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Abstract
The design of LDPC codes based on a class of expander graphs is investigated.

Graph products, such as the zig-zag product [9], of smaller expander graphs have
been shown to yield larger expanders. LDPC codes are designed based on the zig-
zag product graph of two component Cayley graphs. The results for specific cases
simulated reveal that the resulting LDPC codes compare well with other random
LDPC codes at short block lengths – suggesting that product graphs form yet
another avenue to pursue in the design of codes over graphs.

1 Introduction

Recent years have seen a widespread activity in the area of codes over graphs. LDPC
codes have been used to demonstrate near capacity performance over many different
kinds of channels [10]. As these are codes primarily defined over graphs, the design of
good graphs becomes a key criterion for the design of good codes. It has been shown
in [12] that graphs having good expansion properties are good candidates for LDPC
code designs. Among recent developments, Reingold et al [9] show that by using small
component graphs that are known to be expanders, it is possible to design larger graphs
that are also expanders. Their technique is the so called zig-zag product of the two
component graphs. In this paper, we examine the expansion properties of the zig-zag
product in relation to the design of LDPC codes. We also examine other graph products
and design LDPC codes using the product graphs. In our code construction, the vertices
of the product graph are interpreted as sub-code constraints of a suitable linear block
code and the edges are interpreted as the code bits of the LDPC code, as originally
suggested by Tanner in [13]. By choosing component graphs with relatively small degree,
we obtain product graphs that are relatively sparse. Our preliminary findings in this
direction indicate that LDPC codes based on zig-zag product graphs perform comparably
to random LDPC codes for short block lengths, and to obtain a good LDPC code, the
vertices of the zig-zag product graph must be fortified with strong (i.e., good minimum
distance) sub-code constraints. This is necessary also to achieve good performance with
graph based message passing decoders.

The paper is organized as follows. Section 2 discusses preliminaries, such as the no-
tion of expansion and the eigenvalue bound for graphs. In Section 3, different types of
graph products are described. The properties of the product graphs, such as expansion,
diameter, and girth are examined in Section 4. Here, we also discuss their use as potential
candidates for designing codes over graphs. Section 5 describes some preliminary LDPC
code constructions based on the product graphs. An example illustrating the zig-zag
product of two Cayley component graphs is presented. Section 6 compares the perfor-
mance of LDPC codes designed over the zig-zag product graphs with that of randomly
constructed LDPC codes under belief propagation decoding. Section 7 summarizes the
results and concludes the paper.
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2 Preliminaries

A d-regular graph G on N vertices is said to be a (N, d, λ)-graph if the second largest
eigenvalue of the normalized adjacency matrix Ã representing G is λ. It is now almost
common knowledge that for a graph to be a good expander [12], the second largest
eigenvalue of the adjacency matrix A must be as small as possible compared to the
index [14]. For a d-regular graph G, the index of the adjacency matrix A is d. Hence,
by normalizing the entries of A by the factor d, the normalized matrix Ã has an index
of 1. In this paper, we will follow the definition provided in [2, 8] for a graph to be an
expander. A sequence of graphs is said to be an expander family if for every graph G in
the family, the second largest eigenvalue λ(G) of the normalized adjacency matrix Ã is
bounded below some constant λq < 1. Or in other words, there is an ε > 0 such that
for every graph G in the family, λ(G) < 1 − ε. In particular, a graph belonging to an
expander family is called an expander graph. The best possible expansion based on the

eigenvalue bound is achieved by Ramanujan graphs that have λ(G) ≤ 2
√
d−1
d

[7]. Alon
and Boppana have shown that for a d-regular graph G, as the number of vertices n in G

tends to infinity, λ(G) ≥ 2
√
d−1
d

[1]; therefore, Ramanujan graphs are optimal in terms of
the eigenvalue gap 1− λ(G).

3 Graph Products

This section describes different ways of forming graph products. In each case, the ex-
pansion of the product graph with respect to the expansion of the component graphs is
examined.

3.1 Basic Graph Products

Standard graph products include the Cartesian product, tensor product, strong product,
and lexicographic product [3]. Let G1 and G2 be the component graphs. Then each of
these products yields a graph with V (G1) × V (G2) as the vertices, and edge relations
based on edges in the components. However, since these products yield graphs which are
not sparse, we omit further detail based on their lack of potential for LDPC codes (see
section 4.4).

3.2 Replacement Product

Let G1 be a (N1, d1, λ1)-graph and let G2 be a (d1, d2, λ2)-graph. (Observe that the
number of vertices in G2 is chosen to be equal to the degree of each vertex in G1.) Then
the replacement product of G1 and G2 is a graph G with the vertex set and edge set
defined as follows: the vertices of G are represented as ordered two tuples (v, k), for
v ∈ {1, 2, . . . , N1} and k ∈ {1, 2, . . . , d1}. There is an edge between (v, k) and (v, `) if
there is an edge between k and ` in G2; there is also an edge between (v, k) and (w, `)
if the kth edge incident on vertex v in G1 is connected to vertex w and this edge is
the `th edge incident on w in G1. The replacement product graph G = G1 R©G2 is a
(N1 · d1, d2 + 1, λ)-graph with λ ≤ (p + (1 − p)f(λ1, λ2))1/3 for p = d2

2/(d2 + 1)3, where
f(λ1, λ2) = λ1 + λ2 + λ2

2 [9, Theorem 6.4]. Note that the degree of the replacement
product graph depends only on the degree of the smaller component graph G2.

3.2.1 Connections with semi-direct product of groups

We now consider the case when the two component graphs are Cayley graphs [11]. Sup-
pose G1 = C(Ga, Sa) is the Cayley graph formed from the group Ga with Sa as its
generating set. This means that G1 has the elements of Ga as vertices and there is an
edge from the vertex representing g ∈ Ga to the vertex representing h ∈ Ga if for some



s ∈ Sa, g ∗ s = h, where ‘∗’ denotes the group operation. If the generating set Sa is
symmetric, i.e., if a ∈ Sa implies a−1 ∈ Sa, then the Cayley graph is undirected.

Let the two components of our replacement product graph be Cayley graphs of the
type G1 = C(Ga, Sa) and G2 = C(Gb, Sb) and further, let us assume that there is a
well-defined group action by the group Gb on the elements of the group Ga. If Sa is the
union of k orbits, i.e., the orbit of a1, a2, . . . , ak ∈ Ga under the action of Gb, then the
replacement product graph is the Cayley graph of the semi-direct product group GaoGb
and has (1Ga , Sb)

⋃
{(a1, 1Gb), . . . , (ak, 1Gb)} as the generating set. The degree of this

Cayley graph is |Sb|+ k and the size of its vertex set is |Ga||Gb| [6].

3.3 Zig-Zag Product

Let G1 be a (N1, d1, λ1)-graph and let G2 be a (d1, d2, λ2) graph. Then the zig-zag product
of G1 and G2, as introduced in [6, 9], is a graph G defined as follows:

• the vertices of G are represented as ordered pairs (v, k), where v ∈ {1, 2, . . . , N1}
and k ∈ {1, 2, . . . , d1}. That is, every vertex in G1 is replaced by a cloud of vertices
of G2.

• the edges of G are formed by making two steps on the small graph and one step on
the big graph as follows:

– a step “zig” on the small graph G2 is made from vertex (v, k) to vertex (v, k[i]),
where k[i] denotes the ith neighbor of k in G2, for i ∈ {1, 2, . . . , d2}.

– a deterministic step on the large graph G1 is made from vertex (v, k[i]) to
vertex (v[k[i]], k[i]), where v[k[i]] is the k[i]th neighbor of v in G1 and corre-
spondingly, v is the k[i]th neighbor of v[k[i]] in G1.

– a final step “zag” on the small graph G2 is made from vertex (v[k[i]], k[i])
to vertex (v[k[i]], k[i][j]), where k[i][j] is the jth neighbor of k[i] in G2, for
j ∈ {1, 2, . . . , d2}.

Therefore, there is an edge between vertices (v, k) and (v[k[i]], k[i][j]) for i, j ∈
{1, . . . , d2}.

It is shown in [9] that the zig-zag product graph G = G1 Z©G2 is a (N1 · d1, d
2
2, λ)-graph

with λ < λ1 +λ2 +λ2
2, and further, that λ < 1 if λ1 < 1 and λ2 < 1. Therefore, the degree

of the zig-zag product graph depends only on the smaller component graph whereas the
expansion property depends on the expansion of both the component graphs, i.e., it is a
good expander if the two component graphs are good expanders.

As earlier, if we use Cayley graphs as the components for the product graph, then
the product graph is again a Cayley graph. More specifically, if G1 = C(Ga, Sa) and
G2 = C(Gb, Sb), and if Sa is the orbit of k elements a1, a2, . . . , ak ∈ Ga under the action
of Gb, then the generating set S for the Cayley (zig-zag product) graph is

S = {(1Ga , β)(ai, 1Gb)(1Ga , β
′)| β, β′ ∈ Sb, i ∈ 1, . . . , k}.

It is easily verified that when k = 1, the Cayley graph C(Ga o Gb, S) is the zig-zag
product originally defined in [9]. The degree of this Cayley graph is at most k|Sb|2 if we
disallow multiple edges between vertices. When the group sizes Ga and Gb are large and
the k distinct elements a1, a2, . . . , ak ∈ Ga are chosen randomly, then the degree of the
product graph is almost always k|Sb|2.

3.3.1 Case for unbalanced bipartite graphs

Extending the above construction in a straightforward manner, we are now able to de-
fine the zig-zag product construction for the case when the two component graphs are
unbalanced bipartite graphs, i.e., the two sets of vertices have different degrees. Let G1



be a (c1, d1)-regular graph on the vertex sets V1,W1, where |V1| = N and |W1| = M . Let
G2 be a (c2, d2)-regular graph on the vertex sets V2,W2, where |V2| = d1 and |W2| = c1.
Let λ1 and λ2 denote the second largest eigenvalues of the normalized adjacency ma-
trices of G1 and G2, respectively. Then the zig-zag product graph, which we also will
denote by G = G1 Z©G2, is a (c2

2, d
2
2)-regular bipartite graph on the vertex sets V,W with

|V | = N · d1, |W | = M · c1, formed in the following manner:
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Figure 1: Zig-Zag product of two unbalanced bipartite graphs.

• Every vertex v ∈ V1 and w ∈ W1 of G1 is replaced by a copy of G2. The cloud
at a vertex v ∈ V1 has vertices V2 on the left and vertices W2 on the right, with
each vertex from W2 corresponding to an edge from v in G1. The cloud at a vertex
w ∈ W1 is similarly structured with each vertex in V2 in the cloud corresponding
to an edge of w in G1. (See Figure 1.) Then the vertices from V are represented as
ordered pairs (v, k), for v ∈ {1, . . . , N} and k ∈ {1, . . . , d1}, and the vertices from
W are represented as ordered pairs (w, `), for w ∈ {1, . . . ,M} and ` ∈ {1, . . . , c1}.

• A vertex (v, k) ∈ V is connected to a vertex in W by making three steps in the
product graph:

– A small step “zig” from left to right in the local copy of G2. This is a step
(v, k)→ (v, k[i]), for i ∈ {1, . . . , c2}.

– A deterministic step from left to right on G1 (v, k[i]) → (v[k[i]], `), where
v[k[i]] is the k[i]th neighbor of v in G1 and v is the `th neighbor of v[k[i]] in
G1.

– A small step “zag” from left to right in the local copy of G2. This is a step
(v[k[i]], `)→ (v[k[i]], `[j]), where the final vertex is in W , for j ∈ {1, . . . , c2}.

Therefore, there is an edge between (v, k) and (v[k[i]], `[j]).

We will show that λ(G1 Z©G2) ≤ λ1 + λ2 + λ2
2. The expansion of the unbalanced

zig-zag product graph is similar to that of the original zig-zag product graph [9]. (The
case of balanced bipartite graphs has been dealt in [6].) Note that unlike in the original
zig-zag product construction [9], the vertex set of G does not include vertices from the
set W2 in any cloud of vertices from V1, nor vertices from V2 in any cloud of vertices from
W1.



4 Properties of the graphs

4.1 Degree

A small degree is desirable for designing LDPC codes over graphs. We have seen that the
replacement product has a vertex degree that is of the same order as that of the smaller
component graph, while the zig-zag product graph has a degree that is the square of
the vertex degree of the smaller component graph. These parameters help determine our
choice of graphs in the design of LDPC codes.

4.2 Expansion

The expansion coefficients in the previous section show that the replacement product
graphs and zig-zag product graphs will be expanders if both the component graphs are.
The results in [9] show that the replacement product graph isn’t as good an expander as
the zig-zag product graph. We state the following result (without proof) that shows the
zig-zag product of two unbalanced bipartite component graphs to be an expander if the
component graphs are.

Lemma 4.1 Let G1 be a (c1, d1)-regular bipartite graph on (N,M) vertices with λ(G1) =
λ1, and let G2 be a (c2, d2)-regular bipartite graph on (d1, c1) vertices with λ(G2) = λ2.
Then, the zig-zag product graph G1 Z©G2 is a (c2

2, d
2
2)-regular bipartite on (N · d1,M · c1)

vertices with λ = λ(G1 Z©G2) ≤ λ1 + λ2 + λ2
2.

4.3 Diameter and Girth

We now look at the diameter and girth of the graph products considered in Section 3.
Let us assume that the component graphs G1 and G2 have girths g1 and g2, respectively
and diameters t1 and t2, respectively.

Lemma 4.2 The girth and diameter of the replacement product graph G = G1 R©G2 are
given by: (a) girth min{g2, g1} ≤ g ≤ min{g2, g1 + t2}, and (b) diameter t ≤ t1 + t2.

Lemma 4.3 The girth and diameter of the zig-zag product graph G = G1 Z©G2 are given
by: (a) girth g = 4, and (b) diameter t ≤ t1 + 2t2.

4.4 Remarks

For designing codes over graphs, a graph with good expansion, relatively small degree,
small diameter, and large girth, is desired. Despite their expansion, the standard graph
products mentioned earlier are not good candidates for LDPC code construction. The
resulting graphs have relatively large degree and therefore are not sparse – a drawback
for graph based message passing decoding. In addition, each has girth g = 4. The
replacement product graph, while having a relatively small degree and promising girth,
has relatively inferior expansion. The zig-zag product graph falls somewhere in between
– its degree isn’t too large and its expansion isn’t too bad. However, the girth of the
zig-zag product graph is always four. This means that the codes based on the zig-zag
product fare poorly when the size of the graph increases. (For any randomly designed
graph, the girth grows almost logarithmically with the size of the graph.)

5 LDPC codes: Construction and Properties

In this section, we use the zig-zag product graphs as building blocks for designing LDPC
codes. The zig-zag product of regular graphs yields a regular graph which may or may not
be bipartite, depending on the choice of the component graphs. Therefore, to translate
the zig-zag product graph into a LDPC code, the vertices of the zig-zag product are
interpreted as sub-code constraints of a suitable linear block code and the edges are



interpreted as code bits of the LDPC code. This is akin to the procedure described
in [13] and [5].

We further restrict the choice of the component graphs for our zig-zag product to be
appropriate Cayley graphs so that we can work directly with the group structure of the
Cayley graphs. The following examples illustrate the code construction technique:

Example 1: [2] Let A = F
p
2 be the Galois field of 2p elements for a prime p, where the

elements of A are represented as vectors of a p-dimensional vector space over F2. Let
B = Zp be the group of integers modulo p. (Further, let p be chosen such that the
element 2 generates the multiplicative group Z∗p = Zp − {0}.) The group B acts on an
element x = (x0, x1, . . . , xp−1) ∈ A by cyclically shifting its coordinates, i.e. φb(x) =
(xb, xb+1, . . . , xb−1), ∀b ∈ B. Let us now choose k elements a1, a2, . . . , ak randomly from
A. The result in [2, Theorem 3.6] says that for a random choice of elements a1, a2, . . . , ak,
the Cayley graph C(A, {aB1 , aB2 , . . . , aBk }) is an expander with high probability. (Here, aBi
is the orbit of ai under the action of B.) The Cayley graph for the group B with the
generators {±1} is the cyclic graph on p vertices, C(B, {±1}). The zig-zag product of
the two Cayley graphs is the Cayley graph C(A o B, S = {(0, β)(ai, 0)(0, β′)| β, β′ =
±1, i = 1, 2, .., k}) on N = 2p · p vertices, where Ao B is the semi-direct product group
and the group operation is (a, b)(c, d) = (a+ φb(c), b+ d), for a, c ∈ A, b, d ∈ B. This is
a regular graph with degree1 dg ≤ k|SB|2 = 4k. If we interpret the vertices of the graph
as sub-code constraints of a [dg, kg, dm] linear block code and the edges of the graph as
code bits of the LDPC code, then the block length NLD of the LDPC code is 2p · p · dg/2
and the rate of the LDPC code is r ≥ NLD−N(dg−kg)

NLD
= 1 − 2(dg−kg)

dg
= 2kg

dg
− 1. (Observe

that r ≥ 2r1 − 1, where r1 is the rate of the sub-code.)
In some cases, to achieve a certain desired rate, we may have to use a mixture of

sub-code constraints from two or more linear block codes. For example, to design a rate
1/2 LDPC code when dg is odd, we may have to impose a combination of [dg, kg, dm1]
and [dg, kg + 1, dm2] block code constraints, for an appropriate kg, on the vertices of the
graph.

Another entirely different approach for the design of asymptotically good codes is
suggested in [2]. If the elements a1, . . . , ak are appropriately chosen and the group B
acts on each of them producing an orbit of elements for each ai, then these vectors could
be arranged as rows of a circulant matrix (For the example above, the set of elements
obtained when B acts on ai is all cyclic shifts of ai). Hence, a block of k circulant
matrices [C1, C2, . . . , Ck] is obtained from the action of B on a1, a2, . . . , ak. The authors
in [2] establish that the result of multiplying any non-zero vector x ∈ Fp2 with [C1, . . . , Ck]
is a vector c that contains at least δ fraction of ones and δ fraction of zeros for some
δ > 0. This is a probabilistic result that holds with high probability when the choice of
ai’s is completely random. Suppose we consider the block of circulants as the generator
matrix Gen of a binary linear block code, then the result in [2] says for any non-zero
message vector x, c = xGen has a relative Hamming weight of at least δ, meaning the
relative minimum distance of the code described by Gen is at least δ > 0. Therefore, by
selecting a large prime p, we can get a long block length binary linear code of rate 1/k
with minimum distance linear in the block length of the code. However, it is not clear
at this point whether it is possible to obtain a sparse parity check matrix representation
for such a code. A sparse parity check representation would then guarantee efficient
graph based iterative decoding with the benefit of good minimum distance imposed by
the construction.

Example 2: [2] Let B = SL2(Fp) be the group of all 2 × 2 matrices over Fp with

determinant one. Let SB =
{(

1 1
0 1

)
,
(

1 0
1 1

)}
be the generating set for the Cayley

graph C(B, SB). Further, let P1 = Fp ∪ {∞} be the projective line. The Möbius action

of B on P1 is given by
(
a b
c d

)
(x) = ax+b

cx+d
. Let A = F

P1
2 and let the action of B on

1Depending on the choice of the ai’s, the number of distinct elements in S may be fewer than k|SB |2.



the elements of A be the Möbius permutation of the coordinates as above. If we now
choose k elements a1, a2, . . . , ak randomly from A as in the previous example, then with
high probability the Cayley graph C(A, {aB1 , . . . , aBk }) is an expander. Further, the zig-
zag product of the two Cayley graphs is the Cayley graph C(A o B, S) (as in Example
1) on |A||B| = 2p+1(p3 − p) vertices. However, this Cayley graph will be a directed
Cayley graph since the generating set S is not symmetric. Hence, we modify our graph
construction a little by taking two copies of the vertex set A o B. A vertex v from one
copy is connected to vertex w in the other copy if there is a s ∈ S such that v∗s = w. The
new product graph obtained has 2|A||B| vertices and every vertex has degree dg = |S|;
moreover, it is a balanced bipartite graph. An LDPC code of block length |A||B|dg is
obtained by interpreting the vertices of the graph as sub-code constraints of a [dg, kg, dm]
linear block code, and the edges as code bits of the LDPC code. The rate of this code is

r ≥ 1− 2(dg−kg)

dg
= 2kg

dg
− 1.

Example 3: Codes from zig-zag product of unbalanced bipartite graphs

Using a random construction, we design a (c1, d1)-regular bipartite graph G1 on (N,M)
vertices. Similarly, we design a (c2, d2)-regular bipartite graph G2 on (d1, c1) vertices.
The zig-zag product of G1 and G2 is a (c2

2, d
2
2)-regular graph on (N · d1,M · c1) vertices.

An LDPC code is obtained as before by interpreting the degree c2
2 vertices [resp. degree

d2
2 vertices] as sub-code constraints of a CS1 = [c2

2, k1, dm1] [resp. a CS2 = [d2
2, k2, dm2]]

linear block code and the edges of the product graph as code bits of the LDPC code.
The block length of the LDPC code thus obtained is NLD = Nd1c

2
2 and the rate is

r ≥ Nd1c22−(Nd1(c22−k1)+Mc1(d2
2−k2))

Nd1c22
= k1

c22
+ k2

d2
2
− 1 (since Nd1c

2
2 = Mc1d

2
2 is the number of

edges in the graph). Observe that r ≥ r1 + r2 − 1, where r1 and r2 are the rates of the
two sub-codes CS1 and CS2, respectively.

In Section 6, specific cases of these three examples are designed and the performance
of the resulting LDPC codes are compared with that of other randomly constructed
LDPC codes.

5.1 Minimum distance Bounds

Sipser and Spielman in [12] and Janwa and Lal [4] lower bound the minimum distance
of codes based on expander graphs. Let us assume that the vertices of a d-regular graph
are interpreted as sub-code constraints of a [d, k, εd] linear block code and the edges are
interpreted as the code bits of the LDPC code as above. If the graph is an expander with

eigenvalue λ(G) = λ and if ε > λ, then the relative minimum distance2 is at least ε (ε−λ)
(1−λ)

.

This is a decreasing function in λ for 0 ≤ λ ≤ ε. Therefore, for a LDPC code based on
the (N · d1, d

2
2, λ < f(λ1, λ2))- zig-zag product graph, if the sub-code constraint used is

of a [d2
2, k, εd

2
2] linear block code, then the relative minimum distance of the LDPC code

is lower bounded by

dmin ≥ ε
(ε− f(λ1, λ2))

(1− f(λ1, λ2))

Janwa and Lal extend this argument to the unbalanced bipartite case. Let the two sets
of vertices of a (c, d)-regular bipartite graph on the vertex sets V1 (|V1| = N)and W1

(|W1| = M) be interpreted as sub-code constraints of a [c, k1, ε1c] and a [d, k2, ε2d] linear
block codes, respectively, and the edges be interpreted as code bits of a LDPC code.
If the bipartite graph G has λ(G) = λ and if dε2 ≥ cε1 > λ

√
cd/2, then the relative

minimum distance of the LDPC code is at least

dmin ≥ {ε1ε2 −
λ

2
(ε1

√
c

d
+ ε2

√
d

c
)}

2i.e., relative to the block length of the LDPC code.



Using Lemma 4.1 and the above result, the relative minimum distance of LDPC codes

based on Example 3 can be lower bounded by dmin ≥ {ε1ε2 − λ(G1 Z©G2)

2
(ε1

c2
d2

+ ε2
d2

c2
)}.

(Here, we use sub-codes [c2
2, k1, ε1c

2
2], [d2

2, k2, ε2d
2
2] and assume that d2

2ε2 ≥ c2
2ε1 >

λ(G1 Z©G2)

2
.)

6 Results

The performance of the LDPC code designs based on zig-zag product graphs is examined
for use over the additive white Gaussian noise (AWGN) channel. (Binary modulation
is simulated and the bit error performance with respect to signal to noise ratio (SNR)
Eb/No is determined.) The LDPC codes are decoded using the graph based iterative
belief propagation (BP) algorithm. Since the LDPC codes based on the zig-zag product
graph use sub-code constraints, the decoding at the constraint nodes is accomplished
using the BCJR algorithm on a trellis representation of the appropriate sub-code. (A
simple procedure to obtain the trellis representation of the sub-code based on its parity
check matrix representation is discussed in [15].) It must be noted that as the number
of states in the trellis representation and the block length of the sub-code increases, the
decoding complexity correspondingly increases.

Figure 2 shows the performance with BP decoding of a LDPC code that is designed
based on Example 1 in Section 5. For the parameters p = 5 and k = 5, five elements
in A = F

p
2 are chosen (randomly) to yield a set of generators for the Cayley graph of

the semi-direct product group. The Cayley graph has 160 vertices, each of degree 20.
The sub-code used in this design is a [20, 15, 4] code and the resulting LDPC code has
rate 1/2 and block length 1600. The figure also shows the performance of a LDPC code
based on a randomly designed degree 20 regular graph on 160 vertices which also uses
the same sub-code constraints as the former code. The two codes perform comparably,
indicating that the expansion of the zig-zag product code compares well with that of a
random graph of similar size and degree. Also shown in the figure is the performance of
a (3, 6) regular LDPC code, that uses no special sub-code constraints other than simple
parity check constraints, having the same block length and rate. Clearly, using strong
sub-code constraints improves the performance significantly, albeit at the cost of higher
decoding complexity. The figure also shows another set of curves for a longer block length
design. Choosing p = 11 and k = 5 and the [20, 15, 4] sub-code constraints yields a rate
1/2 and block length 225280 LDPC code. At this block length however, the LDPC based
on the zig-zag product graph is found to perform better than the LDPC code based on
a random degree 20 graph primarily at small SNRs, but due to the poor girth of the
zig-zag product graph3 (and hence, in the LDPC constraint graph), its performance at
high SNRs is inferior to that of the random LDPC design.

Figure 3 shows the performance of LDPC codes that are designed based on Example
2. Once again, this performance is compared with the analogous performance of a LDPC
code based on a random graph using identical sub-code constraints and having the same
block length and rate. These results are also compared with a (3, 6) regular LDPC code
that uses simple parity check constraints. For the parameters p = 3 and k = 5 in Example
2, a bipartite graph, based on the zig-zag product graph, on 768 vertices with degree 20
is obtained. Using the [20, 15, 4] sub-code constraints as earlier, a block length 7680 rate
1/2 LDPC code is obtained. This code performs comparably with the random LDPC
code that is based on a degree 20 randomly designed graph. Using the parameters p = 5
and k = 4 and a [16, 12, 2] sub-code, a longer block length 122880 LDPC code is obtained.
As in the previous case, this code performs poorly in contrast to its random counterpart.
Once again, we attribute this behavior to the poor girth of the zig-zag product graph.

Figure 4 shows the performance of LDPC codes designed based on the zig-zag product
of two unbalanced bipartite graphs as in Example 3. A (6, 10)-regular bipartite graph on
(20, 12) vertices is chosen as one of the component graphs and a (3, 5)-regular bipartite

3Note that there is no growth in the girth of the zig-zag product graph as opposed to that for a
randomly chosen graph, with increasing graph size.
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Figure 2: LDPC codes from zig-zag prod-
uct graphs based on Example 1.
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Figure 3: LDPC codes from zig-zag prod-
uct graphs based on Example 2.
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Figure 4: Performance of LDPC codes from zig-zag product graphs based on Example 3.

graph on (10, 6) vertices is chosen as the other component. Their zig-zag product is a
(9, 25)-regular bipartite graph on (200, 72) vertices. Using sub-code constraints of two
codes – a [9, 6, 2] and a [25, 21, 2] linear block code – a block length 1800 LDPC code of rate
0.5066 is obtained. The performance of this code is compared with a LDPC code based
on a random (9, 25)-regular bipartite graph using the same sub-code constraints, and
also with a block length 1800 random (3, 6) regular LDPC code. All three codes perform
comparably, with the random (3, 6) showing a small improvement over others at high
SNRs. Given that the zigzag product graph is composed of two very small graphs, this
result highlights the fact that good graphs may be designed using just simple component
graphs.

7 Conclusions

In this paper we discussed the properties of the replacement product and the zig-zag
product, and investigated their potential for LDPC code constructions. Included in this
was a straightforward generalization of the zig-zag product for the case of unbalanced



bipartite graphs. Our preliminary results indicate that LDPC codes based on the zig-
zag product of two good component graphs yields decent performance at short block
lengths, but the overall performance is severely limited by the poor girth and cycle
distribution of the zig-zag product graph. A modification in the zig-zag product steps
may be necessary to alleviate this problem. The code design may be improved by a
more judicious choice of component graphs. These construction techniques may also be
applied to the replacement product graphs. Given that the replacement product graph
has better girth than the zig-zag product, we suspect that LDPC codes based on the
replacement product would perform better.
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