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Abstra
tThe set of autoregressive systems generalizes the set of transfer fun
tions in a naturalway. In this paper we des
ribe a topology for the set of all autoregressive systemsof �xed size and bounded M
Millan degree. We show that this topologi
al spa
e hasthe stru
ture of a �nite CW-
omplex.Abbreviated Title: A Cell Stru
ture for Autoregressive Systems



1 Introdu
tionIn the last two de
ades a lot of resear
h was devoted to the study of topologi
al andalgebrai
 properties of the set of transfer fun
tions. This resear
h was motivated byproblems arising in adaptive and robust 
ontrol, system identi�
ation, dynami
 polepla
ement and more general interpolation problems.Let Snp;m(IK) be the set of all proper p�m transfer fun
tions of a �xed M
Millandegree n de�ned over the �eld IK(s). Over the reals (IK = IR) Clark [5℄ showed thatSnp;m has the stru
ture of a smooth manifold of dimension n(m + p) + mp. Over ageneral algebrai
ally 
losed �eld IK Hazewinkel [10℄ showed that Snp;m has the stru
-ture of a quasi aÆne variety. Hermann and Martin [21℄ established an isomorphismbetween the subset of stri
tly proper transfer fun
tions and the set of base point pre-serving holomorphi
 maps from the Riemann sphere S2 to the Grassmann manifoldGrass(p;m+ p) making in this way the 
onne
tion to geometry.Sin
e this time there has been a great e�ort to understand the topologi
al proper-ties of the 
lass of linear systems. Important 
ontributions in
lude e.g. the arti
les ofByrnes and Hurt [3℄, Byrnes and Dun
an [4℄, Del
hamps [6℄ and Helmke [12℄. Morere
ently a 
ellular de
omposition of Snp;m was 
onstru
ted independently by Man-they [20℄ (
ompare also with [8, 12, 14℄) and by Mann and Milgram [19℄. Using theirde
omposition Mann and Milgram were able to 
al
ulate topologi
al invariants ofSnp;m like the integral homology groups. For a good survey and a 
omparative studyof di�erent topologies on Snp;m we re
ommend the dissertation of Gl�using-L�uer�en [9℄.A natural generalization of the set Snp;m of p � m transfer fun
tions of a �xedM
Millan degree n is the set of p � (m + p) autoregressive systems with M
Millandegree at most n whi
h we will denote by A�np;m. This set of systems represents the
lass of time invariant, 
ontinuous-time linear systems in the behavioral frameworkof Willems [29, 30, 31℄.In the next se
tion we will review the notion of an autoregressive system andwe will de�ne a topology on A�np;m whi
h extends the topology on the set Snp;m in anatural way. In Se
tion 3 we will show that the Krone
ker indi
es and pivot indi
esas introdu
ed by Forney [7℄ 
an be used to 
onstru
t a 
ellular de
omposition. Inorder to understand the boundary stru
ture of ea
h 
ell we will de�ne for ea
h set ofKrone
ker and pivot indi
es a new set of indi
es. On this set of indi
es we will de�nea partial order whi
h 
orresponds on the topologi
al side to the 
losure in
lusion.In other words we will show (Se
tion 4, Theorem 4.12) that the 
losure of ea
h 
ell
onsists of 
ells with smaller index.Finally in the last se
tion we will show that A�np;m is a 
ompa
t topologi
al spa
eand the 
onstru
ted 
ellular de
omposition gives raise to a �nite CW-
omplex. Usingthis information we will des
ribe the singular homology of A�np;m(C).1



2 The Set of Autoregressive SystemsLet IK denote either the �eld of real (IK = IR) or 
omplex (IK = C) numbers and
onsider a p� (m+ p) matrix with entries in the polynomial ring IK[s℄. P (s) de�nesa system of autoregressive equations in the sense of Willems [29, 31℄ through:P ( ddt)w(t) = 0 (2.1)Under a solution of 2.1 we understand a ve
tor valued distribution ' : IK ! IKm+p.(Compare with [31, page 279℄). Using again the language of Willems [29, 31℄ (seealso [17, 26℄) we 
all the set of solutions of 2.1 the behavior of the system.Clearly elementary row operations on P (s) have no a�e
t on the behavior. More-over an important result formulated in S
huma
her [26, Corollary 2.5℄ (
ompare alsowith [29, Se
tion 5℄ and with [25℄) states that two full rank polynomial matri
esP (s) and ~P (s) are row equivalent if, and only if the systems P ( ddt)w(t) = 0 and~P ( ddt)w(t) = 0 have the same behavior. Based on this result we de�ne: (Comparealso with [9, 25, 31℄)De�nition 2.1 Two p� (m+p) polynomial matri
es P (s) and ~P (s) are 
alled (row)equivalent if there is a unimodular matrix U(s) with ~P (s) = U(s)P (s). An equiva-len
e 
lass of full rank polynomial matri
es is 
alled an autoregressive system.In the sequel we often will not distinguish between the matrix P (s) and the au-toregressive system this matrix de�nes. The 
ontext will make the meaning 
lear.De�nition 2.2 An autoregressive system P (s) is 
alled irredu
ible or 
ontrollable ifP (s) has full rank for all s 2 C.De�nition 2.3 The M
Millan degree of a full rank p � (m + p) polynomial matrixP (s) is given by the maximal degree of the full size minors of P (s). The degree of anautoregressive system P ( ddt)w(t) = 0is de�ned to be the degree of P (s).Clearly De�nitions 2.2 and 2.3 do not depend on the parti
ular representant of theequivalen
e 
lass.The set of autoregressive systems generalizes the set of transfer fun
tions in thefollowing sense: Assume G(s) is a proper or improper p�m transfer fun
tion of �xedM
Millan degree n. Let D�1(s)N(s) = G(s) be a left 
oprime fa
torization. Then it2



is well known that ~D�1(s) ~N(s) = G(s) is a se
ond left 
oprime fa
torization if, andonly if the p � (m + p) polynomial matri
es (N(s) D(s)) and ( ~N(s) ~D(s)) are rowequivalent. Moreover the polynomial matrix (N(s) D(s)) is in this 
ase irredu
ibleand the M
Millan degree of (N(s) D(s)) as de�ned in De�nition 2.3 is equal to theM
Millan degree of the transfer fun
tion D�1(s)N(s) = G(s). For a proof of theseresults we refer the interested reader to [16℄. Finally we want to mention that aftera partitioning of the ve
tor w(t) into an input part u(t) and an output part y(t) it isalways possible to �nd a state spa
e representation of Equation 2.1 (see [30, Theorem4.1℄).Our interest in topologi
al questions of autoregressive systems originates in ourwork on feedba
k 
ompensation [24, 28℄. If one wants to understand the pole pla
e-ment problem or if one studies degeneration phenomena one is immediately led to thestudy of topologi
al properties of the spa
e of all autoregressive systems. Moreoverit is possible to study the pole pla
ement problem and more general interpolationproblems (
ompare with [1℄) even in the set of autoregressive systems.In the next se
tion we de�ne a topology on the set of autoregressive systems of�xed size and �xed M
Millan degree. Using the ordered Krone
ker indi
es and pivotindi
es we will then introdu
e a 
ellular de
omposition of this spa
e. Note that alreadyearlier Hazewinkel and Martin [11℄ 
onsidered 
losure in
lusions involving the set ofKrone
ker indi
es of a 
ontrollable system of the form _x = Ax+Bu and Helmke [12℄(see also [15℄) used the set of Krone
ker indi
es to produ
e a 
ellular de
ompositionof this 
lass of linear systems.3 A Cellular De
ompositionLet A�np;m be the set of all p � (m + p) autoregressive systems of degree at most n.The following Lemma is well known and 
hara
terizes the Krone
ker (or row degree)indi
es of P (s).Lemma 3.1 Given any p � (m + p) polynomial matrix ~P (s) of M
Millan degreen, there exist unique � = (�1; : : : ; �p) with �1 � � � � � �p and Ppi=1 �i = n and ap� p unimodular matrix U(s) su
h that the matrix P (s) = U(s) ~P (s) has row degrees�1 � � � � � �p.A proof 
an be found for example in [2, page 330℄.De�nition 3.2 The numbers � = (�1; : : : ; �p) are 
alled the ordered Krone
ker in-di
es of the autoregressive system P (s). A matrix P (s) is 
alled row redu
ed if theordered Krone
ker indi
es are equal to the degrees of the rows of P (s).3



Note that �1; : : : ; �p are not the ordered (minimal) indi
es of a `minimal basis' in thesense of Forney [7℄ unless P (s) is irredu
ible. P (s) is row redu
ed if and only if thehigh order 
oeÆ
ient matrix of P (s) has full rank, where the high order 
oeÆ
ientmatrix of a polynomial matrix P (s) is a matrix whose entries of the i-th row are the
oeÆ
ients of s�i of the i-th row of P (s) where �i is the highest power of s in the i-throw of P (s).Our de�nition of pivot indi
es is only slightly di�erent from the one given byForney [7℄.De�nition 3.3 Given an autoregressive system with P (s) row redu
ed and with Phthe high order 
oeÆ
ient matrix of P (s), the i-th pivot index �0i is the largest integersu
h that the submatrix of Ph formed from the interse
tion of 
olumns �01; : : : ; �0iwith the rows 
orresponding to indi
es � �i has rank i. The ordered pivot indi
es� = (�1; �2; : : : ; �p) are the indi
es obtained from (�01; �02; : : : ; �0p) by reordering su
hthat �i < �i+1 if �i = �i+1.The ordered Krone
ker and pivot indi
es are invariant under row equivalen
e (see [7℄).In the following we would like to 
ombine the indi
es � and � in a single set � ofindi
es de�ned through:De�nition 3.4 �i := �i(m+ p) + �i:From the properties of � and � we 
an see that:1. 1 � �1 < �2 < � � � < �p � (n+ 1)(m+ p):2. �i � �i mod (m+ p)From property 2. in parti
ular follows that the assignment (�; �) 7! � is one-one.Based on this observation we denote with C� the subset of all the equivalen
e 
lassesin A�np;m with indi
es � = (�1; : : : ; �p). The following proposition is then a dire
t
onsequen
e of Forney's e
helon form (see [7℄).Proposition 3.5 Ea
h equivalen
e 
lass in C� 
an be represented by a unique poly-nomial matrix P (s) = P0 + P1s+ P2s2 + � � �+ Pnsn: (3.1)su
h that the matrix Q := [P0jP1j � � � jPn℄ has the following spe
ial e
helon form:1. The (i; �i) entry is 1, all the other entries on the �i-th 
olumn and all the entriesto the right of the (i; �i) entry on the i-th row are zero.2. If j > �i and j � �i mod (m+ p) then the j-th 
olumn of Q is zero.4



Moreover every p � (m + p)(n + 1) matrix Q with the above e
helon form de�nes aunique element of C�.The following example illustrates this 
orresponden
e:Example 3.6 Consider the set of 2�4 matri
es with indi
es � = (0; 2) and � = (2; 4),i.e. the subset C(2;12) of A�22;2. Then the 
orresponding e
helon forms are:" � 1 0 0 j 0 0 0 0 j 0 0 0 0� 0 � � j � 0 � � j � 0 � 1 # :Similar the systems with indi
es � = (3; 10) (� = (0; 2) and � = (3; 2)) have a
orresponding e
helon form" � � 1 0 j 0 0 0 0 j 0 0 0 0� � 0 � j � � 0 � j � 1 0 0 # :For ea
h set C� let d� be the number of \free parameters" appearing in the
orresponding e
helon form of the matri
es Q. Proposition 3.5 in parti
ular impliesthat C� is in one to one 
orresponden
e to the eu
lidean spa
e IRd� . So far we didn'tde�ne any topology on the set A�np;m and of 
ourse we would like that the set theoreti
identi�
ation 
oming from Proposition 3.5 is in addition 
ontinuous. With this inmind we de�ne now a topology on A�np;m:Let P�np;m be the set of all p � (m + p) full rank polynomial matri
es of degree atmost n and let P�n;qp;m be the subset of P�np;m formed by all matri
es whose entries arepolynomials of degree at most q. ThenP�n;0p;m � P�n;1p;m � P�n;2p;m � � � �with union P�np;m = S1q=0 P�n;qp;m . Note that ea
h P�n;qp;m is a subset of IRp(m+p)(q+1). Takethe topology on P�n;qp;m indu
ed by the natural topology on IRp(m+p)(q+1). The dire
tlimit of the topologies on P�n;qp;m q = 0; 1; : : : de�nes a topology on P�np;m. In otherwords, a subset of P�np;m is open if and only if its interse
tion with P�n;qp;m is open asa subset of P�n;qp;m for ea
h q. The topology whi
h we will take on A�np;m will be thequotient topology under the equivalen
e indu
ed by the unimodular group, i.e. onehas the de�nition given in [25℄:De�nition 3.7 A subset U of A�np;m is open if, and only if the subset V of P�np;m formedby all the polynomial matri
es in the equivalent 
lasses of U is open.With respe
t to this topology one has now immediately the following Lemma whi
his easy to verify: 5



Lemma 3.8 The set of equivalen
e 
lasses C� are 
ells, i.e. homeomorphi
 to aneu
lidean spa
e. Moreover one has A�np;m = S� C� and C� \ C� = ; if � 6= �.The dimension of the 
ell C�, earlier denoted by d� 
an be determined by 
ountingthe numbers of \free" entries in the e
helon form. For this denote for any real numberx with [x℄ the largest integer whi
h is smaller or equal to x. Then the numbers offree entries on the i-th row is�i � 1� i�1Xj=1([�i � �jm+ p ℄ + 1) = �i � i� i�1Xj=1[�i � �jm+ p ℄:Therefore d� = ( pXi=1 �i)� p(p+ 1)2 � pXi=2 i�1Xj=1[�i � �jm+ p ℄: (3.2)The formula (3.2) 
an be written in terms of the Krone
ker indi
es and pivotindi
es. d� = n(m+ p) + pXi=1 �i � pXi;j=1max(�i � �j + 1; 0) ++#f(i; j) j �i � �j; �i > �jg (3.3)= n(m+ p) + pXi=1 �0i � pXi;j=1max(�i � �j + 1; 0) ++#f(i; j) j �i � �j; �0i > �0jg (3.4)Let A�p;m be the subset of all the systems with Krone
ker indi
es �. The \thi
kest"open 
ell in A�p;m has pivot indi
es (�01; �02; : : : ; �0p) = (m + p;m + p � 1; : : : ; m + 1).Its dimension by above formula is(n+ p)(m + p)� pXi;j=1max(�i � �j + 1; 0)whi
h is the dimension of A�p;m obtained in [25℄. In parti
ular, the \thi
kest" open
ell of A�np;m has indi
es�i = ( a(m+ p) +m + b + i; i = 1; : : : ; p� b(a+ 1)(m+ p) +m + b� p+ i; i = p� b+ 1; : : : ; p (3.5)and dimension n(m + p) +mp = dimA�np;m, where a and b are the integers su
h thatn = ap + b, 0 � b < p. 6



4 Closure of An Open CellIn this se
tion we will des
ribe the 
losure of a 
ell C� in A�np;m. The following exampleshows what type of phenomena we 
an expe
t:Example 4.1 Assume a; b; 
; d; f are real 
onstants and a 6= 0. Then every elementin the 
ell " a b 1 0s+ f h 0 l # 
an be represented by " 1 ba 1a 00 bs + 
 s+ f d #. In thelimit as a!1, we have the 
ell " 1 0 0 00 bs+ 
 s + f d #.In order to 
hara
terize the 
losure of a 
ell in general we de�ne �rst a partialorder on the set of all indi
es. For ea
h � = (�1; : : : ; �p) we asso
iate with a in�nitesequen
e: f(�) = (f1(�); f2(�); � � �) (4.1)where ffi(�)g = f�j + k(m+ p) j k = 0; 1; 2; : : : ; j = 1; : : : ; pg (4.2)and arrange the order su
h thatf1(�) < f2(�) < � � � :Example 4.2 Consider in A�22;2.f(2; 12) = (2; 6; 10; 12; 14; 16; : : :);f(3; 10) = (3; 7; 10; 11; 14; 15; : : :):The following de�nition establishes a partial order on the set of indi
es � introdu
edin De�nition 3.4:De�nition 4.3 � � � if and only if fi(�) � fi(�) for all i: (4.3)Example 4.4 Consider A�22;2. (3; 12) < (4; 11) < (7; 8)be
ause f(3; 12) = (3; 7; 11; 12; : : :);f(4; 11) = (4; 8; 11; 12; : : :);f(7; 8) = (7; 8; 11; 12; : : :):7



The partial order 
an be 
hara
terized in another way.Lemma 4.5 Let g(�; k) = #ffi(�) j fi(�) � kg: (4.4)Then � � � if and only if g(�; k) � g(�; k) for all positive integers k.De�nition 4.6 � is 
alled to 
over � if � < � and there is no 
 su
h that � < 
 < �.Lemma 4.7 If � 
overs � then � and � must take one of the following forms:1. There exists an index j su
h that� �i = �i for all i 6= j and� �j = maxfr j r < �j, r 6= �i mod (m + p) for all i < jg.2. There exist j and l with j < l su
h that� �i = �i for all i 6= j; l and� �j = �l � (1 + [�l � �jm+ p ℄)(m + p), �l = �j + (1 + [�l � �jm + p ℄)(m+ p) and� [�l � �im + p ℄ = [�l � �im+ p ℄ for all i 2 (j; l)Proof: Let j be the smallest number su
h that �j 6= �j, then �j < �j. Assume�i = ai(m + p) + bi; �i = 
i(m+ p) + di; 0 < bi; di � (m+ p):Sin
e both 1) and 2) are un
hanged under translation (i.e. add a �xed integer to allthe indi
es), without loss of generality, assume dj = m+ p. Then 
i > 
j for all i > j.We �rst prove that aj = 
j. De�ne 
:
i = 8><>: 
j(m+ p) + dj+1 if i = j
j+1(m+ p) +m + p if i = j + 1�i otherwise.Then 
 < �. If � � 
, then � = 
 whi
h implies that aj = 
j. If � 6� 
, theng(�; k0) < g(
; k0) for some integer k0 = a0(m + p) + b0, 0 < b0 � m + p where g isde�ned by (4.4). Noti
e that for any integer k = a(m + p) + bg(
; k) = ( g(�; k) + 1 if 
j � a < 
j+1, dj+1 � b < m + pg(�; k) otherwise.8



So we must have g(�; k0) � g(�; k0) < g(
; k0) = g(�; k0) + 1;and 
j � a0 < 
j+1; (4.5)dj+1 � b0 < m + p; (4.6)g(�; k0) = g(�; k0): (4.7)By ( 4.5), �i > k0 for all i > j. Sog(�; k0) = jXi=1#fnj�i � n � k0; n = �i mod m + pg:By (4.6), #fnj�j � n � k0; n = �j mod m + pg = a0 � 
j:So g(�; k0) = j�1Xi=1#fnj�i � n � k0; n = �i mod m+ pg+ a0 � 
j= j�1Xi=1#fnj�i � n � k0; n = �i mod m+ pg+ a0 � 
j� g(�; k0)�#fnj�j � n � k0; n = �j mod m+ pg+ a0 � 
j� g(�; k0)� (a0 � aj) + a0 � 
jwhi
h means that aj � 
jbe
ause of (4.7). On the other hand, aj � 
jbe
ause �j < �j. Therefore aj = 
j:If there is a l > j, dl 2 [bj; m+p), 
hoose su
h l so that �l is the smallest. De�ne �:�i = 8><>: 
j(m+ p) + dl if i = j
l(m + p) +m+ p if i = l�i otherwise.9



Then � < �. If � 6� �, the same argument shows that g(�; k0) = g(�; k0) for somek0 = a0(m + p) + b0 with 
j � a0 < 
l, dl � b0 < m + p. Sin
e �l is the smallest anda0 < 
l, one hasg(�; a0(m+ p) + bj � 1) = g(�; k0)�#fdi j di 2 [bj ; b0℄; i < jg= g(�; k0)�#fbi j bi 2 [bj; b0℄; i < jg� g(�; a(m+ p) + bj � 1) + 1� g(�; a(m+ p) + bj � 1) + 1whi
h is a 
ontradi
tion. So � � � whi
h implies � = � and it is 
ase 2.If there is no l > j, dl 2 [bj; m+ p), de�ne �:�i = ( 
j(m + p) + d0 if i = j�i if i 6= j.where d0 = maxfd < dj j d 6= di; i < jg. Noti
e that bj � d0. If � 6� �, the sameargument shows that g(�; k0) = g(�; k0) for some k0 = a0(m + p) + b0 with 
j � a0and d0 � b0 < m+ p. Theng(�; a0(m+ p) + bj � 1) = g(�; k0)�#fdi j di 2 [bj ; b0℄; i < jg= g(�; k0)�#fbi j bi 2 [bj; b0℄; i < jg� g(�; a(m+ p) + bj � 1) + 1� g(�; a(m+ p) + bj � 1) + 1whi
h is a 
ontradi
tion. So � � � whi
h implies � = � and it is 
ase 1.Corollary 4.8 If � 
overs � then d� = d� � 1Proof: We prove it for the two 
ases of Lemma 4.7 respe
tively.Case 1: Let ir < j be the integer su
h that�ir = �j + r mod m + p; r = 1; : : : ; k = �j � �j � 1: (4.8)Then [�r � �im + p ℄ = ( [�r��im+p ℄� 1 if r = j and i = i1; : : : ; ik[�r��im+p ℄ otherwise10



Therefore by the formula (3.2),d� � d� = (�j � �j)� k = 1:Case 2: Dire
t 
omputation shows thatXi �i =Xi �i; (4.9)[�l � �jm+ p ℄ = [�l � �jm+ p ℄ + 1; (4.10)[�j��im+p ℄ = [�l��im+p ℄� (1 + [�l��jm+p ℄);[�l��im+p ℄ = [�j��im+p ℄ + (1 + [�l��jm+p ℄)for all i < j; (4.11)[�i��jm+p ℄ = [�i��lm+p ℄ + (1 + [�l��jm+p ℄);[�i��lm+p ℄ = [�i��jm+p ℄� (1 + [�l��jm+p ℄)for all i > l (4.12)and [�i��jm+p ℄ = [�l��jm+p ℄� [�l��im+p ℄);[�l��im+p ℄ = [�l��jm+p ℄� [�i��jm+p ℄)for all i 2 (j; l) (4.13)whi
h implies also [�i � �jm+ p ℄ = [�i � �jm + p ℄ for all i 2 (j; l): (4.14)Therefore by the formula (3.2),d� � d� = [�l � �jm+ p ℄� [�l � �jm+ p ℄ = 1:Lemma 4.7 
an be written in terms of Krone
ker and pivot indi
es:Corollary 4.9 Let �(�) and �(�) be the ordered Krone
ker and pivot indi
es of �.If � 
overs �, then the ordered Krone
ker indi
es and pivot indi
es of � and � musttake one of the following forms: 11



1. �i(�) = �i(�) for all i and there exists a j su
h that �i(�) = �i(�) for all i 6= j,�j(�) = maxfr 2 [1; �j(�)) j r 6= �i(�); i < jg:2. There exists a j su
h that �i(�) = �i(�) and �i(�) = �i(�) for all i 6= j,�j(�) = �j(�)� 1;�j(�) = minfr 2 [1; m+ p℄ j r 6= �i(�); i < jgand �j(�) = maxfr 2 [1; m+ p℄ j r 6= �i(�); i < jg:3. �i(�) = �i(�) for all i and there exist j < l, �j(�) < �l(�), �j(�) > �l(�) and�i(�) 62 (�l(�); �j(�)) for all i 2 (j; l), su
h that �i(�) = �i(�) for all i 6= j; l,�j(�) = �l(�)and �l(�) = �j(�):4. There exist j < l, �j(�) � �l(�), �j(�) < �l(�), �i(�) 62 [1; �j(�))[(�l(�); m+p℄for all i 2 (j; l), su
h that �i(�) = �i(�) and �i(�) = �i(�) for all i 6= j; l,�j(�) = �j(�)� 1;�l(�) = �l(�) + 1;�j(�) = �l(�)and �l(�) = �j(�):The goal of the next two lemmas is to show that the partial order introdu
ed inDe�nition 4.3 
orresponds on the topologi
al side to the 
losure in
lusion of the 
ells.Lemma 4.10 If � � � then C� � C� (4.15)
12



Proof: We only need to prove this for the � whi
h 
overs �. The lemma is obviousfor 
ase 1), 2) and 3) of the Corollary 4.9. So we only 
onsider 
ase 4).Let � < � satisfy the 
onditions of 
ase 4) of Corollary 4.9, � = �(�), � = �(�)and P (s) = 2664 a1(s)...ap(s) 3775 2 C�be a polynomial matrix in e
helon form withai(s) = a0i + a1is+ � � �+ a�iis�i:De�ne Pt(s) = 2664 b1(s)...bp(s) 3775where bj(s) = a0j + a1js + � � �+ (a�jj � ta�l�1l)s�j � ta�lls�j+1and bi(s) = ai(s); i 6= j:Then limt!0 Pt(s) = P (s):For t 6= 0, Pt(s) is equivalent to Qt(s) = 2664 
1(s)...
p(s) 3775where 
l(s) = 
0l + 
1ls+ � � �+ 1t a�jjs�l�1:and 
i(s) = bi(s); i 6= l:Finally the ordered Krone
ker and pivot indi
es of Qt(s) are (�1; : : : ; �j + 1; : : : ;�l�1; : : : ; �p) and (�1; : : : ; �l; : : : ; �j; : : : ; �p), i.e. the equivalent 
lass of Pt(s) belongsto C� for any t 6= 0:
13



Lemma 4.11 The union [���C� (4.16)is a 
losed subset of A�np;m.Proof: It is enough to prove that [�6��C�is open, i.e. we need to prove that the set formed by all the polynomial matri
es inP�n;qp;m of indi
es � 6� � is open in P�n;qp;m . For this, it is suÆ
ient to prove that thereis no sequen
e of polynomial matri
es of indi
es � in P�n;qp;m whi
h approa
hes to apolynomial matrix of indi
es � if � 6� �.Assume that there are � and �, fl(�) > fl(�) for some l, and there are polynomialmatri
es fQi(s) j i = 1; 2; : : :g � P�n;qp;m of indi
es � and P (s) 2 P�n;qp;m of indi
es �su
h that Qi(s)! P (s);Change P (s) into the e
helon form de�ned in Proposition 3.5 by unimodular rowoperation and 
hange Qi(s) by the same operation. Then some of the Qi(s) maynot belong to P�n;qp;m , but the degrees of the entries of Qi(s), i = 1; 2; : : : ; are stilluniformly bounded.Let P (s) = P0 + P1s+ � � �+ Pqsq and 
onsider the in�nite matrix2664 P0 P1 P2 � � � Pq 0 0 � � �0 P0 P1 � � � Pq�1 Pq 0 � � �... ... ... � � � ... ... ... � � � 3775 : (4.17)Let P be the in�nite matrix obtained from the above matrix by rearranging the rowssu
h that the i-th row belongs to Vfi(�), where Vr is the ve
tor spa
e 
onsisting of allx = (x1; x2; : : : ; xr; 0; 0; : : :):Then the elementary unimodular polynomial row operations on P (s) 
orrespond toelementary row operations on P . For any j > l, let P j be the submatrix of P formedby the �rst j rows and Qji be the 
orresponding matri
es obtained from Qi(s). ThenQji ! P j and row sp(P j) 2 C(f1(�); f2(�); : : : ; fj(�))where C(f1; f2; : : : ; fj) = fW 2 Grass(j;1) j dim(W \ Vfk) = k;dim(W \ Vr) < k for all r < fk; k = 1; : : : ; jg (4.18)14



is a S
hubert 
ell in the in�nite Grassmannian Grass(j;1). Sodim((row sp(Qji )) \ Vfl(�)) < lwhen i is large enough.On the other hand, sin
e the degrees of the entries of fQi(s)g are uniformlybounded, fQi(s)g 
an be 
hanged into the e
helon forms by multiplying from the leftby unimodular polynomial matri
es whose degrees of entries are uniformly bounded.So when j is large enough, dim((row sp(Qji )) \ Vfl(�) = lfor all i, whi
h is a 
ontradi
tion.Combining Lemma 4.11 and 4.10 we have the following theorem:Theorem 4.12 The 
losure of the 
ell C� in A�np;m is given by:C� = [���C�: (4.19)Example 4.13 The 
ell de
omposition of A�12;2 is given by:h a b 
 1es + f gs + h s + j 0 i��	 ��Rh a b 
 1es + f s + h j 0 ih a b 1 0es + f gs+ h 0 s+ l i��	 ��R ? ?��	 ��Rh a b 
 1s+ f h j 0 ih a b 1 0es + f s+ h 0 l ih a 1 0 0es+ f 0 is + j s+ l i��R? ?��	 ��R ��	 ��Rh a b 1 0s+ f h 0 l ih a 1 0 0es + f 0 s+ j l ih 1 0 0 00 gs+ h is+ j s + l i��	 ��R? ?��	 ��R ��	h a b 1 0f h 0 1 ih a 1 0 0s+ f 0 j l ih 1 0 0 00 gs+ h s + j l i��R ��	 ��R ��	h a 1 0 0f 0 j 1 ih 1 0 0 00 s+ h j l i��	 ��R ��	h a 1 0 0f 0 1 0 ih 1 0 0 00 h j 1 i��R ��	h 1 0 0 00 h 1 0 i?h 1 0 0 00 1 0 0 i 15



5 Finite CW-ComplexIn this se
tion we will show that the 
ell de
omposition of the spa
e A�np;m 
onsideredin the previous se
tions is a
tually of the type of a �nite CW-
omplex. For the
onvenien
e of the reader we repeat the relevant de�nition from topology. Moreinformation 
an be found e.g. in [18℄.Let Dd = f(x1; : : : ; xd) 2 IRdjXl x2l � 1g (5.1)be the unit disk and Od = f(x1; : : : ; xd) 2 IRdjXl x2l < 1g (5.2)be the interior of Dd. Any spa
e homeomorphi
 to Od is 
alled an open d-
ell. Inparti
ular, IRd is an open d-
ell.De�nition 5.1 [22, De�nition 6.1℄ A �nite CW-
omplex 
onsists of a Hausdor�spa
e X together with a partition of X into a �nite 
olle
tion fC�g of disjoint subsetssu
h that1. Ea
h C� is topologi
ally an open 
ell of dimension d� � 0. Furthermore forea
h 
ell C� there exists a 
ontinuous map� : Dd� ! X (5.3)whi
h 
arries Od� homeomorphi
ally onto C�. The map � is 
alled a 
hara
ter-isti
 map for the 
ell C�.2. Ea
h point x whi
h belongs to the 
losure C�, but not to C� itself, must lie ina 
ell C� of lower dimension.We want to remark at this point that a �nite CW-
omplex is ne
essarily a 
ompa
ttopologi
al spa
e. Before we establish the result that A�np;m is a �nite CW-
omplex wewould like to make the 
onne
tion to the paper [23℄ of Ravi and the se
ond author.In this paper the spa
e of homogeneous autoregressive systems is 
onsidered. Anautoregressive system P (s; t) 2 IKp�(m+p)[s; t℄ is 
alled homogeneous if ea
h entryfij(s; t); i = 1; : : : p; j = 1; : : :m+ p of P (s; t) is a homogeneous polynomial of degree�i and at least one prin
ipal minor, ne
essarily a homogeneous polynomial of degreed = Ppi=1 �i is nonzero. In [23℄ it is then shown that the set of all homogeneousp� (m+ p) autoregressive systems of degree d, whi
h we like to denote by ~Kdp;m, hasthe stru
ture of a smooth proje
tive variety.16



Based on earlier work by Stromme [27℄ an expli
it embedding of ~Knp;m into theGrassmann manifold Grass(np+ p� n; (n+ 1)(m+ p)) was 
onstru
ted. Over C (orover IR) one 
an equip ~Knp;m with the subset topology 
oming from the 
omplex (real)Grassmannian. One has a natural proje
tion � : ~Knp;m ! A�np;m given through thedehomogenization P (s; t) 7! P (s; 1) and this proje
tion is generi
ally one-one.The following Lemma relates the topology of A�np;m as introdu
ed in De�nition 3.7with the topology of ~Knp;m.Lemma 5.2 If d � n the map�d;n : ~Kdp;m �! A�np;m (5.4)P (s; t) 7�! P (s; 1)is 
ontinuous.Proof: For any 
losed set S 2 A�np;m; let x be a point in the 
losure of ��1(S): Thenthere is a homogeneous polynomial matrix P (s; t) representing the equivalen
e 
lassof x and a sequen
e of polynomial matri
es Pn(s; t) in ��1(S) � ~Kdp;m su
h thatlimPn(s; t) = P (s; t): So limPn(s; 1) = P (s; 1) whi
h means that x 2 ��1(S):Based on the fa
ts that ~Kdp;m is a 
ompa
t topologi
al spa
e [23℄ and � = �n;n isonto we have:Corollary 5.3 A�np;m is a 
ompa
t topologi
al spa
e.We are now in a position to state the main theorem of this se
tion:Theorem 5.4 A�np;m is a �nite CW-
omplex.Proof: From Lemma 3.8 we already know that the set fC�g partitionsA�np;m into a �nite
olle
tion of disjoint 
ells whi
h we will therefore identify with the open balls Od�.Assume that the degree of the systems in C� are equal to d. ThenC� � Adp;m � A�np;m:Let P (s) = P0+P1s+ � � �+Pdsd 2 C� be the matri
es in the e
helon form de�nedby Proposition 3.5 and 
onsider the in�nite matrixP = 2664 P0 P1 P2 � � � Pd 0 0 � � �0 P0 P1 � � � Pd�1 Pd 0 � � �... ... ... � � � ... ... ... � � � 3775 :17



Re
all the de�nition of the ordered sequen
e f1(�) < f1(�) < : : : as introdu
edin (4.2). Noti
e that#fi j fi(�) � (d+ 1)(m+ p)g = dp+ p� d: (5.5)In parti
ular there are exa
tly dp+ p� d rows of P whi
h are elements of the ve
torspa
e V(d+1)(m+p). (Compare with (4.17)). The subspa
e spanned by these rows is apoint in Grass(dp + p� d; (d+ 1)(m+ p)), and if we write these rows into a matrix,ea
h element has the following parti
ular row redu
ed e
helon form:2666666666664
f1 f2 � � � fdp+p�d� � � � � 1 0 � � � 0 0 0 � � � 0 0 0 � � � 0... ... 0 � � � � � 1 0 � � � 0 0 0 � � � 0... ... ... ... ... 0 � � � � 0 0 0 � � � 0... ... ... ... ... ... ... ... ... ... ...� � � � � 0 � � � � � 0 � � � � � 1 0 � � � 0

3777777777775 (5.6)
So we have natural embeddings:C� i1�! C(f1(�); : : : ; fdp+p�d(�)) i2�! Grass(dp+ p� d; (d+ 1)(m+ p)): (5.7)where the S
hubert 
ell C(f1; : : : ; fdp+p�d) was earlier de�ned in (4.18). Letk = dp+p�dXl=1 (fl � l) (5.8)be the dimension of this 
ell and let Ok be the 
orresponding homeomorphi
 openball. Furthermore let Dk := Ok and Dd� := Od�: The following diagram explains theinterrelation between the di�erent spa
es and maps de�ned so far:C� i1�! C(f1; : : : ; fdp+p�d)l l &i2Od� i3�! Ok i4�! Grass(dp+p�d; (d+1)(m+p))#i5 #i6 %� "i8Dd� i7�! Dk ~Kdp;m#�d;nA�np;m

(5.9)
18



In this 
ommutative diagram i1; i2 are the in
lusions de�ned in (5.7) and i3; i4 arethe maps indu
ed by i1; i2. The maps i5; i6; i7 denote the natural in
lusion maps andi8 denotes the embedding of the 
ompa
t manifold ~Kdp;m as de�ned in [23℄. It is ourgoal to show the existen
e of a 
hara
teristi
 map from Dd� to A�np;m.Sin
e Grass(dp + p � d; (d+ 1)(m + p)) is a CW-
omplex and the S
hubert 
ellsof the form (5.6) de�ne a 
ell de
omposition of Grass(dp + p � d; (d + 1)(m + p))(see [18, Ch.I, Ex. 2.5.℄ or [22, x6℄), there exists 
hara
teristi
 map �, whi
h 
arries Okhomeomorphi
ally onto C(f1; : : : ; fdp+p�d) when viewed as a subset of the Grassmannmanifold.Cru
ial for the proof is the observation that by de�nition (i4Æi3)(Od�) � i8( ~Kdp;m).Sin
e i8( ~Kdp;m) is 
losed and the 
hara
teristi
 map � is 
ontinuous we 
on
lude that(� Æ i7)(Dd�) � i8( ~Kdp;m). But then the map� := �d;n Æ (i8)�1 Æ � Æ i7 (5.10)is well de�ned and 
ontinuous. By 
ontinuity �(Dd�) � �(Od�) = C�: By Theo-rem 4.12 � is therefore a 
hara
teristi
 map.Remark 5.5 The embedding of C� into Grass(dp + p � d; (d + 1)(p +m)) gives usanother way to des
ribe the proje
tive manifold ~Kdp;m introdu
ed in [23℄. For this
onsider in (5.9) the situation when d = n. Then the 
losure of (i2 Æ i1)(C�) isne
essarily isomorphi
 to the manifold ~Knp;m.In 
on
lusion of this se
tion we des
ribe the singular homology groups for the setA�np;m(C). Note that the 
ells C�(C) have real dimension 2d� in parti
ular there areno 
ells of odd real dimension. De�nebk = ( #f� j d� = k=2g if k is even0 if k is odd. : (5.11)By the properties of �nite CW-
omplex [18℄ de�ned over C, we dedu
eTheorem 5.6 The singular homology H�(A�np;m;Z) of A�np;m(C) has no torsion,Hk(A�np;m;Z) = Zbkand the k-th Betti number of A�np;m(C) is bk.A
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