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AbstratThe set of autoregressive systems generalizes the set of transfer funtions in a naturalway. In this paper we desribe a topology for the set of all autoregressive systemsof �xed size and bounded MMillan degree. We show that this topologial spae hasthe struture of a �nite CW-omplex.Abbreviated Title: A Cell Struture for Autoregressive Systems



1 IntrodutionIn the last two deades a lot of researh was devoted to the study of topologial andalgebrai properties of the set of transfer funtions. This researh was motivated byproblems arising in adaptive and robust ontrol, system identi�ation, dynami poleplaement and more general interpolation problems.Let Snp;m(IK) be the set of all proper p�m transfer funtions of a �xed MMillandegree n de�ned over the �eld IK(s). Over the reals (IK = IR) Clark [5℄ showed thatSnp;m has the struture of a smooth manifold of dimension n(m + p) + mp. Over ageneral algebraially losed �eld IK Hazewinkel [10℄ showed that Snp;m has the stru-ture of a quasi aÆne variety. Hermann and Martin [21℄ established an isomorphismbetween the subset of stritly proper transfer funtions and the set of base point pre-serving holomorphi maps from the Riemann sphere S2 to the Grassmann manifoldGrass(p;m+ p) making in this way the onnetion to geometry.Sine this time there has been a great e�ort to understand the topologial proper-ties of the lass of linear systems. Important ontributions inlude e.g. the artiles ofByrnes and Hurt [3℄, Byrnes and Dunan [4℄, Delhamps [6℄ and Helmke [12℄. Morereently a ellular deomposition of Snp;m was onstruted independently by Man-they [20℄ (ompare also with [8, 12, 14℄) and by Mann and Milgram [19℄. Using theirdeomposition Mann and Milgram were able to alulate topologial invariants ofSnp;m like the integral homology groups. For a good survey and a omparative studyof di�erent topologies on Snp;m we reommend the dissertation of Gl�using-L�uer�en [9℄.A natural generalization of the set Snp;m of p � m transfer funtions of a �xedMMillan degree n is the set of p � (m + p) autoregressive systems with MMillandegree at most n whih we will denote by A�np;m. This set of systems represents thelass of time invariant, ontinuous-time linear systems in the behavioral frameworkof Willems [29, 30, 31℄.In the next setion we will review the notion of an autoregressive system andwe will de�ne a topology on A�np;m whih extends the topology on the set Snp;m in anatural way. In Setion 3 we will show that the Kroneker indies and pivot indiesas introdued by Forney [7℄ an be used to onstrut a ellular deomposition. Inorder to understand the boundary struture of eah ell we will de�ne for eah set ofKroneker and pivot indies a new set of indies. On this set of indies we will de�nea partial order whih orresponds on the topologial side to the losure inlusion.In other words we will show (Setion 4, Theorem 4.12) that the losure of eah ellonsists of ells with smaller index.Finally in the last setion we will show that A�np;m is a ompat topologial spaeand the onstruted ellular deomposition gives raise to a �nite CW-omplex. Usingthis information we will desribe the singular homology of A�np;m(C).1



2 The Set of Autoregressive SystemsLet IK denote either the �eld of real (IK = IR) or omplex (IK = C) numbers andonsider a p� (m+ p) matrix with entries in the polynomial ring IK[s℄. P (s) de�nesa system of autoregressive equations in the sense of Willems [29, 31℄ through:P ( ddt)w(t) = 0 (2.1)Under a solution of 2.1 we understand a vetor valued distribution ' : IK ! IKm+p.(Compare with [31, page 279℄). Using again the language of Willems [29, 31℄ (seealso [17, 26℄) we all the set of solutions of 2.1 the behavior of the system.Clearly elementary row operations on P (s) have no a�et on the behavior. More-over an important result formulated in Shumaher [26, Corollary 2.5℄ (ompare alsowith [29, Setion 5℄ and with [25℄) states that two full rank polynomial matriesP (s) and ~P (s) are row equivalent if, and only if the systems P ( ddt)w(t) = 0 and~P ( ddt)w(t) = 0 have the same behavior. Based on this result we de�ne: (Comparealso with [9, 25, 31℄)De�nition 2.1 Two p� (m+p) polynomial matries P (s) and ~P (s) are alled (row)equivalent if there is a unimodular matrix U(s) with ~P (s) = U(s)P (s). An equiva-lene lass of full rank polynomial matries is alled an autoregressive system.In the sequel we often will not distinguish between the matrix P (s) and the au-toregressive system this matrix de�nes. The ontext will make the meaning lear.De�nition 2.2 An autoregressive system P (s) is alled irreduible or ontrollable ifP (s) has full rank for all s 2 C.De�nition 2.3 The MMillan degree of a full rank p � (m + p) polynomial matrixP (s) is given by the maximal degree of the full size minors of P (s). The degree of anautoregressive system P ( ddt)w(t) = 0is de�ned to be the degree of P (s).Clearly De�nitions 2.2 and 2.3 do not depend on the partiular representant of theequivalene lass.The set of autoregressive systems generalizes the set of transfer funtions in thefollowing sense: Assume G(s) is a proper or improper p�m transfer funtion of �xedMMillan degree n. Let D�1(s)N(s) = G(s) be a left oprime fatorization. Then it2



is well known that ~D�1(s) ~N(s) = G(s) is a seond left oprime fatorization if, andonly if the p � (m + p) polynomial matries (N(s) D(s)) and ( ~N(s) ~D(s)) are rowequivalent. Moreover the polynomial matrix (N(s) D(s)) is in this ase irreduibleand the MMillan degree of (N(s) D(s)) as de�ned in De�nition 2.3 is equal to theMMillan degree of the transfer funtion D�1(s)N(s) = G(s). For a proof of theseresults we refer the interested reader to [16℄. Finally we want to mention that aftera partitioning of the vetor w(t) into an input part u(t) and an output part y(t) it isalways possible to �nd a state spae representation of Equation 2.1 (see [30, Theorem4.1℄).Our interest in topologial questions of autoregressive systems originates in ourwork on feedbak ompensation [24, 28℄. If one wants to understand the pole plae-ment problem or if one studies degeneration phenomena one is immediately led to thestudy of topologial properties of the spae of all autoregressive systems. Moreoverit is possible to study the pole plaement problem and more general interpolationproblems (ompare with [1℄) even in the set of autoregressive systems.In the next setion we de�ne a topology on the set of autoregressive systems of�xed size and �xed MMillan degree. Using the ordered Kroneker indies and pivotindies we will then introdue a ellular deomposition of this spae. Note that alreadyearlier Hazewinkel and Martin [11℄ onsidered losure inlusions involving the set ofKroneker indies of a ontrollable system of the form _x = Ax+Bu and Helmke [12℄(see also [15℄) used the set of Kroneker indies to produe a ellular deompositionof this lass of linear systems.3 A Cellular DeompositionLet A�np;m be the set of all p � (m + p) autoregressive systems of degree at most n.The following Lemma is well known and haraterizes the Kroneker (or row degree)indies of P (s).Lemma 3.1 Given any p � (m + p) polynomial matrix ~P (s) of MMillan degreen, there exist unique � = (�1; : : : ; �p) with �1 � � � � � �p and Ppi=1 �i = n and ap� p unimodular matrix U(s) suh that the matrix P (s) = U(s) ~P (s) has row degrees�1 � � � � � �p.A proof an be found for example in [2, page 330℄.De�nition 3.2 The numbers � = (�1; : : : ; �p) are alled the ordered Kroneker in-dies of the autoregressive system P (s). A matrix P (s) is alled row redued if theordered Kroneker indies are equal to the degrees of the rows of P (s).3



Note that �1; : : : ; �p are not the ordered (minimal) indies of a `minimal basis' in thesense of Forney [7℄ unless P (s) is irreduible. P (s) is row redued if and only if thehigh order oeÆient matrix of P (s) has full rank, where the high order oeÆientmatrix of a polynomial matrix P (s) is a matrix whose entries of the i-th row are theoeÆients of s�i of the i-th row of P (s) where �i is the highest power of s in the i-throw of P (s).Our de�nition of pivot indies is only slightly di�erent from the one given byForney [7℄.De�nition 3.3 Given an autoregressive system with P (s) row redued and with Phthe high order oeÆient matrix of P (s), the i-th pivot index �0i is the largest integersuh that the submatrix of Ph formed from the intersetion of olumns �01; : : : ; �0iwith the rows orresponding to indies � �i has rank i. The ordered pivot indies� = (�1; �2; : : : ; �p) are the indies obtained from (�01; �02; : : : ; �0p) by reordering suhthat �i < �i+1 if �i = �i+1.The ordered Kroneker and pivot indies are invariant under row equivalene (see [7℄).In the following we would like to ombine the indies � and � in a single set � ofindies de�ned through:De�nition 3.4 �i := �i(m+ p) + �i:From the properties of � and � we an see that:1. 1 � �1 < �2 < � � � < �p � (n+ 1)(m+ p):2. �i � �i mod (m+ p)From property 2. in partiular follows that the assignment (�; �) 7! � is one-one.Based on this observation we denote with C� the subset of all the equivalene lassesin A�np;m with indies � = (�1; : : : ; �p). The following proposition is then a diretonsequene of Forney's ehelon form (see [7℄).Proposition 3.5 Eah equivalene lass in C� an be represented by a unique poly-nomial matrix P (s) = P0 + P1s+ P2s2 + � � �+ Pnsn: (3.1)suh that the matrix Q := [P0jP1j � � � jPn℄ has the following speial ehelon form:1. The (i; �i) entry is 1, all the other entries on the �i-th olumn and all the entriesto the right of the (i; �i) entry on the i-th row are zero.2. If j > �i and j � �i mod (m+ p) then the j-th olumn of Q is zero.4



Moreover every p � (m + p)(n + 1) matrix Q with the above ehelon form de�nes aunique element of C�.The following example illustrates this orrespondene:Example 3.6 Consider the set of 2�4 matries with indies � = (0; 2) and � = (2; 4),i.e. the subset C(2;12) of A�22;2. Then the orresponding ehelon forms are:" � 1 0 0 j 0 0 0 0 j 0 0 0 0� 0 � � j � 0 � � j � 0 � 1 # :Similar the systems with indies � = (3; 10) (� = (0; 2) and � = (3; 2)) have aorresponding ehelon form" � � 1 0 j 0 0 0 0 j 0 0 0 0� � 0 � j � � 0 � j � 1 0 0 # :For eah set C� let d� be the number of \free parameters" appearing in theorresponding ehelon form of the matries Q. Proposition 3.5 in partiular impliesthat C� is in one to one orrespondene to the eulidean spae IRd� . So far we didn'tde�ne any topology on the set A�np;m and of ourse we would like that the set theoretiidenti�ation oming from Proposition 3.5 is in addition ontinuous. With this inmind we de�ne now a topology on A�np;m:Let P�np;m be the set of all p � (m + p) full rank polynomial matries of degree atmost n and let P�n;qp;m be the subset of P�np;m formed by all matries whose entries arepolynomials of degree at most q. ThenP�n;0p;m � P�n;1p;m � P�n;2p;m � � � �with union P�np;m = S1q=0 P�n;qp;m . Note that eah P�n;qp;m is a subset of IRp(m+p)(q+1). Takethe topology on P�n;qp;m indued by the natural topology on IRp(m+p)(q+1). The diretlimit of the topologies on P�n;qp;m q = 0; 1; : : : de�nes a topology on P�np;m. In otherwords, a subset of P�np;m is open if and only if its intersetion with P�n;qp;m is open asa subset of P�n;qp;m for eah q. The topology whih we will take on A�np;m will be thequotient topology under the equivalene indued by the unimodular group, i.e. onehas the de�nition given in [25℄:De�nition 3.7 A subset U of A�np;m is open if, and only if the subset V of P�np;m formedby all the polynomial matries in the equivalent lasses of U is open.With respet to this topology one has now immediately the following Lemma whihis easy to verify: 5



Lemma 3.8 The set of equivalene lasses C� are ells, i.e. homeomorphi to aneulidean spae. Moreover one has A�np;m = S� C� and C� \ C� = ; if � 6= �.The dimension of the ell C�, earlier denoted by d� an be determined by ountingthe numbers of \free" entries in the ehelon form. For this denote for any real numberx with [x℄ the largest integer whih is smaller or equal to x. Then the numbers offree entries on the i-th row is�i � 1� i�1Xj=1([�i � �jm+ p ℄ + 1) = �i � i� i�1Xj=1[�i � �jm+ p ℄:Therefore d� = ( pXi=1 �i)� p(p+ 1)2 � pXi=2 i�1Xj=1[�i � �jm+ p ℄: (3.2)The formula (3.2) an be written in terms of the Kroneker indies and pivotindies. d� = n(m+ p) + pXi=1 �i � pXi;j=1max(�i � �j + 1; 0) ++#f(i; j) j �i � �j; �i > �jg (3.3)= n(m+ p) + pXi=1 �0i � pXi;j=1max(�i � �j + 1; 0) ++#f(i; j) j �i � �j; �0i > �0jg (3.4)Let A�p;m be the subset of all the systems with Kroneker indies �. The \thikest"open ell in A�p;m has pivot indies (�01; �02; : : : ; �0p) = (m + p;m + p � 1; : : : ; m + 1).Its dimension by above formula is(n+ p)(m + p)� pXi;j=1max(�i � �j + 1; 0)whih is the dimension of A�p;m obtained in [25℄. In partiular, the \thikest" openell of A�np;m has indies�i = ( a(m+ p) +m + b + i; i = 1; : : : ; p� b(a+ 1)(m+ p) +m + b� p+ i; i = p� b+ 1; : : : ; p (3.5)and dimension n(m + p) +mp = dimA�np;m, where a and b are the integers suh thatn = ap + b, 0 � b < p. 6



4 Closure of An Open CellIn this setion we will desribe the losure of a ell C� in A�np;m. The following exampleshows what type of phenomena we an expet:Example 4.1 Assume a; b; ; d; f are real onstants and a 6= 0. Then every elementin the ell " a b 1 0s+ f h 0 l # an be represented by " 1 ba 1a 00 bs +  s+ f d #. In thelimit as a!1, we have the ell " 1 0 0 00 bs+  s + f d #.In order to haraterize the losure of a ell in general we de�ne �rst a partialorder on the set of all indies. For eah � = (�1; : : : ; �p) we assoiate with a in�nitesequene: f(�) = (f1(�); f2(�); � � �) (4.1)where ffi(�)g = f�j + k(m+ p) j k = 0; 1; 2; : : : ; j = 1; : : : ; pg (4.2)and arrange the order suh thatf1(�) < f2(�) < � � � :Example 4.2 Consider in A�22;2.f(2; 12) = (2; 6; 10; 12; 14; 16; : : :);f(3; 10) = (3; 7; 10; 11; 14; 15; : : :):The following de�nition establishes a partial order on the set of indies � introduedin De�nition 3.4:De�nition 4.3 � � � if and only if fi(�) � fi(�) for all i: (4.3)Example 4.4 Consider A�22;2. (3; 12) < (4; 11) < (7; 8)beause f(3; 12) = (3; 7; 11; 12; : : :);f(4; 11) = (4; 8; 11; 12; : : :);f(7; 8) = (7; 8; 11; 12; : : :):7



The partial order an be haraterized in another way.Lemma 4.5 Let g(�; k) = #ffi(�) j fi(�) � kg: (4.4)Then � � � if and only if g(�; k) � g(�; k) for all positive integers k.De�nition 4.6 � is alled to over � if � < � and there is no  suh that � <  < �.Lemma 4.7 If � overs � then � and � must take one of the following forms:1. There exists an index j suh that� �i = �i for all i 6= j and� �j = maxfr j r < �j, r 6= �i mod (m + p) for all i < jg.2. There exist j and l with j < l suh that� �i = �i for all i 6= j; l and� �j = �l � (1 + [�l � �jm+ p ℄)(m + p), �l = �j + (1 + [�l � �jm + p ℄)(m+ p) and� [�l � �im + p ℄ = [�l � �im+ p ℄ for all i 2 (j; l)Proof: Let j be the smallest number suh that �j 6= �j, then �j < �j. Assume�i = ai(m + p) + bi; �i = i(m+ p) + di; 0 < bi; di � (m+ p):Sine both 1) and 2) are unhanged under translation (i.e. add a �xed integer to allthe indies), without loss of generality, assume dj = m+ p. Then i > j for all i > j.We �rst prove that aj = j. De�ne :i = 8><>: j(m+ p) + dj+1 if i = jj+1(m+ p) +m + p if i = j + 1�i otherwise.Then  < �. If � � , then � =  whih implies that aj = j. If � 6� , theng(�; k0) < g(; k0) for some integer k0 = a0(m + p) + b0, 0 < b0 � m + p where g isde�ned by (4.4). Notie that for any integer k = a(m + p) + bg(; k) = ( g(�; k) + 1 if j � a < j+1, dj+1 � b < m + pg(�; k) otherwise.8



So we must have g(�; k0) � g(�; k0) < g(; k0) = g(�; k0) + 1;and j � a0 < j+1; (4.5)dj+1 � b0 < m + p; (4.6)g(�; k0) = g(�; k0): (4.7)By ( 4.5), �i > k0 for all i > j. Sog(�; k0) = jXi=1#fnj�i � n � k0; n = �i mod m + pg:By (4.6), #fnj�j � n � k0; n = �j mod m + pg = a0 � j:So g(�; k0) = j�1Xi=1#fnj�i � n � k0; n = �i mod m+ pg+ a0 � j= j�1Xi=1#fnj�i � n � k0; n = �i mod m+ pg+ a0 � j� g(�; k0)�#fnj�j � n � k0; n = �j mod m+ pg+ a0 � j� g(�; k0)� (a0 � aj) + a0 � jwhih means that aj � jbeause of (4.7). On the other hand, aj � jbeause �j < �j. Therefore aj = j:If there is a l > j, dl 2 [bj; m+p), hoose suh l so that �l is the smallest. De�ne �:�i = 8><>: j(m+ p) + dl if i = jl(m + p) +m+ p if i = l�i otherwise.9



Then � < �. If � 6� �, the same argument shows that g(�; k0) = g(�; k0) for somek0 = a0(m + p) + b0 with j � a0 < l, dl � b0 < m + p. Sine �l is the smallest anda0 < l, one hasg(�; a0(m+ p) + bj � 1) = g(�; k0)�#fdi j di 2 [bj ; b0℄; i < jg= g(�; k0)�#fbi j bi 2 [bj; b0℄; i < jg� g(�; a(m+ p) + bj � 1) + 1� g(�; a(m+ p) + bj � 1) + 1whih is a ontradition. So � � � whih implies � = � and it is ase 2.If there is no l > j, dl 2 [bj; m+ p), de�ne �:�i = ( j(m + p) + d0 if i = j�i if i 6= j.where d0 = maxfd < dj j d 6= di; i < jg. Notie that bj � d0. If � 6� �, the sameargument shows that g(�; k0) = g(�; k0) for some k0 = a0(m + p) + b0 with j � a0and d0 � b0 < m+ p. Theng(�; a0(m+ p) + bj � 1) = g(�; k0)�#fdi j di 2 [bj ; b0℄; i < jg= g(�; k0)�#fbi j bi 2 [bj; b0℄; i < jg� g(�; a(m+ p) + bj � 1) + 1� g(�; a(m+ p) + bj � 1) + 1whih is a ontradition. So � � � whih implies � = � and it is ase 1.Corollary 4.8 If � overs � then d� = d� � 1Proof: We prove it for the two ases of Lemma 4.7 respetively.Case 1: Let ir < j be the integer suh that�ir = �j + r mod m + p; r = 1; : : : ; k = �j � �j � 1: (4.8)Then [�r � �im + p ℄ = ( [�r��im+p ℄� 1 if r = j and i = i1; : : : ; ik[�r��im+p ℄ otherwise10



Therefore by the formula (3.2),d� � d� = (�j � �j)� k = 1:Case 2: Diret omputation shows thatXi �i =Xi �i; (4.9)[�l � �jm+ p ℄ = [�l � �jm+ p ℄ + 1; (4.10)[�j��im+p ℄ = [�l��im+p ℄� (1 + [�l��jm+p ℄);[�l��im+p ℄ = [�j��im+p ℄ + (1 + [�l��jm+p ℄)for all i < j; (4.11)[�i��jm+p ℄ = [�i��lm+p ℄ + (1 + [�l��jm+p ℄);[�i��lm+p ℄ = [�i��jm+p ℄� (1 + [�l��jm+p ℄)for all i > l (4.12)and [�i��jm+p ℄ = [�l��jm+p ℄� [�l��im+p ℄);[�l��im+p ℄ = [�l��jm+p ℄� [�i��jm+p ℄)for all i 2 (j; l) (4.13)whih implies also [�i � �jm+ p ℄ = [�i � �jm + p ℄ for all i 2 (j; l): (4.14)Therefore by the formula (3.2),d� � d� = [�l � �jm+ p ℄� [�l � �jm+ p ℄ = 1:Lemma 4.7 an be written in terms of Kroneker and pivot indies:Corollary 4.9 Let �(�) and �(�) be the ordered Kroneker and pivot indies of �.If � overs �, then the ordered Kroneker indies and pivot indies of � and � musttake one of the following forms: 11



1. �i(�) = �i(�) for all i and there exists a j suh that �i(�) = �i(�) for all i 6= j,�j(�) = maxfr 2 [1; �j(�)) j r 6= �i(�); i < jg:2. There exists a j suh that �i(�) = �i(�) and �i(�) = �i(�) for all i 6= j,�j(�) = �j(�)� 1;�j(�) = minfr 2 [1; m+ p℄ j r 6= �i(�); i < jgand �j(�) = maxfr 2 [1; m+ p℄ j r 6= �i(�); i < jg:3. �i(�) = �i(�) for all i and there exist j < l, �j(�) < �l(�), �j(�) > �l(�) and�i(�) 62 (�l(�); �j(�)) for all i 2 (j; l), suh that �i(�) = �i(�) for all i 6= j; l,�j(�) = �l(�)and �l(�) = �j(�):4. There exist j < l, �j(�) � �l(�), �j(�) < �l(�), �i(�) 62 [1; �j(�))[(�l(�); m+p℄for all i 2 (j; l), suh that �i(�) = �i(�) and �i(�) = �i(�) for all i 6= j; l,�j(�) = �j(�)� 1;�l(�) = �l(�) + 1;�j(�) = �l(�)and �l(�) = �j(�):The goal of the next two lemmas is to show that the partial order introdued inDe�nition 4.3 orresponds on the topologial side to the losure inlusion of the ells.Lemma 4.10 If � � � then C� � C� (4.15)
12



Proof: We only need to prove this for the � whih overs �. The lemma is obviousfor ase 1), 2) and 3) of the Corollary 4.9. So we only onsider ase 4).Let � < � satisfy the onditions of ase 4) of Corollary 4.9, � = �(�), � = �(�)and P (s) = 2664 a1(s)...ap(s) 3775 2 C�be a polynomial matrix in ehelon form withai(s) = a0i + a1is+ � � �+ a�iis�i:De�ne Pt(s) = 2664 b1(s)...bp(s) 3775where bj(s) = a0j + a1js + � � �+ (a�jj � ta�l�1l)s�j � ta�lls�j+1and bi(s) = ai(s); i 6= j:Then limt!0 Pt(s) = P (s):For t 6= 0, Pt(s) is equivalent to Qt(s) = 2664 1(s)...p(s) 3775where l(s) = 0l + 1ls+ � � �+ 1t a�jjs�l�1:and i(s) = bi(s); i 6= l:Finally the ordered Kroneker and pivot indies of Qt(s) are (�1; : : : ; �j + 1; : : : ;�l�1; : : : ; �p) and (�1; : : : ; �l; : : : ; �j; : : : ; �p), i.e. the equivalent lass of Pt(s) belongsto C� for any t 6= 0:
13



Lemma 4.11 The union [���C� (4.16)is a losed subset of A�np;m.Proof: It is enough to prove that [�6��C�is open, i.e. we need to prove that the set formed by all the polynomial matries inP�n;qp;m of indies � 6� � is open in P�n;qp;m . For this, it is suÆient to prove that thereis no sequene of polynomial matries of indies � in P�n;qp;m whih approahes to apolynomial matrix of indies � if � 6� �.Assume that there are � and �, fl(�) > fl(�) for some l, and there are polynomialmatries fQi(s) j i = 1; 2; : : :g � P�n;qp;m of indies � and P (s) 2 P�n;qp;m of indies �suh that Qi(s)! P (s);Change P (s) into the ehelon form de�ned in Proposition 3.5 by unimodular rowoperation and hange Qi(s) by the same operation. Then some of the Qi(s) maynot belong to P�n;qp;m , but the degrees of the entries of Qi(s), i = 1; 2; : : : ; are stilluniformly bounded.Let P (s) = P0 + P1s+ � � �+ Pqsq and onsider the in�nite matrix2664 P0 P1 P2 � � � Pq 0 0 � � �0 P0 P1 � � � Pq�1 Pq 0 � � �... ... ... � � � ... ... ... � � � 3775 : (4.17)Let P be the in�nite matrix obtained from the above matrix by rearranging the rowssuh that the i-th row belongs to Vfi(�), where Vr is the vetor spae onsisting of allx = (x1; x2; : : : ; xr; 0; 0; : : :):Then the elementary unimodular polynomial row operations on P (s) orrespond toelementary row operations on P . For any j > l, let P j be the submatrix of P formedby the �rst j rows and Qji be the orresponding matries obtained from Qi(s). ThenQji ! P j and row sp(P j) 2 C(f1(�); f2(�); : : : ; fj(�))where C(f1; f2; : : : ; fj) = fW 2 Grass(j;1) j dim(W \ Vfk) = k;dim(W \ Vr) < k for all r < fk; k = 1; : : : ; jg (4.18)14



is a Shubert ell in the in�nite Grassmannian Grass(j;1). Sodim((row sp(Qji )) \ Vfl(�)) < lwhen i is large enough.On the other hand, sine the degrees of the entries of fQi(s)g are uniformlybounded, fQi(s)g an be hanged into the ehelon forms by multiplying from the leftby unimodular polynomial matries whose degrees of entries are uniformly bounded.So when j is large enough, dim((row sp(Qji )) \ Vfl(�) = lfor all i, whih is a ontradition.Combining Lemma 4.11 and 4.10 we have the following theorem:Theorem 4.12 The losure of the ell C� in A�np;m is given by:C� = [���C�: (4.19)Example 4.13 The ell deomposition of A�12;2 is given by:h a b  1es + f gs + h s + j 0 i��	 ��Rh a b  1es + f s + h j 0 ih a b 1 0es + f gs+ h 0 s+ l i��	 ��R ? ?��	 ��Rh a b  1s+ f h j 0 ih a b 1 0es + f s+ h 0 l ih a 1 0 0es+ f 0 is + j s+ l i��R? ?��	 ��R ��	 ��Rh a b 1 0s+ f h 0 l ih a 1 0 0es + f 0 s+ j l ih 1 0 0 00 gs+ h is+ j s + l i��	 ��R? ?��	 ��R ��	h a b 1 0f h 0 1 ih a 1 0 0s+ f 0 j l ih 1 0 0 00 gs+ h s + j l i��R ��	 ��R ��	h a 1 0 0f 0 j 1 ih 1 0 0 00 s+ h j l i��	 ��R ��	h a 1 0 0f 0 1 0 ih 1 0 0 00 h j 1 i��R ��	h 1 0 0 00 h 1 0 i?h 1 0 0 00 1 0 0 i 15



5 Finite CW-ComplexIn this setion we will show that the ell deomposition of the spae A�np;m onsideredin the previous setions is atually of the type of a �nite CW-omplex. For theonveniene of the reader we repeat the relevant de�nition from topology. Moreinformation an be found e.g. in [18℄.Let Dd = f(x1; : : : ; xd) 2 IRdjXl x2l � 1g (5.1)be the unit disk and Od = f(x1; : : : ; xd) 2 IRdjXl x2l < 1g (5.2)be the interior of Dd. Any spae homeomorphi to Od is alled an open d-ell. Inpartiular, IRd is an open d-ell.De�nition 5.1 [22, De�nition 6.1℄ A �nite CW-omplex onsists of a Hausdor�spae X together with a partition of X into a �nite olletion fC�g of disjoint subsetssuh that1. Eah C� is topologially an open ell of dimension d� � 0. Furthermore foreah ell C� there exists a ontinuous map� : Dd� ! X (5.3)whih arries Od� homeomorphially onto C�. The map � is alled a harater-isti map for the ell C�.2. Eah point x whih belongs to the losure C�, but not to C� itself, must lie ina ell C� of lower dimension.We want to remark at this point that a �nite CW-omplex is neessarily a ompattopologial spae. Before we establish the result that A�np;m is a �nite CW-omplex wewould like to make the onnetion to the paper [23℄ of Ravi and the seond author.In this paper the spae of homogeneous autoregressive systems is onsidered. Anautoregressive system P (s; t) 2 IKp�(m+p)[s; t℄ is alled homogeneous if eah entryfij(s; t); i = 1; : : : p; j = 1; : : :m+ p of P (s; t) is a homogeneous polynomial of degree�i and at least one prinipal minor, neessarily a homogeneous polynomial of degreed = Ppi=1 �i is nonzero. In [23℄ it is then shown that the set of all homogeneousp� (m+ p) autoregressive systems of degree d, whih we like to denote by ~Kdp;m, hasthe struture of a smooth projetive variety.16



Based on earlier work by Stromme [27℄ an expliit embedding of ~Knp;m into theGrassmann manifold Grass(np+ p� n; (n+ 1)(m+ p)) was onstruted. Over C (orover IR) one an equip ~Knp;m with the subset topology oming from the omplex (real)Grassmannian. One has a natural projetion � : ~Knp;m ! A�np;m given through thedehomogenization P (s; t) 7! P (s; 1) and this projetion is generially one-one.The following Lemma relates the topology of A�np;m as introdued in De�nition 3.7with the topology of ~Knp;m.Lemma 5.2 If d � n the map�d;n : ~Kdp;m �! A�np;m (5.4)P (s; t) 7�! P (s; 1)is ontinuous.Proof: For any losed set S 2 A�np;m; let x be a point in the losure of ��1(S): Thenthere is a homogeneous polynomial matrix P (s; t) representing the equivalene lassof x and a sequene of polynomial matries Pn(s; t) in ��1(S) � ~Kdp;m suh thatlimPn(s; t) = P (s; t): So limPn(s; 1) = P (s; 1) whih means that x 2 ��1(S):Based on the fats that ~Kdp;m is a ompat topologial spae [23℄ and � = �n;n isonto we have:Corollary 5.3 A�np;m is a ompat topologial spae.We are now in a position to state the main theorem of this setion:Theorem 5.4 A�np;m is a �nite CW-omplex.Proof: From Lemma 3.8 we already know that the set fC�g partitionsA�np;m into a �niteolletion of disjoint ells whih we will therefore identify with the open balls Od�.Assume that the degree of the systems in C� are equal to d. ThenC� � Adp;m � A�np;m:Let P (s) = P0+P1s+ � � �+Pdsd 2 C� be the matries in the ehelon form de�nedby Proposition 3.5 and onsider the in�nite matrixP = 2664 P0 P1 P2 � � � Pd 0 0 � � �0 P0 P1 � � � Pd�1 Pd 0 � � �... ... ... � � � ... ... ... � � � 3775 :17



Reall the de�nition of the ordered sequene f1(�) < f1(�) < : : : as introduedin (4.2). Notie that#fi j fi(�) � (d+ 1)(m+ p)g = dp+ p� d: (5.5)In partiular there are exatly dp+ p� d rows of P whih are elements of the vetorspae V(d+1)(m+p). (Compare with (4.17)). The subspae spanned by these rows is apoint in Grass(dp + p� d; (d+ 1)(m+ p)), and if we write these rows into a matrix,eah element has the following partiular row redued ehelon form:2666666666664
f1 f2 � � � fdp+p�d� � � � � 1 0 � � � 0 0 0 � � � 0 0 0 � � � 0... ... 0 � � � � � 1 0 � � � 0 0 0 � � � 0... ... ... ... ... 0 � � � � 0 0 0 � � � 0... ... ... ... ... ... ... ... ... ... ...� � � � � 0 � � � � � 0 � � � � � 1 0 � � � 0

3777777777775 (5.6)
So we have natural embeddings:C� i1�! C(f1(�); : : : ; fdp+p�d(�)) i2�! Grass(dp+ p� d; (d+ 1)(m+ p)): (5.7)where the Shubert ell C(f1; : : : ; fdp+p�d) was earlier de�ned in (4.18). Letk = dp+p�dXl=1 (fl � l) (5.8)be the dimension of this ell and let Ok be the orresponding homeomorphi openball. Furthermore let Dk := Ok and Dd� := Od�: The following diagram explains theinterrelation between the di�erent spaes and maps de�ned so far:C� i1�! C(f1; : : : ; fdp+p�d)l l &i2Od� i3�! Ok i4�! Grass(dp+p�d; (d+1)(m+p))#i5 #i6 %� "i8Dd� i7�! Dk ~Kdp;m#�d;nA�np;m

(5.9)
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In this ommutative diagram i1; i2 are the inlusions de�ned in (5.7) and i3; i4 arethe maps indued by i1; i2. The maps i5; i6; i7 denote the natural inlusion maps andi8 denotes the embedding of the ompat manifold ~Kdp;m as de�ned in [23℄. It is ourgoal to show the existene of a harateristi map from Dd� to A�np;m.Sine Grass(dp + p � d; (d+ 1)(m + p)) is a CW-omplex and the Shubert ellsof the form (5.6) de�ne a ell deomposition of Grass(dp + p � d; (d + 1)(m + p))(see [18, Ch.I, Ex. 2.5.℄ or [22, x6℄), there exists harateristi map �, whih arries Okhomeomorphially onto C(f1; : : : ; fdp+p�d) when viewed as a subset of the Grassmannmanifold.Cruial for the proof is the observation that by de�nition (i4Æi3)(Od�) � i8( ~Kdp;m).Sine i8( ~Kdp;m) is losed and the harateristi map � is ontinuous we onlude that(� Æ i7)(Dd�) � i8( ~Kdp;m). But then the map� := �d;n Æ (i8)�1 Æ � Æ i7 (5.10)is well de�ned and ontinuous. By ontinuity �(Dd�) � �(Od�) = C�: By Theo-rem 4.12 � is therefore a harateristi map.Remark 5.5 The embedding of C� into Grass(dp + p � d; (d + 1)(p +m)) gives usanother way to desribe the projetive manifold ~Kdp;m introdued in [23℄. For thisonsider in (5.9) the situation when d = n. Then the losure of (i2 Æ i1)(C�) isneessarily isomorphi to the manifold ~Knp;m.In onlusion of this setion we desribe the singular homology groups for the setA�np;m(C). Note that the ells C�(C) have real dimension 2d� in partiular there areno ells of odd real dimension. De�nebk = ( #f� j d� = k=2g if k is even0 if k is odd. : (5.11)By the properties of �nite CW-omplex [18℄ de�ned over C, we dedueTheorem 5.6 The singular homology H�(A�np;m;Z) of A�np;m(C) has no torsion,Hk(A�np;m;Z) = Zbkand the k-th Betti number of A�np;m(C) is bk.Aknowledgments. We would like to take the opportunity to thank U.Helmke,M.S.Ravi and the anonymous referee for several helpful omments and disussions.19
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