001 0.661 1.754 0.027 1.047

1000 −1.629 −0.690 0.020 0.698 1.627 0.011 1.009

250 3.224 4.953 6.163 7.471 9.370 6.234 3.493
0.5β0 500 3.399 4.762 5.948 7.018 8.879 5.979 2.840

1000 2.792 4.063 5.059 5.984 7.516 5.088 2.088

250 −2.443 −1.698 −1.128 −0.490 0.610 −1.065 0.898
2β0 500 −2.485 −1.576 −0.941 −0.313 0.718 −0.904 0.947

1000 −2.324 −1.438 −0.759 −0.107 0.819 −0.757 0.949

0.5 250 −1.761 −0.786 0.019 0.807 2.271 0.072 1.506
β̂ 500 −1.774 −0.714 0.027 0.822 1.978 0.063 1.309

1000 −1.609 −0.700 0.047 0.761 1.840 0.051 1.152

250 −1.548 −0.670 −0.039 0.675 1.833 0.025 1.058
β0 500 −1.632 −0.665 0.001 0.661 1.754 0.027 1.047

1000 −1.629 −0.690 0.020 0.698 1.627 0.011 1.009

250 11.462 14.603 16.995 19.573 23.414 17.155 12.818
0.5β0 500 11.133 13.624 15.459 17.592 21.090 15.697 9.060

1000 9.192 11.051 12.578 14.187 16.904 12.733 5.560

250 −3.166 −2.469 −1.914 −1.315 −0.260 −1.860 0.784
2β0 500 −3.136 −2.258 −1.628 −1.037 −0.029 −1.604 0.883

1000 −2.851 −1.999 −1.353 −0.707 0.207 −1.342 0.907

1 250 −1.825 −0.868 0.042 0.836 2.389 0.078 1.661
β̂ 500 −1.869 −0.770 0.027 0.820 2.092 0.059 1.412

1000 −1.679 −0.719 0.058 0.762 1.836 0.045 1.199

250 −1.548 −0.670 −0.039 0.675 1.833 0.025 1.058
β0 500 −1.632 −0.665 0.001 0.661 1.754 0.027 1.047

1000 −1.629 −0.690 0.020 0.698 1.627 0.011 1.009

250 28.654 34.704 39.574 44.651 52.477 39.856 51.483
0.5β0 500 27.166 31.848 35.553 39.808 46.519 35.992 34.995

1000 22.055 25.398 28.218 31.256 36.451 28.565 19.929

250 −3.949 −3.312 −2.806 −2.262 −1.288 −2.750 0.666
2β0 500 −3.876 −3.050 −2.445 −1.862 −0.925 −2.427 0.809

1000 −3.524 −2.675 −2.065 −1.419 −0.532 −2.047 0.856

N(0,1) −1.645 −0.674 0 0.674 1.645 0 1
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FIG. 3. Empirical CDF of the simulated ML estimation of the standardized microergodic param-
eter vs. CDF of a standard Gaussian distribution (red line) when σ 2

0 = 1, κ = 0,0.5,1 (from left to
right), β0 = 0.6 and n = 250,500,1000

an arbitrary compact support, can be problematic when applied to finite samples,
even for large sample sizes. We strongly recommend jointly estimating variance
and compact support and using the asymptotic distribution give in Theorem 9 or,
alternatively, choosing β conservatively.

As a graphical example, Figure 3 compares the empirical CDF of the ML
estimates of the standardized microergodic parameter with the CDF of the
standard Gaussian distribution when σ 2

0 = 1, κ = 0,0.5,1, β0 = 0.6 and n =
250,500,1000. Finally, our numerical results are consistent with the results in
Kaufman and Shaby (2013), in the Matérn case.

As for the second goal, using the results given in Theorem 10 Points 2 and 4,
we now specifically compare asymptotic prediction efficiency and asymptotically
correct estimation of prediction variance using ratios (23) and (25), respectively.
As a benchmark, we also consider the same ratios using a tapered Matérn model.

More precisely, we consider a Matérn model Mν,α,σ 2
2

setting σ 2
2 = 1, ν =

0.5,1,1.5 and α = y/cν with y = 0.1,0.2,0.4 if ν = 0.5, y = 0.101,0.202,0.404
if ν = 1 and y = 0.097,0.193,0.385 if ν = 1.5. Here, cν is a scalar depending on
ν such that Mν,1,1(r) is lower than 0.05 when r > cν that is, y is the practical
range.

Let us define the ratios (23) and (25) as U1(β1) and U2, respectively. For each
ν and α, we randomly select nj = 50,100,250,500,1000, j = 1, . . . ,500 loca-
tion sites without replacement from the perturbed grid in Figure 2. For each j , we
compute the ratio U1j (β1) and the ratio U2j , j = 1, . . . ,500, using closed-form ex-
pressions in equations (20) and (21) when predicting the location site (0.26,0.48)′
(black dot in Figure 2). Specifically for each U2j , following the conditions in The-
orem 10 Point 4, we set σ 2

1 = 1, κ = ν − 1/2, μ = λ + 1.5. The “equivalent”
compact support is obtained as

β∗
1 =

[(
μ

	(2κ + μ + 1)

	(μ + 1)

)
σ 2

1 α−2ν

σ 2
2

]1/(1+2κ)

.
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Under this specific setting, the “equivalent” compact support associated to the
(varying with ν) practical range is approximately β∗

1 = 0.1,0.2,0.4, irrespectively
of ν. Figure 2 shows the location sites involved in the prediction using GW func-
tions with β∗

1 = 0.1,0.2,0.4.
For each U1j (β), following Theorem 10 Point 2, we fix κ = ν − 1/2, μ =

λ + 1.5 and β = β∗
1 . Then, to investigate the effect of considering an arbitrary

compact support on the convergence of ratio (23), we also consider, U1j (0.2β∗
1 )

and U1j (5β∗
1 ). For each combination of ν, α, Table 3 shows the empirical means

Ū1(xβ
∗
1 ) = ∑500

j=1 U1j (xβ
∗
1 )/500 for x = 1,0.5,2, and Ū2 = ∑500

j=1 U2j /500 when
increasing n.

As a benchmark, we also compute the empirical means replacing the GW
model with a tapered Matérn covariance model, that is, considering the model
Mν,α,σ 2

2
Kxβ∗

1
, and we denote these means by ŪT

1 (xβ∗
1 ), x = 1,0.5,2 and ŪT

2 .
Here, Kxβ∗

1
is a known compactly supported correlation function called the taper

function. Following Furrer, Genton and Nychka (2006), as the taper function, we
use Kxβ∗

1
= ϕ2,0,xβ∗

1 ,1 if ν = 0.5, Kxβ∗
1

= ϕ3,1,xβ∗
1 ,1 if ν = 1 and Kxβ∗

1
= ϕ4,2,xβ∗

1 ,1
if ν = 1.5. for x = 1,0.5,2.

These specific choices of taper functions guarantee the convergence of ra-
tios (23) and (25), using a tapered Matérn model instead of the GW model [see
Theorem 2 in Furrer, Genton and Nychka (2006)]. In Table 3, the percentages of
nonzero elements in the covariance matrices are also reported in all scenarios and
for each n when using the compact support β∗

1 .
Table 3 shows that Ū2 clearly overall outperforms ŪT

2 in terms of speed of
convergence in particular when increasing β∗

1 . This implies that in terms of finite
sample, if the Matérn model is the state of nature, prediction efficiency and cor-
rect estimation of prediction variance are better achieved when predicting with the
(compatible) GW model with respect to the so-called naive CT predictor [Furrer,
Genton and Nychka (2006)], sharing the same compact support.

Comparing Ū1(xβ
∗
1 ) with ŪT

1 (xβ∗
1 ) for x = 1,0.5,2 note that when x = 1,

Ū1(β
∗
1 ) overall slightly outperforms ŪT

1 (β∗
1 ) and when x = 0.5, the convergence

of both ratios seems to be very slow, in particular for larger ν. This suggests that
taking an arbitrary compact support too small with respect to the “equivalent”
compact support β∗

1 can seriously affect the prediction efficiency both for tapered
Matérn and GW models. This kind of problem disappears when x = 2, as expected.
By the tapering effect, that is, inducing a covariance with an apparent shorter range,
ŪT

1 (2β∗
1 ) slightly outperforms Ū1(2β∗

1 ).

7. Concluding remarks. Parameter estimation for interpolation of spatially
or spatio-temporally correlated random processes is used in many areas and often
requires particular models or careful implementation. In recent years, the dataset
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TABLE 3
Ū1(x), ŪT

1 (x), x = 0.5β∗
1 ,2β∗

1 , β∗
1 and Ū2, ŪT

2 , as defined in Section 6, when considering a Matérn model with increasing practical range y,
smoothness parameter ν and n. Here β∗

1 is the compact support parameter of the GW model computed using the equivalence condition.
The column % reports the mean of percentages of non-zero elements in the covariance matrices involved when considering β∗

1

ν = 0.5 ν = 1 ν = 1.5

n Ū
1
(0

.5
β

∗ 1
)

Ū
1
(2

β
∗ 1
)

Ū
1
(β

∗ 1
)

Ū
T 1
(0

.5
β

∗ 1
)

Ū
T 1
(2

β
∗ 1
)

Ū
T 1
(β

∗ 1
)

Ū
2

Ū
T 2

Ū
1
(0

.5
β

∗ 1
)

Ū
1
(2

β
∗ 1
)

Ū
1
(β

∗ 1
)

Ū
T 1
(0

.5
β

∗ 1
)

Ū
T 1
(2

β
∗ 1
)

Ū
T 1
(β

∗ 1
)

Ū
2

Ū
T 2

Ū
1
(0

.5
β

∗ 1
)

Ū
1
(2

β
∗ 1
)

Ū
1
(β

∗ 1
)

Ū
T 1
(0

.5
β

∗ 1
)

Ū
T 1
(2

β
∗ 1
)

Ū
T 1
(β

∗ 1
)

Ū
2

Ū
T 2

%

α = y
cν

y = 0.1 y = 0.101 y = 0.097

β
∗ 1

=
0.

1

50 1.051 1.029 1.009 1.051 1.008 1.025 1.019 1.029 1.098 1.047 1.018 1.101 1.009 1.041 1.038 1.048 1.124 1.054 1.024 1.134 1.012 1.057 1.050 1.056 4.67
100 1.096 1.043 1.014 1.096 1.013 1.043 1.035 1.056 1.189 1.076 1.028 1.195 1.013 1.072 1.073 1.097 1.246 1.095 1.039 1.266 1.019 1.105 1.098 1.112 3.70
250 1.182 1.046 1.019 1.183 1.018 1.069 1.064 1.118 1.379 1.097 1.038 1.393 1.016 1.121 1.138 1.204 1.521 1.156 1.059 1.567 1.025 1.197 1.197 1.241 3.12
500 1.267 1.030 1.015 1.268 1.016 1.077 1.081 1.211 1.608 1.065 1.030 1.639 1.011 1.132 1.187 1.372 1.928 1.116 1.051 2.039 1.020 1.253 1.300 1.481 2.92

1000 1.325 1.015 1.009 1.330 1.010 1.061 1.073 1.332 1.858 1.032 1.016 1.923 1.005 1.088 1.168 1.586 2.549 1.054 1.025 2.820 1.008 1.209 1.300 1.877 2.82

α = y
cν

y = 0.2 y = 0.202 y = 0.193

β
∗ 1

=
0.

2

50 1.151 1.044 1.016 1.157 1.016 1.058 1.053 1.134 1.316 1.090 1.032 1.326 1.014 1.094 1.119 1.217 1.448 1.139 1.048 1.505 1.021 1.149 1.177 1.288 11.95
100 1.209 1.032 1.013 1.221 1.015 1.066 1.068 1.235 1.471 1.068 1.027 1.491 1.011 1.103 1.162 1.377 1.730 1.120 1.045 1.848 1.018 1.186 1.266 1.534 11.04
250 1.227 1.012 1.007 1.247 1.008 1.046 1.060 1.397 1.578 1.026 1.013 1.614 1.004 1.061 1.146 1.590 2.085 1.049 1.022 2.363 1.007 1.137 1.271 1.954 10.48
500 1.152 1.005 1.003 1.178 1.003 1.021 1.040 1.513 1.415 1.009 1.005 1.447 1.002 1.022 1.092 1.625 1.945 1.017 1.009 2.321 1.004 1.051 1.174 2.069 10.27

1000 1.061 1.002 1.001 1.083 1.001 1.007 1.024 1.586 1.145 1.003 1.002 1.152 1.002 1.014 1.052 1.497 1.358 1.005 1.003 1.554 1.003 1.029 1.093 1.728 10.18

α = y
cν

y = 0.4 y = 0.404 y = 0.385

β
∗ 1

=
0.

4

50 1.208 1.016 1.008 1.226 1.010 1.050 1.060 1.372 1.507 1.035 1.016 1.530 1.005 1.072 1.148 1.519 1.900 1.066 1.027 2.088 1.010 1.152 1.271 1.823 34.97
100 1.151 1.006 1.004 1.174 1.004 1.026 1.041 1.499 1.399 1.013 1.007 1.421 1.002 1.030 1.100 1.583 1.846 1.024 1.011 2.106 1.004 1.071 1.196 2.006 34.18
250 1.050 1.001 1.001 1.066 1.001 1.006 1.020 1.598 1.128 1.003 1.002 1.141 1.001 1.011 1.048 1.454 1.328 1.006 1.003 1.491 1.003 1.028 1.091 1.691 33.90
500 1.013 1.000 1.000 1.019 1.000 1.002 1.011 1.633 1.024 1.001 1.001 1.044 1.001 1.009 1.025 1.314 1.053 1.002 1.001 1.121 1.001 1.019 1.047 1.373 33.66

1000 1.003 1.000 1.000 1.005 1.000 1.000 1.006 1.649 1.003 1.000 1.000 1.034 1.000 1.006 1.014 1.208 1.005 1.000 1.000 1.077 1.000 1.009 1.024 1.184 33.59
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sizes have steadily increased such that straightforward statistical tools are compu-
tationally too expensive to use. The use of covariance functions with an (inherent
or induced) compact support, leading to sparse matrices, is a very accessible and
scalable approach. In this paper, we studied estimation and prediction of Gaus-
sian fields with covariance models belonging to the GW class, under fixed domain
asymptotics.

Specifically, we first characterize the equivalence of two Gaussian measures
with GW models, and then we establish strong consistency and asymptotic Gaus-
sianity of the ML estimator of the associated microergodic parameter when con-
sidering both an arbitrary and an estimated compact support. Simulation results
show that for a finite sample, the choice of an arbitrary compact support can re-
sult in a very poor approximation of the asymptotic distribution. These results are
consistent with those in Kaufman and Shaby (2013) in the Matérn case.

In a second aspect, we give a sufficient condition for the equivalence of two
Gaussian measures with Matérn and GW model and we study the effect on pre-
diction when using these two covariance models under fixed domain asymptotics.
A first consequence of our results is that GW model is more than a valid competi-
tor of the Matérn model. It allows, as in the Matérn case, a continuous parame-
terization of smoothness of the underlying Gaussian field and, under fixed domain
asymptotics, prediction and mean square error prediction obtained with a Matérn
model can be achieved using a GW model inducing an equivalent Gaussian mea-
sure, using our condition. For this reason, we advocate the GW class when work-
ing with (not necessarily) large or huge spatial datasets since well established and
implemented algorithms for sparse matrices can be used when estimating the co-
variance parameters and/or predicting at unknown locations [e.g., Furrer and Sain
(2010)]. Alternatively, for covariances which are analytic away from the origin as
the Matérn model, in some circumstances a hierarchical factorization scheme as
proposed for instance in Ambikasaran et al. (2016), is a possible solution in or-
der to handle sample sizes that cannot be handled by straightforward Cholesky
factorization.

As the theoretical and numerical results illustrate, CT for prediction is essen-
tially an obsolete approach. When comparing both approaches with the same sen-
sible compact support, the tapered CT is less efficient. For estimation, one has to
distinguish between a so-called one-taper or two-taper approach, that is, a proper
likelihood or an estimating function approach, Kaufman, Schervish and Nychka
(2008). Fixing again the support, a GW model can approximate a Matérn covari-
ance function much better than a tapered one. Thus, the GW is in an estimation
setting superior to a one-taper CT. In both approaches, one needs to be aware of
the resulting biases, which can be substantial. In the case of (kriging) predictions
based on plug-in estimates, the biases are largely canceled [Furrer, Bachoc and Du
(2016)]. Finally, the two-taper approach is conceptually a different approach and,
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as it is computationally very expensive, it would not be fair to compare it with the
GW model.

Similar to the Matérn model with smoothness parameter different to p + 1/2,
p ∈ N, the GW does not have a closed-form expression when its smoothness pa-
rameter is different to p, and low level software implementations are needed for a
computationally efficient use.

SUPPLEMENTARY MATERIAL

Supplement to “Estimation and prediction using generalized Wendland
covariance functions under fixed domain asymptotics” (DOI: 10.1214/17-
AOS1652SUPP; .pdf). The Supplement contains the proof of Assertion 2 in The-
orem 8.
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