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1 Introduction to LDPC Codes

Low-density parity check codes (LDPC codes) were introduced by Gallager [2] and

have received intensive study in the last few years, as advances in technology have

made their implementation far more practical than when they were originally pro-

posed. Basically, an LDPC code is a binary linear block code defined by a sparse

m × n parity-check matrix H . Equivalently such a code can be thought of as de-

fined by a bipartite graph, called a Tanner graph, whose adjacency matrix is H .

In this representation the n left vertices represent columns of H , corresponding

to bits in the original message, and the m right vertices represent the rows of H ,

corresponding to parity check bits; an edge (i, j) exists in the graph whenever the

corresponding entry hi,j in H is 1, i.e. whenever the message bit i participates in

parity check j. Decoding of LDPC codes is then performed via an iterative algo-

rithm operating on the Tanner graph. See the original paper [11] or the more recent

work in [7] for the background on LDPC codes and more general codes on Tanner

graphs.

In this paper we will consider a Tanner graph, parity check matrix and the

LDPC code they define to be more or less interchangeable (despite the fact that

any linear code can in fact have multiple Tanner graph presentations.) In the

original work Gallager was working with bipartite graphs which were regular. This

means there were positive integers λ, ρ such that every left vertex had degree λ

and every right vertex had degree ρ. Such a code is referred to as (λ, ρ)-regular.
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Gallager’s work already showed that as the block length n increases, the performance

of randomly selected (λ, ρ)-regular codes approaches a threshold near the channel

capacity but cannot achieve capacity for the channels he was studying. In addition

encoding complexity is in general quadratic in n, so approaching the threshold with

codes of practical length is rather difficult.

Major progress in achieving capacity using LDPC codes and codes on graphs

was made by Luby, Mitzenmacher, Shokrollahi, Spielmann and Stemann [6, 4, 5],

who introduced a new class of codes which are encodable as well as decodable in

linear time, while performing at rates extremely close to capacity. In their work

they showed that for the erasure channel some random irregular graphs with specific

degree sequences lead to LDPC codes approaching capacity on the binary erasure

channel. Extension of this work can be found in [8, 9].

In this paper we briefly review their results. These papers pose the challenge

to come up with explicit constructions of bipartite irregular graphs whose degree

sequences match the degree distribution of capacity approaching ensembles. In this

paper we explain a new way how to do this in an algebraic way which guarantees

that the Tanner graph has no small cycles, something which is desirable if one wants

to guarantee that the minimal pseudo-codeword is not too small. See [3, 10] for

more details on pseudo-codewords. Related recent work can be found in [1, 12].

2 Irregular Tanner graphs and Capacity Achieving

Sequences

Let n be an integer and β be a positive rational number such that βn is an integer

as well. For B a bipartite graph with n left vertices and βn right vertices, let C (B)

be the code with B as Tanner graph. The n left vertices represent the bits. We

can partition the bits into message bits and check bits dependent on the rank of

the associated parity check matrix. Encoding is performed simply by setting each

check bit to the binary sum of its neighbors, and is thus linear in the number of

edges in B.

As a channel we assume the erasure channel. This means with a certain

probability p the correct bit is received and with probability 1 − p the receiver

has no knowledge if the bit was a one or a zero, i.e. an erasure has occurred.

Decoding consists of, whenever a check node is identified such that all but one of its

participating message bits are known, setting the missing message bit to the binary

sum of the check bit and the known message bits. Thus, decoding is also linear in

the number of edges.

The innovation of Luby et al. [6, 4, 5] was to cascade a sequence of such codes

together: use C (B0) to produce βn check bits for the original n message bits, then

a similar code C (B1) to produce β2n check bits for the βn check bits of C (B0),

and so on. Formally, one chooses a sequence of graphs B0, B1, ..., Bm such that Bi

has βin left vertices and βi+1n right vertices. m is chosen so that βm+1n ≈ √
n,

the codes C (B0),C (B1), ...C (Bm) are cascaded as described above, and the code is
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terminated with a small conventional code C of block length βm+1n and rate 1−β.

The result is a code C (B0, ..., Bm, C) with n message bits and nβ/(1 − β)

check bits, and thus rate 1− β. Assuming the code C can be encoded and decoded

in quadratic time, the overall encoding and decoding complexity are linear in n.

Additionally, if the graphs Bi are constructed in such a way that each one corrects

a β(1 − ǫ) fraction of its bits with high probability, the result is a rate 1 − β code

which recovers up to a β(1 − ǫ) fraction of erasure with high probability.

Such graphs can be obtained by taking random graphs with specific, highly

irregular degree distributions. For a bipartite graph, define the left (resp. right)

degree of an edge as the degree of the left (resp. right) node it is incident on.

Let λi and ρi denote the fraction of edges with left (resp. right) degree i, and let

λ(x) :=
∑

i λix
i−1 and ρ(x) :=

∑

i ρix
i−1. We refer to (λ, ρ) as a degree distribution.

If a random bipartite graph with degree distribution (λ, ρ) corrects erasures

on a randomly located (1 − R)(1 − ǫ) fraction of nodes, we say that the degree

distribution λ, ρ) is asymptotically optimal if ǫ/Rar is bounded by some constant

depending on R.

For integer a ≥ 2 and parameter ν ∈ (0, 1), let α := 1/(a − 1) and N :=

⌊ν−1/α⌋. The functions

ρa(x) := xa−1

and

λα,N (x) := α

∑N−1
k=e

(

α
k

)

(−1)k+1xk

α − N
(

α
N

)

(−1)N+1

form a degree distribution, called a right-regular distribution, with right degree a

and maximum left degree N . Note that since N depends discretely on ν and a, only

a finite number of rates are possible with a given a. However, Shokrollahi showed

that appropriate pairs an, N can in general be found to approximate a desired

rate R.

Theorem 1 (Theorem 3 in [8]) Right-regular degree distributions are asymptot-

ically optimal.

3 Construction of Right-Regular Graphs

For a given average right degree a and maximum left degree N (thus rate R), if

the desired number of right vertices n is such that a| n
1−R , we may construct a

right-regular graph of girth at least 6 as follows.

Label the right vertices 1, 2, . . . , n, and let the n/(1−R) left vertices be parti-

tioned into a equal sets V1, . . . , Va. In each set Vi attach a set of n ‘half-edges’ with

degree distribution according to λα,N (where as above α = 1/(a − 1).) Label the

half-edges 1, 2, . . . , n and consider the permutation π(x) := cix for some ci ∈ Z
∗

n.

Let B(c1, c2, . . . , ca) be the graph with edge set (x, cix)|x ∈ Vi.

Clearly any such graph B matches the right-regular degree sequence; it re-

mains to show that the girth can be made at least 6, i.e. that cycles of length four
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can be avoided.

Lemma 2 Let a and N be positive integers and γ an integer with

2aN < γ <
n − 1

N − 1
− a.

Then the equation

k1(γ + i) ≡ k2(γ + j) mod (n − 1)

has no solutions with 1 ≤ i < j ≤ a and −N < k1, k2 < N .

Proof. First, note that k1(γ+i) < n−1 and k2(γ+j) < n−1, so it suffices to show

that k1(γ+i) = k2(γ+j) has no integer solutions in the specified range; equivalently,

that γ(k1 − k2) = k2j − k1i has no solutions. Note that |γ(k1 − k2)| ≥ |γ| > 2aN ,

and |k2j − k1i| < 2aN ; this completes the proof.

Theorem 3 Let a, N, n be as above, with the additional requirement that n is prime.

Then for any generator g ∈ Z
∗

n and any integer γ such that

2aN < γ < (n − 1)/(N − 1) − a,

the graph B(gγ+1, gγ+2, . . . , gγ+a) has girth at least 6.

Proof. Consider left vertices u ∈ Vi,v ∈ Vj , both adjacent to a right vertex q. (By

construction we exclude the possibility i = j.) All other possible edges from u and

v are of the form qg(γ+i)k1 and qg(γ+j)k2 respectively, with −N < k1, k2 < N ; thus

the necessary condition for a cycle of length four to exist is that (γ+i)k1 ≡ (γ+j)k2

mod (n−1). By the lemma above, no solutions exist; thus, the graph has no 4-cycles

and its girth is at least 6.

Remark 4 If in the cascaded construction n turns out not to be a prime it is

possible to take the next larger prime and the extra number of right vertices can

then be removed in a final step.
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