
116 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. I ,  JANUARY 1995 

A Generalized Popov-Belevitch-Hautus 
Test of Observability 

Bijoy K. Ghosh and Joachim Rosenthal 

Abstmct-In this paper, an earlier result on the problem of observabil- 
ity of a linear dynamical system due to Popov-Belevitch-Hautus has been 
generalized and applied to the problem of observing the initial condition 
of a linear dynamical system described on the space of d dimensional 
affine planes in Rn. 

I. INTRODUCTION AND MOTIVATION 
In this paper we generalize the well known Popov-Belevitch- 

Hautus test (see [3]) on the observability of a linear dynamical system. 
Let K denote either the field of real (M = R )  or the field of complex 
(K = (I:) numbers. Let A be an 11 x 11 matrix and let C be a p x n 
matrix defined over K. Consider the linear time invariant system 

The well-known Hautus test [3] gives a necessary and sufficient 
condition, when the state vector x ( t )  can be observed from the output 
measurement y ( t ) .  To be precise one has the following. 

Theorem 1 (Hautus [3]):  System (1.1) is observable over either R 
or (I: if, and only if 

It may be remarked that the rank can only be less than 11 if X is an 
eigenvalue of the matrix A. 

In this paper we consider dynamical systems for which the output 
vector is not observed exactly but can be ascertained with an ambigu- 
ity restricted to a d-dimensional affine subsapce. The problem that 
we propose to consider is to compute if possible the initial condition 
and hence the states of the dynamical system up to a d-dimensional 
affine subspace. Thus for the dynamical system (1. l),  if we assume 
that the output vector y ( t )  is observed up to a d-dimensional plane 
given by an equation of the form 

where O ( t )  is a (p  - d )  x 11 matrix function of time having full rank 
for all but countably many instances of time and q ( t )  is a vector 
function of time. The problem is to derive conditions on A and C 
under which . r (O) can be observed up to a d-dimensional plane. 

The above class of problem occurs in machine vision as has already 
been introduced in [6], [I]. Specifically if we consider a plane in R3 
with coordinates (.Ti, Er. 2 )  given by 

sz = &Ti + qEr + r.  ( I  .4) 
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Let us assume that the points on the plane (1.4) satisfy a dynamical 
system 

i = A \ + b  (1.5) 

where A is an arbitrary 3 x 3 matrix and b is a 3 x 1 vector given by 

respectively, and where is given by 

\ = (S IF Z)T .  

One can compute a dynamical system for the shape parameters 11. q ,  r. 
and s described as follows: 

Typically a point on the plane (1.4) is observed with the aid of 
a CCD camera that projects (-Ti, Er, 2 )  perspectively onto an image 
plane. Let ( 1 7 1 ,  7/2 ) be the coordinates of the image plane and assume 
that the perspective projection is defined as 

(1.9) 

where f is the focal length of the camera. One can easily compute a 
differential equation that is satisfied by the coordinates ( 1 1 1 ,  I / Z  ) and 
is given by 

where 
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and where 

The equation (1.10) is known as the "optical flow" and in the literature 
various algorithms exist as to how one can estimate (61, j/2 ) for a 
given pair ( 1 1 1 ,  7 2 )  (see Horn [4]). 

For our purposes we would like to view (1.8), (1.1 1) as a linear 
system for which the output vector y, is not observed but instead one 
observes the vector (41 ,  i j z ,  711, 112 ) at various points on the image 
plane. Note that for almost every point on the image plane, (1.10) 
describes a homogeneous seven-dimensional plane in R9. Thus if 
one observes ( i l l ,  6 2 ,  1 1 1 .  712) for 3 points on the image plane, the 
output vector in (1.11) is observed up to a homogeneous 3-plane. 

0018-9286/95$04.00 0 1995 IEEE 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. I,  JANUARY 1995 177 

On the other hand, if 4 points are observed the output vector in 
(1.11) is observed up to a homogeneous line. Various other cases 
can be demonstrated likewise. Note in particular that by observing 
the vector (41, 42. 711, 112) for 1 or 2 points on the image plane, 
the output vector is observed up to respectively a seven- or five- 
dimensional plane in Rg. Such an observation does not shed any 
new information on the vector ( p ,  q ,  s, r ) .  In practice if the vector 
(11, q ,  s, P )  is recovered only up to a d-dimensional plane where 
d > 1. one would typically use multiple cameras to determine the 
exact value of (11, q .  s, P ) .  

11. PROBLEM FORMULATION AND MAIN RESULT 
In order to introduce the main result considered in this paper, 

let PO C K" be a d-dimensional affine subspace not necessarily 
passing through the origin. In this paper we shall use the expression 
"d-dimensional affine subspace" to mean a "d-dimensional plane." 
We say that the dynamical system (1.1) observes PO if for any 
0 5 t l  < t 2  it is possible to calculate PO from the observation 
of the "moving plane" C P ( t )  = CeA'P0 in K P , t l  5 t 5 t 2 .  Our 
main theorem is described as follows. 

Theorem 2 (Main Theorem): System (1.1) observes any d- 
dimensional affine subspace PO in K" if for any set of eigenvalues 
& , . . . , A d  of A one has 

A 

Moreover this condition is also necessary if d = 0 or if all eigenvalues 
of the matrix A are in K. 

Remark 3: Note that over the complex numbers C, condition (2.1) 
is necessary and sufficient. Moreover if d = 0, Theorem 2 reduces 
to Theorem 1. Finally if d = 1 this result implies the one given in 
[6] due to Wang, Martin, Dayawansa, and Ghosh. 

The following two examples explain the ingredients of our result. 
Example 4: Consider the real system 

Because the eigenvalues of A are real, condition (2.1) in Theorem 2 
is necessary and sufficient. In particular if 130 E R2 is a point it can 
be observed from y ( t )  = Ce,4'p~ because 

rank[;,: -)] = 2 (2.3) 

for all X E R including the case when X is an eigenvalue of 
d. However if lo  C R2 is a line, it cannot be observed from 
l ( t )  = Ce " l o  because for every pair of lines ZO and 21 in R2 and 
for all but a finite number of time instants t. we have 

{ E :  E = c e " ' 6 ,  6 E l o }  = { E :  = Ce"'6, 5 E 1 1 } .  (2.4) 

Thus the lines lo and 11 are both mapped to the entire real axis and 
therefore they cannot be observed. We also note that 

rank[ ; XOXl -Xo - A 1  

A t 1  ] # 2 

for every pair of eigenvalues XO. XlofA. (2.5) 

Remark 5 :  Note that the equality of the two sets in (2.4) is valid 
for all but possibly a finite number of time instants. One might 
correctly conclude from this, that in principle observability can be 
ascertained on the basis of these finitely many exception points. 
However we would still like to say that the lines ZO and 11 are 
unobservable on the basis of any arbitrary time interval (tl .  t 2 ) .  

Example 6: Consider the fourth order system 

/-81 -5G 57 -11) 
136 102 -lOG I 62 43 -46 d. = A r  = 

\203 138 -149 31) 

y = c.r = 0 1 0 0 x. .r E R4. (2.6) (: 1 : 1) 
A direct computation shows that the pair (A,  C) is observable and 
the matrix A has eigenvalues 0,1,2,3. Since for any 2 eigenvalues 
XO, X1 the nullspace of ( A  - M ) ( A  - X 1 I )  is equal to the sum 
of the eigenspaces Ker ( A  - X01) and Ker (A - X11) and none of 
those sums contains the vector (0, 0, 0, l)T E K e r ( C )  it follows 
from Theorem 2 that if lo  c R4 is a line in R4, it can be observed 
from CZ(t) = Ce"'l0, which is a motion of lines in R3. On the other 
hand one immediately verifies that 

1 - 3  -3 3 o \  
A(A - 1)(A - 21) = (-; -; -! 

-23 -23 23 0 

It therefore follows that certain two-planes PO C R4 cannot be 
observed from Ce4'Po C R3. Specifically consider the vectors 
1'0: = (-12, 20, 8, 28)T, 711: = (35, -60, -25, -85)T. and 15:  = 
(-23, 40, 1'7, 58)T. One immediately verifies that P ' O .  1'1. 1'2 are 
eigenvectors corresponding to the eigenvalues 0, 1, and 2. Also note 
that uo + 7'1 + 29 = (0, 0, 0, l)T. Let P be the three-dimensional 
subspace in R4 spanned by the vectors 7J0,1'1, and 1 9 .  It can be 
verified that for all but a finite set of values of t ,  Ce"'P is a two- 
dimensional plane in R3. To see this, note that Ce 4 f ~ ~ ,  = CeAJfv1 
for = 0, 1, 2 where A, is the eigenvalue corresponding to the 
eigenvector 11,. Since CVO, C1l1, C79 are linearly dependent, it 
follows that Ce4'clo, Ce4'v1, Ce 4'7J2 are linearly dependent as 
well. Thus for any 0 5 tl < t 2  and for almost every pair 
of two-dimensional planes Q1 and Q2 such that Q1 # Q2 and 
Q1 C P, Q2 C P, we have 

c e  4 ' ~ 1  = c e  4 ' ~ 2  

for tl 5 t 5 t 2 .  Hence the planes Q1 and Q2 cannot be observed. 

111. AN ASSOCIATED DYNAMICAL SYSTEM 

The proof of Theorem 2 will be broken down in a sequence of 
lemmas. The proof is mainly based on a careful study of a dynamical 
system defined on the K vector space AL K". the k-fold wedge 
product of K'z (see [2] for a reference). This system has also been 
used in [6] to derive the results there. 

First recall that Ah is linearly generated by the vectors 

(1'1 A ... A ~ n 1 . r ~  E KVL,  i = l:... k } .  

Addition in AL K" is multilinear and altemating in the components. 
If {el, . . . , rrL} is a basis of K'& then it follows from the multilinearity 
and the altemating property of the wedge product that 

In fact for XO = X I  = 0, rank drops to 1. G:= {et l  A . . . A e , , ) l  5 i l  < . . .  < i n  5 7 ? }  

I 
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is a basis of A' KL. In particular one has dim A' K"' = (;). If 

a vector 11 E AL K" has a representation 1' = .r1 A . . . A I'I. for 
some particular vectors .rt E K". I = 1.. . . . k ,  one says that 1 1  is a 
decomposable vector. The coordinates of a decomposable vector with 
respect to the canonical basis B are sometimes called the Plucker 
coordinates of P .  

Next define linear maps 
A A 

.i : A K" -+ A K" 
I 

.r1 A . . . A .C'L H c.rl A . . . A x - 1  A AX,  A .r,+i . . . A ~ 4 3 . 1 )  
1=1 

and 
A A 

6: AK78 + A\"" 
.r1 A " .  A . r ~  W C.C.1 A . .  . A C.C.I. (3.2) 

Ai and c induce the dynamical system 
~ ^ ^  

s = dS. 9 = 6-t. (3.3) 

The state space of (3.3) is the vector space K'" and the output 
space is the vector space AL K1'. We would like to remark that if the 
trajectories C.r1 ( t ) .  . . . . C . r ~ ( t )  are solutions of the system (1.1) then 
P(.c '~ ( t )  A . . A .rk ( t ) )  is a solution of system (3.3). It is our goal to 
show that, provided the eigenvalues of d are in K, (2.1) is equivalent 
to a particular notion of observability of the system (3.3) and that this 
condition is also necessary and sufficient for the observability of PO 
under the output function Ce " PO. The following lemmas prepare 
for this result. 

Lemma 7: The (unique) solution of the initial value problem 
d 

- ( .T I  ( t )  A . . . A .TI. ( t ) )  = 
d t  

.1'1 ( f )  A . . . A I'L ( t ) )  

. r1(0)  A . .  - A X I . ( ( ) )  = 1'1 A .. . A ( 1 1  

is given through 

.1'1 ( t )  A . . . A .rh ( f )  = c 411'1 A . .  . A e 4 ' v k .  (3.4) 

Proof: Differentiate (3.4) and recall the definition of .i. Q.E.D. 
Lemma8.  Let X I ,  . r ~ : - . , . r k  E be vectors and 

c1. c2:...cL E K be scalars. Let e 2 CI + r 2  + ... + e k .  

Then it follows that 
L 

(.i - r I ) ( . r I  A .r2 A . . . A .rA = C.rl A . . . A ,r,-l 
,=I 

A ( A - c , I ) . ~ ,  A . ~ , + i . . . A . r n .  

(3.5) 

Proof Note that 

(-4 - ~ I ) ( . r i  A . ~ 2  A . .  . A .,'I,) 

= (z4.T1 A .I'2 A ' ' . A .I'k ) 

- c1 (.r1 A .r2 . . . A .I'A ) 

+ ( X I  A -4.1.2 A . . . A .I'L ) 

- C 2 ( J'1 A .rl . ' ' A ) 
+ . . .  
. .. 

Lemma 9: Let {.rl.. . . , x T L }  c K" be a K-basis of generalized 
eigenvectors of the matrix A having corresponding eigenvalues 
{AI. . . . , A,, } (possibly repeated) then 

(3.6) 

is a K-basis of generalized eigenvectors of the matnx .i with 
corresponding eigenvalues A,, + . . . + A,, . 

Proof: Clearly the set of vectors (3.6) are linearly independent 
and therefore form a basis. Assume that the vectors xt ,  . . . . r , ,  have 
a nilpotency index m, ,  . . . rt1 , I .  i.e., 

{ X 8 ,  A . ' . A J, ,  11 5 i l  < . . . < 5 t l }  

(.4 - A t k I ) " " ' A - l . r , k  # 0. (d - A , , I ) " " z k . r , k  = 0. (3.7) 

In particular, if r n I L  = 1 it follows that .r,,  is an eigenvector with 
A,, being the corresponding eigenvalue. Let us define 

(3.8) q = m,,  + ... + 7nLk + 1 - k 

it is trivial to verify using Lemma 8 that 

( ' i - ( A L 1  +...+ A , , ) I ) ' . r , ,  A . . . A . r , ,  = O .  (3.9) 

Q.E.D. 
Lemma 10. Let S be a nilpotent operator acting on K4. For every 

vector E Ky there is a unique 71 E KY such that 

7 '  = I /  + S I /  + . . . + s y  I / .  

Moreover if 711 is the nilpotency index of ( 1  then { I / .  . . . , S " " - ' 7 c }  
are linearly independent. 

Proof: The unique vector U is given through I / :  = (I - S ) l l .  

The linear independence is clear. Q.E.D. 
Before we state the next result we note the following. 
Remark 11:  Note that not every vector in the vector space AA K" 

is of the form .TI A . . . A .rJ. and those that are, would be known as 
decomposable vectors. 

The next result establ!shes the crucial relation between the observ- 
ability of the pair (A,  C) and the condition (2.1). 

Proposition 12. Assume that the eigenvalues of the matrix A are 
in K. Then the following conditions are equivalent: 

1)There are eigenvalues A,, . . . . . A,, of A and a nonzero vector 
(1 E K'l such that 

(3.10) 

2)There is o A E K and a decomposable vector 31 A . . . A JA E 

( A  - L1I).. . ( A 4  - A t L I )  
I ,  = o. ( C 1 

KTL such that 

(.i ,31 A . . . A ,31. = 0. (3.1 1) 

3)The dynamical system (3.3) has a decomposable vector n l  A 

Proof: 1)-+2):  Let A I ,  . . . , A, be the eigenvalues of A and let 

K'" = +.:,1Ti, (3.12) 

be the decomposition into generalized eigenspaces. This decomposi- 
tion induces a decomposition 

... A c11 E Ah K"' in its unobservable subspace. 

7 ' =  7 '1  + . . ' $ 1 ' % .  

Let .i = ( 1 1 . .  . . , 11,} be the eigenvalues appearing in the product 

P:= (~4-A~lI)...(~4-A,kI) 

p = (-4 - [ l I ) l l t ( l l )  ... (-4 - ~ , , I ) ~ ~ J ( l P ) ,  

and denote by rti (11  ). . . . . ni ( I , ,  ) their multiplicity, i.e., we have 

From the A invariance of the generalized eigenspaces 1 ic it follows 
that .I. Moreover if h E .I then i l l1  has nilpotency = 0 if h 
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index at most n i ( h ) .  In the following we restrict ourselves to the 
case when t ih has nilpotency index na(h,). The (easier) other cases 
are similar. By Lemma 10 we have an expansion 

J1=0 J p = o  

In this summation there are nz(l1) + . .. + ni(1,) = k summands 
which we like to denote by PI, . . . , P k .  By Lemma 10 those vectors 
are linearly independent and from Lemma 9 it follows that P :  = pi A 
. . . A $k is an eigenvector of A with corresponding eigenvalue A: = 
A , , + - . - + A , , .  Finally,from(3.10)itfollows that {CPl,...,C/3k} 
is a linearly dependent set. It follows 

(3.14) 

2)+3): The vector dl A . . . A @k is necessarily an eigenvector of 
A and therefore in the unobservable subspace U of the system (3.3). 

3)+1): The fact that condition 3) implies condition 1) is nontrivial. 
Our proof follows mainly ideas already developed in [6] and in 
principle it should be possible to generalize the proof given in [6]. 
This however amounts to a large case by case search. In order to 
avoid those tedious arguments we will deviate at a crucial point from 
this program. 

The proof is structured as follows. Consider the decomposable 
vector CY: = a1 A . A cYk in the unobservable subspace U of the 
system (3.3) whose existence we assume. Using the fact that U is 
A invariant we will construct a polynomial f(.r) E K[s] which has 
the property that f ( ; l ) a  is a decomposable eigenvector of A . f ( A ) m  
is then necessarily in the unobservable subspace U and this implies 
2) and from there we will imply 1). The details are now described 
as follows. 

Consider the set of eigenvalues {A1;..,A,} C K of A and 
arrange the order such that 

Re A, < Re&+, 

or 

Re A, = Re A,+I 

and 

ImX, < ImA,+1. 

Let us choose a set of generalized eigenvectors ( 6 1 ,  . . . , .rn} of A 
and consider the decomposition of K" into generalized eigenspaces 
given through K" = iEp,ll~i;x,. Arrange the order of {SI,. . . , s,} in 
suchaway that{sl ,..., s,,} formsabasisofl~~,,{.r,,+~;~~,xc,,} 
forms a basis of T i ,  and so on. 

Let n:  = (11 A .  . . A nk be a decomposable vector in the unobserv- 
able subspace V. Expand oJ = E:=, bJ1.rL, j = 1,. ' .  , k ,  in terms of 
this basis. In this way we associate to Q a coefficient matrix B = b,, 
whose entries are unique up to premultiplication by an element of the 
special linear group s z k :  = {T E M a t ,  x 7 L  ldet ( T )  = I}. Without 
loss of generality we can therefore assume that the matrix B is in 
echelon form. 

Consider now the decomposition of Ak K'" into generalized 
eigenspaces. 

h 

pc = cl'x=x,,+ +X,,IVA. (3.15) 

If w x  denotes the component of a1 A . . . A 01, in IVx then 

where t iLJ  is the component of aJ in T i  and where the summation 
is taken over all indexes ( i l , .  . , i k )  having the property that A,, + 

From the fact that the matrix B is assumed to be in echelon form 
and from the assumption that AI, . . . , A, are ordered, it follows that 
there is one eigenvalue 11 such that the component w,, of a1 A .  . .Ask 
in W,, is nonzero and decomposable, i.e., 

wp = t i r 1  A . . . A t i , ,  . (3.17) 

Indeed, up3 can be chosen in the following way. For j = 1,. . . , k 
consider the decomposition 

'3. 

... + A,, = A. 

S 

CYj = v i ,  
*j=1 

(3.18) 

induced by the eigenspace decomposition (3.12). Then choose r ,  
as the first index with the property, that 7 t f 3  # 0. By definition 
7 i T 1  A . A t i , ,  is nonzero, decomposable, and it represents the 
component of  CY^ A . . . A  CY^ in iVp. 

Let ni be the order of wp. It is our goal to calculate the eigenvector 
(A-pI)"-'w,, and to show that this vector is decomposable as well. 
For this consider the initial value problem 

d 
- ( . 7 ! 1 ( f ) A ' . . A X k ( f ) )  = ( A - ~ / I ) ( ~ l ( f ) A . ' . A . r k ( f ) )  at 

s l ( 0 )  A . . .  A xk(0) = ut A ... A t i 7  ,. 
Using Lemma 7 and Lemma 8 one verifies that the solution is given 
through 

e(  4-p1)rw t L -  - e( 4-x7'11)t t ,7  A . . . A e( 4--X?h1)f t i r L .  (3.19) 

Because ti,, E T;x , j = 1 , .  . . , k ,  we have a polynomial expansion 

( A  - A, I) '" ,  t'l, t i7 , . (3.20) 

PJ 

n10)-1 

& 4--x?-, I)$,", = 
1" =o 

where ni ( j )  is the nilpotency index of t i ,  J .  

K"' we get an expansion 
Expanding each PI, in terms of the standard basis {SI,. . . , .rn} C 

e( 4 - d ) &  = E f(*, th)(t) .r, l  A . . . A . r , , .  (3.21) 

In this summation j(21 * , ) ( f )  are the Plucker coordinates of the 
vector e( 4 - p r ) t t i r p  and we will abbreviate them by f 2 ( t ) .  By (3.20) it 
follows that f L  ( t  ) are all polynomials of degree at most Er=, ni ( j  ) - 
k.  

If fact we can say more. Differentiating both sides in (3.19) 
ni - 1 times and substituting t = 0 results in the eigenvector 
( A  - j ~ I ) ~ - ~ t u , ~  on the left side of the equality sign. On the right 
side this operation results in 

l < t , <  <2L<"1 

where g2 is the coefficient of the monom tnZ-' in the polynomial 
f i ( t ) .  By definition we have ( A  - p I ) ' r L - l u ~ f ,  # 0 and ( A  - 
pI)"'tu,, = 0. We conclude that each polynomial f l ( t )  has degree at 
most m - 1 andsome coefficients g, are nonzero. In addition note 
that the vector e( ' -P') '  ti',, is a decomposable vector at all time t 2 0 
and the Plucker relations (compare to [5, Section 31) 

P+l 

(QR) c(-1)" . f ( ( 1  t P - l  , % ) ( t ) '  f(j1 1% . 1 ~ + 1 ) ( ~ )  = 0 
r C = l  

(3.22) 
have therefore to be satisfied for all t 2 0 as well. By doing the 
same argument as in [5, Theorem 3.6 and Example 3.71 we conclude 

T r, 
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that the Plucker coordinates are also satisfied for the coordinates gl. 
But this means that ( A  - p l ) ” l l - l w t ,  is a decomposable eigenvector 
which we denote by 

A . . . A / 3 k .  

Consider once more the eigenspace decomposition 

as induced by the decomposition (3.15). Let m ( X )  be the nilpotency 
index of ZPA and define the operator 

f ( A ) :  = (il - pI)’‘ ’- ’  n(.1 - XI) ” ” ( x ) .  (3.23) 
A f t 1  

A direct calculation shows that 

f ( d ) a l  A . . . A o k  = n(j1 - X ) “ r “ ( x ) p ’ l  A . . . A / j k .  (3.24) 
A # t J  

We conclude that the decomposable eigenvector 131 A . . . A / 3 k  is in 
the unobservable subspace I‘ of the system (3.3) and this implies 2). 

Actually we have shown more: 1 3 ~  E 1: and if the coefficient rJ 
is repeated m times in the set { 71,. . . , r ~ }  then 13J has nilpotency 
index at most m. But this means that 

( A -  X ~ 1 1 ) ~ ~ ~ ( A - X , ~ I ) 1 3 J  = o  
for j = l ; . - , k .  

cl, .  . . , Ck not all zero such that 
By linear dependence of the set { C h ,  . . . , C,3n } there exist scalars 

C l C ‘ 1 3 1  + ’ ’ ’ + CkCJJk = 0. 

But then 

io 2 cl,31 + . . . + c h  / 3 k  

has all required properties for 1). Q.E.D. 
A direct consequence is the following Lemma whose proof is clear. 
Lemma 13: If for any set of eigenvalues XI,. . . , XL of A one has 

(3.25) 

then there is no real decomposable vector in the unobservable 
subspace IT of the system (3.3). 

Remark 14: In general the converse is not true as it is demon- 
strated through an example in [6]. 

Iv. PROOF OF THE MAIN THEOREM 
Proof: We first show the sufficiency of the criterion (2.1). Let 

PO, QO C K” be two d-dimensional planes with PO # Qo. 
Let qo E QO be a point having the property that qo $! PO. Let 
{ X O .  . . . . . r d }  PO be a set of points chosen in such a way that the 
decomposable vector 

2 ( q o - . r o ) ~ ( . r l  - . r o ) ~ . . . ~ ( . r d - . r o )  

is nonzero. If the rank condition (2.1) holds, it follows from Propo- 
sition 12 and Lemma 13 that there is no decomposable vector in 
the unobservable subspace I’ of “the augmented system” (3.3). It 
therefore follows that 

P‘u>(t)  = ( c e 4 ’ q o  - c e “ . r 0 )  A ( c e 4 ‘ . r 1  - cP4‘.r0) 

. . . A  (Ce“‘.r,l -cc4‘ . rO)  

is nonzero for all time f with the exception of a set of measure zero. 
But then we have that Ce 4 ’ q ~  fZ C‘e 4 ‘ P ~  for almost all time t. In 
other words Ce4‘Qo # Ce4‘Po. 

In order to prove the necessity part assume that all eigenvalues of 
A are in K. Assume that there is a set of eigenvalues XO, . . . . Xd 

of A such that the rank condition (2.1) is not satisfied. Furthermore 
assume that for any set of eigenvalues p o ,  . . . , p(1-1 of A 

If this (technical) condition is not satisfied we will be able to show 
at the end of the proof that (d - 1)-dimensional subspaces cannot 
be observed in general. 

By Proposition 12 there exists a nonzero, decomposable vector 
s o  A XI A .  . . A s d  in the unobservable subspace U of “the augmented 
system” (3.3) (assuming k = d + 1). Define 1’: = span {SO, . ‘ . , s d }  
and let PO, Qo C V be two d-dimensional subspaces satisfying 
PO # Qo. By the assumption it follows that 

is a d-dimensional subspace for t almost everywhere. But this means 
that the two different subspaces PO and Qo in K’” produce the same 
moving plane CeA’Po = CeA’Qo in K” for all time t with the 
possible exception of a set of measure zero. 

be the largest 
integer having the property that 

Assume now that (4.1) is not satisfied and let 

for some eigenvalues XO, . . . , X J  but 

(4.2) 

(4.3) 

for all eigenvalues pro,... , p j - l  of A.  Using the same argument 
as before one shows the existence of two subspaces PO and QO of 
dimension d which cannot be distinguished in the observation. This 
completes the proof. Q.E.D. 
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