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Abstract

The set of autoregressive systems generalizes the set of transfer functions in a natural
way. In this paper we describe a topology for the set of all autoregressive systems
of fixed size and bounded McMillan degree. We show that this topological space has
the structure of a finite CW-complex.

Abbreviated Title: A Cell Structure for Autoregressive Systems



1 Introduction

In the last two decades a lot of research was devoted to the study of topological and
algebraic properties of the set of transfer functions. This research was motivated by
problems arising in adaptive and robust control, system identification, dynamic pole
placement and more general interpolation problems.

Let S, (IK) be the set of all proper p x m transfer functions of a fixed McMillan
degree n defined over the field IK(s). Over the reals (IK = R) Clark [5] showed that
Sy has the structure of a smooth manifold of dimension n(m + p) + mp. Over a
general algebraically closed field IK Hazewinkel [10] showed that S} has the struc-
ture of a quasi affine variety. Hermann and Martin [21] estabhshed an isomorphism
between the subset of strictly proper transfer functions and the set of base point pre-
serving holomorphic maps from the Riemann sphere S? to the Grassmann manifold
Grass(p, m + p) making in this way the connection to geometry.

Since this time there has been a great effort to understand the topological proper-
ties of the class of linear systems. Important contributions include e.g. the articles of
Byrnes and Hurt [3], Byrnes and Duncan [4], Delchamps [6] and Helmke [12]. More
recently a cellular decomposition of S, was constructed independently by Man-
they [20] (compare also with [8, 12, 14]) and by Mann and Milgram [19]. Using their
decomposition Mann and Milgram were able to calculate topological invariants of
S, m like the integral homology groups. For a good survey and a comparative study
of different topologies on SJ'  we recommend the dissertation of Gliising-Liierflen [9].

A natural generalization of the set S, of p x m transfer functions of a fixed
McMillan degree n is the set of p X (m + p) autoregressive systems with McMillan
degree at most n which we will denote by AZ7 . This set of systems represents the
class of time invariant, continuous-time linear systems in the behavioral framework
of Willems [29, 30, 31].

In the next section we will review the notion of an autoregressive system and
we will define a topology on A7 which extends the topology on the set S}, in a
natural way. In Section 3 we will show that the Kronecker indices and pivot indices
as introduced by Forney [7] can be used to construct a cellular decomposition. In
order to understand the boundary structure of each cell we will define for each set of
Kronecker and pivot indices a new set of indices. On this set of indices we will define
a partial order which corresponds on the topological side to the closure inclusion.
In other words we will show (Section 4, Theorem 4.12) that the closure of each cell
consists of cells with smaller index.

Finally in the last section we will show that A;"m is a compact topological space
and the constructed cellular decomposition gives raise to a finite CW-complex. Using
this information we will describe the singular homology of AS7 (€).



2 The Set of Autoregressive Systems

Let IK denote either the field of real (IK = R) or complex (IK = €) numbers and
consider a p x (m + p) matrix with entries in the polynomial ring IK[s]. P(s) defines
a system of autoregressive equations in the sense of Willems [29, 31] through:

P(%)w(t) =0 (2.1)
Under a solution of 2.1 we understand a vector valued distribution ¢ : IK — K™*?.
(Compare with [31, page 279]). Using again the language of Willems [29, 31] (see
also [17, 26]) we call the set of solutions of 2.1 the behavior of the system.

Clearly elementary row operations on P(s) have no affect on the behavior. More-
over an important result formulated in Schumacher [26, Corollary 2.5] (compare also
with [29, Section 5] and with [25]) states that two full rank polynomial matrices
P(s) and P(s) are row equivalent if, and only if the systems P(£)w(t) = 0 and
P(L)w(t) = 0 have the same behavior. Based on this result we define: (Compare

di
also with [9, 25, 31])

Definition 2.1 Two p x (m+p) polynomial matrices P(s) and P(s) are called (row)
equivalent if there is a unimodular matrix U(s) with P(s) = U(s)P(s). An equiva-
lence class of full rank polynomial matrices is called an autoregressive system.

In the sequel we often will not distinguish between the matrix P(s) and the au-
toregressive system this matrix defines. The context will make the meaning clear.

Definition 2.2 An autoregressive system P(s) is called irreducible or controllable if
P(s) has full rank for all s € C.

Definition 2.3 The McMillan degree of a full rank p x (m + p) polynomial matrix
P(s) is given by the maximal degree of the full size minors of P(s). The degree of an
autoregressive system

P(%)w(t) 0

is defined to be the degree of P(s).

Clearly Definitions 2.2 and 2.3 do not depend on the particular representant of the
equivalence class.

The set of autoregressive systems generalizes the set of transfer functions in the
following sense: Assume G(s) is a proper or improper p X m transfer function of fixed
McMillan degree n. Let D~'(s)N(s) = G(s) be a left coprime factorization. Then it



is well known that D~'(s)N(s) = G(s) is a second left coprime factorization if, and
only if the p x (m + p) polynomial matrices (N(s) D(s)) and (N(s) D(s)) are row
equivalent. Moreover the polynomial matrix (N(s) D(s)) is in this case irreducible
and the McMillan degree of (N(s) D(s)) as defined in Definition 2.3 is equal to the
McMillan degree of the transfer function D~!(s)N(s) = G(s). For a proof of these
results we refer the interested reader to [16]. Finally we want to mention that after
a partitioning of the vector w(t) into an input part u(¢) and an output part y(¢) it is
always possible to find a state space representation of Equation 2.1 (see [30, Theorem
4.1]).

Our interest in topological questions of autoregressive systems originates in our
work on feedback compensation [24, 28]. If one wants to understand the pole place-
ment problem or if one studies degeneration phenomena one is immediately led to the
study of topological properties of the space of all autoregressive systems. Moreover
it is possible to study the pole placement problem and more general interpolation
problems (compare with [1]) even in the set of autoregressive systems.

In the next section we define a topology on the set of autoregressive systems of
fixed size and fixed McMillan degree. Using the ordered Kronecker indices and pivot
indices we will then introduce a cellular decomposition of this space. Note that already
earlier Hazewinkel and Martin [11] considered closure inclusions involving the set of
Kronecker indices of a controllable system of the form # = Az + Bu and Helmke [12]
(see also [15]) used the set of Kronecker indices to produce a cellular decomposition
of this class of linear systems.

3 A Cellular Decomposition

Let AX7 be the set of all p x (m + p) autoregressive systems of degree at most n.
The following Lemma is well known and characterizes the Kronecker (or row degree)
indices of P(s).

Lemma 3.1 Given any p x (m + p) polynomial matriz P(s) of McMillan degree
n, there exist unique v = (v1,...,v,) with vy < -+ < v, and Y0 v, = n and a
p X p unimodular matriz U(s) such that the matriz P(s) = U(s)P(s) has row degrees
n <<

A proof can be found for example in [2, page 330].

Definition 3.2 The numbers v = (vy,...,1,) are called the ordered Kronecker in-
dices of the autoregressive system P(s). A matrix P(s) is called row reduced if the
ordered Kronecker indices are equal to the degrees of the rows of P(s).



Note that vy, ..., v, are not the ordered (minimal) indices of a ‘minimal basis’ in the
sense of Forney [7] unless P(s) is irreducible. P(s) is row reduced if and only if the
high order coefficient matrix of P(s) has full rank, where the high order coefficient
matrix of a polynomial matrix P(s) is a matrix whose entries of the i-th row are the
coefficients of s” of the i-th row of P(s) where v; is the highest power of s in the i-th
row of P(s).

Our definition of pivot indices is only slightly different from the one given by
Forney [7].

Definition 3.3 Given an autoregressive system with P(s) row reduced and with P,
the high order coefficient matrix of P(s), the i-th pivot index u} is the largest integer
such that the submatrix of P, formed from the intersection of columns pu},..., u!
with the rows corresponding to indices < v; has rank 7. The ordered pivot indices
p = (h1; fr2, - - -, p1p) are the indices obtained from (i}, piy, . . ., p;) by reordering such
that p; < pipr if v, = viga.

The ordered Kronecker and pivot indices are invariant under row equivalence (see [7]).
In the following we would like to combine the indices v and p in a single set « of
indices defined through:

Definition 3.4 «; := v;(m + p) + p;.

From the properties of ¥ and u we can see that:
Ll1<oy<m<---<a,<(n+1)(m+p).
2. u; = a; mod (m + p)

From property 2. in particular follows that the assignment (v, u) — « is one-one.
Based on this observation we denote with C, the subset of all the equivalence classes
in A7 with indices o = (ay,...,qp). The following proposition is then a direct
consequence of Forney’s echelon form (see [7]).

Proposition 3.5 Fach equivalence class in C, can be represented by a unique poly-
nomial matrix
P(s) = Py+ Pis+ Pys® + -+ P,s". (3.1)

such that the matriz Q) = [Py|Py|- - |P,| has the following special echelon form:

1. The (i, ;) entry is 1, all the other entries on the o;-th column and all the entries
to the right of the (i, «;) entry on the i-th row are zero.

2. If j > «; and j = «; mod (m + p) then the j-th column of Q is zero.



Moreover every p x (m + p)(n + 1) matriz Q with the above echelon form defines a
unique element of C,,.

The following example illustrates this correspondence:

Example 3.6 Consider the set of 2x4 matrices with indices v = (0,2) and u = (2, 4),
i.e. the subset C(y19) of A;% Then the corresponding echelon forms are:

x 1.0 0] 0000 |
x« 0 % x | % 0 % x |

Similar the systems with indices @ = (3,10) (v = (0,2) and p = (3,2)) have a
corresponding echelon form

x « 1.0 [ 000 0 | 0 00
x« % 0 x | x x 0 x | = 1 0 0|
For each set C, let d, be the number of “free parameters” appearing in the
corresponding echelon form of the matrices ). Proposition 3.5 in particular implies
that C,, is in one to one correspondence to the euclidean space R% . So far we didn’t
define any topology on the set A7 and of course we would like that the set theoretic
identification coming from Propos1t1on 3.5 is in addition continuous. With this in
mind we define now a topology on AJ7
Let P57 be the set of all p x (m + p) full rank polynomial matrices of degree at

most n and let P79 be the subset of P formed by all matrices whose entries are
polynomials of degree at most ¢. Then

o

0 = 1

*

000]

o

<n,0 <n,1 <n,2
P CEBL ChtC

with union P 7 = U2, Biw? Note that each P79 is a subset of IR (m+p)a+D) - Take
the topology on P4 induced by the natural topology on RPP)@+D - The direct
limit of the topologles on P57 q = 0,1,... defines a topology on P . In other
words, a subset of P<" is open if and only 1f its intersection with P<"q is open as

a subset of P4 for each g. The topology which we will take on A;"m will be the
quotient topology under the equivalence induced by the unimodular group, i.e. one

has the definition given in [25]:

Definition 3.7 A subset U of A7 is open if, and only if the subset V' of P{ formed
by all the polynomial matrices in ‘the equivalent classes of U is open.

With respect to this topology one has now immediately the following Lemma which
is easy to verify:



Lemma 3.8 The set of equivalence classes C,, are cells, i.e. homeomorphic to an
euclidean space. Moreover one has AS = U, Co and C, N Cs = 0 if a # 3.

The dimension of the cell C,, earlier denoted by d, can be determined by counting
the numbers of “free” entries in the echelon form. For this denote for any real number
x with [z] the largest integer which is smaller or equal to x. Then the numbers of
free entries on the i-th row is

i1 ) =a; i~ —
N e e Py
Therefore -
¢ (P+1) N
dy = i — ——r 3.2
I R P s (32)

The formula (3.2) can be written in terms of the Kronecker indices and pivot
indices.

P
do = n(m+p)+> Zmax vi—vj+1,0) +

=1 1,j=1
+#{(1,J) | vi < Vj,llz' > puit (3.3)
P
= n(m+p)+> 1~ Zmax vi —vj+1,0) +
=1 1,j=1
+#{(0,5) [ vi < wjo s > 13} (3.4)

Let Aj,, be the subset of all the systems with Kronecker indices v. The “thickest”
open cell in AY | has pivot indices (), pty, ..., ) = (m+p,m+p—1,...,m+1).
Its dimension by above formula is

(n+p)(m+p) — Zmax v; —v;+1,0)
i,j=1

which is the dimension of A? = obtained in [25]. In particular, the “thickest” open

cell of AX) has indices

,m

ai:{?(m+p)+m+b+l7 i=1,.. . .p—b -

a+1)(m+p)+m+b—p+i, i=p—b+1,...,p

and dimension n(m + p) + mp = dim A>"  where a and b are the integers such that

n=ap—+0,0<b<p.

p,m’



4 Closure of An Open Cell

In this section we will describe the closure of a cell C,, in A7, The following example
shows what type of phenomena we can expect:

Example 4.1 Assume a,b,c,d, f are real constants and a # 0. Then every element

b 1
in the cell l “ b 10 a . In the

0 bs+c sj—f d

1
s+f h O I can be represented by l

0 0 0

o 1
limit as @ — oo, we have the cell 0 bs+c s+f d|

In order to characterize the closure of a cell in general we define first a partial

order on the set of all indices. For each v = (au, ..., a,) we associate with a infinite
sequence:
fla) = (fi(a), fale),--) (4.1)
where
{fil@)y ={a; +k(m+p) | k=0,1,2,...; j=1,....p} (4.2)

and arrange the order such that
fila) < fala) <---.
Example 4.2 Consider in AZ3.
f(2,12) = (2,6,10,12,14, 16, .. .),
£(3,10) = (3,7,10,11,14,15,.. ).

The following definition establishes a partial order on the set of indices « introduced
in Definition 3.4:

Definition 4.3
a < fif and only if f;(a) < fi(B) for all 4. (4.3)
Example 4.4 Consider A53.
(3,12) < (4,11) < (7,8)

because
f(3,12) = (3,7,11,12,...),
F(4,11) = (4,8,11,12,.. ),
f(7,8) = (7,8,11,12,...).



The partial order can be characterized in another way.

Lemma 4.5 Let
9(a k) = #{fi(a) | fi(e) < k}. (4.4)
Then o« < (3 if and only if g(a, k) > g(5, k) for all positive integers k.

Definition 4.6 [ is called to cover «if & < 3 and there is no v such that a < v < .

Lemma 4.7 If § covers o then o and 3 must take one of the following forms:

1. There exists an index j such that

o o, = [ foralli# j and

e a; =max{r |r < f;, r# ; mod (m+p) for alli < j}.
2. There exist j and | with j <l such that

o o; = (3 for all i # j,1 and

B B — B; B B — B
e a;=p0—(1+ [m])(erp); ap =B+ (1+ [m])(m+19) and
ﬁz*ﬂi]:[

m—+p m-—+p

oy — O

o | for alli € (4,1)

Proof: Let j be the smallest number such that a; # 3;, then o; < ;. Assume

Since both 1) and 2) are unchanged under translation (i.e. add a fixed integer to all
the indices), without loss of generality, assume d; = m+p. Then ¢; > ¢; for all i > j.
We first prove that a; = ¢;. Define ~:

cj(m—i—p)+dj+1 le:j
Yi = Cj+1(m+p)+m+p ifi=75+1
B; otherwise.

Then v < 8. If @ < v, then o = 7 which implies that a; = ¢;. If @ £ v, then
g(a, ko) < g(7, ko) for some integer kg = ag(m + p) + by, 0 < by < m + p where g is
defined by (4.4). Notice that for any integer k = a(m + p) + b

g('yk): g(ﬂ,k)—i—l ifcj§a<cj+1;dj+1§b<m—|—p
’ 9(B, k) otherwise.



So we must have

9(B, ko) < gla, ko) < g(7, ko) = g(B, ko) +1,

and
Cj <ag < Cj+1, (45)
djy1 < by <m+p, (4.6)
9(a, ko) = g(B, ko). (4.7)

By (4.5), B; > ko for all i > j. So

J
9(B, ko) = Z#{nwz' <n < ko, n= 0 mod m + p}.

i=1

By (4.6),
#{RWJ <n < ko, n=f; mod m+p} = ag — Cj-

So

j-1
9(B, ko) = Y #{n|fi <n <ky, n=p modm+p}+a—c¢
i—1
i1
Z#{n\al <n<ky n=ao modm+p}+ay—c
i—1
g(a, ko) — #{nla; <n <ky, n=a; mod m+p}+ay— ¢

g9(a, ko) — (ao — a;) +ao — ¢;

INIA

which means that

a; 2 ¢
because of (4.7). On the other hand,

aj < ¢j
because a; < ;. Therefore

Gj = (’]

If thereisal > j, d; € [b;, m+p), choose such [ so that 3 is the smallest. Define 7:

cj(m+p)+d ifi=j
=1 agm+p +m+p ifi=1I
B; otherwise.



Then n < . If o £ 1, the same argument shows that g(a, ko) = g(5, ko) for some
ko = ao(m + p) + by with ¢; < ag < ¢, d; < by < m + p. Since 3 is the smallest and

ap < ¢, one has

g(Brao(m +p) +b; —1) = g(B, ko) — #{di | d; € [bj, bo]7 < j}
= gla, ko) — #{bi | b € [bj. bol, i < j}
(@
(

which is a contradiction. So o < 7 which implies & = 7 and it is case 2.

gla,am+p)+b; —1)+1
9(B,a(m+p)+b; —1)+1

(AVARAVS

If there is no [ > j, d; € [b;, m + p), define &:

e iti# .

where dy = max{d < d; | d # d;, i < j}. Notice that b; < dy. If & £ &, the same
argument shows that g(a, ko) = g(5, ko) for some ky = ag(m + p) + by with ¢; < ag
and dy < by < m + p. Then

g(B,ag(m +p)+b; — 1) = g(B, ko) — #{di | d; € [bj,bo].i < j}
ko) — #{b; | b; € [bj, bol,7 < j}

which is a contradiction. So o < k which implies @ = k and it is case 1.

Corollary 4.8

(
9(a,
gla,a(m+p)+b;—1)+1
g(B,a(m+p)+b; —1)+1

AVARRVS

If B covers a then

do = dg — 1

Proof: We prove it for the two cases of Lemma 4.7 respectively.

Case 1: Let 1,

Then

< j be the integer such that

a, =aj+rmodm+p, r=1,.... k=0 —a; — 1.

[

ozrozi]_{ [BBi) 1 ifr=jandi=iy,...,i
L

@ [o

3

m+p L] otherwise

m—+

=

10

(4.8)



Therefore by the formula (3.2),

dg = do = (Bj — o) =k =1.

Case 2: Direct computation shows that

Za’i :Zﬁla

Bty - Pty
m+p m+p ’
(] = (252 = 1+ [B22),
(2] = =]+ 1+ [352)

for all ¢ < 7,
Sy = [Gag] + L+ 1)),
S = Bl = 0+ 553D
for all 2 > {
5] = ]~ 850
[ = 57 - 522))

for all i € (4, 1)

which implies also
m—+p m+p

Therefore by the formula (3.2),

ap — @

]7[51—@'

dﬂ—da:[
m-+p m—+p

Lemma 4.7 can be written in terms of Kronecker and pivot indices:

| for all i € (4,1).

= 1.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Corollary 4.9 Let v(a) and p(a) be the ordered Kronecker and pivot indices of a.
If B covers a, then the ordered Kronecker indices and pivot indices of a and 3 must

take one of the following forms:

11



1. vi(a) = vi(B) for all i and there exists a j such that pi(e) = p;(8) for all i # j,
pi(e) = max{r € [1,1;(9)) | r # pui(B), i < j}.
2. There exists a j such that vi(c) = vi(B) and () = pi(B8) for all i # j,
vi(a) = v;(B) — 1,

p;(B) = min{r € [1,m+p| [ r # p(B3), i <j}
and
pi(a) = max{r € [1,m+p] | r # w(B), i < j}.

3. vi(a) = v;(B) for all i and there exist j < 1, v;(B) < vi(B), u;(B) > w(B) and
pi(8) & (u(B), w3 (8)) for alli € (j,1), such that pi(a) = pi(B) for alli # j, 1,

i) = w(p)

and

(ar) = p(3).

4. There exist j <1, v;(8) < vi(B), i (B) < u(B), pi(B) & [1, pui(8))I(pu(B), m+p]
for alli € (4,1), such that vi(a) = v;(B) and p;(a) = w;(B) for all i # j,1,

and

The goal of the next two lemmas is to show that the partial order introduced in
Definition 4.3 corresponds on the topological side to the closure inclusion of the cells.

Lemma 4.10 If o < 3 then
C,CCp (4.15)

12



Proof: We only need to prove this for the 8 which covers «. The lemma is obvious
for case 1), 2) and 3) of the Corollary 4.9. So we only consider case 4).

Let o < (3 satisfy the conditions of case 4) of Corollary 4.9, v = v(a), p = p(a)
and

ai(s)
P(s) = : € C,
ap(s)

be a polynomial matrix in echelon form with

ai(s) = Qo; + a1;S + -+ CL,,Z.Z'SW.

Define

bi(s)

B(s) =1

by (s)

where
bj(s) = ag; + aijs + -+ + (a5 — tay, 1)s" — ta,, st
and
bi(s) =ai(s), i #j

Then

For t # 0, Py(s) is equivalent to

where

v—1
Cl(S) :COZ+CIZS+"'+Ear{jjS ==,

and
ci(s) = bi(s), i #1.

Finally the ordered Kronecker and pivot indices of Qy(s) are (v,...,v; +1,...,
vi—1,....vp)and (pr, ..oy fys ooy s - - -, y), 1€, the equivalent class of P;(s) belongs
to Cs for any t # 0. |

13



Lemma 4.11 The union

U Ca (4.16)

‘ “n
is a closed subset of AJT.

Proof: 1t is enough to prove that

U Ca

afpB
is open, i.e. we need to prove that the set formed by all the polynomial matrices in
Py of indices o £ (3 is open in P9, For this, it is sufficient to prove that there
is no sequence of polynomial matrices of indices 3 in pr;;’q which approaches to a
polynomial matrix of indices « if a £ (.

Assume that there are o and 3, fi(a) > f,(8) for some [, and there are polynomial
matrices {Q;(s) | i = 1,2,...} C B, of indices § and P(s) € P? of indices a
such that

Qi(s) — P(s),

Change P(s) into the echelon form defined in Proposition 3.5 by unimodular row
operation and change @;(s) by the same operation. Then some of the @;(s) may
not belong to P9, but the degrees of the entries of Qi(s), 1 = 1,2,..., are still
uniformly bounded.

Let P(s) = Py+ Pys+ -+ + P;s? and consider the infinite matrix

P, P, P, - P, 0 0O ---
A

0O P, P, --- Py P (4.17)

Let P be the infinite matrix obtained from the above matrix by rearranging the rows
such that the i-th row belongs to Vy,(,), where V, is the vector space consisting of all

r = (r1,%9,...,2,,0,0,...).

Then the elementary unimodular polynomial row operations on P(s) correspond to
elementary row operations on P. For any j > [, let P be the submatrix of P formed
by the first j rows and Q7 be the corresponding matrices obtained from Q;(s). Then
Q) — P7 and

row sp(P?) € C(fi(a), fo(a), ..., fi(a))

where

C(fi, fas---1 fj) = {W € Grass(j,o00) | dim(W NV},) =k,
dim(WnNV,) <k forall r<fy, k=1,...,5} (4.18)

14



is a Schubert cell in the infinite Grassmannian Grass(j, 00). So
dim((row sp(@])) N Vi) <1

when i is large enough.

On the other hand, since the degrees of the entries of {Q;(s)} are uniformly
bounded, {Q;(s)} can be changed into the echelon forms by multiplying from the left
by unimodular polynomial matrices whose degrees of entries are uniformly bounded.
So when j is large enough,

dim((row sp(QJ)) N Vs =
for all 7, which is a contradiction. [ |

Combining Lemma 4.11 and 4.10 we have the following theorem:

Theorem 4.12 The closure of the cell Cy in A7, is given by:
Cs=J C.. (4.19)
a<B

Example 4.13 The cell decomposition of A;% is given by:

0 a 1 0 0 1 0 0 0
l es+f 0 s+7 l 0 gs+h is+j s+1

15



5 Finite CW-Complex

In this section we will show that the cell decomposition of the space A;’"m considered
in the previous sections is actually of the type of a finite CW-complex. For the
convenience of the reader we repeat the relevant definition from topology. More
information can be found e.g. in [18].
Let
D' = {(z1,...,2q) € RY D 2} < 1} (5.1)
!

be the unit disk and

0% = {(z1,...,24q) EIR,d|;xl2<1} (5.2)

be the interior of D% Any space homeomorphic to O? is called an open d-cell. In
particular, R? is an open d-cell.

Definition 5.1 [22, Definition 6.1] A finite CW-complex consists of a Hausdorff
space X together with a partition of X into a finite collection {C,} of disjoint subsets
such that

1. Each C, is topologically an open cell of dimension d, > 0. Furthermore for
each cell C, there exists a continuous map

x: D™ = X (5.3)

which carries O% homeomorphically onto C,. The map Y is called a character-
istic map for the cell C,.

2. Each point z which belongs to the closure C,, but not to C,, itself, must lie in
a cell U3 of lower dimension.

We want to remark at this point that a finite CW-complex is necessarily a compact
topological space. Before we establish the result that AX7 is a finite CW-complex we
would like to make the connection to the paper [23] of Rav1 and the second author.

In this paper the space of homogeneous autoregressive systems is considered. An
autoregressive system P(s,t) € IKP*"P)[s ] is called homogeneous if each entry
fij(s,t),i=1,...p,j =1,...m+p of P(s,t) is a homogeneous polynomial of degree
v; and at least one principal minor, necessarily a homogeneous polynomial of degree
d = YF ,v; is nonzero. In [23] it is then shown that the set of all homogeneous
p X (m —|—p) autoregressive systems of degree d, which we like to denote by K has
the structure of a smooth projective variety.

pm7
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Based on earlier work by Stromme [27] an explicit embedding of f(g’m into the

Grassmann manifold Grass(np +p —n, (n+1)(m + p)) was constructed. Over € (or
over IR) one can equip K',, with the subset topology coming from the complex (real)

Grassmannian. One has a natural projection 7 : f(g’m — AXD given through the
dehomogenization P(s,t) — P(s,1) and this projection is generically one-one.

The following Lemma relates the topology of AZ7 as introduced in Definition 3.7
with the topology of f(;m.

Lemma 5.2 If d < n the map

Tdn IN(;l’m — A;fn (5.4)
P(s,t) +— P(s,1)

15 continuous.

Proof: For any closed set S € AS7., let x be a point in the closure of 7~ 1(S). Then
there is a homogeneous polynomial matrix P(s, ) representing the equivalence class
of 2 and a sequence of polynomial matrices P,(s,t) in 7 '(S) C K¢, such that

lim P,(s,t) = P(s,t). Solim P,(s,1) = P(s,1) which means that x € 7—!(S). |

Based on the facts that f(;l,m is a compact topological space [23] and © = 7, ,, is
onto we have:

Corollary 5.3 A;Zl 15 a compact topological space.

We are now in a position to state the main theorem of this section:

Theorem 5.4 A=" is a finite CW-complex.

p’m

Proof: From Lemma 3.8 we already know that the set {C,} partitions A} into a finite
collection of disjoint cells which we will therefore identify with the open balls O%.
Assume that the degree of the systems in C, are equal to d. Then

d <
Co C A}, CASL

Let P(s) = Py+ Pis+---+ Pys? € C, be the matrices in the echelon form defined
by Proposition 3.5 and consider the infinite matrix

r P P --- P 00
P = 0O B P --- Pj1 P; 0

17



Recall the definition of the ordered sequence fi(a) < fi(a) < ... as introduced
in (4.2). Notice that

#{i | fila) <(d+1)(m+p)} =dp+p—d (5.5)

In particular there are exactly dp + p — d rows of P which are elements of the vector
space Vigp1)(m+p). (Compare with (4.17)). The subspace spanned by these rows is a
point in Grass(dp +p — d, (d + 1)(m + p)), and if we write these rows into a matrix,
each element has the following particular row reduced echelon form:

( fl fZ fdp+p7d |
0 % .- 0% 10 0 0 0 0
o . (5.6)
0 = 0 0 0 0
\‘* ) * O * ) * O * ) * 1 O ) 0_

So we have natural embeddings:

Co =5 C(f1(Q), .-, fapip—a(@)) == Grass(dp +p — d, (d+ 1)(m+p)).  (5.7)
where the Schubert cell C(f1,. .., fap+p—a) was earlier defined in (4.18). Let
dp+p—d
k= Y (fi—1) (5.8)

=1

be the dimension of this cell and let OF be the corresponding homeomorphic open
ball. Furthermore let D* := OF and D% := (O The following diagram explains the
interrelation between the different spaces and maps defined so far:

Ca L> C(fl: sy fdp+pfd)

i i \‘zé
o i, O s Grassdp+p—d, [d+1)(m+p)
. " Ay ~ (5.9)
Do 7 Dk f(g,m
Iman
Azn

18



In this commutative diagram iy, is are the inclusions defined in (5.7) and i3, iy are
the maps induced by 41, 45. The maps i5, ig, 27 denote the natural inclusion maps and
is denotes the embedding of the compact manifold Kdm as defined in [23]. It is our
goal to show the existence of a characteristic map from D% to AST

Since Grass(dp +p — d, (d + 1)(m + p)) is a CW-complex and the Schubert cells
of the form (5.6) define a cell decomposition of Grass(dp + p — d, (d + 1)(m + p))
(see [18, Ch.I, Ex. 2.5.] or [22, §6]), there exists characteristic map ¢, which carries OF
homeomorphically onto C(fi, ..., fap+p—a) When viewed as a subset of the Grassmann
manifold.

Crucial for the proof is the observation that by definition (i0i3)(O%) C ig(f(l‘im).
Since ig(f(d ) is closed and the characteristic map ¢ is continuous we conclude that

(¢ 0 i7)(D%) C ig(KZ,,). But then the map

X 1= Tan o (ig) todoiy (5.10)

is well defined and continuous. By continuity y(D%) C x(Od%) = C,. By Theo-
rem 4.12 y is therefore a characteristic map. [ |

Remark 5.5 The embedding of C, into Grass(dp 4+ p — d, (d+ 1)(p +m)) gives us
another way to describe the projective manifold Kdm introduced in [23]. For this
consider in (5.9) the situation when d = n. Then the closure of (iy 0 i1)(Cy) is
necessarily isomorphic to the manifold f(;lm

In conclusion of this section we describe the singular homology groups for the set
Asn (€). Note that the cells C(C) have real dimension 2d, in particular there are
no cells of odd real dimension. Define

[ #{a|d, =k/2} ifkiseven
o = { 0 if ks odd. - (5.11)

By the properties of finite CW-complex [18] defined over €, we deduce

Theorem 5.6 The singular homology H.(AS7;Z) of AS» (€) has no torsion,
Hk(A;,Zz; Z) = zZ"

and the k-th Betti number of AS7 (C) is by.
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