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Abstract

We present a multiscale analysis for the exit measures from large balls in Zd,
d � 3, of random walks in certain i.i.d. random environments which are small per-
turbations of the �xed environment corresponding to simple random walk. Our main
assumption is an isotropy assumption on the law of the environment, introduced by
Bricmont and Kupianien. The analysis is based on propagating estimates on the
variational distance between the exit measure and that of simple random walk, in
addition to estimates on the variational distance between smoothed versions of these
quantities.

1 Introduction

We consider random walks in random environments on Zd, d � 3, when the envi-
ronment is a small perturbation of the �xed environment corresponding to simple
random walk. More precisely, let P be the set of probability distributions on Zd;
charging only neighbors of 0: If " 2 (0; 1=2d); we set, with feigdi=1 denoting the
standard basis of Rd,

P"
def
=

�
q 2 P :

����q (�ei)� 1

2d

���� � "; 8i� : (1.1)



def
= PZd is equipped with the natural product �-�eld F :We call an element ! 2 
 a

random environment. For ! 2 
; and x 2 Zd; we consider the transition probabilities
p! (x; y)

def
= !x (y � x) ; if jx� yj = 1; and p! (x; y) = 0 otherwise, and construct the

random walk fSngn�0 with initial position x 2 Zd which is, given the environment
!, the Markov chain with S0 = x and transition probabilities

P!;x(Sn+1 = yjSn = z) = !z(y � z) :
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(By a slight abuse of notation, for consistency with the sequel we also write P!;x =
Pp!;x:)
We are mainly interested in the case of a random !: Given a probability measure

� on P; we consider the product measure P�
def
= �
Z

d

on (
;F) : We usually drop
the index � in P�: In all that follows we make the following basic assumption

Condition 1.1
� is invariant under lattice isometries, i.e. �f�1 = � for any orthogonal mapping
f which leaves Zd invariant, and � (P") = 1 for some " 2 (0; 1=2d) which will be
speci�ed later.

The model of RWRE has been studied extensively. We refer to [7] and [12] for
recent surveys. A major open problem is the determination, for d > 1, of laws of
large numbers and central limit theorems in full generality (the latter, both under
the quenched measure, i.e. for P�-almost every !, and under the annealed measure
P� 
 Px;!). Although much progress has been reported in recent years ([1, 8, 9]), a
full understanding of the model has not yet been achieved.
In view of the above state of a¤airs, attempts have been made to understand

the perturbative behavior of the RWRE, that is the behavior of the RWRE when �
is supported on P" and " is small. The �rst to consider such a perturbative regime
were [2], who introduced Condition 1.1 and showed that in dimension d � 3, for
small enough " a quenched CLT holds 1 . Unfortunately, the multiscale proof in [2]
is rather di¢ cult, and challenging to follow. This in turns prompted the derivation,
in [10], of an alternative multiscale approach, in the context of di¤usions in random
environments. One expects that the approach of [10] could apply to the discrete
setup, as well.
Our goal in this paper is somewhat di¤erent: we focus on the exit law of the

RWRE from large balls, and develop a multiscale analysis that allows us to conclude
that the exit law approaches, in a suitable sense, the uniform measure. Like in
[10], the hypothesis propagated involves smoothing. In [10], this was done using
certain Hölder norms of (rescalled) transition probabilities. Here, we focus on two
ingredients: a propagation of the variational distance between the exit laws of the
RWRE and that of simple random walk (which remains small but does not decrease
as the scale increases), and the convolution of the exit law of the RWRE with the exit
law of a simple random walk from a ball of (random) radius, which decrease to zero
as scale increases (a precise statement can be found in Theorem 2.4). This approach
is of a di¤erent nature than the one in [10] and, we believe, simpler. In future work
we hope to combine our exit law approach with suitable exit time estimates in order
to deduce a (quenched) CLT for the RWRE.
The structure of the article is the following. In the next section, we introduce

our basic notation and state our induction step and our main results. In Section 3,
we present our basic perturbation expansion, coarsening scheme for random walks,
and auxilliary estimates for simple random walk. The proof of the latter estimates is
presented in the appendices. Section 4 is devoted to the propagation of the smoothed
estimates, whereas Section 5 is devoted to the propagation of the variation distance

1As the examples in [1] demonstrate, for every " > 0 there are measures � supported on P", with
E�
hPd

i=1(q(ei)� q(�ei))
i
= 0, such that Sn=n!n!1 v 6= 0, P�-a.s. One of the goals of Condition 1.1

is to prevent such situations from occuring.
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estimate (the non-smooth estimate). Section 6 completes the proof of our main
result by using the estimates of Sections 4 and 5.

2 Basic notation and main result

Sets: For x 2 Rd; jxj is the Euclidean norm. If A;B � Zd; x 2 Zd; we set
d (x;A)

def
= inf fjx� yj : y 2 Ag ; d (A;B) def

= inf fd (x;B) : x 2 Ag : If L > 0; we

write VL
def
= fx 2 Zd : jxj � Lg; and for x 2 Zd; VL (x)

def
= x + VL: If V � Zd; @V

is the outer boundary, i.e. the set of points outside V which have a neighbor point

in V . If x 2 V; we set dV (x)
def
= d (x; @V ) : We also set dL(x) = L � jxj (note that

dL(x) 6= dVL(x) with this convention). For 0 � a < b � L; we de�ne the �shell�

ShellL (a; b)
def
= fx 2 VL : a � dL (x) < bg ; ShellL (b)

def
= ShellL (0; b) : (2.1)

Functions: If F;G are functions Zd �Zd ! R we write FG for the (matrix) prod-
uct: FG (x; y) def=

P
u F (x; u)G (u; y) ; provided the right hand side is absolutely

summable. F k is the k-th power de�ned in this way, and F 0 (x; y) def
= �x;y: We

interpret F also as a kernel, operating from the left on functions f : Zd ! R; by
Ff (x)

def
=
P
F (x; y) f (y). If W � Zd; we use 1W not only as the indicator function

but, by slight abuse of notation, also to denote the kernel (x; y)! 1W (x) �x;y:

For a function f : Zd ! R; kfk1
def
=
P

x jf (x)j ; and kfk1
def
= supx jf (x)j ; as

usual. If F is a kernel then, by an abuse of notation, we write kFk1 for its norm as
operator on L1; i.e.

kFk1
def
= sup

x
kF (x; �)k1 : (2.2)

We set supp f def
= fx : f (x) 6= 0g : If f; g : Zd ! R; we write f � g for the usual

convolution.

Transition probabilities: For transition probabilities p = (p (x; y))x;y2Zd ; not
necessarily nearest neighbor, we write Pp;x for the law of a Markov chain S0; S1; : : :
on Zd having p as transition probabilities and x 2 Zd as a starting point. If V � Zd;
�V

def
= inf fn � 0 : Sn =2 V g is the �rst exit time from V , and TV

def
= �V c the �rst

entrance time. We set

exV (x; z; p)
def
= Pp;x (S�V = z) :

For x 2 V c; one has exV (x; z; p) = �x;z: A special case is the standard simple random
walk p (x;�ei) = 1=2d; where e1; : : : ; ed 2 Zd is the standard base. We abbreviate
this as pRW; and set PRWx

def
= Px;pRW : Also, exit distributions for the simple random

walk are written as �V (x; z)
def
= exV

�
x; z; pRW

�
:

We will coarse-grain nearest-neighbor transition probabilities p in the following
way. GivenW � Zd; we choose for any x 2W either a �xed subset Ux �W; x 2 Ux;
or a probability distribution sx on such sets. Of course, a �xed choice Ux is just a
special choice for the distribution sx; namely the one point distribution on Ux:
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De�nition 2.1
A collection S = (sx)x2W is called a coarse graining scheme on W: Given such a
scheme, and nearest neighbor transition probabilities p, we de�ne the coarse grained
transitions by

p̂CGS;W (x; �)
def
=

X
U :x2U�W

sx (U) exU (x; �; p) : (2.3)

In the case of the standard nearest neighbor random walk, we use the notation
�S;W instead of

�
p̂RW

�CG
S;W :

Using the Markov property, we have

exW (x; �; p) = exW
�
x; �; pCGS;W

�
: (2.4)

We will choose the coarse-graining scheme in special ways. Fix once for all a
probability density

' : R+ ! R+; ' 2 C1; supp (') = [1; 2] : (2.5)

If m 2 R+; the rescaled density is de�ned by 'm (t)
def
= (1=m)' (t=m) : The im-

age measure of 'm (t) dt under the mapping t ! Vt (x) \W de�nes a probability
distribution on subsets of W containing x. We may also choose m to depend on
x; i.e. consider a �eld 	 = (mx)x2W of positive real numbers on W: Such a �eld
then de�nes via the above scheme coarse grained transition probabilities, which by
a slight abuse of notation we denote as pCG	;W : In case W = Zd; we simply drop W in
the notation. In case p is the standard nearest neighbor random walk, we write �̂	
instead of pCG	 :

The random environment: We recall from the introduction the notation P", 
,
p! (x; y), and the natural product �-�eld F : For A � Zd; we write FA for the �-�eld
generated by the projections ! ! !x; x 2 A:We also recall the probability measure
� on P; the product measure P�, and Condition 1.1, which is assumed troughout.
For a random environment ! 2 
, we typically write �V;!

def
= exV (�; �; p!) and

occasionally drop ! in the notation. So �V should always be understood as a random
exit distribution. We will also use �̂S;W for (p!)

CG
S;W :

For x 2 Zd; L > 0; and 	 : @VL (x)! R+, we de�ne the random variables

DL;	 (x)
def
=


���VL(x)

� �VL(x)
�
�̂	
�
(x; �)




1
; (2.6)

D0
L (x)

def
=


�VL(x) (x; �)� �VL(x) (x; �)

1 ; (2.7)

and with � > 0; we set

b1 (L;	; �)
def
= P

�
(logL)

�9
< DL;	 (0) � (logL)�6:75 ; D0

L (0) � �
�

b2 (L;	; �)
def
= P

�
(logL)

�6:75
< DL;	 (0) � (logL)�4:5 ; D0

L (0) � �
�

b3 (L;	; �)
def
= P

�
(logL)

�4:5
< DL;	 (0) � (logL)�2:25 ; D0

L (0) � �
�

b4 (L;	; �)
def
= P

�n
(logL)

�2:25
< DL;	 (0)

o
[
�
D0
L (0) > �

	�
b (L;	; �)

def
= b1 (L;	; �) + b2 (L;	; �) + b3 (L;	; �) + b4 (L;	; �) :
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We writeML for the set of functions 	 : @VL ! [L=2; 2L] which are restrictions
of functions de�ned on

�
x 2 Rd : L=2 � jxj � 2L

	
that have smooth third deriva-

tives bounded by 10L�2 and fourth derivatives bounded by 10L�3.

Condition 2.2
Let L1 2 N; and � > 0: We say that condition Cond (�; L1) holds provided that for
all L � L1; and for all 	 2ML,

bi (L;	; �) �
1

4
exp

h
� (1� (4� i) =13) (logL)2

i
; i = 1; 2; 3; 4: (2.8)

In particular, if Cond (�; L1) is satis�ed, then for any L � L1; and any 	 2ML

P
�
fD0

L(0) > �g [ fDL;	(0) > (logL)�9g
�
� exp

�
�10
13
(logL)

2

�
(2.9)

Our main technical inductive result is

Proposition 2.3
There exist �0 > 0 such that for all � 2 (0; �0] there exists "0 (�) and L0 2 N such
that if " � "0; L1 � L0; and � is such that Condition 1.1 holds for "; then

Cond (�; L1) =) Cond
�
�; L1 (logL1)

2
�
:

Given L0; �0; we can always choose "0 so small that if Condition 1.1 is satis�ed
with "0; then Cond (�0; L0) holds trivially. We therefore see that Proposition 2.3
implies that for any � < �0, there exists "0 small enough such that Cond (�; L) holds
for all " � "0; and all L. In particular, one obtains immediately from Proposition
2.3 the following theorem, which is the main result of this paper.

Theorem 2.4
For each � < �0 there exists an "0 > 0 such that if Condition 1.1 is satis�ed with "0;
then

lim sup
L!1

b (L;mL; �) = 0 ;

where mL denotes the element ofML that consists of constant smoothing at scale
L.

A remark about the wording which is used below. When we say that something
holds for �large enough L�, we mean that there exists L0; depending only on the
dimension, such that the statement holds for L � L0: We emphasize that L0 then
does not depend on ".
We write C for a generic positive constant, not necessarily the same at di¤er-

ent occurences. C may depend on the dimension d of the lattice, but on nothing
else, except when indicated explicitely. Other constants, such as c0; c1; �c; k0;K;C1
etc., follow the same convention concerning what they depend on (d only, unless ex-
plicitely stated otherwise!), but their value is �xed throughout the paper and does
not change from line to line.
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3 Preliminaries

3.1 The perturbation expansion

Let p = (p (x; y))x;y2Zd be a Markovian transition kernel on Zd; not necessarily
nearest neighbor, but of �nite range, and let V �� Zd: The Green kernel on V with
respect to p is de�ned by

gV (p) (x; y)
def
=
X
k�0

(1V p)
k
(x; y) :

Evidently, if z =2 V; then

gV (p) (�; z) = exV (�; z; p) : (3.1)

If p; q are two transition kernels, the resolvent equation gives for every n 2 N

gV (p) = gV (q) + gV (q) 1V (p� q) gV (p)

= gV (q) +
n�1X
k=1

[gV (q) 1V (p� q)]k gV (q) (3.2)

+ [gV (q) 1V (p� q)]n gV (p)

= gV (q) +
1X
k=1

[gV (q) 1V (p� q)]k gV (q) ;

assuming convergence of the in�nite serie, which will always be trivial in cases of
interest to us, assuming ellipticity and V �nite.
If V �� Zd, and S is any coarse graining scheme on V (as in De�nition 2.1),

we compare the exit distribution of the RWRE �V with the exit distribution �V
of simple random walk through this perturbation expansion, using however coarse
grained transitions inside V : Using (3.1) and (2.4) we get for x 2 V

(�V � �V ) (x; �) =
1X
k=0

�
ĝS;V [�S;V ĝS;V ]

k
�S;V �V

�
(x; �) ;

where
�S;V

def
= 1V

�
�̂S;V � �̂S;V

�
; ĝS;V

def
= gV (�̂S;V ) :

We will also use the splitting (dropping the S; V indices when no confusion may
arise)

ĝ (x; �) = �x;� + �̂ĝ (x; �) ; x 2 V:
If we put for k � 0

�(k) = �k (��̂ĝ) ;

we get

�V � �V = ĝ
1X
m=1

1X
k1;:::;km=0

�(k1) � : : : � �(km�1)�km�V :

Remark that we can replace in �(k) the second part:

(��̂ĝ) (x; y) =
X
z

(��̂) (x; z) (ĝ (z; y)� ĝ (x; y)) ;
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i.e., we gain a discrete derivative in the Green function.
We will occasionally slightly modify the above expansion, but the basis is always

the �rst equality in (3.2).

3.2 The smoothing scheme on VL
We next make an explicit choice of smoothing schemes that we will use. Set

r (L)
def
= L= (logL)

10
; s (L)

def
= L= (logL)

3
; (3.3)

and



def
= min

 
1

10
;
1

2

 
1�

�
2

3

�1=(d�1)!!
: (3.4)

We �x a C1-function h : R+ ! R+; which satis�es h (u) = u for u � 1=2;
h (u) = 1 for u � 2; and is strictly monotone and concave on (1=2; 2) : For x 2 VL;
we set

hL (x)
def
= 
s (L)h

�
dL (x)

s (L)

�
: (3.5)

Remark that for dL (x) � 2s (L) ; we have hL (x) = 
s (L) :

Lemma 3.1
Fix �1 > 0. Then, there is a constant �k0 = �k0(�1) such that if k � �k0(�1) then for
all L large, if for some � > 0, dL (x) � r (L) ; D0

kr(L) (x) � �; thenX
y2VL:dL(y)�r(L)

j�(x; y)j � � + �1 : (3.6)

Proof. Fix k. We haveX
y2VL:dL(y)�r(L)

j�(x; y)j

� �Vkr(L)(x) (x; VL \ ShellL (r (L))) + �Vkr(L)(x) (x; VL \ ShellL (r (L)))
� � + 2�Vkr(L)(x) (x; VL \ ShellL (r (L))) :

Choosing k large enough completes the proof.
We will work with two smoothing schemes on VL: The �rst will depend on a

constant k0 > 1 that will be chosen below, see (3.22).

De�nition 3.2
a) The smoothing scheme S1 = S1;L;k0 = (sx)x2VL is de�ned as follows. For
dL (x) � r (L) we set sx = �k0r(L), i.e. for such an x; the coarse graining is
done by choosing the exit distribution from Vk0r(L) (x)\VL: For dL (x) > r (L),
we take sx (dt)

def
= 'hL(x) (t) dt:

b) The smoothing scheme S2 = S2;L = (sx)x2VL is simply de�ned by sx (dt)
def
=

'hL(x) (t) dt for all x:
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We will need the second scheme only in the propagation of the part of the estimate
b4(L;	; �) involving the expression D0

L(x) of (2.7). Up to Section 5, we therefore
only work with S1:
We write B(i)L , i = 1; 2; 3; 4; for the collection of points which are bad on level i;

and in the right scale: For i = 1; 2; 3, B(i)L ; are the set of points x =2 ShellL (r (L))
such that for some r 2 [hL(x); 2hL(x)], one has Dr;hL(x) (x) > (logL)

�11:25+2:25i
;

but for all r 2 [hL(x); 2hL(x)]; Dr;hL(x) (x) � (logL)
�9+2:25i

; and D0
r (x) � �:

B
(4)
L is the set of points x which for dL (x) > r (L) have the property that for

some r, hL (x) � r � 2hL (x) ; Dr;hL(x) (x) > (logL)
�2:25

; or D0
r (x) > �; and for

dL (x) � r (L) satisfy D0
r(L) (x) � �. We also write

BL
def
= B

(1)
L [B(2)L [B(3)L [B(4)L ; (3.7)

and
GoodL

def
= fBL = ;g : (3.8)

We write �i;L (x) ; i = 1; 2; for the range of the coarse graining scheme at x in
scheme i; i.e.

�1;L (x)
def
=

�
k0r (L) for dL (x) � r (L)
2hL (x) for r (L) < dL (x)

(3.9)

and similarly for the second scheme.
If L1 � L � L1 (logL1)2 then all the radii involved in the de�nition of badness

are smaller than L1; if L1 is chosen large enough. Remark that if dL (x) > r (L) ;
then hL (x+ �) 2Mr for hL (x) � r � 2hL (x) ; and therefore, if Cond (�; L1) holds,
and L1 � L � L1 (logL1)2 ; then

P (x 2 BL) � 2
s (L) exp

24�10
13

 
log


L

(logL)
10

!235 � exp h�0:7 (logL)2i ; (3.10)

if L1 is large enough.
The points y whose random environment !y can in�uence the badness of x are

evidently within radius �1;L (x) from x: If jx� yj > �1;L (x)+�1;L (y) ; then fx 2 BLg
and fy 2 BLg are independent. Therefore, if we de�ne

TwoBadL
def
=

[
x;y2VL:jx�yj>�1;L(x)+�1;L(y)

fx 2 BLg \ fy 2 BLg ; (3.11)

then:

Lemma 3.3
Assume L1 large enough, (2.8) for L1; and L1 � L � L1 (logL1)2 : Then

P (TwoBadL) � exp
h
�1:2 (logL)2

i
:

3.3 Estimates on exit distributions and the Green�s function

For notational convenience, we write �L instead of �VL ; and similarly in other ex-
pressions. For instance, we write �L instead of �VL :
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Lemma 3.4
a)

1

C
L�d+1 � �L (x) � CL�d+1:

b) Let x be a vector of unit length in Rd; let 0 < � < 1; and de�ne the cone

C� (x)
def
=
�
y 2 Zd : hy; xi � (1� �) jyj

	
: For any �; there exists � (�) > 0; such

that for all L large enough, and all x

�L (0; C� (x)) � � (�) : (3.12)

c) Let 0 < l < L; and x 2 Zd satisfy l < jxj < L: Then

PRWx (�L < TVl) =
l�d+2 � jxj�d+2 +O

�
l�d+1

�
l�d+2 � L�d+2

Proof. a) is Lemma 1.7.4 of [5]. b) is immediate from a). c) is Proposition
1.5.10 of [5].
We will repeatedly make use of the following lemma.

Lemma 3.5
Assume x; y 2 VL; 1 � a � 5dL (y) ; x =2 V2a (y) : Then

Px
�
TVa(y) < �VL

�
� C a

d�2dL (y) dL (x)

jx� yjd
(3.13)

The proof will be given in Appendix A.
We will need a corresponding result for the Brownian motion. We write �BML (y; dy0)

for the exit distribution of the Brownian motion from the ball CL of radius L in Rd:
The following lemma is an easy consequence of the Poisson formula, see [5, (1.43)].

Lemma 3.6
For any y 2 CL, it holds that

C�1d(y; @CL)

jy � y0jd � �BML (y; dy0)

dy0
� Cd(y; @CL)

jy � y0jd ; (3.14)

where dy0 is the surface measure on @CL:

We will need a comparison between smoothed exit distribution of the random
walk, and that of Brownian motion. Given L > 0; and 	 2ML; let

�L;	
def
= �VL �̂	: (3.15)

We consider also the corresponding Brownian kernel on Rd,

�BML;	 (y; dz)
def
=

Z
@CL(0)

�BMCL(0) (y; dw)

Z
�BMCt(w) (w; dz)'mw

(t) dt;

where 	 = (mw) ; and where we write �BML;	 (y; z) for the density with respect to
d-dimensional Lebesgue measure.
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Lemma 3.7
There exists a constant C such that for L > 0; and 	 2ML; we have

sup
y2VL

sup
z2Zd

���L;	 (y; z)� �BML;	 (y; z)�� � CL�d�1=5
Lemma 3.8
There exists a constant C such that for L > 0 and 	 2ML; we have

sup
y;z



@3y�BML;	 (y; z)

 � CL�d�3
The proofs of these two lemmas are again in Appendix A.
We can draw two immediate conclusions from these results:

Proposition 3.9
a) Let y; y0 be in VL, and 	 2ML: Then

j�L;	 (y; z)� �L;	 (y0; z)j � C
�
L�d�1=5 + jy � y0jL�d�1

�
: (3.16)

b) Let x 2 VL; and l be such that Vl (x) � VL: Consider a signed measure � on
Vl with total mass 0 which is invariant under lattice isometries. Then���X

y
� (y � x)�L;	 (y; z)

��� � C j�j L�d�1=5 + � l
L

�3
L�d

!
; (3.17)

where j�j denotes the total variation norm of �:

Proof of Proposition 3.9. a) is immediate from Lemmas 3.7 and 3.8.
As for b), we get from the same lemmas���X

y
� (y � x)�L;	 (y; z)�

X
y
� (y � x)�BML;	 (y; z)

��� � C j�jL�d�1=5:
X

y
� (y � x)�BML;	 (y; z) =

X
y
� (y � x)

�
�BML;	 (y; z)� �BML;	 (x; z)

�
=
X

y
� (y � x) @x�BML;	 (x; z) [y � x] (3.18)

+
1

2

X
y
� (y � x) @2x�BML;	 (x; z) [y � x; y � x]

+R (�; x; z) ;

where

jR (�; x; z)j � C j�j
�
l

L

�3
L�d (3.19)

uniformly in x and z: @kF [u1; : : : ; uk] denotes the k-th derivative in directions
u1; : : : ; uk. The �rst summand on the right hand side of (3.18) vanisches because �
has mean 0: The second vanishes because by the invariance under lattice isometry of
�; the summand involves only the Laplacian of �BML;	 (�; z) ; which vanishes because
of harmonicity of �BMCL(0) (x; �) in the x-variable. The estimate (3.19) follows from
Lemma 3.8. The proof of the proposition is complete.
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The next lemma gives a-priori estimates for coarse-grained walks. We use �̂(i)L ,
i = 1; 2, to denote the transitions of the coarse grained random walk that uses
the smoothing scheme Si, and ĝ(i)L to denote the corresponding Green�s function.
Note that these quantitites all depend on L and k0, but we supress these from the

notation. We set SL
def
= ShellL (r (L)).

Lemma 3.10
There exists a constant C (independent of k0!) such that:

a)
sup
x2VL

ĝ
(1)
L (x; SL) � C:

b) If i = 1 and r (L) � a � 3s (L) or i = 2 and a � 3s (L) then,

sup
x2VL

ĝ
(i)
L (x; ShellL (a; 2a)) � C:

c) For all x; y 2 VL n ShellL(s(L)), and i = 1; 2,

ĝ
(i)
L (x; y) � C

� 1
s(L)2[jx�yj_s(L)]d�2 ; y 6= x
1; y = x :

d) For i = 1; 2,
sup
x2VL

ĝ
(i)
L (x; VL) � C (logL)6 :

e) For i = 1; 2,

sup
x;x02VL:jx�x0j�s(L)

X
y2VL

���ĝ(i)L (x; y)� ĝ(i)L (x0; y)
��� � C (logL)3

The proof is presented in Appendix B.
Lemma 3.10 plays a crucial role in our smoothing procedure. As a preparation,

for k � 1, set
B1 (k)

def
= ShellL

�
(4=3)

k
r (L)

�
:

B1 (k) � ShellL (s (L)) if k � 20 log logL. By Lemma 3.10, we get that there exists
a constant �c � 1 such that

sup
x2VL

ĝ
(1)
L (x;B1 (k)) � �c

�
k ; if k � 20 log logL

(logL)
6
if k > 20 log logL

: (3.20)

and, for any ball Vrs(L)(z) � VL�s(L),

sup
x2VL

ĝ
(1)
L

�
x;Brs(L)(z)

�
� �crd : (3.21)

With �c as in (3.20) and (3.21), we �x the constant k0 large enough such that:

k0 � �k0(1=200�c);

sup
x2SL

PRWx

�
�VL < �Vk0r(L)(x)

�
� 9=10; (3.22)

sup
x2SL

�Vk0r(L)(x) (x; VL) � 17=32:

That the two last estimates in (3.22) hold for k0 large is obvious, for example from
Donsker�s invariance principle.
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4 Smoothed exits

Throughout this section, we consider the coarse graining scheme S = S1 as in De�-
nition 3.2, and we write �L for �1;L. We regard �̂S;L as a �eld

�
�̂S;L (x; �)

�
x2VL

of

random transition probabilities. We de�ned the �goodi�ed�transition probabilities

gd
�
�̂S;L

�
(x; �) def=

�
�̂S;L (x; �) if x =2 BL
�̂S;L (x; �) if x 2 BL

:

This �eld might no longer come from an i.i.d. RWRE, but nevertheless, we have the

property that gd
�
�̂S;L

�
(x; �) and gd

�
�̂S;L

�
(y; �) are independet provided jx� yj >

�L (x) + �L (y) : If X is a random variable depending on ! only trough the �̂S;L we

de�ne gd (X) by replacing �̂S;L by gd
�
�̂S;L

�
:

In the sequel, we keep L �xed and typically drop it from the notation. We set

ĝ
def
= ĝS1;L; �

def
= �S1;L; �

def
= �VL : We take 	 2 ML; and set �

def
= �L;	; as in

(3.15). An easy consequence of our de�nitions and Lemma 3.1 is the following.

Lemma 4.1
If � � (1=800�c) then, for all x 2 VL and k � 2,

1fBL=;gk�k(x; �)k1 �
1

�c

�
1

8

�k
: (4.1)

Proof. Since maxx2VL k�(x; �)k1 � 2 and �c � 1, it is enough to prove that

1fBL=;g
X
z2VL

j�2(x; z)j �
�
1

64�c

�
:

If dL(x) > r(L) then, on the event fBL = ;g, k�(x; �)k1 � � and hence k�2(x; �)k1 �
2� � 1=64�c due to our choice of �. On the other hand, if dL(x) � r(L) then on the
event fBL = ;g,X
z2VL

j�2(x; z)j =
X
z2VL

���X
y2VL

�(x; y)�(y; z)
��� (4.2)

� 2

������
X

y2ShellL(r(L))

�(x; y)

������+
������

X
y2VLnShellL(r(L))

�(x; y)

������ max
y2VLnShellL(r(L))

X
z2VL

j�(y; z)j

� 2(� + 1

200�c
) + 2� = 4� +

1

100�c
<

1

64�c
;

where Lemma 3.1 and k0 � �k0(1=200�c) were used in the next to last inequality.
In what follows, we will always consider � � 1=800�c.

4.1 The linear part

For x 2 VL; B � VL; set

�(k)x (B; z) =
X
y2B

ĝ (x; y)
�
�k��̂	

�
(y; z) (4.3)

=
X
y2B

X
y02VL

ĝ (x; y)�k (y; y0) (� (y0; z)� � (y; z))

12



We write �(k)x (z) for �(k)x (VL; z) ; and de�ne

GL
def
=

�
sup
x2VL

X
k�1




�(k)x





1
� (logL)�37=4

�
:

Proposition 4.2
If L is large enough, then

P ((GL)c \GoodL) � exp
h
� (logL)17=8

i
:

Proof. It su¢ ces to prove that

sup
x2VL

P
�X

k�1




�(k)x





1
� (logL)�37=4 ; GoodL

�
� exp

h
� (logL)9=4

i
:

Note that

P
�X

k�1




�(k)x





1
� (logL)�37=4 ; GoodL

�
= P

�X
k�1




gd��(k)x

�



1
� (logL)�37=4 ; GoodL

�
� P

�X
k�1




gd��(k)x

�



1
� (logL)�37=4

�
:

For notation convenience, we drop the notation gd (�) ; and just use the fact that
all �̂S;L involved satisfy the appropriate �goodness�properties. (Remark that after
�goodi�cations�, the distribution of �̂S;L (x; x+ �) remains invariant under lattice
isometries, provided dL (x) > 2s (L) :)
We split �(k)x into di¤erent parts. If dL (y) > r (L) and �(y; y0) > 0; we have,

assuming 
 � 1=8, jy � y0j � dL (y) =4; i.e. dL (y) � (4=3) dL (y
0) : Therefore, if

dL (y
0) � r (L) and �k (y; y0) > 0; then dL (y) � (4=3)k r (L) : Recall the set B1(k)

and the estimate (3.20). If y 2 B1(k); and �k (y; y0) > 0; we have

jy � y0j � kk0r (L) + 3kmax (r (L) ; dL (y))
�
�
kk0 + 4

k
�
r (L) ;

and applying (3.16), we see that for y 2 B1(k); and y0 such that �k (y; y0) > 0; we
have

j� (y; z)� � (y0; z)j � C
�
kk0 + 4

k
�
L�d (logL)

�10
:

By Lemma 4.1, we have


�k (y; �)



1
� 16 � 8�k: Combining all these estimates, we

have


�(k)x (B1(k))




1
� C

�
k8�k

�
kk0 + 4

k
�
(logL)

�10
; if k � 20 log logL;

8�k
�
kk0 + 4

k
�
(logL)

�4
; if k > 20 log logL:

(4.4)

(We emphasize our convention regarding constants, and in particular the fact that
C does not depend on x.) Hence,

sup
x

X
k�1




�(k)x (B1(k))




1
� C (logL)�10 � (logL)�37=4 =3: (4.5)
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Next, let

B2(k)
def
= ShellL

�
(4=3)

k
r (L) ; (5=4)

k
2s (L)

�
:

If y 2 B2(k) and �k (y; y0) > 0; we have dL (y0) > r (L) ; and we get, using the fact
that for dL (x) > r (L) ; one can write � (x; �) = (�̂�) (x; �) ;

�(k)x (B2(k); z) =
X

y2B2(k)

X
y02VL

ĝ (x; y)Dk (y; y
0) (� (y; z)� � (y0; z)) ;

where
Dk

def
= �k�̂; (4.6)

and

sup
y2B2(k)

kDk (y; �)k1 � sup
y2B2(k)



�k�1 (y; �)


1

sup
x:dL(x)>r(L)

k��̂ (x; �)k1 (4.7)

� C8�k (logL)�9 :

Using Lemma 3.10 b), we have supx ĝ (x; ShellL (3s (L))) � C log logL: Put

Aj
def
= ShellL ((2 + (j � 1) =4) s (L) ; (2 + j=4) s (L)) ; j � 1:

Starting from a point in Aj ; j � 3; the coarse grained random walk has a probability
� 1=C to reach Aj�2 in one step. Starting from Aj�2; an ordinary random walk
has a probability � 1=C to leave VL+k0r(L) before reaching Aj ; and therefore, the
coarse grained walk leaves VL before reaching Aj with at least the same probability.
Therefore supx ĝ (x;Aj) � Cj; and thus,

sup
x
ĝ (x;B2(k)) � C

 �
5

4

�2k
+ log logL

!
� C

�
2k + log logL

�
:

If y 2 B2(k); and �k (y; y0) > 0, then jy � y0j � 2ks (L) ; and therefore

j� (y; z)� � (y0; z)j � CkL�d (logL)�3 ;

again by (3.16). Therefore, we get;


�(k)x (B2(k); �)




1
� Ck (logL)�12

�
4�k + 8�k log logL

�
;

sup
x

X
k�1




�(k)x (B2(k); �)




1
� (logL)�37=4 =3: (4.8)

Let B3(k)
def
= VLn (B1(k) [B2(k)) : Given j 2 Z; let

Ij
def
= fjks (L) + 1; : : : ; (j + 1) ks (L)g :

Then for j 2 Zd; put Wj
def
= B3(k) \ Ij1 � � � � � Ijd : Let J be the set of j�s for which

these sets are not empty. We subdivide J into subsets J1; : : : ; JK(d) such that for
any 1 � r � K (d) ;

j; j0 2 Jr; j 6= j0 =) d (Wj;Wj0) > ks (L) : (4.9)
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We also have diam (Wj) �
p
dks (L) :

We set, recalling (4.6),

�
(k)
x;j (z)

def
=
X
y2Wj

X
y02VL

ĝ (x; y)Dk (y; y
0) (� (y; z)� � (y0; z)) : (4.10)

We �x for the moment k and x: If t > 0, andX
j
E�(k)x;j (z) � t=2; (4.11)

and we have

P
�


�(k)x (B3(k); �)





1
� t
�
� P

����X
j

�
�
(k)
x;j (z)� E�

(k)
x;j (z)

���� � t=2�
� K (d) max

1�r�K(d)
P
����X

j2Jr

�
�
(k)
x;j (z)� E�

(k)
x;j (z)

���� � t= (2K (d))� :
The random variables �(k)x;j (z)�E�

(k)
x;j (z), j 2 Jr, are independent and centered, due

to (4.9), and we are going to estimate their sup-norm. j� (y; z) � � (y0; z) j is again
� C

�
k (logL)

�3
L�d + L�d�1=5

�
for y; y0 for which Dk (y; y0) 6= 0: According to

Lemma 3.10 c), we have

ĝ (x;Wj) � Ckd
�
1 +

d (x;Wj)

s (L)

��d+2
:

Implementing that into (4.10), we get


�(k)x;j (z)




1
� Ckd+18�k

�
1 +

d (x;Wj)

s (L)

��d+2
L�d (logL)

�12
:

By Hoe¤ding�s inequality (see e.g. [6, (1.23)] ), we have for 1 � r � K (d)

P

 ���X
j2Jr

�
�
(k)
x;j (z)� E�

(k)
x;j (z)

���� � 2�kL�d

2K (d) (logL)
37=4

!

� 2 exp
"
� 1
C

(logL)
�37=2

k2d+24�2k (logL)
�24PC(logL)3

r=1 r�d+3

#
� 2 exp

"
� 1
C

(logL)
5=2

k2d+24�2k

#
;

where we used d � 3 in the last inequality. The upshot of this estimate is that
provided (4.11) holds true with t = 2�kL�d (logL)�37=4 ; we have

sup
x
P
�X

k�1




�(k)x (B3)




1
� (logL)�37=4

�
� 2

X
k�1

exp

"
� 1
C

(logL)
5=2

k2d+24�2k

#

� exp
h
� (logL)17=8

i
;

It remains to prove (4.11) with this t. WriteX
j

E�(k)x;j (z) =
X
y2B3

X
y02VL

ĝ (x; y)E (Dk (y; y0)) (� (y; z)� � (y0; z)) :
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For every y; y0 7! E (Dk (y; y0)) is a signed measure with total mass 0; which is
invariant unter lattice isometries. FurthermoreX

y0

jE (Dk (y; y0))j � C8�k (logL)�9 :

Applying (3.17), we get���X
y0
E (Dk (y; y0)) (� (y; z)� � (y0; z))

���
� C8�k (logL)�9

0@L�d�1=4 + Lk (logL)�3
L

!3
L�d

1A � C4�k (logL)�18 L�d;

uniformly in y 2 B3(k); and k: By Lemma 3.10 d), we have

sup
x

X
y2B3(k)

ĝ (x; y) � C (logL)6 :

From this (4.11) follows.

4.2 The non-linear part, no bad boxes

Recall the random variable DL;	 (0), c.f. (2.6).

Proposition 4.3
If L is large enough and 	 2ML; then

P
�
DL;	 (0) � (logL)�9 ; GoodL

�
� exp

h
� (logL)17=8

i
:

Proof. We recall the abbreviation SL
def
= ShellL (r (L)) : By Proposition 4.2, it

su¢ ces to estimate the rest of the perturbation expansion

RL
def
=

1X
n=1

1X
k1;:::;kn=0

�
ĝ�k1��̂

�
� : : : �

�
ĝ�kn��̂

� 1X
k=1

�
ĝ�k�

�
; (4.12)

on GL \GoodL : The last factor is
P1

k=1 �
(k) of the last section, and therefore, we

only have to show that on GoodL; the other factors are staying below 1; for instance

sup
x

X
k�0



�ĝ�k��̂� (x; �)


1
� 15=16: (4.13)

First, we observe that

sup
y=2SL

k(��̂) (y; �)k1 � C (logL)
�9
;X

k�0
sup
x



�ĝ�k� (x; �)


1
� C (logL)6 :

Therefore, we haveX
k�0

sup
x




X
y=2SL

�
ĝ�k

�
(x; y) (��̂) (y; �)





1
� 1=16;
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if L is large enough, and in order to prove (4.13) it therefore su¢ ces to proveX
k�0

sup
x




X
y2SL

�
ĝ�k

�
(x; y) (��̂) (y; �)





1
� 7=8:

As in the proof of proposition (4.2), if �k(z; y) > 0 for y 2 SL then z 2 B1(k).
Hence, using (3.20) and Lemma 4.1 together with our choice of k0 in the second
inequality, X

k�1
sup
x




X
y2SL

�
ĝ�k

�
(x; y) (��̂) (y; �)





1

�
X
k�1

sup
x
ĝ(x;B1(k)) sup

z2B1(k)



�k+1(z; �)


1

�
20 log logL�1X

k=2

k

�
1

8

�k
+

X
k�20 log logL

(logL)6
�
1

8

�k
<
1

8

Therefore, it su¢ ces to prove

sup
x




X
y2SL

ĝ (x; y) (��̂) (y; �)




1
� 3=4: (4.14)

From the choice (3.22) it follows that

sup
x2VL

ĝ (x; SL) � 10=9:

Furthermore we have assumed � � 1=32; so that by using the third part in (3.22),
we have

sup
x2SL

�Vk0r(L)(x) (x; VL) � 9=16:

Combining that, we get

sup
x




X
y2SL

ĝ (x; y) (��̂1VL) (y; �)




1

=sup
x

X
y2SL

ĝ (x; y)�Vk0r(L)(y) (y; VL) + supx

X
y2SL

ĝ (x; y)�Vk0r(L)(y) (y; VL)

�5
8
+
1

9
<
3

4
;

as required.
We therefore get

sup
x2VL

kRL (x; �)k1 � C (logL)
�37=4

on GL \GoodL :

4.3 Presence of bad points

On (GoodL [TwoBadL)c ; it is clear that for some x 2 VL; we have

BL � V5�(x) (x) : (4.15)
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We write DL for the collection of balls V5�L(x) (x) ; x 2 VL; and for D 2 DL; we
write BadL (D) for the event that fBL � Dg ; and Bad(i)L (D) for the event thatn
B
(i)
L � D

o
, i = 1; 2; 3; 4.

The main aim of this section is to prove the following result.

Proposition 4.4
There exists a �0 � 1=800�c such that if � < �0, and if Cond (L1; �) holds for a given
L1, and if L � L1 (logL1)2 and 	 2ML, then, for i = 1; 2; 3; 4,

sup
D2DL

P
�
k([�VL � �VL ] �̂	) (0; �)k1 � (logL)

�11:25+2:25i
; Bad

(i)
L (D)

�
� 1

100
exp

h
� (logL)2

i
:

The proof of Proposition 4.4 relies on an auxilliary construction. To �x the
constants in the construction, we need the following lemma. Write ~GL for the
Green function of the coarse-grained RWRE in a �goodi�ed�environment.

Lemma 4.5
There exists a constant c0 such that for all L large, and D 2 DL, D � ShellL(L=2),

~GL(0; D) � c0
�
diam(D)d�2 (maxy2D dL(y) _ s(L))

Ld�1

�
: (4.16)

Further, there exists a constant c1 � 1 such that

sup
y2VL

~GL(y;D) � c1 : (4.17)

We postpone for a moment the proof of Lemma 4.5 and turn to the

Proof of Proposition 4.4. We start with the case when D is �not near�the
boundary, meaning that D � VL=2. We write D = V5�L(x0) (x0) = V5
s(L) (x0) : By
Lemma 3.10 c), we can �nd a constant K (not depending on L; x0), such that for

any point x =2 eD def
= V5K
s(L) (x0) ; and all L large, one has ĝ (x;D) � 1=10: We

modify now the transition probabilities �̂; �̂ slightly, when starting in x 2 D; by
de�ning e�(x; �) def= (

ex eD
�
x; �; �̂

�
for x 2 D

�̂ (x; �) for x =2 D
; (4.18)

and similarly we de�ne e�: (Remark that this destroys somewhat the symmetry, when
x 6= x0; but this is no problem below). Clearly, these transition probabilities have
the same exit distribution from VL as the one used before. If we write eg for the
Green�s function on VL of e�; we have eg (x; y) = ĝ (x; y) for y =2 eD; and all x; whereaseg (x; y) � ĝ (x; y) for y 2 eD: In particular, we have

sup
x62 eD eg (x;D) � 1=10: (4.19)

Writing down our perturbation expansion, we have

([�VL � �VL ] �̂	) =
1X
m=1

1X
k1;:::;km=0

�eg�k1��̂� � : : : � �eg�km�1��̂
� �eg�km��� ;
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where � now uses the modi�ed transitions, that is �(x; y) = ~�(x; y)� ~�(x; y), but
remark that for x =2 D; �(x; �) is the same as before. Also, � is modi�ed accordingly.
We �rst estimate the part with m = 1. In anticipation of what follows, we

consider an arbitrary starting point x 2 VL. Put k = k1 + 1: The part of the sumX
y

X
x1;:::;xk

eg (x; x1)� (x1; x2) � : : : ��(xk; y)� (y; �)
where all xj =2 D; is estimated in Section 4.1, and the probability that it ex-

ceeds (logL)�9 =3 is bounded by exp
h
� (logL)2

i
=100: If an xj 2 D; then the

sum over xj+1 extends only to points outside eD; and therefore, the sum over
xj+1; xj+2; : : : ; xj+K is running only over points outside D: Therefore

sup
xj2D

X
xj+1;:::xj+K

j�(xj ; xj+1) � : : : ��(xj+K ; xj+K+1)j � 2�K : (4.20)

Further, let j denote the smallest index such that xj 2 D. Let

Xj := fx1 : �(x1; x2) � � ��(xj�1; xj)g > 0 :

Then maxx12Xj d(x1; D) � 5j
s(L). For j < (logL)2 it follows that Xj � VL�s(L)
and therefore, by (3.21), maxx2VL ~g(x;Xj) � Cjd. Thus,����Xx1;:::;xj

eg (x; x1)� (x1; x2) � � ��(xj�1; xj)���� � C�j�1jd : (4.21)

On the other hand, for j � (logL)2 one has

j
X

x1;:::;xj

eg (x; x1)� (x1; x2) � � ��(xj�1; xj) j � C(1=8)j(logL)6 :
Therefore, using (4.20),

1X
j=1

������
X

x1;:::;xj�1 62D;xj2D
eg (x; x1)� (x1; x2) � � ��(xj�1; xj)

������ � C :
If xk =2 D; then




Py�(xk; y)� (y; �)




1
� C (logL)

�12
: On the other hand, if

xk 2 D; then 


X
y
�(xk; y)� (y; �)





1
� C
K (logL)�12+2:25i : (4.22)

Combining all the above, we conclude that for some constant c2 it holds that

j
X
y;z

X
x1;:::;xk

eg (x; x1)� (x1; x2) � : : : ��(xk; y)� (y; z) j � c2
K(logL)�12+2:25i :
It follows that


X0

x1;:::;xk
eg (0; x1)� (x1; x2) � : : : � (��) (xk; �)




1
� (logL)�11:5+2:25i ; (4.23)
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where
P0 denotes summation where at least one xj is in D:

(We note that for i = 1; 2; 3, one would not need to use the K-enlargement and
modi�cation of the transition probabilities, as we catch in any case a factor � for
any �).
The case m � 2 is handled with an evident modi�cation of the above procedure,

using the estimate (4.19). Indeed, let D0 = fz 2 VL : d(z; ~D) � 2
s(L)g. A repeat
of the previous argument shows that

sup
x

1X
k=4

X
xk

j
X

x1;:::;xk�1:
9j�k;xj2D0

eg (x; x1)� (x1; x2) � : : : ��(xk�2; xk�1) �̂ (xk�1; xk) j � C�
while

sup
x

X
x3

j
X
x1;x2:

9j�3;xj2D0

eg (x; x1)� (x1; x2) �̂ (x2; x3) j � � 2
10 ; x 62 D0

C ; x 2 D0 ;

and, by the computation in Section 4.2, c.f. (4.13),

sup
x

1X
k=3

X
xk 62D0

j
X

x1;:::;xk�1:
xj 62D0

eg (x; x1)� (x1; x2) � : : : ��(xk�2; xk�1) �̂ (xk�1; xk) j � 15

16
:

Hence, we conclude that always,

sup
x

X
k�0



�ĝ�k��̂� (x; �)


1
� C; (4.24)

and for all � small,

sup
x

X
k1;k2�0



�ĝ�k1��̂� �ĝ�k2��̂� (x; �)


1
� 16

17
: (4.25)

Together with the computation for m = 1, c.f. (4.23) when D0 is visited, and
Proposition 4.2 when it is not, this completes the proof of Proposition 4.4 in case
D � VL=2.
We next turn to D \ V cL=2 6= ;. Recall the Green function ~GL of the goodi�ed

environment, introduced above Lemma 4.5. Let �gVL denote the exit measure �VL
with the environment replaced by the goodi�ed environment. Let �g = 1D(�S;VL�
�gS;VL). The perturbation expansion then gives

[�VL ��
g
VL
](z) =

X
~GL(0; y)�

g(y; y0)�VL(y
0; z) ;

and thus

k�VL ��
g
VL
k � 2 ~GL(0; D) � 3 � 10dc0

s(L)d�1

2Ld�1
� C(logL)3(1�d) ; (4.26)

This completes the proof in case i = 3; 4 (and also i = 1; 2 if d � 4).
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Consider next the case i = 1; 2 (and d = 3). Rewrite the perturbation expansion
as

[�VL ��
g
VL
](z) =

X
k�1

X
y

~GL (�
g)
k
(0; y)

�
�̂S;VL

~GL�
g�gVL

�
(y; z) (4.27)

In particular, using Lemma 4.1,

k�VL ��
g
VL
k � 32 ~GL(0; D)

X
k�1
(1=8)k�1(logL)�9+2:25i sup

y02VL
~GL(y

0; D)

� C(logL)3(2�d)(logL)�9+2:25i � (logL)�11:5+2:25i : (4.28)

Proof of Lemma 4.5. We begin by establishing some auxilliary estimates for
the unperturbed Green function ĝ. We �rst show that

sup
y2VL

ĝL(y;D) � C : (4.29)

Indeed, in proving (4.29), it is enough to consider y 2 D. Fix a constant � to be
chosen below (see (4.30)). For D such that D \ ShellL(�s(L)) 6= ;, the estimate
(4.29) (with C = C(�) depending on the choice of �) is an immediate consequence
of parts a) and b) of Lemma 3.10. If D \ ShellL(�s(L)) = ; and y 2 D, then, using
Lemma 3.5 in the second inequality, and the choice of 
 implying 10
 � 1, see (3.4),
we may �nd a constant C1 independent of � such that

max
y2D

ĝL(y;D) � 1 + max
y2D

G
s(L)(y;D)+X
x2ShellL(2s(L))

PRWy (S�0 = x)P
RW
x (TD < TVL)max

y2D
ĝL(y;D)

� C + C1
(� + 3)s(L)2s(L)d�2

((� � 3)s(L))d max
y2D

ĝL(y;D) :

Choosing � > 3 large enough such that

C� := C1(� + 3)=(� � 3)d < 1 ; (4.30)

we �nd that
max
y2D

ĝL(y;D) � C + C� max
y2D

ĝL(y;D) ;

from which the conclusion (4.29) follows.
We next note that, for any z 2 VL,

ĝL(z;D) � PRWz (TD < �VL)max
z2D

ĝL(z;D) :

Applying (4.29) and Lemma 3.5, we deduce that for some constant C0,

ĝL(z;D) � C0
�
diam(D)d�2dL(z)maxy2D dL(y)

d(z;D)d
_ 1
�
: (4.31)

We next write the perturbation expansion

~GL(z;D)� ĝL(z;D) =
X
k�1

X
y;y0;w

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D) +NL ; (4.32)
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where NL denotes the nonlinear term in the perturbation expansion, that is

NL =
1X
n=2

1X
k1;:::;kn=0

�
ĝL�

k1��̂
�
� : : : �

�
ĝL�

kn�1��̂
� �
ĝL�

kn�ĝL(�; D)
�
; (4.33)

We �rst handle the linear term in (4.32). Recall that supw2VL ĝL(w;D) � C.
Thus, in a goodi�ed environment,

j
X
k�1

X
y;y0;w:dL(y0)�k0r(L)

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D)j � C(logL)6(1=8)k(logL)�9;

(4.34)
and

j
X
y;y0;w

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D)j � C(logL)6(1=8)k : (4.35)

From (4.35) it follows that

j
X

k�20 log logL

X
y;y0;w

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D)j � C(logL)�9 : (4.36)

On the other hand, if dL(y0) � k0r(L) and �k(y; y0) > 0 then, as in the proof of
Proposition 4.2, dL(y) � (4=3)kk0r(L). Using parts a),b) of Lemma 3.10, we get
that for k � 20 log logL,

j
X

y;y0;w:dL(y0)�k0r(L)

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D)j � Ck(1=8)k (4.37)

Combining (4.34), (4.36) and (4.37), we conclude that

sup
z2VL

X
k�1

X
y;y0;w

ĝL(z; y)�
k(y; y0)�̂(y0; w)ĝL(w;D) � C :

The term involving NL is handled by recalling that

sup
x

X
k�0



�ĝ�k��̂� (x; �)


1
� 15=16; ;

see (4.13).We then conclude, using (4.29), that (4.17) holds.
To prove (4.16), our starting point is the perturbation expansion (4.32). Again,

the main contribution is the linear term. One hasX
y;y0;w

ĝL(0; y)�
k(y; y0)�̂(y0; w)ĝL(w;D) � C(logL)6(1=8)k :

Hence, there exists a constant cd such that for all L large,

X
k�cd log logL

X
y;y0;w

ĝL(0; y)�
k(y; y0)�̂(y0; w)ĝL(w;D) �

�
r(L)

L

�d�1
: (4.38)
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We next divide the sum in the linear term according to the location of w with respect
to D, writing

X
y;y0;w

ĝL(0; y)�
k(y; y0)�̂(y0; w)ĝL(w;D) =

X
y;y0

ĝL(0; y)�
k(y; y0)

2X
j=1

X
w2B(k)

j

�̂(y0; w)ĝL(w;D) ;

(4.39)
where

B
(k)
1 = fz 2 VL : d(z;D) � L=8g ; B

(k)
2 = fz 2 VL : d(z;D) > L=8g

Considering the term involving B(k)1 , for k < cd log logL the summation over y
extends over a subset of VL that is covered by at most Ckd elements of DL, all inside
ShellL(L=2). Thus, for such k, using (4.32),X
y;y0

ĝL(0; y)�
k(y; y0)

X
w2B(k)

1

�̂(y0; w)ĝL(w;D) � C
�
1 + 


8

�k
kd
diam(D)d�2maxy2D dL(y)

Ld�1

and henceX
k�cd log logL

X
y;y0

ĝL(0; y)�
k(y; y0)

X
w2B(k)

1

�̂(y0; w)ĝL(w;D) � C
diam(D)d�2maxy2D dL(y)

Ld�1
:

(4.40)
The term involving w 2 B(k)2 is simpler: indeed, one has in that case that ĝ(w;D)
satis�es, by (4.31), the required bounds, whereasX

y:9y0with�k(y;y0)�̂(y0;w)>0

ĝL(0; y) � Ckd ;

yielding X
k�cd log logL

X
y;y0

ĝL(0; y)�
k(y; y0)

X
w2B(k)

2

�̂(y0; w)ĝL(w;D)

� C
X

k�cd log logL
kd(1=8)k

diam(D)d�2maxy2D dL(y)
Ld�1

: (4.41)

Combining (4.38), (4.40) and (4.41) results in the required control on the linear
term in (4.32). The nonlinear term is even simpler and similar to the handling of
the nonlinear term when estimating ĝ(z;D).

5 The non-smoothed exit estimate

The aim of this section is to prove the following result.

Proposition 5.1
There exists 0 < �0 � 1=2 such that for � � �0; there exist L0 (�) and "0 (�) such
that if L1 � L0 and " � "0, then Cond (L1; �) ; and L � L1 (logL1)2 imply

P (k�L (0; �)� �L (0; �)k1 � �) �
1

10
exp

h
� (logL)2

i
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Proof. We use the coarse graining scheme S2 from De�nition 2.1, but we stick to
the notations before, so �̂ = �̂S2;L, etc. Using S2 means that we re�ne the smoothing
scale up to the boundary. In particular, the smoothing scale is hL (x) = 
dL (x) for
all x with dL (x) � s (L) =2; and �̂ (x; �) is obtained by averaging exit distributions
from balls with radii between 
dL (x) and 2
dL (x) : (
 from (3.4)). If dL (x) < 1=2
;
then there is no smoothing at all, and �̂ (x; �) = pRW (x; �) :
The drawback of this smoothing scheme is that the presence of many bad regions

close to the boundary is unavoidable. We will however show that they cannot be
too frequent.
We consider layers

�j
def
= ShellL

�
2j�1; 2j

�
;

for j = 1; : : : ; J1 (L)
def
=
h
log r(L)
log 2

i
+ 1; so that

ShellL (r (L)) �
[

j�J
�j � ShellL (2r (L)) : (5.1)

We subdivide each �j into subsets D
(j)
1 ; D

(j)
2 ; : : : ; D

(j)
Nj
of diameter �

p
d2j ; where

Nj � C
�
L2�j

�d�1
: (5.2)

The set of these subsets is denoted by Lj : Lj is split into disjoint L(1)j ; : : : ;L(R)j ;
such that for any m one has

d (D;D0) > 5
2j ; 8D;D0 2 L(m)j ; (5.3)

N
(m)
j

def
=
���L(m)j

��� � Nj=2R: (5.4)

We can do that in such a way that R 2 N depends only on the dimension d:
If B 2 Lj ; we write Bad (B) for the event fB � GoodLgc : Remark that

P (Bad (B)) � C2(d+1)j exp
�
� log2

�

2j�1

��
� exp

h
�j5=3

i
def
= pj :

for j � J0; J0 approriately chosen (depending on 
).
We set

X
(m)
j

def
=

X
D2L(m)

j

1Bad(D); Xj
def
=

RX
m=1

X
(m)
j :

Due to (5.3), the events Bad (D) ; D 2 L(m)j ; are independent. Remark that pj <
j�3=2 � 1=2 for all j � 2: From a standard coin tossing estimate, we get

P
�
X
(m)
j � j�3=2N (m)

j

�
� exp

h
�N (m)

j I
�
j�3=2 j pj

�i
:

with I (x j p) def= x log (x=p) + (1� x) log ((1� x) = (1� p))

I
�
j�3=2 j pj

�
� �3

2
j�3=2 log j + j�3=2j5=3 � log 2 � 2Rj1=7
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if J0 is large enough. Therefore

P
�
Xj � j�3=2Nj

�
� R max

1�m�R
P
�
X
(m)
j � j�3=2N (m)

j

�
� R exp

h
�
�
L2�j

�d�1
j1=7

i
� R exp

�
� 1
C
(logL)

20
j1=7

�
for J0 (
) � j � J (L) ; L large enough (implied by L0 large enough). Using this,
we get X

J0(
)�j�J(L)

P
�
Xj � j�3=2Nj

�
� 1

20
exp

h
� (logL)2

i
by choosing J0 large enough. Setting

ManyBadL
def
=
[

J0(
)�j�J(L)

n
Xj � j�3=2Nj

o
[ TwoBadL;

we get

P (ManyBadL) �
1

20
exp

h
� (logL)2

i
+ exp

h
�1:2 (logL)2

i
(5.5)

� 1

10
exp

h
� (logL)2

i
;

again by choosing L0 approriate. We now choose "0 (
) > 0 small enough such that
for " � "0; one has Xj = 0; deterministically, for j < J0 (
) : (As 
 is completely
�xed in (3.4), we usually don�t explicitly indicate it in the notation).
We will show that if ! =2 ManyBadL, then k�L;! � �Lk1 � �: This proves Propo-

sition 5.1.
We disinguish between two (disjoint) bad regions B1; B2 � VL: We set eBL def

=
BLnShellL (r (L)) ; (for BL; see (3.7)). Set

B02
def
=
[n

D
(j)
i : ! 2 Bad

�
D
(j)
i

�
; j = 1; : : : ; R; i � Nj

o
:

On the complement of TwoBadL there exists x0; jx0j > r (L) ; such that eBL �
V5�(x0) (x0) : (see (4.15). There is some ambiguity in choosing x0; but this of no

importance.) If jx0j � L=2; we de�ne B1
def
= V5�(x0) (x0) = V5
s(L) (x0) ; and B2

def
=

B02: If jx0j > L=2; we put B1
def
= ;; and B2

def
= B02 [ V5�(x0) (x0) : Of course, ifeBL = ;; then B1 def= ;; and B2

def
= B02. Remark that B1 and B2 are disjoint. We put

B
def
= B1 [B2; and G

def
= VLnB:

In case B1 = V5
s(L) (x0) ; jx0j � L=2; we use the same (slight) modi�cation of
�̂ (y; �) ; �̂ (y; �) for y 2 V5
s(L) (x0) as used in Section 4.3, i.e. we replace �̂; �̂ bye�; e� as de�ned in (4.18), but we retain the ^-notation for convenience.
We use a slightly modi�ed perturbation expansion. Again with � def

= �̂� �̂; we
have

�L = �L + ĝ1B��L + ĝ1G��L:

Set 
k
def
= ĝ (1G�)

k
: Then


k�L = ĝ (1G�)
k
�L

= ĝ (1G�)
k
�L + ĝ (1G�)

k
ĝ��L

= ĝ (1G�)
k
�L + ĝ (1G�)

k
1B��L + ĝ (1G�)

k
�̂ĝ��L + 
k+1�L
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Therefore, iterating, we get

�L = �L + ĝ
1X
k=0

(1G�)
k
1B��L + ĝ

1X
k=1

(1G�)
k
�̂ĝ��L + ĝ

1X
k=1

(1G�)
k
�L

= �L + ĝ�1B��L + ĝ��̂�L:

where � def
=
P1

k=1 (1G�)
k
; �

def
= I + �: With the partition B = B1 [ B2; we get

with the setting �1
def
= ĝ�1B1

�; �2
def
= ĝ�1B2

�

�L = �L + �1�L + �2�L + ĝ��̂�L;

and by induction on m 2 N; replacing successively �L in the second summand

�L � �L =
 

mX
r=1

�r1

!
�L +

 
mX
r=0

�r1

!
�2�L +

 
mX
r=0

�r1

!
ĝ��̂�L + �

m+1
1 �L

i.e. with m!1

�L � �L =
1X
r=1

�r1�L +

 1X
r=0

�r1

!
�2�L +

 1X
r=0

�r1

!
ĝ��̂�L (5.6)

:= A1 +A2 +A3 :

For D � VL; we write

Uk (D)
def
=
�
y 2 VL : 9x 2 D with �k (y; x) > 0

	
:

We now prove that each of the three parts A1; A2; A3 is bounded by �=3:
First summand A1 : This does not involve the bad regions near the boundary, and
we can apply the estimates from Section 4.3. There is nothing to prove if B1 = ;;
so we assume B1 = V5
s(L) (x0) ; jx0j � L=2: From Lemma 3.10 we have

sup
x2VL

���ĝ (1G�)k (x;B1)��� � �kĝ (x; Uk (B1)) � C�kkd; (5.7)

and therefore.
1X
k=0




ĝ (1G�)k 1B1





1
� C: (5.8)

In the same way, we obtain, with K from Section 4.3,

1X
k=0

sup
x=2V5K
s(L)




ĝ (1G�)k 1B1 (x; �)




1
� 1

2
; (5.9)

by using (5.7) for k � 1; and (4.19) for k = 0: Furthermore ,

k�1�Lk1 �
1X
k=0




ĝ (1G�)k 1B1
��L





1
� C

1X
k=0

kĝ (�; Uk (B1))k1 2
�k sup

x2B1

k��L (x; �)k1

(5.10)

� C
1X
k=0

kd2�k sup
x2B1

k��L (x; �)k1 � C (logL)
�3
:
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Using these inequalities, we get kA1k1 � C (logL)
�3 � C (logL0)

�3 � �=3 by
choosing L0 (�) large enough: When estimating k�r1�Lk1 for r � 2; we use (5.8) for
the �rst factor �1, (5.10) for the last �1�L, and (5.9) for the middle �

r�2
1 : The point

is that (1B1�) (x; y) is 6= 0 only if y =2 V5K
s(L) (x0) ; and so we can use (5.9) for
this part.
Second summand A2: We drop here the �L-factor, using the trivial estimate
k�L (x; �)k1 � 2. If r = 0; one has to estimate k�2 (0; �)k1 where B2 consists of the
bad regions in the layers Lj , and the possible one bad ball from eBL which is outside
VL=3: In case r � 1; when B1 6= ;; we have B2 = B02, which is at distance � L=3
from B1: Therefore, in case r = 0; we have to estimate


ĝ (1G�)k 1B2

(0; �)




1

(5.11)

(the last � is of no help, and we drop it), and in case r � 1; using (5.8) and (5.9)

C2�r sup
jxj�2L=3




ĝ (1G�)k 1B2
(x; �)





1
;

but in this case, we have B2 � ShellL (2r (L)) : The estimate of the second case is
entirely similar to the estimate of (5.11), and we therefore provide the details only
of the proof of the latter.
We split the parts coming from the di¤erent bad regions. For a bad region D(j)

i

in layer Lj ; we have


ĝ (1G�)k 1D(j)
i
(0; �)





1
� C2�kĝ

�
0; Uk

�
D
(j)
i

��
:

It su¢ ces to estimate ĝ
�
0; Uk

�
D
(j)
i

��
very crudely. Points in Uk

�
D
(j)
i

�
are at

distance of most 2j (1� 2
)�k from the D(j)
i : We �rst consider k�s only such that

ShellL (s (L))
c is not touched, which is the case if k � 20 log logL (L large enough).

The number of layers touched is bounded by 1+ k; and for each �r which intersects

Uk

�
D
(j)
i

�
, a very crude estimate gives

���Uk �D(j)
i

�
\ �r

��� � C2r2(d�1)j (1� 2
)�(d�1)k � C2r2(d�1)j �3
2

�k
(5.12)

where in the last inequality, we have used (3.4). Using Lemma 3.5, we see that

ĝ
�
0; Uk

�
D
(j)
i

��
� C (1 + k) 2(d�1)j

�
3

2

�k
L�d+1:

Therefore, using ! =2
S
J0(
)�j�J(L)

�
Xj � j�3=2Nj

	
; we have the estimatesX

k�10 log logL




ĝ (1G�)k 1B0
2\�j (0; �)





1
� Cj�3=2;

X
k�10 log logL




ĝ (1G�)k 1B0
2
(0; �)





1
� CJ�1=20 :
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For the sum over k > 20 log logL; we simply estimate ĝ (0; Uk (B02)) � ĝ (0; VL) �
C (logL)

6 and we therefore getX
k




ĝ (1G�)k 1B2\ShellL(r(L)) (0; �)




1
� C

�
J
�1=2
0 + (logL)

6
2�20 log logL

�
(5.13)

� C
�
J
�1=2
0 + (logL)

�7
�
� �=6

by choosing J0 (�) and L0 (�) large enough.
It remains to add the part of B2 outside B02: This is (contained in) a ball

V5
�(x0) (x0) with jx0j > L=2:

ĝ
�
0; Uk

�
V5
�(x0) (x0)

��
� ĝ

�
0; Uk

�
V5
s(L) (x0)

��
� ĝ

�
0; V(5+2k)
s(L) (x0)

�
:

As jx0j � L=2; we have V(5+2k)
s(L) (x0) \ VL=3 = ; provided k � (logL)3 =C; and
V(5+2k)
s(L) (x0) can be covered by � Ckd balls Vs(L) (y) ; jyj � L=3: By Lemma 3.5,
one has ĝ

�
0; Vs(L) (y)

�
� C (logL)�3 : (This remains true also if Vs(L) (y) intersects

ShellL (s (L)) ; as is easily checked). Therefore, for k � (logL)3 =C; we have

ĝ
�
0; Uk

�
V5
�(x0) (x0)

��
� Ckd (logL)�3 ;

and therefore,X
k




ĝ (1G�)k 1V5
�(x0)(x0) (0; �)


1
�C

X
k�(logL)3=C

2�kkd (logL)
�3
+ C

X
k>(logL)3=C

2�k (logL)
6 � �=6;

provided L0 is large enough. Combining this with (5.13) proves kA2k1 � �=3:
Third summand A3: By the same argument as in the discussion of A2; it su¢ ces
to consider r = 0; and we drop �L:

X
k�1








X

x=2ShellL(r(L))

ĝ (1G�)
k�1

(0; x) (1G��̂) (x; �)








1

�
1X
k�1

2�k+1ĝ (0; VL) sup
x=2ShellL(r(L))

k1G��̂ (x; �)k1 (5.14)

� C (logL)�3 � �=9

if L0 is large enough. For J0 (
) � j � J1 (L)






X
x2�j

ĝ (1G�)
k�1

(0; x) (1G��̂) (x; �)








1

� 2�k+1ĝ (0; Uk (�j)) sup
x2�j

k1G��̂ (x; �)k1

� Cj�92�k+1ĝ (0; Uk (�j)) ;

and it is evident from Lemma 3.5 that
P

k�1 2
�k+1ĝ (0; Uk (�j)) � C: Therefore

X
k�1








X

J0(
)�j�J1(L)

X
x2�j

ĝ (1G�)
k�1

(0; x) (1G��̂) (x; �)








1

� CJ0 (
)�8 � �=9;

(5.15)
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if J0 is chosen large enough. Put �̂
def
=
S
j�J0(
) �jX

k�1




X
x2�̂

ĝ (1G�)
k�1

(0; x) (1G��̂) (x; �)




1
� C

X
k�1

2�k+1ĝ
�
0; Uk

�
�̂
��
sup
x2�̂

k�(x; �)k1

� C (J0) sup
x2�̂

k�(x; �)k1 � �=9

if " � "0 (�) : Combining this with (5.14) and (5.15) proves kA3k1 � �=3:

6 Proof of Proposition 2.3

We just have to collect the estimates we have obtained so far. We take �0 small
enough according to Proposition 4.4, and Proposition 5.1, and for � � �0; we choose
L0 large enough, also according these propositions.
For L1 � L0 we assume Cond (�; L1) ; and take and L � L1 (logL1)

2
: For i =

1; 2; 3; and 	 2ML; we have according to Lemma 3.3 and Proposition 4.3

bi (L;	; �) � P
�
DL;	 (0) > (logL)

�11:25�2:25i
�

� P
�
DL;	 (0) > (logL)

�11:25�2:25i
; (TwoBadL)

c \ (GoodL)c
�

+ P
�
DL;	 (0) > (logL)

�9
;TwoBadL \GoodL

�
+ P (TwoBadL)

� P
�
DL;	 (0) > (logL)

�11:25�2:25i
; (TwoBadL)

c \ (GoodL)c
�

+ exp
h
�1:2 (logL)2

i
+ exp

h
� (logL)17=8

i
:

We therefore only have to estimate the �rst summand.

P
�
DL;	 (0) > (logL)

�11:25�2:25i
; (TwoBadL)

c \ (GoodL)c
�

�
X
D2DL

X
j

P
�
k([�VL � �VL ] �̂	) (0; �)k1 � (logL)

�11:25+2:25i
; Bad

(j)
L (D)

�
�
X
D2DL

X
j�i

P
�
k([�VL � �VL ] �̂	) (0; �)k1 � (logL)

�11:25+2:25j
; Bad

(j)
L (D)

�
+
X
D2DL

X
j>i

P
�
Bad

(j)
L (D)

�

� 4 jDLj
100

exp
h
� (logL)2

i
+ jDLj exp

24� [1� (4� i� 1) =13] log L

(logL)
10

!235
� 1

8
exp

h
� [1� (4� i) =13] (logL)2

i
:

Combining these estimates, we get

bi (L;	; �) �
1

4
exp

h
� [1� (4� i) =13] (logL)2

i
;

L large enough, for i = 1; 2; 3:
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For i = 4; we have

b4 (L;	; �) � P
�
DL;	 (0) > (logL)

�2:25
�
+ P (k�L (0; �)� �L (0; �)k1 � �) :

The second summand is estimated by Proposition 5.1, and the �rst in the same way
as the bi; i � 3:
This completes the proof of Proposition 2.3.

A Proofs of the random walk results

We begin by stating and proving some auxilliary estimates. If A �� Zd; x 2 A; y 2
@A; then by the usual time reversal, one gets

Px (S�A = y) =
X

y02A; jy�y0j=1

(2d)
�1
gA (y

0; x) (A.1)

�
X

y02A; jy�y0j=1

(2d)
�1
Py0 (Tx < �A) :

Throughout this appendix, we write � def= �VL .

Lemma A.1
Let x 2 VL; y 2 @VL: Then, for some �c1 � 1,

Px (S� = y) � �c1dL (x)�d+1 :

Proof. Let r def
= dL (x) : We may assue that r � 4: Put r0 def= [r=2] � 1: Then

Vr0 (x) � VL�r0 : If y0 is any neighbor of y in VL then

Py0
�
T@Vr0 (x) < �A

�
� Py0

�
TVL�r0 < �A

�
� C

r
:

Furthermore uniformly in z 2 @Vr0 (x) ;

Pz (Tx < �A) � Pz (Tx <1) � Cr0�d+2 � Cr�d+2:

Using the Markov property and (A.1) proves the claim.

Lemma A.2
Let x 2 VL; y 2 @VL and set t

def
= jx� yj : Then for some �c2 � 1

Px (S� = y) � �c2
dL (x)

t
inf

x02@Vt=3(y)\VL
Px0 (S� = y) :

Proof. The bound is evident if r def
= dL (x) � t=10: Therefore, we assume

r < t=10: We choose a point x0 2 @VL+r with jx� x0j � 3r: Then

Px

�
TVr(x0) < �Vt=2(x0)

�
� 1

C

r

t
:

Remark that Vt=2 (x0)\Vt=3 (y) = ;; and Vr (x0)\VL = ;: Therefore, by the Markov
property,

Px (S� = y) �
Cr

t
inf

z2@Vt=2(x0)\VL
Pz (S� = y) �

Cr

t
inf

x02@Vt=3(y)\VL
Px0 (S� = y) ;

which completes the proof.
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Lemma A.3
With x; y; r as above, and �c1; �c2 from the previous lemmas,

Px (S� = y) � �c1�cd23(d�1)
2 dL (x)

rd
:

Proof. Put � def
= 3�d+1�c�12 ; and set �K

def
= �c1�

�d+1 = �c1�c
d�1
2 3(d�1)

2

: Using
Lemma A.2, it su¢ ces to prove

inf
x2@Vr\VL

Px (S� = y) � �Kr�d+1: (A.2)

As �K � r(d�1)
2

, there is nothing to prove if r � 9: Assume that we have proved
(A.2) for all r � r0; and assume r0 < r � 2r0: Then for dL (x) > �r; we have by
Lemma A.1 that

Px (S� = y) � c1��d+1r�d+1 = �Kr�d+1;

and for dL (x) � �r; by Lemma A.2 and the fact that r=3 � r0,

Px (S� = y) � c2� �K
�r
3

��d+1
� �Kr�d+1:

Therefore, the lemma is proved by induction.
Proof of Lemma 3.5. If jx� yj � dL (y) =2; then dL (x) � dL (y) =2; and in

this case, we can simply use

Px
�
TVa(y) < �

�
� Px

�
TVa(y) <1

�
� C

�
a

jx� yj

�d�2
� C a

d�2dL (y) dL (x)

jx� yjd
:

Therefore, we may assume jx� yj > dL (y) =2: Furthermore, it su¢ ces to consider
the case 1 � a � dL (y) =5; simply because for dL (y) =5 < a � 5dL (y), we get an
upper bound with replacing a by dL (y) =5: Assume that we have proved the bound
for a = dL (y) =5: Then we get for a < dL (y) =5

Px
�
TVa(y) < �

�
� C dL (y)

d�1
dL (x)

jx� yjd

�
a

dL (y)

�d�2
� C a

d�2dL (y) dL (x)

jx� yjd
:

We therefore see that it su¢ ces to prove the bound for a = dL (y) =5:
Let y0 2 @VL be a point closest to y: There exists � > 0; such that

inf
x02Va(y)

Px0 (S� 2 Va (y0)) � �:

Evidently, infz2Va(y0)\@VL jx� zj � jx� yj =2; and therefore, by Lemma A.3,

sup
z2Va(y0)\@VL

Px (S� = z) � C
dL (x)

jx� yjd
:

Consequently

dL (x) a
d�1

jx� yjd
� 1

C
Px (S� 2 Va (y0)) �

1

C
Px
�
S� 2 Va (y0) ; TVa(y) < �

�
=
1

C

X
x02Va(y)

Px
�
TVa(y) < �; STVa(y) = x

0�Px0 (S� 2 Va (y0))
� �

C
PxPx

�
TVa(y) < �

�
:
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This proves the claim.
Before presenting the proofs of Lemmas 3.7 and 3.8, we introduce some notation

and state and prove some additional auxilliary estimates. For M = (mx) 2ML, set

�̂M (x; z)
def
=

Z
R+

1

mx
' (t=mx) exVt

�
x; z; pRW

�
dt;

and the corresponding Brownian quantity

�̂BMM (x; dz)
def
=

Z
1

mx
' (t=mx)�

BM
Ct (x; dz)dt:

�̂BMM (x; dz) has a density with respect to Lebesgue measure which, by an abuse of
notation, we write as �̂BMM (x; z):

Lemma A.4
There is a constant C such that for any L large enough, any M 2 ML, any
x; x0; z; z0 2 Zd, it holds that

�̂M (x; z) � CL�d ; �̂BMM (x; z) � CL�d : (A.3)

j�̂M (x; z)� �̂M (x0; z) j � Cjx� x0jL�(d+1) logL ; (A.4)

j�̂BMM (x; z)� �̂BMM (x0; z)j � Cjx� x0jL�(d+1) logL ; (A.5)

j�̂M (x; z)� �̂M (x; z0) j � Cjz � z0jL�(d+1) logL ; (A.6)

j�̂BMM (x; z)� �̂BMM (x; z0)j � Cjx� x0jL�(d+1) logL : (A.7)

Further, for 1 < a < b < 2; and aL � jx� zj � bL;

�̂M (x; z) � C (a; b)�1 L�d: (A.8)

Proof of Lemma A.4. The estimates (A.4) and (A.8) are immediate from
Lemmas 3.4 and 3.6, and the de�nition of �̂M .
We turn to the proof of (A.3) and (A.6). It clearly su¢ ces to consider only the

cases jx� x0j = 1 or jz � z0j = 1. Note �rst that

j�̂M (x; z)� �̂M (x0; z) j =
�
1� mx

mx0

�
�̂M (x; z)

+
1

mx0

Z
R+

�
'

�
t

mx

�
� '

�
t

mx0

��
�Vt(x)(x; z)dt

+
1

mx0

Z
R+
'

�
t

mx0

�
[�Vt(x)(x; z)� �Vt(x0)(x0; z)] dt

def
= I1 + I2 + I3 :

Since M 2ML, it holds that
h
1� mx

mx0

i
� CL�1jx� x0j, and hence, using (A.4), it

holds that

I1 � CL�d
jx� x0j
L

: (A.9)

Similarly, using the smoothness of ' and the estimates mx0 � L=2 and �Vt(x)(x; z) �
CL1�d, see Lemma 3.4 a), one gets

I2 � CL�d
jx� x0j
L

: (A.10)
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By translation invariance of simple random walk, we have that �Vr(x)(x; z) = �Vr (0; z�
x). Thus, both (A.3) and (A.6) will follow if we can show, for jx�x0j = 1 and y = x
or x0, the estimate����Z

R+
'

�
t

my

�
[�Vt(0; z � x)� �Vt(0; z � x0)] dt

���� � CL�d : (A.11)

Of course, we may assume that jx � zj is of order L. Note that the integration in
(A.11) is over the union of two intervals, each of length at most

p
d. Hence, due to

the smoothness of ', (A.11) will follow if we can show that����Z
R+
[�Vt(0; z � x)� �Vt(0; z � x0)] dt

���� � CL�d : (A.12)

Let J def
= ft > 0 : x� z 2 @Vtg : J is an interval of length at most

p
d: For t 2 J; we

set

t0 = t0 (t)
def
=

����x0 � t z � xjz � xj

���� :
Evidently, dt0=dt = 1+O

�
L�1

�
; and if we set J 0 def= ft > 0 : x0 � z 2 @Vt0g ; then J 0

is an interval of the same lenght as J; up to O
�
L�1

�
, and further jJ�J 0j = O

�
L�1

�
.

Therefore, if we prove����Z
J\J0

[�Vt(x)(x; z)� �Vt0 (x0)(x
0; z)]dt

���� � CL�d logL; (A.13)

the estimate (A.11) will follow. To abbreviate notation, we write V for Vt (x) ; and
V 0 for Vt0 (x0) : A �rst exit decomposition yields

�V (x; z) � �V 0(x; z) +
X

y2V nV 0

PRWx (Ty < �V )�V (y; z) : (A.14)

We have two simple geometric facts:

� [
t2J\J0

(V nV 0) � x+ ShellL (C) :

� For any y 2 x+ ShellL (C)Z
J\J0

1fy2V nV 0gdt � C
jy � zj
L

:

Using this together with �V 0(x; z) = �V 0(x0; z)+O
�
L�d

�
; see [5, Theorem 1.7.1],

we deduce from (A.14) thatZ
J\J0

�Vt(x)(x; z)dt �
Z
J\J0

�V
t0 (x

0)(x
0; z)dt+O

�
L�d

�
+ CL�d

X
y2x+ShellL(C)

jy � zj�d jy � zj
L

�
Z
J\J0

�V
t0 (x

0)(x
0; z)dt+O

�
L�d logL

�
The inequality in the opposite direction is proved in the same way. This proves
(A.12) and completes the proof of (A.3) and (A.6).
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The estimates (A.5) and (A.7) can be obtained either by repeating the argument
above, replacing the random walk by Brownian motion, or by applying the Poisson
formula [5, (1.43)]. We ommit further details.
In order to prove Lemma 3.7 we need also the following technical result:

Lemma A.5
There exists a constant C = C(�; �) such that for any A 2 @VL, � > 6� > 0, y 2 VL
with d(y; @VL) > L� and L > L0,X

y02A
�VL (y; y

0) �
Z
d(y0;A)�L�

�BML (y; dy0)

�
1 +

C(�; �))

L��5�

�
+
C(�; �)

Ld+1
: (A.15)

and for any A0 2 @CL and z 2 VL with d(z; @CL) > L� ,Z
A0
�BML (z; dy0) �

X
y0:d(y0;A)�L�

�VL (z; y
0)

�
1 +

C(�; �)

L��5�

�
+
C(�; �)

Ld+1
: (A.16)

Finally, for any x; z 2 Zd and M 2ML,���̂M (x; z)� �̂BMM (x; z)
�� � C

Ld+1=4
: (A.17)

Proof of Lemma A.5. We �rst prove (A.15). Set A� = fy0 2 @CL : d(y0; A) �
L�g. Pick � 2 (0; �) and set L0 = L + L� and L00 = L + L2�. Let A0� be the image
of A� in @CL0 under the map x 7! (L0=L)x. Then, one has (with ŷ = L0y=L),Z

A�

�BML (y; dy0) =

Z
A0�

�BML0 (ŷ; dy0) : (A.18)

Note further, using the Poisson formula [5, (1.43)], thatZ
A0�

�BML0 (ŷ; dy0) =

Z
A0�

d�BM
L0 (ŷ; �)

d�BM
L0 (y; �)

�BML0 (y; dy0) (A.19)

=

Z
A0�

�
(L0)2 � jŷj2

�
jy0 � yjd

((L0)2 � jyj2) jy0 � ŷjd �
BM
L0 (y; dy0)

An explicit computation, using that jyj � L � L� and that 1 > � > � > 0, reveals
that �����log

�
(L0)2 � jŷj2

�
jy0 � yjd

((L0)2 � jyj2) jy0 � ŷjd

����� � CL��� :
Substituting in (A.19) one �nds thatZ

A�

�BML (y; dy0) �
Z
A0�

�BML0 (y; dy0)
�
1� C(�; �)L��+2�

�
: (A.20)

Recall that �BML is unchanged if one replaces the Brownian motion by a Brownian
motion of covariance Id=

p
d. Let W y

t be such a Brownian motion started at y, and
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recall that by [11, Corollary 1], there exists a constant C0 such that for every integer
n, one may construct fW x

t g in the same space as fSng such that

Px( max
0�m�n

jSm �W x
mj > C0 log n) �

C0
nd+1

: (A.21)

Standard estimates involving the maximum of the increments of the Brownian mo-
tion, imply that one may construct the Brownian motion W y

t and the random walk
Sn on the same space such that, with

D
def
= f sup

0�t�L2+�=100

��S[t] �W y
t

�� � 4C0 logLg ;
one has

Py(D
c) � 2C0

nd+1
: (A.22)

Set � def
= minfn : Sn 2 @VLg, � 0

def
= infft : W y

t 2 @CL0g, � 00
def
= minfn : Sn 2 @VL00g,

and B def
=
�
(� 0 _ � 00) � L2+�=100

	
. Standard estimates imply that if S0 = y then

P (Bc) decays like a stretched exponential, and in particular P (Bc) � L�d�1 for
large L: Note that on D \ B, one has that � < � 0 < � 00. Now, de�ning G0� = fz 2
Zd : d(z; (A0�)c \ @CL) < 4C0 logLg, and setting TG0

�
= inffn : Sn 2 G0�g,

P
�
W y
� 0 2 A

0
�

�
� Py(S� 2 A;W� 0 2 A0�) (A.23)

� Py(S� 2 A;W� 0 2 A0� ; B \D)�
1

Ld+1

� Py(S� 2 A)� Py(S� 2 A;W� 0 62 A0� ; B \D)�
2

Ld+1

� PRWy (S� 2 A)� PRWy (S� 2 A; TG0
�
< � 00)� 2

Ld+1

Using the Markov property, one has

PRWy (S� 2 A; TG0
�
< � 00) � PRWy (S� 2 A) sup

z2A
PRWz (TG0

�
< � 00)

� sup
z2A

X
z02G0

�

PRWz (Tz0 < �
00)

� sup
z2A

C
X
z02G0

�

L3� logd+2 L

jz0 � zjd

� CL5��� ;

where the next to last inequality is due to Lemma 3.5. Substituting in (A.23), one
completes the proof of (A.15). The reverse inequality (A.16) is proved similarly.
It remains to prove (A.17). Fix � = 2=3, � = 1=3, and � = 1=60. Note that with

D = CL�(z), using (A.6),

�̂M (x; z) �
1

jDj
X
z02D

�̂M (x; z
0) + CL�d�1+� logL : (A.24)
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Next, note thatX
z02D

�̂M (x; z
0) =

Z
dt'mx

(t)
X
z02D

�Vt(x) (x; z
0)

�
Z
dt'mx

(t)

Z
C
L�+L�

(z)

�BMt (x; dz0)

�
1 +

C

L��5�

�
+
CjDj
Ld+1

� �̂BMM (x;D)
�
1 +

C

L��5�

�
+ CL�djCL�+L� (z) n CL�(z)j+

CjDj
Ld+1

� jDj�̂BMM (x; z)

�
1 +

C

L��5�

�
+
CjDj logL
Ld+1��

+
CjDj
L����d

:

Substituting in (A.24), one gets

�̂M (x; z) � �̂BMM (x; z) + CL�d�1=4 :

The reverse equality is proved similarly. This completes the proof of (A.17) and of
the lemma
Proof of Lemma 3.7. Fix � = 2=3; � = 1=3. Set � def

= d(y; @VL), and let
y1 2 @VL be such that � = jy � y1j. Consider �rst � � L�+1=15. Then, using (3.13)
and (A.4) in the �rst inequality and (A.3) in the second,

�L;M (y; z) �
X

y02@VL:jy0�y1j<L�
�VL (y; y

0) �̂M (y
0; z) +

C logL

Ld+���

� �̂M (y1; z)
X

y02@VL:jy0�y1j<L�
�VL (y; y

0) +
C

Ld+1=5
:

Consequently,

�L;M (y; z) � �̂M (y1; z) +
C

Ld+1=5
:

Applying now (3.14) in the �rst inequality and (A.3) in the second, we conclude
that

�L;M (y; z) � �̂M (y1; z)
Z
y02@VL:jy0�y1j<L�

�BML (y; dy0) +
C

Ld+1=5

�
Z
y02@VL:jy0�y1j<L�

�̂M (y
0; z)�BML (y; dy0) +

C

Ld+1=5
:

An application of (A.17) then implies that for � � L�+1=15,

�L;M (y; z) � �BML;M (y; z) + CL�d�1=5

where, as in our convention, the constant C is uniform in the choice of y; z. The
reverse inequality is obtained using the same steps.
Consider next � > L�+1=15. Fix strictly positive constants cj , j = 1; : : : ; 4,

depending on d; � only, and a sequence of disjoint sets Ai � @VL, i = 1; : : : ; kL with
[kLi=1Ai = @VL, c1L�(d�1) � jAij � c2L�(d�1), diam(Ai) � c3L�, d(y1; @A1\@VL) �
diam(A1)=4, and j@Aij \ @VL � c4L�(d�2) (such a collection of �cube-like�Ai can
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clearly be found). We also set A�i = fy 2 Rd : d(y;Ai) � L�g and for i � 2, �x an
arbitrary yi 2 Ai. We then have

�L;M (y; z) =

kLX
i=1

X
y02Ai

�VL (y; y
0) �̂M (y

0; z)

�
kLX
i=1

�̂M (yi; z)
X
y02Ai

�VL (y; y
0) +

C logL

Ld+1��
;

where (A.3) was used in the last inequality. Consequently, using (A.15),

�L;M (y; z) �
kLX
i=1

�̂M (yi; z)

Z
A�
i

�BML (y; dy0)

�
1 +

C

L1=4

�
+

C

Ld+1=5
: (A.25)

Let f ~Ai � @CLgkLi=1 be a collection of measurable disjoint sets with [ ~Ai = @CL,
~A1 = A

�
1 \ @CL, and ~Ai � A�i . Using (3.14) and d(y; @CL) � L�+1=15=2, one getsZ

A�
i

�BML (y; dy0) �
Z
~Ai

�BML (y; dy0)

 
1 + C

j(A�i \ @CL) n ~Aij
jA�i \ @CLj

!
:

Substituting in (A.25) we get

�L;M (y; z) �
kLX
i=1

�̂M (yi; z)

Z
~Ai

�BML (y; dy0)
�
1 + CL�1=5

�
+

C

Ld+1=5
:

Hence, recalling (A.4), (A.3), and (A.17), we get

�L;M (y; z) �
kLX
i=1

Z
~Ai

�̂M (y
0; z)�BML (y; dy0) +

C

Ld+1=5

�
kLX
i=1

Z
~Ai

�̂BMM (y0; z)�BML (y; dy0) +
C

Ld+1=5
= �BML;M(y; z) +

C

Ld+1=5
:

The reverse inequality is obtained by a similar argument.
Proof of Lemma 3.8. We write �BMt (w; z) as the density with respect to

Lebesgue�s measure of the measure �BMCt(w) (w; dz). Set g(w; z) =
R
�BMt (w; z)'mw (t) dt :

Then,

�BML;M (y; z) =

Z
@CL(0)

�BMCL(0) (y; dw) g(w; z) :

For each �xed z, u(y; z) = �BML;M (y=L; z) satis�es the equation�
1
2�yu(y; z) = 0; y 2 C1(0) ;
u(y; z) = g(y=L; z); y 2 @C1(0) :

Thus, by [4, Theorem 6.3.2],

@3y�BML;M (y; z)

 � C �

@3wg(w; z)

+ L

@4wg(w; z)

� (A.26)
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By the smoothness of ' and the translation invariance and scaling properties of the
Brownian motion, one gets that

@3wg(w; z)

+ L

@4wg(w; z)

 � CL�d�3 �


@3w�BMC1(0)(w; z=L)


+ 


@4w�BMC1(0)(w; z=L)


�

� CL�d�3 ;

where the last inequality is due to [3, Theorem 2.10], and the constant C does not
depend on z. Substituting in (A.26), the lemma follows.

B A local CLT and proof of Lemma 3.10

We need a number of properties for simple random walk, and spread out random
walks which can readily obtained from known results. We keep L and VL �xed
through this section, and don�t emphasize them in the notation. � is �VL ; the exit
distribution of simple random walk from VL: Since the proofs are very similar, and
for concreteness, we prove all results for the smoothing scheme S1 and only sketch
the necessary changes for the scheme S2. That is, we take:

sx
def
=

�
�k0r(L) if x 2 ShellL (r(L))

'hL(x) (t) dt if dL (x) > r (L)
:

(r(L) = L= (logL)10). Remark here that hL (x) = 
s(L) = 
L= (logL)
3 for dL (x) �

2s(L); and hL (x) � (
=2) s(L) for x 2 ShellL (r; 2s(L)) : We then write �̂S for the
corresponding transition probabilities. By a slight abuse of notation, we write �̂m
for the transition probabilities on Zd with a smoothing scheme (sx) which is constant
in x; and given by 'm (t) dt: We also write �̂m (x) for �̂m (0; x) : For x 2 VL�2s(L);
�̂S (x; �) = �̂
s(L) (x; �) :
Let m 2 R+: �̂m is centered, and the covariances satisfyX

x

xixj �̂m (x) = � (m) �ij ;

where for some 0 < �1 < �2

�1m
2 � � (m) � �2m2:

(It is evident that � (m) =m2 converges as m!1):
Using Lemma 3.4 a), one sees that for 1 < a < b < 2; one has for some � (which

may depend on a; b)
inf

am�jxj�bm
�̂m (x) � �m�d: (B.1)

Furthermore, by de�nition, we have �̂m (x) = 0 for jxj � 2m:
We will also use the following fact, proved in Lemma A.4.

j�̂m (x)� �̂m (y)j � Cm�d
����x� ym

����1=15 :
Proposition B.1

�̂�nm (x) =
1

(2�m2�2mn)
d=2

exp

"
� jxj2

2m2�2mn

#
+O

�
m�dn�(d+2)=2 (log n)

4
�
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Proof of Proposition B.1. The proof is standard, but we need to keep track
of the m-dependence, and we are not aware of a reference for that in the literature.
Let

�m (z)
def
=
X
x

eiz�x=m�̂m (x) ; z 2 Bm
def
= [�m�;m�]d

By Fourier inversion, we have

�̂�nm (x) = (2�)
�d
m�d

Z
Bm

e�iz�x=m�m (z)
n
dz:

We will choose 0 < a < A; b > 0; and � 2 (0; 1) (not depending on n;m) and
splitZ
Bm

e�iz�x=m�m (z)
n
dz =

Z
jzj� b lognp

n

+

Z
b lognp

n
<jzj�a

+

Z
a<jzj�A

+

Z
A<jzj�m�

+

Z
m�<jzj; z2Bm

= A1 +A2 +A3 +A4 +A5; say:

From Taylors formula, we get

�m (z) = 1�
jzj2 �2m
2

+O
�
jzj4
�
;

and therefore, for jzj � 1=C

log�m (z) = �
jzj2 �2m
2

+O
�
jzj4
�
:

From that we get for b su¢ ciently large and n � C (b)

A1 =

 
1 +O

 
(log n)

4

n

!! Z
jzj� b lognp

n

exp

"
�iz � x

m
� n jzj

2
�2m

2

#
dz

=

 
1 +O

 
(log n)

4

n

!!Z
exp

"
�iz � x

m
� n jzj

2
�2m

2

#
dz +O

�
n�d=2�1

�
(B.2)

=
(2�)

d=2

nd=2�dm
exp

"
� jxj2

2m2�2mn

#
+O

�
n�d=2�1 (log n)

4
�
:

In order to prove the proposition, it therefore su¢ ces to prove that A2; : : : ; A5 are
of order O

�
n�d=2�1

�
; uniformly in L:

To handle A2; we choose a such that log�m (z) � � jzj2 �2m=3 for jzj � a: Then

jA2j �
Z
b lognp

n
<jzj

exp
h
� jzj2 n�2m=3

i
dz = O

�
n�d=2�1

�
:

if we choose b su¢ ciently large.
For A3; we use the following fact, which is an easy consequence of (B.1): for any

a < A; one has
sup

m;a�jzj�A
j�m (z)j < 1 : (B.3)
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Using this, we immediately get

jA3j � CAd (1� 1=C)n : (B.4)

We come now to A4 which is more di¢ cult. First remark that by the assumed
symmetry under lattice isomorphisms, we only have the consider z-values with all

components positive. Put jzj1
def
= max (z1; : : : ; zd) : For simplicity, we assume that

z1 is the biggest component of z; so that jzj1 = z1: Let M
def
= [2�m=z1] ; and

K
def
= [(2m+ 1) =M ] :We may assume thatM < m by choosing A large enough. We

write

�m (z) =
X

(x2;:::;xd)

exp

�
i

m

Xd

s=2
xszs

�

�

8<:
KX
j=1

�m+jM�1X
x1=�m+(j�1)M

eix1z1=m�̂m (x) +
mX

x1=�m+KM
eix1z1=m�̂m (x)

9=; :
In the �rst summand, inside the x1-summation, we write for each j separately,
�̂m (x) = �̂m (x) � �̂m (x0) + �̂m (x0) ; where x0 = (�m+ (j � 1)M;x2; : : : ; xd) :
Then we estimate

j�̂m (x)� �̂m (x0)j � Cm�d
�
x1 +m� (j � 1)M

m

�1=15
:

Therefore����X�m+jM�1

x1=�m+(j�1)M
eix1z1=m (�̂m (x)� �̂m (x0))

���� � Cm�d+1 1

z
16=15
1

;

and therefore������
KX
j=1

�m+jM�1X
x1=�m+(j�1)M

eix1z1=m (�̂m (x)� �̂m (x0))

������ � Cm�d+1 jzj�1=15 :

������
KX
j=1

�m+jM�1X
x1=�m+(j�1)M

eix1z1=m�̂m (x
0)

������ � K�̂m (x0)
����1� exp [iz1M=m]1� exp [iz1=m]

���� � C jzjm�d;

�����
mX

x1=�m+KM
eix1z1=m�̂m (x)

����� � m�d+1 jzj�1 :

Therefore, we get the estimate

j�m (z)j � C1
�
jzj�1=15 + jzj

m

�
:

From this, we get

jA4j � Cn1
Z
A�jzj�m�

�
jzj�1=15 + jzj

m

�n
dz � 2�n (B.5)
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for large enough A and m:
For A5; we need a slight modi�cation. Let again z1 > 0 be the largest of the

z-components. Then we write

�̂m (x) =

x1X
y=�m

(�̂m (y; x2; : : : ; xd)� �̂m (y � 1; x2; : : : ; xd)) ;

�m (z) = 2i
X

x2;:::;xd

exp

�
i

m

Xd

s=2
xszs

�

�
mX

y=�m
(�̂m (y; x2; : : : ; xd)� �̂m (y � 1; x2; : : : ; xd))

� e
i(z1=m)(y�1=2) � ei(z1=m)(m+1=2)

sin (z1=2m)
:

Therefore

j�m (z)j � Cmd�1m

z1

mX
y=�m

j�̂m (y; x2; : : : ; xd)� �̂m (y � 1; x2; : : : ; xd)j � C
m14=15

jzj ;

and if � > 1� 


jA5j � m�d
Z
m��jzj

j�m (z)jn dz � Cnm�dm14n=15

Z 1

m�

rd�1r�ndz (B.6)

� Cnm�dm14n=15m�(d��n) � 2�n;

if m and n are large enough.
Combining (B.2)-(B.6), we have proved the Proposition.
We next need a simple large deviation estimate

Lemma B.2
There exists � > 0; such that for jxj � 2m

�̂�nm (x) � Cm�d exp

"
� jxj2

Cnm2

#
:

Proof of Lemma B.2. If jxj � r; then one of the d components of x satis�es
jxij � r=

p
d: By rotational symmetry, we getX

x:jxj�r

�̂�nm (x) = dP
����Xn

j=1
�j

��� � r=pd� ;
where the �j are i.i.d. with the one-dimensional marginal of �̂ as its distribution.
Then

P
����Xn

j=1
�j

��� � r=pd� � 2 exp ��nI � rp
dn

��
where

I (t) = sup
�
�t� logE

�
e�t
�	
:
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By symmetry I 0 (0) = 0; and from our assumptions, we have I 00 (0) � 1=Cm2:
Furthermore, I (t) = 1 if jtj > 2: By convexity of I; we therefore have I (t) �
t2=Cm2: Implementing givesX

x:jxj�r

�̂�nm (x) � C exp
�

r2

Cnm2

�
:

From this, we get

�̂�n (x) =
X
y

�̂�(n�1)m (y) �̂m (x� y)

� Cm�d
X

y:jyj�jxj�2m

�̂�(n�1)m (y) � Cm�d exp

"
� (jxj � 2m)2

C (n� 1)m2

#

� Cm�d exp

"
� jxj2

Cnm2

#
:

Let

Gm (x)
def
=

1X
n=0

�̂�nm (x) : (B.7)

Corollary B.3
For jxj � m; we have for some constant c (d)

Gm (x) = c (d)
1

� (m)
jxj�d+2 +O

 
jxj�d

�
log

jxj
m

�5d!
:

For jxj � m; we have
Gm (x) = �0;x +O

�
m�d�

Proof of Corollary B.3. Assume jxj � m and set

N (x;m)
def
=

jxj2

� (m)

 
log

jxj2

� (m)

!�10
:

Then
1X
n=N

�̂�n (x) =

1X
n=N

1

(2�d� (m)n)
d=2

exp

"
� jxj2

2� (m)n

#

+

1X
n=N

O
�
� (m)

�d=2
n�(d+2)=2

�
:

1X
n=N

O
�
� (m)

�d=2
n�(d+2)=2

�
= O

0@jxj�d log jxj2

� (m)

!5d1A
Putting

tn
def
=
2� (m)n

jxj2
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we get

1X
n=N

1

(2�d� (m)n)
d=2

exp

"
� jxj2

2� (m)n

#

=
jxj�d+2

2 (�d)
d=2
� (m)

1X
n=N

1

(tn)
d=2

exp

�
� 1
tn

�
(tn � tn�1)

=
jxj�d+2

2 (�d)
d=2
� (m)

Z 1

0

t�d=2 exp
�
�t�1

�
dt+O

�
jxj�d

�
:

This proves a) for jxj � m with

c (d) =
1

2 (�d)
d=2

Z 1

0

t�d=2 exp
�
�t�1

�
dt:

For jxj � m; the estimate is evident from Proposition B.1.
Proof of Lemma 3.10 a). There exists a �; such that for any y 2 ShellL(r(L)),

there exists a unit vector x 2 Rd such that (y + C� (x))\@V3r(L) (y)\VL = ;: Using
this, we see from (3.12), that our coarse grained Markov chain has after every visit
of ShellL (r(L)) a probability of at least � (�) to leave VL in the next step. Therefore,
the expected number of visits in this shell is �nite, uniformly in the starting point.

Proof of Lemma 3.10 b). If x 2 ShellL (r; 2s) ; then �̂ (x; �) is an averaging over
exit distributions from (discrete) balls Vu (x) ; the averaging taken over u�s with u �
(
=2) dL (x) : Therefore, there exists a � > 0; such that �̂ (x;ShellL (dL (x) (1� 
=4))) �
�: Therefore, if x 2 ShellL (a; a+ 
=8) ; r(L) � a � 2s(L); we have
�̂ (x;ShellL (a (1� 
=8))) � �: Therefore, a Markov chain with transition probabil-
ities �̂ which starts in ShellL (a; a+ 
s(L)=8) has probability at least � to reach in
one step ShellL (a (1� 
=8)) : By Lemma 3.4 c), an nearest neighbor chain starting
in ShellL (a (1� 
=8)) has a probability at least " (
) > 0 of exiting VL before reen-
tering into ShellL (a; a+ 
=8) : This evidently then applies also to our coarse grained
random walk.
We conclude that for the coarse grained chain starting in x 2 ShellL (a; a+ 
s=8),

there is a positive probability " > 0; not depending on x; a; that the chain exits from
VL before reentering this shell. It therefore follows that the expected number of visits
in ShellL (a; a+ 
s=8) is bounded, uniformly in the starting point of the chain, and
a: From this the conclusion follows by summing over a �nite number of such shells.

As a preparation for the proof of parts c) and d) of Lemma 3.10, we prove a
preliminary result about our coarse grained random walk.

Lemma B.4

sup
x2ShellL(2s(L))

X
y2VL�2s(L)

ĝL (x; y) � C (logL)3 :

Proof of Lemma B.4. The expression
P

y2VL�2s(L) ĝL (x; y) is the expected to-
tal time that the random walk spends in VL�2s � VL:When starting in ShellL (2s(L)) ;

43



the walk has a probability bounded from below, say by "1 > 0; of never enter-
ing VL�2s(L) before exiting VL; uniformly in the starting point. If the walk enters
VL�2s(L); it has to enter through ShellL (2s; 4s) : Therefore

sup
x2ShellL(2s(L))

X
y2VL�2s

ĝL (x; y) � "�11

 
1 + sup

x2ShellL(2s(L);4s(L))
Ex

�
TCGShellL(2s(L))

�!
;

where TCGA stands for the �rst entrance time into A by the coarse grained random
walk with transition kernel �̂s from VL�2s(L): It therefore su¢ ces to prove

sup
x2ShellL(2s(L);4s(L))

Ex

�
TCGShellL(2s(L))

�
� C (logL)3 ;

Consider the shells Rj
def
= ShellL (js(L); (j + 1) s(L)) ; j � 2; and let Tj be the

�rst entrance time of our (coarse grained) random walk into Rj :One then has

Px

�
TCGRj

< TCGShellL(2s(L))

�
� CPx

�
TRWRj

< TRWShellL(2s(L))

�
;

and the right hand side we can estimate by Lemma 3.4 c), giving

Px

�
TRWRj

< TRWShellL(2s(L))

�
� C

j
;

and therefore we get

Px

�
TCGRj

< TCGShellL(2s(L))

�
� C

j
:

If x 2 Rj ; we estimate the expected number of visits in Rj by Corollary B.3, which
gives

sup
x2Rj

X
y2Rj

G
s(L) (x; y) � C (logL)3 :

Combining these estimates completes the proof of Lemma B.4
Let � be the �rst entrance time of fSng into ShellL(2s(L)). Before time �, the

Markov process fSng proceeds as a random walk on Zd with jump distribution �̂m;
where m = 
s (L) :
Proof of Lemma 3.10 c), d), e). From Corollary B.3, we get

sup
x2VL

X
y2VL�2s(L)

G
s(L) (x; y) � C (logL)6 :

Evidently, from Lemma B.4, we get

sup
x2VL

X
y2VL�2s(L)

��G
s(L) (x; y)� ĝL (x; y)�� � C (logL)3 ;
which implies the statement d).
e) follows by the same approximation and

sup
x;x02V :jx�x0j�s

X
y2BulkL

��G
s(L) (x; y)�G
s(L) (x0; y)�� � C (logL)3 ;
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which follows again from Corollary B.3.
We turn to the proof of part c). For x = y, the result is obvious from the

transience of simple random walk. In the sequel, we thus always take x 6= y. Write
Ay

def
= fz : jz � yj � s(L)g. We �rst prove the result for x 2 Ay and dL(y) � 5s(L).

In that case,

sup
x2Ay:x6=y

ĝL(x; y) � G
s(L)(x; y)+ max
z2ShellL(2s(L))

PRWz (TAy
< TVL) sup

x2Ay:x6=y
ĝL(x; y) :

Since
max

z2ShellL(2s(L))
PRWz (TAy

< TVL) < 1

uniformly in L by Donsker�s invariance principle, we conclude that

sup
x2Ay:x6=y

ĝL(x; y) � CG
s(L)(x; y) :

Corollary B.3 then completes the proof in this case.

Consider next x 2 Ay but s(L) � dL(y) � 5s(L), and set By
def
= fz : jz � yj �

s(L)=2g and Cy
def
= fz : jz � yj � 5s(L)g. We note that

sup
x2Ay:x6=y

ĝL(x; y) �
C

s(L)d
+ sup
x62Ay

ĝL(x; y) �
C

s(L)d
+ sup
z 62Ay

PRWz (TBy < TVL) sup
x2Ay:x6=y

ĝL(x; y) :

Since supz 62Ay
PRWz (TBy

< TVL) < 1 uniformly in L, again by Donsker�s invariance
principle, we conclude that

sup
x2Ay:x6=y

ĝL(x; y) �
C

s(L)d
;

which proves the claim in this case.
We next consider x 62 Ay. Let �0 denote the �rst entrance time of the simple

random walk into ShellL(2s(L)). Clearly, �0 � �. We then have

ĝL(x; y) � G
s(L)(x; y) + C
X

z2ShellL(2s(L))

PRWx (S�0 = z)P
RW
x (TAy < TVL) sup

w2Ay:w 6=y
ĝL(w; y)

� C

s(L)2jx� yjd�2 +
CdL(x)dL(y)

s(L)2

X
z2ShellL(2s(L))

1

(jx� zj _ 1)d(jy � zj _ 1)d

(B.8)

� C

s(L)2jx� yjd�2 +
C

s(L)2

X
z2ShellL(2s(L))

1

(jx� zj _ 1)d�1(jy � zj _ 1)d�1

� C

s(L)2jx� yjd�2 ;

where the second inequality uses Corollary B.3, the estimate on ĝL(x; y) for x 2 Ay
that was already proved, and Lemma 3.5. This completes the proof.
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