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Abstract

We present a multiscale analysis for the exit measures from large balls in Z?,
d > 3, of random walks in certain i.i.d. random environments which are small per-
turbations of the fixed environment corresponding to simple random walk. Our main
assumption is an isotropy assumption on the law of the environment, introduced by
Bricmont and Kupianien. The analysis is based on propagating estimates on the
variational distance between the exit measure and that of simple random walk, in
addition to estimates on the variational distance between smoothed versions of these
quantities.

1 Introduction

We consider random walks in random environments on Z%, d > 3, when the envi-
ronment is a small perturbation of the fixed environment corresponding to simple
random walk. More precisely, let P be the set of probability distributions on Z?,
charging only neighbors of 0. If ¢ € (0,1/2d), we set, with {e;}¢_, denoting the
standard basis of R?,

o 1 .
,Psd:f {qep:'q(iei)—w‘gg, Vz}. (1.1)

Q& p2 g equipped with the natural product o-field 7. We call an element w € Q a

random environment. For w € Q, and z € Z%, we consider the transition probabilities

Pw (2,Y) e (y—x),if | —y| =1, and p, (z,y) = 0 otherwise, and construct the

random walk {S,},>0 with initial position z € Z¢ which is, given the environment
w, the Markov chain with Sy = = and transition probabilities

Pw,x(Sn-‘rl = y|Sn = Z) = wz(y - Z) .



(By a slight abuse of notation, for consistency with the sequel we also write P, , =

P, .a-)
We are mainly interested in the case of a random w. Given a probability measure

w on P, we consider the product measure P, def M‘X’Zd on (2, F). We usually drop

the index p in IP,,. In all that follows we make the following basic assumption

Condition 1.1
 is invariant under lattice isometries, i.e. uf~! = p for any orthogonal mapping
f which leaves Z¢ invariant, and u(P.) = 1 for some ¢ € (0,1/2d) which will be
specified later.

The model of RWRE has been studied extensively. We refer to [7] and [12] for
recent surveys. A major open problem is the determination, for d > 1, of laws of
large numbers and central limit theorems in full generality (the latter, both under
the quenched measure, i.e. for P,-almost every w, and under the annealed measure
P, ® P, ). Although much progress has been reported in recent years ([I, 8, [9]), a
full understanding of the model has not yet been achieved.

In view of the above state of affairs, attempts have been made to understand
the perturbative behavior of the RWRE, that is the behavior of the RWRE when p
is supported on P. and ¢ is small. The first to consider such a perturbative regime
were [2], who introduced Condition and showed that in dimension d > 3, for
small enough € a quenched CLT hold Unfortunately, the multiscale proof in [2]
is rather difficult, and challenging to follow. This in turns prompted the derivation,
n [I0], of an alternative multiscale approach, in the context of diffusions in random
environments. One expects that the approach of [I0] could apply to the discrete
setup, as well.

Our goal in this paper is somewhat different: we focus on the exit law of the
RWRE from large balls, and develop a multiscale analysis that allows us to conclude
that the exit law approaches, in a suitable sense, the uniform measure. Like in
[10], the hypothesis propagated involves smoothing. In [I0], this was done using
certain Holder norms of (rescalled) transition probabilities. Here, we focus on two
ingredients: a propagation of the variational distance between the exit laws of the
RWRE and that of simple random walk (which remains small but does not decrease
as the scale increases), and the convolution of the exit law of the RWRE with the exit
law of a simple random walk from a ball of (random) radius, which decrease to zero
as scale increases (a precise statement can be found in Theorem. This approach
is of a different nature than the one in [I0] and, we believe, simpler. In future work
we hope to combine our exit law approach with suitable exit time estimates in order
to deduce a (quenched) CLT for the RWRE.

The structure of the article is the following. In the next section, we introduce
our basic notation and state our induction step and our main results. In Section [3]
we present our basic perturbation expansion, coarsening scheme for random walks,
and auxilliary estimates for simple random walk. The proof of the latter estimates is
presented in the appendices. Section[d]is devoted to the propagation of the smoothed
estimates, whereas Section [b|is devoted to the propagation of the variation distance

! As the examples in [I] demonstrate, for every & > 0 there are measures p supported on P., with
E, [Zle(q(ei) - q(—ei))] = 0, such that S, /n —n_o v # 0, Py-a.s. One of the goals of Condition

is to prevent such situations from occuring.



estimate (the non-smooth estimate). Section |§| completes the proof of our main
result by using the estimates of Sections [ and

2 Basic notation and main result

Sets: For z € R% |z| is the Euclidean norm. If A,B C Z¢ = € 79, we set

d(z,A) Yinf{lz—y|:ye A}, d(A,B) ¥ inf{d(z,B):z € A}. f L > 0, we
write V, & {z € Z: |2| < L}, and for z € Z4, Vi, (z) & 2+ VL. If V € 24, OV

is the outer boundary, i.e. the set of points outside V' which have a neighbor point

in V. If x € V, we set dy () def d(z,0V). We also set dr(z) = L — |z| (note that

dr(z) # dy, (z) with this convention). For 0 < a < b < L, we define the “shell”
Shelly, (a,b) € {z € Vi 1 a < dy (z) < b}, Shell, (b) % Shell, (0,6).  (2.1)

Functions: If F,G are functions Z¢ x Z¢ — R we write F'G for the (matrix) prod-

uct: FG(x,y) ef Yu F (z,u)G (u,y), provided the right hand side is absolutely

summable. F* is the k-th power defined in this way, and F° (z,y) def 0z.y. We

interpret F' also as a kernel, operating from the left on functions f : Z¢ — R, by

Ff(x) def S F (z,y) f (y). IW C Z4¢, we use 1y not only as the indicator function
but, by slight abuse of notation, also to denote the kernel (z,y) — 1w () 05,y

. def def
For a function  : Z4 = R, [If, < 53, 1f ()], and ||f.. < sup, |f (@)1, as
usual. If F is a kernel then, by an abuse of notation, we write || F'||; for its norm as

operator on L, i.e.

def
IF]l, = sup || F (z,-)]; - (22)
T

We set supp f def {z:f(x)#0}.If f,g : Z* — R, we write f * g for the usual
convolution.

Transition probabilities: For transition probabilities p = (p(z,y)), yezd » 1ot
necessarily nearest neighbor, we write P, , for the law of a Markov chain Sy, S1, ...

on Z? having p as transition probabilities and x € Z? as a starting point. If V C Z<,

a def inf {n>0:S5, ¢V} is the first exit time from V, and Ty def Tye the first

entrance time. We set
def
exy (z,2;p) = Py (Srv = 2).

For z € V°, one has exy (z, z;p) = d5,,. A special case is the standard simple random
walk p (z,+e;) = 1/2d, where ey, ...,eq € Z¢ is the standard base. We abbreviate

this as pW, and set PEW def P, ,rw. Also, exit distributions for the simple random

walk are written as 7y (z, 2) def oxy (z,2;p"WV) .

We will coarse-grain nearest-neighbor transition probabilities p in the following
way. Given W C Z¢, we choose for any = € W either a fixed subset U, C W, x € U,,
or a probability distribution s, on such sets. Of course, a fixed choice U, is just a
special choice for the distribution s,, namely the one point distribution on U,,.



Definition 2.1
A collection § = (s;), .y, Is called a coarse graining scheme on W. Given such a
scheme, and nearest neighbor transition probabilities p, we define the coarse grained
transitions by
PG @)= Y s (U)exy (2,p). (2:3)
UizeUCW

In the case of the standard nearest neighbor random walk, we use the notation
cG

SW
Using the Markov property, we have

ms,w instead of (ﬁRW)

Xy ((E7 ap) = Xy (:L‘7 ’pg(v;v) . (24)

We will choose the coarse-graining scheme in special ways. Fix once for all a
probability density

@:RY =R, p e C™, supp (p) =[1,2]. (2.5)

If m € RT, the rescaled density is defined by o, (t) ef (1/m) ¢ (t/m). The im-
age measure of @, (t)dt under the mapping ¢ — V; (z) N W defines a probability
distribution on subsets of W containing x. We may also choose m to depend on
z, i.e. consider a field ¥ = (my),cy of positive real numbers on W. Such a field
then defines via the above scheme coarse grained transition probabilities, which by
a slight abuse of notation we denote as pg(év In case W = Z4, we simply drop W in
the notation. In case p is the standard nearest neighbor random walk, we write 7y
instead of pg¢.

The random environment: We recall from the introduction the notation P, €2,
Pw (z,9), and the natural product o-field F. For A C Z%, we write F4 for the o-field
generated by the projections w — w,, x € A. We also recall the probability measure

p on P, the product measure P, and Condition [I.T} which is assumed troughout.

For a random environment w € 2, we typically write II, def exy (+, 3 pw) and

occasionally drop w in the notation. So IIy should always be understood as a random
o e . - CG
exit distribution. We will also use ILs w for (pw)g vy -

For x € Z%, L > 0, and ¥ : 9V, () — R*, we define the random variables

Dy.w (z) = ||([va> — Ty )] Tw) (2, ')”1 ’ (2.6)

ef
DY (x) = |y, (o) (&) = Ty, (@) (2 0)]
and with § > 0, we set

2.7)

1

by (L, 0,6) P ((log 1) < Dry (0) < (g 1)"°™, DY (0) < 4)
by (L, W,6) < p ((1og L) < Dyy (0) < (logL)™**, DY (0) < 5)
by (L, 0,6) < p ((1og L)™® < Dy (0) < (log L) 2%, DY (0) < 5)
by (L, W,5) < p <{(logL)_2'25 <DLy (0)} U{DY (0) > 5})

b(L,U,5) Y by (L,0,8) + by (L, U,5) + by (L, U, 5) + by (L, T, 5) .



We write M, for the set of functions ¥ : 9V, — [L/2,2L] which are restrictions
of functions defined on {x eRe: L/2< |z] < 2L} that have smooth third deriva-
tives bounded by 10L~2 and fourth derivatives bounded by 10L~3.

Condition 2.2
Let Ly € N, and § > 0. We say that condition Cond (, L1) holds provided that for
all L < L, and for all W € M,

bi (L0, 6) < iexp —(1—(4—1)/13) (log L)Q} Li=1,2,3,4  (2.8)

In particular, if Cond (4, Ly) is satisfied, then for any L < L;, and any ¥ € M,

P((D4(0) > 0) U {Drw(0) > log 1)7)) S exp |13 (g L] (29)

Our main technical inductive result is

Proposition 2.3
There exist 69 > 0 such that for all § € (0,dg] there exists gy (§) and Ly € N such
that if € < gg, L1 > Lo, and p is such that Condition holds for €, then

Cond (4, L1) = Cond (6, Ly (log L1)2) .

Given Lg, dp, we can always choose gy so small that if Condition [1.1]is satisfied
with g, then Cond (dy, Lo) holds trivially. We therefore see that Proposition
implies that for any 6 < dp, there exists g small enough such that Cond (4, L) holds
for all € < g, and all L. In particular, one obtains immediately from Proposition
[2:3 the following theorem, which is the main result of this paper.

Theorem 2.4
For each § < §y there exists an g > 0 such that if Condition is satisfied with gg,
then

limsupb (L, mp,0) =0,

L—oo

where mj, denotes the element of M, that consists of constant smoothing at scale
L.

A remark about the wording which is used below. When we say that something
holds for “large enough L”, we mean that there exists Ly, depending only on the
dimension, such that the statement holds for L > Ly. We emphasize that Ly then
does not depend on €.

We write C' for a generic positive constant, not necessarily the same at differ-
ent occurences. C' may depend on the dimension d of the lattice, but on nothing
else, except when indicated explicitely. Other constants, such as cg, c1, ¢, ko, K, C1
etc., follow the same convention concerning what they depend on (d only, unless ex-
plicitely stated otherwise!), but their value is fixed throughout the paper and does
not change from line to line.



3 Preliminaries

3.1 The perturbation expansion

Let p = (p(2,9)), yeze be a Markovian transition kernel on 72, not necessarily
nearest neighbor, but of finite range, and let V' CC Z?. The Green kernel on V with
respect to p is defined by

gv (0) (,9) = D" (1up) (2,9).
k>0

Evidently, if z ¢ V, then

gv (p) (,2) = exy (-,z;p). (31)

If p, ¢ are two transition kernels, the resolvent equation gives for every n € N

gv (P) = gv (@) +g9v () 1v (p — q) gv (P)
n—1
=0gv (Q) + Z [gv (C]) 1y (p - q)]kgv (Q) (3'2)
k=1
+ov (@) 1y (p— )" gv (p)

=g @+ lov (@1 (0= )" gv (a),
k=1

assuming convergence of the infinite serie, which will always be trivial in cases of
interest to us, assuming ellipticity and V finite.

If V. .cc Z% and S is any coarse graining scheme on V (as in Definition ,
we compare the exit distribution of the RWRE Il with the exit distribution my
of simple random walk through this perturbation expansion, using however coarse
grained transitions inside V : Using and we get for x € V

(y —7v) (z,) = Y (és,v [Asvisv)® As,vﬂv) (z,),
k=0

where ot . ot

Asy = 1y (Hs,v - ﬁs,v) , dsv = gv (fRsy).
We will also use the splitting (dropping the S,V indices when no confusion may
arise)
§(z,))=10,.+7G(x,-), z€V.
If we put for £k >0

¢ = AF(ARg),

we get

My —my =gy > ¢ akngy,

k)

Remark that we can replace in ¢(¥) the second part:

(A7G) (z,y) = > (AF) (2,2) (3 (2,9) — § (2,1)),

z



i.e., we gain a discrete derivative in the Green function.
We will occasionally slightly modify the above expansion, but the basis is always

the first equality in (3.2).

3.2 The smoothing scheme on V},
We next make an explicit choice of smoothing schemes that we will use. Set

def

r(L) € L/ (log L)', s(L) % 5

= L/(logL) (3.3)

af (11 2\ VY
7 = min <10, 3 <1 - <3> . (3.4)

We fix a C°-function h : RT — R, which satisfies h(u) = u for u < 1/2,
h(u) =1 for u > 2, and is strictly monotone and concave on (1/2,2). For z € V,,,

we set
hy (z) s (D)h (dsL((L”” . (3.5)

Remark that for d, (x) > 2s (L), we have h,, () = vs(L).

and

Lemma 3.1 - - -
Fix 61 > 0. Then, there is a constant ko = ko(d1) such that if k > ko(d1) then for
all L large, if for some 6§ > 0, dy, (z) <r (L), DgT(L) (x) <6, then

>, |A(z,y)| <6 +61. (3.6)

yeVL:dr (y)<r(L)

Proof. Fix k. We have

> Az, )

yEVL:dL (y)<r(L)
<y, () (&, VL N Shelly (r (L)) + Tv,, 1, () (x, VL N Shelly, (r (L))
<d+ 271’\/]“.@)(%) (z, Vi, N Shell, (r (L))) .

Choosing k large enough completes the proof. m
We will work with two smoothing schemes on Vi. The first will depend on a
constant kg > 1 that will be chosen below, see (|3.22]).

Definition 3.2
a) The smoothing scheme &1 = Sipk, = (Sz)zeVL is defined as follows. For
dr (z) < r(L) we set s, = dpyp(ry, i.6. for such an x, the coarse graining is
done by choosing the exit distribution from Vy (1) (x)NVy. For dy, (z) > r (L),

we take s, (dt) < ¢, (2 (£) dt.

b) The smoothing scheme Sy = S 5, = (Sw)erL is simply defined by s, (dt) def

Oy () (t) dt for all x.



We will need the second scheme only in the propagation of the part of the estimate
bs(L,V,d) involving the expression DY (x) of . Up to Section |5}, we therefore
only work with S;.

We write B(Li), 1 =1,2,3,4, for the collection of points which are bad on level i,
and in the right scale: For ¢ = 1,2, 3, B(Li), are the set of points = ¢ Shelly, (r (L))
such that for some r € [hy(x),2hr(x)], one has D, (z) (z) > (log ) B
but for all 7 € [hp(x),2hr(z)], Drpy@ (@) < (logL) "% and DY (z) < 4.
B](-jl) is the set of points = which for dy (x) > 7 (L) have the property that for
some 7, hr (x) < r < 2hp (2), Dypy (2 (x) > (log L)_2'25, or DY (z) > §, and for
dr, (z) <r (L) satisfy D}, (¥) > 9. We also write

B, ¥ B uBPuB®uBY, (3.7)
and .
Good, ' {By, = 0} . (3.8)

We write p; (), ¢ = 1,2, for the range of the coarse graining scheme at x in
scheme 1, i.e.
def { kor (L) for dp (z) <r (L)

prL () = 2hy, (z) for r(L) < dg (z) (39

and similarly for the second scheme.

If Ly < L < Lq(log L1)2 then all the radii involved in the definition of badness
are smaller than Ly, if Ly is chosen large enough. Remark that if dr (x) > r (L),
then hy (x +-) € M, for hy (z) <r < 2hj (z), and therefore, if Cond (4, L1) holds,
and Ly < L < Ly (log L1)?, then

~L

P(xz € Br) <2vys(L)exp | —— (log (10gL)10> < exp [—0.7(10g L)*|, (3.10)

if Ly is large enough.

The points y whose random environment w, can influence the badness of = are
evidently within radius p; f, (z) from z. If | — y| > p1, (z)+p1,L (v) , then {z € B}
and {y € Br} are independent. Therefore, if we define

TwoBady, & U {reB}n{yeBL}, (3.11)
z,y€VL:|z—y|>p1,(x)+p1,(v)
then:

Lemma 3.3
Assume Ly large enough, (2.8) for Ly, and L1 < L < L4 (log L1)2. Then

P (TwoBady) < exp |—1.2 (log L)?| .

3.3 Estimates on exit distributions and the Green’s function

. veni we write 7y i - o . -
For notational convenience, we write instead of 7wy, , and similarly in other e
pressions. For instance, we write 77, instead of 7y, .



Lemma 3.4
a)
éL‘dH <7 (z) < CL™L
b) Let z be a vector of unit length in R%, let 0 < 6 < 1, and define the cone
Cy (x) def {yez: (y,x) > (1—0)|y|}. For any 0, there exists § (§) > 0, such
that for all L large enough, and all x

7 (0,Cq (x)) > 6 (). (3.12)
c) Let 0 <1< L, and x € Z¢ satisty | < |z| < L. Then

l*d+2 _ |m|*d+2 +0 (Z7d+l>

PR (rp < Ty;) = [—d+2 _ [—d+2

Proof. a) is Lemma 1.7.4 of [5]. b) is immediate from a). c) is Proposition
1.5.10 of [5]. m
We will repeatedly make use of the following lemma.

Lemma 3.5
Assume x,y € Vi, 1 < a <5dp, (y), © ¢ Vau (y). Then

a’?dy, (y) di, (x)

Py (Tv,) <7v,) <C 7
|z —yl

(3.13)

The proof will be given in Appendix [A]

We will need a corresponding result for the Brownian motion. We write 72M(y, dy’)
for the exit distribution of the Brownian motion from the ball C, of radius L in R?.
The following lemma is an easy consequence of the Poisson formula, see [5, (1.43)].

Lemma 3.6
For any y € Cp, it holds that

Cld(y,0Cr) _ mpM(y,dy') _ Cd(y,0CL)
ly—y'|4  — dy’ - ly—ye

, (3.14)

where dy’ is the surface measure on 0C.

We will need a comparison between smoothed exit distribution of the random
walk, and that of Brownian motion. Given L > 0, and ¥ € My, let

def ~
qu’\I; = Ty, Ty. (315)
We consider also the corresponding Brownian kernel on R?,
def
oY ) [ 5B ) [ 7B (0.d2) o, ()
L

where ¥ = (m,,), and where we write El\/f, (y, z) for the density with respect to

d-dimensional Lebesgue measure.



Lemma 3.7
There exists a constant C' such that for L > 0, and ¥ € My, we have

sup sup |, (y,2) — dp (y,2)| < CL7471/°
yeVy z€Z4

Lemma 3.8
There exists a constant C such that for L > 0 and ¥ € M, we have

sup”83¢) (y, 2 || <CcL 3

The proofs of these two lemmas are again in Appendix [A]
We can draw two immediate conclusions from these results:

Proposition 3.9
a) Let y,y' bein V, and ¥ € My. Then

lor,w (y,2) — drw (¥, 2) < C (L_d_l/s +ly =] L_d_l) : (3.16)

b) Let x € Vi, and | be such that V; (x) C V. Consider a signed measure i on
V, with total mass 0 which is invariant under lattice isometries. Then

‘Z y—x) oL (y, )’ < Clpl (Ld1/5 + <é>3Ld> : (3.17)

where |u| denotes the total variation norm of p.

Proof of Proposition a) is immediate from Lemmas and
As for b), we get from the same lemmas

’Z y—z)brw (y,2) — Zyu(y—x) N (y,z)‘ < Clp| L%/,

Zy nly =)o (y,2) = Zy 1y — ) [62N (v, 2) — o2 (2, 2)]
—Z ) 0,65 (2,2) [y — 2] (3.18)
Ty Z (y— ) 291N (,2) [y — w,y — 7

+R(u,x,2),
where
3
Rine2) < Clul (1) 1 (3.19)
uniformly in x and z. OFF [uy,...,u;] denotes the k-th derivative in directions

U1, ..., ug. The first summand on the right hand side of (3.18]) vanisches because p
has mean 0. The second vanishes because by the invariance under lattice isometry of
1, the summand involves only the Laplacian of (;5%}\/1[, (-, 2), which vanishes because
of harmonicity of 7rCL 0) (z,-) in the z-variable. The estimate 1] follows from
Lemma [3:8 The proof of the proposition is complete. ®

10



The next lemma gives a-priori estimates for coarse-grained walks. We use ﬁ(Li),
i = 1,2, to denote the transitions of the coarse grained random walk that uses
the smoothing scheme S;, and Q(LZ) to denote the corresponding Green’s function.

Note that these quantitites all depend on L and kg, but we supress these from the
notation. We set S, < Shell, (r(L)).

Lemma 3.10
There exists a constant C (independent of ky!) such that:

a)
sup ¢y (z,51) < C.
zeVy

b) Ifi=1andr (L) <a<3s(L)ori=2anda<3s(L) then,

sup Q(Li) (z, Shelly, (a,2a)) < C.
zeVry,

¢) For all x,y € Vi, \ Shelly(s(L)), and i = 1,2,

1
39 (2.4) < ¢ SOPETITE VA
gL (may)— { 1, y:x
d) Fori=1,2,

sup Q(Li) (z,V) < C(logL)°.
x€eVL

e) Fori=1,2,

sup Z

z, ' €Vy:|lz—z'|<s(L) yevr,

3 (@.9) - 9 (@'y)| < C og L)’

The proof is presented in Appendix
Lemma [3.10] plays a crucial role in our smoothing procedure. As a preparation,
for k> 1, set

B (k) % Shell, ((4/3)’“ r (L)) .

By (k) C Shelly, (s (L)) if k < 20loglog L. By Lemma [3.10, we get that there exists
a constant ¢ > 1 such that

A1) <z k, if £ <20loglog L
:euxl/)L g (@ Bu(k) < C{ (log L)® if k > 20loglog L (3.20)
and, for any ball V,.;1)(2) C Vi_g1),
sup 9% (2, Bry(r)(2)) < . (3.21)

zeVy,
With ¢ as in (3.20) and (3.21)), we fix the constant kg large enough such that:
ko > ko(1/200¢),

sup pRW (TVL < rVkO,,,(L)(x)) > 9/10, (3.22)
TESL

SUp TV, () (x,V5) <17/32.
€S

That the two last estimates in ((3.22)) hold for kg large is obvious, for example from
Donsker’s invariance principle.

11



4 Smoothed exits

Throughout this section, we consider the coarse graining scheme S = S, as in Defi-

nition (3.2} and we write pr, for p; ;. We regard f[g}L as a field (ﬂg}L (z, )) of
zeVy

random transition probabilities. We defined the “goodified” transition probabilities

. ydef [ s g (2,-) if x¢ By
gd (HS,L) (z,7) = { s, (z,-) if x € Bg

This field might no longer come from an i.i.d. RWRE, but nevertheless, we have the
property that gd (IZI&L) (z,-) and gd (12[57,;) (y, -) are independet provided |z — y| >
pr () + pr (y) . If X is a random variable depending on w only trough the l:IS,L we
define gd (X) by replacing 12157L by gd (12[5,,;)

In the sequel we keep L fixed and typically drop it from the notation We set

g def 9811, AL Asl L, T def v, . We take ¥ € My, and set (b = ¢L v, as in

- An easy consequence of our definitions and Lemma is the following.

Lemma 4.1
If 6 < (1/800¢) then, for all x € Vi, and k > 2,

. 1/1\"
L= A%z, )= = (g ) - (4.1)

Proof. Since maxgcv, ||A(z,-)||; <2 and ¢ > 1, it is enough to prove that

1
1B,—0} Z |A?(z, 2)] < (646) :

zeVy,

o

If dr,(z) > r(L) then, on the event { By, = 0}, ||A(z, -)||1 < § and hence ||A?(z,-)||; <
2§ < 1/64¢ due to our choice of 4. On the other hand, if dr(z) < r(L) then on the
event {By = (1},

Z |A2(z, 2)| = Z )Zyev Aly, )‘ (4.2)

z€VL z€VL
<2 A A A(
< > (z,y)| + > (z,y) Jevp > 1Ay, 2
y€EShelly, (r(L)) yeVr\Shell, (r(L)) z€VL
1 1 1
20+ ——)+26 =46+ — < —
<20+ 200c )+ + 100¢ ~ 64c’

where Lemma and ko > ko(1/200¢) were used in the next to last inequality. m
In what follows, we will always consider 6 < 1/800¢.

4.1 The linear part

For x € V,, B C Vy, set

M (B,2) =Y g(x,y) (AFrig) (y,2) (4.3)
yeB
=> > al ") (6, 2) — 6 (y,2))
yeBy' €VL
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We write ¢ (z) for 3% (V, z), and define

def
G = {sup Zk>1

zeVy,

< (logL)~ 37/4} .

Proposition 4.2
If L is large enough, then

P((GL)° N Goody) < exp [f (log L)N/S} .

Proof. It suffices to prove that

sup P (Zk21 (k)H (log L) *7/4 GoodL) < exp [_ (log L)Q/ﬂ .
Note that
P(Zk>1 k)H (log L)~ e GoodL)
=F ( k>1 Hgd (ék )H (log L)~ A GoodL)
=F ( E>1 Hgd <€3C )” (log L)~ 37/4) .

For notation convenience, we drop the notation gd (-), and just use the fact that
all ﬁS, 1, involved satisfy the appropriate “goodness” properties. (Remark that after
“goodifications”, the distribution of 12137 L (z,x + -) remains invariant under lattice
isometries, provided dy, () > 2s(L).)

We split € into different parts. If dr, (y ) r (L) and A (y,y") > 0, we have,
assuming v < 1/8, |y —¢/| < dr(y) /4, i.e. di (y) § (4/3)dg (y') . Therefore, if
dr (') < r (L) and AF (y,9/) > 0, then dy, (y) < (4/3)" r (L). Recall the set B (k)
and the estimate . If y € By(k), and A¥ (y,9') > 0, we have

ly — /| < kkor (L) + 3" max (r (L) ,d (y))
< (kko +4%)r (L),
and applying (3.16)), we see that for y € By (k), and ' such that A* (y,y') > 0, we

have
6 (y,2) — (', 2)| < C (kko +4%) L™ (log L) ™"

By Lemma we have ||Ak (y, )||1 < 16 - 87*. Combining all these estimates, we
have

k8~F (kko +4%) (log L)™'?, if k < 20loglog L,
87" (kko +4%) (logL)™*,  if k > 20loglog L.

) (Bl(k))H1 < C{ (4.4)

(We emphasize our convention regarding constants, and in particular the fact that
C' does not depend on z.) Hence,

SUPZ Hfg(gk) (B1(k))H1 < C(log L)™' < (log L)737/4 /3. (4.5)
T ok>1

13



Next, let
def

Bo(k) < Shell, ((4/3)kr(L),(5/4)k2s (L)).

If y € Bo(k) and A (y,3') > 0, we have dr, (y') > r (L), and we get, using the fact
that for d, () > r (L), one can write 7 (z,-) = (a7) (z,-),
EW (Balk),2) = > > §(x,y) Dk (1,9) (6 (y,2) — ¢ (¥, 2))

yEBa (k) y' €VL

where
L AR (4.6)

and

sup Dk (y, ), < sup [|[AM ()|, sup AR (2,0, (4.7)
yEB2 (k) yEB2(k) x:dr, (z)>r(L)

<8 *(logL)™?
Using Lemma b), we have sup, g (z, Shelly, (3s (L))) < Cloglog L. Put

A; Y Shell, (24 (G — 1) /4) s (L), (2+j/4) s (L)) ,j > 1.

Starting from a point in A;, j > 3, the coarse grained random walk has a probability
> 1/C to reach A;_» in one step. Starting from A;_5, an ordinary random walk
has a probability > 1/C' to leave Vi ,r(1) before reaching A;, and therefore, the
coarse grained walk leaves Vy, before reaching A; with at least the same probability.
Therefore sup,, § (z, A;) < Cj, and thus,

2%
sup g (z, Ba(k)) < C ((i) +loglogL> <C (2 +1loglogL) .

If y € Ba(k), and A* (y,9/) > 0, then |y —y/| < 2ks (L), and therefore

6 (y,2) — ¢y, 2)] < CkL™¥(log L) ~*,

again by (3.16)). Therefore, we get,

(Ba(k), ) H < Ck(log L) ™2 [47% + 8 % loglog L],

H (log L)~*"/* /3. (4.8)

ToE>1

Let By(k) 2 V\ (Bi(k) U By(k)). Given j € Z, let

LY (ks(L)+1,...,(j+ 1) ks (L)}

Then for j € Z4, put Wj wof Bs(k)N 1, x---xI;,. Let J be the set of j’s for which
these sets are not empty. We subdivide J into subsets Ji,. .., Ji(4) such that for
any 1 <r < K (d),

b€ g, §#) = d(W;, Wy) > ks (L). (4.9)

14



We also have diam (W;) < V/dks (L) .
We set, recalling (4.6)),

B Y S S Gy De ) 6, 2) - 0(y,2).  (410)

yeW;y' eV

We fix for the moment k£ and z. If ¢ > 0, and
> BT () <t/ (4.11)
and we have
P (|6 Bah). )|, 2 1) <P (|32, (6 () - Bl ()| = 1/2)
<K@ max (3 (€ () -BD ()] 21/ @K @),

1<r<K(d

The random variables 53(5{? (2) —Efgfj) (2), j € Jr, are independent and centered, due
to (4.9), and we are going to estimate their sup-norm. |¢ (y,2) — ¢ (¢, 2) | is again

< C (k(ogL)® L~ +L‘d_1/5) for y,y’ for which Dy (y,y’) # 0. According to
Lemma c), we have

g (z, W;) < Ck? <1+

Implementing that into (4.10), we get

d(z, W)
s(L)

By Hoeffding’s inequality (see e.g. [0 (1.23)] ), we have for 1 <r < K (d)

—ky—d
(’ZJEJ (€30 -Bl o))z s (lfgL)37/4>

d+2
gi’f;(z)H < Ckit1g—k <1+ ) L~ (log L) ™2

V

1 (log L)5/2
T O k2d+24—2k

(log L)737/2

< 2ex
C k2d+24-2k (log L)~ —24 Z?:Ufg L)? Td+i;| - p

< 2exp |—

)

where we used d > 3 in the last inequality. The upshot of this estimate is that
provided 1) holds true with ¢t = 27*L =% (log L)757/4, we have

1 (logL)*?
sl;pJP’ (Zk>1 T O k2d+24—2k

W (By)|| = (og L)) <23 exp
k>1

< exp [— (log L)17/8] )
It remains to prove (4.11)) with this ¢. Write

ZEﬁ(’“) =3 > G@yEWD(0,) (6 (,2) — 6 (,2)) -

yEB3 y' €V

15



For every y, v — E(Dg (y,v')) is a signed measure with total mass 0, which is
invariant unter lattice isometries. Furthermore

> B (Dx (y,9)) < C87F (log L)~

Applying , we get
>, EDem:) (6 (4:2) 0 (5.2))

Lk (logL)™®

<C8 *(ogL) ™ | L-V4 4 ( 7

3
) L~ <Ca % (logL) " L7,

uniformly in y € B3(k), and k. By Lemma d), we have

sup Z (z,y) < C (log L)°®.
Y yeBs(k)

From this (4.11)) follows. m

4.2 The non-linear part, no bad boxes

Recall the random variable Dy, ¢ (0), c.f. (2.6]).

Proposition 4.3
If L is large enough and ¥ € My, then

P (DLJ, (0) > (log L) ; GoodL) < exp [f (log L)”/S] .

Proof. We recall the abbreviation S;, % Shelly, (r (L)) . By Proposition [4.2] it
suffices to estimate the rest of the perturbation expansion

Ry difz S (gaRar) - (gt Ar) Y (9Ae) (4.12)
n=1kq,....k,=0 k=1

on G, N Goody, . The last factor is > _p- £() of the last section, and therefore, we
only have to show that on Goodp, the other factors are staying below 1, for instance

sup » || (gAFA%) (2,-)||, < 15/16. (4.13)
T k>0

First, we observe that

sup [[(A%) (y,-)]l, < C(log L)~
y¢SL

>_sup [[(54%) (@, )|], < € (log L)°.
k>0

Therefore, we have

Sosup X0 (88) @) (A9) (5.0 < 1/16,

k>0

16



if L is large enough, and in order to prove (4.13)) it therefore suffices to prove

Sosup |32 (08%) (wy) (A0 ()| <778,

k>0

As in the proof of proposition (4.2)), if A*(z,4) > 0 for y € Sy then z € By(k).
Hence, using (3.20) and Lemma together with our choice of kg in the second
inequality,

Soswp |30 (049) (o) (A9) (5.)]|

E>1
<Y supgla, Bi(k)) sup [[AM(z )|
k>1 * z€B1 (k)
20loglog L—1 1 k 1 k 1
6
< Z k<8) + Z (log L) (8> <3
k=2 k>20loglog L
Therefore, it suffices to prove
< . .
SupHZ L, §@y) (A7) (3, )H173/4 (4.14)

From the choice (3.22)) it follows that

sup ¢ (z,Sr) <10/9.
zeVy

Furthermore we have assumed § < 1/32, so that by using the third part in (3.22)),
we have

sug) Iy, .y (2, VL) < 9/16.
re

Combining that, we get

supHZy 5, 9@y (A7) (4]

—5upz cs, 9@y (0 Vi) + sup D s, @ T 0w (4 VD)

as required.
We therefore get
sup |[Ry, (. )], < C (logL)~*""*

eV

on Gy N Goody,. m

4.3 Presence of bad points

On (Goody, UTwoBady,)“, it is clear that for some z € Vi, we have

Br, C V},p(z) (1‘) . (4.15)

17



We write D, for the collection of balls Vs, (z) (x), € Vi, and for D € Dr, we
write Bady, (D) for the event that {B; C D}, and Bad(Li) (D) for the event that
{B(L” c D}, i=1,2,3,4.

The main aim of this section is to prove the following result.

Proposition 4.4
There exists a §o < 1/800¢ such that if § < dy, and if Cond (L1, ¢) holds for a given

Li,and if L < I, (long)2 and ¥ € My, then, fori=1,2,3,4,

sup P (|([My;, = mv, ] 70) 0,y = (log )~ 2727 Bad(? (D))
DeDy,

< ﬁ exp [f (log L)2] .

The proof of Proposition 4] relies on an auxilliary construction. To fix the
constants in the construction, we need the following lemma. Write G for the
Green function of the coarse-grained RWRE in a “goodified” environment.

Lemma 4.5
There exists a constant ¢y such that for all L large, and D € Dy, D C Shelly,(L/2),

. diam(D)?"? (maxyep dr(y) V s(L))

GL(O7 D) < Co Td—1 (416)
Further, there exists a constant ¢; > 1 such that
sup Gr(y, D) < ¢1 . (4.17)

yeVL

We postpone for a moment the proof of Lemma [4.5] and turn to the

Proof of Proposition We start with the case when D is “not near” the
boundary, meaning that D C Vi 5. We write D = V5, (2,) (Z0) = Vsys(1) (0) - By
Lemma ¢), we can find a constant K (not depending on L, zg), such that for
any point = ¢ D Vsk~s(r) (o), and all L large, one has g (z, D) < 1/10. We
modify now the transition probabilities II,# slightly, when starting in = € D, by
defining

. ~(z, H) f D
I (z,) def eXDA (:c, ; or T € ’ (4.18)
I (x,-) forx ¢ D
and similarly we define 7. (Remark that this destroys somewhat the symmetry, when
x # g, but this is no problem below). Clearly, these transition probabilities have
the same exit distribution from V7 as the one used before. If we write g for the
Green’s function on Vi, of 7, we have g (x,y) = § (z,y) for y ¢ D, and all z, whereas
g(z,y) < g(z,y) for y € D. In particular, we have

sup g (z, D) < 1/10. (4.19)

Writing down our perturbation expansion, we have

(v, — 7y, ]7e) =Y Y. (GARAR) .- (AR A%) (GAF Ag)

m=1ky,....km=0

18



where A now uses the modified transitions, that is A(z,y) = Il(z,y) — 7(z,y), but

remark that for z ¢ D, A (z,-) is the same as before. Also, ¢ is modified accordingly.
We first estimate the part with m = 1. In anticipation of what follows, we

consider an arbitrary starting point x € V. Put k£ = k; + 1. The part of the sum

Z Z g(z,z1) Az, 22) .- Az, y) o (y, )

where all x; ¢ D, is estimated in Section and the probability that it ex-
ceeds (log L)™? /3 is bounded by exp [— (logL)Q} /100. If an z; € D, then the

sum over ;4 extends only to points outside 15, and therefore, the sum over

Zj41,Tj42, -, Tj+K is running only over points outside D. Therefore
su A (zj,xj41) - A(Tj4+K,%; )| < 26K, (4.20)
pD JrLj+1 JHEKyLi+K+1)| >
TjE

TjtlseTitK
Further, let j denote the smallest index such that z; € D. Let
Xj = {.1'1 : A(.’L‘l,mg) e A(xj,l,xj)} >0.

Then max,, cx, d(z1, D) < 5jys(L). For j < (log L)? it follows that X; C Vi_r,
and therefore, by (3.21)), max,ecy, §(z,X;) < Cj¢. Thus,

Z lﬁ(a:,xl)A(xl,xg)--~A(xj,1,wj) § C(Sj_ljd. (4.21)

On the other hand, for j > (log L)? one has

| Z gz, 1) Az, 22) - Azj_1,3;)| < C(1/8)7(log L)° .

T1,eens T

Therefore, using (4.20)),

Z Z g(x7x1)A(x1ax2)"'A($j71,$j) <(C.

T1,...,01€D,x;€ED

It g ¢ D, then |, A(wr9)6(y,0) < CllogZ)™. On the other hand, if
1
zi € D, then

sz A (zr,y) ¢ (v, ~)H1 < CyK (log L)~ 12727 (4.22)
Combining all the above, we conclude that for some constant ¢y it holds that

|Z Z g(xaxl) A (m17x2) A (xkvy) ¢ (y,Z) ‘ S CQ’VK(IOg L)_12+2.25i .

YyZ XT1,eeyTh

It follows that

HZ;lzk g(0,z1) A(z1,22) - ... (AQ) (z, .)Hl < (log L)—11.5+2.25i, (4.23)
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where 3 denotes summation where at least one x; isin D.

(We note that for ¢ = 1,2, 3, one would not need to use the K-enlargement and
modification of the transition probabilities, as we catch in any case a factor § for
any A).

The case m > 2 is handled with an evident modification of the above procedure,
using the estimate . Indeed, let D' = {z € Vi, : d(z, D) < 2ys(L)}. A repeat
of the previous argument shows that

SUPZZ| Z g(z,x) Az, 22) .- A(@p—2, 1) T (Tp—1,28) | < C6

k=4 zp  T1ooTp—1F

while

~ 2, zgD
SgPZ' Z g(297.’L'1)A(£L'17:E2) ($27x3)| < C, zeD,

T1,T9:
3j<3,z;€D’

and, by the computation in Section c.f. (4.13),

- _ R 15
SUPZ Z | Z 9($7$1)A($1,$2)'-~‘A(xkﬂ,xkq)ﬂ(xkfl,xkﬂSTG.

T k= 3xp¢gD’ *1.Tp_1:
;D'

Hence, we conclude that always,
sup ) [[(9A*AR) (]|, < C, (4.24)
k>0

and for all 0 small,

16

sup Z (9AF AR (9AF2 A7) (a, )H1 < 17

E1,k2>0

(4.25)

Together with the computation for m = 1, c.f. - when D’ is visited, and
Proposition 4.2| when it is not, this completes the proof of Proposition in case
D C VL/Q.

We next turn to D N VLC/Q # . Recall the Green function G of the goodified

environment, introduced above Lemma Let H?,L denote the exit measure Iy,
with the environment replaced by the goodified environment. Let A9 = 1p(Ils v, —
H%,\@)’ The perturbation expansion then gives

[HVL VL Z GL 0 y yl)HVL (y/7 Z) )
and thus

5(L)d71

spa—r < Cllog L)30=4) (4.26)

Ty, — 10, || < 2GL(0,D) < 3-10%

This completes the proof in case i = 3,4 (and also i = 1,2 if d > 4).
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Consider next the case i = 1,2 (and d = 3). Rewrite the perturbation expansion
as

My, ~T1,1(z) = > 3 Gr (A9)F )(ﬂS,VLGLAQHgVL) (y,2) (4.27)

k>1 y

In particular, using Lemma [4.1]

[Ty, — 10§, || < 32G(0,D) > (1/8)* ' (log L)~ ****% sup GL(y', D)
E>1 Y'EVL

< C’(log L)3(27d) (1og L)79+2.25i < (log L)711.5+2.25i ) (428)

|
Proof of Lemma We begin by establishing some auxilliary estimates for
the unperturbed Green function §. We first show that

sup gr.(y, D) < C. (4.29)
yeVL

Indeed, in proving (4.29)), it is enough to consider y € D. Fix a constant § to be
chosen below (see (4.30)). For D such that D N Shell,(8s(L)) # 0, the estimate

(4.29) (with C = C(B) depending on the choice of 3) is an immediate consequence
of parts a) and b) of Lemma [3.10] If D N Shell,(8s(L)) = 0 and y € D, then, using
Lemma [3.5in the second inequality, and the choice of v implying 10y < 1, see (3.4),
we may find a constant C independent of S such that

I?}leanL(ya D) S 1 + Iyneag( G’ys(L) (y, D)+

> PV(Sy = o) P (Tp < Ty, ) max i (y, D)
z€Shell, (2s(L)) Ve

(B +3)s(L)?s(L)*"?
((6 = 3)s(L))

Choosing S > 3 large enough such that
Cs:=Ci(B+3)/(8-3)" <1, (4.30)

<C+C

max gr,(y, D) .
yeggL(y )

[[]aX[][ D) < C+CBIIlanAl D
yeD (y’ ) yeD (ya ) ’

from which the conclusion (4.29) follows.
We next note that, for any z € V7,

g1z D) < PRV(Tp < ry, ) max g (2, D).

Applying (4.29) and Lemma we deduce that for some constant Cp,

diam(D)?~2d (2) max,ep dr(y)
G D) < L 1] . 4.31
gr(z, D) < Co { d(z, D) v (4.31)
We next write the perturbation expansion
GL(ZvD) gL 2, D Z Z gL z y y/)ﬁ(y/»w)gL(w7D) +NLa (432)

k>1yy"w
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where NL denotes the nonlinear term in the perturbation expansion, that is

NL = Z Z (LA A7) - (gL AP AR (gL AP AGL(-, D)), (4.33)

n=2ky,....,k,=0

We first handle the linear term in (4.32). Recall that sup,cy, gr(w, D) < C.
Thus, in a goodified environment,

> > 91 (2, ) A*(y, y) 7 (y' ,w)gL(w, D)| < C(log L)°(1/8)*(log L) ™,
k>21yy w:dr (y')>kor(L)
(4.34)
and

| > r(zy) ARy, y)E (Y w)gr(w, D)| < C(log L)°(1/8)". (4.35)

Y,y w

From (4.35) it follows that

Y Y ey AR . y)AW  w)in(w, D) < Clog L) (4.36)

k>20loglog L y,y’ ,w

On the other hand, if dr(y") < kor(L) and AF(y,y’) > 0 then, as in the proof of

Proposition dr(y) < (4/3)%ker(L). Using parts a),b) of Lemma [3.10, we get
that for £ < 20loglog L,

| > (2, 9) A (y. y )7y w)gr(w, D) < Ck(1/8)F (4.37)
Y,y widp (y,)SkOT(L)

Combining (4.34)), (4.36) and (4.37)), we conclude that

sup Y > 9u(z,9) A (y, 9 )E (Y, w)gr(w, D) < C.

FEVE k> 1y w
The term involving NL is handled by recalling that

sup Y _ || (§A*AR) (x,)]|, < 15/16,,

T k>0

see (4.13]).We then conclude, using (4.29)), that (4.17)) holds.
To prove (4.16]), our starting point is the perturbation expansion (4.32). Again,
the main contribution is the linear term. One has

> 90(0,9)A (y,y) (Y, w)gr (w, D) < C(log L)°(1/8)* .

Y,y ,w

Hence, there exists a constant ¢4 such that for all L large,

d—1
) ZgL<o,y)Ak@,y’)ﬁ(y’,w)gL(w,D)s(T(LL)) L @)

k>cqloglog L y,y",w
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We next divide the sum in the linear term according to the location of w with respect
to D, writing

2
> 90(0,9)A%(y, v (Y, w)ge(w, D) ZQL 0,9)A w,y)> > 7y wgr(w, D),
Yy w i=1weB(®
(4.39)
where

B%k) ={z€Vy:d(2,D) < L/8}, Bék) ={z€Vy:d(z,D)> L/8}

Considering the term involving B%k), for k < cqloglog L the summation over y
extends over a subset of V7, that is covered by at most Ck? elements of Dy, all inside

Shelly, (L/2). Thus, for such k, using (4.32)),

k . _
R ) R R 14 diam(D)?% 2 max d
S0, wy) Y w(yﬁw)gaw,D)gc( 8”) po B (D) misyep 41(0)
/ wen®

and hence

S S a0At ) Y #wiw, p) < PN masep diy)

Ld-1
k<cqloglog L y,y’ weB%k)

(4.40)
The term involving w € Bék) is simpler: indeed, one has in that case that g(w, D)
satisfies, by (4.31)), the required bounds, whereas

> 9.(0,y) < Ck?,
y: 3y’ with Ak (y,y") & (v’ ,w)>0
yielding
Z ZQL<an)Ak(yay/) Z ﬁ-(y/aw)gL(waD)
k<cqloglog L y,y’ weBék)
diam(D)?~2 max,¢cp dr (y)
<Cc Y kst T ye . (4.41)
k<cqloglog L

Combining (4.38]), (4.40) and (4.41f results in the required control on the linear
term in (4.32)). The nonlinear term is even simpler and similar to the handling of
the nonlinear term when estimating g(z, D). =

5 The non-smoothed exit estimate

The aim of this section is to prove the following result.

Proposition 5.1
There exists 0 < 69 < 1/2 such that for 6 < &y, there exist Lg (§) and &g (§) such
that if L1 > Ly and € < &g, then Cond (L1,0), and L < L; (log Ll)2 imply

P(ITT2 (0,) 72 (0,1} > 6) < < exp [~ (g L)
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Proof. We use the coarse graining scheme Sy from Definition 2.1} but we stick to
the notations before, so ™ = 7s, 1, etc. Using S means that we refine the smoothing
scale up to the boundary. In particular, the smoothing scale is hy, (x) = vydp (z) for
all x with d, (z) < s(L) /2, and # (z,-) is obtained by averaging exit distributions
from balls with radii between ydy, (z) and 2vdy, (z) . (v from (3.4)). If dy, (z) < 1/2v,
then there is no smoothing at all, and # (x,-) = p®W (x, ).

The drawback of this smoothing scheme is that the presence of many bad regions
close to the boundary is unavoidable. We will however show that they cannot be
too frequent.

We consider layers

A; < Shelly, (2771, 27),

f01fj:1,...,J1(L)d§f [%} + 1, so that

Shelly, (r (L)) C UN Aj C Shelly, (2r (L)) . (5.1)

We subdivide each A; into subsets Dy ), Déj ), cee D%J) of diameter < v/d27, where

1

N; < C(L2)"h (5.2)

The set of these subsets is denoted by L;. £; is split into disjoint ,C;l), .. .,£§R),
such that for any m one has

d(D,D') > 5y27, ¥D, D' € L™, (5.3)

(m) def
N

LE”’)‘ > N;/2R. (5.4)

We can do that in such a way that R € N depends only on the dimension d.
If B € £;, we write Bad (B) for the event {B C Goody}‘. Remark that

P (Bad (B)) < C24T17 exp (- log? (v2771)] < exp {_js/S} 4 Dj-

for j > Jy, Jo approriately chosen (depending on 7).
We set

R
m) def def m
XJWE Y paany, X 30X,
DEL(.m) m=1

Due to 1) the events Bad (D), D € £§m)7 are independent. Remark that p; <
j73/2 < 1/2 for all j > 2. From a standard coin tossing estimate, we get

P (x{™ > 32N < exp [N (5742 | py)] -

with I (z | p) & zlog (z/p) + (1 — 2)log (1 — ) / (1 - p))

. 3 _ s .
I(J 3/2|pj) > =55 logj + 57257 —log2 > 2RjMT
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if Jy is large enough. Therefore
—3/2 (m) 5 —3/2p7(m)

1

< Rexp [f (LQ*j)di1 jl/q < Rexp [ c (log L)20j1/7]

for Jo(v) < j < J(L), L large enough (implied by Lo large enough). Using this,
we get
1
P (Xj > j—3/2Nj) < — exp [— (1ogL)2]
, 20
Jo(M)<i<I(L)
by choosing Jy large enough. Setting

ManyBad,, ' [ X, > j’g/QNj} U TwoBady,

Jo(7)<G<J(L) { 7=

we get
1 2 2
P (ManyBad;) < 20 &XP [— (log L) } + exp [—1.2 (log L) ] (5.5)
1 2
< _
=70 exp [ (log L) } )

again by choosing Lg approriate. We now choose g (7) > 0 small enough such that
for € < g¢, one has X; = 0, deterministically, for 7 < Jy (7). (As ~v is completely
fixed in , we usually don’t explicitly indicate it in the notation).

We will show that if w ¢ ManyBad, then ||IIL ,, — 7. ||; < 4. This proves Propo-
sition B.11 _

We disinguish between two (disjoint) bad regions By, By C V. We set Br, def
B\ Shell;, (r (L)), (for By, see (3.7)). Set

BgdéfU{ng):weBad(Dy)), j=1,....R; igNj}.

On the complement of TwoBady there exists zo, |zo| > r (L), such that B, C
Vsp(eo) (T0) - (see (#15). There is some ambiguity in choosing o, but this of no
importance.) If |zo| < L/2, we define By ef Vap(zo) (T0) = Vays(z) (z0) , and By def
B} If |zo| > L/2, we put B; 0, and B, & By U V520 (z0) . Of course, if
By = (), then By def 0, and B, def Bl. Remark that By and Bs are disjoint. We put
B Y B,UB,, and G ¥ v, \B.

In case By = Vsy5(1) (%0) , |20 < L/2, we use the same (slight) modification of
IT (y,-), 7 (y,-) for y € Vs 51) (20) as used in Section i.e. we replace 7,11 by
T, II as defined in 1) but we retain the ~-notation for convenience.

We use a slightly modified perturbation expansion. Again with A defp T, we

have
I, = mp + glpAllL + §glgAllL.

Set yi def g (1GA)k. Then
Wl = §(1cA) 10,
=g (16A) 7 + g (16A)* GATIL
§(1eA) 1+ § (16A) 1AL + § (16A)" 7GATLL + Y I
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Therefore, iterating, we get

HL—WL‘FQZ (1gA) 1BAHL+QZ (1gA) WgAHL—FgZ lgA T
k=0 k=1

=Ty +gF13AHL + gU'wlly,.

where T % Sy (lgA) T4y —|— I'. With the partition B = By U By, we get

with the setting =; de gI‘lBlA, o de gFlBQA
HL =T + EJ[L + EQHL + gFﬁ'HL,
and by induction on m € N, replacing successively II;, in the second summand
m m m
I, — 7 = (Z E;‘) T+ (Z _1> Solly, + (Z E;‘) gUATL, + 20,
r=1 r=0 r=0

i.e. with m — o

L—WL—Z_le—i— (Z_q) =oIly, + (i5>§rﬁ'HL (56)

r=0 r=0
1=A1+A2+A3~

For D C Vi, we write

def

Uy (D)= {y € Vi, : 3z € D with AF (y,2) > 0} .

We now prove that each of the three parts A1, Ay, A3 is bounded by 4/3.
First summand A; : This does not involve the bad regions near the boundary, and
we can apply the estimates from Section There is nothing to prove if By = (),
so we assume B1 = Vs 1) (z0), |zo| < L/2. From Lemma we have

sup |3 (168)" (2, B)| < 8% (@, Uy (B1)) < Co*k, (5.7)

eV,
and therefore.

§(1eA)* 15,

<C. (5.8)
k=0 !
In the same way, we obtain, with K from Section
(oo}

sup
=0 TEVsrys(L)

by using (5.7) for £ > 1, and (4.19) for £ = 0. Furthermore,

1
2’

9(168) 15, (2,1)] <

||~17TLH1

§068) 1, am | < €316 (B2 sup [ A (2, )l
k=0 rebi
(5.10)

< CZk:d2_ sup A7 (x, )], < C’(logL)_3
k=0
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Using these inequalities, we get [|A1]|; < C'(log L)™® < C(logLy)™® < 6/3 by
choosing Lo () large enough: When estimating ||=jny ||, for r > 2, we use for
the first factor =, for the last =7, and for the middle E{_Q. The point
is that (1p,4A) (z,y) is # 0 only if y & Vsxqs(z) (2o), and so we can use (5.9) for
this part.

Second summand As: We drop here the IIp-factor, using the trivial estimate
g (x,-)|l; < 2. If r =0, one has to estimate ||=Z3 (0,-)||; where By consists of the
bad regions in the layers £;, and the possible one bad ball from B 1, which is outside
V3. In case r > 1, when By # (), we have By = Bj, which is at distance > L/3
from B;. Therefore, in case r = 0, we have to estimate

§(162) 15, (0, (5.11)
(the last A is of no help, and we drop it), and in case r > 1, using (5.8)) and (5.9

27" sup ngGA)’“ 15, (m,-)‘
ja|<2L/3

)

but in this case, we have By C Shelly, (2r (L)). The estimate of the second case is
entirely similar to the estimate of , and we therefore provide the details only
of the proof of the latter.

We split the parts coming from the different bad regions. For a bad region Dgﬂ
in layer £;, we have

)

106 14010, <023 001 (017)

It suffices to estimate g (0, Uy (DE‘”)) very crudely. Points in Uy (ij )> are at

distance of most 27 (1 — 27)71C from the Dz(j). We first consider k’s only such that
Shelly, (s (L)) is not touched, which is the case if k < 20loglog L (L large enough).
The number of layers touched is bounded by 1+ &, and for each A, which intersects

Uy, (ng )>, a very crude estimate gives

k
‘Uk <D§J>) NA,| < 02720@=D3 (1 — 24)~(=Dk < cgro(d-1)j (2) (5.12)

where in the last inequality, we have used (3.4). Using Lemma we see that
, 73\ F
o (000 (7)) s tsmyzen (5) oo
Therefore, using w ¢ U, (,)<j<sr) {X; > j7%/2N;}, we have the estimates
|3 (168" 1ayn, (0,1)]| < 572,

k<10loglog L

3 Hg(lGA)leé (0,~)H < UV,
k<10loglog L !
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For the sum over k > 20loglog L, we simply estimate g (0,Ux (B3)) < g(0,V) <
C (log L)° and we therefore get

9 (16A)* 15, mshen, (1)) (0, ')Hl <C (J(;l/2 + (log L)° 272010s 10gL> (5.13)

<C (Jg”“’ + (1ogL)*7) <5/6

by choosing Jy (9) and Lo (0) large enough.
It remains to add the part of By outside B). This is (contained in) a ball
V5’YP(960) (LC()) with ‘CEO‘ > L/2.

9 (0,Uk (Vayp(ao) (0))) < 9 (0, Uk (Vaysr) (20))) < G (0, Vistaryys(z) (x0)) -

As |xg| > L/2, we have V(s 1or)ys(r) (T0) N Vi 3 = 0 provided k < (log L)*/C, and
Vis+2k)s(1) (Zo) can be covered by < Ck? balls V(1 (y), ly| > L/3. By Lemma
one has g (0, Vy(z) (y)) < C (log L)™*. (This remains true also if Vi) (y) intersects
Shelly, (s (L)), as is easily checked). Therefore, for k < (log L)* /C, we have

g (Oa Uk (V5'yp(a:o) (‘TO))) < Okd (IOg L)_3 3

and therefore,

§(168) vy e 0)],
gc > 2Rk (logL) TP+ C >0 27 (log L)® < 6/6,
k<(logL)?/C k>(log L)% /C

provided Ly is large enough. Combining this with (5.13]) proves ||Az]]; < d/3.
Third summand Aj. By the same argument as in the discussion of As, it suffices
to consider r = 0, and we drop IIj.

NI 5(6A) T 0,2) (16AT) (2,)

k>1 ||z¢Shelly, (r(L)) L

<> 2 Fg(0,vr)  sup [[leAF (3,0, (5.14)
k>1 TQShellL('r'(L))
< C(logL) <4/9
if Ly is large enough. For Jy (v) < j < J; (L)

3 G (16A) 7 (0,2) (1aAR) (2, )| < 27515 (0, U (Ay)) sup |[1aA% (2, )|,

] TEAN;
TE* 1

< Cj27R (0, Uk (M),
and it is evident from Lemma 3.5/ that 3, -, 2~ k+16(0,Uk (A;)) < C. Therefore

> S > e TH0,2) (LeAR) (z,0)|| < Co(y) 7 < /9,

21 || Jo(v) <G <1 (L) 2€A; .

(5.15)
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if Jo is chosen large enough. Put A def Uj<J0(’Y) A

> sze[\g (1A 1 (0,2) (1gA7) (z, .)Hl <Cy 27k (O, Uy (A)) sup | A (2, ),
E>1

k>1 z€EA

TEA

if € < gg (0). Combining this with (5.14)) and (5.15) proves |[As]; < J/3. m

6 Proof of Proposition 2.3

We just have to collect the estimates we have obtained so far. We take dg small
enough according to Proposition [£.:4] and Proposition [5.1] and for § < &y, we choose
Ly large enough, also according these propositions.

For Ly > Lo we assume Cond (6, L), and take and L < Ly (log L,)*. For i =
1,2,3, and ¥ € M/, we have according to Lemma [3.3] and Proposition [£.3]

(DL v (0) > (log L) ™7, TwoBad,, N GoodL) + P (TwoBady)

)

P (

<P (Dm (0) > (log L) 1'2572% (TwoBadp ) N (GoodL)c>
P
P

(DL’\I, (0) > (log L) ""#722% (TwoBady)" N (GoodL)c)
+ exp [—1.2 (log L)Q] + exp {— (log L)N/S} .
We therefore only have to estimate the first summand.

P (DM (0) > (log L) """?52% (TwoBady, )" N (GoodL)C)

< D; S B (I, = 7] 70) (0.9l > (og L)~ 277 Baal) (D))

< D; ZP (10T, — 7)) (0], > (log L)~ #22% | Bad?) (D))
+ D;L ;IP’ (Bad(Lj) (D))

< 4%?0& exp {— (logLﬂ FDplexp | —[1— (4—i—1)/13] (10g (IOgLL)w>2

< éexp [— [1—(4—1i)/13] (log L)Q} :

Combining these estimates, we get
1 . 2
bi (L, W,9) < 7 exp [~ [1— (4—1i) /13] (log L)?]

L large enough, for i = 1,2, 3.
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For ¢ = 4, we have
i (L, 0,0) < P Dy, (0) > (log L)) + B (I, (0,) = 7 (0, )], = 8).

The second summand is estimated by Proposition and the first in the same way
as the b;, ¢ < 3.
This completes the proof of Proposition [2.3

A Proofs of the random walk results

We begin by stating and proving some auxilliary estimates. If A CC Z%, z € A, y €
0A, then by the usual time reversal, one gets

Po(Seu=y)= > () 'gay,2) (A1)
y'EA, [y—y'|=1
< > (2d) " Py (T < 7a).
y'EA, [y—y'|=1
Throughout this appendix, we write 7 def Ty, -

Lemma A.1
Let x € Vi, y € OVy. Then, for some ¢; > 1,
P, (S, =) < &dy (x) T
Proof. Let r < d; (z). We may assue that r > 4. Put / def [r/2] — 1. Then
Vi (x) C Vi—p. If 3 is any neighbor of y in V7, then

= Q

Py (Tov,, () <7a) < Py (TVL,,., < TA) <
Furthermore uniformly in z € 0V, (x),
P, (T, < 74) < P, (T, < 00) < Cr/~2 < Cp=d+2,
Using the Markov property and proves the claim. m

Lemma A.2 et
Let x € Vi, y € OV, and set t = |z —y|. Then for some ¢y > 1

d
L (@) inf P (Sr=y).
t w’E@Vt/g(y)ﬁVL

Px(ST:y)§E2

Proof. The bound is evident if r % d; () > t/10. Therefore, we assume
r < t/10. We choose a point 2’ € OV, with |z — 2’| < 3r. Then

1r
Py (Tv,-cv') < Tv,,/2<x'>) 201
Remark that V5 (') N Vy/3 (y) = 0, and V,. (2’) NV = 0. Therefore, by the Markov
property,
Cr Cr
P(S,=y) <L inf  P(S,=y)<L  inf  Pu(S.=y),
: y) < t zeé’Vt/l?(z’)ﬂVL - ( v) t r’eav,,l/g(y)mVL v ( v)

which completes the proof. m
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Lemma A.3
With x,y,r as above, and ¢, ¢ from the previous lemmas,
_ _ ZdL JJ)
P, (S; =y) < & &3 rig'
Proof. Put n % 3-4+1g 1 and set K % gn~@! = gl 136", Using
Lemma it suffices to prove
inf P, =y) < Kr— 9+, A2
IEBI\I}TQVL x (S‘I’ y) S AT ( )
As K > r(@=D* there is nothing to prove if < 9. Assume that we have proved
(A.2) for all » < rg, and assume 19 < r < 2rg. Then for d, (x) > nr, we have by

Lemma [A ] that )
Py (Sr =y) < i e = Kt
and for dy, (z) < nr, by Lemma and the fact that /3 < o,
_ —d+1 _
Py (S, = y) < cank (g) < Kr—+1,
Therefore, the lemma is proved by induction. m

Proof of Lemma If |z —y| < dg(y)/2, then dy (z) > dr (y) /2, and in
this case, we can simply use

a >d2 <Cad_2dL (y)dr (x)

Rdﬂmw<7)<34ﬂmw<“ﬁ<0<m_y|

d
|z -yl
Therefore, we may assume |z — y| > dr, (y) /2. Furthermore, it suffices to consider
the case 1 < a < dy, (y) /5, simply because for dr, (y) /5 < a < 5dr, (y), we get an
upper bound with replacing a by dy, (y) /5. Assume that we have proved the bound
for a = dr (y) /5. Then we get for a < dr, (y) /5

dy () 'dp (@) [ a \TP_ at2dy (y)dp (@)
(dL (y)) =¢ '

We therefore see that it suffices to prove the bound for a = df, (y) /5.
Let 3/ € OV, be a point closest to y. There exists § > 0, such that

inf Py (S, €V, (1)) > 6.

P (Tvi) <7) < C

d d
lz -yl lz —y|

z/GVa(y)
Evidently, inf.cv, (yynov, |2 — 2| > |z —y| /2, and therefore, by Lemma
sup P.(S:=2)<C de (x)d.
2E€V,(y)NOVL |(E — y‘
Consequently
d =1 1 1
L(z)a > P (S, €V (y) > =P (S, €Va(y), Tvuy <7)
|z —y] c ¢
1
e Y. BTy, <7 51y, =2) Por (S- € Va (y)
at’EVa(y)
5
> GPePe (Tv, ) <7) -

31



This proves the claim. =
Before presenting the proofs of Lemmas [3.7] and we introduce some notation
and state and prove some additional auxilliary estimates. For M = (m,) € My, set

1
ﬁ'M($,Z) déf / —p (t/mﬂc)eXVt (x7z;pr) dt’
R+ My

and the corresponding Brownian quantity

1
FBM (g, dz) / —p (t/my) w8 (@, dz)dt.

€T

7?]]\34M (x,dz) has a density with respect to Lebesgue measure which, by an abuse of

notation, we write as 75M(z, 2).

Lemma A.4

There is a constant C' such that for any L large enough, any M € My, any
x, ', 2,2 € Z%, it holds that

s (x,2) <CL™4, 7#8M(z,2) < OL™?. (A.3)
|#ar (,2) — 7ag (27, 2) | < Cla — 2/ |L~ (@D log L, (A.4)
[ (2, 2) — 752!, 2)| < Cla — /|~ log L, (A.5)
v (T, 2) —7m (z,2) | S Clz =2 | L™ og L, .
[itar (@, 2) = g (2,2) | < Cle = 2'[L7 D log L (A.6)
|7BM(z, 2) — #BM (2, 2')| < Clz — /| L@V log L. (A7)
Further, for 1 < a < b < 2, and aL < |x — z| < bL,
g (2,2) > C(a,b) L% (A.8)

Proof of Lemma [A.4. The estimates (A.4) and (A.8) are immediate from
Lemmas [3.4] and and the definition of 7.
We turn to the proof of (A.3)) and (A.6). It clearly suffices to consider only the

cases |[x —a'| =1 or |z — 2’| = 1. Note first that
A A ’ My | .
WM(I',Z)—’]TM({L‘,Z):[].— :|7TM(£L',Z)
My

+

mlm' /]R+ [90 (rr];> ¢ (7;)} Ty o (€, 2)dt

1 t
* / 4 ( > [Ty, () (5 2) = T, ory (27, 2)] ) AR AT
R+

Myt My

Since M € M, it holds that {1 - ;;j} < CL Yz — /|, and hence, using q it
holds that

_ /
I < CL‘dLLx'. (A.9)

Similarly, using the smoothness of ¢ and the estimates m, > L/2 and 7y, () (z, 2) <
CL'?, see Lemma a), one gets

_ !
I < CL*dLLSE'. (A.10)
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By translation invariance of simple random walk, we have that 7y, (,(, z) = 7y, (0, 2—
x). Thus, both (A.3]) and (A.6]) will follow if we can show, for [z —z'| =1 and y =z
or x’, the estimate

t
/ @ () [7v,(0,2 —z) — 7y, (0,2 — 2')] dt’ <crL 4. (A.11)
- my , ,
Of course, we may assume that |z — z| is of order L. Note that the integration in
Ii is over the union of two intervals, each of length at most v/d. Hence, due to
the smoothness of ¢, (A.11)) will follow if we can show that

/ [Ty, (0,2 — ) — 7y, (0, 2 — 2')] dt’ <cL . (A.12)
R+

Let J % {t>0:2—2€dV;}. Jis an interval of length at most v/d. For t € .J, we

set
zZ—T

=t = |2 -t

|2 — 2|

Evidently, dt’/dt =1+ O (L™') , and if we set J' e {t>0:2"—2€ 0V}, then J'
is an interval of the same lenght as J, up to O (L_l), and further |JAJ'| = O (L_l).
Therefore, if we prove

/ [Ty (25 2) = 7T‘/mz’)(x/a Z)]dt' < CL™"log L, (A.13)
JnJ’

the estimate (A.11)) will follow. To abbreviate notation, we write V' for V; (z), and
V' for Vy (2') . A first exit decomposition yields

v (z,z) < myi(w,2) + Z PWAT, < 1)y (y,2) . (A.14)
yeV\V’

We have two simple geometric facts:

!
Utem, (V\V') C = + Shell, (C).

e For any y € = + Shelly (C)
-z
/ Lyevyndt < C%.
JnJ

Using this together with mv(z, z) = my/(2/,2)+O (L) , see [5, Theorem 1.7.1],

we deduce from ((A.14) that

/ Ty, (T, 2)dt < / v, (@, 2)dt + O (L) + CL™ ly =2 v ; !
JnJg: JnJg’ yEa+ShellL, (C)

< / Ty, (@', 2)dt + O (L™%log L)
JnJg’

The inequality in the opposite direction is proved in the same way. This proves

(A.12) and completes the proof of (A.3)) and (A.6).
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The estimates and can be obtained either by repeating the argument
above, replacing the random walk by Brownian motion, or by applying the Poisson
formula [5 (1.43)]. We ommit further details. m

In order to prove Lemma [3.7] we need also the following technical result:

Lemma A.5
There exists a constant C = C(3,€) such that for any A € OV, 8> 6e >0,y €V,
with d(y,0Vy) > L? and L > Ly,

C C
>, (1:y) < /d@/ e Y (y,dy') (1 + Lf;”) + L(fi’f) . (AID)

y' €A

and for any A’ € 0Cy, and z € Vi, with d(z,0Cr) > LP,

// M (zdy) < Y m (2) <1 + i(f_’;)) + OL(fif) . (A16)

y':d(y’, A)<LA

Finally, for any x,z € Z% and M € M,

C
La+1/4”

Proof of Lemma We first prove . Set Ag ={y' € 0CL : d(y', A) <
LP}. Pick € € (0,3) and Set L'=L+1Le and L” = L+ L*“. Let A} be the image
of Ag in 9Cy, under the map x +— (L'/L)z. Then, one has (with § = L'y/L),

/ M (y,dy’)=/ M (g, dy’) . (A.18)
A A

B B

~BM

‘ﬁM (z,2) — fpp (2, 2)] < (A.17)

Note further, using the Poisson formula [5], (1.43)], that

7.(.BM
[ = [ ) (A19)
R o
‘/A/ (@B ly gl W)

B

An explicit computation, using that |y| < L — L? and that 1 > 8 > € > 0, reveals

that
(L) = 191%) ly" =y
log < CLP,
(L) = lyl*) |y — gl
Substituting in (A.19)) one finds that
/ o (y, dy') 2/ mor (y.dy') (1= C(B,e) L7+ (A.20)
Ag Ab

Recall that 7BM is unchanged if one replaces the Brownian motion by a Brownian
motion of covariance I;/v/d. Let W} be such a Brownian motion started at y, and
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recall that by [I1] Corollary 1], there exists a constant Cy such that for every integer
n, one may construct {W;} in the same space as {5, } such that

P,( max [Sp,, — W3 |> Cologn) < (A.21)

0<m<n ndtl’
Standard estimates involving the maximum of the increments of the Brownian mo-
tion, imply that one may construct the Brownian motion W} and the random walk
S, on the same space such that, with

Ddﬁf{ sup | Sy — WY| <4Colog L},

0<t<[2+e/100

one has

20(]
nd+1’

P(D°) < (A.22)
Set 7 mln{n S, €ovi}, v int{t : WY € 0CL}, 7 < min{n : S, € OV},
and B % {(r'vr") < L2+6/100}. Standard estimates imply that if Sy = y then
P(B¢) decays like a stretched exponential, and in particular P(B¢) < L~971 for
large L. Note that on D N B, one has that 7 < 7/ < 7”. Now, defining G5 = {2 €
2% :d(z,(Aj) N ACL) < 4Cylog L}, and setting Tgy, = inf{n : S, € Gj},

P (WY € Ay) > Py(S- € A, W, € Ap) (A.23)
> P,(S- € A, Wy eA’,BﬂD)—%
P,(S € A) = P,(S; € A, Wr ¢ Ay, BND) = 7x
> PYWV(S, € A) — PV(S, € ATg, <1")— %

Using the Markov property, one has
PN (S: € A, Tgy < 7") < PY(S; € A)sup PP (T, < 7")
z€A

< sup PR (T, <7’
ZGAZ ? )

/eGl
L3log?™? L
<supC Z K & ‘d
z€4 2'€G o z
< CL-SE—,B

where the next to last inequality is due to Lemma Substituting in (A.23)), one
completes the proof of (A.15)). The reverse inequality (A.16]) is proved similarly.
It remains to prove (A.17). Fix « = 2/3, 8 = 1/3, and € = 1/60. Note that with

D = CLa(z), using )

1
v (z,2) < ] Z 7ar (2, 2') + CL™ 4 log L. (A.24)
2'€D
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Next, note that
Z fn (x,2') = /dtgomT t) Z Ty, (T,2)

z'eD

C C|D

dt@mz(t)/ M (g, dz)(l+ e 55) + Ld|+1‘
C

A C -
< 7 (2, D) <1+ 1,B—5e ) +CL™Cpoy 1o (2) \ Cro ()| +

C ) C|D|log L C|D|

ratrs
C|D|
[d+1

~BM
< |D| ( €T, ) (1 + [B—5¢ [d+1-« Loa—B—d’

Substituting in (A.24]), one gets
7 (z,2) < 78M(x, 2) + CL™971/4,

The reverse equality is proved similarly. This completes the proof of and of
the lemma m

Proof of Lemma E Fix a = 2/3,8 = 1/3. Set n def d(y,0VL), and let
y1 € OVy, be such that n = |y — v1]- Cons1der first n < LA+1/15 Then, using
and in the first inequality and ({ in the second,

R ClogL
b (y,2) < > mv, (U y) T (v, 2) + Tdtap
Y €OVL:|Y —y1 | <L
. ) c
< #tur (41, 2) Z WvL(yyy)'f‘W'

Yy €OVy:|y' —y1| <L
Consequently,
C
¢ (y,2) < 7 (Y1, 2) + Tarijs

Applying now (3.14) in the first inequality and (A.3) in the second, we conclude
that

C
o (y,2) < 7ar (ya, )/ oM (g, dy') + —
'€dVy:|y' —y1|<Le ‘ Ld+1/5

C
in (s 2) 7™ (o dy') +
/y’G(?VL:|y’—y1|<L‘1 ‘ La+1/5

An application of (A.17) then implies that for n < LA+1/15,

IN

drr (y,2) < 67 (y,2) + CL™47/5

where, as in our convention, the constant C is uniform in the choice of y,z. The
reverse inequality is obtained using the same steps.

Consider next n > LA+1/15. Fix strictly positive constants ¢;, j = 1,...,4,
depending on d, & only, and a sequence of disjoint sets A; C OV, i =1,...,kr with
Uf:ilA’L = 8VL, ClLa(dil) < |A1| < CgLa(dil), dlam(Al) < CgLa, d(y1,8A1 ﬂ@VL) >
diam(A;)/4, and |0A;| N OVE, < ¢4 L*?=2) (such a collection of “cube-like” A; can
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clearly be found). We also set A? ={yeR: d(y,A;) < LP} and for i > 2, fix an
arbitrary y; € A;. We then have

¢LM Y,z Z Z Ty, ya M(ylaz)

i=1y'€A;

kL Clog L
< ZﬁM (¥i,2) Z T, (¥, 9') + Tdiia’
i= y'€A;

where (A.3) was used in the last inequality. Consequently, using (A.15)),

C C
OL,M y7 < ZWM yz» / ?M (y7 dyl) <1 + Ll/4> + Ta+1/5 (A-25)

Let {121Z C 0CL};E, be a collection of measurable disjoint sets with UA; = a0y,
A = Af NaCL, and A; C AZ.B. Using 1} and d(y,0C) > LAY/ /2 one gets

/ o (y,dy’)é/~ nBM
AP A

Substituting in (A.25) we get

o)) <1 L olalnacy) \fm) .

A2 nacy)

_ C
(JZSLM Y,z <Z7TM yu / ?M(y7dyl) (1+CL 1/5)+W

Hence, recalling (A.4)), (A.3), and (A.17)), we get

C
(bLM Y,z Z/ 7TM y Z BM(yvdy)+Ld+1/5

. C C
< Z/ BM LBM (y’dyl) 1d+1/5 = ¢>L M(y7 z) + Td+1/5

The reverse inequality is obtained by a similar argument. m

Proof of Lemma We Write BM (w, 2) as the density With respect to
Lebesgue’s measure of the measure 7TC () (w dz). Set g(w, z) = [ 7PM (w, 2) o, (t)dt.
Then,

BM (y7 ) / 7-‘—CB'E/[(O) (y7 dw) g(w, Z) :
2C1(0)
For each fixed z, u(y, z) = ¢7N; (y/L, z) satisfies the equation

{ %Ayu(y,z) =0, y € C1(0),
u(y,z) = g(y/L,z), ye€dCi(0).

Thus, by [4, Theorem 6.3.2],

1956225 (v, )| < € [[|9hg(w, )| + L [[Og(w, 2] (A.26)
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By the smoothness of ¢ and the translation invariance and scaling properties of the
Brownian motion, one gets that

|03 g(w, )] + Ll|ohg(w, 2)]| < CL=3 (|03 7B (w, 2/D)|| + |04 7ENg) (w, 2/ D))
<CL™?,

where the last inequality is due to [3, Theorem 2.10], and the constant C' does not
depend on z. Substituting in (A.26]), the lemma follows. m

B A local CLT and proof of Lemma [3.10]

We need a number of properties for simple random walk, and spread out random
walks which can readily obtained from known results. We keep L and Vp fixed
through this section, and don’t emphasize them in the notation. = is 7wy, , the exit
distribution of simple random walk from V. Since the proofs are very similar, and
for concreteness, we prove all results for the smoothing scheme S; and only sketch
the necessary changes for the scheme Sa. That is, we take:

def { Skor(L) if « € Shelly, (r(L))
£ Ohp(a) (t)dt if dp () > r (L)

(r(L) = L/ (log L)"°). Remark here that hy, (z) = ys(L) = vL/ (log L)* for dy, (z) >
2s(L), and hp, () < (v/2) s(L) for « € Shelly, (r,2s(L)). We then write s for the
corresponding transition probabilities. By a slight abuse of notation, we write 7,
for the transition probabilities on Z¢ with a smoothing scheme (s, ) which is constant
in x, and given by ¢, (t) dt. We also write 7, (z) for 7, (0,2). For x € Vi _o41),
ﬁs (1‘, ) = ’fﬂys(L) ((,C7 ) .

Let m € R*. #,, is centered, and the covariances satisfy

Z ;& Tm () = a(m) 6y,

where for some 0 < a1 < s

arm? < a(m) < agm?.

(It is evident that o (m) /m? converges as m — 00).

Using Lemma a), one sees that for 1 < a < b < 2, one has for some § (which
may depend on a,b)

inf 7, (z) > om ™ (B.1)
am<|z|<bm

Furthermore, by definition, we have #,, (z) = 0 for |z| > 2m.

We will also use the following fact, proved in Lemma

1/15

. A < —d|T—Y
o (2) = o )] < O | 22

Proposition B.1

2
n 1 ||

m () = (27rm2a,2nn)d/2 P [_ 2m2o;n

T

+0 (m_dn_(d+2)/2 (log n)4)

38



Proof of Proposition The proof is standard, but we need to keep track
of the m-dependence, and we are not aware of a reference for that in the literature.

Let
Xm (2) o Z e#=e/my (x), 2 € B o [—m, mr)®

x

By Fourier inversion, we have
ot (x) = (27r)_d m_d/ e iEw/my (2)" dz.
B,

We will choose 0 < a < A, b > 0, and o € (0,1) (not depending on n,m) and
split

R N Y I A
B,
|z|§b1"% bl"%<|z\§a a<|z]<A  A<|z|<m®  me<|z|, 2€EB,
:A1+A2—|—A3+A4—|—A5, say.

From Taylors formula, we get

2 2
z|" oy,
=1 o (),

and therefore, for |z| < 1/C

ERE

log xm (2) = 5 ™40 (|z|4) .

From that we get for b sufficiently large and n > C' (b)

(logn)* 2oz nlz?o?
Ai=|14+0 | ——— exp | —i— — ——=| dz
n m 2

blog
|2|< tlogn

= (1 +0 ((lognn)4>> /exp [_sza? — n|z|220,2n

_ (2m)?? o |- )
2

dz+ O (n_d/Q_l) (B.2)

—d/2-1 4
= ol ex 0T n +0 (n (logn) ) .

In order to prove the proposition, it therefore suffices to prove that As,..., A5 are
of order O (n‘d/g_l) , uniformly in L.
To handle Ay, we choose a such that log x,, (2) < —|z|> 02,/3 for |z| < a. Then

|As| < /blogn<z exp {f |2|? nafn/?)} dz=0 (nidﬂ*l) .

v

if we choose b sufficiently large.
For A3, we use the following fact, which is an easy consequence of (B.1)): for any
a < A, one has

sup  |xm (2)] < 1. (B.3)
m,a<|z|<A
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Using this, we immediately get
|As| < CAT(1—1/0)" . (B.4)
We come now to A4 which is more difficult. First remark that by the assumed
symmetry under lattice isomorphisms, we only have the consider z-values with all
oy def . ..
components positive. Put |z| = max (z1,...,2q). For smlphmty, we assume that

7 is the biggest component of z, so that |z = 2. Let M ¢ [27rm/zl] and

K [(2m + 1) /M]. We may assume that M < m by Choosmg A large enough. We
write

Xm(2) =Y exp [7; 212 wszs]
(z2,.-5q)
—m+jM-—1 m
Z Z ezzlzl/mﬁ_m (.Z‘) + Z eimlzl/mﬁ_m (J?)
Jj=ley=—m+(G-1)M z1=—m+KM

In the first summand, inside the zi-summation, we write for each j separately,
fm () = T () — T (&) + 7o (&), where 2/ = (—m+ (j — 1) M, 29,...,24) .
Then we estimate

rr+m—(G—-1)M 1/15
- .

[T (2) — 7 ()] < Cm ™4 (
Therefore
1

16/15°
29 /

JM—1 ix1z1/m (4 A / —d+1
— <
‘ E ) et (—1)M e (7 m (J?) T (ﬂ )) < Cm

and therefore

—m+jM—1

S e (@) — o ()] < Om S

j=laxi=—m+(j—1)M

—m~+jM—1 .
1-— M
Z Z eixlm/mﬁ_m (.73/) < K#,, (.7,‘/) eXp [Z‘le /m] ' <C |Z| mid,
o e AP 1 —exp [iz1/m]
S emE i (@) <m T T
r1=—m+KM
Therefore, we get the estimate
Gl < 0 (170 B,
m
From this, we get
n
A4l <O 2|7V 12"y, <2 B.5
1
A<|z|<me m
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for large enough A and m.
For As, we need a slight modification. Let again z; > 0 be the largest of the

z-components. Then we write

ZT1
o (@) = > (Fm (Y22, -, Ta) — Fom (y — L, 22, .., 74))

y=-m

d

ACEEI R S

T2yeueyXd

X Z (T (Y, 2, oy Tq) — T (Y — 1,22, ..., 24))

y=—m
oi(51/m)(y=1/2) _ gi(z1 /m)(m+1/2)

X
sin (z1/2m)
Therefore
m 14/15
‘Xm (Z)| < Cmd_lm Z |7?rm (y7$27 s 7xd) - ’frm (y - 1,%’27 v ,(,Ud)| < C’rn|7‘7
z1 y=——m z
and if a > 1 —7
|45 < m_d/ [xm (2)|]" dz < C”m_dm14”/15/ rd= 1y (B.6)
me <|z| me

< Cnmfdm14n/15moz(d77n) <9 n

f— )

if m and n are large enough.

Combining —, we have proved the Proposition. m

We next need a simple large deviation estimate

Lemma B.2
There exists 6 > 0, such that for |z| > 2m

2
7 (z) < Cm~%exp l— Cjzlnz] .

Proof of Lemma If |z| > 7, then one of the d components of x satisfies
|z;| > 7/+/d. By rotational symmetry, we get

> o =ap (15,2 va).

x:|z|>r

where the {; are i.i.d. with the one-dimensional marginal of 7 as its distribution.

Then
P(Y &= m/Vd) <2ex [_”I (\/%n)]

I(t) =sup {M\ —logE (e)}.

where
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By symmetry I’ (0) = 0, and from our assumptions, we have I” (0) > 1/Cm?.
Furthermore, I (t) = oo if |t| > 2. By convexity of I, we therefore have I (t) >
t2/Cm?. Tmplementing gives

~¥m r’
x:|z|>r
From this, we get

7 (@) = Y wan" Y (y) o (2 — )

Y

<Cm™¢ Z ﬁ',,*,f”*l) (y) < Cm ™ %exp [—

yiy|>|z[—2m

(] — 2m)* ]
C(n—1)m?

2
< C’m_dexp [— ] ] .

Cnm?
| |
Let -
G (2) €750 (1) (B.7)
n=0

Corollary B.3
For |z| > m, we have for some constant c(d)

5d
G (2) = ¢ (d) —- x|d+2+0<|w|d<log|$|> )

a(m) m

For |z| < m, we have
G (x) =80+ O (mid)

Proof of Corollary Assume |z| > m and set

wr Jal’ o \
N (z,m) = ] log .

a(m \*®a(m)
Then
SIS ! o
L (Z) = ——exXp | ————
= 2 Gomda ()™ [ 20 <m>n]
+ 3" 0 (a(m)n@r22)
n=N
e} 0 ., |$‘2 5d
> 0 (am) P a @ 2/2) — 0 (o] (loga(m)>
n=N
Putting

def 2a(m)n
th = ——5
||
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we get

2 (ﬂd)d/ >
This proves a) for |z| > m with

1 o0
c(d) = 7/ =2 oxp [—¢71] dt.
(@) 2(71'd)d/2 0 [ ]

For |z| < m, the estimate is evident from Proposition N

Proof of Lemma [3.10]a). There exists a ¢, such that for any y € Shelly, (r(L)),
there exists a unit vector z € R such that (y + Cy (z)) NOVa,(r) (y) N VL = 0. Using
this, we see from , that our coarse grained Markov chain has after every visit
of Shelly, (r(L)) a probability of at least  (#) to leave V7, in the next step. Therefore,
the expected number of visits in this shell is finite, uniformly in the starting point.
]

Proof of Lemma|[3.10]b). If z € Shell;, (r,2s), then # (z, -) is an averaging over
exit distributions from (discrete) balls V,, (), the averaging taken over u’s with v >
(7/2) dr (x) . Therefore, there exists a & > 0, such that 7 (z, Shelly, (dr (x) (1 —~/4)))
0. Therefore, if x € Shelly, (a,a+v/8), (L) < a < 2s(L), we have
7 (z, Shelly, (a (1 — ~/8))) > 4. Therefore, a Markov chain with transition probabil-
ities 7# which starts in Shelly, (a,a + vs(L)/8) has probability at least § to reach in
one step Shelly, (a (1 —v/8)). By Lemma [3.4] ¢), an nearest neighbor chain starting
in Shelly, (a (1 —~/8)) has a probability at least € () > 0 of exiting V7, before reen-
tering into Shelly, (a,a + v/8) . This evidently then applies also to our coarse grained
random walk.

We conclude that for the coarse grained chain starting in z € Shelly, (a,a + vs/8),
there is a positive probability ¢ > 0, not depending on z, a, that the chain exits from
V1, before reentering this shell. It therefore follows that the expected number of visits
in Shelly, (a,a + 7vs/8) is bounded, uniformly in the starting point of the chain, and
a. From this the conclusion follows by summing over a finite number of such shells.
]

As a preparation for the proof of parts c¢) and d) of Lemma |3.10, we prove a
preliminary result about our coarse grained random walk.

Lemma B.4

sup > @y <Clogl).
z€Shelly, (2s(L)) YEVL _2s(1)

Proof of Lemma The expression Zerszs(m g1, (z,y) is the expected to-
tal time that the random walk spends in V7, _o5 C Vi,. When starting in Shelly, (2s(L)),
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the walk has a probability bounded from below, say by 1 > 0, of never enter-
ing Vi _o41) before exiting Vr, uniformly in the starting point. If the walk enters
Vi—2s(L), it has to enter through Shelly, (2s,4s) . Therefore

sup Z gp (z,y) <e ' [ 1+ sup E; (TS(iSllL(%(L))) 5
x€Shelly, (2s(L)) YEVL _as z€Shelly, (2s(L),4s(L))

where T{¢ stands for the first entrance time into A by the coarse grained random
walk with transition kernel #; from V_o,r). It therefore suffices to prove

sup E, (T§1§11L(23(L))) < C(logL)®,
z€Shellr, (2s(L),4s(L))

Consider the shells R; %' Shell;, (js(L), (j + 1) s(L)), j > 2, and let T} be the
first entrance time of our (coarse grained) random walk into R;.One then has

CG _ mCG
Py (TRj < TShellL(2s(L))> <CP; (TIIQ{;N < TSI}YeVllL(Qs(L))) ;

and the right hand side we can estimate by Lemma c), giving

C
P, (T%W < TSI?ZIIL(QS(L))) < 5

and therefore we get

C
CG CG
Py (TRj < TShellL(2s(L))) < 5
If x € R;, we estimate the expected number of visits in R; by Corollary which
gives
sup Z G'ys(L) (‘T7y) <C (log L)3 :
TER; YER;
Combining these estimates completes the proof of Lemma ]

Let o be the first entrance time of {S,} into Shell (2s(L)). Before time o, the
Markov process {S,,} proceeds as a random walk on Z¢ with jump distribution 7,,,
where m = s (L).

Proof of Lemma c), d), e). From Corollary [B.3] we get

sup Y Gayrpy (2,y) < C(logL)°.
zeVy, |
YyEVL _24(L)

Evidently, from Lemma we get

sup E |G~/3(L) (Z‘,y) —JrL (x,y)| < C(logL)37
reVy
yeVL _2s5(1)

which implies the statement d).
e) follows by the same approximation and

sup Z |G'ys(L) (xa y) - G'ys(L) (!L'/, y)| < C (log L)3 )

z,x' €Vile—a'|<s yeBulky,
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which follows again from Corollary
We turn to the proof of part c). For & = y, the result is obvious from the
transience of simple random walk. In the sequel, we thus always take x # y. Write

Ay & {z |z —y| < s(L)}. We first prove the result for € A, and dr,(y) > 5s(L).
In that case,

Sup gL z,y) < G T,y)+ ma PRW Ta, <Ty sup gL z,Y).
TEA, mFyY ( ) ’YS(L)( ) z€Shelly (25(L)) ? ( Y L) TEA, wFyY ( )
Since

z

ma: PEW(Ty, <Ty,) <1
z€Shellr, (2s(L))

uniformly in L by Donsker’s invariance principle, we conclude that

sup gL (.’E, y) < CG’ys(L) (IZ?, y) .
TEA, xFyY
Corollary then completes the proof in this case.
Consider next x € A, but s(L) < dr(y) < 5s(L), and set B, ef {z:|z—y| <
s(L)/2} and C e {z |z —y| <5s(L)}. We note that

. C
sup  gr(x,y) <
TEA, xFyY ( ’ ) S(L

. C .
tsup gr(w,y) < ——g+sup PY(Tp, <Tvy) suwp  gu(,y).
) TZAy S( ) z2E A,y €A, xAY

Since sup.g 4, PBW(TBy < Ty, ) < 1 uniformly in L, again by Donsker’s invariance
principle, we conclude that

sup  gr(z,y) <
TEA,xFY ( ’ ) S(L)d’

which proves the claim in this case.
We next consider ¢ A,. Let ¢’ denote the first entrance time of the simple
random walk into Shelly,(2s(L)). Clearly, o’ < 0. We then have

9L(@,y) < Gysr)(@,y) +C > PiYV(Syr = 2) PV (Ta, < Tvy)  sup  gr(w,y)
z€Shelly, (2s(L)) wEA, wHyY

C Cdy(z)dr(y) 1
= s(L)?|x — y|?=2 s(L)? 2 (Jz = 2|V 1)4(ly — 2| v 1)4

(B.8)

z€Shelly, (25(L))

< C n C Z 1
— 2 _ d—2 2 _ d—1 _ d—1
(DRl — g2 TSR 2 (= VDl — 2]V )
C

P —
= s(L)Pr —yld

where the second inequality uses Corollary the estimate on g, (z,y) for z € A,
that was already proved, and Lemma [3.5] This completes the proof. m
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