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Preface

This document accompanies the lecture STA330 Modeling Dependent Data for the spring semester
of 2023. The lecture is given in the framework of the minor in applied probability and statistics
(www.math.uzh.ch/aws). It typically compromises 12 weeks of two hours of lecture and one hour
of exercises per week (14 weeks minus two weeks with holidays - on average).

The lecture has evolved over the spring semesters 2015, 2016, 2019, 2021, 2023 and older
versions of this script may be floating around.

We assume prerequisites at the level of STA121 Statistical Modeling or STA402 Likelihood
Inference.

In my view, it is very important that this document contains a structure that is tailored to
the content I cover in class each week. This inherently leads to 12 “chapters.” However, as we
essentially cover four broad topics, I have cast the material of each of these in seemingly different
chapters. This structure helps me to frame the lectures better: each week has a start, a set of
learning goals, and a predetermined end. Figure 1 illustrates the four topics of this script.

At the beginning of each chapter, there is a direct link to an R file that contains all the
code to re-create the analysis and figures of the chapter. Moreover, some of these files include
additional concise illustrations, marked with ### Code not shown in script. To not clutter
this script with plenty of par() commands, we do not include them here and in the avail-
able R files. Datasets that are not part of regular CRAN packages are available at the URL
www.math.uzh.ch/furrer/download/sta330/.

The script uses as “classical” notation consistently as possible: upper case for random quan-
tities, lower case for realizations, boldface for vectors (lower case) and matrices (upper case).
Inherently, a matrix can not be differentiated from a random vector based on notation only. The
context and, if necessary, explanations will clarify.

Many have contributed to this document (alphabetical order), especially Clément Chevalier,
Jakob Dambon, Roman Flury, Florian Gerber, Tim Gyger, Michael Hediger, Craig Wang (alpha-
betical order). Without their help, you would not be reading these lines. No textbook material
is perfect. Please let me know of any necessary improvements, and I highly appreciate all forms
of contributions in the form of errata, examples, or text blocks. Contributions can be deposited
directly in the following Google Doc sheet. Major gaps in the document are indicated with the

following icon

v

http://www.math.uzh.ch/aws
http://www.math.uzh.ch/furrer/download/sta330/
https://docs.google.com/document/d/1cZAUzAztQeNdiFrXYVZqljmsWPmBrPd11eL7Y-i3dHA/edit?usp=sharing


vi Preface

Lattice Data

Introduction

Spatial Processes

Time Series

Hierarchical Models

Spatial Point Proceses

Figure 1: Structure of the manuscript

Reinhard Furrer
Summer 2023



Chapter 1

Introduction

In this chapter, we start motivating the need to model dependent data through
two simple examples. We will observe temporally and spatially correlated data,
violating the classical iid assumption.
The second part of the chapter contains a brief recap of the most important sta-
tistical concepts that we assume (known) throughout this manuscript.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter01.R.

1.1 Illustrative Examples

Example 1.1. The concentration of carbon dioxide (CO2) in Earth’s atmosphere has increased
in the last century and is likely to increase in the future. CO2 has a greenhouse effect and thus
contributes to global warming. The concentration has increased markedly in the 21st century and
exceeded 400 ppm daily average at Mauna Loa on May 10th, 2013. The left panels of Figure 1.1
shows recent monthly mean carbon dioxide measured at Mauna Loa Observatory, Hawaii. The
right panel annual averages with a cubic fit. The data is available here with more information
here. Data credits to Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu). More
information is available here, see also this article about the Keeling Curve.

The inconvenient truth is the increasing rate.

Our goal here is to propose adequate statistical models for the data. Figure 1.1 includes a
lowess smooth and a third order polynomial, respectively (see R-Code 1.1). R-Code 1.2 fits a
linear model to the monthly values. Relatively, we have a very good fit. However, the residuals
show a strange behavior occurring after 400 months (the reason can be found here). Even
after including indicator functions (through the vector indi) the residuals show structure, also
reflected in the lag-one scatterplot of the right panel in Figure 1.2. For inference, we need to take
this positive correlation into account. If we would not do so, our variance estimates are biased
and our conclusions may not be appropriate. ♣

1

http://www.math.uzh.ch/furrer/download/sta330/chapter01.R
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/co2/co2.html
http://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/co2/co2.html
www.esrl.noaa.gov/gmd/ccgg/trends/
scrippsco2.ucsd.edu
http://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/co2/co2.html
http://en.wikipedia.org/wiki/Keeling_Curve 
https://en.wikipedia.org/wiki/1991_eruption_of_Mount_Pinatubo
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R-Code 1.1 Monthly and annual mean carbon dioxide measured at Mauna Loa Observatory,
Hawaii. (See Figure 1.1.)

URL <- "http://www.math.uzh.ch/furrer/download/sta330/"

raw <- read.csv(paste0(URL, "CO2_monthly.csv"))

raw <- t(raw[,-1]) # no years needed and by row format

dim(raw)

## [1] 12 62

craw <- c(raw[!is.na(raw)])

n <- length(craw)

mnts <- rep(1:12, dim(raw)[2])[!is.na(raw)]

time <- (1:n)/n

co2 <- ts(craw, start = c(1958, 3), frequency = 12)

str(co2)

## Time-Series [1:731] from 1958 to 2019: 316 317 318 317 316 ...

plot(co2, ylab="CO2 [ppm]")

lines(lowess(co2, f=.2), col=2) # robust wrt f value!

am <- read.csv(paste0(URL, "CO2_annual.csv"))

dim(am)

## [1] 60 2

### Provided data is slightly different compared to averaged on:

# apply(raw[,-1],1,weighted.mean,na.rm=T)

plot(CO2~year, data=am, cex=.5, ylab="CO2 [ppm]")

lines(am$year, fitted(lm(CO2~poly(year, 3), data=am)), col=3)

R-Code 1.2 Fitting an annual and a cubic trend. (See Figure 1.2.)

lm1 <- lm(craw ~ poly(time,3) + as.factor(mnts))

plot(resid(lm1))

### lots of structure!!

indi <- c(rep(0,400), rep(1,n-400))

lm2 <- lm(craw ~ indi * (poly(time,3)) + as.factor(mnts))

plot(resid(lm2))

plot(resid(lm2)[-1], resid(lm2)[-n]) # lag one scatterplot

AIC(lm1, lm2) # the smaller the better

## df AIC

## lm1 16 1699.7

## lm2 20 1020.8
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Figure 1.1: Monthly and annual mean carbon dioxide measured at Mauna Loa Ob-
servatory, Hawaii. The red and green curves are a lowess smooth and a third-order
polynomial fit, respectively. (See R-Code 1.1.)
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Figure 1.2: Residuals of annual and cubic trend fit without (left) and with (middle)
Mount Pinatubo effect. Lag one scatterplot of residuals (right). (See R-Code 1.2.)

The iid assumptions of the noise in the regression model of Example 1.1 are clearly violated.
In the coming two chapters, we introduce a few models for such a dependency in the temporal
domain. We call such data time series data and its analysis time series analysis. The next
example considers data in space, i.e., the data is georeferenced with two coordinates (x, y or
latitude/longitude). Starting from Chapter 4, we consider data in space, illustrated in the next
examples. We will briefly see some concepts of spatiotemporal analysis in Chapter 11.
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Example 1.2. In this example, we consider the number of cases of oral cavity cancer during
a five year period (1986–1990) in the n = 544 districts (Landkreise) of Germany (Knorr-Held
and Raßer, 2000; Held et al., 2005) The raw counts, shown in Figure 1.3, reflect areas of high
population density. It is better to explore the spatial distribution of the relative risk. The
expected number of cases ei was derived using demographical data that allows us to display the
standardized mortality ratios yi/ei (right panel of Figure 1.3). These ratios clearly show spatial
structure and patches of higher (or lower) rates. The data is provided in the package spam. ♣

0
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500
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1.0

1.5

2.0

Figure 1.3: Raw counts and standardized mortality ratios of oral cavity cancer deaths
observed between 1986–1990 in Germany.

As the number of districts in Example 1.2 is known, we need to work with a multivariate vector
instead of individual independent random variables. The difficulty in this example is to model
a “multivariate” Poisson vector. With (Bayesian) hierarchical models, we render the problem
tractable, however. In Chapters 6 to 8, we introduce this powerful hierarchical formulation with
the necessary Bayesian concepts.

Example 1.3. The mission of CIPEL (Commission internationale pour la protection des eaux
du Léman) is to organize the studies required to determine the nature, extent, and source of any
pollution that has occurred within the waters of Lake Geneva (www.cipel.org). The Commission
also advises the contracting Governments (Switzerland, France) about the measures required to
correct any existing pollution and prevent future pollution. In this document, we will mainly
focus on the lake itself. Figure 1.4 gives a quick layout of the shore, main tributaries, major
cities, and bathymetric information. Lake Geneva lies at a mean altitude of 372 meters and has
a surface area of 580km2, the most extensive body of fresh water in Western Europe.

We consider measurements from sediments of the lake of, e.g., the 1983 campaign, consisting
of almost 300 samples. The data, lake boundaries, and convenient plotting functions are given
in the file ‘LacLeman.RData’, see R-Code 1.3. Figure 1.5 shows the mercury (Hg) readings and
clearly shows spatial patterns: nearby readings have similar values. ♣

http://www.cipel.org
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Figure 1.4: Lake Geneva: shore, main tributaries, major cities, and bathymetric
information.

R-Code 1.3 leman data. (See Figure 1.5.)

load("data/LacLeman.RData") # contains the following objects:

ls(pattern = "l[ae]")

## [1] "lake" "lake.data" "leman.info" "leman78" "leman83"

## [6] "leman88"

str(leman83)

## 'data.frame': 295 obs. of 6 variables:

## $ x : num 501 502 501 503 502 ...

## $ y : num 119 120 121 121 122 ...

## $ Hg: num 0.17 0.21 0.06 0.24 0.35 0.14 0.08 0.26 0.23 0.18 ...

## $ Pb: num 11 15 15 18 24 22 7 19 23 7 ...

## $ Cd: num 0.23 0.37 0.14 0.3 0.56 0.3 0.17 0.44 0.39 0.26 ...

## $ Zn: num 72.2 98.2 81.6 131 160 125 48 131 127 106 ...

### Call the following for more info:

# cat(leman.info)

library(fields) # we use this package quite often...

lake("Hg", leman83)

The following examples further illustrate spatial data. However, the (spatial) dependency is
slightly less standard than in the previous one.
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Figure 1.5: Mercury values (mg/kg) measured in 295 sediment samples in 1983 in
Lake Geneva. (See R-Code 1.3.)

Example 1.4. In the road or highway construction framework, the topsoil is removed and
replaced with appropriate earth material. Typically, this is done by placing a layer of material
that is subsequently compacted. A compacted layer is about 20–30cm high. This step is repeated
several times. The compaction is performed with moderate-size vibratory rollers equipped with
one smooth drum. Sensors within this drum measure the vertical acceleration from which soil
“stiffness” is derived (this process is quite complicated but not of our concern here). Depending
on the roller type, several measurements per second are recorded. If the roller is equipped with
a GPS-type device, it is possible to record the exact (up to a few centimeters) spatial location
and the soil stiffness, as illustrated in Figure 1.6.

Figure 1.6: Soil stiffness for two layers of a construction site in Iowa, USA. (Red bad,
blue good).
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Typical (statistical) questions associated with such datasets are:

• What is the magnitude of the measurement error? Is the (spatial) variation in the data
typical?

• What is the (best guess) soil stiffness at locations where we do not have any observations?

• Are (specific) low values induced by soft spots or an artifact of the measuring process?

• Is information ported over several layers?

• Can the collected information be used for intelligent compaction? ♣

Example 1.5. The influence of human activities on the Earth’s climate is largely undisputed,
and the potential for even more significant changes in this century confronts us. A grand challenge
facing geosciences is to provide accurate predictions of these changes along with quantifications
of uncertainties. Because future climate may be very different from the observational record, a
primary tool for assessing changes are large computer models, termed general circulation models
(GCMs) that simulate the Earth’s climate system under different circumstances. The results of
such models are complex spatial fields. Statistical analysis is particularly useful for synthesizing
information from several models and providing statistical measures of uncertainty. The applica-
tion of conventional statistics here is interesting because the models are deterministic computer
codes, but the variation and biases among different models can fit into a probabilistic frame-
work. Accordingly, we will refer to the model output as “data” even though it may not fit the
conventional perception of a statistical sample.

The climate at a given location is the joint distribution of meteorological variables describing
the atmosphere averaged over a given time period. In statistical language, given a stationary
time series, the climate is simply the marginal or stationary distribution. A standard working
definition of climate is a twenty to thirty-year average around a particular time. The temporal
variability of meteorology about a climatological mean is termed weather. Weather is observed
both in the real world and in what is simulated by models. Thus, any analysis for differences in
climate must account for the intrinsic variability of weather and the fact that climate can not be
determined precisely with a finite sample. The number of cutting-edge climate system models
is limited. However, it is ironic that despite the voluminous spatial output for a given model,
the sample size for comparison across different models is small. Hence, careful statistical work

Figure 1.7: Winter temperature fields (left panel) winter climate change (right panel)
for one specific model (Unit: ◦C).
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addresses this problem with spatial models that borrow strength across adjacent spatial regions
and provide a more statistically accurate assessment of model bias and variability. Based on a
statistical framework for the response of a suite of climate models, it is possible to produce a
synthesized estimate of climate change at a regional scale along with a measure of the uncertainty.

Figure 1.8: Mean and standard deviation of boreal winter temperature climate change
(Unit: ◦C).

As an example of the model output, Figure 1.7 shows winter temperature and winter tem-
perature change (i.e., climate change) for a specific model. As a helpful summary, Figure 1.8
shows the mean and standard deviation over nine models of boreal winter temperature climate
change.

Typical (statistical) questions associated with such datasets are:

• How can we statistically model the uncertainties in future climate change at different times
and spatial scales?

• How can we statistically relate the changes in the mean to the changes in variability and
extreme events?

• By how much can we improve statistical prediction when using joint climate variables?

• To what degree does agreement with observations imply predictive skill for the future?

• How can we efficiently model the evident non-stationarity of climate variability on the
globe? ♣

Example 1.6. Improvised Explosive Devices (IED) or roadside bomb has emerged as a weapon of
strategic influence on today’s battlefield. Insurgencies in Northern Ireland, Lebanon, Chechnya,
Iraq, and Afghanistan have all used the IED to influence the battlefield significantly. They are
difficult to identify, easy to produce, and extremely lethal. As of April 2009, IEDs account
for 75 percent of casualties to coalition forces in Afghanistan (Vanden Brook, 2009). IEDs have
produced more casualties than any other weapon in Iraq and accounted for 60 percent of coalition
casualties in 2006-2007 (iCasualties, 2009). Units that routinely operate in a certain area gain a
greater understanding of the local enemy activity, but today’s battlefield requires patrols to often
travel in unfamiliar areas. Due to the continual adaptation of friendly and enemy forces, assessing
the likelihood of enemy activity in unfamiliar areas of operation is time and resource intensive.
Although historical data is available, we often assess tactical risk subjectively. Furthermore,

http://en.wikipedia.org/wiki/Improvised_explosive_device
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Figure 1.9: IED detonations of ‘Route Predator’.

many of these ‘out of sector’ missions are conducted at the platoon level and not given significant
support from battalion or brigade staff.

IED attacks happen almost exclusively on roads. Hence, space is effectively one-dimensional,
and we can use time as the second dimension, as illustrated in Figure 1.9.

The data should be used to answer questions like:

• Are there temporal windows that are safer to use?

• Have enemy tactics evolved over time? Especially are there correlations with troop surges?

The data used in the research project (Benigni and Furrer, 2008) was declassified by stripping
all information from the IED events. Of course, when working with classified data, the list of
questions can be extended and would include the following:

• What are the IED characteristics that cause the most severe casualties?

• Are the IED types clustered in space and time? ♣

In all examples, the data is associated with space or space and time. However, there are
fundamental differences. We can obtain measurements at an arbitrary spatial location within
our spatial domain in some examples. With additional effort, it would be possible to increase
the density of observations. Often, the measurement is representative of a tiny area or volume
compared to the entire spatial domain. In other examples, a value represents a fixed geographic
region, and it is often impossible to obtain additional readings (at a sub-region scale or for a
differently defined region). In this example, the regions are regular. However, the regions are
often induced by political boundaries (counties, cantons, . . . ) or defined historically (US ZIP
codes). The last example represents the recording of the spatial location of some sort of “events”.
Other classical types of such data are the position of a tree in a specific study area, sightings of
animals, etc.

We often refer to these three types of data as geostatistical data, lattice data, and spatial
point pattern, discussed in detail in this document.
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1.2 Random Vectors

A random vector is a (column) vector whose components are random variables, i.e., Y =

(Y1, . . . , Yp)
⊤, and Y1, . . . , Yp are random variables.

Definition 1.1. The multidimensional cumulative distribution function (CDF) of Y is defined
as

FY(y) = P{Y ≤ y} = P{Y1 ≤ y1, . . . , Yp ≤ yp}, (1.1)

where the list is understood as the intersection (∩). ♢

Only in the case of independence, the CDF simplifies to FY(y) =
p∏

i=1

P{Yi ≤ yi}.

The probability density function for a continuous random vector is defined in a similar manner
as for random variables.

Definition 1.2. The probability density function (density function, pdf) fY(y) of a p-dimensional
continuous random vector Y is defined by

P(Y ∈ A) =

∫
A
fY(y)dy , for all A ⊂ Rp. (1.2)

♢

1.2.1 Basic Properties

The expectation and variance of a random variable determine the location and the spread thereof.
For two random variables, the covariance quantifies the linear relationship between the two. More
precisely, the covariance between two random variables Y1 and Y2 is defined as

Cov(Y1, Y2) = E
(
(Y1 − E(Y1))(Y2 − E(Y2))

)
. (1.3)

For random variables Y1, Y2 and Y3 with finite second moments, we have the following properties

Cov(Y1, Y2) = E(Y1Y2)− E(Y1) E(Y2) (1.4)

Cov(Y1, Y2) = Cov(Y2, Y1) (1.5)

Cov(Y1, Y1) = Var(Y1) (1.6)

Cov(a+ b Y1, c+ d Y2) = b d Cov(Y1, Y2) (1.7)

Cov(Y1, Y2 + Y3) = Cov(Y1, Y2) + Cov(Y1, Y3) (1.8)

If Y1 and Y2 are independent, then the joint density is identical to the product of the densities
of Y1 and Y2. Thus E(Y1Y2) = E(Y1) E(Y2) and the covariance is zero. The converse does, in
general, not hold.

The correlation between two random variables Y1 and Y2 is defined as

Corr(Y1, Y2) =
Cov(Y1, Y2)√
Var(Y1)Var(Y2)

(1.9)

and is a normed covariance. For all random variables Y1 and Y2, we have −1 ≤ Corr(Y1, Y2) ≤ 1.
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Definition 1.3. The expectation of a random vector Y is defined as

E(Y) =


E(Y1)

...
E(Yp)

 (1.10)

and the variance of a random vector Y is defined as

Var(Y) = E
((

Y − E(Y))(Y − E(Y)
)T)

=


Var(Y1) . . . Cov(Yi, Yj)

. . .

Cov(Yj , Yi) . . . Var(Yp)

 . (1.11)

♢

Sometimes one refers to (1.11) as the variance-covariance of Y. Similar to the properties of
(scalar) random variables, we have for random vectors the following ones:

Property 1.1. For arbitrary random p-vectors Y, (fixed) vectors a ∈ Rq and matrices B ∈ Rq×p,
p, q > 0, we have

• Var(Y) = E(YYT )− E(Y) E(Y)⊤

• E(a+BY) = a+BE(Y),

• Var(a+BY) = BVar(Y)B⊤

We only consider a particular multivariate distribution, the multivariate Gaussian distribu-
tion, introduced in the next section.

1.2.2 Multivariate Gaussian Distributions

Definition 1.4. The random vector Y = (Y1, . . . , Yp)
⊤ is distributed according a multivariate

Gaussian distribution if

FY(y) =
∫ y1

−∞
· · ·
∫ yp

−∞
fY(x1, . . . , xp)dx1 . . . dxp (1.12)

with density

fY(y1, . . . , yp) = fY(y) =
1

(2π)p/2 det(Σ)1/2
exp
(
−1

2
(y − µ)TΣ−1(y − µ)

)
(1.13)

for all y ∈ Rp (µ ∈ Rp and symmetric positive definite matrices Σ. We denote Y ∼ Np(µ,Σ).
♢

Property 1.2. For a multivariate Gaussian distribution, the following properties hold

E(Y) = µ , Var(Y) = Σ . (1.14)

Property 1.3. Let a ∈ Rq, B ∈ Rq×p, q ≤ p, rank(B) = q and Y ∼ Np(µ,Σ). Then

a+BY ∼ Nq

(
a+Bµ,BΣB⊤). (1.15)
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This last property has profound consequences. It also asserts that the one-dimensional
marginal distributions are again Gaussian with Yi ∼ N

(
(µ)i, (Σ)ii

)
, i = 1, . . . , p. Similarly,

any subset of random variables of Y is again Gaussian with appropriate mean and covariance
matrix selection.

We now discuss how to draw realizations from an arbitrary Gaussian random vector. Let
I ∈ Rp×p be the identity matrix, a square matrix that has only ones on the main diagonal and
only zeros elsewhere, and let L ∈ Rp×p so that LL⊤ = Σ. That means, L is like a “matrix square
root” of Σ.

To draw a realization y from a p-variate random vector Y ∼ Np(µ,Σ), one starts with
drawing p values from Z1, . . . , Zp

iid∼ N (0, 1), and sets z = (z1, . . . , zp)
⊤. The vector is then

(linearly) transformed with µ+Lz . Since Z ∼ Np(0, I) Property 1.3 asserts that Y = µ+LZ ∼
Np(µ,LL

⊤).
In practice, the Cholesky decomposition of Σ is often used, which decomposes a symmetric

positive-definite matrix into the product of a lower triangular matrix L and its transpose.
Evaluating the log-density (1.13) based on a Cholesky factor L is very convenient because

(1) it holds that det(Σ) = det(L)2 =
∏p

i=1(L)
2
ii, and, (2) the quadratic form is evaluated based

on one forward-solve v <- forwardsolve(L,b) and sum(v**2).

Example 1.7. This example visualizes the bivariate Gaussian distribution. To simplify the
notation, we use X and Y instead of Y1 and Y2. The density (1.13) “simplifies” to

f(x, y) = fX,Y (x, y) (1.16)

=
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µx)

2

σ2x
+

(y − µy)
2

σ2y
− 2ρ(x− µx)(y − µy)

σxσy

])
,

for all x and y (µx ∈ R, µy ∈ R, σx > 0, σy > 0 and −1 < ρ < 1). Here, Corr(X,Y ) = ρ and
hence Cov(X,Y ) = ρ σx σy. If ρ = 0, then X and Y are independent and vice versa. This result
will be revisited for the general case later.

R-Code 1.4 shows the density of a bivariate Gaussian random vector. The isolines of the
density are ellipses (due to the quadratic form in the kernel). The mean vector determines the
location, and the covariance matrix the shape. More specifically, the eigenvectors and eigenvalue
of the covariance matrix define the principal axes and their relative lengths of the ellipses.

R-Code 1.5 realizations of a bivariate Gaussian distribution for different values of ρ. Note
that large sample sizes are required to ‘detect’ small correlations visually. ♣

R-Code 1.4: Density of a bivariate Gaussian random vector. (See Figure 1.10.)

library(mvtnorm)

library(RColorBrewer)

Sigma <- array(c(1, 2, 2, 5), c(2, 2))

x <- y <- seq(-3, to=3, length=100)
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grid <- expand.grid(x=x, y=y)

densgrid <- dmvnorm(grid, mean=c(0, 0), sigma=Sigma)

density <- array(densgrid, c(100, 100))

col <- colorRampPalette(brewer.pal(9, "Blues"))(100)

image(x, y, density, col=col) # left panel

contour(x, y, density, add=T)

faccol <- col[cut(density[-1,-1], 64)]

persp(x, y, density, col=faccol, border = NA, zlab="", # right panel

tick="detailed", theta=120, phi=30, r=100, zlim=c(0,0.16))

### To calculate the cdf, we need a lower and upper bound. Passing the grid

cdfgrid <- apply(grid, 1, function(x) { # directly is not possible

pmvnorm( upper=x, mean=c(0, 0), sigma=Sigma) } )

jcdf <- matrix( cdfgrid, 100, 100)

image(x, y, jcdf, zlim=c(0,1), col=col) # left panel

contour(x, y, jcdf, add=T)

faccol <- col[cut(jcdf[-1,-1],64)]

persp(x, y, jcdf, col=faccol, border = NA, zlab="", # right panel

tick="detailed", theta=12, phi=50, r=100, zlim=c(0,1))

R-Code 1.5 Realisations of a bivariate Gaussian distribution for different values of ρ. The
sample size is 500. (See Figure 1.11.)

rho <- c(-.25, 0, .1, .25, .75, .9)

lim <- c(-3.3, 3.3) # common scale for all

for (i in 1:6) { # cycle over all six correlations

Sigma <- array(c(1, rho[i], rho[i], 1), c(2,2))

sample <- rmvnorm(500, sigma=Sigma)

plot(sample, pch=".", xlab="", ylab="", ylim=lim, xlim=lim)

legend("topleft", legend=bquote(rho==.(rho[i])), bty="n")

}

1.2.3 Conditional Distribution

We consider properties of subsets elements of the random vector Y. To simplify the notation,
we reorder the elements of the vector to write

Y =

(
Y1

Y2

)
, Y1 ∈ Rq, Y2 ∈ Rp−q. (1.17)

We partition the mean vector and the matrix Σ in 2× 2 block

Y =

(
Y1

Y2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(1.18)
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Figure 1.10: Density of a bivariate Gaussian random vector. (See R-Code 1.4.)

The (possibly) multivariate marginal random vectors Y1 and Y2 are Gaussian as well with
Y1 ∼ Nq(µ1,Σ11) and Y2 ∼ Np−q(µ2,Σ22).

If Y1 and Y2 are independent then Σ21 = 0. In the Gaussian case, the converse is true as
well.

Much of temporal or spatial statistics can be justified by the following property.

Property 1.4. If we condition a multivariate Gaussian random vector on a subset of its com-
ponents, then the resulting conditional distribution is again Gaussian with

Y1 | Y2 = y2 ∼ Nq

(
µ1 +Σ12Σ

−1
22 (y2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
. (1.19)

Notice that the conditional expectation depends linearly on y2. However, the conditional
variance is independent of the value y2. The conditional expected value represents an update
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Figure 1.11: Realisations of a bivariate Gaussian distribution for different values of
ρ. The sample size is 500. (See R-Code 1.5.)

of Y1 through Y2 = y2: the difference y2 − µ2 is normalized by the variance and scaled by
the covariance. Notice that for p = 2, Σ12Σ

−1
22 = ρσx/σy and Σ11 −Σ12Σ

−1
22 Σ21 = σ2x(1 − ρ2),

yielding

Y | X = x ∼ N
(
µy + ρσyσ

−1
x (x− µx), σ

2
y − ρ2σ2y

)
. (1.20)

This equation is illustrated in Figure (1.12).

1.3 Estimation

The estimators in the multivariate setting are constructed similarly to the univariate case. Let
y1, . . . ,yn be a realization of a random sample Y1, . . . ,Yn. We use the following estimators

µ̂ =Y=
1

n

n∑
i=1

Yi Σ̂ =
1

n− 1

n∑
i=1

(Yi −Y)(Yi −Y)⊤ (1.21)

and estimates

µ̂ = y =
1

n

n∑
i=1

y i Σ̂ =
1

n− 1

n∑
i=1

(y i −y)(y i −y)⊤. (1.22)

If the random sample satisfies Y1, . . . ,Yn
iid∼ Np(µ,Σ), closed form properties of the estima-

tors can be derived.
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x

y

µy + ρσy/σx(x− µx)

Figure 1.12: Graphical illustration of the conditional distribution of a bivariate nor-
mal random vector. Blue: bivariate density with isolines indicating quartiles, green:
marginal densities, red: conditional densities. The respective means are indicated with
a circle. The height of the univariate densities are exaggerated by a factor of five.

Example 1.8. R-Code 1.6 illustrates graphically that µ̂ → µ and Σ̂ → Σ when increasing n in
the case of a bivariate Gaussian case. ♣

R-Code 1.6 Realizations of bivariate Gaussian random variables using different sample
sizes. (See Figure 1.13.)

library(ellipse)

n <- c(10, 100, 500, 1000)

mu <- c(2, 1)

Sigma <- matrix(c(4, 2, 2, 2), 2)

x <- seq(-3, to=7, length=100)

y <- seq(-3, to=5, length=100)

grid <- expand.grid(x=x, y=y)

density <- array(dmvnorm(grid, mean=mu, sigma=Sigma), c(100, 100))

for (i in 1:4) { # loop over different sample sizes

contour(x, y, density, drawlabels=FALSE, col="gray")

sample <- rmvnorm(n[i], mean=mu, sigma=Sigma)

points(sample, pch=".", cex=2)

Sigmahat <- cov(sample)

muhat <- apply(sample, 2, mean)

lines(ellipse::ellipse(Sigmahat, cent=muhat, level=.95), col=2, lwd=2)

lines(ellipse::ellipse(Sigmahat, cent=muhat, level=.5), col=4, lwd=2)

points(rbind(muhat), col=3, cex=2)

text(-2, 4, paste("n =", n[i]))

}
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Figure 1.13: Realizations of bivariate Gaussian random variables using different sam-
ple sizes. Gray ellipses represent the isolines of the bivariate density. The green dot is
the estimated mean. The red and blue ellipses are the estimated 95% and 50% quantile
regions. That means that one expects half of all the realizations within the blue ellipse.
(See R-Code 1.6.)

1.4 Regression

We often have predictors that explain much of the data’s structure. In Example 1.1, the CO2

increased over time but also depended on the season. A classical approach to “model” this data
is by regressing the observations onto these temporal predictors. Hence, this summary section.

We write the multiple linear regression with p predictors

Yi = β0 + β1xi1 + · · ·+ βpxip + εi, (1.23)

= x⊤
i β + εi i = 1, . . . , n, n > p (1.24)

where

• yi: dependent variable, observation, data,

• x i = (1, xi1, . . . , xip)
⊤: free variables, predictors,

• β = (β0, . . . , βp)
⊤: parameter vector (unknown)

• εi: error (unknown), with symmetric distribution and E(εi) = 0.

In the basic framework, we assume that Var(εi) = σ2 and Cov(εi, εj) = 0, i ̸= j. Here, we
additionally assume that the error is Gaussian, i.e., ε iid∼ N (0, σ2).
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To derive the estimates/estimators etc., it is convenient two write (1.24) using matrix notation

Y = Xβ + ε (1.25)

with X a n × (p + 1)-matrix with rows x⊤
i . We assume that the (column) rank of X is p + 1

(rank(X) = p+ 1).
To derive an estimate, we use the least squares principle:

β̂ =argmin
β

(y −Xβ)⊤(y −Xβ) (1.26)

⇒ d

dβ
(y −Xβ)⊤(y −Xβ) (1.27)

=
d

dβ
(y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ) = −2X⊤y + 2X⊤Xβ (1.28)

⇒ X⊤Xβ = X⊤y (1.29)

⇒ β̂ = (X⊤X)−1X⊤y (1.30)

Equation (1.29) is called the normal equation. Formally, β̂ as defined in (1.30) is an estimate,
i.e., a “classical” vector with p+1 scalars. To derive properties from β̂, we have to consider it as
an estimator in the sense that we “replace” the actual data vector y with the random vector Y,
as defined in (1.25).

Starting from equation (1.24) and (1.30) the following estimates (left column) and distribu-
tions (right column) can be derived:

Y ∼ Nn(Xβ, σ2I) (1.31)

β̂ = (X⊤X)−1X⊤y β̂ ∼ Np+1

(
β, σ2(X⊤X)−1

)
(1.32)

ŷ = X(X⊤X)−1X⊤y = Hy Ŷ ∼ Nn(Xβ, σ2H) (1.33)

r = y − ŷ = (I−H)y R ∼ Nn

(
0, σ2(I−H)

)
(1.34)

where we term the matrix H = X(X⊤X)−1X⊤ as the hat matrix. The hat matrix is a projection
matrix and is symmetric and idempotent (H2 = H), and so is I−H. It also holds that rank(H) =

p + 1 and the eigenvalues of H consist of p + 1 ones and n − p − 1 zeros, while the eigenvalues
of I−H consist of n− p− 1 ones and p+ 1 zeros (and, thus, rank(I−H) = n− p− 1).

Further, we have

σ̂2 =
1

n− p− 1
R⊤R ∼ χ2

n−p−1 (1.35)

and thus

β̂i − βi√
σ̂2vii

∼ tn−p−1 with vii =
(
(X⊤X)−1

)
ii
, i = 0, . . . , p. (1.36)

Of course, this last pivot is only exact if the assumption of iid errors in (1.24) hold. A
generalized least squares approach may be advocated in a classical regression setting. In the
context of spatial data, we have additional models that will be discussed in the subsequent
chapters.
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1.5 Positive-Definite Matrices

Definition 1.5. A matrix A is nonsingular if it has full column and full row rank.

By definition a nonsingular matrix has to be square. We denote the inverse of a nonsingular
matrix A by A−1.

Definition 1.6. An n× n matrix A is positive-definite if x⊤Ax > 0, for all x ̸= 0. If A = A⊤,
the matrix is symmetric positive-definite. ♢

Property 1.5. A few important properties of symmetric positive-definite matrices A = (aij) ∈
Rp×p are:

1. rank(A) = p;

2. det(A) > 0;

3. All eigenvalues of A are positive, λi > 0;

4. aii > 0;

5. aiiajj − a2ij > 0, i ̸= j;

6. aii + ajj − 2|aij | > 0, i ̸= j;

7. A−1 is symmetric positive-definite;

8. All principal submatrices of A are symmetric positive-definite;

9. There exists a nonsingular lower triangular matrix L, such that A = LL⊤.

Property 1.6. If

A =

(
A11 A12

A21 A22

)
∈ Rp+q×p+q (1.37)

with A11 ∈ Rp×p nonsingular, then A is nonsingular if and only if C = A11 − A12A
−1
22 A21 is

nonsingular. Further,

A−1 =

(
A11 A12

A21 A22

)−1

=

(
A−1

11 −A−1
11 A12C

−1A21A
−1
11 −A−1

11 A12C
−1

−CA21A
−1
11 C−1

)
. (1.38)

It also holds that det(A) = det(A11) det(C).
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1.6 Bibliographic Remarks

Many textbooks cover random vectors and the multivariate Gaussian distribution. One of my
favorites is Mardia et al. (1979).

The content of Sections 1.2 to 1.4 are adapted from the script of the lecture STA121 Statistical
Modeling, available via the URL www.math.uzh.ch/furrer/download/sta121/script_sta121.pdf.
More precisely, these sections represent a summary of Chapters 2 and 3. Notice that Chapters 12
and 13 give a gentle introduction to large parts of this document.

The www.stat.berkeley.edu/∼paciorek/research/techVignettes/techVignette6.pdf gives fur-
ther insight regarding solving efficiently quadratic forms and related quantities (for dense and
sparse matrices).

http://www.math.uzh.ch/furrer/download/sta121/script_sta121.pdf
https://www.stat.berkeley.edu/~paciorek/research/techVignettes/techVignette6.pdf


Chapter 2

Time Series:
Concepts, Models, Estimation and
Forecasting

Observations taken over time often exhibit dependencies at short scales. We intro-
duce simple but effective parametric models for such situations. Inherently, these
parameters need to be matched with observations. This process is typically called
fitting. A fitted time series model can be used for forecasting a prediction into the
future.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter02.R.

2.1 Motivation

A scientific question or hypothesis leads to an experiment (in the larger sense) which may lead to
data collected over regular time points. Based on the hypothesis and the data, statistical models
for data taken over time are proposed. Here we consider parametric time series models. In this
and the next chapter, we discuss approaches (estimation) to obtain “best guesses” (estimates) for
these parameters. Depending on these estimates, we need to revise the model (inference) before
proceeding to prediction, the statistical task to “foresee” unobserved observations.

Recall the lag-one correlation of the residuals depicted in Figure 1.2. In the first step, we
need to relax the condition Cov(εi, εi+1) = 0 via time series, the result of extending the concept
of a random sample to incorporate such covariances. More formally, we will use the following
pragmatic definition of a time series.

Definition 2.1. A set of random variables Y1, . . . , Yn are called a time series if the index refers
to precise instances in time. We often refer to the series as {Yt} or simply as Yt. Depending on
the context, the series may start at 0 and/or stop at T . ♢

21
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There is no universal agreement on the subscripts for a time series. We choose here an index
from 1 to n, such that we have n random variables, n observations, etc. To emphasize the time
series nature, we use the subscripts t instead of i.

Note that for theoretical considerations infinite time series are often used: {Yt, t ∈ Z}.

To simplify the theoretical discussion, we assume that the time series has a mean zero or that
the mean is known. In practice, this is rarely the case, and we will discuss the implications of
this assumption later.

2.2 Autocovariance Function and Stationarity

We now extend the concept of covariance and correlation to the time series setting.

Definition 2.2. Let {Yt} be a time series. The function

γ(s, t) = Cov(Ys, Yt) (2.1)

is called the autocovariance function of the time series {Yt}. The autocorrelation function is
obtained by normalizing the autocovariance by

√
γ(s, s)γ(t, t), i.e.,

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
. (2.2)

♢

In time series analysis, it is convenient to restrict the class of the studied time series by
considering stationarity. A time series having a constant mean and an autocovariance function
that depends on the magnitude k = |s− t| only is called stationary. More precisely,

Definition 2.3. The series {Yt} is (weakly) stationary if

E(Yt) = µ (2.3)

Cov(Ys, Yt) = Cov(Ys+h, Yt+h) =: γ(|s− t|), (2.4)

for all s, t, s+ h, t+ h ∈ 1, . . . , n. ♢

As we subset the times series by 1, . . . , n, we will consider only integer values of |s − t|
which we subscript from now on, γ(|s − t|) = γ|s−t| = γk. For a stationary time series, the
autocorrelations, denoted by ρk, simplify to γk/γ0.

Remark 2.1. If the time series at hand is not stationary (see, e.g., the CO2 concentrations
of Example 1.1 in Chapter 1), one needs first to remove the trend and/or seasonal component
using, for example, linear regression. Once this task is done, the residual time series with no
trend should “look” stationary in order to be able to impose the models presented in the next
section. ♡
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A useful estimate of the autocovariance function is

γ̂h =
1

n

n−h∑
t=1

(yt − ȳ)(yt+h − ȳ), (2.5)

where ȳ = 1
n

∑
t yt. From this estimate, we derive an estimate of the autocorrelation function:

ρ̂h =
γ̂h
γ̂0

=

n−h∑
t=1

(yt − ȳ)(yt+h − ȳ)

n∑
t=1

(yt − ȳ)2
. (2.6)

Such a set of estimates is illustrated in Example 2.1 and Figure 2.1.

Note that the estimator

γ̂h =
1

n

n−h∑
t=1

(Yt − Ȳ )(Yt+h − Ȳ ) (2.7)

is (slightly) biased, even when replacing the denominator n by n − h. The bias is due to the
correlation in the data.

Example 2.1. The data shown in the center panel of Figure 1.2 can be safely assumed to be a
zero mean time series. The marginal variance seems to be constant. For the time being, let us
assume that the autocorrelation structure does not change over time. R-Code 2.1 and Figure 2.1
illustrate the empirical autocorrelation function ρ̂k. The dashed lines indicate crude confidence
bands for the autocorrelations if an iid series would be used. ♣

R-Code 2.1 Autocorrelation of the residuals obtained in R-Code 1.2. (See Figure 2.1.)

lm2resid <- resid(lm2)

acf(lm2resid)
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Figure 2.1: Autocorrelation plot of the detrended CO2 time series (i.e., the residuals)
shown in the center panel of Figure 1.2. (See R-Code 2.1.)
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2.3 ARMA Models

This section sets the stage for a large class of (parametric) time series models.

2.3.1 Autoregressive AR(1) Model

The following introduces an intuitive model for time series, the so-called autoregressive model,
where the current observation depends on the previous one:

Yt = ϕYt−1 + εt, ϕ ̸= 0 (2.8)

with εt Gaussian white noise, i.e., εt
iid∼ N (0, σ2). This model is denoted with AR(1).

In practice, t in (2.8) varies between 1 and n, and some initial condition has to be assumed,
for example, Y0 = 0 or Y1 ∼ N (0, σ2), or Y1 ∼ N (0, σ2/(1 − ϕ2)). Further, we assume that
|ϕ| < 1 to ensure stationarity. In the case of ϕ > 1, it becomes quickly clear that the series
explodes. R-Code 2.2 illustrates this behavior. In what follows, we mainly focus on stationary
series.

R-Code 2.2 “Manual” AR(1) model simulations. (See Figure 2.2.)

set.seed(15)

n <- 250

epsilont <- rnorm(n, sd=5) # sigma =5

Y1t <- Y2t <- Y3t <- rep(0, times=n)

Y1t[1] <- Y2t[1] <- Y3t[1] <- epsilont[1] # initial condition

### Case 1: |phi| < 1

for(i in 2:n) { Y3t[i] <- 0.75 * Y3t[i-1] + epsilont[i] }

ts.plot(Y3t, ylab=expression(Y[t])) # stationary

### Case 2: |phi| > 1

for(i in 2:n) { Y1t[i] <- -1.25 * Y1t[i-1] + epsilont[i] }

ts.plot(Y1t, ylab=expression(Y[t])) # series explodes

### Case 3: |phi| = 1, boundary case

for(i in 2:n) { Y2t[i] <- Y2t[i-1] + epsilont[i] }

ts.plot(Y2t, ylab=expression(Y[t])) # a so-called "random walk"

Assuming Y1 ∼ N
(
0, σ2/(1−ϕ2)

)
, there is a nice connection between an AR(1) model (with

1 ≤ t ≤ n) and a multivariate Gaussian distribution, namely

Y ∼ Nn(0,Σ), Σ =
( σ2

1− ϕ2
ϕ|i−j|

)
ij
. (2.9)

Notice that the precision matrix, i.e., the inverse of the covariance matrix, is a tridiagonal matrix,
i.e., a sparse matrix.
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Figure 2.2: Three different AR(1) series with |ϕ| < 1, |ϕ| > 1, ϕ = 1, respectively.
Only the first time series is stationary. (See R-Code 2.2.)

2.3.2 AR(p) Models

Model (2.8) can be extended to an AR(p) model, defined as

Yt = ϕ1Yt−1 + . . . ϕpYt−p + εt, ϕp ̸= 0 (2.10)

with appropriate assumptions on ϕ1, . . . , ϕp and “initial” conditions, (e.g., distributions Y1, . . . , Yp).

The assumptions on ϕ1, . . . , ϕp guarantee that the series does not explode. Moreover, the
series is stationary. When p = 2, we require

ϕ2 + ϕ1 < 1, ϕ2 − ϕ1 < 1, |ϕ2| < 1. (2.11)

In case of a non-zero but constant mean, Y• is replaced by Y• − µ in the AR(p) definition.
More specifically, we have

Yt = µ+ ϕ1(Yt−1 − µ) + · · ·+ ϕp(Yt−p − µ) + εt, ϕp ̸= 0. (2.12)

Remark 2.2. There is a “notational” shortcut to write autoregressive models based on the
concept of the backshift operator B defined as

BYt = Yt−1, (2.13)

BkYt = Yt−k, k = 1, 2, . . . . (2.14)

Another way to write the equation of an AR(p) is thus

(1− ϕ1B − · · · − ϕpB
p)Yt = εt. (2.15)

It can be shown that such a time series Yt is stationary if all the complex roots of the characteristic
polynomial (1−ϕ1x−· · ·−ϕpxp) have a modulus strictly larger than 1. When p = 1, this condition
implies that the solution of 1− ϕ1x = 0 needs to be larger than one in absolute value, which is
satisfied if |ϕ1| < 1. When p = 2, it is satisfied under (2.11). ♡
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2.3.3 Moving Average Models

Similarly to autoregressive models, we can define moving average models where the present
observation depends on a weighted average of white noise components. More precisely, a MA(1)
is defined by

Yt = εt + θεt−1, θ ̸= 0, (2.16)

with, typically, εt
iid∼ N (0, σ2), and a MA(q) is defined by

Yt = εt + θ1εt−1 + · · ·+ θqεt−q, θq ̸= 0. (2.17)

Moving average MA(q) time series are always stationary. Additionally, we can add a non-zero
mean µ on the right-hand side of (2.16) or (2.17).

Remark 2.3. Moving average time series can also be written using the backshift operator:

Yt = (1 + θ1B + · · ·+ θqB
q)εt, θq ̸= 0. (2.18)

Note that sometimes, even a shorter notation is used for AR(p) and MA(q) time series, respec-
tively:

ϕ(B)Yt = εt, AR(p) time series, (2.19)

Yt = θ(B)εt, MA(q) time series, (2.20)

where ϕ(B) = 1− ϕ1B − · · · − ϕpB
p and θ(B) = 1 + θ1B + · · ·+ θqB

q. ♡

2.3.4 ARMA and ARIMA Models

It is possible to combine AR(p) and MA(q) models into so-called ARMA(p, q) models. An
ARMA(p, q) time series is defined by

Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q, ϕp ̸= 0, θq ̸= 0, (2.21)

Besides subtracting it, a possibility to “circumvent” a constant (non-zero) mean term is to
study the time series of the differences of the observations: ∇Yt := Yt − Yt−1, where ∇ is the
differentiation (or “nabla”) operator. This approach leads to so-called “integrated ARMA”, or
“ARIMA” model. The differentiation can be quite fancy; thus, we have very flexible models.

By definition, a time series {Yt} is an ARIMA(p, 1, q) time series if {∇Yt} is an ARMA(p, q)

time series. The differentiation operator may even be applied more than once: a time series
{Yt} is an ARIMA(p, d, q) time series if {∇dYt} is an ARMA(p, q) time series. The three letters
(p, d, q) of ARIMA refer to the AR, I, and MA part, respectively. An ARMA(p, 0) time series
is an AR(p), an ARMA(0, q) time series is a MA(q) time series and, finally, an ARIMA(p, 0, q)

time series is an ARMA(p, q) time series.

A good way to guess which kind of model (AR, MA, ARMA, or even more complicated
models) should be chosen to study our data is to have a look at the empirical autocorrelation
function (ACF); and compare it to the theoretical ACF of an AR, MA, ARMA, time series. This
task will be done in the next section.
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Remark 2.4. As for AR or MA models themselves, it is possible to write (2.21) shortly as
ϕ(B)Yt = θ(B)εt. Moreover, the backshift operator can also be used instead of the nabla
operator (1−B)Yt = ∇Yt and, more generally, (1−B)dYt = ∇dYt. ♡

2.4 Estimation of ARMA Parameters

In Section 2.2, we saw quite intuitive estimates of ρ̂k. However, we are not primarily interested in
the estimation of these ACF, but the parameters {ϕ1, . . . , ϕp} and/or {θ1, . . . , θq}. For simplicity,
we focus on autoregressive models, but much of what will be said can be carried over to moving
average models as well.

Estimation {ϕ1, . . . , ϕp} of can be carried out based on likelihood estimation, method of
moment estimation or Yule–Walker equations. The popular Yule–Walker estimates are based on
solving the so-called Yule–Walker equations

γk = ϕ1γk−1 + · · ·+ ϕpγk−p, k = 1, . . . , p, (2.22)

σ2 = γ0 − ϕ1γ1 − · · · − ϕpγp. (2.23)

In practice, we use (2.5) to estimate the autocovariance and then solve the previous system.

For an AR(1) model, (2.22) yields γ1 = ϕ1γ0 and thus ϕ̂1 = γ̂1/γ̂0, i.e., the estimated
autocorrelation. Further, σ̂2 = γ̂0 − γ̂21/γ̂0. Based on these equations, we note that the solutions
of Yule–Walker are simpler when expressed in terms of autocorrelations.

For an AR(2) model, we have a 2× 2 system and using the symmetry γ−k = γk, we have

ϕ̂1 =
ρ̂1(1− ρ̂2)

1− ρ̂21
, ϕ̂2 =

ρ̂2 − ρ̂21
1− ρ̂21

. (2.24)

Example 2.2. We reconsider the detrended CO2 data and estimate ϕ̂k. R provides several
functions for this task, for example arima or ar. Although slightly more complex for argument
specification, we prefer the former as standard errors of the estimates are directly returned as
well. The function arima estimates the parameters of a specified ARMA model with specified p
(order=c(2,0,0). As the series consists of residuals of a linear model fit, there is no need to
estimate a mean (include.mean=FALSE), as shown in the first line of R-Code 2.3. The function
returns (among other things) estimates ϕ̂k and uncertainties thereof. Of course, we can also
assess the uncertainty with a (parametric) bootstrap approach, as shown in the latter part of
R-Code 2.3.

Not too surprisingly, the estimates ϕ̂k are quite correlated Corr(ϕ̂1, ϕ̂2) = −0.75, illstrated in
Figure 2.3. ♣

Remark 2.5. Yule–Walker estimators are essentially least squares estimators and are for AR(p)

models optimal in the sense of the best asymptotic Gaussian distribution. See, e.g., Example
3.32 Shumway and Stoffer (2010) for specific examples. Yule-Walker equations could be set up
for arbitrary ARMA(p, q) models. Alternative methods exist, including maximum likelihood
approaches and tailored least squares approaches. ♡
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R-Code 2.3 Fitting of an AR(2) model and bootstrapping estimation uncertainties. (See
Figure 2.3.)

(f1 <- arima(lm2resid, order=c(2, 0, 0), include.mean=FALSE))

##

## Call:

## arima(x = lm2resid, order = c(2, 0, 0), include.mean = FALSE)

##

## Coefficients:

## ar1 ar2

## 0.651 0.142

## s.e. 0.037 0.037

##

## sigma^2 estimated as 0.0941: log likelihood = -174.01, aic = 354.03

(phi <- f1$coef) # Estimates of phi (as above, of course)

## ar1 ar2

## 0.65128 0.14243

(se <- sqrt(diag(f1$var.coef))) # standard errors of phi

## ar1 ar2

## 0.036783 0.036827

### We now bootstrap from a model with the same estimates and estimate again.

N <- 200 # Number of bootstrap replicates

bootsam <- array(0, c(N,2))

for (i in 1:N) {

ab <- arima.sim(n=f1$nobs, list(ar=phi), innov=sample(f1$resid))

bootsam[i,] <- arima(ab, order=c(2, 0, 0), include.mean=FALSE)$coef

}

### Visualizing the results, bivariate left and marginal right panel:

plot(bootsam, xlab=expression(hat(phi)[1]), ylab=expression(hat(phi)[2]))

abline(v=phi[1], h=phi[2], col=3)

abline(v=phi[1]+se[1]*qnorm(c(.05,.95)),

h=phi[2]+se[2]*qnorm(c(.05,.95)), col=4, lty=2)

lines(ellipse::ellipse(f1$var.coef, cent=f1$coef, level=.9), col=2)

hist(bootsam[,1], prob=T, xlim=c(0,1), main="", xlab=expression(hat(phi)))

hist(bootsam[,2], prob=T, add=T)

abline(v=phi, col=3)

abline(v=phi[1]+se[1]*qnorm(c(.05,.95)), col=4, lty=2)

abline(v=phi[2]+se[2]*qnorm(c(.05,.95)), col=4, lty=2)

The autocorrelation and partial autocorrelation function can be used to infer the “nature” of
the ARMA model, as illustrated by the following examples.
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Figure 2.3: Parametric bootstrap of a AR(2) model. Left panel gives 200 bootstrapped
estimates of

(
ϕ̂
(ℓ)
1 , ϕ̂

(ℓ)
2

)
an AR(2) model. The right panel gives the marginal histograms.

Green lines indicate the estimates. Blue dotted lines give univariate 90% confidence
intervals. The red ellipse in the left panel is a 90% confidence region based on the
original variance estimate. (See R-Code 2.3.)

The ACF of an MA(1) time series Yt = θεt−1 + εt is obtained from

γh = Cov(θεt−1 + εt, θεt−1+h + εt+h) =


(θ2 + 1)σ2, h = 0,

θσ2, h = 1,

0, h ≥ 2.

(2.25)

For an AR(1) time series, we have the autocorrelation function

γh = σ2
ϕh

1− ϕ2
and thus ρh = ϕh. (2.26)

Another similar concept is the partial autocorrelation function (PACF). It is essentially the
correlation between Yt−k and Yt “conditional” on knowing Yt−k+1, . . . , Yt−1. The PACF is denoted
with ϕkk and by definition ϕ11 = ρ1.

We have, for example, (i) for an AR(1) time series, we have ϕkk = 0 for all k > 1; (ii) for an
AR(2) time series, we have ϕ11 = ρ1/(1 − ρ2), ϕ22 = ρ2, and ϕkk = 0 for all k > 2; (iii) for an
MA(1) time series, we have ϕ22 = −θ2/(1 + θ2 + θ4) < 0 and then tails off.

In general, we can show that

1. for an AR(p) model, the PACF cuts off after p lags and the ACF tails off;

2. for a MA(q) model, the ACF cuts off after q lags and the PCAF tails off;



30CHAPTER 2. TIME SERIES: CONCEPTS, MODELS, ESTIMATION AND FORECASTING

3. for a ARMA(p, q) model, the ACF and the PCAF tail off.

These properties can be used to infer the model type from an ACF or PACF plot. More precisely,
starting from data {yt} of a time series, we estimate ACF and PACF and then decide on an AR(p),
MA(q) or ARMA(p, q) model.

Example 2.3. Returning once again to our CO2 data, we see that the estimates ϕ̂1 for an
AR(1), AR(2) and AR(3) are similar, especially for the latter two. The models imply certain
structures on the ACF and the PACF. The function ARMAacf computes the theoretical ACF
and the PACF based on estimates ϕ̂k. Because an AR(2) seems to be sufficient, the resulting
theoretical differences are only visually pronounced between AR(1) and AR(p), p > 1. More
specifically, the partial autocorrelation function has two “sufficiently” large values, implying that
an AR(2) should be used. For AR(1), we have a single non-zero value, estimates of ϕ̂k, k > 2 in
higher order autoregressive models are very close to zero. ♣

R-Code 2.4: Fitting of autoregressive models and comparison of ACF plots with theoretical
values. (See Figure 2.4.)

(phi1 <- arima(lm2resid, order=c(1, 0, 0), include.mean=FALSE)$coef)

## ar1

## 0.75899

(phi)

## ar1 ar2

## 0.65128 0.14243

(phi3 <- arima(lm2resid, order=c(3, 0, 0), include.mean=FALSE)$coef)

## ar1 ar2 ar3

## 0.654461 0.157943 -0.023764

### We now compare the fits with theoretical values:

l <- 28

acf(lm2resid)

points(0:l, ARMAacf(ar=phi, l=l), col=2, pch=19)

points(0:l, ARMAacf(ar=phi3, l=l), col=3, pch=20)

points(0:l, ARMAacf(ar=phi1, l=l), col=4, cex=1.5, lwd=2)

pacf(lm2resid)

points(1:l, ARMAacf(ar=phi, l=l, pacf=TRUE), col=2, pch=19)

points(1:l, ARMAacf(ar=phi3, l=l, pacf=TRUE), col=3, pch=20)

points(1:l, ARMAacf(ar=phi1, l=l, pacf=TRUE), col=4, cex=1.5, lwd=2)

### Note that without an order, the "best" model is estimated:

ar( lm2resid)$order # but AIC selects a too complicated model.

## [1] 16

### BIC selects a good one, but the calculation needs to be done manually.
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Figure 2.4: Autocorrelation and partial-autocorrelation plot of the detrended time
series with superimposed theoretical values based on the estimated AR(p) model (p = 2

red, p = 1 blue, p = 3 green). (See R-Code 2.4.)

2.5 Prediction

2.5.1 Terminology

Here we introduce some definitions:

Definition 2.4. Let {Yt} be a time series and {yt} a realization thereof. We define:

• prediction: inferring the value or distribution of a quantity based on observations;

• forecasting : inferring the time series at future time points based on {yt};

• backcasting : inferring Yt, t = 1, . . . , n based on y1, . . . , yn;

• filtering : removing from yt some unwanted (noise) component or feature. ♢

The term smoothing is sometimes used for backcasting and implies filtering. Smoothing is
often associated with assessing a general trend or a very smooth curve describing the data. In
particular sciences, the term hindcasting is used for backcasting.

As for ‘estimation’, ‘estimator’, ‘estimate’, and ‘to estimate’, we have the analogies ‘predic-
tion’, ‘predictor’, ‘prediction’, and ‘to predict’.

Differentiating a time series filters out a linear trend and is a simple example of a linear filter.
A simple moving average (unweighted or weighted) filters out the noise and is another example
of a linear filter.

For prediction, we use the following generic notation:

p( quantity ; data ). (2.27)
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We use the actual data for prediction; we have the corresponding random quantities for a pre-
dictor. The following list illustrates the uses of this notation by giving (too simple) examples:

p
(
Yn+1; {y1, . . . , yn}

)
= p
(
Yn+1;y

)
=

1

n

n∑
t=1

yt : (one-step head) prediction, (2.28)

p
(
Yn+2; {Y1, . . . , Yn}

)
= p
(
Yn+2;Y

)
= Yn : (two-step head) predictor, (2.29)

where we have classically written the vectors Y = (Y1, . . . , Yn)
⊤ and y = (y1, . . . , yn)

⊤

2.5.2 Forecasting AR Models

Even though we are forecasting time series, we use the term prediction to introduce the concept,
many due to its universality. Suppose we observe a time series {Yt}. One way to construct
predictors p(Yn+m; {Y1, . . . , Yn}) is based on minimizing some criterion, such a

E
((
Yn+m − p(Yn+m; {Y1, . . . , Yn})

)2)
. (2.30)

(Here, we minimize the expected squared loss.) For this particular criterion, the best predictor
(BP) is the conditional expectation.

Remark 2.6. The latter fact can be shown in two steps. For simplicity, consider two random
variables X and Y and we attempt to predict Y from X. First, it is shown that the best
prediction using a constant c in terms of mean squared error is c = E(Y ), i.e., c = E(Y )

minimizes MSE = E
(
(Y − c)2

)
. In a second step, we consider predicting Y by some function

of X, in our notation p(Y ;X), by minimizing MSE = E
(
(Y − p(Y ;X))2

)
. Using the property

E(Y ) = E
(
E(Y | X)

)
, we write

MSE = E
(
(Y − p(Y ;X))2

)
= E

(
E
(
(Y − p(Y ;X))2 | X

))
. (2.31)

For every x, the inner expectation is minimized by setting p(Y ;X) = E(Y | X = x) (shown in
the first step). Thus p(Y ;X) = E(Y | X = x). ♡

The conditional expectation in the case of a Gaussian framework is tractable, see equa-
tion (1.19), but hardly in any other case. Hence, we restrict the predictor to be a linear function
of Y1, . . . , Yn, that means

p
(
Yn+m; {Y1, . . . , Yn}

)
= λ0 +

n∑
i=1

λiYn−1−i (2.32)

In the case of a zero mean, we have λ0 = 0, and the other coefficients can be obtained through
plugging the linear predictor in (2.30) and expressing the expectations in terms of the autoco-
variance terms γk or by using the property that

E
(
(Yn+m − p(Yn+m; {Y1, . . . , Yn}))Yt

)
= 0, t = 1, . . . , n. (2.33)

The weights of the best linear predictor (BLP) are given by the solution of the following linear
system

(γi−j)i,j(λi)i = (γm−1+i)i, written as Γnλn = γn (2.34)
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and the predictor is

p
(
Yn+m; {Y1, . . . , Yn}

)
= γ⊤

nΓ
−1
n (Yn, . . . , Y1)

⊤. (2.35)

The mean squared prediction error is

γ0 − γ⊤
nΓ

−1
n γn. (2.36)

Notice that for an AR(1) model, the m-step-ahead forecast is:

p
(
Yn+1; {y1, . . . , yn}

)
= ϕmyn (2.37)

with mean squared prediction error

σ2
1− ϕ2m

1− ϕ2
. (2.38)

In R for classes Arima (output of arima) and ar (output of ar, and its particular methods
ar.mle, etc.) the R-function predict can be used.

In the case of a non-constant mean, i.e., the time series is not stationary in the mean,
prediction heavily depends on the mean function. Hence, care needs to be taken to model the first
moment properly. Similar to regression settings, higher-order polynomials and non-parametric
smoothers are unsuitable for extrapolation beyond very few time steps.

Example 2.4 including R-Code 2.5 and resulting figure give some insight in prediction and
prediction uncertainties.

Example 2.4. To illustrate prediction in R, we revisit the annual CO2 series of Example 1.1
of Chapter 1. We restrict our knowledge to the 7 previous years for a simpler visualization and
better discrimination of different prediction methods. With a standard AR(1) model, we have
a clear violation of the stationarity assumption, and thus the resulting prediction uncertainties
are huge, black lines in Figure 2.5. The mean prediction levels of the mean of the data and the
prediction interval converge to a “half”-width of

(
σ̂2
/
(1− ϕ̂2)

)1/2 ≈ 6.57, by (2.38).

The R function arima() and thus predict.arima() provides to mechanism to include addi-
tional predictors. When adding a simple linear term, the prediction interval shrinks tremendously
(red lines in Figure 2.5). ♣

Remark 2.7. In practice, the matrix Γ is not expressed and thus to calculate (2.35) or (2.36)
no (possibly large) system is solved. Recursive algorithms exist; the most widely known is the
Durbin–Levinson algorithm. The same algorithm additionally gives the means to calculate the
PACF of a stationary time series. ♡
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R-Code 2.5 AR prediction with and without covariate. (See Figure 2.5.)

n <- 7

m <- 8 # how many predictions ahead

CO2 <- tail(am, n)$CO2 # last n=7 annual CO2 readings

a1 <- arima(CO2, order=c(1, 0, 0))

a2 <- arima(CO2, order=c(1, 0, 0), xreg=(1:n))

pr1 <- predict(a1, n.ahead=m)

pr2 <- predict(a2, n.ahead=m, newxreg=n+1:m)

plot(CO2, xlim=c(1, n+m), ylim=c(385, 430))

abline(h=mean(CO2), col="gray")

matlines(n+1:m, pr1$pr+cbind(0, 2*pr1$se, -2*pr1$se), col=1, lty=1)

matlines(n+1:m, pr2$pr+cbind(0, 2*pr2$se, -2*pr2$se), col=2, lty=1)

legend("topleft", legend=c("AR( 1 )", "AR( 1 ) + trend"),

col=c(1, 2), lty=1, bty="n")
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Figure 2.5: AR prediction with and without a covariate. The gray line gives the mean
of the seven observations used for estimation and prediction. (See R-Code 2.5.)

2.5.3 Predicting ARIMA Models

Consider a time series {Yt} with a linear trend, that means with mean µt = β0 + β1t. Then the
differentiated series has a constant mean because ∇Yt = Yt+1 − Yt implies E(∇Yt) = β1.

Such differentiated models lead to the so-called moving average integrated autoregressive
(ARIMA) time series. However, there are subtle differences between differentiating and explicitly
modeling the trend. Models based on differenced sequences are particularly suitable for series
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that exhibit one or several shocks. Consider

Yi =

−µ+ ϕ(Yi−1 + µ) + εi if i = 1, . . . , k

+µ+ ϕ(Yi−1 − µ) + εi if i = k + 1, . . . , n.
(2.39)

That means, between time point k and k + 1, the mean changes from −µ to +µ. A constant
mean model leads to an estimate close to zero, and the squared residuals are all close to µ2.
When differentiating, there is only one jump (shock) of size 2µ.

The difference between differentiating and explicitly modeling a linear trend is especially
recognizable when predicting, as illustrated in the following example.

Example 2.5. We retake the last seven years of annual Mouna Loa CO2 reading and predict
with ARI models in R-Code 2.6. Including the differentiation, we can mimic the linear trend to
a certain degree. The uncertainties, however, tremendously increase for predictions in the “far”
future. Adding a linear trend to the model with differentiation reduces again the uncertainties
compared to without the trend but increases them compared without differentiation. There is a
slight shrinkage effect with the model with differentiation when comparing both models with a
linear trend. The prediction uncertainties of the models with additional regressors (a2, a4) are

smaller than the ones without. Overall, a2 performs best in terms of AIC, but the model may
be too optimistic with respect to the prediction uncertainties. ♣

R-Code 2.6 ARIMA prediction. (See Figure 2.6.)

a3 <- arima(CO2, order=c(1, 1, 0))

a4 <- arima(CO2, order=c(1, 1, 0), xreg=(1:n))

pr3 <- predict(a3, n.ahead=m)

pr4 <- predict(a4, n.ahead=m, newxreg=n+1:m)

plot(CO2, xlim=c(1,n+m), ylim=c(385, 430))

matlines(n+1:m, pr3$pr+cbind(0, 2*pr3$se, -2*pr3$se), col=3, lty=1)

matlines(n+1:m, pr4$pr+cbind(0, 2*pr4$se, -2*pr4$se), col=4, lty=1)

matlines(n+1:m, pr1$pr+cbind(0, 2*pr1$se, -2*pr1$se), col=1, lty=2)

matlines(n+1:m, pr2$pr+cbind(0, 2*pr2$se, -2*pr2$se), col=2, lty=2)

legend("topleft", legend=c("AR( 1 )", "AR( 1 ) + trend", "ARI( 1, 1 )",

"ARI( 1, 1 ) + trend"), col=1:4, lty=c(2, 2, 1, 1), bty="n")
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Figure 2.6: ARIMA prediction. The dashed lines are identical to the ones of Fig-
ure 2.5. (See R-Code 2.6.)

Similar to the regression setting, the residuals of the fitted model should exhibit Gaussian
behavior. Often a square root or logarithmic transformation of the data may improve the model.

In all the prediction/forecast formulas, the BLP requires knowledge of the model parameters.
These are, in practice, not known and need to be estimated first. One often resorts to plug-in
prediction, and the BLP is only approximately the BLP.



Chapter 3

Time Series:
Spectral Methods and Examples

There is an alternative way to analyze time series data called the spectral approach.
Spectral analysis is based on a sinus/cosine basis.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter03.R.

3.1 Motivation

We often have a cyclic or “repetitive” structure in time series. A typical example is the annual
fluctuation in the CO2 observations. For the discussion of this chapter, we assume that we have
oscillating observations.

A simple model for a zero-mean oscillating time series {Yt} is

Yt = a · cos(2π ω t+ ϕ) + εt, (3.1)

where a is the amplitude, ϕ is the phase shift (or simply phase), ω is the frequency, and εt is the
classical noise (for simplicity, assumed iid). Classical trigonometric identities allow a rewriting

Yt = u1 · cos(2π ω t) + u2 · sin(2π ω t) + εt, (3.2)

where u1 = a cos(ϕ), u2 = −a sin(ϕ). Using the inverse transformations a =
√
u21 + u22 and

ϕ = atan 2(u2, u1) we have a one-to-one representation, of course.
Provided the frequency ω is known, we can estimate the coefficients uk via a linear model. If

the frequency ω is not known, we include several different frequencies ω1, . . . , ωK

Yt =

K∑
k=1

uk1 · cos(2π ωkt) + uk2 · sin(2π ωkt) + εt (3.3)

and later “choose the best” frequency(ies), for example based on “significant” estimates ûk1
and ûk2.

37

http://www.math.uzh.ch/furrer/download/sta330/chapter03.R
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Example 3.1. We now illustrate this “frequency” representation using artificial data. To further
simplify the discussion, we assume we have a time series with three frequencies but no noise
component. R-Code 3.1 first constructs the data based on (3.3) with K = 3 (also shown in
Figure 3.1) and then uses least squares to estimate {uk1, uk2}, k = 1, . . . , 4, with the three
correct frequencies and one supplementary (i.e., unnecessary) frequency.

As the frequencies from the construction and fitting coincide, we can exactly recover the
initial parameters, of course. ♣

R-Code 3.1: Decomposition of artificial data (See Figure 3.1.)

mts <- 1:(12*15) # Mimic monthly data for 15 years

n <- length(mts) # i.e., 180 observations

a <- c(1, .5, .2) # Three amplitudes

phi <- c(0, pi/3, pi/2) # and three phase shifts.

w <- c(1/12, 1/4, 1/(12*5)) # Here we have n*w cycles to observe

Mean <- 1.1

annual <- a[1] * cos(2*pi*w[1]* mts + phi[1])

seasonal <- a[2] * cos(2*pi*w[2]* mts + phi[2])

slow <- a[3] * cos(2*pi*w[3]* mts + phi[3])

y <- Mean + annual + seasonal + slow # no additional noise for the moment

plot(y, type = "l", ylim = c(-1.5, 2.5), xlab = "t", ylab = "")

matlines(cbind(Mean, annual, seasonal, slow), lty=1, col="gray")

### The coefficients can be determined by classical regression:

out <- lm(y ~ cos(2*pi*w[1]* mts) + sin(2*pi*w[1]* mts) +

cos(2*pi*w[2]* mts) + sin(2*pi*w[2]* mts) +

cos(2*pi*w[3]* mts) + sin(2*pi*w[3]* mts) +

cos(2*pi*1/24* mts) + sin(2*pi*1/24* mts))

print(round(unname(out$coef), 4)) # suppress long names

## [1] 1.100 1.000 0.000 0.250 -0.433 0.000 -0.200 0.000 0.000

all.equal(out$coef[c(2,4,6,3,5,7)], c(a*cos(phi),-a*sin(phi)),

check.attributes=FALSE)

## [1] TRUE

beta <- out$coef[-1] # Back transformation to amplitude and phase

dim(beta) <- c(2, 4)

round(rbind(a=sqrt(colSums(beta^2)), phi=atan2(beta[2,], beta[1,])), 5)

## [,1] [,2] [,3] [,4]

## a 1 0.5000 0.2000 0.0000

## phi 0 -1.0472 -1.5708 -1.1946

### Note the result of numerical instabilities of the last phase!
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Figure 3.1: Decomposition of an artificial sample. The black line is the sum of the
four gray lines. (See R-Code 3.1.)

Models (3.1) to (3.3) are in the classical setting of signal–noise (additive) decomposition.
Thus a regression framework to estimate the “signal” is fully legitimate. We now extend that
view and assume that the sine/cosine elements have a stochastic amplitude. To simplify, we start
with assuming noise-free decomposition

Yt =
K∑
k=1

Uk1 · cos(2π ωk t) + Uk2 · sin(2π ωk t), t = 1, . . . , n, (3.4)

where {Uk1, Uk2} are zero-mean independent random variables with variances σk. As often, we
assume a Gaussian distribution for these.

With trigonometric identities, we can show that for a time series Yt as given (3.4), we have

γ(h) =
K∑
k=1

σ2k cos(2π ωk h), (3.5)

establishing a link to the last chapter.

As a regression approach may indicate which frequencies in (3.4) are substantial, a so-called
periodogram summarizes the main frequencies (a more formal definition follows). For simplicity,
assume that n is odd (n = (K − 1)/2) the observed time series yt can be exactly represented as

yt = u0 +

K∑
k=1

uk1 · cos(2π k/n t) + uk2 · cos(2π k/n t), t = 1, . . . , n, (3.6)

(this is essentially a change of an orthogonal basis) and the periodogram at frequencies ωk = k/n

is given by

P (0) = u20, P (k/n) = u2k1 + u2k2, k = 1, . . . ,K = (n− 1)/2. (3.7)

Hence, the periodogram indicates which components in (3.4) are large (in magnitude) and which
are not.
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Example 3.2. The periodogram for Example 3.1 is

P (0) = 1.1, P (1/12) = 1, P (1/4) = 0.5, P (1/60) = 0.2, (3.8)

(compare row a at the end of R-Code 3.1) and zero for all other frequencies. ♣

Remark 3.1. 1. It can be shown that if U1 and U2 are iid Gaussian, then the corresponding
frequency A and phase Φ are distributed according to a chi-squared with two degrees of
freedom and an independent uniform (−1/2, 1/2). An vice versa.

2. If n is even, an additional cosine term is added, un/2 cos(2π (n/2)/n t) = un/2(−1)t.

3. The periodogram can also be derived from a decomposition (3.3), in which case it can be
seen as a measure of the squared correlation of the data with sine/cosine functions at the
corresponding frequencies. ♡

Instead of classically “regressing” the coefficients {uki}, very efficient algorithms exist. We
introduce some ideas now.

3.2 Fourier Transform

A generalization of a sine/cosine basis is based on Fourier representation using the classical
identity eıx = cos(x) + ı sin(x) with ı the unit imaginary number. The classical definition of a
Fourier transform of a (sufficiently well-behaved) function f(t) is

F (ξ) =

∫ ∞

−∞
f(t) e−2π ı ξt dt, (3.9)

where ı is again such that ı2 = −1. The argument ξ represents the frequency in Hertz for t
in seconds. There are many different flavors of the precise definition of the Fourier transform;
normalizing constants and arguments often vary depending on the scientific domain. Often a
transformation is indicated with a hat, a choice that does not work well in statistical terms.

Remark 3.2. 1. For an angular frequency ω = 2πξ, the inverse transform has the normalizing
factor 1/(2π).

2. The Fourier transform of a real function is, in general, complex. Therefore one often defines
the Fourier transform for complex functions F : C → C. With the notation used above,
the inverse transform F−1 : C → C takes the simple form

f(t) = F−1
(
F(f)

)
=

∫ ∞

−∞
F (ξ) e2π ı tξ dξ. (3.10)

3. If the function f is periodic with fundamental period T , then the Fourier transform is
an infinite sum of impulses where the impulse amplitudes are proportional to the Fourier
coefficients of the function. ♡
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We are interested in working with discrete times series and thus consider a discredited version
of equation (3.9) for a finite number of values of the function.

Definition 3.1. For observed time series y1, . . . , yn, we define the discrete Fourier transform

Fj =

n∑
t=1

yt e
−2π ıωj(t−1), (3.11)

where ωj = j/n, j = 0, . . . , n − 1 are the fundamental frequencies. The sequence {Fj} is the
discrete Fourier transform (DFT) of the sequence {yk}. ♢

The frequencies should be seen in terms of a periodic function or sequence, observed at n
points with period T . Often (including the definition above), we take T = 1 unit-less, and then
ω1 is in one cycle per sequence, and 2πω1 is in one radian per sequence.

Remark 3.3. If the concept of Dirac delta functions is known, the derivation of (3.11) is straight-
forward using the following representation. We write f(t) in (3.9) as

f(t) = f1δ(t− 1) + f2δ(t− 2) + · · ·+ fnδ(t− n), (3.12)

where f1, . . . , fn is are the observed values (say the time series yt), and δ(x) is the Dirac delta
function, 1 if x = 0 and zero otherwise. ♡

The DFT can be written in matrix form F = Wf , where F = (F1, . . . , Fn)
⊤ contains

the DFT sequence of f = (f1, . . . , fn)
⊤ and the matrix W = (Wij) contains the elements

Wij = exp(−2πı(i− 1)(j − 1)/n). In other words


F1

...
Fn

 =



1 1 1 1 . . . 1

1 w w2 w3 . . . wn−1

1 w2 w4 w6 . . . w2(n−2)

...
1 wn−1 w2(n−1) w3(n−1) . . . w(n−1)(n−1)




f1
...
fn

 , (3.13)

where w = exp(−2πı/n).

Remark 3.4. The matrix W and its elements have many properties that we summarize below
(most are straightforward to show).

1. The second column of the matrix, w0, . . . , wn−1, are the n roots of unity. Hence, we often
write wn.

2. The powers of the entries of W can be simplified using the identity exp(−2πı · j/n) =

exp(−2πı · (j + kn)/n) for all k ∈ Z. More specifically w2
n = −1, wn = w2

n, wn
n = 1 and for

n even wn/2 = w2
n.

3. W is the Vandermonde matrix of the n roots of unity.

4. W−1 exists (property of a Vandermonde matrix) and thus f = W−1F. Further, the
elements of W−1 are exp(2πı(i − 1)(j − 1)/n)/n, i.e., a similarly defined Vandermonde
matrix based on 1/w instead of w.



42 CHAPTER 3. SPECTRAL METHODS AND EXAMPLES

5. The matrix U = W/
√
n is unitary, i.e., U∗U = I, where ∗ denotes the conjugate transpose.

Therefore, the DFT is often defined based on U.

6. For a real sequence f , the Fourier sequence satisfies Fn−k = F k and thus reduces the
degrees of freedom of the DFT sequence to n.

7. Many books use a “C-language” indexing approach where the indices of vectors run from 0

to n− 1. In such a setting, Fr =
∑n−1

s=0 w
rsfs, r = 0, . . . , n− 1. ♡

From equation (3.13), it seems that calculating a DFT sequence requires n2 operations
(matrix-vector multiplication). However, there are so-called divide-and-conquer approaches re-
sulting in efficient algorithms. A divide-and-conquer strategy consists of three steps: (1) Divide
the problem into subproblems of smaller size (typically into two subproblems). (2) Solve the
small subproblems directly or solve each subproblem recursively by the same algorithm. (3)
Combine the subproblems’ individual solutions to get the original problem’s solution.

In our setting, the second step consists of performing the DFT as two DFTs of length n/2,
reducing the load from n2 to 2× (n/2)2 = n2/2. The operation count T (n) for a general divide-
and-conquer strategy of a problem of size n can be written by the recurrence relation

T (n) = aT (n/b) +O(n), (3.14)

where a denotes the number of subproblems, b determines the fraction of subproblem size, and
O(n) is the operation count for the third step above. Typically, T (1) is constant and a = b. The
total operation count T (n) depends on the recombination cost. Often, O(n) has order nlogb a in
which the total count is reduced to nlogb a log(n). (If the recombination step is very costly, it will
ultimately dominate the decomposition, and the algorithm has its operation count).

To introduce the so-called fast Fourier transform (FFT), we assume that n is a power of two.
We start by reordering the even indexed and the odd indexed series and write the vector-vector
multiplications in (3.13) as the sum of two vector-vector multiplications of half of the size. Each
element Wij can be rewritten in terms of a power of the principal n/2 root of unity (Property 2
of Remark 3.4). That means two FFTs of half the size. The recombination is

Fi = F even
i + aF odd

i , Fi+n/2 = F even
i − aF odd

i , (3.15)

where F even
i and F odd

i are the DFTs of the even and odd indexed sequence and where a is a
power of wn. To calculate F even

i and F odd
i , we restart the algorithm with n/ as the new problem

size.
This FFT algorithm is most often termed the Cooley–Tukey FFT. Instead of grouping the

original series, it is also possible to group the frequencies Fi in terms of even and odd indices.
A similar divide-and-conquer approach exists. In both cases, a = b = 2 and the combination in
the final step is O(n) = 5n (one complex multiplication and complex addition), and thus, the
algorithm has operation count n log2 n.

If case n is not a power of two, the operation count remains essentially the same, but the
derivation gets more cumbersome. In practice, one often adds pseudo observations with zeros
until reaching the next power.

In the time domain, the autocovariance determines the correlation structure over time. The
spectral density introduced below is the corresponding quantity in the spectral domain.



3.2. FOURIER TRANSFORM 43

Definition 3.2. If the autocovariance function of a time series is absolutely summable, then the
spectral density is given by

f(ω) =
∞∑

h=−∞
γh e

−2π ıωh = γ0 + 2
∞∑
h=1

γh cos(2π ω h), −1/2 ≤ ω ≤ 1/2. (3.16)

and the inverse transform is given by

γh =

∫ 1/2

−1/2
f(ω) e2π ıωh dω, h = 0,±1,±2, . . . (3.17)

♢

Notice that f(ω) ≥ 0, f(ω) = f(−ω). We would also have f(ω) = 0, for ω < −1/2 or
1/2 < ω. The spectral density is somewhat like a “un-normalized” probability density.

Example 3.3. For white noise, the autocovariance function is γ(h) = σ2 for h = 0 and zero
otherwise. Hence the spectral density is f(ω) = σ2 for −1/2 ≤ ω ≤ 1/2. ♣

As Fourier pairs are one-to-one, the autocovariance function γ(h) and the spectral density
function f(ω) contain the same information. From a signal, we can thus analyze the ACF
(expressing information in terms of lags) or the spectral density (expressing information in terms
of cycles). Depending on the question, it is easier to handle the problem in the time domain or in
the spectral domain. For example, analyzing the spectrum is much more adequate for identifying
cycles or periodicities.

The spectral density can be estimated using estimates of the autocovariance function in 3.16.
In practice, better approaches exist by slightly smoothing the time series.

Definition 3.3. The periodogram of a time series yt is given by

Ik = |Fk|2, (3.18)

where Fk is the DFT of the series yt. ♢

In the above definition, |Fk|2 = FkFk and thus Ik is a real. Further, I0 = ny. The periodogram
is a real, discrete “representation” the spectral density

Ik = FkFk =

n∑
r=1

yr e
−2π ı rk/n

n∑
s=1

ys e
2π ı sk/n =

n∑
r=1

(yr −y) e−2π ı rk/n
n∑

s=1

(ys −y) e2π ı sk/n (3.19)

=

n∑
r=1

n∑
s=1

(yr −y)(ys −y) e−2π ı (r−s)k/n (3.20)

=

n−1∑
h=−(n−1)

n−|h|∑
t=1

(yt+|h| −y)(yt −y) e−2π ıhk/n = n

n−1∑
h=−(n−1)

γ̂h e
−2π ıhk/n, (3.21)

where in the last equality of (3.19), we used the fact that the sum of the n roots of unity sum
to one.

Further, it is possible to show that the spectral density is the long-term average of the
periodogram.
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Example 3.4. R-Code 3.2 illustrates the links between (1) fitting some sine/cosine terms to
observations, (2) estimating the spectrum, (3) DFT of the series.

Note that the function spec.freq() defines the spectrum scaling 1/frequency(), defining
the spectral density a density over the range from -frequency()/2 to frequency()/2. The
input is a simple vector y, and thus frequency(x) is by default one. ♣

R-Code 3.2: Complete example of spectral analysis for artificial data. (See Figure 3.2.)

### Suppose we do not know the frequencies at hand. We then have to

### estimate these for all possible 2*pi/n * j, j=0,1,...

sp <- spec.pgram(y, main="", sub="", taper=0, detrend=FALSE)

# three large peaks (significant!)

# Plots automatically the spectrum, see stats:::plot.spec

### Spectrum is evaluated for fundamental frequencies: (0:(n-1))/n

### but 0 is not included. Additionally, we have symmetry:

all.equal(1:(n/2)/n, sp$freq)

## [1] TRUE

### Determine the most important frequencies:

1/sp$freq[head(order(sp$spec, decreasing=TRUE))]

## [1] 12.0000 4.0000 60.0000 3.9130 4.0909 11.2500

### 12 = annual, 4 = seasonal and 60 = slowly varying cycle

### verify manually:

rbind(frequency=sp$freq[c(15, 45, 3)], spectrum=sp$spec[c(15, 45, 3)])

## [,1] [,2] [,3]

## frequency 0.083333 0.25 0.016667

## spectrum 45.000000 11.25 1.800000

### Note that the spectrum is plotted on a log scale. Here we have

### three distinct waves in our signal, and hence, we have a textbook case.

plot(sp$spec, type="h")

### Notice that the mean is filtered:

all.equal(spec.pgram(y, plot=FALSE, taper=0, detrend=FALSE)$spec,

spec.pgram(y+3, plot=FALSE, taper=0, detrend=FALSE)$spec )

## [1] TRUE

### We can do everything from scratch:

fftManual <- function(z) { # From the help of fft (without "inverse")

n <- length(z)

k <- 0:(n-1)

ff <- -2*pi * 1i * k/n

vapply(1:n, function(h) sum(z * exp(ff*(h-1))), complex(1))
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# the last argument is to return a complex value.

}

### notice that exp(2*pi * 1i * k/n) = 1 for k=0

### exp(2*pi * 1i * j/n) = exp(2*pi * 1i * (j+k*n)/n)

all.equal(fft(y), fftManual(y)) # Compare fftManual() against fft()

## [1] TRUE

F <- fftManual(y)

### There is redundancy because of the real entries.

### We observe the symmetry:

all.equal(F[1+(1:(n/2))], Conj(F[n+1-(1:(n/2))]))

## [1] TRUE

all.equal(as.double(F[1]/n), mean(y)) # first component carries the mean.

## [1] TRUE

FFc <- Re(F * Conj(F))/n

all.equal(FFc[1:(n/2)+1], sp$spec)

## [1] TRUE

### Here, we do have exactly the signal:

all.equal(FFc[c(15,45, 3)+1], colSums(beta^2)*n/4)

## [1] "Numeric: lengths (3, 2) differ"

### Putting things together, we get:

specManual <- function(xfft){

N <- length(xfft)

Nspec <- floor(N/2)

freq <- seq.int(from = 1/N, by = 1/N, length.out = Nspec)

spec <- (Re(xfft * Conj(xfft))/N)[2:(Nspec+1)]

list(freq=freq, spec=spec)

}

all.equal(specManual(F),

spec.pgram(y, plot=FALSE, taper=0, detrend=FALSE)[1:2])

## [1] TRUE

Example 3.5. We now add white noise to the signal of the artificial data constructed in Ex-
ample 3.1. R-Code 3.3 illustrates that a random component with σ = 0.3 (“amplitude” stronger
than seasonal and slowly varying component) still allows us to identify the three cycles.

The white noise shifts the spectrum, which is because white noise is a random signal with a
constant power spectral density (see Example 3.3). Note that the spectrum (without the peaks)
is not a good estimate of the variance of the errors. The reason is a slight smoothing when
calculating the spectrum. To eliminate the later, use the argument taper=0 in spectrum(). ♣
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Figure 3.2: Spectral analysis. (See R-Code 3.2.)

R-Code 3.3: Spectral analysis for artificial data with noise. (See Figure 3.3.)

# we use the same signal but add a noise component

set.seed(14)

sd.noise <- 1/3

z <- y + rnorm(n, sd=sd.noise)

plot(z, type="l") # hard to identify the cycles!

spz <- spectrum(z, main="", sub="") # two large peaks, a third weak one

plot(spz$spec, type="h")

c(estimate=mean(spz$spec[-c(3,15,45)]), exact=sd.noise^2) # bad estimate!

## estimate exact

## 0.15622 0.11111

3.3 Filters

The literature often refers to low-pass and high-pass filters. A low-pass filter is such that low
frequencies are passed, and high frequencies are attenuated. A high-pass filter is such that high
frequencies are passed, and low frequencies are attenuated. Recall: high frequencies correspond
to short wavelengths. In other words, a low-pass signal removes the high-frequency fluctuations
and smooths the data.

We now present a few simple filters. Denote xi be the input signal and yi the filtered (output)
signal.
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Figure 3.3: Spectral analysis of a signal with noise. (See R-Code 3.3.)

The classical weighted moving average filters are

yi = w1xi + w2xi−1 + · · ·+ wKxi+1−K , (3.22)

for suitably chosen weights w1, . . . , wK .
A different low-pass filter, the exponentially weighted moving average filter that is given by

yi = αxi + (1− α)yi−1, 0 ≤ α ≤ 1 (3.23)

if i > 1 and y1 = x1 otherwise. The name stems from recursively expressing the definition to

yi = αxi + α(1− α)xi−1 + α(1− α)2xi−2 + . . . . (3.24)

A high-pass filter is

yi = α(xi − xi−1) + αyi−1. (3.25)

Remark 3.5. In general, a linear filter is

yt =
∞∑

j=−∞
ajxt−j , (3.26)
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for absolutely sumable coefficients {aj}. In such a setting, it is straightforward to show a one-to-
one relationship between the spectral densities of the input and output series. This relationship
can also be used to derive the spectral densities of ARMA(p, q) processes. ♡

3.4 Additional Examples

3.4.1 CO2 data

We revisit the annual CO2 seen in Section 2.4. Plotting the spectrum of the raw time series
indicates three peaks at zero, one, and two. The peak at zero is due to the (cubic) trend. The
remaining two peaks are the annual cycle and climatic differences in both hemispheres.

Removing the annual trend with a regression (cubic polynomial with interaction for Pinatubo)
from the series yields a surprisingly similar spectrum for all but the seven first frequencies.

R-Code 3.4 Spectral analysis of CO2 data. (See Figure 3.4.)

sp1 <- spectrum(co2, main="", sub="")

lm3 <- lm(craw ~ indi * (poly(time, 3))) # detrend

co2res <- ts(lm3$resid, start=c(1958, 3), frequency=12)

sp2 <- spectrum(co2res, plot=FALSE)

lines(sp2$freq, sp2$spec, col=3)

1/sp2$freq[ head(order(sp2$spec, decreasing=TRUE))]
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Figure 3.4: Spectrum of raw (black) and detrended (green) CO2 time series. (See
R-Code 3.4.)

3.4.2 Seat Belt Data

We now consider the R dataset UKDriverDeaths, a time series giving the monthly totals of
car drivers in Great Britain killed or seriously injured from January 1969 to December 1984
(n = 192). The original data is from Harvey and Durbin (1986).
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Compulsory wearing of seat belts was introduced on 31 Jan 1983, and the dataset is often
used to query or study the effect of seat belt legislation on casualties.

Here we want to point out that a spectral analysis may not be the ubiquitous tool for all
time series.

The time series exhibits a strong seasonal component and a (possibly) smooth trend, as
shown in Figure 3.5. Instead of using a parametric approach, we use an autoregressive seasonal
component. The fitted component is sar1, in models f1 and f2 significant. The prediction using
a covariate reduces the prediction mean and prediction uncertainty.

R-Code 3.5: Time series of the UKDriverDeaths dataset. (See Figure 3.5.)

data(UKDriverDeaths) # Notice that there are additional covariables

# available in "Seatbelts" (datasets package)

n <- length(UKDriverDeaths) # n=192

belt <- c(rep(0,169), rep(1,23))

incr <- c(1:60, rep(0, n-60))

plot(UKDriverDeaths, xlim=c(1969,1986))

### Redefine the variable to play with different versions thereof:

UKDD <- UKDriverDeaths

# UKDD <- log(UKDriverDeaths)

# UKDD <- lm(UKDriverDeaths ~ belt )$resid

# UKDD <- lm(log(UKDD) ~ belt+incr )$resid

# UKDD <- lm(log(UKDD) ~ belt+incr+factor(rep(1:12,length=n)) )$resid

acf(UKDD)

spz <- spectrum(UKDD, main="", sub="") # two large peaks, a third weak one

# log="no", type="h")

### There is a possibility to play with the order...

f1 <- arima(UKDD, order=c(2,0,0),season=c(1,0,0), method="ML")

f2 <- arima(UKDD, order=c(2,0,0),season=c(1,0,0), method="ML", xreg=belt)

f1

##

## Call:

## arima(x = UKDD, order = c(2, 0, 0), seasonal = c(1, 0, 0), method = "ML")

##

## Coefficients:

## ar1 ar2 sar1 intercept

## 0.435 0.203 0.667 1643.095

## s.e. 0.075 0.073 0.055 83.893

##

## sigma^2 estimated as 24942: log likelihood = -1248.1, aic = 2506.3
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f2

##

## Call:

## arima(x = UKDD, order = c(2, 0, 0), seasonal = c(1, 0, 0), xreg = belt, method = "ML")

##

## Coefficients:

## ar1 ar2 sar1 intercept belt

## 0.347 0.197 0.689 1714.813 -365.063

## s.e. 0.075 0.074 0.053 69.382 80.698

##

## sigma^2 estimated as 22720: log likelihood = -1239.4, aic = 2490.8
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Figure 3.5: UKDriverDeaths data. (See R-Code 3.5.)
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It is interesting to note that an integrated model does not improve the fit compared to the
inclusion of the belt covariate. An AIC comparison would issue a warning as not all models are
fitted on to the same number of observations due to the differentiating in an integrated model.

The raw data represents counts, and a priori, a “Gaussian” model may not be adequate. A
comparison of the residuals of f2 and a corresponding model with square root transformed input
sqrt(c(UKDriverDeaths)) is not very decisive.

3.5 Bibliographic Remarks for Time Series

There are plenty of good and valuable time series books, like Box et al. (2008); Brockwell and
Davis (2010); Shumway and Stoffer (2010). They are all quite formal with notation. For the
latter, there is a public pdf version available at www.stat.pitt.edu/stoffer/tsa3/tsa3.pdf, as well
as an “easy version” www.stat.pitt.edu/stoffer/tsa3/tsa3EZ.pdf, that covers essentially the topics
covered here. Both versions have an accompanying R package astsa.

Brockwell and Davis (1991) is another classic, at the upper end, with respect to technicalities.

There exist many lecture notes for time series. A notable one is faculty.smu.edu/tfomby/
eco6375/BJ Notes/Forecast Profiles.pdf which specifies explicitly many forecast functions (in-
cluding for ARI(1,1))

The chapter www.robots.ox.ac.uk/ sjrob/Teaching/SP/l7.pdf gives an excellent and acces-
sible overview of discrete Fourier transform. The algorithmic details of the FFT are nicely
illustrated in Chapter 3 ‘The Divide-and-Conquer Paradigm and Two Basic FFT Algorithms’ of
Chu and George (1999).

When working with the DFT matrix, the following identities are helpful:

b−1∑
k=a

exp(ısk) =
exp(ısb)− exp(ısa)

exp(ıs)− 1
, (3.27)

b−1∏
k=0

exp(ısk) = exp(ısb(b− 1)/2), (3.28)

for s ∈ R and integers a < b.

https://www.stat.berkeley.edu/~yuekai/153/tsa3.pdf
http://www.stat.pitt.edu/stoffer/tsa3/tsa3EZ.pdf
http://faculty.smu.edu/tfomby/eco6375/BJ%20Notes/Forecast%20Profiles.pdf
http://faculty.smu.edu/tfomby/eco6375/BJ%20Notes/Forecast%20Profiles.pdf
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
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Chapter 4

Lattice Data:
Concepts

We introduce spatial models for data on a specific grid. These models can
also be used for modeling data over a set of areas. R-Code for this chapter:

www.math.uzh.ch/furrer/download/sta330/chapter04.R.

4.1 Introduction

In the last chapter, we looked at temporal data. That means we have introduced models for de-
pendent data that were observed at regular (one-dimensional) locations. Extending this concept
to two dimensions would lead to locations on a regular grid.

There is, however, another significant difference between time series data and lattice data. In
time series, we have a temporal “direction” and forecasting (prediction) is a very natural concept.
In the case of lattice data, forecasting in the sense of interpolation or extrapolation is only used
in rare cases. Tasks are much more centered around the concept of “smoothing” (i.e., filtering in
the time series context). Smoothing can be used to separate the signal from the noise or to fill
in missing values.

Lattice data is also called areal data in many books, based on the idea that the area under
investigation is inherently discretized into a finite number of blocks or sub-areas. The areas may
be very regular, matrix, or image-like (Example 1.5 discusses such a case) or irregular, as shown
in Figure 1.3 of Example 1.2. The set of a representative location of the block defines a lattice.

The lattice may have a varying size of areas, having a possible effect on the spatial variability
(“smoothness”) of the data. Further, the lattice may have varying shapes of the individual areas
and thus a different structure of neighbor areas. An example illustrating both aspects is the
partition of the lower 48 US states into counties. Figure 4.1 shows how the sizes of the counties
vary as well as the number of counties with a sharing boundary (i.e., number of neighbors. A
pure geographic distance between the counties does not necessarily make sense.

53

http://www.math.uzh.ch/furrer/download/sta330/chapter04.R
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Figure 4.1: The 3082 counties of the lower 48 US states (left panel) and the histograms
of the number of neighbors (right). The vertical line represents the average of 5.9. Seven
counties do not share any boundaries with others. (Data from packages maps and spam.)

Example 4.1. The prime example of a lattice dataset is the sudden infant death syndrome
(SIDS) cases in North Carolina, e.g., Cressie (1993), further details to references are given in the
vignette of the package spdep, i.e., vignette("sids", package="spdep"). R-Code 4.1 loads
the data and represents the counties.

To represent the data, formal ‘shape’-files can be processed. There exist many ways to read
in a shape-file. We recommend using tools provided by the packages sf and terra. Here, the
maps package can be used as well: map("county", region="North Carolina", ...). Care is
needed when assigning colors to individual counties. ♣

R-Code 4.1 Crude SIDS rates for the period 1974 to 1979. (See Figure 4.2.)

library(sf) # General handling of spatial data objects

library(spdep) # General description of the SIDS data

library(spData) # shape-file for North Carolina counties

### the raw data itself is available through

# data(nc.sids, package="spdep")

nc <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)

# st_crs(nc) <- "+proj=longlat +datum=NAD27"

# row.names(nc) <- as.character(nc$FIPSNO)

nc$rates <- nc$SID74 / nc$BIR74

plot(nc["rates"], pal=tim.colors(10))

In this chapter, we will use the generic π(·) expression to denote densities. The vast Most
textbooks, articles, and suchlike about Bayesian statistics also use this notation. We also use
the notation of “negative” indices. Let x be an arbitrary n-vector. Then x−i is the vector
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Figure 4.2: Visualization of crude SIDS rates for the period 1974 to 1979. (See R-
Code 4.1.)

(x1, . . . , xi−1, xi+1, . . . , xn)
⊤, that means the vector (n − 1)-vector obtained by deleting the ith

component of x .

4.2 Conditionally Autoregressive Models

For simplicity, take a regular grid as shown in the panels of Figure 4.3. The basic idea behind
conditionally autoregressive (CAR) models is that the mean of the distribution of a location i

depends on the other grid locations. Conditionally, the “red” location depends (conditionally) on
the “blue” ones, possibly on the “blue” and “green” ones etc. In general terms, a simple model is
given by

Yi | y−i ∼ N
( ∑

j,j ̸=i

bijyj , τ
2
i

)
, i = 1, . . . , n. (4.1)

There are some additional conditions (mainly on {bij} and {τ2i }) but Brook’s lemma allows us
to conclude that the joint distribution of Y is also Gaussian

Y ∼ Nn(0, (I−B)−1T), (4.2)

where B = (bij) and bii = 0, T = diag(τ2i ).
Through the joint distribution, we can directly derive a few conditions on the model. Because

a covariance matrix is symmetric, it is required that

bij
τ2i

=
bji
τ2j

(4.3)

Further, the matrix I − B has to be positive definite. As typically done, a low-dimensional
parameterization will be used (see Section 5.3).

The CAR model approach specifies the joint density through n full conditional densities{
π(yi | y−i)

}
has been pioneered by Besag (1974). For non-Gaussian distributions, a few more

theoretical results are necessary but are receiving more and more attention.
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Figure 4.3: Grid locations. For a specific location, indicated in red, first-order neigh-
bors (left), eight neighbors (middle), first- and second-order neighbors (right).

4.3 Gaussian Markov Random Fields

We now impose a Markov property on the conditional dependence structure and assume that
we only have conditional dependence on a few neighbor sites. In a temporal setting, neighbor is
interpreted as the previous and next value; in lattice models, neighbor typically signifies sharing
a common edge or boundary. We denote the neighbor relation with i ∼ j for sites i ̸= j. The
relation is symmetric, i.e., if i ∼ j, then j ∼ i. In the middle panel of Figure 4.3 the blue
locations are first order neighbors of the red location. In terms of (4.1), only four of the {bij}
are non-zero. In the center panel of Figure 4.3, the four green neighbors of the red location have
been added, implying four more non-zero {bij}s.

Neighbors of first-order neighbors are often called second-order neighbors. Additional neigh-
borhoods or contiguity structures exist for regular lattices, which are referred to differently in the
literature. The first-order neighborhood is also called 4-neighborhood, von Neumann, or rook
neighborhood (Figure 4.3, left panel). The center panel of Figure 4.3 shows a Moore or Queen
neighborhood. The green neighbors represent a Bishop’s structure. The right panel of Figure 4.3
illustrates a von Neumann neighborhood of range 2 (all locations within Manhattan distance 2).

It is convenient to represent the dependence structure with an undirected, labeled graph
G = (V, E), where V is the set of nodes in a graph and E the set of edges {i, j}, i ̸= j ∈ V. As
example, Figure 4.4 shows the 5 counties of Rhodes Island (V = {1, 2, 3, 4, 5}) and the first-order
neighbor structure (E =

{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 5}

}
) and the associated

adjacency matrix A, with aij = aji = 1 if {i, j} ∈ E , ∀i ̸= j ∈ V and aij = aji = 0 otherwise.

Definition 4.1. The precision of a random variable is the inverse of the variance.
In the case of random vectors, the inverse of a covariance matrix is called the precision matrix.

♢

The precision and the diagonal precision matrix is an intuitive concept: a high precision (low
variance) implies a lot of knowledge about the variable.
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Figure 4.4: The 5 counties of Rhodes Island (left panel) and the associated adjacency
matrix with non-zero values represented in gray (right panel).

Definition 4.2. A random vector Y = (Y1, . . . , Yn)
⊤ is a GMRF with respect to a labelled

graph G = (V, E) with mean µ and (spd) precision matrix Q if its density is given by

π(y) = (2π)−n/2 det(Q)1/2 exp
(
− 1

2
(y − µ)⊤Q(y − µ)

)
(4.4)

and Qij ̸= 0 ⇐⇒ {i, j} ∈ E , ∀i ̸= j. ♢

We will denote independence between two random variables X and Y by X ⊥ Y and condi-
tional independence between X and Y given Z = z by X ⊥ Y | Z = z.

Property 4.1. Let Y be a GMRF with respect to G = (V, E) with mean µ and (spd) precision
matrix Q. Then the following hold.

1. Yi ⊥ Yj | Y−ij = y−ij ⇐⇒ Qij = 0.

2. E[Yi | Y−i = y−i] = µi −
1

Qii

∑
j:j∼i

Qij(yj − µj),

3. Prec(Yi | Y−i = y−i) = Qii,

4. Corr(Yi, Yj | Y−ij = y−ij) = − Qij√
QiiQjj

, i ̸= j.

4.4 Simultaneous Autoregressive Models and Other Extensions

As an alternative to a CAR specification, we now look at an autoregressive approach that is
closer to the time series one:

Yi =
∑
j,j ̸=i

bijYj + εi, εi ∼ N (0, σ2i ), i = 1, . . . , n. (4.5)

To see the link to the time series, suppose a univariate grid and set bi,i−1 = ϕ and zero for all
others.
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Model (4.5) is called a simultaneous autoregressive (SAR) model. The condition that the
sum is over i ̸= j implies that bii ≡ 0 for all i. Further conditions on {bij} exist, and for the
moment, we assume that I−B is invertible. Then

Y ∼ Nn

(
0, (I−B)−1V((I−B)−1)⊤

)
, (4.6)

where V = diag(σ2i ). We refer to the next chapter for a parameterized version of this model.
There is a link between CAR and SAR models. To see the link, we write both models as

Y = BY + ε. (4.7)

The models and the (dis)similarities are summarized in Table 4.1. However, every SAR model
can be uniquely written as a CAR, not vice-versa. See also Ver Hoef et al. (2018).

Table 4.1: (Dis)similarities between a CAR and a SAR model.

CAR SAR

ε ∼ Nn(0,T(I−B)⊤) ε ∼ Nn(0,V)

Y ∼ Nn(0, (I−B)−1T) Y ∼ Nn

(
0, (I−B)−1V((I−B)−1)⊤

)
Cov(Y, ε) = T Cov(Y, ε) = (I−B)−1V

SAR models are typically introduced on the residuals of Y −Xβ, i.e., a regression mean is
added to the model.

SAR models have been extended to a spatio-temporal setting, leading to the so-called STAR
models. As a side note, a multivariate extension is typically done on the CAR setting, leading
to the so-called MCAR models.

4.5 Intrinsic Gaussian Markov Random Fields

A density that does not integrate to one is called an improper density. Such densities are typically
used as priors in a Bayesian framework because the resulting posterior may be proper.

Here, we will look at two different types of “improper” GMRF resulting from a natural
constructive approach. These GMRFs will be later used as building blocks in our examples.

4.5.1 Random Walk Models

In many modeling approaches, we assume that a series consisting of Y1, . . . , Yn has a constant
mean µ or a mean that is parameterized (in a regression setting). This is often very restrictive,
and it is natural to relax this condition by considering that Yi+1 − Yi ∼ N (0, κ−1).

More specifically, assume that the locations of n random variables are i = 1, . . . , n, e.g.,
referred to as equispaced observations on the transect. In such a case, we also often consider i as
the time. We define ∆Yi = Yi+1−Yi, i = 1, . . . , n− 1. Assuming that the ∆Yi are iid N (0, κ−1),
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we have

π(∆y) ∝ κ(n−1)/2 exp
(
− κ

2

n−1∑
i=1

(∆yi)
2
)
= κ(n−1)/2 exp

(
− 1

2
y⊤Qy

)
, (4.8)

where the n× n precision matrix is given by

Q = κ



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


= κD⊤D, D =


−1 1 0 . . .

0
. . . . . . . . .

...
. . . −1 1

 ∈ Rn−1×n. (4.9)

Note that (4.8) is not a proper density because Q1 = 0. In other words, the precision Q has
rank n− 1, thus, is rank deficient (here symmetric positive-semidefinite) and does not fit in our
“classical” framework for multivariate normal variables.

Definition 4.3. Let Q be an n × n symmetric positive-semidefinite matrix of rank n − k > 0.
Y is an improper GMRF of rank n−k and parameters (µ,Q) with respect to the labelled graph
G = (V, E) if its density is

π∗(y) = (2π)−(n−k)/2det∗(Q)1/2 exp
(
− 1

2
(y − µ)⊤Q(y − µ)

)
(4.10)

and Qij ̸= 0 ⇐⇒ {i, j} ∈ E , ∀i ̸= j. ♢

The term det∗(Q) is the generalized determinant, i.e., the product of all the non-zero eigen-
values of Q. The parameters (µ,Q) no longer represent the mean and the precision since they
no longer exist formally.

Definition 4.4. An intrinsic GMRF (IGMRF) of first-order (or order n − 1) is an improper
GMRF of rank n− 1 where Q1 = 0. ♢

The model given by (4.8) is thus an IGMRF of first-order, also referred to as Random Walk
of first-order, RW1.

Prediction in an RW1 model is a meaningful concept considering space as time. We have, for
example, the following results:

Yi | Y−i = y−i ∼ N
(1
2
(yi+1 + yi−1),

1

2κ

)
, (4.11)

Yi+p | Yi = yi, Yi−1 = yi−1, . . . ∼ N
(
yi,

p

κ

)
, 0 < i < i+ p ≤ n. (4.12)

Notice that there is no shrinkage towards the mean, as we have seen in the case of an AR(p).
Here, we are in a similar framework as an ARIMA(p, 1, q) setting.

Similar to a RW1 model, we can define a RW2 by defining ∆2Yi = ∆Yi+1 − ∆Yi = Yi+2 −
2Yi+1 + Yi, i = 1, . . . , n− 2. We assume again that the ∆2Yi are iid N (0, κ−1).

In a similar spirit, we can construct models for seasonal variation. For example, with period
m = 12, we assume that

Yi+0 + Yi+1 + · · ·+ Yi+m−1
iid∼ N (0, κ−1), i = 1, n−m+ 1. (4.13)
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4.5.2 GMRF Under a Linear Constraint

Assume that X is a GMRF with mean µ = 0 and precision matrix Q. We decompose Q into its
eigenvalues and eigenvectors

Q = VΛV⊤ =

n∑
i=1

λie ie i
⊤ (4.14)

with Λ = diag(λ1, . . . , λn), V = (e1, . . . , en) with V⊤V = In. Write for 0 < p < n, A⊤ =

(e1, . . . , ep) and set Y = V⊤X. We are interested in the conditional density π(y | Ax = a) for
some p-vector a = (a1, . . . , ap)

⊤. It is straightforward to show that

π(y | Ax = a) = 1[y1:p=a ]

n∏
i=p+1

π(yi). (4.15)

The following statements hold

E[Y | AX = a ] =

(
a
0

)
, (4.16)

Prec(Y | AX = a) =



0 . . . 0
...

. . .

0

λp+1
...

. . . 0

0 . . . 0 λn


, (4.17)

E[X | AX = a ] = V

(
a
0

)
= a1e1 + · · ·+ apep, (4.18)

Prec(X | AX = a) = V


0 0

λp+1

. . .

0 λn

V⊤ := Q̃. (4.19)

(4.20)

Hence, we also have

log π(x | Ax = a) = −n− p

2
log(2π) +

1

2

n∑
i=p+1

λi −
1

2
xQ̃x . (4.21)

In other words, we can separate the vector X into two components, X = X∥ +X⊥ and in view
of (4.10), π∗(x ) = π(x⊥). Hence, to simulate realizations from (4.10), we draw Yi, i = p+1, . . . , n,
iid from N (0, κ−1) and put X = Yp+1ep+1 + · · ·+ Ynen.

Remark 4.1. In case of an arbitrary condition BX = b, we express the constraints in terms of
AX = a , where A⊤ span the nullspace of Cov(X | BX). ♡
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4.5.3 Specific Example

Notice that a constrained GMRF and an intrinsic GMRF induce two different types of singu-
larities in the covariance matrix. There is a “variance collapse” for the first and an “variance
inflation” for the second.

We illustrate the concept of these improper GMRFs with a simple 2×2 example in R-Code 4.2.
We use the same seed for all simulations, so the “projections” will become clear.

In terms of the covariance matrix, the constrained simulation results in a rank-deficient
covariance matrix, i.e., one eigenvalue is zero. The same holds for the precision matrix.

In the case of a RW1, we simulate from Q(γ) = Q + γ11⊤ for smaller and smaller γ. In
an RW1 model, we do not specify any “marginal” distributions; thus, no information about the
individual means is known, which can be spread over the entire real line. The eigenvalues of
Q(γ) are 2 and 2(0.1+γ). Thus, the eigenvalues of Sigma are 0.5/γ and 0.5 and, hence, variance
inflation as soon as γ → 0.
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Figure 4.5: Sampling from “improper” GMRFs. Left for constrained sampling with
(1,−1)X = 0 (green) and (1,−3)X = 8 (blue); right for RW1, mimicked with Q(γ) for
γ = 0.1 (green) and γ = 0.01 (blue). (See R-Code 4.2.)
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R-Code 4.2 Sampling from “improper” GMRFs. (See Figure 4.5.)

n <- 50 # sample size

### Left panel:

Q <- as.spam(matrix(c(1.2, -.8, -.8, 1.2), 2, 2)) # gamma = 0.2

solve(Q) # this is the covariance matrix

## [,1] [,2]

## [1,] 1.5 1.0

## [2,] 1.0 1.5

set.seed(1); sa0 <- rmvnorm.prec(n, Q=Q)

set.seed(1)

sa1 <- as.matrix(rmvnorm.prec.const(n, Q=Q, A=cbind(1,-1)))

set.seed(1)

sa2 <- as.matrix(rmvnorm.prec.const(n, Q=Q, A=cbind(1,-3), a=8))

plot(sa0, ylim=c(-4,4), xlim=c(-4,4), xlab="Var 1", ylab="Var 2", pch=19)

points(sa1, col=3, cex=.5)

points(sa2, col=4, cex=.5)

segments(sa0[,1], sa0[,2], sa1[,1], sa1[,2], col="gray90")

segments(sa0[,1], sa0[,2], sa2[,1], sa2[,2], col="gray90", lty="19")

var(sa2)

## [,1] [,2]

## [1,] 0.93187 0.31062

## [2,] 0.31062 0.10354

### Right panel:

Q <- as.spam(matrix(c(1.1, -.9, -.9, 1.1), 2, 2)) # gamma = 0.1

set.seed(1); sa3 <- rmvnorm.prec(n, Q=Q)

Q <- as.spam(matrix(c(1.01, -.99, -.99, 1.01), 2, 2)) # gamma = 0.01

set.seed(1); sa4 <- rmvnorm.prec(n, Q=Q)

plot(sa0, ylim=c(-4, 4), xlim=c(-4, 4), xlab="Var 1", ylab="Var 2", pch=19)

points(sa3, col=3, cex=.7)

points(sa4, col=4, cex=.7)

segments(sa0[,1], sa0[,2], sa3[,1], sa3[,2], col="gray90")

segments(sa0[,1], sa0[,2], sa4[,1], sa4[,2], col="gray90")

var(sa4)

## [,1] [,2]

## [1,] 19.687 19.588

## [2,] 19.588 20.312
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4.6 Bibliographic Remarks

Virtually all books about spatial data have at least one chapter dedicated to lattice data or areal
data. We typically recommend Cressie (1993); Schabenberger and Gotway (2005); Banerjee et al.
(2003). Handling the data with appropriate packages is extensively discussed in Bivand et al.
(2008).

The SIDS dataset is extensively discussed in CRAN.R-project.org/web/packages/spdep/vi
gnettes/sids.html. See r-spatial.github.io/sf/articles/sf1.html for a gentle introduction to the
package sf, see also https://rspatial.org/ for details about the terra package.

The CAR models approach was pioneered by Besag (1974). However, it took a couple of
decades until its full power was recognized and through the nowadays computational capabilities
exploited.

Rue and Held (2005) extend the RW1 to random walk models for irregular locations, on
lattices, on irregular lattices (Section 3.3) and to random walk models of higher order (Sec-
tion 3.4), and more. See also www.stat.berkeley.edu/∼paciorek/research/techVignettes/tech Vi-
gnette5.pdf for more insights of intrinsic fields.

https://cran.r-project.org/web/packages/spdep/vignettes/sids.html
https://cran.r-project.org/web/packages/spdep/vignettes/sids.html
https://r-spatial.github.io/sf/articles/sf1.html
https://rspatial.org/
https://www.stat.berkeley.edu/~paciorek/research/techVignettes/techVignette1.pdf
https://www.stat.berkeley.edu/~paciorek/research/techVignettes/techVignette1.pdf
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Chapter 5

Lattice Data:
Simulation and Estimation

Based on existing spatial R packages, we assess spatial dependency and fit simple
GMRF models to data. Emphasis on computational aspects is given as well.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter05.R.

5.1 Spatial Objects in R

In the last chapter, we have (statistically) introduced GMRF for regular and irregular lattices.
The latter are more present in real-world applications. Unfortunately, much of the time in any
data analysis is spent visualizing the data and gathering and assembling each area’s boundary
information. Before the actual modeling, we look at some indispensable software components
when visualizing areal data.

For spatial data analysis, we need at least a list of (named) polygons from a database and
a list of neighbors for each of these. Ideally, we have direct access to plotting methods for the
polygons. The neighborhood structure is often given as a list or an adjacency matrix and may
often be constructed based the polygons themselves.

The packages sf, spdep, and spatialreg provide a framework for handling, analyzing, and
plotting spatial data. Often it is intimidating to get acquainted with the various R functions
and classes. The maintainers of the above packages tightly collaborate and are aware of the
technical overhead that might distract from a statistical analysis. For more details, a good start
is Chapter 2 of Bivand et al. (2013). The basic idea of the packages is to store all objects within a
family of classes, define many methods for these classes, and provide a useful number of helping
functions. Thus many situations, we do not need to worry about the underlying technical details.
For didactic purposes, we often illustrate the formal and the “manual” handling of the data.

In the R-Code below, we illustrate two approaches, a manual and a “formal” one. The former
one is based on simple lists containing the x and y coordinates of the polygons, bounding box,
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and polygon names. Thus the plotting can be done manually. The latter one relies on the formal
sf class. Thus the objects are more complicated but plotting is easier.

R-Code 5.1: Handling spatial objects in R.

nc <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)

nc$rates <- nc$SID74 / nc$BIR74

class(nc) # classes "sf" and "data.frame"

## [1] "sf" "data.frame"

dim(nc) # for each county a lot of information

## [1] 100 24

str(nc$geometry) # spatial info in one list element

## sfc_MULTIPOLYGON of length 100; first list element: List of 1

## $ :List of 1

## ..$ : num [1:27, 1:2] -81.5 -81.5 -81.6 -81.6 -81.7 ...

## - attr(*, "class")= chr [1:3] "XY" "MULTIPOLYGON" "sfg"

### see methods(class="sf")

### The following for an even more formal analysis

# st_crs(nc) <- "+proj=longlat +datum=NAD27"

# row.names(nc) <- as.character(nc$FIPSNO)

### eliminate the outlier:

index <- which.max(nc$rates) # "remove" outlier:

as.character(nc$NAME[index])

## [1] "Anson"

ncNo <- nc[-index,]

fitbreaks <- seq(min(nc$rates), max(nc$rates), by=diff(range(nc$rates))/10)

plot(nc["rates"], reset=FALSE, breaks=fitbreaks, key.pos=NULL)

plot(ncNo["rates"], breaks=fitbreaks, key.length=1)

rates

0.
00

2
0.

00
6

rates

Figure 5.1: SIDS rates for all 100 counties and without Anison county. (See R-
Code 5.1.)

5.2 Assessing Spatial Dependency

Correlation in time series is based on the evaluation of lagged values, e.g., analyzing Yt − Yt−1,
where Yt−1 is the lagged value of Yt. With lattice data, we can construct a spatial lag by
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considering all first-order neighbors. That means for a zero-mean process, the spatial lag of Yi is

n∑
j=1

wijYj , (5.1)

where wij are the spatial weights, often such that rows sum to one or binary values induce from
the adjaceny matrix. In practice,

∑n
j=1wij(yj −y) is used.

In the case of (arbitrary) lattice data, Moran’s I and Geary’s C are often used metrics to
assess spatial dependencies. Let Y be a multivariate random n-vector and W = (wij) a matrix
of spatial weights, often encoding a first-order neighborhood structure. Moran’s I (as estimate)
is defined as

I =
n∑
i,j
wij

∑n

i=1

∑n

j=1
wij(yj − y )(yi − y)∑
i
(yi −y)2

. (5.2)

Positive (negative) values of the observed statistic indicate positive (negative) spatial autocor-
relation. With weights summing to one, I ∈ [−1, 1]. Note that under no spatial dependency,
Moran’s I written as estimator satisfies E(I) = −1/(n − 1). Closed-form expressions for the
variance exist.

Geary’s C (as estimate) is defined as

C =
n− 1

2
∑

i,j
wij

∑
i,j
wij(yi − yj )

2∑
i
(yi − y )2

∈ [0, 2]. (5.3)

Smaller values indicate stronger positive spatial dependency, no spatial dependency is reflected
by values around 1. With weights summing to one, I ∈ [0, 2]. Hence, for interpretability and
comparability with Moran’s I, it would make more sense to consider 1−C instead of C. Moran’s
I and Geary’s C are measures of global spatial autocorrelation. However, Geary’s C is more
sensitive to local spatial autocorrelation.

Example 5.1. R-Code 5.2 illustrates the Moran’s I and Geary’s C for the SIDS data. The
construction of the spatial weight matrix W = (wij) is based on neighbors, i.e., if two counties i
and j are neighbors, wij = 1 and zero otherwise. Here we start with nc from Example 5.1, a sf

object, and construct the matrix using first the function poly2nb(). The argument queen=FALSE
implies that more than one shared boundary point is necessary. Typically, this means one
shared boundary segment. The neighbor structure is transformed to a spatial weight matrix
with nb2listw(). The argument style="W" enforces a row-sum of one for the weights wij . ♣

R-Code 5.2: Tests for spatial autocorrelation for the SIDS dataset.

(ncnb <- poly2nb(nc, queen=FALSE)) # polygons to neighbors

## Neighbour list object:

## Number of regions: 100
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## Number of nonzero links: 462

## Percentage nonzero weights: 4.62

## Average number of links: 4.62

ncW <- nb2listw(ncnb, style="W") # neighbors to weightmatrix

moran.test(nc$rates, ncW) # testing spatial dependencies 1

##

## Moran I test under randomisation

##

## data: nc$rates

## weights: ncW

##

## Moran I statistic standard deviate = 3.94, p-value = 4e-05

## alternative hypothesis: greater

## sample estimates:

## Moran I statistic Expectation Variance

## 0.247725 -0.010101 0.004276

ncWNo <- nb2listw(poly2nb(ncNo, queen=FALSE)) # style='W' is default

moran.test(ncNo$rates, ncWNo)[c(1,3)]

## $statistic

## Moran I statistic standard deviate

## 5.28

##

## $estimate

## Moran I statistic Expectation Variance

## 0.3456117 -0.0102041 0.0045413

t2 <- geary.test(ncNo$rates, ncWNo) # testing spatial dependencies 2

1 - t2$estimate[1] # to better compare both

## Geary C statistic

## 0.3565

Moran’s I and Geary’s C measure the dependency “globally”, i.e., one single value. It is
possible to assess the dependency locally. For each individual area i, the local version of Moran’s
I is given by

Ii =
(yi − ȳ)∑n

k=1(yk − ȳ)2/(n− 1)

n∑
j=1

wij(yj − ȳ), (5.4)

where again, different books or software implementations use some variations. The global version
is a standardized sum of the local ones (again slight differences in the normalization exist).

The local spatial autocorrelation can further be exploited with functions moran.plot() and
localmoran() (Bivand et al., 2013, Section 9.3.2). The output of these functions are not straight-
forward to interpret. Additionally, one needs to be careful not to over-interpret single p-values
from the many involved tests.
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Example 5.2. R-Code 5.3 illustrates local Moran’s I for the SIDS data. The visualization is
based on a function adapted from https://github.com/gisUTM/spatialplots and included in
the chapter’s R script. The interpretation is not straightforward, as there seems to be a missing
symmetry. The lower panel of Figure 5.2 plots the lagged rates versus the rates. Alignment
along the diagonal line indicates spatial dependency. The plot also marks outlying values from
the regression lm(y˜Wy) where Wy=W %*% y are the lagged variables. ♣

R-Code 5.3: Tests for spatial autocorrelation for the SIDS dataset.

localI <- localmoran(nc$rates, ncW)

plot.localmoran(nc, "rates", local.moran=localI, weights=ncW)

localINo <- localmoran(ncNo$rates, ncWNo)

plot.localmoran(ncNo, "rates", local.moran=localINo, weights=ncWNo)

moran.plot(ncNo$rates, ncWNo, xlab="SIDS rates", ylab="Lagged variable",

labels=ncNo$NAME, ylim=c(0, .01), xlim=c(0, 0.01))

abline(c(0,1), col="gray")
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Figure 5.2: Visualization of local Moran’s I. (See R-Code 5.3.)

In certain situations, some areas/polygons do not have neighbors. In such situations, most
approaches may handle such polygons differently (e.g., the resulting value is zero or NA). The
argument zero.policy specifies the choices.

If data is available on a regular grid, autocovariances along the dimensions can be calculated
similarly to time series. Under the assumption of stationarity, it is possible to estimate an

https://github.com/gisUTM/spatialplots
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autocovariance function based on the distance between the grid points. This approach is much
more natural in the framework of geostatistics, and we discuss it extensively in Chapter 10.

5.3 Specific Models for GMRF

We now introduce a low-dimensional parametrization of a GMRFs by reducing the number of
parameters {bij} and τ2i under the symmetry constraint and positive definiteness of the precision
matrix.

We often assume that τi = τ , for all i. That means that the conditional precision is constant.
Another simplification is that the coefficients bij do not depend on j, i.e., bij = bi, no preference
is given to “neighboring” information. We might even further simplify to bij = b = θ for all j ∼ i,
leading to

Yi | y−i ∼ N
(∑
j,j∼i

θyj , τ
2
)
, τ > 0, i = 1, . . . , n, (5.5)

where j ∼ i indicates a first-order neighbor.
The neighbor structure can be encoded in a matrix, often denoted with A = (aij) (adjacency

matrix) or W (spatial weight matrix). In the former case, we have a aij = 1 if i ∼ j and zero
otherwise. In the latter case, we may have W = A, or wij is proportional to the number of
its neighbors or similar. To link with the last chapter and literature elsewhere, we often write
B = λW, for some λ.

Example 5.3. R-Code 5.4 illustrates the construction of the weight matrix W using the five
counties from the US state Rhode Island. The upper bound of λ is numerically determined. The
lower bound can be determined similarly. Note that there might be several zeros, and finding a
lower bound for the interval with uniroot() needs some care.

Constant conditional precision does not imply constant (marginal) variances, as illustrated,
i.e., we have a non-stationary model. ♣

R-Code 5.4: Construction of the weight matrices, valid parameter space, and resulting
covariance matrix.

ri <- map("county","Rhode Island", fill=TRUE, plot=FALSE)

str(ri, strict.width="cut")

## List of 4

## $ x : num [1:144] -71.3 -71.3 -71.2 -71.2 -71.2 ...

## $ y : num [1:144] 41.8 41.8 41.8 41.7 41.7 ...

## $ range: num [1:4] -71.9 -71.1 41.3 42

## $ names: chr [1:5] "rhode island,bristol" "rhode island,kent" "rhode i"..

## - attr(*, "class")= chr "map"



5.3. SPECIFIC MODELS FOR GMRF 71

id <- sapply(strsplit(ri$names, ","), function(x) x[2])

ri.poly <- st_as_sf(ri, IDs=id) # Convert to sf-class

ri.nb <- poly2nb(ri.poly) # Convert sf to nb object

(ri.matB <- nb2mat(ri.nb, style="B")) # only 0-1 entries

## [,1] [,2] [,3] [,4] [,5]

## 1 0 1 1 1 0

## 2 1 0 1 1 1

## 3 1 1 0 0 1

## 4 1 1 0 0 0

## 5 0 1 1 0 0

## attr(,"call")

## nb2mat(neighbours = ri.nb, style = "B")

(ri.matW <- nb2mat(ri.nb, style="W")) # row sums to one

## [,1] [,2] [,3] [,4] [,5]

## 1 0.00000 0.33333 0.33333 0.33333 0.00000

## 2 0.25000 0.00000 0.25000 0.25000 0.25000

## 3 0.33333 0.33333 0.00000 0.00000 0.33333

## 4 0.50000 0.50000 0.00000 0.00000 0.00000

## 5 0.00000 0.50000 0.50000 0.00000 0.00000

## attr(,"call")

## nb2mat(neighbours = ri.nb, style = "W")

### NOT symmetric (there are also styles "C" or "U")

### Valid parameter range for largest lambda:

f <- function(x, mat) det(diag(5)-x*mat) # needs to be positive

c(uniroot(f, c(0, 1), mat=ri.matB)$root, # gets upper bound for both cases

uniroot(f, c(0, 1.5), mat=ri.matW)$root)

## [1] 0.34066 1.00000

ll <- seq(-2, to=1.5, l=500) # plot is not shown in the script

plot(ll, sapply(ll, f, mat=ri.matB), type="l")

abline(h=0)

lines(ll, sapply(ll, f, mat=ri.matW), col=4)

### Example of resulting CAR-type covariance matrix. We assume N(0,1)-structure

### for the errors (see Table 4.1). We fix lambda at 1/2 of possible range.

### We display only diagonal terms:

diag(solve(diag(5) - 0.17 * ri.matB))

## [1] 1.1354 1.1856 1.1354 1.0841 1.0841

diag(solve(diag(5) - 0.5 * ri.matW))

## [1] 1.1368 1.1692 1.1368 1.1031 1.1031
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We refer to Example 5.8 and corresponding R-Code 5.11 for the discussion of a more complex
parameterization, where the coefficients bij depend on the degree of neighbor, bij = b1 for
adjacent cells (first order neighbors) and bij = b2 for adjacent cells of adjacent cells (second-
order neighbors).

The vignette cran.r-project.org/web/packages/spdep/vignettes/nb.pdf gives further insights
in building neighborhood structures (vignette("nb", package="spdep")) .

Example 5.4. R-Code 5.5 fits a simple CAR model using the function spautolm(). For illus-
tration, we use a small setting based on artificial data. The function’s output is similar to a
classical lm() output. We revisit the output of the function in Example 5.7. ♣

R-Code 5.5: Using the spautolm() function to fit a simple model.

library("spatialreg")

y <- c(-0.58, -1.22, 1.68, 0.98, 0.44) # artificial data for RI!

ri.B <- nb2listw(ri.nb, style="B") # neighbors to weight matrix

carfit <- spautolm(y ~ 1, listw=ri.B, family="CAR") # binary weight matix

summary(carfit, adj.se=FALSE)

##

## Call: spautolm(formula = y ~ 1, listw = ri.B, family = "CAR")

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.41115 -0.25837 -0.16130 0.37442 0.45640

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.15434 0.11912 1.2956 0.1951

##

## Lambda: -0.58653 LR test value: 4.8371 p-value: 0.027854

## Numerical Hessian standard error of lambda: 0.050678

##

## Log likelihood: -4.8976

## ML residual variance (sigma squared): 0.18747, (sigma: 0.43298)

## Number of observations: 5

## Number of parameters estimated: 3

## AIC: 15.795

rbind(yhat=fitted(carfit), resid=resid(carfit))

## 1 2 3 4 5

## yhat -0.4187 -0.96163 1.2236 1.39115 0.065581

## resid -0.1613 -0.25837 0.4564 -0.41115 0.374419

https://cran.r-project.org/web/packages/spdep/vignettes/nb.pdf
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Remark 5.1. The function spautolm() with argument family="SAR" from package spatialreg
and the function errorsarlm() from the same package are essentially identical and thus deliver
the same results. ♡

Example 5.5. As a more realistic example, we investigate the spatial dependency for the SIDS
dataset. R-Code 5.6 fits a CAR model (5.5) using (i) the neighbor structure used in the literature
and (ii) a first-order neighbor structure. As seen in Figure 4.2, the data contains a possible outlier.
The code illustrates the influence on the estimates and fit of this single value. For further details,
see cran.r-project.org/web/packages/spdep/vignettes/sids.pdf.

Depending on the data source, a slightly different neighborhood structure of the dataset is
used, resulting in minor differences. ♣

R-Code 5.6: SIDS again. See text for further explanations. (See Figure 5.3.)

ncWB <- nb2listw(poly2nb(nc), style="B")

# summary(ncW)

library(spatialreg) # `spautolm()` was formerly part of package spdep

carfit1 <- spautolm(rates ~ 1, data=nc, listw=ncWB, family="CAR")

# summary(carfit1) # we should look at

nc$ratesNO <- nc$rates

nc$ratesNO[index] <- nc$rates[which.max(nc$rates)]/10

carfit2 <- spautolm(ratesNO ~ 1, data=nc, listw=ncWB, family="CAR")

# summary(carfit2)

ncWBNo <- nb2listw(poly2nb(nc[-which.max(nc$rates),]), style="B")

carfit3 <- spautolm(rates ~ 1, data=ncNo, listw=ncWBNo, family="CAR")

nc$fit1 <- fitted(carfit1) # with outlier

nc$fit2 <- fitted(carfit2) # "without" outlier

ncNo$fit3 <- fitted(carfit3) # without county

nc$resid1 <- resid(carfit1)

nc$resid2 <- resid(carfit2)

ncNo$resid3 <- resid(carfit3)

nc$diff1to2 <- fitted(carfit1) - fitted(carfit2)

ncNo$diff3to2 <- fitted(carfit3) - fitted(carfit2)[-which.max(nc$rates)]

rbind(M1=c(coef(carfit1), s2=carfit1$fit$s2, resid=range(nc$resid1)),

M2=c(coef(carfit2), s2=carfit2$fit$s2, range(nc$resid2)),

M2=c(coef(carfit3), s2=carfit3$fit$s2, range(resid(carfit3))))

## (Intercept) lambda s2 resid1 resid2

## M1 0.0020020 0.13062 2.1205e-06 -0.0021387 0.0076864

## M2 0.0018462 0.15057 1.4774e-06 -0.0022982 0.0033259

## M2 0.0018554 0.15124 1.4835e-06 -0.0023068 0.0033242

https://cran.r-project.org/web/packages/spdep/vignettes/sids.pdf
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both <- c(nc$fit1, nc$fit2, ncNo$fit3)

fitbreaks <- seq(0, max(both), by=max(both)/10)

plot(nc[ "fit1"], reset=FALSE, breaks=fitbreaks,key.pos=NULL)

plot(nc[ "fit2"], reset=FALSE, breaks=fitbreaks,key.pos=NULL)

plot(ncNo[ "fit3"], breaks=fitbreaks, key.length=1)

residbreaks <- seq(min(resid(carfit3)), max(resid(carfit1)), len=10)

plot(nc[ "resid1"], reset=FALSE, breaks=residbreaks,key.pos=NULL)

plot(nc[ "resid2"], reset=FALSE, breaks=residbreaks,key.pos=NULL)

plot(ncNo[ "resid3"], breaks=residbreaks, key.length=1)

diffbreaks <- seq(min(nc$diff1to2,ncNo$diff3to2),

max(nc$diff1to2,ncNo$diff3to2), len=10)

plot(nc[ c("diff1to2")], breaks=diffbreaks, key.length=1)

plot(ncNo[ c("diff3to2")], breaks=diffbreaks, key.length=1)
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Figure 5.3: Model fits (top row), residuals (middle row), and differences in the fits
for SIDS rates (bottom). For the first fit, the original data is used; for the second fit,
the value of Anson county is divided by 10; and for the final one, the Anson county is
omitted. (See R-Code 5.6.)

The function spautolm(.∼1, listw=., ..., family="CAR") fits the model Y ∼ Nn(1β,

(I− λW)−1τ2), where the symmetric matrix W is given by the argument listw. It is possible
to specify more complex mean functions, in which case the mean of Y is adapted accordingly.
The fitting is done via likelihood estimation. The fitted values consist of the sum of the fitted
trend 1β̂ and the fitted stochastic signal λ̂W(y −1β̂) (by the CAR/GMRF property (4.1)), i.e.,

ŷ = 1β̂ + λ̂W(y − 1β̂), (5.6)

where β̂ is the generalized least squares estimate of β.
The argument family="SAR" would fit a SAR model, allowing row standardized spatial

weight matrices (i.e., style="W"). Further fitting functions are errorsarlm() and lagsarlm()

by the package spatialreg. The following example illustrates the manual implementation of
spautolm().
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Example 5.6. Once a model has been specified for specific data (here function loglikelihood()),
parameter estimation can be carried out with, e.g., the optim() function. R Code 5.7 shows how
to fit a CAR model based on (5.5) (and data as in Example 5.4). Note that the simple imple-
mentation may not work well for arbitrary data sets. We will improve on it later in this chapter.
♣

R-Code 5.7: Defining a likelihood function of a CAR model, “manually” optimizing it and
comparing it with the output of the spautolm() function.

loglikelihood <- function(theta) {

Q <- (diag(n) - theta[2] * W)

cholQ <- try(chol(Q), silent=TRUE)

if(inherits(cholQ, "try-error")) return(1e-6) # not valid

resid <- ncNo$rates - theta[1]

c(- n * log(2*pi * theta[3])/2 + log(det(cholQ)) -

sum(resid * (Q %*% resid))/(2*theta[3] ))

}

n <- length(ncNo$rates)

W <- nb2mat(poly2nb(nc[-which.max(nc$rates),]), style="B")

theta0 <- c(0,.15,.15e-6) # Starting values, similar numbers as fit above

tm1 <- optim(theta0, loglikelihood, control=list(fnscale=-1))

# print(tm1)

rbind(spautolm3=c(coef(carfit3), sigma2=carfit3$fit$s2, logLik=carfit3$LL),

manual=c(tm1[[1]],tm1[[2]]))

## (Intercept) lambda sigma2 logLik

## spautolm3 0.0018554 0.15124 1.4835e-06 519.48

## manual 0.0018362 0.15738 1.4662e-06 519.42

5.4 Exploiting the Sparsity Structure

In the case of GMRF, the off-diagonal non-zero elements of the precision matrix Q are associ-
ated with the conditional dependence structure. As by the Markovian property, the number of
neighbors is small, the precision matrix Q is sparse, i.e., contains only O(n) non-zero elements
compared to O(n2) for a regular, full matrix. To take advantage of the few non-zero elements,
special structures to represent the matrix are required, i.e., only the positions of the non-zeros
and their values are kept in memory. Because of these special structures, tailored algorithms are
required to fully exploit the sparsity structure. The package spam provides this functionality; see
Furrer and Sain (2009) for a detailed exposition.

The sparsity structure is very important for the calculation based on the precision matrix Q.
It determines the (conditional) dependency structure and drives the computational cost. Hence,
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the sparsity structure is often represented using a graph with edges representing the non-zero
elements or a “pixel” image of the zero/non-zero structure. Figure 5.4 gives such an illustration
for an “arbitrary” 5× 5 matrix A.

A =


1 0.5 0 0.5 0.5

0.5 1 0 0.5 0

0 0 1 0 0.5

0.5 0.5 0 1 0

0.5 0 0.5 0 1
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Figure 5.4: The symmetric positive-definite n = 5 matrix A and the sparsity structure
of A and P⊤AP (top row). The graph associated with the matrix A and the Cholesky
factors R and U of A and P⊤AP respectively are given in the bottom row. The nodes
of the graph are labeled according to A (upright) and P⊤AP (italics).

It is important to note that the labeling (order of the variables) influences the structures that
result from relevant computations. Reordering is performed through a so-called permutation. In
matrix notation, a permutation is a matrix having exactly one element 1 per row and column.
All other elements are zero.

5.4.1 The spam Package

There are several R packages available to handle sparse matrices: Matrix, SparseM, spam. We
use the last one, which provides an extensive set of functions for sparse matrix algebra. Major
differences with Matrix are: (1) spam only supports (essentially) one sparse matrix format, (2) it
is based on transparent and simple structure(s), (3) it is tailored for MCMC calculations within
GMRF and (4) S3 and S4 like-“compatible” . . . and it is fast. R-Code 5.8 gives a quick overview
and shows that the handling of sparse matrices is straightforward.

R-Code 5.8: The shortest possible illustration of the package spam. The second part
contains code for Figure 5.4.

library(spam)

mat <- spam(sample(c(0,1), size=18, replace=T, prob=c(.8,.2)), 2, 9)

mat

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 0 0 0 0 0 0 0 0 0
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## [2,] 1 0 0 1 0 0 0 0 1

## Class 'spam' (32-bit)

class(mat)

## [1] "spam"

## attr(,"package")

## [1] "spam"

str(mat)

## Formal class 'spam' [package "spam"] with 4 slots

## ..@ entries : num [1:3] 1 1 1

## ..@ colindices : int [1:3] 1 4 9

## ..@ rowpointers: int [1:3] 1 1 4

## ..@ dimension : int [1:2] 2 9

diag(mat) <- 4

solve(mat %*% t(mat), c(1:2))

## [1] 0.038194 0.097222

### Lets construct a second sparse matrix `A`

A <- 0.5 * diag.spam(5)

i <- c(2, 4, 4, 5, 5)

j <- c(1, 1, 2, 1, 3)

A[cbind(i, j)] <- rep(.5, length(i))

A <- t(A) + A # this is the matrix as in Figure 5.1

summary(A)

## Matrix object of class 'spam' of dimension 5x5,

## with 15 (row-wise) nonzero elements.

## Density of the matrix is 60%.

## Class 'spam' (32-bit)

U <- chol(A)

class(U) # Special class, you do not really need to work with.

## [1] "spam.chol.NgPeyton"

## attr(,"package")

## [1] "spam"

(pivot <- U@pivot) # The permutation is found automatically!

## [1] 3 5 1 2 4

U@invpivot # Inverse of the permutation, see also `?permutation`

## [1] 3 4 1 5 2

P <- diag.spam(5)[U@invpivot,]

norm(A[ pivot, pivot] - t(P) %*% A %*% P ) # sum of squared differences.

## [1] 0
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spam::display(A)

spam::display(U)

5.4.2 Never Calculate the Actual Inverse of a SPD Matrix

Covariance matrices (and thus precision matrices) are symmetric and positive definite matri-
ces. When calculating or maximizing multivariate normal log-likelihoods, we need to calculate
determinants (det(Σ)) and quadratic forms (y⊤Σ−1y).

To be more specific, assume we need to calculate A−1b with A a symmetric positive-definite
matrix featuring some sparsity structure, which is usually accomplished by solving Ax = b. We
proceed by factorizing A into R⊤R, where R is an upper triangular matrix, called the Cholesky
factor or Cholesky triangle of A, followed by solving R⊤y = b and Rx = y , called forwardsolve
and backsolve, respectively. Note that the exposition could be done with the lower triangular
matrix L = R⊤.

From a computational point of view, there is a huge difference between solve(A)%*% b and
solve(A, b) !

Calculating the determinant can be done through various paths. For symmetric positive
definite matrices, the best approach is to perform a Cholesky factorization and use the property

det(A) = det(R⊤R) = det(R)2 =
∏
i

r2ii, (5.7)

where rii are the diagonal entries of R.

Notice that the Cholesky factor can be seen as a matrix square root and is thus used when
drawing multivariate standard random variables as well; see Section 1.2.2.

5.4.3 Solving Linear Systems

The Cholesky factor of a banded matrix is again a banded matrix. However, arbitrary sparse
matrices may produce full Cholesky factors. To reduce this so-called fill-in of the Cholesky factor
R, we permute the columns and rows of A according to a (cleverly chosen) permutation P, i.e.,
U⊤U = P⊤AP, with U an upper triangular matrix. Many different algorithms exist to find
permutations that are optimal for specific matrices or at least close to optimal with respect to
different criteria. The cost of finding a good permutation matrix P is at least of order O(n3/2)

(for lattices in two dimensions).
Note that R and U cannot be linked through P alone. Figure 5.4 illustrates the factorization

with and without permutation. Two triangular solves are performed after the factorization for
solving a linear system. The determinant of A is the squared product of the diagonal elements
of its Cholesky factor R. Hence the same factorization can be used to calculate determinants
(a necessary and computational bottleneck in the computation of the log-likelihood of a Gaus-
sian model), illustrating that it is crucial to have a very efficient integration (with respect to
calculation time and storage capacity) of the Cholesky factorization.
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A typical Cholesky factorization of a sparse matrix consists of the steps illustrated in the
following pseudo-code algorithm.

[1] Determine permutation and permute the input matrix A to obtain P⊤AP

[2] Symbolic factorization, where the sparsity structure of U is constructed
[3] Numeric factorization, where the elements of U are computed

When factorizing matrices with the same sparsity structure, Steps 1 and 2 do not need to be
repeated. In MCMC algorithms, this is commonly the case, and exploiting this shortcut leads
to very considerable gains in computational efficiency (we revisit this in the coming chapters).

As for Step 1, there are many different algorithms to find a permutation, for example, the
multiple minimum degree (MMD) algorithm, (Liu, 1985), and the reverse Cuthill-McKee (RCM)
algorithm, (George, 1971). The resulting sparsity structure in the permuted matrix determines
the sparsity structure of the Cholesky factor. As an illustration, R-Code 5.9 and Figure 5.5
illustrate the sparsity structure of the Cholesky factor resulting from an MMD, an RCM, and
no permutation of a precision matrix induced by a second-order neighbor structure of the US
counties.

R-Code 5.9: Illustrating the sparsity structure of the Cholesky factor using different per-
mutation schemes implemented in spam. (See Figure 5.5.)

In <- diag.spam(nrow(UScounties.storder))

Q <- In + .1 * UScounties.storder + .1 * UScounties.ndorder

summary(Q)

## Matrix object of class 'spam' of dimension 3082x3082,

## with 59978 (row-wise) nonzero elements.

## Density of the matrix is 0.631%.

## Class 'spam' (32-bit)

struct <- chol(Q)

spam::display(Q, ylab="", xlab="", cex=1) # Without cex, a warning is issued

spam::display (struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 146735 (row-wise) nonzero elements.

## Density of the factor is 1.54%.

## Fill-in ratio is 4.65

## (Optimal argument for 'chol' is 'memory=list(nnzR=146735)'.)

## Class 'spam.chol.NgPeyton'

(nnzMMD <- sum(struct@entries > .Machine$double.eps ))

## [1] 81345
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struct <- chol(Q, pivot="RCM")

spam::display(struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 256198 (row-wise) nonzero elements.

## Density of the factor is 2.7%.

## Fill-in ratio is 8.13

## (Optimal argument for 'chol' is 'memory=list(nnzR=256198)'.)

## Class 'spam.chol.NgPeyton'

(nnzRCM <- sum(struct@entries > .Machine$double.eps ))

## [1] 135457

struct <- chol(Q, pivot=FALSE)

spam::display (struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 689615 (row-wise) nonzero elements.

## Density of the factor is 7.26%.

## Fill-in ratio is 21.9

## (Optimal argument for 'chol' is 'memory=list(nnzR=689615)'.)

## Class 'spam.chol.NgPeyton'

(nnzNONE <- sum(struct@entries > .Machine$double.eps ))

## [1] 270140

How much fill-in with zeros is present depends on the permutation algorithm. In the example
of Figure 5.5 there are 146 735, 256 198 and 689 615 non-zero elements in the Cholesky factors
with MMD, RCM, and no permutation, respectively. Note that the actual number of non-zero
elements of the Cholesky factor may be smaller than what the constructed sparsity structure
indicates, Here, there are 81345, 135457 and 270140 zero elements (up to machine precision)
that are not exploited.

We finish this section with examples illustrating further the functionality of spam in the
context of GMRFs.

Example 5.7. We manually implemented the spautolm() using sparse matrix functionality.
Once a model has been specified for specific data (here function mle.CAR()), parameter estima-
tion is carried out with the optim() function. R Code 5.10 is similar to R Code 5.7 and due
to the better implementation also more stable and thus closer to the spautolm() results. Both
approaches estimate the uncertainties differently and thus slight differences.

The function mle.CAR() is very similar to the function spam::mle.nomean(), both represent
a rudimentary approach to estimate parameters in a multivariate normal setting. ♣
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Figure 5.5: Top left represents the sparsity structure of a precision matrix induced by
a second-order neighbor structure of the US counties. Sparsity structure of the Cholesky
factor with MMD (top right), RCM (bottom left), and no permutation of the precision
matrix. (See R-Code 5.9.)

R-Code 5.10: Defining a likelihood function of a CAR model, “manually” optimizing it
and comparing it with the output of the spautolm function.

options(spam.cholupdatesingular="null")

mle.CAR <- function (y, W, theta) {

n <- length(y)

In <- diag.spam(n)

Qstruct <- chol(In - 0.0001 * W)
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neg2loglikelihood <- function(theta) {

Q <- (In - theta[2] * W)

cholQ <- update(Qstruct, Q)

if (is.null(cholQ)) return(1e6)

resid <- y - theta[1]

return(n * log(2*pi * theta[3]) - 2*c(determinant(cholQ)$modulus) +

sum(resid * (Q %*% resid))/theta[3] )

}

out <- optim(theta, neg2loglikelihood, method="L-BFGS-B",

lower=c(-Inf, -Inf, 1e-5), hessian=TRUE)

if (out$convergence !=0) cat("Convergence issues, please inspect\n")

return(out)

}

listw <- nb2listw(ri.nb, style="B")

W <- as.spam.listw(listw)

print(tm1 <- mle.CAR(y , W, c(0,-.1,1)))

## $par

## [1] 0.15433 -0.58652 0.18748

##

## $value

## [1] 9.7953

##

## $counts

## function gradient

## 50 50

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

##

## $hessian

## [,1] [,2] [,3]

## [1,] 140.9364476 -9.608 4.8488e-03

## [2,] -9.6080461 1127.902 -2.2225e+02

## [3,] 0.0048488 -222.249 1.4229e+02

rbind(spamautolm=c(coef(carfit), sigma2=carfit$fit$s2, logLik=carfit$LL),

manual=c(tm1[[1]],tm1[[2]]/-2))

## (Intercept) lambda sigma2 logLik
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## spamautolm 0.15434 -0.58653 0.18747 -4.8976

## manual 0.15433 -0.58652 0.18748 -4.8976

### Slight differences in the uncertainty estimates:

rbind(spamautolm=c(se.Inter=summary(carfit)$Coef[,2], se.lambda=

carfit$lambda.se), manual=c(sqrt(solve(tm1$hessian/2)[c(1,5)])))

## se.Inter se.lambda

## spamautolm 0.11912 0.050678

## manual 0.11918 0.050633

Example 5.8. Illustration of numerically determine the valid parameter space. Consider a CAR
model with a first- and a second-order neighbor structure. More specifically, we consider

Yi | y−i ∼ N
(∑
j,j∼i

θ1yj +
∑
j,j≈i

θ2yj , τ
2
)
, τ > 0, i = 1, . . . , n, (5.8)

where j ∼ i and j ≈ i indicate first- and second-order neighbors, respectively. That means,
the resulting precision matrix Q has the structure Q = τ−2(I − θ1W1 − θ2W2) where Wi are
(binary) spatial weight matrices. We have to impose constraints on (θ1, θ2), such that Q is
positive definite, i.e., we need to determine the valid parameter space Θ ⊂ R2. Here, we do not
have a closed form description of the parameter space (recall Example 5.3).

We first construct an (arbitrary but valid) precision matrix based on the first- and second-
order structure to exploit the spam options. To ensure validity, we choose very small values of
(θ1, θ2), as we know that (0, 0) ∈ Θ. Then, we cycle over a specified fine grid of theta1 and
theta2 and verify if the precision matrix is positive definite. If the matrix passed to update() is
not symmetric positive definite, which means that the value of tmp is NULL, the pair (theta1[i],
theta2[2]) lies not within Θ. Figure 5.6 shows Θ. The valid range is color-coded according
to the value of log(detQ). Notice the domain’s asymmetry and the determinant’s very small
values. The maximum (being zero) is at the origin, see also Remark 5.2.

Based on the fine grid used, the loop takes several minutes. Naturally, the convexity of the
domain could easily be exploited. Of course, in practice, the precise space Θ is not necessary
for optimization in a maximum likelihood estimation context. Similarly, in Bayesian settings, it
would be possible to place a prior over Θ without knowing it explicitly. ♣

Remark 5.2. In the case of independence, the precision/covariance matrix is the identity. For
simplicity, assume σ2 = 1, then the determinant is equal to one, as all eigenvalues are 1. Adding
spatial structure will decrease the determinant, as some of the eigenvalues will be larger than
one, others smaller. However, since the sum of the eigenvalues remains constant (here n), the
product of these decreases. ♡
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R-Code 5.11 Determining the valid parameter space Θ through a numerical assessment of
the precision matrix. (See Figure 5.6.)

In <- diag.spam(nrow(UScounties.storder))

struct <- chol(In - .1 * UScounties.storder - .01 * UScounties.ndorder)

### which is a valid, but (arbitrary) precision matrix.

options(spam.cholupdatesingular="null") # We want to avoid errors.

len1 <- 300 # even

len2 <- 150

theta1 <- seq(-.515, .225, len=len1)

theta2 <- seq(-.19, .095, len=len2)

grid <- array(NA, c(len1, len2))

for (i in 1:len1) {

for(j in 1:len2) {

tmp <- update(struct, In - theta1[i]*UScounties.storder

- theta2[j]* UScounties.ndorder)

if(!is.null(tmp)) grid[i,j] <- determinant(tmp)$modulus

}

}

image.plot(theta1, theta2, grid, xlab=expression(theta[1]),

ylab=expression(theta[2]), xlim=c(-.45, .22), ylim=c(-.2, .1))

abline(v=0, h=0, lty=2)

Figure 5.6: The domain Θ for the US counties with a second-order neighbor structure.
The values represent log(detQ) and the white area represents Θc. (See R-Code 5.11.)
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5.5 Further Example

We consider here an additional example based on the oral cavity cancer data. We fit a simple
CAR model with a binary weight matrix to the standardized mortality rates. The weight matrix
is constructed in two different ways for illustrative purposes: once with the build-in function
adjacency.landkreis() from the package spam and second manually based on a file defining
the neighbor list. The same package also provides the latter.

The estimated and fitted values of spautolm() and the manual approach are very similar,
as R-Code 5.12 shows. We also manually reconstruct the fitted values according equation (5.6)
with fitTrend being where β̂ = 1⊤Q̂y/1⊤Q̂1, i.e., the generalized least squares estimate of β,
Q̂ = (In − λ̂W)/τ̂2 and fitStochastic being λ̂W(y − 1β̂). (τ2 is denoted with sigma2 in the
output of spautolm().)

The range of possible values of λ is approximately from -0.296 to 0.159. The estimated value
λ̂ = 0.152 is quite close to the boundary of the valid range. This often indicates that the proposed
CAR model is not sufficiently flexible. This might also be seen as the drawn realizations seem
more speckled than the observed data (see Figure 5.7). For a better comparison, we start with
the same seed, such that the first n = 544 random numbers from rnorm() are equivalent. For
the GMRF realization, they are further transformed but the features can be seen in both panels
(denoted with “White noise” and “Sample 1”).

Notice that only the marginal conditional precision is constant, not the marginal variances
or marginal standard deviation. Districts that are within another one have a particular low
marginal standard deviation.

R-Code 5.12: Oral cavity cancer example. (See Figure 5.7.)

library(spam)

data(Oral, package="spam")

hist(Oral$SMR, main="", xlab="SMR")

abline(v=mean(Oral$SMR), col=4, lwd=2)

filename <- system.file("demodata/germany.adjacency", package="spam")

# system(paste("head ", filename), intern=F) # show content of the file

W <- adjacency.landkreis(filename)

barplot(table(diff(W@rowpointers)), xlab="# of neighbors")

### The following uses as input a classical ASCII format of nb files.

n <- as.numeric(readLines(filename, n=1))

nnodes <- nodes <- numeric(n)

adj <- list()

for (i in 1:n) {

tmp <- as.numeric(scan(filename, skip=i, nlines=1, quiet=T,

what=list(rep("", 13)))[[1]])

nodes[i] <- tmp[1]

nnodes[i] <- tmp[2]
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adj[[i]] <- as.integer(tmp[-c(1:2)]+1)

}

adj <- adj[order(nodes)]

attr(adj, "region.id") <- germany.info$id

attr(adj, "sym") <- TRUE

class(adj) <- "nb"

Dlistw <- nb2listw(adj, style="B")

W1 <- as.spam.listw(Dlistw)

all.equal.spam(W, W1)

## [1] TRUE

# summary(Dlistw)

# table(unlist(lapply(adj, length)))

### We can now start spatial modeling. For example a simple CAR:

carfit <- spautolm(SMR ~ 1, data=Oral, listw=Dlistw, family="CAR")

### strictly speaking, we should include an offset of 1 here:

# lm(SMR ~ offset(rep(1,n))+ 1, data=Oral)

### apparently spautolm() does not incorporate this.

options(spam.cholupdatesingular="null")

tm1 <- mle.CAR(Oral$SMR, W, c(0,.1,2))

### Comparing results of `spautolm()` and manual fitting:

coefs <- c(coef(carfit), sigma2=carfit$fit$s2)

rbind(spamautolm= c(coefs, logLik=carfit$LL),

manual=c(tm1[[1]], tm1[[2]]/-2))

## (Intercept) lambda sigma2 logLik

## spamautolm 1.001 0.15219 0.088880 -141.58

## manual 1.001 0.15216 0.088894 -141.58

Q1 <- (diag.spam(n)- tm1$par[2]*W1)/tm1$par[3]

fitTrend <- c(rep(1, n) %*% Q1 %*% Oral$SMR)/c(rep(1, n) %*% Q1 %*% rep(1, n))

c(fitTrend - unname(carfit$fit$signal_trend[1])) # constant trend here

## [1] -2.5552e-05

fitStochastic <- tm1$par[2]*W1 %*% (Oral$SMR-tm1$par[1])

summary(c(fitStochastic - carfit$fit$signal_stochastic))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -1.45e-04 2.66e-06 2.80e-05 2.85e-05 5.91e-05 1.34e-04

### -> all values (estimates and fits) very similar!

### Construct and visualize valid parameter range for lambda:

lambda <- c(seq(-.2959, to=-.2958, by=0.00005),

seq(.159, to=.1591, by=0.00005))
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for (i in 1:length(lambda))

if (class(try(chol(diag.spam(n)-lambda[i]*W),silent=TRUE))!=

"spam.chol.NgPeyton") lambda[i] <- NA

lambda # estimates are quite on the boundaries!!!

## [1] NA -0.29585 -0.29580 0.15900 0.15905 NA

zl <- c(-0.6, 2.4)

germany.plot(Oral$SMR, main="SMR",border=NA, zlim=zl)

set.seed(14)

germany.plot(rnorm(n, mean=coefs[1], sd=sqrt(coefs[3])),

main="White noise", border=NA, zlim=zl)

N <- 1000 # We simulate many realizations with similar parameters

Q <- (diag.spam(n)- coefs[2]*W)/coefs[3]

set.seed(14)

ex <- rmvnorm.prec(N, mu=coefs[1], Q=Q)

lambdahat <- numeric(4) # We only look at four

for (i in 1:4) {

germany.plot(ex[i,], main=paste("Sample",i),border=NA, zlim=zl)

# mle.CAR(ex[i,], W, c(1,.12,09)) # leads often to convergence issues!!

lambdahat[i] <- spautolm(ex[i,] ~ 1, listw=Dlistw, family="CAR")$lambda

}

lambdahat

## [1] 0.15437 0.15669 0.14492 0.15754

germany.plot(colMeans(ex), main="Means", border=NA)

germany.plot(apply(ex, 2, sd), main="SD", border=NA)

germany.plot(diag(solve(cov(ex))), main="Precision", border=NA)

We extend our model to two parameters, much in the spirit of Equation (5.8). As a first
step, we define in R-Code 5.13 a spatial weight matrix with second-order neighbors (here W2).
Similarly, as in R-Code 5.11, we determine the valid parameter domain, shown in Figure 5.8.

R-Code 5.13: Oral cavity cancer example: valid parameter domain. (See Figure 5.8.)

options(spam.cholupdatesingular="null")

listw2 <- nblag(adj,2)[[2]] # constructs higher order neighbors

W2 <- as.spam.listw(nb2listw(listw2, style="B"))

In <- diag.spam(nrow(W2))

W1[4,1:20] # 3 first order

## [1] 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

W2[4,1:20] # 8 second order neighbors



88 CHAPTER 5. SIMULATION AND ESTIMATION

SMR

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
60

1 2 3 4 5 6 7 8 9 11
# of neighbors

0
60

−0.5
0.0
0.5
1.0
1.5
2.0

SMR

−0.5
0.0
0.5
1.0
1.5
2.0

White noise

−0.5
0.0
0.5
1.0
1.5
2.0

Sample 1

−0.5
0.0
0.5
1.0
1.5
2.0

Sample 2

−0.5
0.0
0.5
1.0
1.5
2.0

Sample 3

−0.5
0.0
0.5
1.0
1.5
2.0

Sample 4

0.97
0.98
0.99
1.00
1.01
1.02
1.03

Means

0.30

0.35

0.40

0.45

0.50

SD

22

24

26

28

30

Precision

Figure 5.7: Top row: histogram of SMR of oral cavity cancer (left) and the number of
neighbors of each of the districts (right). Bottom panels: SMR, white noise comparison,
four samples having the same mean and precision matrix (unconditional simulation),
means, marginal standard deviation, and precision of 1000 samples. (See R-Code 5.12.)
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## [1] 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0

len1 <- 60

len2 <- 56

theta1 <- seq(-.46, .25, len=len1)

theta2 <- seq(-.21, .12, len=len2)

grid <- array(NA, c(len1, len2))

Qstruct <- chol(In - 0.0001 * W1 - 0.0001 * W2)

for (i in 1:len1) {

for(j in 1:len2) {

grid[i,j] <- !is.null(update(Qstruct, In - theta1[i]*W1 - theta2[j]* W2))

} }

image(theta1, theta2, grid, xlab=expression(theta[1]),

ylab=expression(theta[2]), col=c(0,"gray"))

abline(v=0, h=0, lty=2)

points(tm1[[1]][2], 0, col=4, pch=19) # optimum one parameter case

points(0.0334, 0.0567, col=2, pch=19) # fit which we will obtain later ;-)
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Figure 5.8: Valid parameter domain. The blue and red dots indicate the one- and
two-parameter model estimates, respectively. The image consists of a regular 60×56
grid. (See R-Code 5.13.)

In the second step, we define in R-Code 5.14 the corresponding likelihood function, now
optimizing over four parameters (intercept β, λ1, λ2 and τ2). We extend the function mle.CAR()

of R-Code 5.10 to incorporate the additional neighbor structure (mle.CAR2()). The estimation
is very fast (less than a couple of seconds, although there are many likelihood evaluations, see
tm2$counts[1]).
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R-Code 5.14: Oral cavity cancer example: second order neighbor structure. (See Fig-
ure 5.9.)

options(spam.cholupdatesingular="null")

mle.CAR2 <- function (y, W1, W2, theta) {

n <- length(y)

In <- diag.spam(n)

Qstruct <- chol(In - 0.0001 * W1 - 0.0001 * W2)

neg2loglikelihood <- function(theta) {

Q <- (In - theta[2] * W1 - theta[3] * W2)

cholQ <- update(Qstruct, Q)

if (is.null(cholQ)) return(1e6)

resid <- y - theta[1]

return(n * log(2*pi * theta[4]) - 2*c(determinant(cholQ)$modulus) +

sum(resid * (Q %*% resid))/theta[4] )

}

out <- optim(theta, neg2loglikelihood, method="L-BFGS-B",

lower=c(-Inf, -Inf, -Inf, 1e-5), hessian=TRUE)

if (out$convergence !=0) cat("Convergence issues, please inspect\n")

return(out)

}

listw2 <- nblag(adj,2)[[2]] # constructs higher order neighbors

W2 <- as.spam.listw(nb2listw(listw2, style="B"))

tm2 <- mle.CAR2(Oral$SMR, W1, W2, c(1,-0.0,-0.0,.1)) # W1 from above

## Convergence issues, please inspect

print(unlist(tm2[c(2,1)])) # Hessian and other stuff not relevant here

## value par1 par2 par3 par4

## 274.491868 0.994615 0.033386 0.056566 0.105442

print(unlist(tm1[c(2,1)])) # quite a few function calls

## value par1 par2 par3

## 283.165444 1.001000 0.152156 0.088894

Q2 <- (diag.spam(n)- tm2$par[2]*W1 - tm2$par[3]*W2)/tm2$par[4]

fitW1 <- tm1$par[2]*W1

fitW2 <- tm2$par[2]*W1 + tm2$par[3]*W2

set.seed(14)

ex2 <- rmvnorm.prec(1, mu=tm2$par[1], Q=Q2)

germany.plot(ex[1,], main="Sample 1", border=NA, zlim=zl)

germany.plot(ex2[1,], main="Sample 1, 2 pars",border=NA, zlim=zl)

germany.plot(ex2[1,]-ex[1,], main="Difference",border=NA)
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fitStochastic1 <- fitW1 %*% (Oral$SMR-tm1$par[1])

fitStochastic2 <- fitW2 %*% (Oral$SMR-tm2$par[1])

zS <- range(fitStochastic1, fitStochastic2)

germany.plot(fitStochastic1, main="Stochastic fit, 1 par", border=NA, zlim=zS)

germany.plot(fitStochastic2, main="Stochastic fit, 2 par" ,border=NA, zlim=zS)

germany.plot(fitStochastic1-fitStochastic2, main="Difference", border=NA)

resid1 <- Oral$SMR - (tm1$par[1] + fitStochastic1) # tm1$par[1] is fitTrend

resid2 <- Oral$SMR - (tm2$par[1] + fitStochastic2) #

c(norm(resid1), norm(resid2))

## [1] 126.42 123.69

zR <- range(resid1, resid2)

germany.plot( resid1, main="Residuals, 1 par", border=NA, zlim=zR)

germany.plot( resid2, main="Residuals, 2 par", border=NA, zlim=zR)

germany.plot( resid1-resid2, main="Difference", border=NA)

For the two-parameter case, the optimal fitted value remains very close to the boundary
(Figure 5.8). The negative-two-loglikelihood is decreased from 283.2 to 274.5. However, the
residual standard deviation increased from 0.304 to 0.297. Samples drawn from the estimated
precision matrix are somewhat smoother than with one parameter only, as shown by Figure 5.9
for one specific example. The same holds for the fitted values. However the additional smoothness
comes at a price of less flexibility. The fitted surface represents a poorer fit.

As shown with the figures and R-chunks above, a one and two-parameter model is not optimal.
We will revisit this example with a different modeling strategy.

5.6 *Details of Spatial Classes

All spatial objects (data, locations, etc.) are linked to a bounding box (defining the spatial
domain, slot bbox) and a coordinate reference system (defining map projections and transforma-
tions to references projections, slot proj4string, itself of class CRS) (Bivand et al., 2013, Section
4.1). For many years the package sp provided many different classes for spatial objects. The
core class for the spatial objects is Spatial with many subclasses, e.g., SpatialPoints (extend-
ing with a coords slot), SpatialLines (extending with a lines slot), SpatialPolygons, etc.
Working with the package sf is much more intutitive as shown below.

R-Code 5.15: Spatial class of package sp.

library(sp)

# getClass("Spatial") # structure of the class and its subclasses

# vignette("intro_sp", package="sp")

getSlots("SpatialPolygons")

## polygons plotOrder bbox proj4string
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Figure 5.9: Comparison of a realization, fitted values and residuals with a one- and
two-parameter models. The top left panel is identical to Figure 5.7. The right column
is the difference between the first two. (See R-Code 5.14.)

## "list" "integer" "matrix" "CRS"

For example, the manual construction of a SpatialPolygons is very tedious and hardly done
in practice. Often the relevant objects are created by querying databases or other spatial objects
such as extracting the information from the maps or mapdata packages, for example.
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R-Code 5.16: Handling spatial objects in R.

### First example (simple version):

library(maps) # simple database

ncMaps <- map("county", region="North Carolina", fill=TRUE, plot=FALSE)

### "fill=TRUE" is very important! We need regular polygons.

str(ncMaps, strict.width="cut") # no formal class, just a particular list.

## List of 4

## $ x : num [1:3771] -79.5 -79.5 -79.5 -79.5 -79.5 ...

## $ y : num [1:3771] 35.8 35.9 35.9 36 36.2 ...

## $ range: num [1:4] -84.3 -75.5 33.9 36.6

## $ names: chr [1:102] "north carolina,alamance" "north carolina,alexand"..

## - attr(*, "class")= chr "map"

### 100 Counties, "currituck" consisting of 3 polygons. Polygons are separated

### with separated NAs.

sum(is.na(ncMaps$x))

## [1] 101

### Plotting is done with "plot=TRUE" (default) in the function `map()` and

### color specification. Alternatively:

plot(ncMaps$x, ncMaps$y, type="n")

polygon(ncMaps$x, ncMaps$y, col=sample(1:16))

Moreover, the entire framework has been shifted more towards ‘simple features’ provided by
the package sf. The mitigation is not entirely completed yet but it is generally recommended.
See also Figure 5.10.

Figure 5.10: Similarities and differences between the packages sp and sf (source left)
and the R spatial ecosystem (source right).

https://twitter.com/WeAreRLadies/status/1469347804824887314/
https://twitter.com/WeAreRLadies/status/1469287341932036097


94 CHAPTER 5. SIMULATION AND ESTIMATION



Chapter 6

Hierarchical Models:
Bayesian Modeling

In statistics, there exist two different philosophical approaches to inference: fre-
quentist and Bayesian inference. Here, we introduce the Bayesian approach, where
we consider the parameter as a random variable with a suitable distribution chosen
a priori, i.e., before the data is collected and analyzed. The goal is to update this
prior knowledge after observation of the data in order to conclude.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter06.R.

Chapters 4 and 5 introduced a family of spatial models for areal data (lattice data). Similarly
as in the chapters about time series, much more emphasis has been given to modeling the second-
order structure (the spatial dependency), whereas the mean has not been addressed with sufficient
details. We will move towards more realistic models in the “Hierarchical Models” chapters.

In order to get there, we have to take several steps. More specifically, hierarchical models
are typically tackled through a Bayesian modeling framework (this chapter). The following two
chapters introduce two general hierarchical models and approaches to “fit” these.

6.1 Introduction and Simple Example

Example 6.1. Suppose that the CO2 measurements are observed with some imprecision, i.e.,
some (measurement) error. We typically denote the “true” but unobserved quantity as the state
or latent variable. This idea leads to a decomposition along the lines

Yt = µt + εt, (6.1)

µt = x⊤
t β. (6.2)

The last two equations represent a very simple form of hierarchical modeling. At this point, the
advantage of decomposing the model in two equations is not clear yet. ♣

95

http://www.math.uzh.ch/furrer/download/sta330/chapter06.R
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Let us assume we have observations with measurement error and some knowledge about the
structure of the observations. We then observe data and update our knowledge. In terms of
conditional probabilities, we start from

[ parameters ]

model for the data

}
⇒ [ parameters | data ] , (6.3)

where the [ · ] and [ · | · ] notation indicates the density of the argument and the conditional
density of the first argument given the second, respectively. The model for the data is typically
written as [ data | parameters ] thus

[ parameters ]

[ data | parameters ]

}
⇒ [ parameters | data ] . (6.4)

Based on classical probability, we have

[ parameters | data ] =
[ data | parameters ] · [ parameters ]

[ data ]
, (6.5)

which can be seen as the first example of a hierarchical model.

In recent years, Bayesian (hierarchical) modeling approaches flourished due to the flexible
modeling approach and the ability to simulate large samples from complicated posterior densi-
ties. The basic idea behind a hierarchical Bayesian approach is to break the (statistical) model
down into different sub-models. These sub-models are typically a model for the data (as in
equation (6.1)), a model for the process (as in equation (6.2)), and priors for the parameters.
Equation (6.5) links the former two through Bayes’ theorem. Gamerman and Lopes (2006) give
a concise and accessible overview.

We now see two more concepts of (Bayesian) hierarchical modeling. Given the context here,
it is not surprising that GMRFs have a recurrence.

6.1.1 Latent GMRF Modeling

We assume that the observations y are conditionally independent given latent parameters η and
additional parameters θy

π(y | η,θy ) =

n∏
i=1

π(yi | ηi,θy ), (6.6)

where π(· | ·) denotes the conditional density of the the first argument given the second argument.
For example, η may represent Xβ in Example 6.1 or SIDS rates that we observe with some

noise. As η is not observed, we talk of a latent parameter/variable/field here.
For computational reasons, the latent parameters η are often part of a larger latent random

field x , which is modeled as a GMRF with mean µ and precision matrix Q, both depending on
parameters θx ; that is,

π(x | θx ) ∝ exp
(
− 1

2
(x − µ)⊤Q(x − µ)

)
. (6.7)

This approach has been successfully implemented using iteratively nested Laplace approximations
(INLA) by Rue et al. (2009) and subsequent work. We come back to such examples in upcoming
chapters.



6.2. BAYES TERMINOLOGY AND EXAMPLES 97

6.1.2 General State-Space Modeling Formulation

A particular modeling aspect is the so-called state-space approach, where we have an underly-
ing (unobserved or latent) process described by the state equation. The state is then observed
through some measurement operator with a measurement error. For example, biodiversity (state)
is observed through remotely sensed normalized difference vegetation index (NDVI) (observa-
tions). More precisely, suppose that Si is the random variable for the state process at grid node
(area) j (j = 1, . . . , J), for example, modeled by Sj = x⊤

j β+Yj , where Yj is a zero-mean GMRF.
Then an observation (at an arbitrary location) i is modeled by

Zi = Hi

(
S1, . . . , SI

)
+ εi, (6.8)

where Hi is the measurement operator, mapping the state space to the observation space and εi
the measurement error.

This modeling approach is handy when the state equation is described by some dynamic
process or modeled on a high-resolution grid. The measurement operator is often linear, for
example, a bilinear interpolator between the grid points of the state equation. The model can
be extended naturally to incorporate several different measurement processes, each observed at
different locations with different precision. The measurement operator also allows to incorporate
change of support; for example, one measurement is based (virtually) on a point source, the
other on some aggregated measure.

6.2 Bayes Terminology and Examples

In statistics, two different philosophical approaches exist: frequentist and Bayesian inference. In
this section, we give a very brief introduction to the Bayesian paradigm. We now consider the
parameter as a random variable with a suitable distribution, chosen a priori, i.e., before the data
is collected and analyzed. The goal is to update this prior knowledge after observation of the
data in order to draw conclusions (with the help of the so-called posterior distribution).

Bayesian statistics is often introduced by recalling the so-called Bayes theorem, which states
for two events A and B

P(A | B) =
P(B | A) P(A)

P(B)
, for P(B) ̸= 0, (6.9)

and is shown by using twice P(A | B) = P(A ∩ B)/P(B). Bayes theorem is often used in
probability theory to calculate probabilities along an event tree, as illustrated in the arch-example
below.

Example 6.2. A patient sees a doctor and gets a test for a (relatively) rare disease. The
prevalence of this disease is 0.5%. As typical, the screening test is not perfect and has a sensitivity
of 99%, i.e., true positive rate; correctly identified the disease in a sick patient, and a specificity
of 98%, i.e., true negative rate; a healthy person is correctly identified disease free. What is the
probability that the patient has the disease, provided the test is positive?
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Denoting the events D = ‘Patient has disease’ and + = ‘test is positive’ we have using
Equation (6.9)

P(D | +) =
P(+ | D) P(D)

P(+)
=

P(+ | D) P(D)

P(+ | D) P(D) + P(+ | Dc) P(Dc)

=
99% · 0.5%

99% · 0.5% + 2% · 99.5% = 20%.

(6.10)

Note that for the denominator, we have used the so-called law of total probability to get an
expression for P(+). ♣

An interpretation of the previous example from a frequentist view is in terms of the propor-
tion of outcomes (in a repeated sampling framework). In the Bayesian approach, we view the
probabilities as “degree of belief”, where we have some proposition (event D in Example 6.2) and
new evidence (event + in Example 6.2). More specifically, P(D) represents the prior believe of
our proposition, P(+ | D)/P(+) is the support of the evidence for the proposition and P(D | +)

is the posterior believe of the proposition after having accounted for the new evidence +.

Extending Bayes’ theorem to the setting of two continuous random variables X and Y , we
have

fX|Y=y(x | y) =
fY |X=x(y | x) fX(x)

fY (y)
for all y s.t. fY (y) > 0. (6.11)

In the context of Bayesian inference, the random variable X will now be a parameter, typically
of the distribution of Y :

fΘ|Y=y(θ | y) =
fY |Θ=θ(y | θ) fΘ(θ)

fY (y)
, for all y s.t. fY (y) > 0. (6.12)

Hence, current knowledge about the parameter is expressed by a probability distribution on the
parameter: the prior distribution. The model for our observations is called the likelihood. We
use our observed data to update the prior distribution and thus obtain the posterior distribution.

In the next section, we discuss examples where the parameter is the success probability of a
trial and the mean in a normal distribution.

Notice that P(B) in (6.9), P(+) in (6.10), or fY (y) in (6.11) and (6.12) serves as a normalizing
constant, i.e., it is independent of A, D, x or the parameter θ, respectively. Thus, we often write
the posterior without this normalizing constant

fΘ|Y=y(θ | y) ∝ fY |Θ=θ(y | θ)× fΘ(θ), (6.13)

(or in short form f(θ | y) ∝ f(y | θ)f(θ) if the context is clear). The symbol “∝” means
“proportional to”. For simplicity, we will omit the additional constraint that f(y) > 0.

Finally, we can summarize the most important result in Bayesian inference as the posterior
density is proportional to the likelihood multiplied by the prior density, i.e.,

Posterior density ∝ Likelihood × Prior density (6.14)

In a nutshell, the advantages of using a Bayesian framework are:
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• formal way to incorporate prior knowledge;

• intuitive interpretation of the posterior;

• much easier to model complex systems;

• no n-dependency of ‘significance’ and the p-value.

As nothing comes for free, there are also some disadvantages:

• more ‘elements’ have to be specified for a statistical model;

• in virtually all cases, a Bayesian approach is computationally more demanding.

Until recently, there were clear fronts between frequentists and Bayesians. Luckily these differ-
ences have vanished.

6.2.1 Bayesian Inference

We illustrate the concept of Bayesian inference with two typical examples that are tractable.

Example 6.3 (beta-binomial model). Suppose we observe y successes (out of n), a frequentist
setting assumes Y ∼ Bin(n, p) and uses as estimate p̂ = y/n. In the Bayesian framework, we
assume the success probability p as a random variable and thus an associated distribution. We
require the support of the associated density to be the interval (0, 1). One example is the uniform
distribution U(0, 1) or the so-called Beta distribution. The density of a Beta random variable is
given by

f(p) = c · pα−1(1− p)β−1, p ∈ [0, 1], α > 0, β > 0, (6.15)

with normalization constant c. We write P ∼ Beta(α, β). If we investigate the probability of
observing heads with a “regular” coin, it is highly unlikely that p < 0.1 or p > 0.9. This additional
knowledge about the parameter p would be reflected using a prior P ∼ Beta(5, 5), for example.

The posterior density is then proportional to

∝
(
n

y

)
py(1− p)n−y × c · pα−1(1− p)β−1 (6.16)

∝ pypα−1(1− p)n−y(1− p)β−1 = py+α−1(1− p)n−y+β−1, (6.17)

which can be recognized as a beta distribution Beta(y + α, n− y + β).
Figure 6.1 illustrates the case of y = 10, n = 13 with prior Beta(5, 5). Posterior mode is

now between the prior one (0.5) and the frequentist estimate p̂. The expected value of a beta
distributed random variable Beta(α, β) is α/(α+ β) (here, the prior distribution). The posterior
expected value is thus

E(P | Y = y) =
y + α

n+ α+ β
. (6.18)

Specifically, the mean changed from 0.5 to (10 + 5)/(13 + 5 + 5) ≈ 0.65. ♣
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Figure 6.1: Beta-binomial model with prior density (cyan), data/likelihood (green),
and posterior density (blue).

Table 6.1: Updates of point estimates for the beta-binomial model.

Prior posterior

E(P ) =
α

α+ β
E(P | Y = y) =

y + α

n+ α+ β

Mod(P ) =
α− 1

α+ β − 2
Mod(P | Y = y) =

y + α− 1

n+ α+ β − 2

Med(P ) ≈ α− 1/3

α+ β − 2/3
Med(P | Y = y) ≈ y + α− 1/3

n+ α+ β − 2/3

The updates of specific point estimates for the beta-binomial model are given in Table 6.1.

In the previous example, we use P ∼ Beta(α, β) and fix α and β during model specification,
thus called hyper-parameters.

The beta distribution Beta(1, 1), i.e., α = 1, β = 1, is equivalent to a uniform distribution
U(0, 1). However, the uniform distribution for the probability p does not mean “information-free”.
As a result of Equation (6.18), a uniform distribution as prior is “equivalent” to two experiments,
of which one is a success. That means we can see the prior as two pseudo-observations.

In the following example, we have both continuous data and a parameter.

Example 6.4 (normal-normal model). Let Y1, . . . , Yn
iid∼ N (µ, σ2). We assume σ is known. The

mean µ is the only parameter of interest, for which we assume the prior N (η, τ2). Thus, we have
the Bayesian model:

Yi | µ iid∼ N (µ, σ2), i = 1, . . . , n, (6.19)

µ ∼ N (η, τ2). (6.20)

where σ2, η and τ2 are considered as hyper-parameters. Notice that we have again slightly
abused the notation by using µ as the realization in (6.19) and as the random variable in (6.20).
Since the context determines the meaning, we use this simplification for the parameters in the
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Bayesian context. The posterior density is then

f(µ | y1, . . . , yn) ∝ f(y1, . . . , yn | µ)× f(µ) =
n∏

i=1

f(yi | µ)× f(µ) (6.21)

∝
n∏

i=1

exp
(
−1

2

(yi − µ)2

σ2

)
exp
(
−1

2

(µ− η)2

τ2

)
(6.22)

∝ exp
(
−1

2

n∑
i=1

(yi − µ)2

σ2
− 1

2

(µ− η)2

τ2

)
, (6.23)

where the constants (2πσ2)−1/2 and (2πτ2)−1/2 do not need to be considered. Through further
manipulation (of the square in µ), one obtains

∝ exp

(
−1

2

(
n

σ2
+

1

τ2

)(
µ−

(
n

σ2
+

1

τ2

)−1(ny
σ2

+
η

τ2

))2
)

(6.24)

and thus, the posterior distribution is

N
((

n

σ2
+

1

τ2

)−1(ny
σ2

+
η

τ2

)
,

(
n

σ2
+

1

τ2

)−1
)
. (6.25)

In other words, the posterior expected value

E(µ | y1, . . . , yn) = η
σ2

nτ2 + σ2
+y

nτ2

nτ2 + σ2
= η ω +y(1− ω) (6.26)

is a weighted mean of the prior mean η and the mean of the likelihood y. The weights ω =

σ2/(nτ2 + σ2) depend on the variance parameters and on n. With a smaller prior variance τ ,
more weight is given to the prior, for example. The larger n is, the less weight there is on the
prior mean, since σ2/(nτ2 + σ2) → 0 for n → ∞. Typically, the prior is fixed, but if more
data is collected, the posterior mean will be closer to the mean of the data, and the prior has a
weaker “influence” on the posterior. Figure 6.2 (based on R-Code 6.1) illustrates the setting of
this example with y= 2.1, n = 4 and the hyper-parameters σ2 = 1, η = 0 and τ2 = 2. Here, the
likelihood is with respect to Y , i.e., the likelihood is a function of the parameter µ, given by the
density of Y , a Gaussian with mean y and variance σ2/n. ♣

The posterior mode is often used as a summary statistic of the posterior distribution. Natu-
rally, the posterior median and posterior mean (i.e., the expectation of the posterior distribution)
are intuitive alternatives. In the case of the previous example, the posterior mode is the same as
the posterior mean.

6.2.2 Bayesian Confidence intervals

Interval estimation in the frequentist approach results in confidence intervals. But sample con-
fidence intervals need to be interpreted carefully in the context of repeated sampling. A sample
(1−α)% confidence interval [bu, bo] contains the true parameter with a frequency of (1−α)% in
infinite repetitions of the experiment. With a Bayesian approach, we can now make statements
about the parameter with probabilities. In Example 6.4, based on Equation (6.25)

P
(
v−1m− z1−α/2v

−1/2 ≤ µ ≤ v−1m+ z1−α/2v
−1/2

)
= 1− α, (6.27)
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R-Code 6.1 Normal-normal model. (See Figure 6.2.)

## Information about data:

ybar <- 2.1; n <- 4; sigma2 <- 1

## information about prior:

priormean <- 0; priorvar <- 2

## Calculating the posterior variance and mean:

postvar <- 1/( n/sigma2 + 1/priorvar)

postmean <- postvar*( ybar*n/sigma2 + priormean/priorvar )

## Plotting follows:

y <- seq(-2, to=4, length=500)

plot( y, dnorm( y, postmean, sqrt( postvar)), type="l", col=4,

ylab="Density", xlab=bquote(mu))

lines( y, dnorm( y, ybar, sqrt( sigma2/n)), col=3)

lines( y, dnorm( y, priormean, sqrt( priorvar)), col=5)

legend( "topleft", legend=c("Data/likelihood", "Prior", "Posterior"),

col=c(3, 5, 4), bty="n", lty=1)
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Figure 6.2: Normal-normal model with prior (cyan), data/likelihood (green) , and
posterior (blue). (See R-Code 6.1.)

with v = n/σ2 +1/τ2 and m = ny/σ2 + η/τ2. That means that the bounds v−1m± z1−α/2v
−1/2

can be used to construct a Bayesian counterpart to a confidence interval.

Definition 6.1. The interval R with∫
R
f(θ | y1, . . . , yn) dθ = 1− α (6.28)

is called a (1− α)% credible interval for θ with respect to the posterior density f(θ | y1, . . . , yn)
and 1− α is the credible level of the interval. ♢

The definition states that the parameter θ, now seen as a random variable whose posterior
density is given by f(θ | y1, . . . , yn) is contained in the (1−α)% credible interval with probability
(1− α).
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Example 6.5 (continuation of Example 6.4). The interval [ 0.94, 2.79 ] is a 95% credible interval
for the parameter µ. ♣

Since the credible interval for a fixed α is not unique, the “narrowest” is often used. This
interval is the so-called HPD interval (highest posterior density interval). HPD intervals and
credible intervals, in general, are often determined numerically.

Example 6.6 (continuation of Example 6.3). The 2.5% and 97.5% quantiles of the poste-
rior (6.17) are 0.45 and 0.83, respectively. A HPD is given by the bounds 0.46 and 0.84. The
differences are not pronounced, as the posterior density is relatively symmetric. Hence, the
widths of both are almost identical: 0.377 and 0.375.

The Wilson frequentist sample 95% CI is [0.5, 0.92], with width 0.42. ♣

6.2.3 Predictive Distribution

In the classical regression framework, the estimated regression line represented the mean of an
unobserved new location. To fully assess the uncertainty of the prediction, we had to take
into account the uncertainty of the estimates and argued that the prediction is given by a t-
distribution.

In the Bayesian setting, the likelihood f(ynew | θ) can be seen as the predictive distribution’s
density. That means the distribution of an unobserved new observation ynew. As the classical
regression framework, using f(ynew | θ̂ ), with θ̂ some Bayesian estimate of the parameter (e.g.,
posterior mean or posterior mode). The better approach is based on the posterior predictive
distribution, defined as follows.

Definition 6.2. The posterior predictive distribution of a Bayesian model with likelihood f(y | θ)
and prior f(θ) is

f(ynew | y1, . . . , yn) =
∫
f(ynew | θ)f(θ | y1, . . . , yn) dθ. ♢ (6.29)

In the previous equation, f(ynew | θ, y1, . . . , yn) represents the likelihood, and thus there is
no dependency on the data. Hence, f(ynew | θ, y1, . . . , yn) = f(ynew | θ).

Example 6.7 (continuation of Example 6.3). In the context of the beta-binomial model, the
posterior predictive distribution is constructed based on the single observation y only

f(ynew | y) =
∫ 1

0
f(ynew | p)× f(p | y) dp

=

(
n

ynew

)
c

∫ 1

0
pynew(1− p)n−ynew × py+α−1(1− p)n−y+β−1 dp,

(6.30)

where c is the normalizing constant for the posterior. The integral itself gives us the normalizing
constant of a Beta(ynew + y + α, 2n − ynew − y + β) distribution. We do not recognize this
distribution per se. As an illustration, Figure 6.3 shows the posterior predictive distribution
based on the observation y = 10 and prior Beta(5, 5). The prior implies that the posterior
predictive distribution is much more centered compared to the likelihood with plugin parameter
p̂ = 10/13 (i.e., the binomial density Bin(13, 10/13)). ♣
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R-Code 6.2 Predictive distribution with the beta-binomial model. (See Figure 6.3.)

library(LearnBayes)

n <- 13

y <- 0:n

pred.probs <- pbetap(c( 10+5, 13-10+5), n, y) # prior Beta(5,5)

plot(y, pred.probs, type="h", ylim=c(0,.27), col=2, ylab="")

lines( y+0.07, dbinom(y, size=n, prob=10/13), type="h")

legend("topleft", legend=c("Predictive posterior", "Likelihood plugin"),

col=2:1, lty=1, bty="n")

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

y

Predictive posterior
Likelihood plugin

Figure 6.3: Predictive posterior distribution for the beta-binomial model (red) and
likelihood with plugin parameter p̂ = 10/13 (black).

Even in the simple case of the beta-binomial model, it is not straightforward to derive the
predictive posterior distribution. Quite often, more detailed integration knowledge is required.
In the case of the normal-normal model, as introduced in Example 6.4, it is possible to show
that the posterior predictive distribution is again normal N (µpost, σ

2 + σ2post), where µpost, σ2post

are the posterior mean and posterior variance as given in (6.25).

6.2.4 Bayes Factors

The Bayesian counterpart to hypothesis testing is done through a comparison of posterior prob-
abilities. For example, consider two specific models specified by two hypotheses H0 and H1. By
Bayes theorem,

P(H0 | y1, . . . , yn)
P(H1 | y1, . . . , yn)︸ ︷︷ ︸

Posterior odds

=
P(y1, . . . , yn | H0)

P(y1, . . . , yn | H1)︸ ︷︷ ︸
Bayes factor (BF01)

× P(H0)

P(H1)︸ ︷︷ ︸
Prior odds

, (6.31)

that means that the Bayes factor BF01 summarizes the evidence of the data for the hypothesis
H0 versus the hypothesis H1. The Bayes factor is any positive number. However, it has to be
mentioned that a Bayes factor needs to exceed 3 to talk about substantial evidence for H0. For
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strong evidence, we typically require Bayes factors larger than 10. More precisely, Jeffreys (1983)
differentiates

1 <
barely worth
mentioning

< 3 < substantial < 10 < strong < 30 <
very
strong < 100 < decisive

For values smaller than one, we would favor H1 and the situation is similar by inverting the
ratio, as also illustrated in the following example.

Example 6.8. We consider the setup of Example 6.3 and compare the models with p = 1/2 and
p = 0.8 when observing 10 successes among the 13 trials. To calculate the Bayes factor, we need
to calculate P(Y = 10 | p) for p = 1/2 and p = 0.8. Hence, the Bayes factor is

BF01 =

(
13
10

)
0.510(1− 0.5)3(

13
10

)
0.810(1− 0.2)3

=
0.0349

0.2457
= 0.1421, (6.32)

which is somewhat substantial (1/0.1421 ≈ 7) in favor of H1. This result is not surprising, as
the observed proportion is p̂ = 10/13 = 0.77 close to p = 0.8 corresponding to H1. ♣

In the example above, the hypotheses H0 and H1 are understood in the sense of H0 : θ = θ0

and H1 : θ = θ1. The situation for an unspecified alternative H1 : θ ̸= θ0 is much more interesting
and relies on using the prior f(θ) and integrating out the parameter θ:

f(y1, . . . , yn | H1 : θ ̸= θ0) =

∫
f(y1, . . . , yn | θ)f(θ) dθ, (6.33)

illustrated as follows.

Example 6.9 (continuation of Example 6.8). For the situation H1 : p ̸= 0.5 using the prior
Beta(5, 5), we have

P(Y = 13 | H1) =

∫ 1

0
P(Y = 13 | p)f(p) dp

=

∫ 1

0

(
13

10

)
p10(1− p)3 · c p4(1− p)4 dp = 0.0704,

(6.34)

where we used integrate( function(p) dbinom(10,13,prob=p)*dbeta(p, 5,5),0,1). Thus,
BF01 = 0.0349/0.0704 = 0.4957. Hence, the Bayes factor is approximately 2 in favor ofH1, barely
worth calculating the value. Under a uniform prior, the support for H1 only marginally increases
(from 2.017 to 2.046). ♣

Example 6.10. We now look at a Bayesian extension of the frequentist t-test. For simplicity, we
assume the one sample setting without deriving the explicit formulas. The package BayesFactor
provides functionality to calculate Bayes factors for different settings.

R-Code 6.3 shows that the Bayesfactor comparing the null model µ = 1 against the alternative
µ ̸= 1 is approximately 2.5. Here, we have used the standard parameter setting, which includes
the prior and prior variance specifications. The prior variance can be specified with the argument
rscale with default 0.707 =

√
2. Increasing this variance leads to a flatter prior and, thus, to a

smaller Bayes factor. Default priors are typically very reasonable, and we return to the priors’
choice in the next section. ♣
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R-Code 6.3 Bayes factor within the normal-normal model.

library(BayesFactor)

set.seed(12)

dat <- rnorm( 20, mean=1.4, sd=.5)

t.test( dat, mu=1)

##

## One Sample t-test

##

## data: dat

## t = 2.42, df = 19, p-value = 0.026

## alternative hypothesis: true mean is not equal to 1

## 95 percent confidence interval:

## 1.0315 1.4373

## sample estimates:

## mean of x

## 1.2344

ttestBF( dat, mu=1)

## Bayes factor analysis

## --------------

## [1] Alt., r=0.707 : 2.3525 ±0%

##

## Against denominator:

## Null, mu = 1

## ---

## Bayes factor type: BFoneSample, JZS

Bayes factors are popular because they are linked to the BIC (Bayesian Information Crite-
rion) and thus automatically penalize model complexity. Further, they also work for non-nested
models.

6.3 Choice of the Prior Distribution

The choice of the prior distribution is part of the model specification, and a statistician should
not be afraid of specifying priors. In many cases, the assumptions on the data (likelihood) are
more restrictive and questionable than the choice of the prior. Naturally, the prior should be
fixed before the data has been collected.

The examples in the last section were such that the posterior and prior distributions belonged
to the same class. Naturally, that is no coincidence. In these examples, we have chosen so-called
conjugate prior distributions.

In many cases, the posterior does not have a form from which we can sample directly, and
sampling approaches are needed. Such routines will be discussed in Sections 7.1.2 and 7.1.3 and
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for more complicated settings in the subsequent two chapters.

Next to conjugate priors, there are many more classes that are typically discussed in a full
Bayesian lecture. We prefer to classify the effect of the prior instead. Although not universal and
quite ambiguous, we differentiate between informative, weakly informative, and uninformative
priors. The first describes a prior that is specific to the data at hand, and with different data, the
prior typically chances. The prior has potentially a substantial effect on the posterior. Weakly
informative priors do not strongly influence the posterior but may substantially in situations
when the model is ill-posed. Finally, an uninformative prior is such that the likelihood relates
essentially to the posterior in terms of some criterion like posterior mean.

Uninformative priors are not classical prior distributions. In Example 6.3, we would require
a “beta density” with α = β = 0 in order to have a posterior mean that is equivalent to the
likelihood estimate (see Equation (6.18)). However, for α = β = 0 the normalizing constant
of (6.15) is not finite as

∫ 1
0 p

−1(1 − p)−1 dp diverges. Similarly, in Example 6.4, in order that
E(µ | y1, . . . , yn) = y, we need τ → ∞, that means, the prior of µ is “completely constant” (see
Equation (6.26)). As we do not have a bounded range for µ, we have again not a “proper density”,
i.e., a so-called improper prior. Without going into details, it is possible that the posterior is
a legitimate density for specific improper priors. However, improper priors should not be used
unless typical examples are treated, as the posterior may not be proper either.

In the Bayesian literature, many articles are about soliciting specific priors (e.g., reference
priors, Jeffrey’s prior, . . . ). We advocate a purely pragmatic approach. If conjugate priors are
available, use these. If not, choose priors that imply a more straightforward, stable implementa-
tion. Again, one should not be afraid of choosing informative priors.

For large n, the difference between a Bayesian and likelihood estimate is not pronounced. It
is possible to show that the posterior mode converges to the likelihood estimate as the number
of observations increases.

Example 6.11. We consider the normal-normal model again and compare the posterior density
for various n with the likelihood. We keep y= 2.1, independent of n. As shown in Figure 6.4, the
maximum likelihood estimate does not depend on n (y is kept constant by design). The uncer-
tainty decreases, however (standard error is σ/

√
n). For increasing n, the posterior “approach"

the likelihood density. There is no difference between the posterior and the likelihood in the
limit. The R-Code follows closely R-Code 6.1. ♣

6.4 Regression in a Bayesian Framework

In this section, we introduce a Bayesian approach to simple linear regression and logistic regres-
sion. More complex models are deferred to the next chapter. We will discuss the conceptual
ideas and use software tools as a black-box approach. The underlying computational ideas will
be discussed in the last chapter.

The simplest Bayesian regression model is as follows

Yi | β, σ2 indep∼ N (x iβ, σ
2), i = 1, . . . , n, (6.35)

β ∼ Np+1(η, σ
2T), (6.36)
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Figure 6.4: Normal-normal model with prior (cyan), data/likelihood (green), and
posterior (blue) for increasing n (n = 4, 36, 64, 100). The prior is N (0, 2) and y = 2.1

in all cases.

where σ2, η and T are hyper-parameters. The model is quite similar to (6.19) and (6.20) with
the exception that we have a multivariate prior distribution for β. Instead of the parameter τ2,
we use σ2T, where T is a (p+1)× (p+1) symmetric positive definite matrix. The special form
will allow us to factor σ2 and simplify the posterior. With a few steps, it is possible to show that

β | y ∼ Np+1(V
−1m , σ2V−1) (6.37)

with V−1 = T−1 +X⊤X and m = T−1η +X⊤y .
It is possible to show that the posterior is a weighted average of the prior mean η and the

classical least squares estimate β̂ = (X⊤X)−1Xy .

The function bayesglm() from the R package arm implements an accessible way for simple
linear regression and logistic regression. It is simple in the sense that it returns the posterior
modes of the estimates in a framework that is similar to a frequentist approach. We need to
specify the priors for the regression coefficients (separately for the intercept and the remaining
coefficients).

Example 6.12 (Bayesian approach to orings data). In January 1986, the space shuttle Chal-
lenger exploded shortly after taking off, killing all seven crew members aboard. Part of the
problem was with the booster rockets’ rubber seals, the so-called O-rings. Due to low ambient
temperature, the seals started to leak, causing the catastrophe. The data set data(orings,

package="faraway") contains the number of defects in the six seals in 23 previous launches
(Figure 6.5). The question we ask here is whether the probability of a defect for an arbitrary
seal can be predicted for an air temperature of 31◦F (as in January 1986). See Dalal et al. (1989)
for a detailed statistical account or simply https://en.wikipedia.org/wiki/Space_Shuttle_

Challenger_disaster.

The variable of interest is a probability (failure of a rubber seal) that we estimate based
on binomial data (failures of o-rings). However, a linear model cannot guarantee p̂i ∈ [0, 1].
In this and similar cases, logistic regression is appropriate. The logistic regression models the

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
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probability of a defect as

p = P(defect) =
1

1 + exp(−β0 − β1x)
, (6.38)

where x is the air temperature. Through inversion, one obtains a linear model for the log odds

g(p) = log
( p

1− p

)
= β0 + β1x, (6.39)

where g(·) is generally called the link function. In this special case, the function g−1(·) is called
the logistic function. Such a model is a particular case of a generalized linear model.

R-Code 6.4 fits a logistic regression with the function glm(..., family=binomial). The
fitted and predicted values are shown in blue in Figure 6.5.

A Bayesian logistic model is fitted to the data in the second step. In the first bayesglm()

call, we set the prior variances to infinity, resulting in uninformative priors. The posterior mode
is identical to the result of a classical glm() model fit.

In the second call, we use Gaussian priors for both parameters with mean zero and variance 9.
This choice is set by prior.df=Inf (i.e., a t-distribution with infinite degrees of freedom), by
the default prior.mean=0, and by prior.scale=3, and similarly for the intercept parameter.
The slope parameter is hardly affected by the prior. The intercept is, however: with its rather
informative choice of the prior variance, the posterior mode is shrunk towards zero. Note that
summary(baye) should not be used, as the printed p-values are irrelevant in the Bayesian context.
The function display() is the preferred way. Interpreting a multivariate posterior distribution
is not always straightforward, especially if the parameters are correlated. Figure 6.5 illustrates
resulting fitted curves for which the parameters have been sampled from the posterior distribution
(with sim(bayes2)). ♣

R-Code 6.4: orings data and estimated probability of defect dependent on air tempera-
ture. (See Figure 6.5.)

data( orings, package="faraway")

library(arm)

str(orings)

## 'data.frame': 23 obs. of 2 variables:

## $ temp : num 53 57 58 63 66 67 67 67 68 69 ...

## $ damage: num 5 1 1 1 0 0 0 0 0 0 ...

plot( damage/6~temp, xlim=c(21,80), ylim=c(0,1), data=orings, pch="+",

xlab="Temperature [F]", ylab="Probability of damage", cex=1.5) # data

abline( v=31, col="gray", lty=2) # actual temp. at start

## frequentist approach:

glm1 <- glm( cbind(damage,6-damage)~temp, family=binomial, data=orings)

arm::display( glm1) # or similarly `summary( glm1)`
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## glm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,

## data = orings)

## coef.est coef.se

## (Intercept) 11.66 3.30

## temp -0.22 0.05

## ---

## n = 23, k = 2

## residual deviance = 16.9, null deviance = 38.9 (difference = 22.0)

points( orings$temp, glm1$fitted, col=4, pch=19, cex=1.5) # fitted values

ct <- seq(20, to=85, length=100) # vector to predict

p.out <- predict( glm1, new=data.frame(temp=ct), type="response")

lines(ct, p.out, lwd=3, col=4)

## Bayesian approach:

bayes1 <- bayesglm( cbind(damage,6-damage)~temp, family=binomial, data=orings,

prior.scale=Inf, prior.scale.for.intercept=Inf) #

coef(bayes1) # result is "similar" to `coef(glm1)`

## (Intercept) temp

## 11.66299 -0.21623

bayes2 <- bayesglm( cbind(damage,6-damage)~temp, family=binomial, data=orings,

prior.df = Inf, prior.scale=3,

prior.df.for.intercept=Inf, prior.scale.for.intercept=3) #

arm::display(bayes2)

## bayesglm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,

## data = orings, prior.scale = 3, prior.df = Inf, prior.scale.for.intercept = 3,

## prior.df.for.intercept = Inf)

## coef.est coef.se

## (Intercept) 10.54 3.03

## temp -0.20 0.05

## ---

## n = 23, k = 2

## residual deviance = 17.1, null deviance = 38.9 (difference = 21.8)

scoefs <- coef(sim(bayes2)) # simulation of coefficients...

for (i in 1:100) {

lines( ct, invlogit( scoefs[i,1]+scoefs[i,2]*ct), col=rgb(.8,.8,.8,.2))

}
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Figure 6.5: orings data (proportion of damaged orings, black crosses) and estimated
probability of defect (blue dots) dependent on air temperature. The dotted vertical line
is the ambient launch temperature at the time of launch. The blue line is the glm fit.
Gray lines are based on draws from the posterior distribution. (See R-Code 6.4.)
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6.5 Bibliographic Remarks

An accessible discussion of the Bayesian approach can be found in Held and Sabanés Bové (2014),
including a discussion about the choice of prior distribution. A classic is Bernardo and Smith
(1994).

The online open access book “An Introduction to Bayesian Thinking” available at https:

//statswithr.github.io/book/ nicely melds theory and R source code.

https://statswithr.github.io/book/
https://statswithr.github.io/book/


Chapter 7

Hierarchical Models:
Gibbs Sampling

In a Bayesian framework, the posterior distribution summarizes the update of the
prior based on data. In realistic settings, the posterior distribution does not have
a closed form, and inference is based on a sample thereof. This chapter discusses
a straightforward approach to draw a sample from the posterior.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter07.R.

The (principal) goal of a hierarchical modeling approach is to obtain the posterior distribu-
tion of the process (and potentially of parameters) given the model observations and to derive
relevant statistical quantities thereof. The posterior density can be derived via Bayes’ theorem,
synthesized as

[ process | data, parameters ]

∝ [ data | process, parameters ] · [ process | parameters ] · [ parameters ] .
(7.1)

The densities on the right-hand side of (7.1) are given by the three levels of the hierarchical
model. The joint posterior is often a complicated distribution that has no closed form or from
which it is impossible to draw directly. However, the posterior can be sampled using Markov
chain Monte Carlo (MCMC) procedures, e.g., Geman and Geman (1984); Gelfand and Smith
(1990). The essence of the MCMC approach is to simulate joint probability distributions by
sampling from a Markov chain with a stationary (and ergodic) distribution that is identical to
the posterior distribution (see also Gilks et al., 1998; Robert and Casella, 1999).

7.1 General Remarks about Generating Random Numbers

There are many ways to sample from a distribution and examples are given in the following
sections.

113
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7.1.1 Ask R

Besides the classical distributions implemented in R, a plenitude of packages provides additional
distributions. The CRAN task view ‘Distributions’ cran.r-project.org/web/views/Distributions.
html gives a summary of the most important packages.

7.1.2 Transformation based on the inverse cdf

Let X be a random variable with CDF FX(x). If the inverse CDF F−1
X has a closed form,

then sampling from X can be done by sampling uniforms U1, . . . , Un and transform it to X1 =

F−1
X (U1), . . . , Xn = F−1

X (Un).

P{X ≤ x} = P{F−1
X (U) ≤ x} = P{U ≤ FX(x)} = FX(x). (7.2)

There are many examples nice examples of transformation-based sampling, e.g., X ∼ Exp(λ).

Remark 7.1. Interestingly, R uses a seemingly more complex algorithm to sample from X ∼
Exp(λ). The algorithm is, however, fast and does not require a lot of memory (Ahrens and
Dieter, 1972); properties that were historically very important. The actual code is in github.com/
statslabs/rmath/blob/master/src/sexp.c.

7.1.3 Rejection sampling

Rejection sampling is a simple way to sample from a virtually arbitrary density fX(x). The idea
is to sample a random variable with a known density gY (y) and select suitable realizations.

More formally, we require M < ∞ such that fX(x) ≤ MgY (x), for all x. We draw x̃ as the
realization of Y and u from a standard uniform distribution. If u ≤ fX(x̃)/(MgY (x̃)) we accept
x̃ as a realization of X otherwise we reject x̃. Example 7.1 illustrates the rejection sampling
using a straightforward example.

Naturally, the choice of g and M determines the sampler’s efficiency.

Example 7.1. Using a uniform, we want to draw realizations from a Beta(6, 3) distribution.
More precisely, fX(x) = x6−1(1 − x)3−1/β(6, 3) and gY (x) = 10≤x≤1(x). Choosing M = 3

satisfies fX(x) ≤ MgY (x). R-Code 7.1 gives a straightforward implementation of the algorithm
and a vectorized version. The resulting densities are shown in Figure 7.1. ♣

R-Code 7.1: Rejection sampling (See Figure 7.1.)

set.seed(16)

n.sim <- 1000

M <- 3

f <- function(x) x^(6-1) * (1-x)^(3-1) / beta(6,3)

g <- function(x) ifelse(x >= 0 & x <= 1, 1, 0)

result <- sample <- rep(NA, n.sim)

for (i in 1:n.sim){

sample[i] <- runif(1)

http://cran.r-project.org/web/views/Distributions.html
http://cran.r-project.org/web/views/Distributions.html
https://github.com/statslabs/rmath/blob/master/src/sexp.c
https://github.com/statslabs/rmath/blob/master/src/sexp.c
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u <- runif(1)

if(u <= f(sample[i]) / (M * g(sample[i]))) # if accepted ...

result[i] <- sample[i]

}

mean(!is.na(result)) # proportion of accepted samples

## [1] 0.348

result <- result[!is.na(result)]

### Alternative implmentation:

sample <- runif(n.sim)

u <- runif(n.sim)

result <- sample[ u <= f(sample) / (M * g(sample)) ]

### Constructing the figures:

hist(sample, xlab="x", main="", col="lightblue")

hist(result, add=TRUE, col=4)

curve(dbeta(x, 6, 3), frame =FALSE, ylab="", yaxt="n")

lines(density(result), lty=2, col=4)

legend("topleft", legend=c("truth", "empirical"), lty=1:2, col=c(1,4))
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Figure 7.1: Left: histogram of simulated values from Y , representing gY (x) (light
blue) and from fX(x) (blue). The histograms are not scaled. Right: empirical and true
density. (See R-Code 7.1.)

7.2 The Gibbs Sampler

A straightforward MCMC algorithm is the Gibbs sampler which aims to provide a sample from
distributions that do not have closed-form quantile functions or ready-made R functions. Es-
sentially, the Gibbs sampler works as follows in the general setting. First, for each parameter
in the model, its distribution, conditional on all the other random quantities in the model, is
identified. Such distributions are called full conditionals because only the parameter of interest
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is allowed to be random, and the remaining part of the model is fixed (or conditioned upon).
Second, the Monte Carlo algorithm cycles among the parameters by simulating a new value for
each parameter based on the full conditional distribution and the current values of the other
parameters. Under weak assumptions the sequence converges to the intended distribution, i.e.
the sample represents a valid realization of the distribution.

We now consider the Bayesian setting, where we would like to construct a sample from a
posterior π(θ | y) where θ is a p-valued parameter and y indicates the data vector. We first
derive its p full conditional densities π(θi | θ−i,y), i = 1, . . . , p, and in the second step we sample
thereof. This procedure is particularly useful, if the full conditionals are such that we can directly
sample thereof, i.e., if π(θi | θ−i,y) has a ready built-in sampling procedure in R.

For the case p = 3, i.e., θ = (θ1, θ2, θ3)
⊤, the algorithm to generate a sample of size M writes

as follows (we write samples from iteration i with superscript (i)):

(1) Set θ(0)2 and θ(0)3 to some admissible value and set i = 1.

(2) Sample θ(i)1 from π(θ1 | θ(i−1)
2 , θ

(i−1)
3 ,y);

sample θ(i)2 from π(θ2 | θ(i)1 , θ
(i−1)
3 ,y);

sample θ(i)3 from π(θ3 | θ(i)1 , θ
(i)
2 , y).

(3) If i < M , i = i+ 1 and go to (2) else stop.

The sampler converges under very weak conditions (the full conditionals need to be valid dis-
tributions, and the support of π(θ | y) can be written as a product set of the supports of
π(θi | θ−i,y), i = 1, . . . , p). For a more thorough discussion, we refer to Roberts and Smith
(1994).

Example 7.2. Suppose we want to draw from a bivariate Gaussian distribution with zero mean
and unit marginal variances, ρ known with no explicit dependence on y , i.e., π(θ1, θ2). Based
on (1.19) the full conditionals π(θ1 | θ2) and π(θ2 | θ1) are

θi | θj ∼ N (ρθj , 1− ρ2), i ̸= j. (7.3)

R-Code 7.2 illustrates the updating. Figure 7.2 shows the sample and the first 10 draws by
highlighting the consecutive updating of θi and θj . The empirical values are (naturally) quite
close to the true values. The sample does exhibit a strong correlation, close to the actual value
of ρ2. Of course, we might draw all 2M = 2 · 1000 Gaussian realizations of variance 1− ρ2 and
just adjust the means. ♣

R-Code 7.2: Illustration of a Gibbs sampler for a bivariate Gaussian distribution. (See
Figure 7.2.)

set.seed(19)

rho <- 0.9

M <- 1000
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sam <- matrix(0, nrow=M, ncol=2)

for (i in 2:M) {

sam[i, 1] <- rnorm(1, rho*sam[i-1, 2], sd=sqrt(1-rho^2))

sam[i, 2] <- rnorm(1, rho*sam[i, 1], sd=sqrt(1-rho^2))

}

### Sampling done, lets visualize it:

plot(sam, xlab=bquote(theta[1]), ylab=bquote(theta[2]), pch=20, cex=.5)

points(sam[1,1], sam[1,2], col=2, pch=19, cex=1.5)

for (i in 1:10) {

arrows(sam[i,1], sam[i,2], sam[i+1,1], sam[i,2], col=7, len=.1, lwd=2)

arrows(sam[i+1,1], sam[i,2], sam[i+1,1], sam[i+1,2], col=8, len=.1, lwd=2)

} # can be written without loops by replacing `i' with `1:10'

### quick sanity check... qqplots etc should be added as well...

summary(sam)

## V1 V2

## Min. :-4.3314 Min. :-3.8076

## 1st Qu.:-0.7256 1st Qu.:-0.7400

## Median :-0.0423 Median :-0.0616

## Mean :-0.0551 Mean :-0.0560

## 3rd Qu.: 0.6351 3rd Qu.: 0.6538

## Max. : 2.6988 Max. : 3.3040

cov(sam) # truth is [ [1, 0.9], [0.9, 1]]

## [,1] [,2]

## [1,] 0.99508 0.89426

## [2,] 0.89426 0.98498

cor(sam)[2] # truth is 0.9

## [1] 0.90327

c(cor(sam[-1,1], sam[-M,1]), cor(sam[-1,2], sam[-M,2])) # will be .81

## [1] 0.81767 0.81174

For higher dimensional vectors θ ∈ Rp, Step (2) in the Gibbs sampler algorithm is replaced
by a loop over the components θk. That means

(2’) For k = 1, . . . , p: sample θ(i)k from π(θk | θ(i)1 , . . . , θ
(i)
k−1, θ

(i−1)
k+1 , . . . , θ

(i−1)
p ,y).

Provided that starting values are correctly chosen, the sample θ(1), . . . ,θ(M) is a legitimate
sample from the joint distribution π(θ | y). However, typically not the entire sample is kept:
(i) every kth element is kept (termed thinning) to keep storage low, and (ii) the first m < M

elements of the sample are discarded (termed eliminating burn-in) to ensure that the sampler
has “forgotten” the starting values and converged. Notice that thinning also reduces the sample’s
autocorrelation (serial correlation). For practical purposes, it is not required to have uncorrelated
samples.
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Figure 7.2: Illustration of a Gibbs sampler for a bivariate Gaussian distribution. The
initial draw is indicated in red, and the next ten updates are drawn with arrows. (See
R-Code 7.2.)

The illustration given in R-Code 7.2 intuitively extends to arbitrary multivariate Gaussian
distributions (provided the mean vector and covariance matrix are known). However, for prac-
tically relevant cases, the theoretical justification of the Gibbs sampler is not trivial. As an
intuitive justification, Brook’s lemma can be used.

Lemma 7.1. Under mild assumptions, we have

π(x )
π(x′)

=
∏
i

π(xi | x1, . . . , xi−1, x
′
i+1, . . . x

′
n)

π(x′i | x1, . . . , xi−1, x′i+1, . . . x
′
n)

(7.4)

The lemma can be shown by starting with the equality

π(x ) =
π(xn | x1, . . . , xn−1)

π(x′n | x1, . . . , xn−1)
π(x1, . . . , xn−1, x

′
n), (7.5)

then recursively using

π(x1, . . . , xn−1, x
′
n) =

π(xn−1 | x1, . . . , xn−1, x
′
n)

π(x′n−1 | x1, . . . , xn−1, x′n)
π(x1, . . . , xn−2, x

′
n−1, x

′
n). (7.6)

For our intuitive justification, we take x ′ as the value of the previous draw.

7.3 Convergence Diagnostics

Every sample from an MCMC algorithm needs to be checked for convergence, i.e., does the
sample indicate any evidence that convergence of the Markov chain has not (yet) reached.

One should always plot the (thinned) sample versus the indices, called the trace plots. These
plots indicate how the samples fluctuate around the mean. Slow meandering is an indication
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of slow or poor mixing. Changing the initial value helps to assess how quickly a chain reaches
its equilibrium. Auto-correlation plots (acf()-plots) assess the serial dependence in the sample.
The parameters are correlated in many realistic model settings even when thinned is performed.
It is worthwhile plotting scatter plots and cross-correlation plots as well. Irregular patterns or
strong (asymmetric) dependencies should be investigated.

Comparing several long MCMC chains leads to analyzing a huge number of data points. To
summarize the information, several traditional methods, such as summary tables, trace plots,
Gelman plots, and Geweke plots, are helpful. Most of these functions are provided by the R
package coda and are further illustrated in Section 8.2.

7.4 Example: Normal Response Model

This section illustrates a Gibbs sampler with a “realistic” example. It is clear that there are
many technical details involved, but the emphasis should be put on the conceptual ideas behind.

We reconsider the R dataset UKDriverDeaths seen in Section 3.4.2, constituting a time series
of the monthly totals of car drivers in Great Britain killed or seriously injured from January
1969 to December 1984 (i.e., 192 months or 16 years). The raw data is shown in the top panel
of Figure 3.5. The following two sections illustrate a Gibbs sampler first for the annual and
then for the monthly time series. Although the annually aggregated data is not particularly
complex, it allows for presenting the framework first and adding additional modeling elements
to the framework.

7.4.1 Annual Data

We assume that the square root of the monthly averages of cases per year is normal (hence the
section title) and that these response variables are conditionally (on its mean) independent:

Yi = ti + εi, εi
iid∼ N (0, σ2), i = 1, . . . , n. (7.7)

Here, n = 16 and ti indicate the mean. We will choose a non-parametric approach to model the
smooth trend, much in the spirit of Section 4.5.1. When setting σ2 = 1/κy , the joint density of
the responses can be written as

π(y | t , κy ) ∝ κ
n
2
y exp

(
− κy

2

n∑
i=1

(yi − ti)
2
)
. (7.8)

This last equation defines the likelihood.
We now define the process model, which defines distributions for t1, . . . , tn. To model the

smooth trend we assume that ti−2ti+1+ti+2, i = 1, . . . , n−2, are independent normal with mean
zero and precision κt (an intrinsic second-order random walk model), as seen in Section 4.5.1.
Hence, with t = (t1, . . . , tn)

π(t | κt ) ∝ κ
n−2
2

t exp
(
− κt

2
t⊤Qt t

)
, (7.9)

where the precision matrix Qt has non-zero entries on the five diagonals only. More specifically,
a typical row is given by (. . . , 0, 1,−4, 6,−4, 1, 0, . . . ), see R-Code further below.
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Finally, we need to specify the priors. We propose to use independent Gamma priors for
the precisions, π(κt ) ∝ καt−1

t exp
(
− κtβt ) and π(κy ) ∝ κ

αy−1
y exp

(
− κyβy ), being conjugate

for the Gaussian components. The set αt , βt , αy , βy constitute the hyper-parameters we need
to specify as part of the Bayesian modeling approach. We choose αy = 4, βy = 4, αt = 1,
βt = 0.0005; representing weakly informative priors. See also Remark 7.2 at the end of this
section. (A Gamma distribution with scale and rate (or inverse scale) parameters α and β has
an expectation α/β and variance α/β2.)

Figure 7.3 illustrates the hierarchical model in a graph-like structure.

Graph G Level Distribution

y | t , σ2 likelihood iid–Normal

t | κt

OO

process model IGMRF (2nd order RW)

κt | αt , βt

OO

κy = 1
σ2 | αy , βy

ZZ

prior Gamma

Figure 7.3: The variables (nodes) and their dependency structure are shown in
Graph G. The distributions and levels of the nodes in the model hierarchy are also
indicated.

It is now possible to specify the full joint density

π(y , t ,κ) = π(y | t , κy ) π(t | κt ) π(κt ) π(κy ). (7.10)

We will now simplify this expression by collecting and arranging the terms in t , y and the
precision parameters. First, we write the (negative-2)-quadratic term of (7.18) as κy (y−t)⊤(y−
t). Collecting all their terms (individual precisions parameters and the quadratic forms) leads
to

π(y , t ,κ) ∝ κ
αt+

n−2
2

−1
t κ

αy+
n
2
−1

y exp
(
− κtβt − κyβy

)
× exp

(
− 1

2
(t⊤,y⊤)

(
Qtt Qty

Qyt Qyy

)(
t
y

))
,

(7.11)

where the individual block precisions are, Qtt = κtQt + κyIn, Qyy = κyIn, Qty = Qyt =

−κyIn, with Qt defined above. The block precision Qtt contains two components, one from
the prior and one from the likelihood. The block precision Qty is due to the cross terms of the
likelihood.

We further have

π(t | κ,y) ∝ π(y , t ,κ) (7.12)

π(κ | t ,y) = π(κt | t ,y)π(κy | t ,y). (7.13)
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More specifically,

t | κ,y ∼ Nn

(
Q−1

tt Qtyy ,Q−1
tt

)
(7.14)

and

π(κt | t ,y) ∝ κ
αt+

n−2
2

−1
t exp

(
− κt

(
βt +

1

2
t⊤(Qt t

))
, (7.15)

π(κy | t ,y) ∝ κ
αy+

n
2
−1

y exp
(
− κy

(
βy +

1

2
(y − t)⊤(y − t)

))
. (7.16)

Drawing from (7.14) can also be done with the R function rmvnorm.canonical() from the
package spam with arguments Qtyy and Q−1

tt . Furthermore, drawing from (7.15) and (7.16) can
be achieved in a single call to rgamma() with shape and rate arguments of length two.

It is now straightforward to implement a Gibbs sampler based on the full conditionals π(t |
κ,y), π(κt | t ,y) and π(κy | t ,y) as illustrated in R Code 7.3. The code essentially (i) loads the
data and specifies the hyper-parameters of the prior for κ = (κy , κt )

⊤ (ii) builds the precision
matrices of equation (7.11) (based on unit precision, i.e., without κ (iii) sets up sampler specific
variables, e.g., initialize the arrays containing the posterior samples and starting values for κ,
(iv) runs the Gibbs sampler.

R-Code 7.3: Manual implementation of a Gibbs sampler in the case of a normal response.

### (i) transforming the data and setting hyper-parameters:

library(spam) # UKDriverDeaths comes with package datasets

y <- rowMeans(matrix(sqrt(c(UKDriverDeaths)), 16, 12))

n <- length(y) # n=16 years

priorshape <- c(4, 1) # hyper-parameters for priors: alpha's,

priorrate <- c(4, 0.0005) # beta's, some values

### (ii) constructing individual block precisions:

Qt <- precmat.RW2(n)

print(Qt[1:4,1:10])

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 1 -2 1 0 0 0 0 0 0 0

## [2,] -2 5 -4 1 0 0 0 0 0 0

## [3,] 1 -4 6 -4 1 0 0 0 0 0

## [4,] 0 1 -4 6 -4 1 0 0 0 0

## Class 'spam' (32-bit)

In <- diag(n) # or equivalently diag.spam(n)

### (iii) setup sampler variables:

totalg <- 750 # maybe too small in practice as well
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set.seed(14)

tpost <- array(0, c(totalg, n)) # prepare arrays

kpost <- array(0, c(totalg, 2))

kpost[1,] <- c(1, 100) # some starting values

postshape <- priorshape + c(n/2, (n-2)/2) # is fixed throughout the loop

### (iv) Gibbs loop:

for (i in 2:totalg) { # start loop

Qtt <- kpost[i-1,2]*Qt + kpost[i-1,1]*In # pre-calculate precision

tpost[i,] <- rmvnorm.canonical(1, c(kpost[i-1,1]*In %*% y), Qtt) #

postrate <- priorrate + # prior contribution

c(sum((y-tpost[i,])^2)/2, # for kappa_y

t(tpost[i,]) %*% (Qt %*% tpost[i,])/2) # for kappa_t

kpost[i,] <- rgamma(2, postshape, postrate) # update kappa

} # end loop

kpost <- kpost[c(250:totalg),] # eliminate burn-in.

tpost <- tpost[c(250:totalg),]

The loop takes a couple of seconds to run. R-Code 7.4 shows the post-processing. Then
it is possible to look at the posterior density and posterior summaries, e.g., plot(density(

kpost[-1, 1])), summary(kpost).
Figure 7.4 (top left) shows the trace plots of the log precisions. By eliminating the first few

values we eliminate the apparent effect of the starting values. The trace plot of κt does not look
good, there is further evidence in the autocorrelation plot of slow mixing. The precisions are not
too strongly correlated.

The bottom left panel of Figure 7.4 shows the individual trends as gray lines, with the first
ten posterior draws shown in black. (The first row of tpost is zero, corresponding to the initial
values.) Additionally, the posterior median and 2.5% and 97.5% quantiles of the trend are given.
Note that the latter are calculated pointwise with quantile() and do not correspond to actually
observed trends.

R-Code 7.4: Postprocessing, summaries, some visualization of the sampler output, and
predictive distribution of the observations. (See Figure 7.4.)

### Construct summary of precisions:

allkappas <- rbind(apply(kpost, 2, median), apply(1/kpost, 2, median))

colnames(allkappas) <- c("kappa_y", "kappa_t")

rownames(allkappas) <- c("Prec (median)", "Var (median)")

allkappas

## kappa_y kappa_t

## Prec (median) 1.35277 1.0985e+03
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## Var (median) 0.73922 9.1034e-04

### Construct posterior quantiles of mean terms:

postquant <- apply(tpost, 2, quantile,c(.025,.5,.975))

### Plotting:

matplot(log(kpost), lty=1, type="l", xlab="Sample index", col=c(1,3))

abline(h=log(allkappas[1,]), col=3)

acf(kpost[,2], ylab=expression(ACF~of~kappa[t]), main="")

plot(kpost, ylab=bquote(kappa[t]), xlab=bquote(kappa[y]), pch=20, cex=.5)

abline(h=allkappas[1,2], v=allkappas[1,1],col=3)

matplot(t(tpost), type="l", ylab="Trend", ylim=c(39,44), col="gray", lty=1)

matlines(t(tpost[2:11,]), col=1, lty=1 ) # highlight 10 observations

matlines(t(postquant), col=c(4,2,4), lty=1, lwd=2) # posterior quantiles

points(y, pch=20) # add observations

legend("topright", bty="n", col=c(2,4,"gray"), legend=c("Posterior median",

"Quantiles of posterior sample", "individual trends"), lty=1)

ypred <- rnorm(totalg*n, tpost, sd=rep(1/sqrt(kpost[,1]), n))

dim(ypred) <- c(totalg, n)

postpredquant <- apply(ypred, 2, quantile, c(.025,.975))

plot(y^2, ylab="Counts", pch=20, ylim=c(1400,2100)) # actual counts

matlines(t(postquant)^2, col=c(4,2,4), lty=1) # quantiles of the trend

matlines(t(postpredquant)^2, col=3, lty=1) # quantiles of pred dist

legend("topright", bty="n", col=c(2,4,3), lty=1, legend=c("Posterior median",

"Quantiles of posterior sample", "Quantiles of predictive distribution"))

The predictive distribution of y is obtained by adding zero mean normal random variables
with precision kpost[i,1] to the mean tpost[i,]. The bottom right panel of Figure 7.4 gives
the posterior median, the posterior quantiles, and the quantiles of the predictive distribution,
again calculated pointwise.

In this simple example, we could have also worked with total annual cases with similar
conclusions. The monthly averages simplify the extension to individual monthly data as outlined
in the next section.

Remark 7.2. The chosen priors may appear somewhat arbitrary. Here are some additional
insights. The annual data example is a simplified case compared to the monthly data, which is
discussed in Sections 4.2.1 of Rue and Held, 2005. To ensure better comparability, we aligned
the values of the prior hyperparameters. In this example, the priors have a notable influence on
the posterior, particularly due to the small sample size.
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Figure 7.4: Top row: trace plots of the log precision, autocorrelation plot of κt and
scatter plot of κt against κy . Solid green lines indicate posterior medians. Bottom left:
posterior median and 2.5% and 97.5% quantiles of the trend. The individual trends are
given in gray lines, the first ten in black. Bottom right: observed counts, the posterior
median, its quantiles, and the quantiles of the predictive distribution. (See R-Code 7.4.)

R-Code 7.5 and Figure 7.5 illustrate this dependence. We define a set of different hyperpa-
rameters, run a Gibbs sampler (similar to R-Code 7.5, but retaining only the precision sample),
and visualize the posterior densities in Figure 7.5. The prior of κθ has a stronger effect on the
posterior compared to the prior of κγ . It is worth noting the posterior sample variability, as
indicated by the two black densities in Figure 7.5 (one from R-Code 7.3 and one from here). ♡

R-Code 7.5: Visualizing the effect of the prior.

### Defining a set of hyperpriors

hyperseq <- cbind(shapey=c(4,1,1,1,1,1), ratey=c(4,1,1,1,1,.5),

shapet=1, ratet=c(0.0005, .005, .05, .5, .01, .01))

npss <- dim(hyperseq)[1]

mkpost <- array(0, c(npss, totalg, 2)) # prepare array

mkpost[,1,] <- rep(c(1, 100), each=npss) # with some starting values

for (jj in 1:npss){ # loop over all hyperparameter configurations

for (i in 2:totalg) { # start Gipps loop

Qtt <- mkpost[jj, i-1, 2]*Qt + mkpost[jj, i-1, 1]*In
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tpostvec <- c(rmvnorm.canonical(1, c(mkpost[jj,i-1,1]*In %*% y), Qtt) )

mkpost[jj,i,] <- rgamma(2, shape=hyperseq[jj, c(1,3)] + c(n/2, (n-2)/2),

rate=hyperseq[jj, c(2,4)] + c(sum((y-tpostvec)^2)/2,

t(tpostvec) %*% (Qt %*% tpostvec)/2 ))

} } # end both loop

mkpost <- mkpost[,250:totalg,] # eliminate burn-in

### Below is only plotting:

out <- density(log(kpost[,1]), from=min(log(mkpost[,,1])), # density estimate

to=max(log(mkpost[,,1])))

plot(out$x, out$y, type="l", ylim=c(0, 1.6), ylab="", xlab="log(kappa_y)")

for (jj in 1:npss) { # densities for posteriors and priors of kappa_y

lines(density(log(mkpost[jj,,1])), col=jj)

lines(out$x, dgamma(exp(out$x), hyperseq[jj,1], hyperseq[jj,2]),

col=jj, lty=2)

}

legend("topleft", paste(hyperseq[,1],hyperseq[,2], sep=", "), bty="n",

lty=1, col=1:npss)

out <- density(log(kpost[,2]), from=min(log(mkpost[,,2])),

to=max(log(mkpost[,,2])))

plot(out$x, out$y, type="l", ylim=c(0,.9), ylab="", xlab="log(kappa_t)")

for (jj in 1:npss) {

lines(density(log(mkpost[jj,,2])), col=jj)

lines(out$x, dgamma(exp(out$x), hyperseq[jj,3], hyperseq[jj,4]),

col=jj, lty=2)

}

legend("topleft", paste(hyperseq[,3],hyperseq[,4], sep=", "), bty="n",

lty=1, col=1:npss)
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Figure 7.5: Prior (dashed) and posterior (solid) densities of the precision parameters
κy (left) and κt (right) on log-scale. (See R-Code 7.5.)
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7.4.2 Monthly data

We now look at monthly data and thus need to add a seasonal component. Additionally, we will
extend the previous section with the following elements: (i) prediction of the trend for which we
do not have observations; (ii) exploiting the sparsity structure of the precision matrix. Detailed
source code is available by demo("article-jss-example1", package="spam"). The example is
also discussed in Sections 4.2.1 of Rue and Held, 2005.

The series exhibits a strong seasonal component (denoted by si) and a smooth trend (denoted
by ti). Here, we want to predict the pattern ηi = si + ti for the additional m = 12 months. We
assume again that the square root responses are normal and are conditionally (on ηi) independent:

Yi + ηi + εi = si + ti + εi, εi
iid∼ N (0, σ2), i = 1, . . . , n, (7.17)

which is, when setting σ2 = 1/κy , in a Bayesian nomenclature equivalent to

π(y | η, κy ) = π(y | s, t , κy ) ∝ κ
n
2
y exp

(
− κy

2

n∑
i=1

(yi − ti − si)
2
)
. (7.18)

This last equation defines the likelihood.
We now define the process model and foresee prediction beyond the n observations. Therefore,

the process layer defines distributions for η1, . . . , ηn+m. To model the seasonal component, we
assume that

∑11
j=0 si+j , i = 1, . . . , n + 1, are independent normal random variables with mean

zero and precision κs (an intrinsic GMRF model for seasonal variation, e.g., Rue and Held,
2005, page 122). Similarly, to model the smooth trend we assume that ti − 2ti+1 + ti+2, i =
1, . . . , n+m− 2, are independent normal with mean zero and precision κt (an intrinsic second-
order random walk model). Both intrinsic GMRF models are direct extensions of what we have
seen in Section 4.5.1. Hence, with s = (s1, . . . , sn+m) t = (t1, . . . , tn+m)

π(s | κs) ∝ κ
n+1
2

s exp
(
− κs

2
s⊤Qss

)
, (7.19)

π(t | κt ) ∝ κ
n+m−2

2
t exp

(
− κt

2
t⊤Qt t

)
, (7.20)

where the precision matrices Qs and Qt are given by analogues of equations (3.59) and (3.40) of
Rue and Held (2005). We do not need to explicate the precision matrices as these will be provided
by calls to the functions precmat.season() and precmat.RW2() provided by the package spam.

Finally, we need to specify the priors. We propose to use independent Gamma priors for the
three precisions, e.g., π(κs) ∝ καs−1

s exp
(
−κsβs), being conjugate for the Gaussian components.

Figure 7.6 illustrates the hierarchical model in a graph-like structure.

It is now possible to specify the full joint density

π(y , s, t ,κ) = π(y | s, t , κy ) π(s | κs) π(t | κt ) π(κs) π(κt ) π(κy ). (7.21)

We will now simply this expression by collecting and arranging the terms in s, t , y and the
precision parameters. First, we write the (negative-2)-quadratic term of (7.18) as κy (y − so −
to)⊤(y − so − to), where the subscript “o” indicates the truncated version of the vector, e.g.,
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Graph G Level Distribution

y | s, t , σ2 likelihood iid–Normal

s | κs

@@

t | κt
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process model IGMRF (seasonal)
IGMRF (2nd order RW)

κs | αs , βs

OO

κt | αt , βt

OO

κy = 1
σ2 | αy , βy

XX

prior Gamma

Figure 7.6: The variables (nodes) and their dependency structure are shown in Graph
G. The distributions and levels of the nodes in the model hierarchy are also indicated.

so = (s1, . . . , sn)
⊤. With D = (In,0) we have so = Ds and similarly for t . Collecting all their

terms (individual precisions parameters and the quadratic forms) leads to

π(y , s, t ,κ) ∝ κ
αs+

n+1
2

−1
s κ

αt+
n+m−2

2
−1

t κ
αy+

n
2
−1

y exp
(
− κsβs − κtβt − κyβy

)
(7.22)

× exp

(
− 1

2
(s⊤, t⊤,y⊤)

( Qss Qst Qsy

Qts Qtt Qty

Qys Qyt Qyy

)( s
t
y

))
, (7.23)

where the individual block precisions are, Qss = κsQs + κyD
⊤D, Qtt = κtQt + κyD

⊤D,
Qyy = κyIn, Qst = κyD

⊤D, Qsy = Qty = −κyD
⊤ and symmetric counterparts. The block

precision Qtt contains two components, one from the prior and one from the likelihood. However,
in the likelihood, only the first n elements of t are present, thus the D⊤D contribution. The
off-diagonal block precisions are due to the cross terms of the likelihood again only on the first
n terms.

We further have

π(s, t ,κ | y) ∝ π(y , s, t ,κ) (7.24)

π(κ | s, t ,y) = π(κs | s, t ,y)π(κt | s, t ,y)π(κy | s, t ,y), (7.25)

where each density on the right-hand side of the last equation is a Gamma density. The former
equation implies that

s, t | κ,y ∼ N2(n+m)

((
Qss Qst

Qts Qtt

)−1( Qsy

Qty

)
y ,
(

Qss Qst

Qts Qtt

)−1
)
. (7.26)

It is now straightforward to implement a Gibbs sampler based on the full conditionals π(s, t |
κ,y) and π(κ | s, t ,y) as illustrated in R Code 7.6. The code essentially (i) loads the data
and specifies the hyper-parameters of the prior for κ = (κy , κs , κt )

⊤ (ii) builds the precision
matrices of equation (7.23) (based on unit precision, i.e., without the individual components of
κ, and constructing “template” matrices for a fast implementation (iii) sets up sampler-specific
variables, e.g., initialize the arrays containing the posterior samples and starting values for κ,
(iv) runs the Gibbs sampler.
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R-Code 7.6: Manual implementation of a Gibbs sampler in the case of a normal response.

# (i) loading the data and setting hyper-parameters:

library(spam) # provides the data

y <- sqrt(c(UKDriverDeaths)) # square root of raw counts

n <- length(y) # n=192 months of data

m <- 12 # We want to predict for one season.

priorshape <- c(4,1,1) # hyper-parameters for priors: alpha's,

priorinvscale <- c(4, 0.1, 0.0005) # beta's, as in Rue & Held (2005)

### (ii) constructing individual block precisions and template matrix:

Qs <- precmat.season(n=n+m, season=12)

Qt <- precmat.RW2(n+m)

DTD <- DT <- In <- diag.spam(n)

pad(DT) <- c(n+m, n) # used in Qsy = -kappa_y D^T

pad(DTD) <- c(n+m, n+m) # used in Qss = kappa_s Q_s + kappa_y D^T D

Qst_yk <- rbind(cbind(Qs + DTD, DTD), # Precision for s,t|kappa,y

cbind(DTD, Qt + DTD)) # where kappas will be used below

struct <- chol(Qst_yk) # precalculate Cholesky structure

### (iii) setup sampler variables:

burnin <- 10 # > 0, maybe too small in practice

ngibbs <- 5000 # maybe too small in practice as well

totalg <- ngibbs + burnin # total number of Gibbs iterations

set.seed(14)

spost <- tpost <- array(0, c(totalg, n+m)) # prepare arrays

kpost <- array(0, c(totalg, 3))

kpost[1,] <- c(.5, 28, 500) # some starting values

postshape <- priorshape + c(n/2, (n+1)/2, (n+m-2)/2) # fixed throughout

### (iv) Gibbs loop:

for (i in 2:totalg) { # start loop

Q <- rbind(cbind(kpost[i-1,2]*Qs + kpost[i-1,1]*DTD, kpost[i-1,1]*DTD),

cbind(kpost[i-1,1]*DTD, kpost[i-1,3]*Qt + kpost[i-1,1]*DTD))

b <- c(kpost[i-1,1]*DT %*% y, kpost[i-1,1]*DT %*% y)

tmp <- rmvnorm.canonical(1, b, Q, Rstruct=struct) # draw from s,t|kappa,y

spost[i,] <- tmp[1:(n+m)] # separate sample into s

tpost[i,] <- tmp[1:(n+m)+(n+m)] # and t
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tmp <- y-spost[i,1:n]-tpost[i,1:n] # "residuals"

postinvscale <- priorinvscale + # prior contribution for

c(sum(tmp^2)/2, # kappa_y, Qyy=kappa_y In

t(spost[i,]) %*% (Qs %*% spost[i,])/2, # kappa_s

t(tpost[i,]) %*% (Qt %*% tpost[i,])/2) # kappa_t

kpost[i,] <- rgamma(3, postshape, postinvscale) # and finally the draw

} # end loop

Recall that the template precision matrix of the GMRF characterized by π(s, t | κ,y) is to
obtain the structure of the Cholesky factor (struct). This structure is then used to efficiently
factorize the precision matrix (passed as argument Rstruct=struct to rmvnorm.canonical()).
The sparsity structure of the precision matrix and its Cholesky factor is shown in Figure 7.7.
Besides this, most of the code does not differ for sparse and non-sparse input matrices.

Figure 7.7: The sparsity structure of the precision matrix of π(s, t | κ,y) and of its
Cholesky factor. Note that the band in the off-diagonal block is “interrupted”, marking
the start of the null matrix in D = (I,0) and D⊤ for the top right and bottom left
block, respectively.

The loop takes a few seconds to run. We eliminate burn-in but do not thin. After eliminating
the burn-in, summary statistics can be calculated, e.g., summary(kpost). R-Code 7.4 performs
the postprocessing, summarizes precisions, constructs quantiles of the mean terms, and provides
the code for some instrumental plots. Figure 7.4 (top left) shows the trace plots of the log pre-
cisions; together with the autocorrelation plot, there is some evidence of slow mixing, especially
for κt . The posterior precision of κt and κy cannot be compared with the ones from the last
section as we have a much longer dataset here (192 compared to 16).
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The posterior mean can be constructed by superimposing the seasonal signal and the trend.
The quantiles can be calculated from the posterior signal η or from the posterior trend and season
(there is a slight difference between postquant and postquant.t+postquant.s). The middle
row of Figure 7.4 shows that the uncertainties are minimal, and a model with a parametric
seasonal component or a polynomial trend would not be as adequate.

The predictive distribution of y is obtained by adding a mean zero normal random variable
with precision kpost[i,1] to tspost[i,]+tpost[i,]. The bottom panel of Figure 7.4 gives the
posterior median, the posterior quantiles, and the quantiles of the predictive distribution. The
latter quantities are again pointwise.

R-Code 7.7: Postprocessing, summaries, some visualization of the sampler output and
predictive distribution of the observations. (See Figure 7.8.)

kpost <- kpost[ -c(1:burnin),] # eliminating burn-in

spost <- spost[ -c(1:burnin),]

tpost <- tpost[ -c(1:burnin),]

### Summary of precisions:

allkappas <- rbind(apply(kpost, 2, median), apply(kpost, 2, mean),

apply(1/kpost, 2, median), apply(1/kpost, 2, mean))

colnames(allkappas) <- c("kappa_y", "kappa_s", "kappa_t")

rownames(allkappas) <- c("Prec (median)", "Prec (mean)",

"Var (median)", "Var (mean) ")

allkappas

## kappa_y kappa_s kappa_t

## Prec (median) 0.49055 28.189063 5.1535e+02

## Prec (mean) 0.49430 31.330842 6.4139e+02

## Var (median) 2.03854 0.035475 1.9404e-03

## Var (mean) 2.05367 0.038263 2.7083e-03

### Construct posterior mean/quantiles of mean terms:

postmean.t <- apply(tpost, 2, mean)

postmean.s <- apply(spost, 2, mean)

postquant <- apply(spost+tpost, 2, quantile,c(.025,.5,.975))

postquant.t <- apply(tpost, 2, quantile,c(.025,.5,.975))

postquant.s <- apply(spost, 2, quantile,c(.025,.5,.975))

### Plotting:

matplot(log(kpost), lty=1, type="l",xlab="Sample index")

abline(h=log(allkappas[1,]), col=3)

acf(kpost[,3], ylab=expression(ACF~of~kappa[t]), main="")
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plot(kpost[,2:3], ylab=bquote(kappa[t]), xlab=bquote(kappa[s]), pch=20, cex=.5)

abline(h=allkappas[1,3], v=allkappas[1,2],col=3)

### Middle panel: for a better visualization, we use the mai argument:

par(mai=c(.001, .9, .1, .1), mgp=c(2.5, 1, 0))

plot(postmean.t, type="l", ylim=range(y), ylab="Trend", xaxt="n")

matlines(t(postquant.t), col=c(4,2,4), lty=1)

points(y, pch=20)

par(mai=c(.9, .9, .001, .1), mgp=c(2.5, 1, 0))

plot(postmean.s, type="l", ylim=c(-5,7), ylab="Season")

matlines(t(postquant.s), col=c(4,2,4), lty=1)

### Bottom panel: Observed counts and quantiles..

ypred <- rnorm(ngibbs*(n+m), c(spost+tpost), sd=rep(1/sqrt(kpost[,1]), n+m))

dim(ypred) <- c(ngibbs, n+m)

postpredquant <- apply(ypred, 2, quantile, c(.025,.975))

plot(y^2, ylim=c(900,3000), xlim=c(7,n+m-7), ylab="Counts", pch=20)#, cex=.5)

matlines(t(postquant)^2, col=c(4,2,4), lty=1)

matlines(t(postpredquant)^2, col=3, lty=1)

legend("topright", bty="n", col=c(2,4,3), lty=1, legend=c("Posterior median",

"Quantiles of posterior sample", "Quantiles of predictive distribution"))

Remark 7.3. The full conditional distribution of the precision parameters is a gamma distri-
bution. This fact is the appealing aspect of the model. However, the mixing of the parameters
is not optimal, and somewhat strong auto-correlations are present (see the top middle and right
panel of Figure 7.4). For this example, Knorr-Held and Rue (2002) suggest using a Metropolis–
Hastings step (introduced in the next chapter) and updating the precisions with a scaling factor
δ having a density π(δ) ∝ 1+ 1/δ, for δ ∈ [1/D,D], where D > 1 is a tuning parameter, see also
Rue and Held (2005).

If the dimension of θ is very large, then mixing might be very poor, and blocking strategies
should be used. One straightforward case is combining several components and drawing from
the full conditional density π(θi | θ−i). Further, blocking strategies are discussed in Rue and
Held (2005), Section 4.1.2. ♡
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Figure 7.8: Top row: trace plots of the log precision, autocorrelation plot of κt and
scatter plot of κt against κs . Solid green lines indicate posterior medians. Middle row:
posterior mean of the trend (bottom, with observations) and of the seasonal component
(middle) and its 2.5% and 97.5% quantiles. There is visually no difference between
the posterior mean and posterior median. Bottom row: observed counts, the pointwise
posterior median, quantiles and the pointwise quantiles of the predictive distribution
(top panel). (See R-Code 7.7.)



Chapter 8

Hierarchical Models:
Metropolis–Hastings Within Gibbs

The Gibbs sampler is applicable only in specific settings. This chapter introduces
an alternative sampling scheme. The scheme is more general and can be used in
virtually all Bayesian settings.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter08.R.

This chapter illustrates hierarchical modeling by analyzing datasets with a non-normal re-
sponse with a latent GMRF. Much of this chapter is taken from Gerber and Furrer (2015). The
example is also discussed (without documenting code) in Rue and Held (2005), and Section 4.4.2,
to which we refer for technical details.

Similarly, as in the final example of the last chapter, we start with a model for the likelihood
(distribution for Yi based on process parameters ηi and possibly some additional ones), a process
model for ηi and prior distributions. We relax the normality assumptions of Yi, and thus a
straightforward Gibbs sampler might not work.

We assume that the observations y are a realization of Y which are conditionally independent
given latent parameters η and additional parameters θy

π(y | η,θy ) =
n∏

i=1

π(yi | ηi,θy ), (8.1)

where π(· | ·) denotes the conditional density of the first argument given the second argument.
The latent parameters η are part of a larger latent random field x , which is modeled as a GMRF
with mean µ and precision matrix Q, both depending on parameters θx ; that is,

π(x | θx ) ∝ exp
(
− 1

2
(x − µ)⊤Q(x − µ)

)
. (8.2)

The idea of “part of a larger latent random field x ” was already used in the last chapter: we
would set x⊤ = (s⊤, t⊤) and η = s + t .
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Depending on the form of π(y | η,θy ) typically closed form expressions for the full condi-
tionals π(x | y ,θy ), π(θy | y , x ) do not exist. Hence, we cannot directly apply a Gibbs sampler.
One typically augments the Gibbs sampler with individual, so-called, Metropolis-Hastings steps.
In the following sections, we first introduce the general concept of a Metropolis-Hastings al-
gorithm, discuss convergence diagnostics and implement this algorithm into a Gibbs sampler
through different examples.

8.1 The Metropolis–Hastings Algorithm

To simplify the notation, assume that we want to sample from a (target) density π(θ) (for
which we do not have a direct sampling approach) and suppress the dependency on all other
variables (data, additional parameters). Assume that we have a proposal density q(·) (for which
we have a direct and straightforward sampling approach). More specifically, we assume that the
proposal density depends on the previous state θ(i−1), i.e., q(θ | θ(i−1)). The Metropolis-Hastings
algorithm is as follows:

(1) Set θ(0) to some value and set i = 1

(2) Sample first a proposal θ⋆ from q(θ | θ(i−1))

then sample u from a uniform (0, 1) random variable.

(3) Set α = min
(
1,

π(θ⋆)

π(θ(i−1))

q(θ(i−1) | θ⋆)
q(θ⋆ | θ(i−1))

)
.

If u ≤ α set θ(i) = θ⋆ (accept new one), otherwise set θ(i) = θ(i−1) (keep current)

(4) If i < M , i = i+ 1 and go to (2) else stop

The choice of the proposal density q is an art per se. We require that for all θ such that π(θ) > 0

we have q(θ | ·), i.e., the support of π(·) is contained in the support of q(·). The more similar
q(·) to π(·), the better the algorithm works. There are two important subclasses:

1. The proposal is symmetric with respect to the previous state: q(θ | θ⋆) = q(θ⋆ | θ).
Examples are random-walk proposals, where q is symmetric around θ. Typically, a uniform
or normal realization is added to the current value θ(i−1). Notice that the calculation of α
simplifies the likelihood ratio of the target.

2. The proposal does not depend on the current state: q(θ | θ(i−1)) = q(θ). The proposal is
called an independence proposal.

We defer to, e.g., Roberts and Smith (1994); Gamerman and Lopes (2006) for a thorough
discussion on the assumptions of the sampler.

Example 8.1. As a trivial example, we use an MH approach to sample from a chi-squared
distribution with four degrees of freedom. As a proposal, we use a Gaussian, centered at the
current state with a pre-specified standard deviation τ . The sampler is coded in R-code 8.1 (τ = 5

and starting value 10) with output and summaries illustrated in Figure 8.1. The first panel of the
figure shows a trace plot of the entire sample. The acceptance rate levels out to approximately



8.1. THE METROPOLIS–HASTINGS ALGORITHM 135

45%. The autocorrelation plot of the thinned sample does not show any correlation. The
smoothed density of the sample is very close to the true density, and the deviations are of
stochastic nature only. ♣

R-Code 8.1: MH for a simple case. (See Figure 8.1.)

### Defining the generic functions (can be modified)!

alpha.fcn <- function(theta,phi) {

min(1, pi.fcn(phi)*q.fcn(phi,theta) /(pi.fcn(theta)*q.fcn(theta,phi) )) }

pi.fcn <- function(x) dchisq(x, df=4) # target density

q.fcn <- function(x,y) dnorm(y, x, tau) # proposal density

rq.fcn <- function(x) rnorm(1, x, tau) # samples from the proposal

### Sampler specific parameters and then the sampler loop:

tau <- 5 # Tuning parameter. With 5 ~ 43%

burnin <- 1000

every <- 10

N <- 500*every+burnin # total number of samples

start <- 10 # starting value

set.seed(14)

acceptance <- theta <- numeric(N) # vectors holding the result

theta[1] <- start

for (i in 2:N){

phi <- rq.fcn(theta[i-1]) # draw proposal

a <- alpha.fcn(theta[i-1], phi) # evaluate alpha

u <- runif(1)

theta[i] <- ifelse(u < a, phi, theta[i-1]) # accept or keep

acceptance[i] <- ifelse(u < a, 1, 0) # mark if accepted

}

acceptance <- cumsum(acceptance)/1:N

### Sampling is now done. Now follows plotting:

plot(theta, type="l")

abline(v=burnin, col=5, lwd=2, lty=2)

theta <- theta[-c(1:burnin)]

theta <- theta[seq(1,to=length(theta),by=every)]

acf(theta)

plot(acceptance, type="l", ylim=c(0,1))

title(paste("Acceptance rate", round(acceptance[N],3)))

hist(theta, prob=TRUE, breaks=20)

lines(density(theta), lwd=2, col=2)

curve(pi.fcn, from=min(theta), to=max(theta), col=3, add=T)
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Figure 8.1: Metropolis–Hastings simulation of a chi-squared distribution with four
degrees of freedom. Top row: trace plot of the entire sample and acceptance rate.
Bottom row: autocorrelation plot of the thinned sample and histogram and smoothed
density of the sample. True density is given in green. (See R-Code 8.1.)

Remark 8.1. The Gibbs sampler is a particular case of a component-wise Metropolis-Hastings
step, where the acceptance probability α is one in all cases.

More specifically, the proposal function is the full conditional density π(θ⋆ | θ(i−1)) = q(θ⋆ |
θ(i−1)) and thus the acceptance probability of step (3) writes

α = min
(
1,
π(θ⋆ | θ(i−1))

π(θ(i−1) | θ⋆)
π(θ(i−1) | θ⋆)
π(θ⋆ | θ(i−1))

)
≡ 1. (8.3)

♡

8.2 Convergence Diagnostics

At convergence, the MCMC values represent a sample from the target distribution and should
fluctuate around the stable mean value. While it is never possible to formally prove that a
sequence has converged, there are several tools that indicate convergence or the lack thereof.
One should always plot the (thinned) sample versus the indices, called the trace plots. These
plots indicate how quickly they fluctuate around the mean. Slow meandering is an indication of
slow or poor mixing. Changing the initial value helps to assess how quickly a chain reaches its
equilibrium.



8.2. CONVERGENCE DIAGNOSTICS 137

It is suggested that the acceptance probability should be between 20–50% (Gamerman and
Lopes, 2006 and references therein). To achieve that acceptance rate, the tuning parameter can
be adjusted during the burn-in period.

Example 8.2. We use the same MCMC setup as in Example 8.1 with τ = 20 and τ = 0.1

instead of τ = 5, leading to too large and too small jumps, respectively, (τ is the standard
deviation of our proposal). The resulting trace and autocorrelation plots are shown in Figure 8.2
(no thinning and burn-in).

The large jumps often lead to regions of low “likelihood”, or even outside the support and
thus are rarely accepted. Conversely, too small jumps lead to high acceptance rates. The latter
is not bad per se, but this implies that the sampler may not cover the entire support of the
random variable. In our example, this is the case as indicated by the range of sample (size of
N = 6000); see the lower right panel of Figure 8.1) for a comparison. ♣

R-Code 8.2 Bad mixing due to inappropriate jump sizes. For illustration, we do not thin.
(See Figure 8.2.)

for (tau in c(20, .1)) {

theta[1] <- 4

for (i in 2:N){

phi <- rq.fcn(theta[i-1])

a <- alpha.fcn(theta[i-1], phi)

u <- runif(1)

theta[i] <- ifelse(u < a, phi, theta[i-1])

acceptance[i] <- ifelse(u < a, 1, 0)

}

plot(theta[1:100], type="l")

title(paste("Acceptance rate", round(sum(acceptance)/N,3)))

acf(theta)

print(range(theta))

}

## [1] 0.083703 23.284970

## [1] 0.17094 10.79693

For convergence diagnostics, similar plots and tests as for a Gibbs sampler should be per-
formed. However, there are several additional model diagnostic statistics. We now look at some
intuitive and often used ones. But recall that diagnostics cannot guarantee that a chain has
converged. Especially in multivariate settings, diagnostics are not well established.

Gelman and Rubin (1992) propose a general approach to monitoring convergence of MCMC
output in which m > 1 parallel chains are run with starting values that are overdispersed relative
to the posterior distribution. Convergence is diagnosed when the chains have ‘forgotten’ their
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Figure 8.2: Bad mixing, τ = 10 left (too large jumps, low acceptance rate) and τ = 0.1

right (too small jumps, high acceptance rate). Notice the different scales for the trace
plots. (See R-Code 8.2.)

initial values, and the output from all chains is indistinguishable. The gelman.diag() diagnostic
is applied to a single variable from the chain. It is based on a comparison of within-chain and
between-chain variances, and is similar to classical analysis of variance.

Geweke (1992) proposed a convergence diagnostic for Markov chains based on a test for
equality of the means of the first and last part of a Markov chain (by default, the first 10%
and the last 50%). If the samples are drawn from the stationary distribution of the chain, the
two means are equal and Geweke’s statistic has an asymptotically standard normal distribution
(geweke.plot()).

The convergence test heidel.diag() uses the Cramér–von Mises statistic to test the null
hypothesis that the sampled values come from a stationary distribution (Heidelberger and Welch,
1981). The test is successively applied, firstly to the whole chain, then after discarding the first
10%, 20%, of the chain until either the null hypothesis is accepted or 50% of the chain has been
discarded. The latter outcome constitutes “failure” of the stationarity test and indicates that a
longer MCMC run is needed.

The test raftery.diag() calculates the number of iterations required to estimate the quan-
tile q to within an accuracy of ±r with probability p. Values of dependence factors larger than 5



8.2. CONVERGENCE DIAGNOSTICS 139

indicate strong autocorrelation (which may be due to a poor choice of starting value, high pos-
terior correlations, or stickiness of the MCMC algorithm, Raftery and Lewis, 1992).

Example 8.3. We illustrate some of the model diagnostics with the sample used in Example 8.1.
Further, we create a second sample using the same sampler with τ = 0.1, proposing too small
jumps and not properly exploring the entire sample space. We denote the sample with τ = 5 as
thetagood and τ = 0.1 as thetabad.

Figure 8.3 illustrates the output of gelman.plot() and geweke.plot(). The former is not
always straightforward to interpret, as a statement “close to one” may be slightly subjective.

The output of the other diagnostics clearly differentiates between the two samples. ♣

R-Code 8.3: MCMC diagnostics. (See Figure 8.3.)

library(coda)

chain1 <- mcmc(thetagood[1:2000])

gelman.plot(mcmc.list(chain1, mcmc(thetagood[2001:4000])), auto.layout=FALSE)

gelman.diag(mcmc.list(chain1, mcmc(thetagood[2001:4000])))

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1.01 1.01

geweke.plot(chain1, auto.layout=FALSE)

# geweke.diag(chain1) # Output is harder to interpret

heidel.diag(chain1) # Note: failure if we take length 1000 only

##

## Stationarity start p-value

## test iteration

## var1 passed 1 0.742

##

## Halfwidth Mean Halfwidth

## test

## var1 passed 3.8 0.283

raftery.diag(chain1)

##

## Quantile (q) = 0.025

## Accuracy (r) = +/- 0.005

## Probability (s) = 0.95

##

## You need a sample size of at least 3746 with these values of q, r and s

chain2 <- mcmc(thetabad[1:2000]) # chain with too slow mixing (tau=0.5)

gelman.plot(mcmc.list(chain2, mcmc(thetabad[2001:4000])), auto.layout=FALSE)

gelman.diag(mcmc.list(chain2, mcmc(thetabad[2001:4000])))
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## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 5.21 15

### should be much, much smaller!

geweke.plot(chain2, auto.layout=FALSE)

heidel.diag(chain2) # fails even, if we take the entire sample

##

## Stationarity start p-value

## test iteration

## var1 passed 401 0.125

##

## Halfwidth Mean Halfwidth

## test

## var1 failed 5.88 1.97
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Figure 8.3: Diagnostics based on gelman.plot() and geweke.plot(). The first chain
(top row) is based on R-Code 8.1 and the second (bottom row) on 8.2 with starting
value 10 and τ = 0.1. (See R-Code 8.3.)
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8.3 Example: Besag–York–Mollié Model

In this example, we consider the number of oral cavity cancer cases for the five years 1986–1990
in the n = 544 districts (Landkreise) of Germany (Knorr-Held and Raßer, 2000; Held et al.,
2005) and explore the spatial distribution of the relative risk. The expected number of cases ei
was derived using demographical data that allows us to display the standardized mortality ratios
yi/ei (Figure 8.4, middle map).

The common approach is to assume that the data are conditionally independent Poisson
counts, which means Yi | ηi ∼ Pois(λi) with λi = ei exp(ηi), where ei is the expected number of
cases in region i, exp(ηi) the relative risk and ηi the log-relative risk. Hence,

π(yi | ηi) ∝ exp
(
yiηi − ei exp(ηi)

)
, i = 1, . . . , n, (8.4)

where all other terms are constants, i.e., do not depend on ηi. For the log-relative risk, we
use η = u + v , where v is a zero mean white noise with precision κv and u is a spatially
structured component, leading to the so-called Besag–York–Mollié model (see, e.g., Besag et al.,
1991; Mollié, 1996).

More precisely, u is a first-order intrinsic GMRF with density

π(u | κu ) ∝ κ
n−1
2

u exp
(
− κu

2

∑
i∼j

(ui − uj)
2
)
= κ

n−1
2

u exp
(
− κu

2
u⊤Ru

)
, (8.5)

where i ∼ j denotes the set of all unordered pairs of neighbors, i.e., regions sharing a common
border, and R the induced structure matrix. Moreover,

π(v | κv ) ∝ κ
n
2
v exp

(
− κv

2
v⊤v

)
. (8.6)
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Figure 8.4: Aggregated raw counts (left) and standardized mortality ratios (middle)
of oral cavity cancer deaths observed between 1986–1990 in Germany; the posterior
medians of the estimated relative risks from a BYM model (right). Notice the slightly
different color range in the two rightmost panels.
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Thus with Gamma priors for the precision parameters, the posterior density is

π(u , v ,κ | y) ∝ κ
αv+

n
2
−1

v κ
αu+

n−1
2

−1
u

× exp
(
− κvβv − κuβu +

n∑
i=1

(
yiηi − ei exp(ηi)

)
− κu

2
u⊤Ru − κv

2
v⊤v

)
,

(8.7)

with ηi = ui + vi. While π(u , v | κ) is a GMRF, π(u , v | κ,y) is not, and many details need to
be taken into account to implement an MCMC sampler successfully.

Figure 8.5 illustrates the different components of the model in a hierarchy (here, graph
structure). The joint density can be constructed by successively writing down the individual
densities, albeit some reparametrizations may not be seen from the variable dependency graph.
We present three approaches, two build-in ones and a manual one, to obtain posterior samples
from (8.7). While the first example is straightforward, the remaining two are of considerable
complexity.
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Figure 8.5: The variables (nodes) and their dependency structure are shown in Graph
G. The distributions and levels of the nodes in the model hierarchy are also indicated.

8.3.1 CARBayes Implementation

The package CARBayes implements a sampler for the BYM model. The function S.CARbym()

implements the model via a classical formula statement. The function’s arguments are quite
self-explanatory, as shown in R-Code 8.4. With a burn-in of 1 000 and a thinning of 10, the
sampler takes less than half a minute on a decent laptop to generate the 2 000 retained samples
(roughly 1 000 iterations per second are achieved).

The trace plots of the log precisions and a scatterplot thereof are shown in Figure 8.6. For
easier comparison, we will work with (log) precisions, hence the negative log transformation. The
straightforward automated way comes with the price of a sub-optimal mixing and a chain for η

only (instead of two separate chains for u and v). More specifically, η includes an intercept and
a spatial term. The right panel of Figure 8.4 illustrates the posterior relative risk, i.e., exp(η).
Due to the spatially structured component, smoothing is present. We refer to Knorr-Held and
Best (2001) for an (epidemiological) interpretation of the results.
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R-Code 8.4 CARBayes BYM model implementation. (See Figure 8.6.)

library(spam) # data is called Oral, in package spam

library(CARBayes)

adj.loc <- system.file("demodata/germany.adjacency", package="spam")

A <- adjacency.landkreis(adj.loc) # loading adjacency matrix, a spam matrix

B.out <- S.CARbym(Y ~ offset(log(E)), data=Oral, family="poisson",

W=as.matrix(A), burnin=1000, n.sample=21000, thin=10,

prior.tau2=c(1, 0.5), prior.sigma2=c(1, 0.01))

### Diagnostic plot:

grid_trace2(-log(cbind(B.out$samples$tau2, B.out$samples$sigma2)))

### Right most panel of Figure 8.4

B.u.median <- apply(B.out$samples$psi, 2, median)

B.inter.median <- median(B.out$samples$beta[,1])

germany.plot(exp(B.u.median+B.inter.median))
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Figure 8.6: Diagnostic plots for the 2000 post burn-in, thinned samples from the
CARBayes MCMC BYM implementations are shown. Each panel consists of trace plots
for κu = − log(τ2) (upper) and κv = − log(σ2) (lower), respectively. The mixing of κu
and κv is shown in a scatter plot (right). The chains were already thinned with a factor
of 10.

8.3.2 OpenBUGS Implementation

The most dominant disadvantage of ready-made MCMC implementations, as the one seen in
the last section, is the model specification’s rigidity. We now look at one alternative without
limitations on the model structure and prior specification. The idea is to specify the variable
dependency graph, which will then be used in a sampler. Such samplers are software programs
typically available outside of R. The BUGS (Bayesian inference Using Gibbs Sampling) family is
one of them. Moreover, there are convenient ways to communicate with them via R.

The BUGS/OpenBUGS language is used to specify hierarchical Bayesian models and commu-
nicate them to the OpenBUGS engine residing outside R. (To install the OpenBUGS software,
visit www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/.) We define the distribution of each

https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
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level given its parameters nodes using an R like syntax. The model description is declarative,
meaning that the order of the node definitions is irrelevant. As usual, the tilde symbol ‘∼’ stands
for “is distributed as.” In order to specify the spatially structured term u , the car.normal()

distribution from the geoBUGS extension is used. Since the distribution of u is implemented
with a sum-to-zero constraint, we add an additional intercept with an improper flat prior. This
construct is claimed to be equivalent to a spatially structured term u without constraint (Lunn
et al., 2013, p. 264). We save the model to a text file ‘model.txt’, part (i) of R-Code 8.5.

The observed and expected counts Y and E, as well as the neighborhood structure adj, are
saved in a separate text file ‘data.txt’. The arguments of the car.normal() distribution are
a sparse adjacency matrix adj, the number of regions connected in each row of the adjacency
matrix num[] (also stored in ‘data.txt’), the precision of u, i.e., kappaU, and a vector of 1’s
in weight. (We do not weigh the adjacency structure). For another BUGS example of a BYM
model, see Bivand et al. (2013).

We now use the R function bugs() from the R package R2OpenBUGS, which provides a con-
venient user interface to openBUGS (Sturtz et al., 2005). 21000 samples from the posterior
distribution are generated with the call. A thinning of 10 and a burn-in of 100 × 10 = 1000 is
specified, resulting in 2000 actually returned samples per variable.

We manually set initial values for kappaU and kappaV via the argument inits. Further, the
argument parameters specify variables for which samples are stored and returned to R. We only
simulate one chain and set n.chains=1 for demonstration, but we recommend simulating several
chains with different initial values that help to assess convergence. openBUGS automatically
selects an appropriate sampling method for each node.

The simulation lasts several minutes using the same number of (total) iterations as in the
previous sections. Figure 8.7 shows again diagnostic plots for the samples log(κu ) and log(κv ) of
the Markov chain, and Figure 8.11 given in the next section shows the resulting posterior median
fields of the log-relative risks.
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Figure 8.7: Diagnostic plots for the 2000 post burn-in and thinned samples from
the openBUGS MCMC BYM implementations are shown. Each panel consists of trace
plots for log(κu ) (upper) and log(κv ) (lower), respectively. The mixing of log(κu ) and
log(κv ) is shown in a scatter plot (right). The chains were already thinned with a factor
of 10.
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R-Code 8.5 OpenBUGS BYM implementation.

library(R2OpenBUGS)

### (i) Define the hierarchical model

writeLines(" model{

for(i in 1:N){

Y[i] ~ dpois(landa[i])

log(landa[i]) <- log(E[i]) + u[i] + v[i] }

for(i in 1:N){ v[i] ~ dnorm(0, kappaV) }

for(i in 1:N){ u[i] <- uConstr[i] + intercept }

intercept ~ dflat()

uConstr[1:N] ~ car.normal(adj[], weights[], num[], kappaU)

for(k in 1:sumNumNeigh) { weights[k] <- 1 }

kappaU ~ dgamma(1, 0.5)

kappaV ~ dgamma(1, 0.01)

}", con="model.txt")

### (ii) provide data

tmp <- bugs.data(list(Y=Oral$Y, E=Oral$E, N=length(Oral$Y),

adj=A@colindices, num=diff(A@rowpointers),

sumNumNeigh=length(A@colindices)))

### (iii) run the model

O.out <- bugs(model.file="model.txt", data="data.txt",

inits=function() { list(kappaU=10, kappaV=100, intercept=1) },

parameters=c("kappaU", "u", "kappaV", "v"), n.iter=2100,

n.burnin=100, n.thin=10, n.chains=1)

### (iv) diagnostics... more to add

grid_trace2(cbind(O.out$sims.array[,1,c("kappaU","kappaV")],

O.out$sims.array[,1,"kappaV"]))

8.3.3 INLA implementation

As opposed to simulation-based inference methods (i.e., full-fledged MCMC methods), the R pack-
age INLA uses iteratively nested Laplace approximations to estimate model parameters (Rue et al.,
2009). The INLA machinery has received substantial attention, and it seems omnipresent. Such
a flexible approach often requires many flags, arguments, control options, etc., and thus often
implies some “learning-by-doing”. The package, documentation, and examples are available on
https://www.r-inla.org/; installation is done via https://www.r-inla.org/download-install.

R-Code 8.6 illustrates the INLA implementation of the BYM model. We first load the R pack-
age INLA and the oral cancer data. path contains the path to a file encoding the corresponding
adjacency matrix. Since INLA requires an index variable for each of the modeled components u
and v , we have to duplicate the index column in the data frame, as we would for a “classical”
design matrix as well.

Next, we define the model through a formula. The functions f() specify the models for u

https://www.r-inla.org/
https://www.r-inla.org/download-install
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and v , respectively. For u , a regional structured prior is selected by setting model= "besag" and
supplying a graph and a hyper-prior. We choose an unconstrained model (constr=FALSE), which
implies that this random effect absorbs the intercept. Hence, the intercept is not identifiable,
and we remove it from the formula through -1 in the first line of the formula definition. The
iid random effect v is specified in the second f() function. The argument hyper sets the hyper-
parameters (of the prior parameter theta).

R-Code 8.6 INLA BYM implementation.

if (!require(INLA)) install.packages("INLA", repos=c(getOption("repos"),

INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE)

library(INLA)

data("Oral")

path <- system.file("demodata/germany.graph", package="INLA")

Oral.inla <- cbind(Oral, region.struct=Oral$region)

formula <- Y ~ - 1 + # specify the model, here without intercept

f(region.struct, model="besag", graph=path, constr=FALSE,

hyper=list(theta=list(param=c(1, 0.5)))) +

f(region, model="iid", hyper=list(theta=list(param=c(1, 0.01))))

I.out <- inla(formula, family="poisson", data=Oral.inla, E=E)

Notice that INLA does not generate a chain but uses a set of iterative approximations. Based
on these approximations, (marginal) posterior densities are available (see R-Code 8.7 and Fig-
ure 8.8). Note that there is a substantial difference between the densities. This difference is
essentially due to the fundamentally different model implementations.

R-Code 8.7 Comparing posterior densities of precision parameters. (See Figure 8.8.)

plot(density(1/B.out$samples$tau2), main="", xlab="",

ylab=expression(paste(pi,"(",kappa[u],"|",y,")")))

lines(I.out$marginals.hyperpar[[1]], type="l", col=4)

tmp <- I.out$summary.hyperpar[,c("mean","0.5quant","mode")]

abline(v=tmp[1,], col=c(1:3))

plot(density(1/B.out$samples$sigma2), main="", ylim=c(0,.005), xlab="",

ylab=expression(paste(pi,"(",kappa[v],"|",y,")")))

lines(I.out$marginals.hyperpar[[2]], type="l", col=4)

abline(v=tmp[2,], col=c(1:3))
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Figure 8.8: Comparison of posterior densities κu (left) and κv (right). CARBayes()

results in black, INLA in blue. Vertical lines indicate mode (green), median (red), and
mean (black), respectively. (See R-Code 8.7.)

Remark 8.2. There is a subtle difference in how the priors are specified. Because S.CARbym()

works with variances, the prior distribution is inverse-gamma (shape, scale). In R2openBUGS, it
is with inverse Gamma using shape and rate=1/scale. In INLA, internally prior="loggamma" is
used, but the parameters are as for a gamma (shape, rate). See also LeBauer et al. (2013) for a
link between openBUGS and R. ♡

Remark 8.3. As η = u + v , the observations yi depend on a sum of elements of the pro-
cess model (u⊤, v⊤). This is an implementation nuisance and thus INLA reparametrizes by
setting x⊤ = (u⊤,η⊤), as is commonly done (Gelfand et al., 1995; Rue and Held, 2005). This
reparametrization via η | u ∼ N (u , I/κv ) leads to

π(η | u , κv ) ∝ κ
n
2
v exp

(
−κv

2
(η − u)⊤(η − u)

)
(8.8)

and, instead of equation (8.7), we work with

π(x ,κ | y) ∝ κ
αv+

n
2
−1

v κ
αu+

n−1
2

−1
u

× exp

(
− κvβv − κuβu +

n∑
i=1

(
yiηi − ei exp(ηi)

)
− 1

2
x⊤
(
κuR+ κvI −κvI

−κvI κvI

)
x
)
.

(8.9)

As before, π(x | κ) is a GMRF, π(x | κ,y) is not. ♡

Remark 8.4. The exact meaning of the number of iterations, thinning, and burn-in varies from
package to package. We have chosen the parameters to guarantee a burn-in of 1000 (unthinned)
and a thinned (by 10) sample of length 2000. ♡

Remark 8.5. Rue and Held (2005) use a slightly different approach for the MCMC steps. Here
we discuss a conceptually simpler but computationally tougher version of the Gibbs sampler. ♡
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8.4 Leroux Model

An alternative model for areal count data was introduced by Leroux et al. (1999). In contrast to
the BYM model, it has only one random effect component. Without including an intercept or
additional covariates, this random effect simply models the log-relative risk η. To be consistent
with the implementations, we set u = η. The separation of spatially structured and iid variance
is controlled by an additional parameter λ. To be more specific, the same likelihood function as
in equation (8.4) is used, and u is modeled by the GMRF

π(u | κ, λ) ∝ det(Q(λ))
1
2 exp

(
− κ

2
u⊤Q(λ)u

)
, (8.10)

where κ > 0 is a precision parameter, and det denotes the determinant. The parameter λ ∈ (0, 1)

defines the degree of the spatial dependency through Q(λ) = (1 − λ)I + λR, where R is the
“structure” matrix imposed by (8.5). With appropriate (uninformative) priors for κ and λ, we
get the posterior distribution

π(u , κ, λ) ∝ κ
n
2
−1 det(Q(λ))

1
2 exp

(
y⊤u − e⊤ exp(u)− κ

2
u⊤Q(λ)u

)
. (8.11)

The hierarchical structure is shown in Figure 8.9.
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η | κ, λ
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process model GMRF
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β
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Figure 8.9: The variables (nodes) and their dependency structure are shown in
Graph G. The distributions and levels of the nodes in the model hierarchy are also
indicated.

The R package CARBayes (Lee, 2013) provides the function S.CARleroux(), which implements
a Gibbs sampler similar to the ones discussed here. Additionally, specific explanatory variables
can be defined using a formula interface. The function comes with a mechanism that tunes
the acceptance probability automatically. We run the function with the same settings as our
implementations. As in other settings, we could specify prior distributions. The default values
work nicely here. R-Code 8.8 illustrates the straightforward call to initiate the sampler and a
diagnostic plot.

The variance parameters cannot be compared one-to-one to one from the classical BYM
model. By disentangling the spatial component, it is possible to get somewhat comparable
estimates between the Leroux model and the BYM one (see the end of R-Code 8.8).
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Figure 8.10: Diagnostic plots for the 2000 post burn-in and thinned samples from the
Leroux MCMC BYM implementations are shown. Each panel contains trace plots for
τ2 (upper) and ρ (lower), respectively. The mixing of τ2 and ρ is shown in a scatter
plot (right). The chains were already thinned with a factor of 10. (See R-Code 8.8.)

R-Code 8.8 Leroux model fitting and comparison with BYM. (See Figure 8.10.)

library(CARBayes)

L.out <- S.CARleroux(Y~offset(log(E)), data=Oral, family="poisson",

W=as.matrix(A), n.sample=21000, burnin=1000, thin=10)

grid_trace2(cbind(L.out$samples$tau2, L.out$samples$rho))

openBUGS <- O.out$summary[c("kappaU","kappaV"), "mean"] # OpenBUGS, which

tmp <- L.out$summary.results[c("tau2","rho"), "Mean"] # "correspond" to

Leroux <- 1/c(tmp[2]*tmp[1], (1-tmp[2])*tmp[1])

cbind(openBUGS, Leroux)

## openBUGS Leroux

## kappaU 13.637 12.87

## kappaV 230.148 455.11

Figure 8.11 compares the posterior median log-relative risks of the models discussed here.
OpenBUGS and INLA have very close posterior medians. CARBayes seems to have minor
differences with these latter two. The Leroux model is different. Hence, we should expect
differences, as seen in the last two panels of Figure 8.11.

Note that slight variations may exist as packages may change their default arguments. It
remains challenging to judge if slight differences are due to minor changes in the code (different
sampling strategies, . . . ), differences in the model specification (different parameterizations, hy-
perparameters, . . . ), or even bugs in the code. We refer again to Gerber and Furrer (2015) for a
more in-depth discussion on that point.
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R-Code 8.9 Comparison of log-relative risks. (See Figure 8.11.)

### Assembling the different posterior medians:

B.median <- B.u.median+B.inter.median

O.median <- apply(O.out$sims.array[,1,1:544+1], 2, median)

I.median <- I.out$summary.random$region.struct$`0.5quant`

L.median <- apply(L.out$samples$phi, 2, median) +

median(L.out$samples$beta[,1])

### Plotting the posterior medians for the four approaches:

library(viridisLite)

col <- viridis(64) # improved graph readability for readers with

# common forms of color blindness and/or color vision deficiency.

zl <- range(B.median, O.median, I.median, L.median)

germany.plot(B.median, col=col, zlim=zlim, main="CARBayes")

germany.plot(O.median, col=col, zlim=zlim, main="OpenBUGS")

germany.plot(I.median, col=col, zlim=zlim, main="INLA")

germany.plot(L.median, col=col, zlim=zlim, main="Leroux")

### Plotting a selection of of differences:

zl <- range(O.median-B.median, O.median-I.median, L.median-B.median,

L.median-I.median)

germany.plot(O.median-B.median, col=col, zlim=zl, main="OpenBUGS-CARBayes")

germany.plot(O.median-I.median, col=col, zlim=zl, main="OpenBUGS-INLA")

germany.plot(L.median-B.median, col=col, zlim=zl, main="Leroux-CARBayes")

germany.plot(L.median-I.median, col=col, zlim=zl, main="Leroux-INLA")

8.5 Bibliographic Remarks

Waller et al. (1997); Leroux et al. (1999); Waller and Carlin (2010) are classical references to
disease rate mapping. Lee (2011) compares conditional autoregressive models used in Bayesian
disease mapping. In econometrics, many additional flavors of spatial area models are used; see,
e.g., LeSage and Pace (2009).

There exist more sampling engines, e.g., BayesX (Brezger et al., 2005) or ADMB (Fournier
et al., 2012), with R interfaces BayesX (Kneib et al., 2011) and R2admb (Bolker and Skaug, 2012),
or the package geoRglm (Christensen and Ribeiro, 2002), that can handle BHMs with spatially
correlated random effects. Different flavors of spatial models can also be handled with the JAGS
engine (Plummer, 2012) or with spBayes (Finley et al., 2007, 2015). The community is highly
active, as indicated by the CRAN task view Bayesian Inference (Park, 2014).

On certain Linux flavors, the file OpenBUGS-3.2.3.tar.gz cannot be unzipped with tar

zxvf ... or unzip .... Using 7z x OpenBUGS-3.2.3.tar.gz worked, however. Note that
gcc-multilib was necessary.
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Figure 8.11: Top row: posterior medians of the estimated log-relative risk of the
BYM models (CARBayes, OpenBUGS, INLA) and the Leroux model. Bottom row:
the difference between the posterior medians of these log risks compared to CARBayes
and INLA estimates. (See R-Code 8.9.)
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Chapter 9

Spatial Processes:
Concepts and ML Approaches

In this chapter, we introduce spatial processes. Such processes serve as a model
template for georeferenced data, i.e., for data that can be observed at an arbitrary
location within a predefined region. We focus on Gaussian processes, which can be
specified by a mean and covariance function.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter09.R.

The set of random variables {
Z(s) : s ∈ D ⊂ Rd, d ≥ 1

}
(9.1)

is called a stochastic process (or random function, random field, random process or simply
process, since we do not consider processes other than random processes) and is often simply
denoted by Z(·). The field of modeling and analyzing data from such processes is typically
referred to as geostatistics.

The random function Z(·) defines for every s ∈ D a random variable Z(s). The possible
values of the random function Z(·) are often R, R+, [ 0, 1 ], or they are discrete.

The domain D can be seen as an index set, and it can be finite, discrete, or continuous.
If D ⊂ Rd, d ≥ 1 we call Z(·) a spatial process. In most applications, D has a bounded d-
dimensional volume. In geostatistics, d is almost always one, two, or three. If D is intrinsically
discrete and finite, the process is usually analyzed by lattice data methods (see Chapter 4.1).
If D represents the time scale Z(·) is a time series and has to be treated differently to spatial
processes, as the time is ordered by past, present, and future. One of the main concerns in
analyzing spatial processes is prediction, referred to as interpolation. In time series analysis, the
corresponding concepts were extrapolation or smoothing.

The random process (9.1) is often defined through the joint distribution of an arbitrary, finite
set of points {s1, . . . , sm}, namely

Fs1,...,sm(v1, . . . , vm) = P
(
Z(s1) ≤ v1, . . . , Z(sm) ≤ vm

)
, (9.2)

153
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satisfying Kolmogorov’s conditions of symmetry and consistency. These conditions basically
impose that

• F.(·) is invariant under simultaneous permutation of s i and vi, i.e., let τ(·) be a permutation
of {1, . . . ,m} then Fs1,...,sm(v1, . . . , vm) = Fsτ(1),...,sτ(m)

(vτ(1), . . . , vτ(m));

• Fs1,...,sm(v1, . . . , vl,∞, . . . ,∞) = Fs1,...,sl
(v1, . . . , vl), l < m.

If the joint distribution (9.2) is a multivariate Gaussian distribution we call (9.1) a Gaussian
process or a Gaussian random field (GRF).

A realization of the random function Z(·), denoted by z(·), is often called the sample function,
the sample surface, or the sample path. In practice, we observe a set of the following form{

z(s i) : s1, . . . , sn ∈ D
}

(9.3)

denoting data measured at the locations s1, . . . , sn in a domain D ⊂ Rd, d ≥ 1.
We say that the locations s i are equispaced in D if s i = (∆i1, . . . ,∆id)

⊤, for some integers
i1, . . . , id and a ∆ > 0. If the equispaced locations form a rectangular shape, we use the term
regular grid.

The sample (9.3) can be seen as a subset of a potentially infinite number of measurements{
z(s) : s ∈ D

}
. The geostatistical modeling spirit is based on the assumption that

{
z(s) : s ∈

D
}

is a realization of the stochastic process (9.1).

9.1 Stationarity

To infer the statistical process (9.1) from a single set of observations (9.3), we need some restric-
tions (simplifications) on the process.

Definition 9.1. A process Z(·) is called a strong (or strictly) stationary process, if the equation

Fs1,...,sm(v1, . . . , vm) = Fs1+h ,...,sm+h (v1, . . . , vm) (9.4)

holds for all m, s1, . . . , sm, v1, . . . , vm and all h . ♢

A weaker form of stationarity is second-order stationarity.

Definition 9.2. A process Z(·) is a second-order stationary process if the following moments
exist and satisfy

E
(
Z(s1)

)
≡ µ,

Cov
(
Z(s1), Z(s2)

)
= c(s1 − s2), s1, s2 ∈ D. (9.5)

If c(·) is a function of ||s1 − s2|| only, then the process is called isotropic; otherwise, it is called
anisotropic. We also use the term weak stationarity or wide-sense stationarity.

The function c(·) is called the covariance function. In case of an isotropic process, we write
c◦(h) = c(h), h = ||h || and we call c◦(·) an isotropic covariance function. ♢
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Stationarity is an assumption made by the statistician, and it cannot be proved with the data
itself — at most, we could show that we cannot reject the hypothesis. In practice, for Gaussian
processes, we estimate c(h) and verify if the covariance tends to zero with increasing lag.

Remark 9.1. There are other practical concepts of stationarity. Journel and Huijbregts (1978)
define quasi-stationarity as local stationarity. In practice, we suppose moving windows inside of
which the process can be considered as stationary, and the data are sufficient to make statistical
inference possible. Clearly, the precise statistical definition of this concept is vague. ♡

Remark 9.2. To be able to use the common statistical concepts, we do not only suppose that
the process is stationary but also that it satisfies the property of ergodicity. This assumption
allows, simply said, expectations to be estimated by spatial averages. An exact definition can
be found in Adler (1981, Section 6.5). As for Gaussian processes, second-order stationarity and
strong stationarity coincides, and a sufficient condition for ergodicity is c(h) → 0 as ||h || → ∞
(Adler, 1981, Page 145).

According to Cressie (1989a), many statisticians use the ergodicity assumption only to guar-
antee that mean and covariance estimations are consistent. Processes satisfying this property
are called weakly ergodic. We only consider such weakly ergodic processes. The literature on
ergodicity in spatial processes is rather sparse, whereas for time series, the results concerning
ergodicity are better known and used. ♡

9.1.1 Anisotropy

As seen in Definition 9.2 every non-isotropic process is called anisotropic. Traditionally, we dis-
tinguish zonal anisotropy and geometrical anisotropy (Journel and Huijbregts, 1978). It is called
geometrical when it can be reduced to isotropy by a linear transformation and any other form of
anisotropy as zonal. Geometric anisotropy implies ellipsoid contours of the covariance function.
Such processes can be transformed into isotropic processes through a matrix multiplication: if
the matrix O describes the mapping of the corresponding ellipsoids to circles, then the process
Z(Os) is isotropic (Borgman and Chao, 1994; Eriksson and Siska, 2000).

9.1.2 Additive Decompositions

When applying statistical procedures, it is often necessary to decompose the process Z(·) into
several parts in order to obtain stationary components of the original process. We propose the
following decomposition

Z(s) = µ(s) + Y (s) + ε(s), (9.6)

where ε(s) is an iid zero-mean white-noise, Y (s) a zero-mean stationary spatial process with
continuous covariance function. The non-stochastic term µ(s) is typically considered as the first
moment or trend, i.e., E

(
Z(s)

)
= µ(s).

The trend µ(·) can be modeled via a parametric or a nonparametric approach. The former
supposes that µ(·) is a linear combination of some functions; we typically write the mean in a
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“regression format”, µ(s) = x (s)⊤β. In a nonparametric setting, one often neglects the spatial
dependency in the data and estimates first µ(·) and then, in a second step, the spatial dependency
structure is estimated from Z̃(·) = Z(·)− µ̂(·).

In any case, estimating µ(·) is crucial and often involves subjective decisions.

9.1.3 Characterization Using Covariances

For second-order stationarity, we typically use the covariance function (9.5) to describe the spatial
dependence structure of the process. Moreover, we will discuss the covariance for Y (·) as the
error is a white-noise process.

A valid covariance has to be a positive (semi-)definite function in order to ensure

Var
( n∑
i=1

αiY (s i)
)
=

n∑
i,j=1

αiαj Cov
(
Y (s i), Y (sj)

)
=

n∑
i,j=1

αiαjc(s i, sj) ≥ 0. (9.7)

for all non-zero α ∈ Rn. Hence, we cannot pick an arbitrary function c(·) as a covariance
function.

We often use the following isotropic covariance functions (for h ≥ 0):

1. the spherical covariance

c◦(h; θ1, θ2) =

θ2
(
1− 3

2

(
h/θ1

)
+ 1

2

(
h/θ1

)3)
, if 0 ≤ h ≤ θ1,

0, if h > θ1,
(9.8)

with θ1 > 0, θ2 > 0.

2. the Wendland2 covariance function

c◦(h; θ1, θ2) =

θ2(1− h/θ1)
6
(
35(h/θ1)

2 + 18h/θ1 + 3
)
/3, if h ≤ θ1,

0, if h > θ1
(9.9)

with θ1 > 0, θ2 > 0.

3. the exponential covariance

c◦(h; θ1, θ2) = θ2 exp(−h/θ1), (9.10)

with θ1 > 0, θ2 > 0.

4. the Matérn covariance (with known smoothness)

c◦(h; θ1, θ2) = θ2(h/θ1)
νKν(h/θ1), (9.11)

where Kν is the modified Bessel function of the second kind of order ν > 0 (Abramowitz
and Stegun, 1970) and with θ1 > 0, θ2 > 0. The smoothness parameter translates literally
into the “smoothness” of the sample paths (realizations). More precisely, the inducing
process Y (·) is m times mean square differentiable if and only if ν > m.

For certain ν the Matérn covariance function (10.7) has appealing forms. For example, if
ν = 0.5, it is an exponential semi-variogram; if ν = n + 0.5 with n an integer, it is the
product of an exponential covariance and a polynomial of order n.
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Figure 9.1: Different covariance functions given by equations (9.8) to (9.11) with
nugget effect 0, (partial) sill 1 and (practical) range 0.5. (See R-Code 9.1.)

5. the Matérn covariance

c◦(h; θ1, θ2, θ3) = θ2(h/θ1)
θ3Kθ3(h/θ1), (9.12)

with θ1 > 0, θ2 > 0 and θ3 > 0.

In the parametrizations above, θ1 is called the range or range parameter and determines
how fast the covariance function decays to zero, i.e., determines the “extend” of the spatial
dependency. The parameter θ2 is called the sill and corresponds to the (marginal) variance of
the process: θ2 = c◦(0) = Var

(
Y (s)

)
.

Historically, the squared exponential covariance or Gaussian covariance

c◦(h; θ1, θ2) = θ2 exp(−h2/θ21), (9.13)

has been used quite often. There are several theoretical and practical reasons not to use it.
Instead, a Matérn with a moderately high smoothness (ν = 2.5 to ν = 4.5) is typically sufficient.

The spherical and Wendland2 covariance function have finite support [0, θ1]. For such co-
variance functions, we often use the term compactly supported. The exponential, Matérn, and
squared-exponential covariance functions converge to zero asymptotically, i.e., have an infinite
range. In such situations, we often use the term practical range, which is the distance at which
the covariance function reaches 5% of its sill. The practical ranges of these covariance functions
typically depend on the parameter θ1. For the exponential covariance function, the practical
range is 3θ1.

Figure 9.1 and R-Code 9.1 give examples of the abovementioned covariance functions. For
the Matérn covariance function, the range also depends on ν in a non-closed form expression. To
overcome this issue, parameterized forms of the Matérn covariance function exist. The function
Matern.cor.to.range() from the package fields can be used to determine the parameter θ3
given a specific effective range d and smoothness nu.
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R-Code 9.1 Covariance functions. (See Figure 9.1.)

library(spam) # for cov.xyz functions

plot(0, xlim=c(0,.75), ylim=c(0,1.1), type="n", xlab="lag h", ylab="C(h)")

abline(v=.5, h=c(.05,0), col="gray")

h <- seq(0, to=.8, length=100) # Lag vector

lines(h, cov.sph(h, c(.5, 1)), col=1) # theta=(range=.5, sill=1)

lines(h, cov.wend2(h, c(.5, 1)), col=2) #

lines(h, cov.exp(h, c(.5/3, 1)), col=3)

# and for the Matern c(range, sill, smoothness)

lines(h, cov.mat(h, c(.125, 1, 1)), col=4) # ranges determined

lines(h, cov.mat(h, c(.0845, 1, 2.5)), col=5) # empirically.

lines(h, cov.mat(h, c(.0618, 1, 5)), col=6)

legend("topright", bty="n",col=1:6, lty=1, cex=1.2,

legend=c("Spherical", "Wendland2", "Exponential", expression(Matern

~~nu==1), expression(Matern~~nu==2.5), expression(Matern~~nu==5)))

# For a better range conversion:

fields::Matern.cor.to.range(d=0.5, nu=5, cor.target=.05)

## [1] 0.061787

The covariance function of a white noise process ε(·) is c(h) = 0 for h ̸= 0 and c(0) = θε

otherwise. In this setting, θε is often referred to as the nugget effect. Hence, using subscripts to
refer to the corresponding sub-process, we have

c◦Z(h;θZ) = c◦Y (h;θY ) + c◦ε(h; θε) =

θε + c◦Y (0;θY ), if h = 0,

c◦Y (h;θY ), if h > 0,
(9.14)

for appropriate θZ
⊤ = (θY

⊤, θε). Further, the sill of Y(·) (say θ2) is termed partial sill and
θ2 + ε is termed the total sill.

Example 9.1. Figure 9.2 shows realizations of Gaussian processes over a regular grid of 25× 25

locations in the unit square. The figure is constructed using R-Code 9.2 as a template with
varying parameters and covariance functions. The left column consists of the first five covariance
functions of Figure 9.1. The second column varies the smoothness. The third column has different
ranges, and the right-most column one varies the sill. The seed and color range (–3 to 2.7) have
been kept the same for all panels for a better comparison.

The smoothness of a Wendland2 is equivalent to a Matérn with smoothness ν = 2.5. Therefore
the second and last panels of the first column are comparable concerning smoothness. The range
for the former seems to be slightly larger, which is somewhat counterintuitive with the apparent
ranges of the red and cyan functions in Figure 9.1.

The larger the range, the smaller the marginal variance of the data. The last panel in the
last row is from a spatial process with nominal marginal variance one whereas the variance of
the observations (neglecting the spatial dependency is roughly 0.2.
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Spherical(ra=0.5, si=1)

Wendland2(ra=0.5, si=1)

Exp(ra=0.5, si=1)

Matern1(ra=0.5, si=1)

Matern2.5(ra=0.5, si=1)

IID(si=1)

Matern0.2(ra=0.5, si=1)

Matern1.5(ra=0.5, si=1)

Matern5(ra=0.5, si=1)

Matern10(ra=0.5, si=1)

Matern1(ra=0.2, si=1)

Matern1(ra=0.4, si=1)

Matern1(ra=0.8, si=1)

Matern1(ra=1.2, si=1)

Matern1(ra=2, si=1)

Exp(ra=0.5, si=.3)

Exp(ra=0.5, si=.6)

Exp(ra=0.5, si=.9)

Exp(ra=0.5, si=1.2)
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Figure 9.2: Realizations of a Gaussian process for different covariance functions.
Matern2.5 indicates a Matérn covariance function with smoothness ν = 2.5; ra and si

represent effective ranges and sills. The first column uses the first five covariances of
Figure 9.1; the remaining vary smoothness, range, and sill parameters. All panels have
been created with the same seed and plotted using the same scale. (See R-Code 9.2.)
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Note that a covariance function with a practical range of zero or a Matérn with smoothness
zero (and arbitrary range) is equivalent to an iid setting. ♣

R-Code 9.2: Gaussian realizations. (See Figure 9.2.)

m <- 25

xs <- seq(0, to=1, length=m)

gridp <- expand.grid(xs, xs) # a fine grid

# vary the covariance matrix below.

set.seed(12)

y <- rmvnorm(1, sigma=cov.mat(rdist(gridp), c(0.105,1,1.5)) )

image.plot(matrix(y, nrow=m))

title("Matern1.5(ra=0.5, si=1)", adj=0, font.main=1, line=.15)

A valid isotropic covariance function in Rd1 may not be valid in Rd2 if d1 < d2, but the inverse
always holds. The spherical covariance function is valid only up to R3. The Matérn covariance
function is valid in all dimensions. If c(h) =

∏d
k=1 ck(hk), we call the covariance separable (which

is thus not isotropic). In general, the families of valid covariance functions form convex cones.

Remark 9.3. The so-called Generalized Wendland covariance function gained much attention
in the last few years. The function has smoothness parameters ν and κ, variance parameter θ2
and range parameter θ1 and is given by For

c◦(h; θ1, θ2) =


θ2

B(2κ, ν + 1)

∫ θ1

h
w(w2 − t2)κ−1(θ1 − w)νdw, if h ≤ θ1,

0, if h > θ1.

(9.15)

with B(·, ·) the beta function. For technical details about valid parameter values, we refer to
Bevilacqua et al. (2019).

The Generalized Wendland has many similarities with the Matérn covariance function. It also
has closed-form expressions for integer parameter values of the smoothness parameter κ. The
Wendland2 covariance model (9.9) is a particular case of the Generalized Wendland with κ = 2

and ν = 4. Moreover, the Matérn covariance is the limiting case of a particularly parametrized
Generalized Wendland model (Bevilacqua et al., 2022).

Finally, in R, the Generalized Wendland covariance function is provided by, e.g., the package
GeneralizedWendland (Fischer et al., 2022). ♡

Remark 9.4. Limiting cases for the covariance functions exist. For example, if the range
parameter θ1 tends to zero, the covariance function tends to the covariance function of a pure
white-noise process.

For the Matérn model, ν → 0 leads to a white-noise process as well. In the limit, as ν → ∞
and appropriate scaling of θ1 (as a function of ν) it is the squared exponential covariance (9.13).
♡
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9.2 Maximum Likelihood (ML) Methods

We assume now that we have a parametric form of the random field. In typical situations, the
underlying distribution is parameterized by some parameter β for the first moment, i.e., the
mean structure, and by some parameter θ for the second moment, i.e., the parameters of the
covariance function.

Further, we assume Gaussian processes. As all finite-dimensional subsets of the process are
Gaussian as well, maximum likelihood (ML) estimation methods can be used to estimate β

and θ.
To derive the estimates, we assume that we observe at n locations s1, . . . , sn a second-order

stationary Gaussian random field. We write the n-dimensional distribution as

Z ∼ Nn

(
µ(β),Σ(θ)

)
, (9.16)

where µ(β) is the vector with elements E
(
Z(s1)

)
, and Σ(θ) is the covariance matrix with

elements Cov
(
Z(s i), Z(sj)

)
. The estimation of (β;θ) is done by maximizing the likelihood, or,

equivalently, by minimizing the negative of twice the log-likelihood

−2ℓ(β,θ; z ) = n log(2π) + log det(Σ(θ)) + (z − µ(β))⊤Σ(θ)−1(z − µ(β)), (9.17)

with z the n-vector of observations. Equation (9.17) can now be used to get the estimates
{β̂ml, θ̂ml}. In R, a call to optim() can be used. Alternatively, the package spam provides the
function mle(), mle.nomean(), as well as functions for sparse covariance matrices.

However, the joint estimation is not always ideal, and a profiling approach is to be preferred.
Suppose we have a constant mean, i.e., µ(β) = µ1, where 1 is a n-vector containing ones. If θ
is known, it is straightforward to show that

µ̃(θ) = argmin
µ

−2ℓ(µ,θ) =
(
1⊤Σ(θ)−11

)−1
1⊤Σ(θ)−1Z, (9.18)

which is generalized least squares estimator. We can substitute µ̃(θ) into (9.17) and minimize
−2ℓ

(
µ̃(θ),θ; z

)
with respect to θ only. We say that µ has been profiled from the log-likelihood

and call the resulting term the profile log-likelihood. The pair

θ̂ml = argmin
θ

− 2ℓ
(
µ̃(θ),θ

)
and µ̂ml = µ̃

(
θ̂ml
)

(9.19)

is known as an estimated generalized least squares estimator (EGLSE).
A similar estimate can be derived if E(Z) = Xβ.

Remark 9.5. 1. The profile likelihood approach can be elaborated as follows. We write
Σ(θ) = σ2Ω(ϑ), i.e., we write the covariance matrix Σ(θ) of Z as a correlation matrix
Ω(ϑ) and the total sill σ2 and separate θ⊤ = (σ2,ϑ⊤). For µ(β) = Xβ and for a given ϑ
we have the closed-form solution

β̃(ϑ) =
(
X⊤Ω−1(ϑ)X

)−1
X⊤Ω−1(ϑ)z . (9.20)
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in analogy to (9.18). We substitute (9.20) into (9.17) and simplify to

−2ℓp(ϑ, σ
2; z ) = −2ℓ(β̃(ϑ), σ2,ϑ; z ) = n log(2πσ2) + log detΩ(ϑ) +

1

σ2
z⊤P(ϑ)z , (9.21)

where P(ϑ) = Ω−1(ϑ)−Ω−1
(
ϑ)X(X⊤Ω−1(ϑ)X

)−1
X⊤Ω−1(ϑ). The function ℓp(ϑ, σ2; z )

is known as the profile log-likelihood function of (ϑ, σ2) and can be optimized by numerical
algorithms. In fact, the optimization of ℓp(ϑ, σ2) can be improved further. From (9.21),
we get the closed-form solution

σ̃2(ϑ) =
1

n
z⊤P(ϑ)z (9.22)

Hence, we proceed by

ϑ̂ml = argmin
ϑ

−2ℓ
(
β̃(ϑ), σ̃2(ϑ),ϑ; z

)
(9.23)

= argmin
ϑ

n log
(
2π

1

n
z⊤P(ϑ)z

)
+ log detΩ(ϑ) + n (9.24)

= argmin
ϑ

n log
(
z⊤P(ϑ)z

)
+ log detΩ(ϑ), (9.25)

σ̂2ml = σ̃2
(
ϑ̂ml

)
, and β̂ml = β̃

(
ϑ̂ml

)
. (9.26)

A severe disadvantage of the profiling approach is that it is highly costly to calculate the
matrix P because several linear systems have to be solved.

2. In the ML approach illustrated above, we estimate the mean parameter(s) (here µ) and
parameters describing the second-moment structure (here θ) jointly. While the former
rarely causes estimation difficulties, the latter is difficult to estimate. The difficulty is due
to the high dimensionality of θ and the intrinsic correlation of its individual elements. A
remedy is to use the restricted (or residual) maximum likelihood (REML) approach, in
which the mean parameters are “differenced out”. More precisely, we estimate θ from KZ

where the contrast matrix K is such that E(KZ) = 0. Note that the contrast matrix is
not unique. The correlation can be addressed with reparametrizations of the covariance
function (see also text before Remark 9.3).

3. Large datasets and large parameter vectors are the major drawbacks of an ML approach.
Flavors of ML (REML, quasi-likelihood, composite likelihood, . . . ) partially mitigate this
aspect. However, here we will not see these techniques in detail.

4. Another approach to deal with large datasets is to use sparse covariance matrices, i.e.,
covariance matrices containing many zeros. The vast number of zeros is exploited compu-
tationally with sparse linear algebra algorithms, as implemented in, e.g., spam. Typically,
the range does not lead to sufficiently sparse matrices, or the covariances do not have com-
pact support. There are essentially two ways to resort: tapering, i.e., direct multiplication
of the covariance matrix with a compactly supported correlation function, or to misspecifi-
cation of the covariance, i.e., we choose a compactly supported covariance function without
estimating the range parameter but set it to some predefined value. While tapering has
been the preferred setting in different scenarios, see, e.g., Furrer et al. (2006); Kaufman
et al. (2008); Bachoc et al. (2020), direct misspecification is getting more attention now,
e.g., Bevilacqua et al. (2019). ♡
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9.3 Prediction for Gaussian processes

Suppose we wish to make predictions at a location not included in the observed locations, for
example, to establish a pollution map. In that case, all measures will have to be taken into
account in computing the predicted value. Of course, their contributions will be weighted by
the strength of their correlation with the location of interest and should take into account the
uncertainty of the observations.

In the case of GRF, we simply use the conditional expectation, as given by equation (1.19).
However, the mean and covariance structures are hardly known, and we use plugin-estimates.
That means that

p
(
Z(s ′

1); z
)
= µ̂(s ′

1) + Σ̂s′
1;s1...sn

Σ̂
−1

s1...sn;s1...sn
(z − µ̂) (9.27)

is a prediction for Z(s ′
1) The predictor is more accessible if we make a slight notation abuse, say

subscript ‘obs’ for all observations and ‘pred’ for all locations we want to predict. For example,
Σpred,obs is the matrix containing the covariances Cov(Z(s ′

i), Z(sj)). Hence, the predictor for
locations s ′

1, . . . , s
′
m is

p
(
Z(s ′

1), . . . , Z(s
′
m);Z

)
= µ̂pred + Σ̂pred,obsΣ̂

−1

obs,obs(Z− µ̂obs). (9.28)

The predictive distribution with plug-in estimates thereof is Gaussian, but the matrix Σ̂pred,pred−
Σ̂pred,obsΣ̂

−1

obs,obsΣ̂obs,pred is not precisely the variance of the predictor: as we neglect the uncer-
tainties in the estimates, we have a biased version thereof.

In the next Section, we give several examples of an ML estimation.

9.4 Examples

This section explores the ML approach and illustrates the general approach, culprits, and con-
ditional simulation.

9.4.1 ChicagoO3 Dataset

We start by showing that the likelihood surface may be flat for small datasets. We use the
ChicagoO3 dataset of the package fields, reporting the average daily ozone values for 20 Chicago
monitoring stations over the period 3.6.1987–30.8.1987. (A similar dataset was formerly known
as ozone). Note that the help of ChicagoO3 states, “The lasting scientific value [of the data] is
probably minimal.”

R-Code 9.3 calculates the ML estimate for a spatial process with constant mean and a spher-
ical covariance function with initial values beta0=0 and theta0=c(2,2). Figure 9.3 shows the
very shallow likelihood surface. Note that the numerical result suggests a successful optimization.
However, choosing a different starting value would lead to a different estimate for the range. This
fact indicates that we do not have a robust spatial signal. On the other hand, the initial value
for the mean is not crucial.

We work with “relative-negative-2-loglikelihood”, which corresponds to the likelihood ratio
statistic W and can be directly compared with qχ2(p, 1 − α) to construct confidence regions of
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level 1 − α for the p parameters. Hence, we superimpose the image.plot() with a contour(,

add=TRUE) call and have a direct assessment of the uncertainty of the parameter estimates.

R-Code 9.3: ML estimation with the very small dataset ChicagoO3. (See Figure 9.3.)

library(fields)

y <- ChicagoO3$y # see help("ChicagoO3", package="fields")

X <- matrix(1, length(ChicagoO3$y), 1)

# quilt.plot(ChicagoO3$lon.lat,ChicagoO3$y, nx=15, ny=15); map("usa", add=T)

c(mean(y), var(y)) # EDA.

## [1] 39.780 17.638

distmat <- as.matrix(dist(ChicagoO3$x)) # position of station

print(pars <- mle(y, X, distmat, cov.sph, beta0=0, theta0=c(2,2),

thetalower=c(.01,.01), thetaupper=Inf)[c(1,2,4)])

## $par

## [1] 39.780 2.000 16.756

##

## $value

## [1] 113.13

##

## $convergence

## [1] 0

nr <- 39 # Define the resolution for range and sill. We use a different

ns <- 41 # value to have a check to properly fill the matrices.

range <- seq(.001, to=11, length=nr) # sequence of range and sills

sill <- seq(5, 40, length=ns)

grid <- expand.grid(range, sill) # grid

n2ll <- apply(grid, 1, function(theta) # fill with neg2log likeihood

neg2loglikelihood(y, X, distmat, cov.sph, pars$par[1], theta))

reln2ll <- matrix(n2ll - pars$value, nr, ns) # almost as -min(n2ll)

image.plot(range, sill, reln2ll, zlim=c(0,12))

contour(range, sill, reln2ll, levels=qchisq(c(.7,.9), 2),

labels=c("70%","90%"), labcex=1, add=TRUE) # Confidence region

points(pars$par[2], pars$par[3], pch=20, col="white") # plot mle

9.4.2 Artificial Data with two Parameters

To further illustrate the difficulty in precisely estimating covariance parameters, we continue to
work in a low-dimensional setting by assuming a zero mean and no nugget effect. We assume a
Matérn model with a smoothness parameter of ν = 3/2 and covariance parameter θ = (0.12, 1)⊤

representing range and sill, respectively. This means that the smoothness is known, and we only
need to estimate the range and sill.
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Figure 9.3: Surface plot of the relative (negative 2) log-likelihood. The ML estimate
is indicated with the white dot. The contour lines give the 70% and 90% confidence
regions. (See R-Code 9.3.)

The (artificial) sample, based on 70 unequally placed locations in the unit square, is shown
in the left panel of Figure 9.4. Not surprisingly, changing the seed leads to drastically different
estimates.

The following R-Code is very similar to R-Code 9.3 and consists of the following blocks: (i)
generating the data, (ii) estimating the parameters, and (iii) visualizing the relative (negative 2)
log-likelihood estimates. It is worth noting that the covariance parameters are highly correlated,
as indicated by the "banana"-shaped likelihood surface in the right panel of Figure 9.4.

R-Code 9.4: Illustration of ML estimation with artificial data. (See Figure 9.4.)

library(fields)

library(spam)

n <- 70 # number of data points

set.seed(16) # no particular seed

locs <- cbind(x=runif(n)^2,runif(n)^2) # non-uniform but arbitrary locations

truetheta <- c(.12, 1) # True theta=(range,sill)

### (i) We now define a grid, distance matrix, and a sample:

distmat <- rdist(locs) # distance matrix, same as "as.matrix(dist(locs))"

Sigma <- cov.mat32(distmat, truetheta) # true covariance matrix

y <- c(rmvnorm(1, sigma=Sigma)) # construct sample

c(mean(y), var(y)) # sanity check!!

## [1] -0.10239 0.45857

quilt.plot(locs, y) # visualze data

### (ii) Here is the negative-2-loglikelihood and the mle:
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neg2loglikelihood.nomean(y, distmat, cov.mat32, truetheta)

## [1] 51.188

res <- mle.nomean(y, distmat, cov.mat32,

truetheta, thetalower=c(.02,.12), thetaupper=c(1,3), hessian=TRUE)

print(unlist( res[c(1,2,4)])) # MLE, convergence ok

## par1 par2 value convergence

## 0.098521 0.761616 49.477584 0.000000

thetahat <- res$par # for later use

### (iii) Construct fine grid to visualize neg2loglik for ranges and sills

nr <- 49

ns <- 45

range <- seq(.05, to=.2, length=nr)

sill <- seq(.16, 2.7, length=ns)

grid1 <- expand.grid(range, sill) # this is the grid

n2ll1 <- apply(grid1, 1, function(theta)

neg2loglikelihood.nomean(y, distmat, cov.mat32, theta))

reln2ll1 <- matrix(n2ll1 - res$value, nr, ns)

image(range, sill, reln2ll1, zlim=c(0,50), col=tim.colors())

cont <- contour(range, sill, reln2ll1, levels=qchisq(c(.7,.9), 2), lwd=2,

labels=c("70%","90%"), labcex=1.2, add=TRUE, col='green')

points(res$par[1], res$par[2], pch=19, col="green")
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Figure 9.4: Left: artificial data based on 70 locations unequally placed locations in
the unit square. Right: relative (negative 2) log-likelihood surface of realization. ML
estimate and 70% and 90% confidence regions contour lines are given in green. (See
R-Code 9.4.)



9.4. EXAMPLES 167

We now calculate multiple samples for the same set of locations and estimate the parameters.
We demonstrate that the parameter estimates have a distribution similar to the log-likelihood. R-
Code 9.5 consists of four blocks. In the first block, we sample 1000 spatial realizations while keep-
ing the locations fixed. For each sample, we estimate the range and sill using the mle.nomean()

function. The summary of the estimates reveals that none of the estimates are on the boundaries
specified for optim(). However, a few realizations encounter convergence issues.

The second part plots two panels. In the left panel of Figure 9.5, we add the 1000 estimates
to the (negative 2) log-likelihood plot (as shown in the right panel of Figure 9.4). The estimates
are slightly shifted to the lower right compared to the confidence regions. This is not surprising
since the estimates of the actual sample (0.099, 0.762) are smaller than the true values (0.12,
1). Estimates with convergence issues have been marked with a + symbol. We observe no
particular pattern in these points. The right panel of Figure 9.5 displays the contour lines of the
bivariate density estimate based on the 1000 samples. To construct empirical confidence regions,
a few more lines of code are required. We generate numerous contour lines and select those that
correspond to the desired proportion of observations in the region (third block).

In the fourth block of the code, we compare the standard deviation and correlation of the
estimates based on the sample with the standard deviation and correlation obtained from the
Hessian matrix of the optimization process using the data. Since we are minimizing the negative
log-likelihood, half of the Hessian corresponds to the observed information.

R-Code 9.5: Illustration of ML estimation with artificial data. (See Figure 9.5.)

### (i) Calculate MLE for many samples:

R <- 1000

set.seed(1)

ymat <- rmvnorm(R, sigma=Sigma) # construct R samples

out <- t( apply(ymat, 1, function(y) {

unlist(mle.nomean(y, distmat, cov.mat32,

truetheta, thetalower=c(.02,.12), thetaupper=c(1,3))[c(1,2,4)]) }

))

sum(out[,"convergence"]>0) # some "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"

## [1] 17

summary(out) # nothing on the boundary, mean of estimates close to truth

## par1 par2 value convergence

## Min. :0.0674 Min. :0.271 Min. : 1.55 Min. : 0.000

## 1st Qu.:0.1071 1st Qu.:0.760 1st Qu.:33.49 1st Qu.: 0.000

## Median :0.1190 Median :0.972 Median :41.56 Median : 0.000

## Mean :0.1206 Mean :1.039 Mean :40.97 Mean : 0.884

## 3rd Qu.:0.1332 3rd Qu.:1.246 3rd Qu.:49.06 3rd Qu.: 0.000

## Max. :0.1944 Max. :3.000 Max. :78.78 Max. :52.000

### (iia) Visualization by adding points

image(range, sill, reln2ll1, zlim=c(0,50), col=tim.colors())
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cont <- contour(range, sill, reln2ll1, levels=qchisq(c(.7,.9), 2), lwd=2,

labels=c("70%","90%"), labcex=1.2, add=TRUE, col='green')

points(res$par[1], res$par[2], pch=19, col="green")

points(out[out[,"convergence"]==0,1:2], col='gray', pch=20, cex=.3)

points(out[out[,"convergence"]>0,1:2], col='white', pch="+")

### (iib) Visualize the estimates with empirical bivariate density:

library(MASS)

z <- kde2d(out[,1], out[,2], n=c(3*nr, 3*ns),

lims=c(range(range), range(sill))) # default bandwith is ok

image.plot(z, col=tim.colors(41), xlab="range", ylab="sill")

points(out[,1:2], col='white', pch=20, cex=.3)

contour(range, sill, reln2ll1, levels=qchisq(c(.7,.9), 2),

labels=c("70%","90%"), labcex=1, add=TRUE, lwd=2, col=3)

points(res$par[1], res$par[2], pch=19, col="green")

### (iii) long method to determine the approximate empirical confidence region:

library(splancs)

resol <- 100

level <- seq(1, to=30, length=resol)

contPoly <- contourLines(z, levels=level)

npip <- lapply(contPoly, function(x) nrow(pip(out[,1:2], x[2:3])) )

prop <- unlist(npip)/R # length(prop) should be of length resol!

getlevel <- sapply(c(.9,.7,.5), function(x) which.min(abs(x-prop)) )

contour(z, levels=level[getlevel], labels=c("90%", "70%", "50%"),

labcex=1, add=TRUE, lwd=2, col='yellow')

### (iv) Compare Hessian with empirical standard dev and correlations:

iH <- solve(res$hessian/2) # Inverse of observed Fisher information

### Standard deviations: empirical larger due to skewed data

rbind(FisherSE=sqrt(diag(iH)), empiricalSE=c(sd(out[,1]), sd(out[,2])))

## [,1] [,2]

## FisherSE 0.016731 0.26428

## empiricalSE 0.019761 0.38500

### Correlation: strong dependency between range and smoothness!!!

c(Fisher=cov2cor(iH)[2], empirical=cor(out[,1:2])[2]) # surprisingly close

## Fisher empirical

## 0.87333 0.88662

We conclude with some ideas about prediction and conditional simulation. The latter is an
approach to estimate the MSE of prediction (which is more a measure of the sampling design
than the uncertainty of the prediction). For very large datasets, the simulation approach is
much faster than calculating the exact MSE. We use the same observations and fitted covariance
parameters as in R-Code 9.7.
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Figure 9.5: Left: Likelihood surface of realization with 1000 estimates. ML estimate
and 70% and 90% confidence regions contour lines are given in green. Right: density
estimates of the 1000 ML estimates. Empirical 70% and 90% confidence regions contour
lines are given in yellow. For reference likelihood contour lines have been added in green..
(See R-Code 9.5.)

R-Code 9.6: Conditional expectation and simulation. (See Figure 9.6.)

m <- 33

xs <- seq(0, to=1, length=m)

gridp <- expand.grid(xs, xs) # a fine grid

Soo <- cov.mat(rdist(locs), thetahat)

Spp <- cov.mat(rdist(gridp), thetahat)

Sop <- cov.mat(rdist(locs, gridp), thetahat)

tmp <- solve(Soo, Sop)

Sigmacond <- Spp - t(Sop) %*% tmp # From conditional distribution

mucond <- c(y %*% tmp) # simplification because of zero mean

condsample <- rmvnorm(n=100, mean=mucond, sigma=Sigmacond)

zlim <- range(condsample)

for (i in 1:12) {

image(matrix(condsample[i, ], m, m), col=tim.colors(64),

xaxt="n", yaxt="n", zlim=zlim)

points(locs, cex=.4, lwd=.5)

}

tmp1 <- matrix(apply(condsample, 2, mean), m, m)

image(tmp1, col=tim.colors(64), xaxt="n", yaxt="n", zlim=zlim,

main="Empirical mean", font.main = 1)

points(locs, cex=.4, lwd=.5)
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image(matrix(mucond, m, m), col=tim.colors(64), xaxt="n", yaxt="n",

zlim=zlim, main="True mean", font.main = 1)

points(locs, cex=.4, lwd=.5)

tmp2 <- matrix(apply(condsample, 2, var), m, m)

image(tmp2, col=tim.colors(64), xaxt="n", yaxt="n", zlim=c(0,1.1),

main="Empirical variance", font.main = 1)

points(locs, cex=.4, lwd=.5)

image(matrix(diag(Sigmacond), m, m), col=tim.colors(64),

xaxt="n", yaxt="n", zlim=c(0,1.1), main="True variance", font.main = 1)

points(locs, cex=.4, lwd=.5)

image.plot(tmp1 - mucond, xaxt="n", yaxt="n", zlim=c(-.21,.21))

points(locs, cex=.4, lwd=.5)

image.plot(tmp2 - diag(Sigmacond), xaxt="n", yaxt="n")

points(locs, cex=.4, lwd=.5)

9.4.3 Artificial Data with three Parameters

We close this section by extending the previous example with unknown smoothness parameter.
That means that we estimate three parameters. More specifically, we assume a Matérn model
with parameter θ = (0.12, 1, 1.5)⊤ as range, sill, smoothness. The (artificial) sample is shown in
Figure 9.7 left panel. The range and sill estimates are similar as in R-Code 9.4. The smoothness
estimate is smaller than the truth, affecting somewhat the other two estimates.

We reiterate: the likelihood estimates are highly correlated, and covariance parameters are
hard to estimate (see Figure 9.7 top right panel). The lower panels of Figure 9.7 show the
bivariate surface plots of the relative (negative 2) log-likelihood where the third dimension has
been fixed at the ML estimate. The R-Code is very much as in R-Code 9.4.

R-Code 9.7: Illustration of ML estimation with artificial data. (See Figure 9.7.)

library(spam)

n <- 70

set.seed(16) # try other seeds, like set.seed(14)/ do not try (12)

locs <- cbind(x=runif(n)^2,runif(n)^2) # non-unform but arbitrary locations

truetheta <- c(.12, 1, 1.5) # True theta=(range,sill,smoothness)

### We now define a grid, distance matrix, and a sample:

distmat <- rdist(locs) # distance matrix, same as "as.matrix(dist(locs))"

Sigma <- cov.mat(distmat, truetheta) # true covariance matrix

y <- c(rmvnorm(1, sigma=Sigma)) # construct sample

c(mean(y), var(y)) # sanity check!!

## [1] -0.10239 0.45857

quilt.plot(locs, y)



9.4. EXAMPLES 171

Empirical mean True mean Empirical variance True variance

−0.2

−0.1

0.0

0.1

0.2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Figure 9.6: Illustration of conditional simulation. The top three rows show the real-
ization of the spatial field, conditional on the observations shown in Figure 9.7. Forth
row average shows the conditional mean and conditional variance, calculated based on
the 100 samples and based on equation (1.19). The bottom row gives the difference
between the empirical and exact of the former row. Note that the last panel uses a
different scale. (See R-Code 9.6.)
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### Here is the negative-2-loglikelihood:

neg2loglikelihood.nomean(y, distmat, cov.mat, truetheta)

## [1] 51.188

res <- mle.nomean(y, distmat, cov.mat,

truetheta, thetalower=c(.02,.3,.08), thetaupper=c(2,4,3), hessian=TRUE)

print(unlist(res[c(1, 2, 4)]))

## par1 par2 par3 value convergence

## 0.12196 0.83616 1.31777 49.12325 0.00000

iH <- solve(res$hessian/2) # we are minimizing neg-2-log

cov2cor(iH) # strong dependency between range and smoothness!!!

## [,1] [,2] [,3]

## [1,] 1.00000 0.72983 -0.87120

## [2,] 0.72983 1.00000 -0.36641

## [3,] -0.87120 -0.36641 1.00000

thetahat <- res$par

h <- seq(1e-4, to=.8, length=100)

plot(h, cov.mat(h, truetheta), type="l", col=2, ylim=c(0,1.4), ylab="c(h)")

nr <- ns <- nm <- 11

appsd <- sqrt(diag(iH)) # arbitrary quantile, could be refined.

range <- seq(thetahat[1]-appsd[1], to=thetahat[1]+appsd[1], length=nr)

sill <- seq(thetahat[2]-appsd[2], to=thetahat[2]+appsd[2], length=ns)

smoothness <- seq(thetahat[3]-appsd[3], to=thetahat[3]+appsd[3], len=nm)

grid <- expand.grid(r=range, s=sill, m=smoothness)

# str(grid)

n2ll <- apply(grid, 1, function(theta) {

neg2loglikelihood.nomean(y, distmat, cov.mat, theta) })

# out of the 11^3 possibilities, we illustrate all that have a ...

sel <- (n2ll < min(n2ll)+qchisq(.9, df=3)) # ... n2ll within qchisq(, df=3)

sum(sel)

## [1] 543

for (i in 1:sum(sel)) {

lines(h, cov.mat(h, unlist((grid[sel,])[i,])), col="gray60") }

lines(h, cov.mat(h, thetahat), col=4)

lines(h, cov.mat(h, truetheta), col=2)

nr <- 39

ns <- 41

nt <- 37
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range <- seq(.05, to=.3, length=nr)

sill <- seq(.2, 3, length=ns)

smoo <- seq(.6, 2.4, length=nt)

grid1 <- expand.grid(range, sill) # 3 different grids

grid2 <- expand.grid(range, smoo)

grid3 <- expand.grid(sill,smoo)

n2ll1 <- apply(grid1, 1, function(theta)

neg2loglikelihood.nomean(y, distmat, cov.mat, c(theta, res$par[3])))

reln2ll1 <- matrix(n2ll1 - res$value, nr, ns)

image(range, sill, reln2ll1, zlim=c(0,50), col=tim.colors())

contour(range, sill, reln2ll1, levels=qchisq(c(.7,.9), 3), col=3,

labels=c("70%","90%"), labcex=1, add=TRUE)

points(res$par[1], res$par[2], pch=20, col="white")

n2ll2 <- apply(grid2, 1, function(theta) neg2loglikelihood.nomean(y,

distmat, cov.mat, c(theta[1], res$par[2],theta[2])))

reln2ll2 <- matrix(n2ll2 - res$value, nr, nt)

image(range, smoo, reln2ll2, zlim=c(0,50), col=tim.colors())

contour(range, smoo, reln2ll2, levels=qchisq(c(.7,.9), 3), col=3,

labels=c("70%","90%"), labcex=1, add=TRUE)

points(res$par[1], res$par[3], pch=20, col="white")

n2ll3 <- apply(grid3, 1, function(theta)

neg2loglikelihood.nomean(y, distmat, cov.mat, c(res$par[1], theta)))

reln2ll3 <- matrix(n2ll3 - res$value, ns, nt)

image(sill, smoo, reln2ll3, zlim=c(0,50), col=tim.colors())

contour(sill, smoo, reln2ll3, levels=qchisq(c(.7,.9), 3), col=3,

labels=c("70%","90%"), labcex=1, add=TRUE)

points(res$par[2], res$par[3], pch=20, col="white")

R-Code 9.8 contains further visualization ideas for the three-dimensional likelihood. The
plots themselves are not included here.

R-Code 9.8: Visualizing ML estimates.

### The plots are not included in the script!!

### Create a data cube and visualize slices:

an2ll <- array(n2ll, c(nr, ns, nm))

zlim <- range(n2ll) # zlim <- min(n2ll)+c(0,qchisq(.9, df=3))

par(mfrow=c(3,4), mai=c(.1,.1,.1,.1))

for (i in 1:10) {

image(range, sill, an2ll[,,i], zlim=zlim, col=tim.colors(), xaxt="n",

yaxt="n")
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points(thetahat[1], thetahat[2], pch=20, col="white")

}

image.plot(range, sill, an2ll[,,i], zlim=zlim, xaxt="n", yaxt="n")

### Alternative with "rgl":

library(rgl)

open3d()

rgl.points(scale(grid[,1]), scale(grid[,2]), scale(grid[,3]),

col=tim.colors(64)[cut(n2ll, 64)])

sel <- (n2ll < min(n2ll)+qchisq(.9, df=3))

open3d()

rgl.points(scale(grid[sel,1]), scale(grid[sel,2]), scale(grid[sel,3]),

col=tim.colors(64)[cut(n2ll[sel], 64)])
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Figure 9.7: Top row: (artificial) data and “plausible” covariance functions. Bottom
row: bivariate surface plots of the relative (negative 2) log-likelihood, where the third
parameter has been fixed at the ML estimate, which is indicated with the white dot.
The contour lines give the 70% and 90% confidence regions. (See R-Code 9.7.)
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9.5 *Spatial Dependency as Regularization

We now give some technical detail about the ML estimation if the mean is known. Based on
equation (9.17) The estimation of θ is done by minimizing the (normed) log-likelihood

− 2

n
ℓ(θ)− log(2π) =

1

n
log det(Σ(θ)) +

1

n
z⊤Σ(θ)−1z =: ℓ1(θ) + ℓ2(θ). (9.29)

We look at both terms ℓ1(θ), ℓ2(θ) in (a) a conceptual, theoretical framework and (b) a numerical
framework with two explicit realizations and show that the dependency can be interpreted as a
regularization of the estimates.

For the first case, we take c(h; θ) = exp(h/θ) for the underlying covariance function with
an equally spaced grid in [0, 1]. The resulting covariance structure has very nice properties,
in the sense that it can be associated to an AR(1) model and thus have a tridiagonal inverse
(see Section 2.3.1 and take θ = −∆ log(ϕ) with ∆ the spacing of the adjacent locations). For
“arbitrary” locations, if θ → 0, Σ → I (complete independence) and if θ → ∞, Σ → 11⊤

(complete dependence). The matrix 11⊤ has rank one and thus is not positive definite. Hence,
we propose to work with the approximation A = λI + (1 − λ)11⊤, for λ > 0 very small and
possibly depending on n. The inverse of A exists and is

A−1 =
1

λ
I− 1− λ

λ(λ+ n− λn)
11⊤ (9.30)

(by the Sherman–Morrison formula). The spectra of A and A−1 are {n− (n−1)λ, λ, . . . , λ} and
{1/λ, . . . , 1/λ, 1/(n − (n − 1)λ)}, respectively. Hence, it would be natural to choose λ = 1/n.
Abusing notation, we have for large n

ℓ1(0) =
1

n
log(1) = 0, (9.31)

ℓ1(∞) ≈ 1

n
log(λ−(n−1)/(n− (n− 1)λ) ≈ − log(λ)− log(n(1− λ))

n

λ=1/n−→
n→∞

− log(n), (9.32)

ℓ2(0) =
1

n
z⊤z = σ̂2, (9.33)

ℓ2(∞) ≈ 1

n
zz⊤ 1

λ
− 1− λ

nλ(λ+ n− λn)
(1⊤z )2 = σ̂2

1

λ

λ=1/n−→
n→∞

σ̂2n, (9.34)

where we used σ̂2 = z⊤z/n and, as the mean is zero, assumed 1⊤z = 0.
Hence, we have an heuristic illustration that ℓ1(θ) decreases with increasing dependency and

ℓ2(θ) increases with increasing dependency. An optimization based on the quadratic form would
lead to an estimate that has no or minimal dependency. The log-determinant of the log-likelihood
can be seen as a regularizer, adding a dependency.

We look at both terms for two specific datasets. Figure 9.8 is for a one-dimensional setting
(equispaced), and Figure 9.9 is for the dataset of Figure 9.7. For the former, the results are
coherent with the theoretical derivation. For the latter, the interpretation is a bit more delicate.
The log-det term chooses a model with low variance and high correlation, and the quadratic term
is a model with high variance and low correlation. Of course, for a fixed value of the sill (e.g.,
θ2 = 1), the “cuts” through the panel surfaces are comparable with Figure 9.8.

To minimize z⊤Σ−1z for arbitrary positive definite and symmetric matrices, we write Σ−1 =
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LLT , where L is a Cholesky factor. Writing G = LT z with elements gij , we have

z⊤Σ−1z = tr(z⊤LLT z ) = tr(G⊤G) =

n∑
i=1

n∑
j=1

gijgji =

n∑
i=1

g2ii +

n∑
i=2

j<i∑
j=1

g2ij . (9.35)

Both square terms have to be minimized, the first via the sill, and the second via the range
parameter.
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Figure 9.8: Decomposition of the log-likelihood in two components as a function of
the range. Equispaced locations on [0, 1] with exponential covariance where a larger
range indicates stronger dependency. Vertical lines indicate the estimate and the truth.
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Figure 9.9: Image maps of ℓ1(θ), ℓ2(θ) and their sum (i.e., the normed log-
likelihood (9.29)). The x-axes represents the range parameter; the y-axis the sill. We
work with the Matérn covariance function with ν = 1.5. The white dot indicates the
pixel with the lowest value. The cross and the plus signs indicate the ML estimate and
the true parameter value. The panels have different plotting ranges; blue indicates low
values and red indicates high ones.



Chapter 10

Spatial Processes:
The Classical Approach

Much spatial methodology has been developed outside statistics at times when com-
puting resources were not available. These two aspects led to method-of-moment-
based estimation and prediction approaches with somewhat particular terminology.
This approach has been the historically preferred one. R-Code for this chapter:

www.math.uzh.ch/furrer/download/sta330/chapter10.R.

10.1 Intrinsic Stationarity and the Variogram

Chapter 9 considers a likelihood approach for stationary Gaussian spatial processes. We will not
only relax the assumption of Gaussianity but also of weak stationarity as the latter may be too
restrictive for some applications. We use the following form of stationarity.

Definition 10.1. A process Z(·) satisfying

E
(
Z(s1)

)
≡ µ, (10.1)

Var
(
Z(s1)− Z(s2)

)
= 2γ(s1 − s2), s1, s2 ∈ D, (10.2)

is said to be intrinsically stationary (or to satisfy the intrinsic hypothesis). If γ(·) is a function
of ||s1 − s2|| only, then the process as well as γ(·) is called isotropic, otherwise anisotropic. ♢

The functions 2γ(·) and γ(·) defined by (10.2) are called the variogram and the semi-variogram
respectively; a term coined by Matheron (1962). The difference h = s1−s2 is called the (spatial)
lag, and we let h = ||h ||, where || · || is some distance, e.g., the Euclidean or great circle distance.

Strong stationarity implies second-order stationarity if the second moment of Z(·) is finite.
Second-order stationarity implies intrinsic stationarity. For the inverse to hold, we require that
γ(h) is bounded for all h . The intrinsic hypothesis is essentially second-order stationarity for
the first-order difference Z( · + h)− Z(·).

177

http://www.math.uzh.ch/furrer/download/sta330/chapter10.R
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For every intrinsically stationary process, the variogram exists and is uniquely defined. How-
ever not for every function γ(·) there exists a process for which 2γ(·) is its variogram. For this
to hold, the function γ(·) has to satisfy certain properties. Suppose locations s1, . . . , sn ∈ D and
scalars αi, i = 1, . . . , n such that

∑
i αi = 0. If the process Z(·) is intrinsically stationary we

have that

2Var
( n∑
i=1

αiZ(s i)
)
= −

n∑
i,j=1

αiαj2γ(s i − sj) ≥ 0. (10.3)

This means that any continuous and conditionally negative definite function corresponds to
an intrinsically (possibly complex-valued) stationary stochastic process and vice versa (Cressie,
1993, Page 87).

If γ(h) → θ =: θ3 > 0 as h → 0 then θ is called a nugget effect by Matheron (1962). See also
Cressie (1993, Page 59 and Paragraph 3.2.1) for a detailed discussion of the nugget effect. The
variogram of a process Z(·) is often parametrized with two more parameters: θ2 called the partial
sill (if it exists), where θ2 + θ3 is the maximum value of the semi-variogram; and θ1 is related to
the (practical) range, which is the value where the variogram attains its (practical) maximum.
Note that the partial sill θ2 of a second-order stationary process always exists, whereas the range
can be infinite. In this case, we often use the term practical range, which is defined as the
distance at which the variogram is at 95% of the practical sill. The terminology of the sill is not
unique; some authors use the term sill for θ2 + θ3.

If we knew the process explicitly, we could calculate the underlying variogram (e.g., Arm-
strong and Diamond, 1984, for some examples). As this is rarely the case, we assume the process
has an underlying parameterized variogram.

Consider the following most widely used isotropic semi-variograms, parameterized using
range, partial sill (where applicable), and nugget effect parameter (θi ≥ 0, i = 1, 2, 3).

1. If the process is a pure nugget effect, its semi-variogram is defined by

γ◦
(
h; θ
)
=

0, if h = 0,

θ, otherwise,
(10.4)

where θ > 0. This model is equivalent to a pure white-noise or purely random process and
corresponds to a process for which Z(s i) and Z(sj) are uncorrelated for all s i ̸= sj .

2. spherical semi-variogram (valid in Rd, d = 1, 2, 3):

γ◦
(
h; θ1, θ2, θ3

)
=


0, if h = 0,

θ3 + θ2

(
3/2
(
h/θ1

)
− 1/2

(
h/θ1

)3)
, if 0 < h ≤ θ1,

θ3 + θ2, otherwise;

(10.5)

3. exponential semi-variogram (valid in Rd, d > 1):

γ◦
(
h; θ1, θ2, θ3

)
=

0, if h = 0,

θ3 + θ2
(
1− exp(−h/θ1)

)
, otherwise;

(10.6)
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4. Matérn semi-variogram with known smoothness (valid in Rd, d > 1):

γ◦
(
h; θ1, θ2, θ3

)
=

0, if h = 0,

θ3 + θ2
(
1− (h/θ1)

νKν(h/θ1)
)
, otherwise.

(10.7)

where Kν is the modified Bessel function of the second kind of order ν > 0 (Abramowitz
and Stegun, 1970).

Comments made for the Matérn covariance function hold here as well.

The parameters have the same signification as for covariance functions and similar statements
about the practical range and the parameter θ1 can be given. Of course, this list is not exhaustive.
All covariance functions seen in Chapter 9 have a variogram counterpart. In fact, in the case
of second-order stationary processes, we have γ(h) = c(0) − c(h) (and γ◦(h) = c◦(0) − c◦(h)

as well), permitting us to express the second moment in terms of a covariance function or a
variogram. This property is used in R-Code 10.1 to plot common variograms shown Figure 10.1.

Further, note that we have directly included the nugget effect in the process. Historically,
the stochastic component’s additive decomposition 9.6 has not been formulated and exploited.

R-Code 10.1 Semi-variograms for a weakly stationary process. (See Figure 10.1.)

library(spam)

plot(0, 0, xlim=c(0,.75), ylim=c(0, 1.1), pch=20, xlab="lag h",

ylab=expression(gamma(h)))

abline(v=.5, h=c(.95,1), col="gray")

h <- seq(1e-5, to=.8, length=100) # Lag vector

### theta <- c(range, sill, nugget) or c(range, sill, smoothness, nugget)

lines(h, 1-cov.sph(h, c(.5, .9, .1)), col=1)

lines(h, 1-cov.exp(h, c(.5/3,.9, .1)), col=2)

lines(h, 1-cov.mat(h, c(.125, .9, 1, .1)), col=3) # Ranges are approximate

lines(h, 1-cov.mat(h, c(.0845, .9, 2.5,.1)), col=4)

lines(h, 1-cov.mat(h, c(.0618, .9, 5, .1)), col=5)

legend("bottomright", bty="n",col=1:5, lty=1, cex=1.2,

legend=c("Spherical", "Exponential", expression(Matern~~nu==1),

expression(Matern~~nu==2.5), expression(Matern~~nu==5)))

Example 10.1. We consider a one-dimensional transect with D = [0, T ] and define a process:

1. Z(0) = 0

2. Z(t) has stationary, independent increments with Z(t+ h)− Z(t)
iid∼ N (0, σ2h).

3. Z(t) is continuous in t (with probability one).
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Figure 10.1: Different semi-variograms given by equations (10.5) to (10.7). The semi-
variograms have nugget effect 0.1, sill 0.9 and (practical) range 0.5. (See R-Code 10.1.)

This process is also called a Brownian motion or one-dimensional Wiener process.
The process is intrinsically stationary as E

(
Z(t)

)
= 0 and Var

(
Z(t + h) − Z(t)

)
= σ2h is

a function of h. However, straightforward manipulations show that Cov(Z(t + h), Z(t)) = σ2 t,
and thus the process is not second-order stationary. ♣

Remark 10.1. 1. To see equation (10.3), use the sum constraint to write

( n∑
i=1

αiZ(s i)
)2

= −1

2

n∑
i=1

n∑
j=1

αiαj(Z(s i)− Z(sj))
2 (10.8)

and use the definition of the variogram.

2. Useful properties of the variogram are, for example

γ(0) = 0, γ(h) = γ(−h) ≥ 0, lim
||h ||→∞

γ(h)
||h ||2 = 0. (10.9)

We can verify that any convex combination of conditionally negative definite functions is
still conditionally negative definite.

Christakos (1984) establishes different necessary and sufficient conditions for the condition-
ally negative-definiteness of the function γ(·).

3. It can be shown that if γ(·) is continuous at the origin, then Z(·) is L2-continuous (i.e., a
process Z(·) for which E

(
Z(s + h)− Z(s)

)2 → 0, as ||h || → 0). The converse is also true,
if γ(·) is not continuous at the origin, then Z(·) is not L2-continuous (see, e.g., Matheron,
1971, Page 58).

4. A common example of a non-monotone variogram is the so-called hole-effect model; see
Journel and Huijbregts (1978, Section III.3, Pages 168–171) or Jones and Ma (2001); Ma
and Jones (2001). ♡
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10.2 Variogram Estimation and Fitting

We now assume an intrinsically stationary process. This section discusses the variogram estima-
tion and gives some links to covariance functions estimation in case of weak stationarity.

10.2.1 Estimation of the First Moment

For the first moment, we typically assume that µ(s) = x (s)⊤β, which means x (s) is a vector
containing the covariates at location s.

The classical least squares estimate is β̂ = (X⊤X)−1X⊤z , where X is the so-called design
matrix containing x (s i)

⊤ as rows and z contains the observed data. The associated estimator
is unbiased but is not optimal in the sense that its variance is not appropriate. Let Z be the
random vector associated with z , i.e., Z = (Z(s1), . . . , Z(sn))

⊤ and denote ΣZ = Var(Z). Then
the best unbiased minimum variance estimator of β is

β̂ = (X⊤Σ−1
Z X)−1X⊤Σ−1

Z Z, (10.10)

However, ΣZ is typically unknown and needs to be estimated. But for the estimation of ΣZ,
the knowledge of the mean structure is required, as we will see. As a workaround, an iterative
approach may be needed.

10.2.2 Estimation of the Variogram

To estimate the spatial variation or spatial dependence structure, we assume an intrinsically
stationary process Z(·) and define the process of differences V (h) = Z( · + h) − Z(·). Intrinsic
stationarity implies that we can estimate the variogram with mean estimators for the process
V (·)2 or with variance estimators for the process V (·). Many different variogram estimators
exist, but only a few of them are used in practice. We will discuss three of them in detail.

Matheron’s classical estimator of the variogram is defined as (Matheron, 1962)

2γ̂(h) =
1

NJ

∑
(i,j)∈J

(
Z(s i)− Z(sj)

)2
, (10.11)

where

J = J(h) =
{
(i, j) : s i − sj ∈ Tol(h)

}
, NJ = card{J} (10.12)

and Tol(h) is some specified tolerance region in Rd. A typical tolerance region is Tol(h) =

Toll,a(h) =
{
k : ||k − h || ≤ l, arccos

(
k⊤h

/
(||k ||||h ||

)
≤ a

}
.

The classical estimator is sensitive to outliers but has other appealing properties. If the
vector z denotes the observations, we can write (10.11) as 2γ̂(h) = z⊤A(h)z for some matrix
A(h). If the locations form a regular grid, A(h) takes simple forms (see for example Genton,
1998b, 2000). Under Gaussianity, this fact simplifies investigations on distributional properties,
inference etc.; see also Davis and Borgman (1979, 1982) for exact sampling distributions and
asymptotic properties.
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Cressie and Hawkins (1980) start their development of a variogram estimator by noting that
under normality V (·)2 has a chi-squared distribution with one degree of freedom and is highly
skewed. They transform the process of differences to obtain an almost symmetric distribution
and use the standard mean estimator. Undoing the effect of transformation, they obtain

2γ̂(h) =
1

b(NJ)

(
1

NJ

∑
(i,j)∈J

∣∣Z(s i)− Z(sj)
∣∣1/2)4

, (10.13)

where J and NJ are given by (10.12) and b(NJ) = 0.457 + 0.494/NJ + (0.045/NJ)
2 corrects for

bias under Gaussianity.
Note that Cressie (1993, equation (2.4.12), Page 75) and most statistical software omit the

quadratic correction term in b(NJ). The transformed process is less sensitive to outliers, and the
authors consider their estimator as ‘robust’. Nevertheless, the estimator has a breakdown point
of zero (Hampel, 1971, Page 97), i.e., a single outlier in the data can destroy the estimator.

A genuinely robust estimator is based on the scale estimator Qn of Rousseeuw and Croux
(1992, 1993) and the resulting variogram estimator is

2γ̂(h) =
(
2.2191

{
|Vi(h)− Vj(h)| : i < j

}
(k)

)
2 (10.14)

with k =
(⌊NJ⌋+1

2

)
, termed the QJ variogram estimator, (Genton, 1998a; Dutter, 1996). The

factor 2.2191 guarantees consistency under Gaussianity.

Remark 10.2. The estimate QJ has O
(
NJ log(NJ)

)
computing time and takes O(NJ) storage

place. The distributional properties of these variogram estimators are complex and nontrivial,
implying that inference for the estimated variogram parameters is rarely developed. However,
many simulations and case studies exist investigating the effects of the variogram parameters on
prediction results.

If the process Z(·) is not intrinsically stationary, for example not correctly detrended, the
variogram estimators are biased.

It is not reasonable to take into account large lags h . Journel and Huijbregts (1978, Page 194)
recommend that variograms should not be estimated for lags bigger than half the diameter of D
(larger structures are modeled through the first moment). Additionally, they recommend that
the lags h be chosen, such as NJ > 30. For small datasets, this practical rule can only sometimes
be applied.

We can estimate the variance along a given axis h , i.e., estimate a directional variogram, by
using an appropriate tolerance region Tol(h). Directional variograms are an indispensable tool in
exploratory variography. Besides the indication of trends and other types of nonstationarity, they
allow calculating the transformation matrix O of geometrical anisotropy. A diagram of ranges
in different directions is plotted; the anisotropy ratio is defined as the ratio between the smallest
and the biggest range. The corresponding two directions are assumed to be approximately
perpendicular to each other (Goovaerts, 1997, Page 90). A ratio of one denotes an isotropic
variogram as its range is independent of the direction; see also Paragraph 9.1.1. Directional
variograms are also used for a better understanding of zonal anisotropy. Zimmerman (1993)
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introduces a subtle and clever classification of zonal anisotropy. He distinguishes nugget, sill,
range, and slope anisotropy and reveals with several examples and graphics the differences and
causes. He also shows that sill anisotropy may be evidence of nonstationarity, non-vanishing
spatial correlation, or measurement errors that are correlated or have unequal means.

In case of second-order stationarity, we have γ(h) = c(0)− c(h) and thus the covariance c(h)
can be estimated by

ĉ(h) =
(

lim
||h ||→∞

γ̂(h)
)
− γ̂(h). (10.15)

The advantage of this estimator is that we avoid the O(1/n) bias of the natural covariance
estimator

ĉ(h) =
1

JN

∑
(i,j)∈J

(
Z(s i)−Z

)(
Z(sj)−Z

)
, (10.16)

where J and NJ are given by (10.12) andZ =
∑

i Z(s i)/n. Geostatisticians usually use the vari-
ogram approach, whereas statisticians prefer the covariance functions. See Cressie and Grondona
(1992) for a detailed variogram and covariance estimation comparison. Note that ĉ(·) as defined
by (10.16) may not necessarily be positive definite. Whatever method is used to obtain γ̂(·) and
ĉ(·), called the empirical variogram and empirical covariance, we usually need to fit a theoretical
family of variograms or covariance functions in order to have a valid second moment structure.

Example 10.2. We reconsider the ChicagoO3 dataset from Section 9.4. We use the package
gstat. The default values of the function variogram() are suboptimal as we do not have enough
data. Setting manual values for cutoff (maximum lag for the variogram) and width (bin width),
we have a reasonable amount of pairs in each bin (NJ). The estimate of the first bin is very
large; changing to a robust estimate does not remedy it. The atypical form of the variogram
estimates was also the reason why the likelihood surface was extremely flat. Note that gstat

uses trellis graphics (via the lattice package). To add elements to a variogram plot, we need a
slightly atypical approach. ♣

R-Code 10.2: Variogram estimation of ChicagoO3 data.

library(fields)

O3 <- data.frame(ChicagoO3$x, ChicagoO3$y)

names(O3) <-c("x","y","O3")

library(gstat)

library(sp) # for function `coordinates()`

coordinates(O3) <- ~x+y

# variogram(O3~1, data=O3 # does not lead to good results

(vg1 <- variogram(O3~1, data=O3, cutoff=40, width=8))

## np dist gamma dir.hor dir.ver id

## 1 10 5.7473 34.037 0 0 var1

## 2 27 12.0808 10.729 0 0 var1
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## 3 32 20.5857 16.142 0 0 var1

## 4 43 27.8581 19.287 0 0 var1

## 5 25 35.2441 21.822 0 0 var1

(vg2 <- variogram(O3~1, data=O3, cutoff=40, width=8, cressie=TRUE))

## np dist gamma dir.hor dir.ver id

## 1 10 5.7473 34.3482 0 0 var1

## 2 27 12.0808 8.7714 0 0 var1

## 3 32 20.5857 15.8362 0 0 var1

## 4 43 27.8581 23.4793 0 0 var1

## 5 25 35.2441 23.7643 0 0 var1

# g <- plot(vg1)

# g + latticeExtra::layer(panel.points(vg2$dist, vg2$gamma, pch=4, col=2))

10.2.3 Variogram Model Fitting

Fitting a variogram model to an empirical variogram consists of choosing an appropriate family
of valid variograms 2γ(h ;θ) and estimating θ ∈ Θ ⊂ RL within this family to get a good match
between the estimated and the theoretical variogram. There are many different approaches to
the so-called variogram fitting. We will discuss a few standard techniques which can be classified
as parametric fitting.

A broad class of parametric fitting techniques is the least squares method. Suppose we have
an empirical variogram 2γ̂(hk), for different lags hk, k = 1, . . . ,K, and an appropriate family of
variograms 2γ(h ;θ). The method of ordinary least squares estimates θ by means of

θ̂ = argmin
θ

K∑
k=1

(
γ̂(hk)− γ(hk;θ)

)2
. (10.17)

However, classical variograms are not linear in θ, and we should rather speak of nonlinear least
squares estimates.

To take account of the covariance between different lags, we may use generalized (nonlinear)
least squares (GLS), resulting in

θ̂ = argmin
θ

K∑
k,l=1

(
γ̂(hk)− γ(hk;θ)

)
Cov

(
γ̂(hk;θ), γ̂(h l;θ)

)(
γ̂(h l)− γ(h l;θ)

)
. (10.18)

Unfortunately the covariance structure in equation (10.18) is in general not known and depends
on θ, the parameter to estimate. Often it is sufficient to use weighted (WLS) least squares
criterion

θ̂ = argmin
θ

K∑
k=1

NJ(hk)

( γ̂(hk)

γ(hk;θ)
− 1
)2
. (10.19)

In software implementations, many more weighting schemes are typically implemented. The
following example illustrates fitting using the package gstat.
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Example 10.3. We reconsider the ChicagoO3 dataset from Example 9.4. We use the package
gstat and define a variogram model with the function vgm(), with arguments partial sill, model
(like spherical "Sph", exponential "Exp", . . . ), range, nugget, etc. The values of the proposed
model will be used as starting values. The fitting is performed with fit.variogram and the
argument fit.method specifies the weights (e.g., =6 for (10.17) or =2 for (10.19)). The estimate
of the first bin is very large and hinders stable optimization. Here, a manual fitting might be
adequate and preferable to a numerical optimization (see also Remark 10.4). As an illustration,
we omit the first row, now leading to stable estimates. The weights have a minor effect, as
illustrated in Figure 10.2.

Of course, the approach to delete one estimate of the varigram is not recommended, but we
cite from the help of ChicagoO3: “The lasting scientific value [of the data] is probably minimal.”
♣

R-Code 10.3: Variogram estimation of ChicagoO3 data. (See Figure 10.2.)

vg.model <- vgm(25,"Sph", 30) # proposed model. No nugget here!

(fit2 <- fit.variogram(vg1[-1,], vg.model, fit.method=2)) # Fitting with WLS

## model psill range

## 1 Sph 21.362 36.048

(fit6 <- fit.variogram(vg1[-1,], vg.model, fit.method=6)) # with OLS

## model psill range

## 1 Sph 21.669 37.159

plot(gamma~dist, vg2, xlim=c(0, 40), ylim=c(0, 1.05*max(vg2$gamma)),

col=4, pch=19, ylab='semivariance', xlab='distance')

lines(variogramLine(fit6, 42), col=2) # WLS fit

lines(variogramLine(fit2, 42), col=4) # OLS fit
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Figure 10.2: Variogram fitting with gstat. Note that the variogram estimates have
been manipulated to get the OLS fit (blue) and WLS fit (red). (See R-Code 10.3.)
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Remark 10.3. Genton (1998b) uses the GLS criterion to approximate the covariance structure of
the QJ variogram estimator for regular grids. As the minimization criterion is highly nonlinear,
he proposes an iterative algorithm, referred to as generalized least squares with an explicit
formula for the covariance structure (GLSE). He also shows that a good approximation of the
covariance structure is achieved by taking into account the explicit formula for the covariance in
the independent situation. ♡

Remark 10.4. However, manual fitting is still used in applications, partly because geoscien-
tists use fitting as a part of geologic interpretation (Ma and Jones, 2001). On the other hand,
Zimmerman and Zimmerman (1991) show that OLS is usually as good as many of the more
complicated and computationally intensive methods. ♡

10.3 Kriging

Suppose we wish to make predictions at a location not included in the observed locations, for
example, to establish a pollution map. In that case, all measures must be considered in computing
the predicted value. Of course, their contributions will be weighted by the strength of their
correlation with the location of interest. We start introducing the most widely used spatial
predictors.

Kriging is a minimum mean squared error method of spatial prediction. Matheron (1963)
named this method of optimal spatial linear prediction after D. G. Krige, a South African mining
engineer who developed empirical methods for determining ore-grade distributions from samples
(Krige, 1951). However, the formulation of optimal linear prediction did not come from him.
Wold (1938), Kolmogoroff (1941), and Wiener (1949) developed optimal linear prediction, where
closer points obtained more weight than distant points. For a more thorough overview of the
historical origins of kriging we refer to Cressie (1990b).

We assume an intrinsically stationary process Z(·). As a spatial linear predictor for a location
s0, we use

Ẑ(s0) = p
(
Z(s0);Z

)
=

n∑
i=1

λiZ(s i) = λ⊤Z, (10.20)

where the weights λ = (λ1, . . . , λn)
⊤ are chosen such that the predictor is unbiased and that the

mean squared prediction error

E
((
Z(s0)−

n∑
i=1

λiZ(s i)
)2)

(10.21)

is minimal. With λ chosen under these constraints the predictor (10.20) is called the ordinary
kriging predictor and is the best linear unbiased predictor (BLUP). The optimal weights satisfy
1⊤λ = 1 to guarantee unbiasedness and equation (10.21) can be expressed using variograms. We
use the notation 2γ(s i − sj) = Var

(
Z(s i)− Z(sj)

)
.

Minimizing (10.21) under the constraint 1⊤λ = 1 by means of Lagrange multipliers leads us
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to the following system of equations characterizing the kriging weights

n∑
j=1

λjγ(s i − sj) + η = γ(s0 − s i), i = 1, . . . , n,

n∑
j=1

λj = 1,

(10.22)

or expressed in matrix notation (
Γ 1

1⊤ 0

)(
λ

η

)
=

(
γ

1

)
, (10.23)

where Γ =
(
γ(s i− sj)

)
, γ =

(
γ(s0− s i)

)
and η is the Lagrange multiplier. Solving the previous

system we obtain as the solution for the kriging weights

λ = Γ−1
(
γ + 1

1− 1⊤Γ−1γ

1⊤Γ−11

)
. (10.24)

The minimized mean squared prediction error (10.21) is often called the kriging variance and is
given by

σ2BLUP(s0) = λ⊤γ + η = γ⊤Γ−1γ −
(
1− 1⊤Γ−1γ

)2
1⊤Γ−11

. (10.25)

Many geostatisticians misunderstand the latter equation as it is not an estimation variance in
its strict sense but rather some index of data configuration (Srivastava, 1986, Page 144).

Remark 10.5. 1. Formally, the linear predictor should be formulated as p
(
Z(s0);Z

)
= λ0+∑n

i=1 λiZ(s i). As we work with stationary process, E
(
Z(s i)

)
= µ, for i = 0, . . . , n, and

thus λ0 = 0.

2. To derive the kriging equation (10.23) start with the square form of equation (10.21) and
expand the square to get(
Z(s0)−

n∑
i=1

λiZ(s i)
)2

= Z(s0)
2 − 2Z(s0)

n∑
i=1

λiZ(s i)+

n∑
i=1

λiZ(s i)
2 −

n∑
i=1

λiZ(s i)
2 +

( n∑
i=1

λiZ(s i)

)2
(10.26)

=

n∑
i=1

λi

(
Z(s0)− 2Z(s0)Z(s i) + Z(s i)

2
)

− 1

2

( n∑
i=1

λiZ(s i)
2 +

n∑
j=1

λjZ(sj)
2 − 2

( n∑
i=1

λiZ(s i)
)( n∑

j=1

λjZ(sj)
)) (10.27)

=

n∑
i=1

λi

(
Z(s0)− Z(s i)

)2
− 1

2

n∑
i=1

n∑
j=1

λiλj

(
Z(s i)− Z(sj)

)2
, (10.28)

where we have used
∑

j λi = 1 for the second equality. We now use the definition of the
variogram (written in terms of the squared expectation) to write equation (10.21)

n∑
i=1

λi2γ(s0 − s i)−
1

2

n∑
i=1

n∑
j=1

λiλj2γ(s i − sj) = λ⊤2γ − 1

2
λ⊤2Γλ. (10.29)
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which we have to minimize under the constraint λ⊤1 = 1. Taking derivatives with respect
to λi and the Lagrange multiplier 2η (factor 2 for convenience), equations (10.22) and
equation (10.23) follow.

3. To solve the system (10.23), we use the classical formula for the inverse of a 2 × 2 block
matrix (

A11 A12

A21 A22

)−1

=

(
A−1

11 −A−1
11 A12CA21A

−1
11 −A−1

11 A12C

−CA21A
−1
11 C

)
(10.30)

with C = (A22 −A21A
−1
11 A12)

−1. (We need to assume that the inverse of A11 and that
C exist.) Hence, using (10.23) we have A11 = Γ, A12 = A21

⊤ = 1, and A22 = 0 and thus
C = −(1⊤Γ−11)−1. Further, on the first row, we have Γ−1−Γ−11(1⊤Γ−11)−11⊤Γ−1 and
Γ−11(1⊤Γ−11)−1. Hence,

λ = Γ−1γ − Γ−11(1⊤Γ−11)−11⊤Γ−1γ + Γ−11(1⊤Γ−11)−1, (10.31)

which is exactly (10.24).

4. To derive the formula for the MSPE, we start with (10.29) and plug into 2λ⊤γ − λ⊤Γλ

the expression of λ as given in (10.24). Straightforward simplifications lead to (10.25). ♡

The kriging predictor is an “exact predictor”. That means that if we do not have a mea-
surement error and we predict at a location for which we have an observation, we have Z(s i) =

p(s i,Z). The justification is straight forward, γi is equivalent to the i column of Γ and thus
Γ−1γi = e i, the ith canonical basis vector. Hence, (10.24) leads to λ = e i.

The kriging equations can also be derived in terms of the covariance function. We obtain
similar results for the weights: exchange in equation (10.23) Γ and γ by C and c respectively
(c(s i − sj) = Cov

(
Z(s1), Z(s2)

)
and so forth), and the mean squared prediction error (10.21)

becomes σ2BLUP(s0) = c(0)− c⊤C−1c + (1− 1⊤C−1c)2
/
(1⊤C−11).

Example 10.4. In a pure nugget effect model, C = σ2I and the ordinary kriging predictor
simplifies to

p
(
Z(s0);Z

)
=


n∑

i=1

Z(s i)/n, if s0 /∈ {s1, . . . , sn},

Z(s i), if s0 = s i, i = 1, . . . , n.

(10.32)

If the underlying variogram of the process has a nugget effect, the kriging predictor is not
continuous. ♣

Remark 10.6. 1. Several approaches to deriving the kriging equations in terms of the co-
variance function exist. One possibility is to write Γ = c(0)11⊤ − C and γ = c(0)1 − c
and start plugging in these two quantities in (10.23). The c(0) term simplifies and thus we
can write (10.23) and (10.24) by replacing Γ and γ with C and c. For the MSPE, we can
start with (10.29) and plug in the corresponding equalities. Here, less terms simplify, but
the expression is simpler to interpret.
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2. To show that ordinary kriging (based on covariance function) is equivalent to prediction
based on the GLS estimate, consider a second-order stationary process Y (s). According
to equation (1.19) we use p(Y (s0),y) = 1β + c⊤C−1(y − 1β) with covariances Σ = C

and c. Because of the constant mean assumption, equation (10.10) simplifies to β̂ =

(1⊤C−11)−11⊤C−1y , which we plug into the previous equation to simplify:

p(Y (s0),y) = 1β̂ + c⊤C−1(y − 1β̂) (10.33)

= 1(1⊤C−11)−11⊤C−1y + c⊤C−1(y − 1(1⊤C−11)−11⊤C−1y) (10.34)

=
(
c⊤ + 1(1⊤C−11)−11⊤ − c⊤C−11(1⊤C−11)−11⊤

)
C−1y (10.35)

=
(
c⊤ +

1− c⊤C−11

1⊤C−11
1⊤
)
C−1y , (10.36)

which is λ⊤y , where the kriging weights (10.24) are expressed in terms of C and c. ♡

To derive the kriging equations, intrinsic or second-order stationarity is not required. We
merely need the existance of the corresponding vectors and matrices γ, Γ, c and C.

If the mean µ(·) and the covariance structure c(·, ·) of the process Z(·) are known functions
the optimal predictor simplifies to

p(s0,Z) = µ(s0) + c⊤C−1(Z− µ), (10.37)

where c =
(
c(s0, sj)

)
, C =

(
c(s i, sj)

)
and µ =

(
µ(s i)

)
. The predictor (10.37) is called the simple

kriging predictor. For Gaussian processes simple kriging coincides with E
(
Z(s0) | Z(s1), . . . ,

Z(sn)
)

and is therefore optimal amongst all unbiased predictors.

If the deterministic mean structure can be expressed as

µ(·) = x (·)⊤β =

K∑
k=1

βkxk(·), (10.38)

where
{
xk(·)

}
K
k=1 are known functions spanning a K-dimensional subspace, then ordinary kriging

can be generalized to universal kriging (Goldberger, 1962; Matheron, 1969). In (10.23), the
vector 1 is replaced by the design matrix X induced by the functions

{
xk(·)

}
K
k=1 evaluated at

the locations: (
Γ X

X⊤ 0

)(
λ

η

)
=

(
γ

x

)
, (10.39)

where x =
(
x1(s0), . . . , xK(s0)

)⊤ and η contains the Lagrange multipliers. With µ(·) ≡ µ,
(10.39) reduces to (10.23).

If we estimate the variogram using the approaches in this chapter, the mean structure has to
be known to get an unbiased estimate. Hence, one often reduces the problem to ordinary kriging.
(See Armstrong, 1984, Cressie, 1986 or Pardo-Igúquiza and Dowd, 1998 for a discussion of this
and other problems with universal kriging.)
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Recall that theoretically, kriging is an optimal predictor in the sense that it minimizes the
estimation variance under the unbiasedness constraint when the second-moment structure (var-
iogram) is known, and the process is intrinsically stationary. In practice, these conditions are
rarely met. Nevertheless, kriging has become a popular interpolator in the geostatistical commu-
nity. Zimmerman and Cressie (1992) compare the mean squared prediction error with the mean
squared prediction error using estimated covariance parameters.

We can use leave-one-out or leave-several-out techniques to assess kriging for one particular
dataset. More specifically, cycling over all observations, we omit one observation at a time from
the data and predict at the location of the observation. The resulting mean squared prediction
error should be close to the kriging variance. Hence, one often reports the resulting root mean
squared prediction error (RMSE) and mean squared deviation ratio (MSDR) for the leave-one-out
predictions.

The kriging weights and the observations determine the kriging prediction. The kriging
weights are determined by a family of (co)variograms and an estimated parameter which also
depends on the observations. The stability of the kriging predictor is best judged when studying
its sensitivity with respect to the chosen variogram family, the variogram estimation and fitting
procedure, and the observations. Since kriging is a linear predictor, small perturbations in the
weights λi, i = 1, . . . , n, do not change the prediction p(s0, Z) significantly, also discussed by
Tukey (1948) in a similar context.

10.4 Example

We use the data introduced in Example 1.3 for a univariate prediction example. We use mercury
(Hg) as a variable. We assume a constant trend for simplicity, i.e., we have ordinary kriging
here. The following sequence of code chunks (i) loads and pre-processes the data: R-Code 10.4,
(ii) models the second order structure R-Code 10.5, (iii) constructs a fine grid used for prediction
R-Code 10.6, (iv) prediction and validation R-Code 10.7.

R-Code 10.4: Loading packages and data and preparing a training dataset. (See Fig-
ure 10.3.)

load("./data/LacLeman.RData") # see also Example 1.2

library(fields)

library(gstat)

library(sp) # for function `coordinates`

### We have duplicated observations. Creates headache with "gstat"

### ("fields" automatically addresses this).

Hgfull <- leman83[ !duplicated(leman83[,1:2]),]

set.seed(1)

train <- sort(sample(1:dim(Hgfull)[1], 68))

Hg <- Hgfull[train,]
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hist(leman83$Hg, col=7, main="", xlab="Hg [ppm]")

hist(Hg$Hg, add=TRUE, col=4)

uvl <- with(Hg, data.frame(x, y, var1=Hg ) )

# str(uvl)

coordinates(uvl) <- ~x+y

# str(uvl) # !!
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Figure 10.3: Histogram of entire and training mercury dataset (left, R-Code 10.4)
and variogram (right, R-Code 10.5).

We now proceed to variogram estimation and fitting. The estimation is done with the func-
tion variogram(), fitting with the function fit.variogram(), where we also need to specify
the variogram class. The package gstat provides many models through the function vgm(), in-
cluding "Sph", "Exp" "Mat" and "Nug". See, e.g., show.vgms(models=c("Sph", "Exp", "Mat",

"Nug")).

R-Code 10.5: Variogram estimation and fitting. (See Figure 10.3.)

eV <- variogram(var1~1, uvl) # empirical

mV <- vgm(.035, model="Sph", 10, .5) # model

## Specification: partial sill, "model", range, nugget

(fV <- fit.variogram(eV, mV)) # fitting

## model psill range

## 1 Nug 0.000000 0.0000

## 2 Sph 0.066285 7.4158

c(class(eV), class(mV), class(fV))
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## [1] "gstatVariogram" "data.frame" "variogramModel" "data.frame"

## [5] "variogramModel" "data.frame"

plot(eV, model=fV) # plotting both

We are now constructing a fine grid within the lake boundaries to predict at these locations.
One possible approach is to use the function pip() from the package splancs.

R-Code 10.6: Constructing a fine grid within the lake boundaries.

library(splancs)

xr <- seq(min(lake.data[,1]), to=max(lake.data[,1]), l=100)

yr <- seq(min(lake.data[,2]), to=max(lake.data[,2]), by=xr[2]-xr[1])

# xr and yr are fine sequences of points

locs <- data.frame(x=lake.data[,1], y=lake.data[,2])

grid <- expand.grid(x=xr, y=yr) # create a 2-dim grid

pts <- pip(grid, locs, bound=TRUE) # pip points-in-polygon

# we now have a grid...

coordinates(pts) <- ~x+y # ... in the correct structure

Finally, we perform kriging with the function krige() from the package gstat. The function
works similarly as a generic predict() function and is thus very intuitive. The function includes
ordinary, simple, and universal kriging by adapting the formula statement.

The function krige.cv() performs leave-one-out cross-validation (LOOCV) by predicting
the value at that location by leaving out the observed value and cycling over the data points.
We report the RMSE and MSDR. Note that an MSDR of 0.974 is very close to one; thus, no
indication of model inadequacy.

R-Code 10.7: Kriging, visualization and validation. (See Figure 10.4.)

okblup <- krige(var1~1, uvl, newdata=pts, model=fV) # kriging

## [using ordinary kriging]

par(mai=c(.1,.1,.1,.1), cex=.8)

lake(okblup$var1.pred, pts) # visualization...

par(mai=c(.1,.1,.1,.1), cex=.8)

lake(okblup$var1.var, pts)

points(Hg[,1:2], pch="x", col="white")

### Alternatives to base function `plot`:

# spplot(okblup, "var1.pred")

# quilt.plot(pts@coords, okblup$var1.pred, nx=length(xr)-2, ny=length(yr)-1)

# quilt.plot(pts@coords, okblup$var1.var, nx=length(xr)-2, ny=length(yr)-1)

# points(Hg[,1:2], cex=.3)
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### Validation/verification:

cv <- krige.cv(var1 ~ 1, uvl, model=fV, verbose=FALSE)

summary(cv$residual)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.49030 -0.07425 -0.00911 -0.00789 0.06608 0.58682

c(RMSE=sqrt(mean(cv$residual^2)), # the smaller the better

MSDR=mean(cv$residual^2/cv$var1.var) ) # should be close to one.

## RMSE MSDR

## 0.16154 0.97347

Notice that the actual kriging calculation is one single call to krige(). For the visualization
in Figure 10.4 we have used the R-base plotting. Alternatives are given in R-Code 10.7 as well.
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Figure 10.4: Prediction (left) and mean squared prediction error (right). The locations
of the training dataset are superimposed. (See R-Code 10.7.)

10.4.1 Alternative Kriging Calls in R

The use of the function krige() of the package gstat is quite intuitive and universal. An
alternative and much more flexible construct in gstat is as follows. This approach will also be
used when we extend ordinary/universal kriging to more elaborate settings.

R-Code 10.9 predicts with the package fields and R-Code 10.10 predicts with the package
geoR. In the latter one, we compare the predictions with the previous one. As we fixed all pa-
rameters, no differences are present. In fields, it is straightforward to define further covariance
functions, as shown with the function Spherical().

There are several other implementations of kriging beyond the approach mentioned earlier.
One such method is to construct a covariance matrix C using an estimated covariance function,
and then solve the linear systems Cv = 1 and Cw = y . This approach can be highly efficient for
evaluating (10.36), requiring only a single factorization of C. However, for large datasets (with
n on the order of thousands), it’s important to use a compactly supported covariance function
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R-Code 10.8 Alternative use of gstat functionalities for kriging.

(g1 <- gstat(NULL, id = "var1", formula=var1~1, data=uvl) )

## data:

## var1 : formula = var1`~`1 ; data dim = 68 x 1

(g1 <- gstat(g1, id="var1", model=fV) )

## data:

## var1 : formula = var1`~`1 ; data dim = 68 x 1

## variograms:

## model psill range

## var1[1] Nug 0.000000 0.0000

## var1[2] Sph 0.066285 7.4158

okblup.alt <- predict(g1, pts)

## [using ordinary kriging]

colSums((okblup@data- okblup.alt@data)^2)

## var1.pred var1.var

## 0 0

### to extract the variogram parameters:

vg <- c(psill=g1$model$var1[2,2], range=g1$model$var1[2,3])

nugget <- g1$model$var1[1,2]

R-Code 10.9 Kriging with the package fields.

library(fields)

Spherical <- function(d, range=1, phi=1){

if (any(d < 0)) stop("distance argument must be nonnegative")

d <- d/range

return(ifelse(d < 1, phi*(1 - 1.5*d + 0.5*d^3), 0))

}

vg <- c(psill=fV[2,2], range=fV[2,3])

nugget <- fV[1,2]

out1 <- mKrig(Hg[,1:2], Hg$Hg, Covariance="Spherical",

theta=vg["range"], lambda=nugget/vg["psill"], m=1)

pout1 <- predict(out1, pts@coords)

with a small range relative to the diameter of the domain. This can result in a sparse matrix,
which can be handled using the same tools as in Chapter 5.
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R-Code 10.10 Kriging with the package geoR and comparison.

library(geoR)

out2 <- krige.control(cov.pars=vg, cov.model="spherical", nugget=nugget)

pout2 <- krige.conv(coords=Hg[,1:2], data=Hg$Hg,

locations=pts@coords, krige=out2)

## krige.conv: model with constant mean

## krige.conv: Kriging performed using global neighbourhood

print(c(out1$d, pout2$beta.est)) # estimate of the mean

## beta

## 0.41654 0.41654

print(c(norm(pout2$predict - pout1), norm(okblup$var1.pred - pout1)))

## [1] 2.6231e-13 2.1808e-13

10.5 *Other Interpolation Approaches

There exist many flavors of the classical kriging predictor. Notably, nearest-neighbor kriging,
e.g., gstat::krige() uses this approach for large datasets, prediction with tapered covariance
functions, e.g., implemented in fields::mKrig(). Other examples include: kriging with IRF-k
(Matheron, 1973b; Delfiner, 1976), disjunctive kriging (Matheron, 1973a, 1976; Armstrong and
Matheron, 1986a,b), robust kriging (Hawkins and Cressie, 1984), median-polish kriging (Cressie,
1986, Section 3.5) or using a robustified kriging predictor (Hawkins and Cressie, 1984). These
variants typically involve several algorithmic parameters, and reconstructing exactly published
results is often virtually impossible.

Christakos (2000) or Hristopulos and Christakos (2001) discuss prediction in the context of
Bayesian maximum entropy (BME). Depending on the BME ‘knowledge basis’, the prediction
reduces to various types of kriging.

Myers (1992) and, in a more detailed way, Nychka (2000) show that the kriging predictor is
a type of thin-plate spline and thin-plate splines are kriging predictors for suitably chosen radial
basis functions, smoothing parameters and covariance matrix. Therefore, it is not surprising that
the package fields has kriging as well as thin-plate splines implemented (fields::Tps()). See
also the vivid discussion of Cressie (1989b); Wahba (1990) and Cressie (1990a).

Of course, using non-stochastic interpolation methods for spatial prediction is possible. No-
table examples are inverse distance weighted interpolation gstat::idw(), bilinear interpolation
fields::interp.surface(), etc. For comparisons of different statistical and geostatistical in-
terpolation approaches see, for example, Englund (1990); Weber and Englund (1992) and Dubois
(1998, 2000). Heaton et al. (2019) compare many different spatial prediction algorithms in terms
of RMSE and computational efficiency. See also Gerber et al. (2018) in the context of gapfilling
satellite images.
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Chapter 11

Spatial Processes:
Extensions and More

A natural extension of a spatial process is the extension to multivariate spatial and
to spatiotemporal processes.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter11.R.

Dependencies carry information. Hence, exploiting these as much as possible is equivalent
to including as much information as possible. In this chapter, we extend the idea of one spatial
process to a multivariate setting (Section 11.1) and to a spatiotemporal setting (Section 11.3).
Two sections illustrate the approaches with the R-package gstat.

We conclude the chapter with some comments about the historical aspects of geostatistics.

11.1 Multivariate Spatial Fields

The concept of spatial processes defined as in (9.1) can be generalized in a straightforward manner
to a multivariate framework. The set of random vectors

{
Z(s) =

(
Z1(s), . . . , Zp(s)

)⊤ : s ∈ D ⊂ Rd, d ≥ 1
}

(11.1)

is called a multivariate spatial process.

As in the case of a univariate setting, we often work with a specification of the first two
moments and in order to reduce the “dimensionality” thereof, we introduce different types of
stationarity. For example, if for each component Zr(·), r = 1, . . . , p, of the process, the mean is
independent of the location and if, for all r, s = 1, . . . , p, the functions

crs(s i − sj) = Cov
(
Zr(s i), Zs(sj)

)
(11.2)

exist, then the process is called second-order stationary. For r ̸= s, the functions (11.2) are called
cross-covariance functions.

197
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In order to generalize the concept of the variogram, two possible approaches exist and are as
follows: approaches are

2νrs(s i − sj) = Cov
(
Zr(s i)− Zr(sj), Zs(s i)− Zs(sj)

)
, (11.3)

2γrs(s i − sj) = Var
(
Zr(s i)− Zs(sj)

)
. (11.4)

The functions 2νrs(·) and 2γrs(·) are called cross-variogram and pseudo cross-variogram, re-
spectively. These second-moment functions possess slightly different advantages with respect
to estimation and interpretability There are several approaches how to estimate Myers, 1991;
Papritz et al., 1993; Künsch et al., 1997.

Often we are only interested in the prediction of a particular/primary variable Zk(·). Similar
to Section 10.3 a BLUP can be developed for multivariate processes. Without loss of generality,
we assume k = 1. The starting point is the linear predictor p(Z1(s0);Z) for the primary variable
Z1(·) given by

p(Z1(s0);Z) =

p∑
r=1

λ⊤
r Zr, (11.5)

where Zr =
(
Zr(s1), . . . , Zr(sn)

)⊤. The unbiasedness condition is given by 1⊤λ1 = 1 and
1⊤λr = 0, r = 2, . . . , n. Minimizing the mean squared prediction error leads to a similar
system of equations as (10.23), called the cokriging system. As in the case of univariate kriging
approaches (ordinary, universal, . . . kriging) the system of equations can be nicely put in block-
matrix notation (e.g., Myers, 1982).

Remark 11.1. 1. Unbiasedness is guaranteed if the weights of the primary variable sum to
one and those of the secondary variable sum to zero. Another possibility is to impose only
one constraint, i.e.,

∑p
r=1 1

⊤λr = 1. In this case, more weight is given to the secondary
variables while reducing the occurrence of negative weights (Goovaerts, 1998).

2. The cokriging system can be expressed with the cross-covariance, cross-variogram, or
the pseudo cross-variogram. Cressie and Wikle (1998) discuss the advantages of cross-
variogram and pseudo cross-variogram usage with respect to cokriging. ♡

Another very common tool in multivariate geostatistics is coregionalization (e.g. Journel and
Huijbregts, 1978). Each component Zr(·), r = 1, . . . , p, of the process is supposed to be a linear
combination of m orthogonal random processes

{
Ys(·)

}
such that there exists a (p×m)-matrix

A satisfying Z(·) = AY(·). The orthogonality of the random functions
{
Ys(·)

}
reduces the

multivariate to a univariate setting and simplifies enormously statistical modeling. However, the
matrix A has to be estimated, often iteratively (e.g. Bourgault and Marcotte, 1991).

11.2 Example: Bivariate Spatial Interpolation

We present an example of cokriging based on the software implementation gstat. A much
more detailed example is given in www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/Co
KrigeR.pdf.

https://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/CoKrigeR.pdf
https://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/CoKrigeR.pdf
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More specifically, we take the same framework shown in Section 10.4 and introduce the
additional covariable cadmium (Cd). This two-variable setting is the simplest case of cokriging,
and might be called bikriging. The choice of cadmium is somewhat arbitrary, and better variables
or transformations might exist. We start by loading the data as in R-Code 10.4 (not shown here).
We predict on the same grid we constructed in R-Code 10.6. R-Code 11.1 below loads prepares
the covariable (here Cd), performs variogram estimation and cokriging. R-Code 11.2 compares
the result to the ordinary kriging approach. Notice that we need to take the slightly more
complex approach as illustrated in R-Code 10.8.

R-Code 11.1: Cokriging: loading data, variogram estimation, prediction, visualization,
and validation. We assume that we have evaluated R-Codes 10.4, 10.5, 10.6 and 10.7 before we
start here.

### To jointly model Hg and Cd, we need some dependencies:

plot(Hg~Cd, data=leman83) # one outlier!!

### We rename the dataframe, to be more flexible:

Cd <- leman83[ !duplicated(leman83[,1:2]),]

Cd <- Cd[-which.max(Cd$Cd),]

mvl <- with(Cd, data.frame(x, y, var2=Cd) )

coordinates(mvl) <- ~ x+y

### We will fit a LCM and thus have to choose a common range.

mVc <- vgm(.1, "Sph", 12, .005)

### construct the gstat object

g <- gstat(NULL, id = "var1", form = var1 ~ 1, data=uvl)

g <- gstat(g, id = "var2", form = var2 ~ 1, data=mvl)

g <- gstat(g, model=mVc, fill.all=T, set = list(nocheck = 1))

g <- fit.lmc(variogram(g), g,

fit.method=1, # some co-located data

correct.diagonal=1.001) # to be on the safe side

# plot(variogram(g), model=g$model) # to visualize a (bad) fit

ckblup <- predict(g, pts)

## Linear Model of Coregionalization found. Good.

## [using ordinary cokriging]

# lake(ckblup$var1.pred, pts) # visualy similar to OK

### For the script, we suppress many lines of messages:

cv1 <- gstat.cv(g, verbose=FALSE)

summary(cv1$residual)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.56339 -0.10515 0.00057 -0.00178 0.08204 0.58185
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c(RMSE=sqrt(mean(cv1$residual^2)),

MSDR=mean(cv1$residual^2/cv1$var1.var) ) # somewhat elevated

## RMSE MSDR

## 0.1780 2.4572

We assess now if cokriging performs better than kriging. It turns out that the summary values
(RMSE and MSDR) are more favorable for ordinary kriging (end of R-Code 11.1. The LCM fit
is probably a bit overly simplistic and thus leads to a too large value of the mean standard
deviation ratio (2.457). Hence, “more” is not always “better”. A fully flexible cokriging model
would be more appropriate, as the ranges of the variables are very different, and by choosing one
common range, the nugget parameter gets inflated, offsetting the additional information from
the secondary variable.

We compare differences of absolute error (maybe some ratios would be an alternative) in
R-Code 11.2. In Figure 11.1, a reddish color indicates larger cokriging (absolute) errors. The
histograms also show that there is not a significant gain in using cokriging. Of course, the MSPE
of cokriging is smaller, as seen in the lower right panel of Figure 11.1.

R-Code 11.2: Comparing kriging and cokriging results. (See Figure 11.1.)

cvl <- Hgfull[-train,c("x","y","Hg")] # predict on validation points

coordinates(cvl) <- ~x+y

ok1 <- predict(g1, cvl)

## [using ordinary kriging]

ck1 <- predict(g, cvl)

## Linear Model of Coregionalization found. Good.

## [using ordinary cokriging]

diff1 <- abs(ck1@data$var1.pred-cvl$Hg) - abs(ok1@data$var1.pred-cvl$Hg)

lake(diff1, cvl, zlim=range(diff1, -diff1))

par(mfcol=c(1,2))

hist(diff1, main="", col=7)

hist(ok1@data$var1.var-ck1@data$var1.var, main="", xlab="Delta MSPE", col=7)

11.3 Spatio-Temporal Processes

In the same way, as for spatial processes, we call the set of random variables{
Z(s, t) : s ∈ D ⊂ Rd, d ≥ 1, t ∈ T

}
(11.6)

a spatiotemporal process. As time is ordered in past, present and future, we cannot properly
model a spatiotemporal process as

{
Z(s) : s ∈ D∗ ⊂ Rd+1, d ≥ 1

}
; see also Kyriakidis and
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Figure 11.1: Comparing kriging and cokriging results. Differences between the cok-
riging (absolute) errors and the kriging (absolute) errors (top with spatial location,
bottom left as a histogram). The right histogram shows the difference in the mean
squared prediction error. (See R-Code 11.2.)

Journel (1999) for a detailed discussion of the differences between the space axes and the time
axis. Therefore, the covariance Cov

(
Z(s i, tr), Z(sj , ts)

)
is a function of the four arguments

s i, sj , tr and ts. The concepts of stationarity, isotropy, etc., apply as such. For example, the
spatiotemporal process Z(·, ·) is second-order stationary in space and time if

E
(
Z(s i, tr)

)
≡ µ, (11.7)

c
(
s i − sj , tr − ts

)
= Cov

(
Z(s i, tr), Z(sj , ts)

)
, s i, sj ∈ D, tr, ts ∈ T . (11.8)

Like spatial covariance, a spatiotemporal covariance has to be positive definite and satisfies, for
example, the conditions∣∣c(h , u)∣∣2 ≤ c(h , 0)2 ≤ c(0, 0)2 and

∣∣c(h , u)∣∣2 ≤ c(0, u)2 ≤ c(0, 0)2 (11.9)

for all spatial lags h and temporal lags u. It is common to characterize the spatiotemporal
processes Z(·, ·) with their covariances. There are many different possibilities to construct positive
definite covariances c(h , u). We list in what follows only a few of them; further examples are
given in Cesare et al. (2001).
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• The covariogram can be separated into functions of h and u only. For example, the product
model, (Rouhani and Myers, 1990),

c(h , t) = ch (h)cu(u), (11.10)

or the linear model (Rodríguez-Iturbe and Mjía, 1974),

c(h , t) = ch (h) + cu(u), (11.11)

or a combination of the product and the linear model called the product-sum model (Cesare
et al., 2001).

Remark 11.2. A few more advanced methods are as follows.

• Cressie and Huang (1999, 2001) establish nonseparable spatiotemporal covariances based
on integrated product models. Based on Bochner (1933), a continuous, bounded, symmetric
and integrable function c(h , u), defined on Rd+1, is a space-time covariance function if and
only if

cFω(u) =

∫
exp(−ıh⊤ω)c(h , u) dh , (11.12)

where ı =
√
−1, is a covariance function for almost all ω ∈ Rd. The technique consists

now of finding covariance functions cFω(u) and use an inverse Fourier transformation to
derive the covariance function c(h , u). Cressie and Huang (1999) decompose the covariance
function cFω(u) in an autocorrelation function and a factor independent of u, i.e., cFω(u) =
ρ(ω, u)k(ω).

• Gneiting (2001) presents a method based on completely monotone functions. The covari-
ance functions are of the form

c(h , u) =
σ2

ψ
(
|u|2
)d/2ϕ(||h ||2/ψ(|u|2)), (11.13)

where ϕ(·) is a completely monotone function and ψ(·) a positive function with a completely
monotone derivative. The main advantage is that this approach does not need Fourier
transformations.

• Fuentes and Smith (2002) develop a new class of nonstationary spatial models based on
the convolution of local stationary covariance functions. ♡

Remark 11.3. A pure nugget effect is equivalent to white noise. We use the former terminology
if we have no spatial dependence and the latter if we have no temporal dependence, i.e., the
nugget effect is a spatial nugget effect, and white noise is a temporal nugget effect. ♡

The observations of spatiotemporal processes are often taken at regular points in time. De-
pending on the application, neglecting the spatial or the temporal component is common, i.e.,
we interpret the spatiotemporal realization as several spatial or temporal realizations. With this
simplification, it is possible to estimate covariance functions that are heterogeneous either in
space or in time.

As with spatial or multivariate spatial processes, the corresponding BLUP can be developed
(e.g. Bogaert, 1996). Another prediction technique combines kriging and Kalman filtering as
developed by Huang and Cressie (1996).
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11.4 Example: Spatio-“Temporal” Interpolation

We illustrate the spatiotemporal modeling with the same dataset. We have observations for the
years 1978, 1983, and 1988. We assume again that we have constructed our grid within the lake
boundaries as done in R-Code 10.6.

R-Code 11.3: Space-time-kriging: visualization and prediction. (See Figure 11.2.)

library(spacetime) # "sp" is imported

library(gstat)

load("data/LacLeman.RData")

leman83 <- leman83[ !duplicated(leman83[,1:2]),]

leman78 <- leman78[ !duplicated(leman78[,1:2]),]

set.seed(1) # as before!

train <- sort(sample(1:dim(leman83)[1], 68))

Hg83 <- leman83[ train, c(1,2,3)]

set.seed(14) # new set of points

train78 <- sort(sample(1:dim(leman83)[1], 168))

Hg78 <- leman78[train78, c(1,2,4)]

### We eliminate dubious values... see message(leman.info)

pip <- point.in.polygon(leman88$x, leman88$y, lake.data$x, lake.data$y)

Hg88 <- leman88[pip==1, ] # "==1" very important !!!

space <- SpatialPoints(rbind(Hg78[,1:2], Hg83[,1:2], Hg88[,1:2]))

time <- as.POSIXct(c(rep("1978-01-01", length(Hg78$x)), rep(

"1978-01-02", length(Hg83$x)), rep("1978-01-03", length(Hg88$x))))

### POSIXct is the signed number of seconds since "the epoch".

### for numerical stability, we cheat with the dates!

st <- STIDF(space, time, data.frame(Hg=c(Hg78$Hg, Hg83$Hg, Hg88$Hg)))

stplot(st, number=3)

estV <- variogramST(Hg~1, st, tunit="days",tlags=0:2, cutoff=10, width=1.4)

# plot(estV, wireframe=T, scales=list(arrows=F), zlab=list(rot=90))

### models are described in vgmST

mstV <- vgmST("productSum", k=1, space=vgm(.2, "Sph", 5, 0),

time=vgm(.01, "Sph",2, 0))

fstV <- fit.StVariogram(estV, mstV)

attr(fstV, "optim.output")$value # to compare with other models....

## [1] 4.083e-05

plot(estV, fstV, all=TRUE) # from gstat:::plot.gstatVariogram
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tgrd <- seq(min(index(st)), max(index(st)), length=5)

pred.grd <- STF(pts, tgrd)

stblup <- krigeST(Hg~1, st, pred.grd, fstV, computeVar=TRUE)

stplot(stblup, number=5)
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Figure 11.2: Data for three time-points (top), empirical and fitted variograms (middle
layer) and predictions for space-time-kriging example (bottom) in the context of the
leman data. (See R-Code 11.3.)

We compare the predictive performance of cokriging with space-time kriging. Based on
different types of data, this comparison has only limited value — somewhat like comparing
apples and prunes.
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R-Code 11.4: Comparison of space-time kriging and ordinary kriging predictions. (See
Figure 11.3.)

tgrd <- seq(min(index(st)), max(index(st)), length=3)

pred.grd <- STF(cvl, tgrd)

st1 <- krigeST(Hg~1, st, pred.grd, fstV, computeVar=TRUE)

tmp <- as.data.frame(st1)

st1 <- tmp[tmp$timeIndex==2, c("var1.pred", "var1.var")]

diff2 <- abs(st1$var1.pred- cvl$Hg) - abs(ok1@data$var1.pred- cvl$Hg)

lake(diff2, cvl, zlim=range(diff2, -diff2))

par(mfcol=c(1,2)) # panels with two superimposed histograms each

hist(diff2, main="", xlab="diffs", col=4, border="blue",

breaks=seq(-.8,.8,.1), ylim=c(0,80))

hist(diff1, breaks=seq(-.8,.8,.1), col=rgb(.4,.4,.4,.25), add=T) # cokriging

xl <- round(range(ok1@data$var1.var - st1$var1.var, # get range for

ok1@data$var1.var - ck1@data$var1.var), 2) # a nice histogram

hist(ok1@data$var1.var - st1$var1.var, main="", xlab="Delta MSPE", col=4,

border="blue", breaks=seq(xl[1]-.01, xl[2]+.01, by=.01), ylim=c(0, 140))

hist(ok1@data$var1.var - ck1@data$var1.var, col=rgb(.4,.4,.4,.25),

breaks=seq(xl[1]-.01, xl[2]+.01, by=.01), add=T)

11.5 *A Few Historical Remarks About Geostatistics

Despite its name, the development of geostatistics was not solely driven by the application of
statistical tools to problems in geosciences. By the early 1970’s, the term started to be a reference
to the tools and techniques developed by Georges Matheron, who was strongly influenced by the
Russian school of probabilists. Actually, the more modern terminology ‘statistics of spatial
processes’ gives a more adequate description of his work.

Matheron was Professor at the ‘École Normale Supérieure des Mines de Paris’ and founded
the ‘Centre de Morphologie Mathématique’ in Fontainebleau in the course of a general movement
of research units out of the city of Paris. Later on, the center was split into two parts, in which
geostatistics was regrouped in the ‘Centre de Géostatistique, École des Mines’ in Fontainebleau,
referred to as ‘Center’ in what follows. J.-P. Chiles, P. Delfiner, A. Journel, and M. David were
part of the initial research group. At this time, the share of applications in Matheron’s work
became more important, focusing mainly on geophysical problems, like the reserve estimation
problem in the mining and petroleum industry or various interpolation problems in hydrology.

From the early 1970’s on, geostatistics became moderately well known in the above fields,
namely in the mining and petroleum industry, as well as in hydrology. Before, its popularity
was limited to France as most publications (for example, Matheron, 1962, 1963, 1969) were in
French. Notably, its absence in the statistical literature was striking. This unpopularity was



206 CHAPTER 11. EXTENSIONS AND MORE

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

diffs

F
re

qu
en

cy

−0.5 0.0 0.5

0
20

40
60

80

Delta MSPE

F
re

qu
en

cy

−0.06 −0.02 0.02 0.06

0
20

40
60

80
10

0
14

0

Figure 11.3: Comparison of space-time kriging and ordinary kriging predictions.
Lower panels: Gray and blue for cokriging and space-time kriging. (See R-Code 11.4.)

amplified by the fact that two of the other leading researchers in the area initially published in
rather ‘exotic’ languages as well: Matérn (1960) in Swedish and Gandin (1963) in Russian. The
translations of these theoretical foundations into English became available only later through
Matheron (1971, 1973b); Matérn (1986) and Gandin (1965). With those and the 1975 ‘NATO
Advanced Study Institute’ meeting, the popularity of geostatistics in the international scientific
community began to grow.

Geostatistics is often associated with the term ‘variogram’, the variation of the increment
of the process. The term is due to Matheron (1962) although there are other terminologies like
‘structure function’ or ‘mean squared difference’ that denote the same characteristic but appeared
earlier in the literature; see Cressie (1988), for historical notes. This provoked a feeling that some
of Matheron’s work consisted only in restating known results using different names, which was in
part responsible for the long time the lasting difficulty of acceptance of his work in the statistical
community. Matheron’s propensity to mainly publish his work in ‘internal notes’ in French at
the Center probably contributed to this perception. While it was possible to order copies from
the Center there was no generally accessible repository outside of the Center. Armstrong (1982)
published a, by now out-dated, index of the internal notes and assisted in publishing some of
them in scientific journals.
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The applications of the ‘founders’ of geostatistics were in the mining and petroleum indus-
try, hydrology (Matheron), forestry (Matérn), and meteorological and atmospherical sciences
(Gandin). A series of important papers by R. Webster and his colleagues (Burgess and Webster,
1980a,b; Webster and Burgess, 1980 and Burgess et al., 1981) from the ‘Rothamstead Exper-
imental Station’ launched the applications in soil science. Applications in the environmental
sciences and ecology began to appear in the 1980s.

By the mid-1980s, geostatistics had been established within the statistical community, taking
its shares in statistical journals and international meetings. In 1968 the ‘International Association
of Mathematical Geologists’ was founded in Prague, publishing a year later its own journal, which
is now called ‘Mathematical Geosciences’ and is one of the leading journals in the field.

For many years the book by Journel and Huijbregts (1978) was the only available textbook
providing a broad overview of applied geostatistics. Ripley (1981) contains an early concise
statistical account of spatial data analysis. Cressie (1993) provides a large part of his book on
geostatistics, combining the theoretical statistical aspects successfully with the mere practice-
driven side of geostatistics, compared to Goovaerts (1997), which is more practice-driven. Wack-
ernagel (1995) provides a first approach to multivariate geostatistics, later editions improved
significantly (e.g., Wackernagel, 2006). Chilès and Delfiner (1999) is one of the later textbooks.
Less attention has been paid to the recent development of the more statistical side of geostatis-
tics. Olea (1999) and Webster and Oliver (2001) provide introductions to geostatistics for a
more applied audience. Recently, the textbooks devoted to spatial statistics flourished, as a
search on any bookseller illustrates. A short list constitutes Banerjee et al. (2003); Rue and
Held (2005); Schabenberger and Gotway (2005); Diggle and Ribeiro Jr. (2007); Bivand et al.
(2008) and many edited volumes, such as Møller (2003). Some treaties are available online, e.g.,
spatial-analyst.net/book/sites/default/files/Hengl_2009_GEOSTATe2c1w.pdf

Cokriging was extensively studied in the late 1980s and early 1990s (e.g. Davis and Greenes,
1983; Abourfirassi and Marino, 1984 or Carr and McCallister, 1985). As the cokriging system
is of order O(n3), practitioners often try to reduce the number of equations by taking only into
account of a certain amount of the neighbors of the location s0. Myers (1983); Long and Myers
(1997) and Furrer and Genton (2011) provide other solutions to reduce the computational burden
of cokriging.

Implementations of geostatistical methods began with a software package called Bluepack in
the late 1970s, developed in cooperation with ‘Shell Oil’ and the ‘Bureau de Recherche Géologie
Mathématique’. Later examples are Gslib, developed at Stanford University from 1985 on
(Deutsch and Journel, 1998) and Variowin, (Pannatier, 1995, 1996). R and its libraries (fields,
geoR, gstat or RandomFields, spatial, to name just a few) offer a wide variety of software
elements.

Automatic monitoring stations and almost unlimited storage capacities bring classical geo-
statistics toward new frontiers. Terms like ‘data-rich in time and/or space’ are frequently used.
The massive amount of data allows different statistical methodologies. We have sufficient many
data to relax the stationarity hypothesis or to work in spectral domains.

http://spatial-analyst.net/book/sites/default/files/Hengl_2009_GEOSTATe2c1w.pdf
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11.6 *Further Technical Details and More Bibliographic Insights

Cressie’s additive decomposition The most commonly used and widely accepted decom-
position for isotropic processes is based on additive separation according to different scales.
Following Cressie (1993, Pages 112–113) we write

Z(s) = µ(s) + U(s) + V (s) + ε(s), s ∈ D, (11.14)

where each term accounts for a variation at a certain scale, namely:

• µ(·) = E
(
Z(·)

)
is the deterministic mean structure, called large-scale variation;

• U(·) is a zero-mean, L2-continuous (i.e., E
(
Z(s+h)−E(s)

)
→ 0 for h → 0) and intrinsically

stationary process whose variogram attains its maximum in a (possibly infinite) value larger
than min

{
||s i−sj ||

}
, 1 ≤ i < j ≤ n. The process U(·) is called smooth small-scale variation;

• V (·) is a zero-mean and intrinsically stationary process, independent of U(·), whose vari-
ogram attains its maximum in a value smaller than min

{
||s i − sj ||

}
, 1 ≤ i < j ≤ n. The

process V (·) is called micro-scale variation;

• ε(·) is a zero-mean white-noise process, independent of U(·) and V (·) and is considered as
measurement error.

Spectral approach to representing covariance functions A continuous function c(h) is
positive definite if and only if it has a spectral representation

c(h) =
∫
Rd

cos(ωTh)G( dω), (11.15)

where G(·) is a bounded symmetric measure on Rd (Bochner, 1933). For an extensive overview
of positive definite functions, see Stewart (1976). We suppose that c(h) is integrable, i.e.,∫
Rd c(h) dh < ∞, this implies that the spectral density g(ω) dω/c(0) exists. Under this point

of view, the (normed) covariance function is the Fourier transform of the spectral density, i.e.,
c(h) ∝ gF (ω). To any positive definite function corresponds a d-dimensional (complex) process
(see Yaglom, 1957 for a rigorous treatment). The former approach is also used to construct
additional covariance functions.

In time series modeling, spectral approaches are common and widely used, partially due to
the fact that the observations are equispaced and fast computational algorithms exist.

Outliers Real datasets often contain outliers, i.e., an outlying observation, that appears to
deviate markedly from other members of the sample in which it occurs (Grubbs, 1969; Muñoz-
Garcia et al., 1990). While we do not model outliers on a theoretical level, neither do we discuss
the origin of the abnormality or the associated identification problem (e.g., Cerioli and Riani,
1999 or Velasco et al., 2000), we are nevertheless concerned about their presence and apply robust
methods to minimize the effect of erroneous observations on our estimates.
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Stability of kriging It is common to divide the data into a training set and a validation
set to compare the accuracy and performance of different prediction methods with Monte Carlo
simulations. The parameters are estimated with the training set, and the validation set is used
to calculate different error statistics such as the root mean squared error (RMSE), the median
absolute deviation (MAD) and the mean absolute error (MAE). Other comparison criteria based
on cross-validation are given by Carroll and Cressie (1996) or Carroll and Cressie (1997).

Theoretical results are based on perturbation theory. Depending on the aim of the study, a
suitable neighborhood for the variogram is chosen. Recall that the smoothness of the variogram
at the origin translates directly into the local smoothness of the process. Consequently, the
(co)variograms must have the same behavior at the origin. Diamond and Armstrong (1984)
quantifies the robustness of variograms. They define a so-called δ-neighborhood for variograms
and show why the simple absolute difference of variograms is an inadequate measure of difference.
They prove that the ratio of the kriging weights and its perturbed counterpart is bounded and
a function of the condition number of the kriging matrix.

Cressie and Zimmerman (1992) show that, while the kriging predictor is generally stable,
the mean squared prediction error depends heavily on the covariance or variogram and is not as
stable as the kriging predictor. Note, however, that Brooker (1986) concludes that the kriging
variance is robust to most errors likely to be made in variogram model selection. However, if
a nugget effect near zero is selected instead of a nonzero value, the kriging variance can be
understated significantly.

Asymptotics If the true variogram is known and continuous at the origin, then the mean
squared prediction error converges to zero with rate O(N2/d) under infill asymptotics. Yakowitz
and Szidarovszky (1985, Theorems 2.1 and 2.3) show that if the true variogram is unknown, the
kriging predictor will nevertheless converge under certain circumstances to the true value. Their
simulation study shows, that if the kriging hypotheses are met, the kriging predictor performs
better than nonparametric regression techniques.

Stein (1988); Stein and Handcock (1989) and Stein (1990) discuss asymptotic properties of
kriging when the covariance function is misspecified. They introduce the concept of compatible
covariance and show that under the hypotheses of a consistent predictor, of two compatible
covariance functions, and of infill asymptotics we have asymptotic efficiency and an asymptotic
negligible relative error if the prediction is based on the wrong covariance. Additionally, Stein
and Handcock (1989) show that the spherical covariance is asymptotically less efficient and
recommend using the Matérn class; see also Stein (1999).

More about estimation Lark (2000) compares variogram estimators with extensive simula-
tions. Further robust location and scale variogram estimators can be found in Armstrong and
Delfiner (1980); Dowd (1984) and Dutter (1996).

Standard examples of ML estimation in spatial settings are given in Mardia and Marshall
(1984) and Kitanidis and Lane (1985). Warnes and Ripley (1987) show that maximization often
bears problems. Recall that the ML estimates of the covariance parameters are biased; see, for
instance, Cressie (1993, Paragraph 2.6.3 and the references therein). However, the bias is often
of lesser concern due to data sizes. Watkins and Al-Boutiahi (1990) study the effects of model
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misspecification on ML estimates of parameters of a particular family of covariances.
A completely different approach is nonparametric estimation and modeling. For an accessible

overview, see Section 4.6, of Schabenberger and Gotway (2005). Shapiro and Botha (1991)
develop a nonparametric fitting method based on the spectral representation of the covariance
function; see also Cherry et al. (1996) for a numerical case study.

Alternative estimation procedures are based on generalized estimating equations, an appli-
cation of estimating function theory and quasi-likelihood (see, e.g., Schabenberger and Gotway,
2005, Section 4.5.3.1) or are minimum norm quadratic estimation (Stein, 1987), see also Cressie
(1993, Paragraph 2.6.3 and the references therein).

As a final Reference, Olea (1991) gives a detailed glossary of geostatistical terms.



Chapter 12

Spatial Point Processes

This chapter briefly introduces the analysis of data observed in the form of a set
of points distributed over some region of space. Such a dataset is typically called
a spatial point pattern.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter12.R.

12.1 Introduction

Figure 12.1 shows the location of 2251 trees according to their botanical classification (black
oaks, hickories, maples, miscellaneous trees, red oaks, and white oaks). The region is a 924 by
924 feet (19.6 acres) plot in Lansing Woods, Clinton County, Michigan USA, (Gerrard, 1969).
The data is available as lansing from the package spatstat.

We clearly have “spatial data”. However, the location of the “observation” is determined,
and defines the data. This example completely differs from what we have seen in the previous
chapters. Loosely speaking, we have a spatial point pattern.

Other classical examples of spatial point patterns are:

• Cholera cases in a city,

• lightning strikes during a storm,

• locations of material defects in an alloy,

• epicenters of earthquakes along a fault line,

• locations of ribosomes in a prokaryotic cell.

Often, the locations may be equipped with an attribute: the earthquake’s magnitude in the
last example or the botanical classification of a tree in the Lansing Woods dataset.

The principal goal of spatial point process statistics is to analyze the geometrical structure
of patterns formed by events that are distributed in space. The events represented by locations
can be seen as objects whose (short-range) interactions are of interest.

211
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Figure 12.1: The locations of 2251 trees according to their botanical classifica-
tion in Lansing Woods, Clinton County, Michigan, USA. The plot is essentially
plot(split(spatstat.data::lansing),main="").

More formally, a spatial point pattern is a set of locations {s1, s2, . . . , sn}, s i ̸= sj , ∀i ̸= j,
often called events, that are irregularly distributed within a designated region and presumed
to have been generated from some form of stochastic mechanism, referred to as a spatial point
process.

More formally, a spatial point process is a stochastic (locally finite) set {S1,S2, . . . } ⊂ Rd,
Si ̸= Sj , ∀i ̸= j, with d ≥ 1. Locally finite means that in each finite set B, only a finite number of
locations Si occur. The case of d = 2 is the most relevant and will be considered here exclusively.
In analogy to the previous chapters and by severely abusing the standard mathematical notation,
we could write a spatial point process as

{Z(s) : s ∈ D ⊂ R, d ≥ 1}, (12.1)

with D being random, a collection of random events whose realization is called the spatial point
pattern.

For all sets B ⊂ R2, we define the random variable

N(B) =
∑
i

1B(Si) =
∑
i

{Si ∈ B} = number of locations in the set B. (12.2)

A formal approach to point patterns would be based on all finite-dimensional distributions of(
N(B1), . . . , N(Bk)

)
, Bi ⊂ R2, k = 1, 2, . . . .

Definition 12.1. A point process Z is called stationary (isotropic) if all finite-dimensional
distributions

(
N(B1), . . . , N(Bk)

)
of the point process are invariant with respect to translation

(rotation) of the Bi’s. ♣
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While the domain of analysis D is often (implicitly) given or fixed, there are many different
ways to record the events. We distinguish essentially between intensive mapping and sparse
sampling. In the case of the former, all events are recorded with the exact position. In the
case of the latter, only summary statistics of the events are available. For example, the number
of counts in sub-blocks or the distances to the (few) nearest events are recorded. In any case,
replicated sampling is very rare.

The data size of point patterns is usually small to moderate (the Lansing Woods dataset is
large for its type) with all types of domain shapes. The domain acts like a censoring device, i.e.,
only events within the domain are observed. Hence, an essential aspect of point patterns analysis
is to take into account edge effects induced by the domain. An extensive literature exists on how
to address the edge effects, and most statistical procedures take these into account.

In R, the packages spatstat and splancs provide a comprehensive set of functionalities to
analyze spatial point patterns. Especially the former comes with well-written help pages, cf.
help(spatstat).

12.2 Summary Descriptives

A point patterns analysis’s first step involves examining summary statistics of the distribution
of events, often followed by (non)-parametric modeling (model fitting, model validation, . . . ).

The baseline model is complete spatial randomness (CSR), defined as

[CSR1] The number of events in any planar region A, is distributed according to a Poisson
random variable with mean λ times the area of A.

[CSR2] Given n events {s1, . . . , sn}, they are uniformly distributed in A.

In [CSR1], the constant λ > 0 is called the intensity, the mean number of events per unit
area. Further, [CSR2] implies that there are no interactions among the events, i.e., there is no
encouragement or inhibition for further events in the neighborhood of an event s i. However,
such random patterns often lead to illusory visual impressions of aggregation, as illustrated in
Figure 12.2.

  λ = 25   λ = 100

Figure 12.2: Two realizations of CSR based on λ = 25, yielding n = 26 (left) and
λ = 100, yielding n = 93 (right) events in the unit square. (See R-Code 12.1.)
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R-Code 12.1 Generating two realizations of CSR based on different intensities. (See Fig-
ure 12.2.)

library(spatstat)

set.seed(15)

CSR <- rpoispp(25)

print(CSR)

## Planar point pattern: 26 points

## window: rectangle = [0, 1] x [0, 1] units

plot(CSR, main=expression(lambda==25))

CSR <- rpoispp(100)

print(CSR)

## Planar point pattern: 93 points

## window: rectangle = [0, 1] x [0, 1] units

plot(CSR, main=expression(lambda==100))

While observed point patterns rarely obey the CSR hypothesis, tests for CSR (with confidence
bands) often discriminate between aggregated or regular point patterns. As CSR tests notoriously
have extremely low power, graphical tests are preferred and help with modeling choices. Three
classical tests are based on the following “functions”.

H-function: interevent distances.
Let tij be the distance between the events s i and sj . Under CSR the theoretical distribution
of tij , say T , is known for simple regions A and its cdf is denoted as H(t).
A graphical assessment is plotting

Ĥobs(t) =
2

n(n− 1)

∑
i ̸=j

I(tij ≤ t) versus H(t) (12.3)

and judging the deviance from the straight line.

However, Var(T ) is not known, and to assess the significance of the null hypothesis CSR, the
sampling distribution is determined empirically from the following pseudo-code.

[1] For i in 1 to N :
[1a] Generate a point pattern with n events under CSR
[1b] Determine Ĥi(t), i = 1, . . . , N , similarly as described above
[2] Ĥobs(t) is compared (pointwise) with the quantiles of Ĥ1(t), . . . , ĤN (t)

While the H-function is based on all inter-distances, an assessment of a “nearest” distance is
often sufficient.
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G-function: nearest neighbor distance.
For n events s i, let di = minj ||s i − sj || and define

Ĝobs(d) =
1

n

∑
i

I(di ≤ d). (12.4)

The theoretical distribution of di does not exist in closed form, mainly due to edge effects. It
needs to be assessed empirically, e.g., by the (pointwise) mean of Ĝ1(d), . . . , ĜN (d). The sample
is also used to obtain (pointwise) quantiles. As a crude approximation, it is possible to use
G(d) ≈ 1− (1− πd2/|A|)n−1.

F -function: (arbitrary) point-to-nearest-event distance.
For m-sample events s∗

j , let yj = mini ||s∗
j − s i|| and define

F̂obs(y) =
1

m

∑
j

I(yj ≤ y). (12.5)

Comments similar to the G-function apply here.

The functions Fest() and Gest() of the package spatstat provide the means to estimate the
functions, as illustrated in R-Code 12.2. Figure 12.3 shows the observed estimates as well as the
lower, upper envelope, and the (approximate) theoretical value of 99 samples under CSR for the
point patterns displayed in Figure 12.2 (left column) and the black oak locations of the Lansing
Wood data (top left panel of Figure 12.1). Because m can be arbitrarily large, the estimated
curves are much smoother.

R-Code 12.2 Observed estimates of F - and G-functions as well as the lower, upper envelope
and the (approximate) theoretical value of 99 samples under CSR and the black oak locations of
the Lansing Wood data. (See Figure 12.3.)

set.seed(15)

CSR <- rpoispp(25) # synthetic data

GCSR <- envelope(CSR, fun=Gest, verbose=FALSE)

FCSR <- envelope(CSR, fun=Fest, verbose=FALSE)

sample <- split(lansing)$blackoak # data from package spatstat.data

Gsam <- envelope(sample, fun=Gest, verbose=FALSE)

Fsam <- envelope(sample, fun=Fest, verbose=FALSE)

### Now plotting in a 2x2 arrangement:

plot(GCSR, main="CSR", legendargs=list(bty="n"))

tmp <- plot(FCSR, main="CSR", legendargs=list(bty="n"))

tmp <- plot(Gsam, main="Black Oak", ylim=c(0, 1), legendargs=list(bty="n"))

tmp <- plot(Fsam, main="Black Oak", legendargs=list(bty="n"))
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Ĝobs(r)
Gtheo(r)
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Figure 12.3: Observed estimates of F - and G-functions as well as the lower, upper
envelope and the (approximate) theoretical value of 99 samples under CSR for the
point patterns displayed in Figure 12.2 (left column) and the black oak locations of the
Lansing Wood data (top left panel of Figure 12.1). (See R-Code 12.2.)

12.3 First- and Second-Order Measures

The first-order measure essentially describes how the events in a planar region A are distributed.
We denote with |A| the area of A and with ds an infinitesimal region which contains the point s.

Definition 12.2. The intensity function of a point process is defined as

λ(s) = lim
|ds|→0

E
(
N(ds)

)
|ds| . (12.6)

♣

For a stationary point process, λ(s) ≡ λ represents the mean number of points per unit area.
We now look at the interaction of individual events, characterized by the following definition.

Definition 12.3. The second-order intensity function of a point process is defined as

λ2(s,y) = lim
|ds|,|dy |→0

E
(
N(ds)N(dy)

)
|ds||dy | . (12.7)

♣
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As in the case of variograms and covariance functions in the context of spatial processes,
we have for a stationary process λ2(s,y) = λ2(s − y) and for a stationary, isotropic process
λ2(s,y) = λ2(||s − y ||) (note the abuse of notation).

An alternative description of the second-order intensity of a stationary, isotropic process is
the so-called K-function.

Definition 12.4. The K-function for a stationary, isotropic process is defined as

K(t) =
1

λ
E
(
No(t)

)
, (12.8)

where No(t) is the number of events in a disk of radius t centered at an arbitrary event. ♣

Property 12.1. The following relations between the K-function and the second-order intensity
function hold.

λK(t) = 2π
1

λ

∫ t

0
xλ2(x) dx; (12.9)

λ2(t) =
λ2

2πt
K ′(t). (12.10)

From a theoretical point of view, it is often more convenient to work with λ2(t) than with
K(t). However, K(t) can be more easily estimated from a set of data.

A natural estimator for the intensity function is

λ̂(s) =
N
(
W(s)

)∣∣W(s)
∣∣ (12.11)

for some (spatial) window W that contains the spatial location s. While this estimator is
intuitive, it is biased (edge effects) and for non-stationary processes, it is nontrivial to balance
the bias and variance of the estimator.

Here, we only focus on estimating the K-function in the case of an isotropic point pattern.
Notice that from an estimate of the K-function, we can derive the following estimate for the
second-order intensity:

λ̂2(t) = λ̂2
1

2πt
· 1
h

(
K̂(t+ h)− K̂(t)

)
. (12.12)

To derive an estimator for the K-function, we start by constructing an estimator for Eo(t) =

E
(
No(t)

)
. If uij = ||s i − sj ||, a natural (but negatively biased) estimator is

Ê∗
o(t) =

1

n

n∑
i=1

∑
j ̸=i

I(uij ≤ t). (12.13)

The bias can be corrected by correctly weighing the individual terms. Ripley (1976) proposes
the following unbiased estimator

Êo(t) =
1

n

n∑
i=1

∑
j ̸=i

1

ωij
I(uij ≤ t), (12.14)



218 CHAPTER 12. SPATIAL POINT PROCESSES

where ωij is the proportion of the circle’s circumference centered at s i with radius uij . (Note
that ωij ̸= ωji.) Finally,

K̂(t) =
|A|
n− 1

Êo(t). (12.15)

Several closed-form approximations for Var
(
K̂(t)

)
exist, and we refer again to Diggle (2003)

for more details.

12.4 Models for Point Processes

In this section, we provide four essential models for point processes. The models are illustrated
with realizations in the unit square and obtained from the package spatstat.

12.4.1 Homogeneous Poisson Process (HPP)

The HPP is the most basic (natural) model. It is often called a Poisson process.

[HPP1] For some λ > 0 and finite planar region A, N(A) ∼ P(λ · |A|).

[HPP2] Given N(A) = n, the n events in A are an independent sample from the uniform
distribution on A.

Remark 12.1. • The HPP corresponds to CSR.

• It is straightforward to show that [HPP1] and [HPP2] imply that if A ∩ B = ∅, N(A) is
independent of N(B).

• λ2(t) = λ2, t > 0.
K(t) = πt2, t > 0.
Var
(
N(A)

)
= λ · |A|.

F (t) = G(t) = Pr{N(πt2) > 0} = 1− exp(−λπt2), t > 0. ♡

Figure 12.4 gives two realizations of an HPP. Notice the apparent clustering. In spatstat,
it is possible to use rpoispp() and rpoint() to construct HPP. The former requires λ (points
per unit area), used to construct Figure 12.2, and the latter allows to constrain the number of
events (based on [HPP2] only) used to construct the panels of Figure 12.4.

R-Code 12.3 Generating two realizations of an HPP. (See Figure 12.4.)

set.seed(15)

HPP <- rpoint(50)

plot(HPP, main=expression(n==50))

HPP <- rpoint(250)

plot(HPP, main=expression(n==250))
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  n = 50   n = 250

Figure 12.4: Two realizations of a HPP with n = 50 (left) and n = 250 (right) events
in the unit square. (See R-Code 12.3.)

12.4.2 Inhomogeneous Poisson Process (IPP)

Instead of a constant λ > 0, the IPP assumes an intensity that varies over space λ(s) > 0, for
all s.

[IPP1] For some λ(s) > 0 and finite planar region A, N(A) ∼ P
(∫

A
λ(s) ds

)
.

[IPP2] Given N(A) = n, the n events in A are an independent sample from the distribution on
A with pdf proportional to λ(s).

The IPP is not stationary but is a natural extension of the HPP.

Figure 12.5 gives two realizations of an IPP with n = 250 events. The panels are based on an
intensity λ(s) = λ(x, y) proportional to x+ y (left), and exp

(
−(x2 + y2)/0.3

)
(right) in the unit

square. Notice that even with moderately large n, the detailed structure of λ(x, y) cannot be
assessed visually. That is, we see a tendency but cannot differentiate between linear and circular
isolines of the intensity.

R-Code 12.4 Generating two realizations of an IPP. (See Figure 12.5.)

set.seed(15)

IPP <- rpoint(250, function(x,y) { x + y})

plot(IPP, main=expression(x+y))

IPP <- rpoint(250, function(x,y) { exp(- (x^2 + y^2)/.3)})

plot(IPP, main=expression(exp(- (x^2 + y^2)/.3)))

Remark 12.2. It is possible to introduce covariates z1(s), . . . , zp(s) into the intensity modeling
by setting λ(s) = f

(
z1(s), . . . , zp(s)

)
for some suitable function f . For example, λ(s) = exp

(
α+

βz(s)
)
, where z(s) is the height above sea-level at location s. ♡
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  x + y   exp(− (x2 + y2) 0.3)

Figure 12.5: Two realizations of an IPP with linear (left) and squared exponential
(right) intensity. (See R-Code 12.4.)

12.4.3 Neyman–Scott Process (NSP)

Neymann–Scott processes are clustered point processes and provide a very general model to
create clustered processes.

[NSP1] Parent events form an IPP with intensity λ(s).

[NSP2] Each parent produces a number of offspring iid according to a specified probability mass
function.

[NSP3] The positions relative to their parents are iid according to a bivariate pdf.

Figure 12.6 shows two realizations of an NSP based on an HPP. The bivariate pdf to place the
offspring is defined via a function passed as an argument to rNeymanScott() (package spatstat).
R-Code 12.5 constructs two NSPs based on an HPP with intensity λ = 9 (the specific seed, we
get 10 parents) with a uniform (left) and a Gaussian kernel (right) for the offspring.

  NSP: Uniform

x
x

x

x x

x

x

x

xx

  NSP: Squared exponential

x
x

x

x x

x

x

x

xx

Figure 12.6: Two realizations of an NSP based on an HPP. Each parent produces 25
offspring uniformly in the disc of radius 0.1 (left) and according to a bivariate normal
density with σ2 = 0.1 (right). The parents and their offsprings are accordingly color
coded. For ease of representation, the parent process (indicated with x) was constrained
to be in the unit square. (See R-Code 12.5.)
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R-Code 12.5 Generating two realizations of NSP. (See Figure 12.6.)

set.seed(15) # Seed for first point pattern

nclust <- function(x0, y0, radius, n) {

runifdisc(n, radius, centre=c(x0, y0))

}

### Creating 15 Clusters, each with 25 offspring:

NS <- rNeymanScott(9, 0, nclust, radius=0.15, n=25)

### Note that in the plot, not all are displayed due to cropping:

plot(NS, main="NSP: Uniform")

points(NS, col=attr(NS,"parentid"))

points(attr(NS,"parents"), col=1:20, pch="x", cex=2)

set.seed(15) # Same seed for second point pattern

nclust <- function(x0, y0, radius, n) {

rpoint(n, function(x,y) { exp(-((x-x0)^2 + (y-y0)^2)/radius)})

}

NS <- rNeymanScott(9, 0, nclust, radius=0.05, n=25)

plot(NS, main="NSP: Squared exponential")

points(NS, col=attr(NS,"parentid"))

points(attr(NS,"parents"), col=1:20, pch="x", cex=2)

Neyman–Scott processes are often used in hydrology and weather generation. Each storm
parent event represents a storm that is decomposed into individual smaller components repre-
sented by the offspring. The offspring would be appended with storm size and intensity.

12.4.4 Simple Inhibition Process (SIP)

In practice, there are often (biological, physical) processes involved in inhibiting the occurrence
of events that are close in space, e.g., a manifestation of competition between plants or the
territorial behavior of animals. Such point patterns appear regular compared to the aggregated
behavior of realizations of HPP. A convenient way of modeling such a simple inhibition point
process is to impose a minimum permissible distance, say δ, between two events. Naturally, such
a point patterns have an upper bound on the number of events in a domain.

There are two ways of generating events from a SIP: (a) simulate an HPP and apply a
thinning procedure or (b) use a sequential approach as follows.

[SIP1] S1 is uniformly distributed in D.

[SIP2] Given {Sj = sj , j ≤ i}, Si+1 is uniformly distributed on D ∩ {y : ||y − sj || > δ, j ≤ i}.

Figure 12.7 shows two realizations of a SIP with δ = 0.15 and n = 35 in the left panel and
with δ = 0.07 and n = 100 in the right panel. With the used seed, placing more realizations is
impossible, as indicated by the warning shown in R-Code 12.6.
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R-Code 12.6 Generating two realizations of SIP. Note that for δ = 0.15 (as in the left
panel), it is impossible to place n = 38 events. (See Figure 12.7.)

set.seed(15)

SSI <- rSSI(0.15, 32) # SSI: Simple Sequential Inhibition

plot(SSI, main=expression(delta==0.15))

SSI <- rSSI(0.07, 100)

plot(SSI, main=expression(delta==0.07))

set.seed(15)

SSI <- rSSI(0.15, 38) # not possible, and thus a `Warning` is issued

## Warning in rSSI(0.15, 38): Gave up after 1000 attempts with only 36

points placed out of 38

  δ = 0.15   δ = 0.07

Figure 12.7: Two realizations of a SIP with δ = 0.15, n = 35 (left) and δ = 0.07,
n = 100 (right). (See R-Code 12.6.)

Naturally, SIP can be extended (say to inhomogeneous inhibition processes) by starting from
an IPP instead of an HPP. The thinning approach is a so-called Matérn inhibition model 1 and
implemented with the function rMaternI() in spatstat.

12.4.5 Cox Process (CP)

An IPP produces apparent clusters in the region of (relative) high intensity λ(s). It is natural
to consider that the nature of λ(s) is also stochastic, leading to a “doubly stochastic” approach.
The CP provides this framework.

[CP1] {Λ(s) : s ∈ R2} is a non-negative stochastic process.

[CP2] Conditional on {Λ(s) = λ(s)}, the events form an IPP with intensity λ(s).

The CP is stationary (isotropic) if Λ(s) is stationary (isotropic). First- and second-order
properties of a CP are obtained from those of the IPP by taking expectations with respect to
Λ(s). Thus, if Λ(s) is stationary, λ = E

(
Λ(s)

)
and λ2(s,y) = E

(
Λ(s)Λ(y)

)
. Further, in the

case of isotropy, λ2(t) = λ2 +Cov(Λ(s),Λ(y)) with t = ||s − y ||.
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Example 12.1. This example has two goals: (i) illustrating a simple way to simulate Cox
processes and (ii) assessing the variability between true and estimated intensity functions.

R-Code 12.7 draws realizations from a zero-mean Gaussian process with a Wendland covari-
ance function. We consider a regular grid of 51 × 51 locations in the unit square which should
represent a smooth curve. These realizations are considered as the log-intensity log(λ(s)), which
is subsequently used to draw an IPP point process with 50 events. By the zero mean assump-
tions, part of the realized surface is negative, and thus, we exponentiate it to get the intensity
λ(s). Figure 12.8 shows four different (un-scaled) intensity functions cλ(s), the corresponding
IPP (50 events), and their intensity estimate based on density() (top and bottom row). As
we use unconstrained simulation, the individual intensities represented in the different columns
are pretty different. Further, there is a considerable difference between the theoretical and the
estimated intensity function, especially in the third column. Increasing the number of points
would render the estimated intensities more similar of course.
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Figure 12.8: Top row: (un-scaled) intensity function cλ(s) in the unit square. Bottom
row: estimated intensities from the obtained point patterns. The white dots are the 50
events of the CP. (See R-Code 12.7.)

The scales of the intensity and estimated intensity panels are different. The intensities are
represented as unscaled intensities, denoted as cλ(s), as no scaling is performed in the ’as.im()’
function. More specifically, we directly work with λ(s) = exp(z(s)). The densities are de-
signed to integrate to the number of sampled events. For example, for the last column in
Figure 12.8, sum(cox$v)*cox$xstep*cox$ystep sum(density(tmp)$v)*cox$xstep*cox$ystep

are 1.343 and 49.63, respectively.

Figure 12.9 shows an intensity function (identical to the second one in Figure 12.8), and
eighteen intensity estimates λ̂i(s) from replicated point pattern realizations thereof. The last
panel gives the average intensity λ(s) = 1/18

∑
i λ̂i(s) based on the intensity estimates displayed.
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While the individual estimates are quite variable, the overall mean is very close to the starting
intensity λ(s). Again, 50 points are very few to estimate the intensity. Choosing different
parameters for the function density() would slightly improve the estimate. ♣

Remark 12.3. The functions ppm() and kppm() from the package spatstat can be used to fit
point process data, including inhomogeneous Poisson, Neyman–Scott and Cox processes. ♡

R-Code 12.7 Generate intensity surfaces, draw an IPP thereof and estimate the intensity
thereof. (See Figure 12.8.)

library(spam)

set.seed(4)

repli <- 4 # How many replicates

ippn <- 50 # number of points from an IPP (used in function rpoint)

range <- .7 # range to construct the intensity

res <- 51 # Resolution of the Cox surface

ptseq <- seq(0, 1, l=res) # sequence

grid <- expand.grid(ptseq, ptseq) # resulting fine grid

options(spam.nearestdistnnz=c(4926021, 400)) # to avoid a warning in:

distmat <- nearest.dist(grid, delta=range, upper=NULL) # sparse dist mat

Sigma <- cov.wend1(distmat, theta=c(range, sill=.2)) # Sigma

zz <- rmvnorm.spam(repli, Sigma=Sigma) # 4 realizations

### zz[i,] contains a realization of log(Lambda(s))

for(i in 1:repli){

### Transform the vector to an image object

cox <- as.im(cbind(grid, exp(zz[i,])) , win=unit.square())

tmp <- rpoint(ippn, cox) # Draw ippn points from intensity lambda

### Plotting the original (top) and estimated intensity (bottom):

plot(cox, main="", ribsep=.07, ribwid=.07, zlim=c(0,3)) # theoretical

points(tmp$x, tmp$y, col="white", pch=20, cex=.8) # adding locations

plot(density(tmp), main="", ribsep=.07, ribwid=.07, zlim=c(0,120)) # empiri

points(tmp$x, tmp$y, col="white", pch=20, cex=.8) # adding locations

}
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R-Code 12.8 Estimating the intensity of a (Cox) process based on several realizations.
(See Figure 12.9.)

### We (arbitrarily choose the second intensity of Figure 12.8 and plot it:

cox <- as.im(cbind(grid, exp(zz[2,])) , win=unit.square())

plot(cox, main="", ribsep=.07, ribwid=.07, zlim=c(0,3))

total <- 0 # initialization, will contain the average intensity

R <- 18 # number of intensity functions calculated

set.seed(15)

for(i in 1:R){ # for each realization

tmp <- rpoint(ippn, cox) # draw 50 points

dens <- density(tmp) # estimate the density (here intensity)

plot(dens, main="", zlim=c(0,127), ribsep=.07, ribwid=.07)

points(tmp$x, tmp$y, col="white", pch=20, cex=.8) # add locations

total <- total+dens$v # summing up the intensities

}

dens$v <- total/R # Calculate the average and plot it:

plot(dens, main="", zlim=c(0,127), ribsep=.07, ribwid=.07)

12.5 Bibliographic Remarks

The exposition is based on Diggle (2003). An excellent treaty is Illian et al. (2008). We omit
thorough lists of references and refer to these two books or, Diggle (2013), Chapter 8 of Cressie
(1993), and Chapter 3 of Schabenberger and Gotway (2005).

The spatstat package family has excellent documentation; the summary manual https:
//spatstat.org/resources/spatstatManual.pdf is particularly helpful. See also the accessible
online resource https://www.apps.stat.vt.edu/leman/VTCourses/BaddeleyPointProcesses.
pdf.

https://spatstat.org/resources/spatstatManual.pdf
https://spatstat.org/resources/spatstatManual.pdf
https://www.apps.stat.vt.edu/leman/VTCourses/BaddeleyPointProcesses.pdf
https://www.apps.stat.vt.edu/leman/VTCourses/BaddeleyPointProcesses.pdf
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Figure 12.9: Top left panel represents the (un-scaled) intensity function cλ(s) in the
unit square. Followed by 18 intensity estimates from replicates point patterns (n = 50)
of the intensity function. The lower right panel gives the mean intensity function based
on the 18 shown replicates. (Note that one intensity estimate has a different color scale.)
(See R-Code 12.8.)
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The following R script www.math.uzh.ch/furrer/download/sta330/chapterPS.R gives a list of
the required packages in each chapter.

The list below gives the attached and loaded packages that were used to compile this docu-
ment. If evaluating the code results in errors they might be due to outdated R-packages (many
of these evolve quickly and regular updates are recommended).

R-Code 12.9: Session info of this document.

print(sessionInfo(), locale=FALSE)

## R Under development (unstable) (2023-01-31 r83741)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 22.04.2 LTS

##

## Matrix products: default

## BLAS: /usr/lib/R-devel/lib/R/lib/libRblas.so

## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3; LAPACK version 3.10.0

##

## attached base packages:

## [1] parallel stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] spatstat_3.0-3 spatstat.linnet_3.0-4 spatstat.model_3.1-2

## [4] rpart_4.1.19 spatstat.explore_3.0-6 nlme_3.1-161

## [7] spatstat.random_3.1-3 spatstat.geom_3.0-6 spatstat.data_3.0-0

## [10] spacetime_1.2-8 splancs_2.01-43 gstat_2.1-0

## [13] geoR_1.9-2 microbenchmark_1.4.9 rgl_1.0.1

## [16] INLA_22.12.16 foreach_1.5.2 R2OpenBUGS_3.2-3.2.1

## [19] CARBayes_5.3 Rcpp_1.0.10 arm_1.13-1

## [22] lme4_1.1-31 MASS_7.3-58.2 BayesFactor_0.9.12-4.4

## [25] coda_0.19-4 LearnBayes_2.15.1 TeachingDemos_2.12

## [28] spatialreg_1.2-6 Matrix_1.5-3 spdep_1.2-7

## [31] spData_2.2.1 sp_1.6-0 sf_1.0-9

## [34] maps_3.4.1 ellipse_0.4.3 RColorBrewer_1.1-3
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## [37] mvtnorm_1.1-3 fields_14.1 viridis_0.6.2

## [40] viridisLite_0.4.1 spam_2.9-1 knitr_1.42

##

## loaded via a namespace (and not attached):

## [1] DBI_1.1.3 deldir_1.0-6 pbapply_1.7-0

## [4] gridExtra_2.3 tcltk_4.3.0 s2_1.1.2

## [7] rlang_1.0.6 magrittr_2.0.3 e1071_1.7-12

## [10] compiler_4.3.0 mgcv_1.8-41 vctrs_0.5.2

## [13] quantreg_5.94 stringr_1.5.0 pkgconfig_2.0.3

## [16] wk_0.7.1 fastmap_1.1.0 mcmc_0.9-7

## [19] utf8_1.2.3 nloptr_2.0.3 MatrixModels_0.5-1

## [22] xfun_0.37 jsonlite_1.8.2 goftest_1.2-3

## [25] CARBayesdata_3.0 highr_0.10 reshape_0.8.9

## [28] spatstat.utils_3.0-1 R6_2.5.1 stringi_1.7.12

## [31] GGally_2.1.2 boot_1.3-28.1 iterators_1.0.14

## [34] tensor_1.5 zoo_1.8-11 base64enc_0.1-3

## [37] FNN_1.1.3.1 splines_4.3.0 tidyselect_1.2.0

## [40] abind_1.4-5 codetools_0.2-18 intervals_0.15.2

## [43] lattice_0.20-45 tibble_3.1.8 plyr_1.8.8

## [46] evaluate_0.16 survival_3.5-0 polyclip_1.10-4

## [49] units_0.8-1 proxy_0.4-27 xts_0.12.2

## [52] pillar_1.8.1 KernSmooth_2.23-20 generics_0.1.3

## [55] truncnorm_1.0-8 ggplot2_3.4.0 munsell_0.5.0

## [58] scales_1.2.1 minqa_1.2.5 class_7.3-21

## [61] glue_1.6.2 tools_4.3.0 SparseM_1.81

## [64] dotCall64_1.0-2 grid_4.3.0 MCMCpack_1.6-3

## [67] crosstalk_1.2.0 colorspace_2.1-0 cli_3.6.0

## [70] spatstat.sparse_3.0-0 fansi_1.0.4 expm_0.999-7

## [73] dplyr_1.1.0 gtable_0.3.1 digest_0.6.31

## [76] classInt_0.4-8 htmlwidgets_1.6.1 htmltools_0.5.4

## [79] lifecycle_1.0.3 leaflet_2.1.1



Glossary

Throughout the document we tried to be consistent with standard mathematical notation. We
write random variables as uppercase letters (X, Y , . . . ), realizations as lower case letters (x, y,
. . . ), matrices as bold uppercase letters (Σ, X, . . . ), and vectors as bold italics lowercase letters
(x , β, . . . ). (The only slight confusion arises with random vectors and matrices.)

The following glossary contains a non-exhaustive list of the most important notation. Stan-
dard operators or products are not repeatedly explained.

:= Define the left hand side by the expression on the other side.

♣, ♢ End of example, end of definition∫
,
∑

,
∏

Integration, summation and product symbol. If there is no ambiguity, we omit
the domain in inline formulas.

∪, ∩ Union, intersection of sets or events.

θ̂ Estimator or estimate of the parameter θ.

x Arithmetic mean of the sample:
∑n

i=1 xi/n.

|x| Absolute value of the scalar x.

||x || Norm of the vector x .

X⊤ Transpose of an matrix X.

x(i) Order statistics of the sample {xi}.
0, 1 Vector or matrix with components 0 respectively 1.

Cov(X,Y ) Covariance between two random variables X and Y .

Corr(X,Y ) Correlation between two random variables X and Y .
d
dx , ′, ∂

∂x Derivative and partial derivative with respect to x.

diag(A) Diagonal entries of an (n× n)-matrix A.

ε, εi Random variable or process, usually measurement error.

E(X) Expectation of the random variable X.

e, exp(·) Transcendental number e = 2.71828 18284, the exponential function.

In = I Identity matrix, I = (δij).

I{A} Indicator function, talking the value one if A is true and zero otherwise.

lim Limit.

log(·) Logarithmic function to the base e.
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max{A}, min{A} Maximum, minimum of the set A.

N, Nd Space of natural numbers, of d-vectors with natural elements.

N (µ, σ2) Normal (Gaussian) distribution with mean µ and variance σ2.

Np(µ,Σ) Normal p dimensional distribution with mean vector µ and variance matrix
Σ.

φ(x) Gaussian probability densitiy function φ(x) = (2π)−1/2 exp(−x2/2).
Φ(x) Gaussian cumulative distribution function Φ(x) =

∫ x
−∞ φ(z) dz.

π Transzendental number π = 3.14159 26535.

P(A) Probability of the event A.

R, Rn, Rn×m Space of real numbers, real n-vectors and real (n×m)-matrices.

rank(A) The rank of a matrix A is defined as the number of linearly independent rows
(or columns) of A.

tr(A) Trace of an matrix A defined by the sum of its diagonal elements.

Var(X) Variance of the random variable X.

Z, Zd Space of integers, of d-vectors with integer elements.

The following table contains the abbreviations of the statistical distributions (dof denotes degrees
of freedom).

N (µ, σ2) Gaussian or normal random variable with parameters µ and σ2.

N (0, 1), zp Standard standard normal random variable, p-quantiles thereof.

Np(µ,Σ
2) Multivariate Gaussian or normal random vector (of dimension p) with param-

eters µ and Σ2.

The following table contains the abbreviations of the statistical methods, properties and quality
measures.

EDA Exploratory data analysis.

dof Degrees of freedom.

MAD Median absolute deviation.

MAE Mean absolute error.

ML Maximum likelihood (ML estimator or ML estimation).

MM Method of moments.

MSE Mean squared error.

OLS, LS Ordinary least squares.

RMSE Root mean squared error.

WLS Weighted least squares.
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