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Abstract. We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV
formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and
analyze the properties of the boundary BFV operator. Moreover, we consider mixed boundary con-
ditions and show that they lead to quantum anomalies, i.e. to a failure of the (modified differential)
Quantum Master Equation. We show that it can be restored by adding boundary terms to the
action, at the price of introducing corner terms in the boundary operator. We also show that the
quantum Grothendieck BFV operator on the total space of states is a differential, i.e. squares to
zero, which is necessary for a well-defined BV cohomology.
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1. Introduction

1.1. Motivation. Symplectic groupoids are an important concept in Poisson and symplectic ge-
ometry [55]. A groupoid is a small category whose morphisms are invertible. We denote a groupoid
by G⇒M , where M is the set of objects and G the set of morphisms. A Lie groupoid is, roughly
speaking, a groupoid where M and G are smooth manifolds and all structure maps are smooth.
Finally, a symplectic groupoid is a Lie groupoid with a symplectic form ω ∈ Ω2(G) such that the
graph of the multiplication is a Lagrangian submanifold of (G,ω)× (G,ω)× (G,−ω). The manifold
of objects M has an induced Poisson structure uniquely determined by requiring that the source
map G→M is Poisson. A Poisson manifold M that arises this way is called integrable. Not every
Poisson manifold is integrable.
The Poisson Sigma Model, [53, 52, 41] is a 2-dimensional topological Sigma Model with target a
Poisson manifold P. The reduced phase space of the Poisson Sigma Model on an interval with
target a Poisson manifold P is the source simply connected symplectic groupoid of P if P is
integrable and otherwise a topological groupoid arising by singular symplectic reduction [18].
In [28, 11, 12] it was shown that the space of classical boundary fields always has an interest-
ing structure called relational symplectic groupoid. An relational symplectic groupoid is, roughly
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speaking, a groupoid in the “extended category” of symplectic manifolds where morphisms are
canonical relations. Recall that a canonical relation between two symplectic manifolds (M1, ω1)
to (M2, ω2) is an immersed Lagrangian submanifold of (M1, ω1)× (M2,−ω2). The main structure
of an relational symplectic groupoid (G, ω) is then given by an immersed Lagrangian submanifold
L1 of (G, ω), which plays the role of unity, and by an immersed Lagrangian submanifold L3 of
(G, ω)× (G, ω)× (G,−ω), which plays the role of associative multiplication1. (In addition, there is
also an antisymplectomorphism I of G that plays the role of the inversion map.)
The goal of this paper is another step towards deformation quantization of the relational symplectic
groupoid through the Poisson Sigma Model, using the BV-BFV2 formalism for the quantization
of gauge theories on manifolds with boundary [21, 22]. This possible application of the BV-BFV
formalism was first discussed in [22]. In [25] we explained how the quantization of the relational
symplectic groupoid can be achieved in the case of constant Poisson structures. In [24], we general-
ized the methods of formal geometry [8, 37] used in [7, 25] to describe the perturbative quantization
of any polarized AKSZ theory [1], possibly on manifolds with boundary. In that picture, the quan-

tum state of the Poisson Sigma Model3 with target P is described by a section ψ̃ of a certain
bundle over P which is closed with respect to an operator ∇G:

(1) ∇Gψ̃ = 0.

This equation is called the modified differential Quantum Master Equation. We will call ∇G the
quantum Grothendieck BFV operator. In this paper we apply the results of [24] to the Poisson Sigma
Model, and extend them to the more general case when we consider, in addition, boundary pieces
with fixed boundary conditions. Typically we allow the different types to occur on different pieces
of a single connected component of the boundary of the source manifold Σ. We speak of alternating
boundary conditions. These boundary conditions are required to define the relational symplectic
groupoid on boundary fields of the Poisson Sigma Model.

1.2. Main results. Let us summarize the main results of the paper. We show that the introduction
of alternating boundary conditions introduces a quantum anomaly, i.e. a failure of the closedness

of ψ̃. In fact, we have:

Proposition. 6.2 Consider the full state ψ̃Σ,x defined by S̃Σ,x as in Definition 3.15. Then

(2) ∇Gψ̃Σ,x = exp

(
i

~

∫
∂0Σ

F (R,R,Tϕ∗xΠ)(X )

)
ψ̃Σ,x,

where we integrate out the X-fluctuation X , which are the high energy part, in F along ∂0Σ.

Here F (R,R,Tϕ∗xΠ) is defined in Appendix B.3 and is part of Kontsevich’s L∞-morphism, and ∂0Σ
is a certain boundary component. Next, we show that by “twisting” the state and the operator ∇G

by an appropriate Maurer–Cartan element (see Section 5) the anomaly can be reduced to terms
supported at the corners (i.e. points where boundary conditions change). We prove the following
theorem:

1There is also an immersed Lagrangian submanifold L2 ∈ (G, ω)× (G,−ω) representing the identity. The compo-
sition of L3 with L2 also defines an immersed Lagrangian submanifold of (G, ω) × (G, ω) × (G,−ω) that induces an
equivalence relation and a quotient space which is precisely the symplectic reduction, so the symplectic groupoid G
in case M is integrable.

2Here the letters BFV stand for Batalin, Fradkin and Vilkovisky, who introduced what is now known as BV [6, 5]
and BFV [4, 3, 35, 34] formalisms for gauge fixing.

3We consider the Poisson Sigma Model as a perturbation around the trivial Poisson structure, so the moduli space

of classical solutions on which ψ̃ is defined is identified with the target P.
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Theorem. 6.6 Consider the twisted full state ψ̃
γ

Σ,x defined in Definition 5.17 and the twisted

quantum Grothendieck BFV operator ∇γG defined in Definition 6.4. Then

(3) ∇γGψ̃
γ

Σ,x =
∑
C∈C1

T (C)ψ̃
γ

Σ,x,

where T (C) are functionals on BP
∂Σ with values in Ω1(P), depending only on the values of the

fields at the corner point C.

We show that this twisted operator also squares to zero (Remark 6.5). However, we want again
to interpret the state as a closed section with respect to a certain operator that squares to zero.
In Section 7 we show that this can be done by enlarging the space of states (see Definition 7.2)

and defining a new operator ∇̃γG (see Equation (166)) on the new bundle of states. We show the
following theorem:

Theorem (modified differential Quantum Master Equation for alternating boundary conditions

(7.3)). Let ∇̃γG be given as in Equation (166), and consider the twisted full state ψ̃
γ

Σ,x. Then

(4) ∇̃γGψ̃
γ

Σ,x = 0

We also show that the new operator ∇̃γG again squares to zero:

Theorem. 7.4 The operator ∇̃γG squares to zero, i.e. (∇̃γG)2 = 0.

1.3. Summary. Let us give a brief overview of the paper.

• In Section 2 we give a very rough review of the classical and quantum BV-BFV formalism.
For more details the reader is referred to the literature [21, 22]. In particular we recall the
Quantum Master Equation and its generalization to manifolds with boundary, called the
modified Quantum Master Equation.

• In Section 3 we recall the construction, and the results, of [24]. Most importantly, to apply
the quantum BV-BFV formalism one needs to linearize the target around constant maps,
which form a part of the moduli space of classical solutions of any polarized AKSZ theory
[1]. For nonlinear targets, this can be done in a covariant way, as one varies the image of
the constant map. In a natural way this leads to a family of quantizations parametrized by
the target that satisfy a generalization of the modified Quantum Master Equation, that we
call the modified differential Quantum Master Equation. This equation can be interpreted
as the closedness of the state with respect to the quantum Grothendieck BFV operator
∇G that squares to zero. Moreover, under change of gauge choices the state changes by a
∇G-exact term, so that there is a certain cohomology describing the physical states.

• In Section 4 we recall the classical Poisson Sigma Model and its BV-BFV extension [21].

• In Section 5 we apply the results recalled in Section 3 to the Poisson Sigma Model, which
is an example of an AKSZ theory. In particular, we describe the algebraic structure which
is captured in the modified differential Quantum Master Equation and the fact that ∇G

squares to zero. We also describe how to twist the theory by a certain 1-form γ, which
produces a new state and a new operator.

• In Section 6 we discuss what happens when one combines the globalization of the partition
function over constant maps with the alternating or mixed boundary conditions that ap-
pear in the construction of the relational symplectic groupoid. In particular, we describe
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an anomaly that arises from the curvature4 of the deformed Grothendieck connection DG,
and how it can be cancelled by a quantum counterterm in the action. We also describe how
the modified differential Quantum Master Equation gets spoilt by terms that come from
the corners where the different boundary conditions meet.

• In Section 7 we explain how one can restore the modified differential Quantum Master
Equation for the Poisson Sigma Model with alternating boundary conditions. For this one
has to extend both the space of operators and the space of states, and we define these ex-
tensions in Section 7.1 and 7.2. We prove that there is an extension of the twisted operator
for which the state defines a closed section and that the extended operator also squares to
zero.

• Finally, in Section 8 we explain directions for further research. These are not restricted to
the deformation quantization of the relational symplectic groupoid. The methods developed
in this paper could help understand both the globalization of other theories with more
complicated moduli spaces of classical solutions, and the “extended” quantization (in the
sense of extended TQFTs) of AKSZ theories on manifolds with corners (and possibly, defects
of higher codimension).

Various details are discussed in the appendices:

• In Appendix A we recall the compactification of various configuration spaces and their
boundary strata.

• In Appendix B we recall the globalization of Kontsevich’s star product and its connection
to the Poisson Sigma Model.

• In Appendix C we recall the construction of a propagator for the Poisson Sigma Model with
changing boundary conditions.

Remark. We provide a glossary of the most important symbols at the end of the paper.

Acknowledgements. We thank I. Contreras for helpful comments. Moreover, we want to thank
the two referees for providing us with important and helpful comments.

2. The BV-BFV formalism

The BV-BFV formalism is a gauge fixing formalism for gauge theories on manifolds with boundary,
both at the classical [21] and quantum [22] levels. We briefly recall the most important ideas.
Readers already familiar with the BV-BFV formalism as in [22] can skip this section. Another
reference for learning about this formalism is [23].

2.1. Field theory. We start with the following definition of a classical field theory.

Definition 2.1 (Classical field theory). A d-dimensional classical field theory associates to every
compact d-dimensional manifold M (possibly with boundary) a space of fields FM and an action
functional SM : FM → R.

Field theories are usually required to be local. For the purpose of the present paper, the following
definition will suffice. When we refer to a “manifold” M , we implicitly allow M to come equipped
with background fields (e.g. a metric) upon which the field theory is allowed to depend5.

4This is related to the curvature that appears in the globalization of Kontsevich’s star product, see e.g. [19].
5This in particular will also allow us to consider 2D Yang–Mills theory in this formalism.
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Definition 2.2 (Local field theory). We say that a field theory (FM , SM ) is local if there is a fiber
bundle E →M such that FM = Γ(E) and there is an integer k such that

(5) SM (φ) =

∫
M
L[jk(φ)],

where jk denotes the k-th jet prolongation, and L : JkE → Dens(M) is a function on the k-th jet
bundle of E with values in densities of M . L is called the Lagrangian of the theory.

Let (FM , SM ) be a local field theory. If M 6= ∅ and we do not fix any boundary conditions, there
is a 1-form α∂M ∈ Ω1(F∂M ) (the Noether 1-form) such that the variation of the action SM is given
by

(6) δSM := ELM + π∗Mα∂M ,

where πM : FM → F∂M is the natural surjective submersion from the space of fields FM onto the
space of fields F∂M on the boundary ∂M . F∂M is given by restrictions of bulk fields and their normal
jets to the boundary. We denote by ELM the 1-form6 coming from the Euler-Lagrange equations
(EL equations). The classical solutions are given by the critical points of SM , i.e. by solutions of
δSM = 0. One can define a presymplectic form ω∂M on F∂M by setting ω∂M := δα∂M (we think
of δ as the de Rham differential on the space of fields). By techniques of symplectic geometry,
such as symplectic reduction, one can obtain a symplectic manifold (F ∂∂M , ω

∂
∂M ). Moreover, this

construction is compatible with cutting and gluing [21, 20]. It leads to a nice quantum formulation
in the guise of path integrals after choosing a suitable polarization [22]. We will discuss these issues
in this section.

Remark 2.3. Note that if ∂M = ∅ we get the usual Euler–Lagrange equations from δSM = 0.

2.2. Finite dimensional BV theory. Let M be a closed manifold and let FM denote the space
of fields associated to M . If we consider a regular7 local field theory SM : FM → R the partition
function in the path integral approach is

(7) ψM =

∫
φ∈FM

e
i
~SM (φ)Dφ.

Usually, FM is infinite-dimensional, and one cannot define8 Dφ. The way out is usually to translate
the formal asymptotics as ~→ 0 of finite-dimensional integrals to the infinite-dimensional case. The
terms in the asymptotic expansion are convenienetly labeled by Feynman diagrams [33, 32, 50]. If
the critical points of the action functional SM are degenerate, one needs to gauge-fix the theory
before one can use the formal asymptotics. The most powerful gauge fixing formalism is the BV
formalism. We briefly review its finite-dimensional version. Further references for gauge theories,
different gauge fixing formalisms (including BV) and their perturbative quantization are [47, 48,
51].
The start is the following definition:

Definition 2.4 (BV manifold). A BV manifold is a triple (F, ω, S), where F is a supermanifold
with Z-grading, ω an odd symplectic form of degree −1 on F, and S is an even function of degree
zero on F, such that

(8) (S, S) = 0.

Here, following Batalin and Vilkovisky [6, 5], we denote the Poisson bracket induced by the odd
symplectic form with round brackets ( , ).

6ELM is the term that depends only on the variations of the fields but not on higher jets.
7This means that the Hessian of the Lagrangian is weakly non degenerate.
8Only in special situations, i.e. dimM = 1, and some examples discussed in [38].
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Remark 2.5 (Grading on F). Note that we have two different gradings on F, the Z2-grading from
the supermanifold structure and an additional Z-grading. In physics, the Z-grading is referred to
as ghost number and the parity corresponds to bosonic and fermionic particles. Since we consider
only bosonic theories, the Z2-grading coincides with the reduction of the Z-grading.

In a Darboux chart (qi, pi), we can define the BV Laplacian by

(9) ∆loc :=
∑
i

(−1)|q
i| ∂2

∂qi∂pi
.

Then we get that (∆loc)2 = 0 and for two functions f, g, ∆loc(fg) = ∆locfg± f∆locg± (f, g). This
extends to a well-defined global operator ∆ on half-densities [44, 54].
Moreover, given a half-density f and a Lagrangian submanifold L ⊂ F, we can define a BV integral∫
L
f by restricting the half-density to the Lagrangian where it becomes a density and can be

integrated. The main result in the Batalin–Vilkovisky formalism is the following theorem.

Theorem 2.6 (Batalin–Vilkovisky [6]). If we assume that the integrals converge, then

• If f = ∆g, then
∫
L
f = 0,

• If ∆f = 0 and (Lt) is a smoothly varying family of Lagrangians, then d
dt

∫
Lt
f = 0.

Remark 2.7. The second point of Theorem 2.6 tells us that if we have an ill-defined integral
∫
L0
f

for some Lagrangian submanifold L0, but we know that ∆f = 0, then we can define the value of
the integral by a well-defined one

∫
L1
f for some Lagrangian submanifold L1, and this does not

depend on the choice of L1 as long as we deform it smoothly.

The replacement of L0 by L1 is called gauge-fixing. This construction can be extended to any

(super)manifold. Moreover, considering f = e
i
~S , two other conditions arise, which are the Master

Equations for the classical and quantum level:

(S, S) = 0,(10)

(S, S)− 2i~∆S = 0.(11)

The latter one is equivalent to ∆e
i
~S = 0. The former one is the classical limit of the latter one for

~→ 0, and motivates the definition of BV manifold as given above.

2.3. Classical BV-BFV formalism. We now turn to the infinite-dimensional case and review
the main definitions of reference [21]. We first consider the classical BV formalism in field theory
and its extension to manifolds with boundary.

Definition 2.8 (BV theory). A d-dimensional BV theory is the association of a BV manifold
M 7→ (FM , ωM , SM ) to every closed d-manifold M .

Remark 2.9. These BV manifolds are typically infinite-dimensional. This means that neither the
BV Laplacian nor the BV integral are defined (at least not without further work).

Definition 2.10 (BV extension). We say that a BV theory (FM , ωM , SM ) is a BV extension of a
local field theory M 7→ (FM , SM ) if for all closed d-manifolds M , we have that the degree 0 part
(FM )0 of FM satisfies (FM )0 = FM and SM

∣∣
(FM )0

= SM . Moreover, we want FM ,SM and ωM to be

local.

To extend the BV formalism to manifolds with boundary one needs its Hamiltonian counterpart,
the BFV formalism [4, 3, 35, 34].

Definition 2.11 (BFV manifold). A BFV manifold is a triple

(12) F∂ := (F∂ , ω∂ , Q∂)
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where F∂ is a graded manifold, ω∂ an even symplectic form of degree 0, and Q∂ a degree 1 co-
homological, symplectic vector field on F∂ . If ω∂ = δα∂ is exact, the BFV manifold is called
exact.

Remark 2.12. For degree reasons, Q∂ automatically has a Hamiltonian function that we denote
by S∂ , and call it the boundary action. This is the reason that the boundary action S∂ is not included
in the data of a BFV manifold.

Again, we denote by δ the de Rham differential on the space of fields. The notion of BV theory
can be extended to manifolds with boundary as was shown in [21, 22]. On the boundary we will
use the BFV formalism. The compatibility between the BV formalism and the BFV formalism is
captured in the following definition.

Definition 2.13 (BV-BFV manifold). A BV-BFV manifold over a given exact BFV manifold F∂ =
(F∂ , ω∂ = δα∂ , Q∂) is a quintuple

(13) F := (F, ω, S, Q, π),

where

• F is a graded manifold,
• ω is an even symplectic form of degree 0,
• S is an even function of degree 0,
• Q is a degree 1 cohomological vector field,
• π : F → F∂ is a surjective submersion

such that

(14) ιQω = δS + π∗α∂

and Q∂ = δπQ where δπ denotes the differential of π.

Remark 2.14. If F∂ is a point, we get that (FM , ωM , SM ) is a BV manifold. The shorthand
notation for a BV-BFV manifold is π : F → F∂ .

Note that by Remark 2.14, the following notion generalizes the one of a BV theory.

Definition 2.15 (BV-BFV theory). A d-dimensional BV-BFV theory associates

• to every closed (d− 1)-dimensional manifold Σ a BFV manifold F∂Σ,

• to a d-dimensional manifold M with boundary ∂M a BV-BFV manifold πM : F∂M → F∂∂M .

Remark 2.16. Formally, for the Hamiltonian vector field Q of S, one can write (S, S) = ιQιQω =
Q(S). If we consider a BV-BFV theory for a manifold M with boundary ∂M , one can prove [21,
Proposition 3.1] that

(15) Q(S) = π∗(2S∂ιQ∂α
∂).

Together with (14) this implies that

(16) ιQιQω = 2π∗S∂ .

We call (16) the modified Classical Master Equation.

It was shown in [21] that abelian BF theory is an example of a BV-BFV theory.
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Example 2.17 (Abelian BF theory). Abelian BF theory is given by the following data: To a
d− 1-dimensional manifold Σ, we associate the BFV manifold

F∂Σ = Ω•(Σ)[1]⊕ Ω•(Σ)[d− 2] 3 X⊕ η(17)

ω∂Σ =

∫
Σ
δX ∧ δη(18)

Q∂Σ = (−1)d
∫

Σ

(
dη ∧ δ

δη
+ dX ∧ δ

δX

)
(19)

The Hamiltonian function of Q∂Σ is given by S∂ =
∫
M η ∧ dX.

To a d-dimensional manifold M with boundary ∂M , we associate the BV-BFV manifold over F∂∂M
given by

FM = Ω•(M)[1]⊕ Ω•(M)[d− 2] 3 X⊕ η(20)

ωM =

∫
M
δX ∧ δη(21)

SM =

∫
M
η ∧ dX(22)

QM = (−1)d
∫
M

(
dη ∧ δ

δη
+ dX ∧ δ

δX

)
(23)

(24)

and the map π : F → F∂ is given by restriction, i.e. π = ι∗∂M , where ι∂M : ∂M →M is the inclusion.

Definition 2.18 (BF -like theories). We say that a BV-BFV theory is BF -like if

FM = (Ω•(M)⊗ V [1])⊕ (Ω•(M)⊗ V ∗[d− 2])(25)

SM =

∫
M

(〈η,dX〉+ V(X,η)) ,(26)

where V is a graded vector space, 〈 , 〉 denotes the pairing between V ∗ and V , and V denotes
some density-valued function of the fields X and η whose value V(x) at x ∈ M depends only on
X(x),η(x)9, such that SM satisfies the Classical Master Equation for M without boundary.

Example 2.19 (Quantum mechanics). Consider M to be a 1-dimensional manifold, i.e. d = 1
and V = W [−1] with W concentrated in degree zero. Denote by P and Q the degree-zero form
components of X and η, respectively. Choose a volume form dt on M and a function H on T ∗W .
Set V(X,η) := H(X,η)dt = H(Q,P )dt. Then

(27) SM =

∫
M

(∑
i

PiQ̇
i +H(Q,P )

)
dt,

is the action of classical mechanics in the Hamiltonian formalism.

Remark 2.20. The Poisson Sigma Model, which is the main theory regarded in this paper, is an
example of a BF -like AKSZ theory (see Section 3).

Example 2.21 (BF -like AKSZ theories [1]). Assume we are given a function Θ on T ∗[d−1](V [1]) =
V [1] ⊕ V ∗[d − 2] that is of degree d such that {Θ,Θ} = 0, where { , } is the canonical Poisson
structure on the shifted cotangent bundle. Set V(X,η) to be the top degree part of Θ(X,η).

9In particular, V does not depend on derivatives of the fields.
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2.4. Quantum BV-BFV formalism. In [22] the notion of a quantum BV-BFV theory was given
and it was shown how to perturbatively quantize a classical BV-BFV theory10. Let us briefly review
this11.

Definition 2.22 (Quantum BV-BFV theory). A d-dimensional quantum BV-BFV theory associates

• To every closed (d− 1)-dimensional manifold Σ a graded C[[~]]-module HΣ,
• To every d-dimensional manifold (possibly with boundary) M a finite-dimensional BV man-

ifold VM , a degree 1 coboundary operator Ω∂M on H∂M and a homogeneous element12

(28) ψM ∈ ĤM := Dens
1
2 (VM )⊗H∂M ,

where Dens
1
2 (M) denotes the space of half-densities on some manifold M ,

such that

(29) (~2∆VM + Ω∂M )ψM = 0.

Remark 2.23. The shorthand notation for a quantum BV-BFV theory is

(30) M 7→ (ĤM , ψM ,∆VM ,Ω∂M ).

Let us introduce some terminology: We call VM the space of residual fields, H∂M the space of
boundary states and ψM the quantum state. ∆VM denotes the canonical BV Laplacian on half-

densities on the BV manifold VM . Recall that ∆2
VM

= 0. Hence, ĤM carries the two commuting
differentials ∆VM and Ω∂M which gives it the structure of a bicomplex. We call Ω∂M the quantum
BFV boundary operator. The condition (29) is called the modified Quantum Master Equation.

Remark 2.24 (Terminology). The space HΣ is called the space of states because it arises as a
quantization of the symplectic manifold of boundary fields (see also the discussion in 2.4.1 below).
An element of HΣ is then called a state. In the absence of residual fields, ψM is the state produced
by the bulk. It is what is usually called a state in the literature, see e.g. [56] if ∂M has a single
connected component13. In case M is a cylinder, ψM is actually an evolution operator that can
be viewed as a generalized state (note that we never insist on HΣ being a Hilbert space). If the
boundary is empty (and there are no residual fields), then ψM is what is usually called the partition
function. It is in general useful (and often necessary) to make a choice of “slow” or “low energy”
fields, which we prefer to call residual fields, and to integrate on a complement. Then ψM will be
properly a state only after integrating out the residual fields (which is not always possible, cf. the
discussions in [21, Appendix F], [7], [42]), but by abuse of notation we prefer to call it the state
anyway.

Definition 2.25 (Equivalence). We say that two quantum BV-BFV theories (ĤM ,∆VM ,Ω∂M , ψM )

and (Ĥ′M ,∆V′M
,Ω′∂M , ψ

′
M ) are equivalent if for every manifold M with boundary ∂M there is a

quasi-isomorphism of bicomplexes

(31) IM : (ĤM ,∆VM ,Ω∂M )→ (Ĥ′M ,∆V′M
,Ω′∂M )

such that IM (ψM ) = ψ′M .

10We have to assume certain conditions which are in particular satisfied for BF -like theories.
11We slightly changed the definition of quantum BV-BFV theory so that in principle it does not depend on a

classical BV-BFV theory.
12Typically, ψ will have degree 0. This is the case when the gauge-fixing Lagrangian (see below) has degree zero,

in the sense that its Berezinian bundle has degree zero. This is the case in all examples we consider.
13Note that this is a particular state induced by the bulk and not some choice of vacuum state.
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Definition 2.26 (Change of data). Another equivalence relation among theories is the following:

We say that two quantum BV-BFV theories (ĤM ,∆VM ,Ω∂M , ψM ) and (ĤM ,∆V′M
,Ω′∂M , ψ

′
M ) are

related by change of data if there is an operator τ of degree 0 on H∂M and an element χM ∈ ĤM

with deg(χM ) = deg(ψM )− 1 such that

Ω′∂M = [Ω∂M , τ ]

ψ′M = (~2∆VM + Ω∂M )χM − τψM
(32)

Let us now explain how to produce a quantum BV-BFV theory by perturbative quantization of
a classical BV-BFV theory. Fix a classical BV-BFV theory π : F → F∂ . For simplicity we shall
assume that F and F∂ are always vector spaces, which is sufficient for the present paper. For a
general discussion see [22].

2.4.1. The space of states. Consider a (d− 1)-dimensional manifold Σ. Then the BV-BFV theory
associates to it a symplectic vector space (F∂Σ, ω

∂
Σ, Q

∂
Σ). Morally, we want to construct HΣ and

ΩΣ as a geometric quantization of this symplectic vector space. More precisely, the construction
proceeds as follows. We require the data of a polarization14 P of this symplectic vector space. For
our purposes, a splitting

(33) F∂Σ
∼= BP

Σ ⊕KP
Σ

of F∂Σ into Lagrangian subspaces is sufficient. Here KP
Σ is thought of as the Lagrangian distribution

on F∂Σ and BP
Σ is identified with the leaf space of the polarization. Given a polarization P the

associated space of states H∂M is a certain space of functionals on BP
Σ. We will discuss the space

of states for BF -like theories in 2.4.3.

2.4.2. Splitting the space of fields. To define the quantum state we proceed with the following
constructions. Consider a d-manifold M (possibly with boundary) and the associated BV-BFV
manifold (FM , ωM , SM , QM , πM ) over the exact BFV manifold (F∂∂M , ω

∂
∂M = δα∂∂M , Q

∂
∂M ). Then,

choosing a polarization P on ∂M , we choose a splitting

(34) FM ∼= BP
∂M ⊕ Y,

where Y denotes some complement. This splitting is subject to the following assumption15.

Assumption 2.27 ([22]). There is a weakly symplectic form ωY on Y such that ωM is the extension
of ωY to FM .

Formally, we can think of BP
∂M as the space of boundary fields and Y the space of bulk fields.

Depending on the boundary polarization, we split Y into residual fields and some complement, i.e.
we choose a splitting

(35) Y ∼= VP
M ⊕ Y′

subject to the following assumption16

Assumption 2.28. We assume the following hold:

(1) VP
M ,Y

′ are BV manifolds,

(2) VP
M is finite-dimensional

(3) ωY = ωVP
M

+ ωY′ .

14We have only considered the case of real polarizations so far.
15This assumption forces one to choose singular extensions of boundary fields.
16This assumption is rather strong but can be slightly relaxed to the notion of hedgehog fibration.
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We call the complement Y′ the space of fluctuation fields. Residual fields are also called low energy
fields or slow fields and fluctuation fields are also called high energy fields or fast fields. Typically
we choose VP

M as the solutions of δS0
M = 0 modulo gauge transformations, where S0

M denotes the
quadratic part of the action SM . This is the minimal choice, and is typically called the space of
zero modes. Other choices are related by the equivalence relations above.

Definition 2.29. A splitting

(36) FM ∼= BP
∂M ⊕ VP

M ⊕ Y′

is called good if it satisfies Assumptions 2.27 and 2.28.

Remark 2.30 (Connection to Atiyah’s TQFT formulation). From the point of view of topolog-
ical quantum field theories (TQFTs) as functors Cobn → VectC from the n-cobordism category
(objects are (n − 1)-manifolds bounding an n-manifold and morphisms are exactly the bounding
n-manifolds connecting the objects) to the category of vector spaces over the complex numbers, it
is clear that the quantum state should depend on the bulk. This can be seen by using the fact that
the state represents exactly the bounding manifold between the objects and thus a morphism of
the cobordism category. This also makes sense for manifolds without boundary, in which case the
state is given by a partition function Z : C → C, where as a morphism in Cobn it represents any
closed n-manifold, seen as a bounding manifold connecting the empty (n − 1)-manifold, i.e. as a
morphism ∅→ ∅.

2.4.3. The quantum state in BF -like theories. The quantum state in BF -like theories is defined
perturbatively in terms of Feynman graphs by considering integrals defined on the configuration
space of these graphs. In BF -like theories there are two preferred polarizations, namely the δ

δX -

and δ
δη -polarization. We specify a polarization by splitting the boundary ∂M of the manifold M

into two parts ∂1M and ∂2M , where we choose the δ
δη -polarization on ∂1M and the δ

δX -polarization

on ∂2M . We denote the X-leaf by X ∈ B
δ
δη

∂M and the η-leaf by E ∈ B
δ
δX
∂M .

For BF -like theories, the polarization determines the first splitting as

BP
∂M = (Ω•(∂1M)⊗ V [1])⊕ (Ω•(∂2M)⊗ V ∗[d− 2])(37)

Y = (Ω•(M,∂1M)⊗ V [1])⊕ (Ω•(M,∂2M)⊗ V ∗[d− 2])(38)

The minimal space of residual fields is isomorphic to

(39) VP
M
∼= (H•(M,∂1M)⊗ V [1])⊕ (H•(M,∂2M)⊗ V ∗[d− 2]),

for some graded vector space V . A good splitting is then determined by a splitting of the complex
of de Rham forms with relative boundary conditions into a subspace VP

M isomorphic to cohomology
and a complement Y′ in a way compatible with the symplectic structure. One possibility to do so
is to use a Riemannian metric and embed the cohomology as harmonic forms.
Before we can introduce the quantum state we need to introduce the concept of composite fields,
which we denote by square brackets [ ], e.g. for a boundary field A we will write [Ai1 · · ·Aik ].
They can be understood as a regularization of higher functional derivatives: the higher functional

derivative δk

δAi1 ···δAik gets replaced by a first order functional derivative δ
δ[Ai1 ···Aik ]

. Concretely, this

corresponds to introducing additional boundary vertices as in Figure 2.

Remark 2.31. In fact, this concept will not be needed for the definition of the principal part of
the quantum state. We will use this concept to define the full part of the quantum state where we
need to make sure that it will be compatible with the quantum BFV boundary operator, where
higher functional derivatives do indeed appear as we will see.
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Definition 2.32 (Regular functional). A regular functional on the space of base boundary fields is
a linear combination of expressions of the form

(40)

∫
Cm1 (∂1M)×Cm2 (∂2M)

L
J1

1 ...J
`1
1 J2...J

`2
2 ...

I1
1 ....I

r1
1 I1

2 ...I
r2
2 ...
∧ π∗1

r1∏
j=1

[
XI

j
1

]
∧ · · · ∧ π∗m1

rm1∏
j=1

[
XI

j
m1

]
∧

∧ π∗1
`1∏
j=1

[
E
Jj1

]
∧ · · · ∧ π∗m1

`m2∏
j=1

[
E
Jjm2

]
,

where Iji and J ji are (target) multi-indices and L
J1

1 ...J
`1
1 J2...J

`2
2 ...

I1
1 ....I

r1
1 I1

2 ...I
r2
2 ...

is a smooth differential form on

the direct product of compactified configuration spaces (see Appendix A) Cm1(∂1M)× Cm2(∂2M)
depending on residual fields. A regular functional is called principal if all multi-indices have length
one.

Definition 2.33 (Full space of boundary states). The full space of boundary states HP
∂M is given

by the linear combinations of regular functionals of the form (40).

Definition 2.34 (Principal space of boundary states). We define the principal space of boundary

states H
P,princ
∂M as the subspace of HP

∂M , where we only consider principal regular functionals.

The state is defined in terms of Feynman graphs and rules. We briefly explain what these terms
mean in the BV-BFV context (for perturbations of abelian BF theory).

Definition 2.35 ((BF ) Feynman graph). A (BF ) Feynman graph is an oriented graph with three
types of vertices V (Γ) = Vbulk(Γ) t V∂1 t V∂2 , called bulk vertices and type 1 and 2 boundary
vertices, such that

• bulk vertices can have any valence,
• type 1 boundary vertices carry any number of incoming half-edges (and no outgoing half-

edges),
• type 2 boundary vertices carry any number of outgoing half-edges (and no incoming half-

edges),
• multiple edges and loose half-edges (leaves) are allowed but not short loops (tadpoles).

A labeling of a Feynman graph is a function from the set of half-edges to {1, . . . ,dimV }.

Definition 2.36 (Principal graph). A Feynman graph is called principal if all boundary vertices
(type 1 and type 2) are univalent or zero valent.

For a set S and a manifold M , the open configuration space of S in M is

(41) ConfS(M) := {ι : S ↪→M |ι injection}.
Let Γ be a Feynman graph and M a manifold with boundary ∂M = ∂1M t ∂2M and denote

(42) ConfΓ(M) := ConfVbulk(M)× ConfV∂1
(∂1M)× ConfV∂2

(∂2M)

The Feynman rules are a map that associate to a Feynman graph Γ a differential form ωΓ ∈
Ω•(ConfΓ(M)).

Definition 2.37 ((BF ) Feynman rules). Let Γ be a labeled Feynman graph, and choose a config-
uration ι : V (Γ) → Conf(Γ) (that respects the decompositions). We decorate the graph according
to the following rules (called Feynman rules):

• Bulk vertices in M decorated by “vertex tensors”

(43) V
j1...jt
i1...is

:=
∂s+t

∂Xi1 · · · ∂Xis∂η
j1 · · · ∂ηjt

∣∣
X=η=0

V(X,η),
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where s, t are the out- and in- valencies of the vertex and i1, . . . , is and j1, . . . , jt are the
labels of the out (resp. in-)oriented half-edges.
• Boundary vertices v ∈ V∂1(Γ) with incoming half-edges labeled i1, . . . , ik and no out-going

half-edges are decorated by a composite field [Xi1 . . .Xik ] evaluated at the point (vertex
location) ι(v) on ∂1M .
• Boundary vertices v ∈ V∂2(Γ) on ∂2M with outgoing half-edges labeled j1, . . . , jl are deco-

rated by [Ej1 . . .Ejl ] evaluated at the point on ∂2M .
• Edges between vertices v1, v2 are decorated with the propagator ζ(ι(v1), ι(v2)) · δij , where ζ

is the propagator induced by L ⊂ Y′, the chosen gauge-fixing Lagrangian.
• Loose half-edges (leaves) attached to a vertex v and labeled i are decorated with the residual

fields xi (for out-orientation), ei (for in-orientation) evaluated at the point ι(v).

We denote the differential forms given by the decorations collectively by ωd. The differential form
ωΓ at ι is then defined by multiplying all decorations and summing over all labelings:

(44) ωΓ =
∑

labelings
of Γ

∏
decorations
d of Γ

ωd

The Feynman rules are summarized in Figures 1 and 2.

Remark 2.38 (Configuration spaces). We will work with the Fulton–MacPherson/Axelrod–Singer
compactification of configuration spaces on manifolds with boundary and corners (FMAS compact-
ification, see Appendix A). It is a non-trivial analytic statement (proven first by Axelrod and Singer
[2]) that the propagator, a priori defined only on the open configuration space Conf2(M), extends
to the compactification C2(M). It follows that also ωΓ, for all Feynman graphs Γ, extends to the
compactification CΓ(M) of ConfΓ(M). Since integrals remain unchanged by adding strata of lower
codimension, this immediately proves that all integrals in Equation (45) below are finite. Moreover,
the combinatorics of the stratification can be used for various computations using Stokes’ theorem.

Definition 2.39 (Principal quantum state). Let M be a manifold, possibly with boundary. Given
a BF -like BV-BFV theory πM : FM → F∂∂M , a polarization P on F∂∂M , a good splitting FM =

BP
∂M ⊕ VP

M ⊕ Y′, and a gauge-fixing Lagrangian L ⊂ Y′, we define the principal part of the quantum
state by the formal power series

(45) ψM (X,E; x, e) := TM exp

(
i

~
∑

Γ

(−i~)loops(Γ)

|Aut(Γ)|

∫
CΓ(M)

ωΓ(X,E; x, e)

)
,

where ωΓ is given as in (44) and where we denote for an element X⊕ η ∈ FM the split by

X = X⊕ x⊕X ,(46)

η = E⊕ e⊕ E .(47)

Here the sum is taken over all connected, oriented, principal BF Feynman graphs Γ, Aut(Γ) denotes
the set of all automorphisms of Γ, and loops(Γ) denotes the number of all loops of Γ.

The coefficient TM is related to the Reidemeister torsion of M , but its precise nature is irrelevant
for the purpose of a present paper. For a definition see [21].

Remark 2.40. The formal power series (45) is our definition of the formal perturbative expansion
of the BV integral

(48) ψM =

∫
L⊂Y′

e
i
~SM [(X,η)] ∈ ĤP

M := ĤP
∂M ⊗Dens

1
2 (VP

M ).

It was observed in [22] that, given a good splitting of the form (36), one can decompose the action
as

(49) SPM := ŜM,0 + ŜM,pert + Sres + Ssource
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i1

i2

is

j1
j2

jt

 V
j1...jt
i1...is

(a) Interaction vertex

xi
i

j
ej

(b) Residual fields

X

E
(c) Boundary vertices

Figure 1. Summary of Feynman graphs and rules

with

ŜM,0 :=

∫
M
〈E ,dX 〉(50)

ŜM,pert :=

∫
M

V(X ,E )(51)

Sres := (−1)d−1

(∫
∂1M
〈E, x〉+

∫
∂2M
〈X, e〉

)
(52)

Ssource := (−1)d−1

(∫
∂1M
〈E,X 〉+

∫
∂2M
〈X,E 〉

)
(53)

In that way we can rewrite

(54) ψM = TM

〈
e

i
~ (Sres+Ssource)

〉
where 〈 〉 denotes the expectation value with respect to the bulk theory (ŜM,0 + ŜM,pert), i.e.
formally

(55)
〈

e
i
~ (Sres+Ssource)

〉
=

∫
L⊂Y′

e
i
~ (ŜM,0[(X,η)]+ŜM,pert[(X,η)])e

i
~ (Sres[(X,η)]+Ssource[(X,η)]).

Remark 2.41. Note that we sum over connected graphs, such that the sum is given by the effective
action.

Using composite fields, one can construct the bullet product on the full space of states as in [22].
For instance, the bullet product of

∫
∂1M

ui ∧ Xi and
∫
∂1M

vi ∧ Xi is

(56)

∫
∂1M

ui ∧ Xi •
∫
∂1M

vj ∧ Xj :=

(−1)|X
i|(d−1+|vj |)+|ui|(d−1)

(∫
C2(∂1M)

π∗1ui ∧ π∗2vj ∧ π∗1Xi ∧ π∗2Xj +

∫
∂1M

ui ∧ vj ∧ [XiXj ]

)
,

where u and v are smooth differential forms depending on the bulk and residual fields.
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[Xi1 · · ·Xik ]

i1

i2

ik

(a) Boundary vertex on ∂1Σ

[Ei1 · · ·Eik ]

i1

i2

ik

(b) Boundary vertex on ∂2Σ

Figure 2. Composite field vertices.

Remark 2.42. Consider an operator
∫
∂1M

F ij δ2

δXiδXj . Such an operator is (by definition) inter-

preted as
∫
∂1M

F ij δ
δ[XiXj ] , so one gets

(57)

∫
∂1M

F ij
δ2

δXiδXj

(∫
∂1M

ui ∧ Xi •
∫
∂1M

vj ∧ Xj
)

=

∫
∂1M

uivjF
ij ,

in accordance with our naive expectation.

Definition 2.43 (Full quantum state). Let M be a manifold, possibly with boundary. Given
a BF -like BV-BFV theory πM : FM → F∂∂M , a polarization P on F∂∂M , a good splitting FM ∼=
BP
∂M ⊕ VP

M ⊕ Y′, and a gauge-fixing Lagrangian L ⊂ Y′, we define the full quantum state (similarly
as in (45)) by the formal power series

(58) ψM (X,E; x, e) := TM exp

(
i

~
∑

Γ

(−i~)loops(Γ)

|Aut(Γ)|

∫
CΓ(M)

ωΓ(X,E; x, e)

)
,

where we also sum over graphs as in Figure 2 representing composite fields.

Remark 2.44. The full state can be interpreted as an expectation value with help of the bullet
product:

(59) ψM = TM

〈
e

i
~ (Sres+Ssource)
•

〉
where e• denotes the exponential with respect to the bullet product.

2.4.4. The BFV boundary operator. We want to define the quantum BFV boundary operator for
BF -like theories according to [22]. Similarly to the state, we will express at first its principal part
and then extend it to a regularization using the notion of composite fields. The quantum BFV
boundary operator is constructed as a quantization of the BFV action such that Theorem 2.47
below holds.

Definition 2.45 (Principal part of the BFV boundary operator). The principal part of the BFV
boundary operator is given by

(60) Ωprinc = ΩX
0 + ΩE

0︸ ︷︷ ︸
=:Ω0

+ ΩX
pert + ΩE

pert︸ ︷︷ ︸
=:Ωprinc

pert

,

where

ΩX
0 := (−1)di~

∫
∂1M

(
dX

δ

δX

)
,(61)

ΩE
0 := (−1)di~

∫
∂2M

(
dE

δ

δE

)
,(62)
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(63) ΩX
pert :=

∑
n,k≥0

∑
Γ′1

(i~)loops(Γ′1)

|Aut(Γ′1)|

∫
∂1M

(
σΓ′1

)j1...jk
i1....in

∧

∧ Xi1 ∧ · · · ∧ Xin
(

(−1)di~
δ

δXj1

)
· · ·
(

(−1)di~
δ

δXjk

)
,

(64) ΩE
pert :=

∑
n,k≥0

∑
Γ′2

(i~)loops(Γ′2)

|Aut(Γ′2)|

∫
∂2M

(
σΓ′2

)j1...jk
i1....in

∧

∧ Ei1 ∧ · · · ∧ Ein
(

(−1)di~
δ

δEj1

)
· · ·
(

(−1)di~
δ

δEjk

)
,

where, for F1 = X and F2 = E and ` ∈ {1, 2}, Γ′` runs over graphs with

• n vertices on ∂`M of valence 1 with adjacent half-edges oriented inwards and decorated
with boundary fields Fi1` , . . . ,F

in
` all evaluated at the point of collapse p ∈ ∂`M ,

• k outward leaves if ` = 1 and k inward leaves if ` = 2, decorated with variational derivatives
in boundary fields

(−1)di~
δ

δFj1`
, . . . , (−1)di~

δ

δFjk`
at the point of collapse,
• no outward leaves if ` = 2 and no inward leaves if ` = 1 (graphs with them do not con-

tribute).

The form σΓ′`
is obtained as the integral over the compactified configuration space C̃Γ′`

(Hd), where

Hd denotes the d-dimensional upper half plane, given by

(65) σΓ′`
=

∫
C̃Γ′

`
(Hd)

ωΓ′`
,

with ωΓ′`
being the product of limiting propagators at the point p of collapse and vertex tensors.

We want to roughly describe the construction of the BFV boundary operator with composite fields
(see [22] for a more detailed discussion). First, we need to define the following notion.
On a regular functional as in (40), we get a term L replaced by dL plus all the terms corresponding
to the boundary of the configuration space. As L is smooth, its restriction to the boundary is also
smooth and can be integrated on the fibers yielding a smooth form on the base configuration space;
for example

(66) Ω0

∫
∂1M

LIJ ∧ [XI ] ∧ [XJ ] = ±i~
∫
∂1M

dLIJ ∧ [XI ] ∧ [XJ ],

(67) Ω0

∫
C2(∂1M)

LIJK ∧ π∗1([XI ] ∧ [XJ ]) ∧ π∗2[XK ]

= ±i~
∫
C2(∂1M)

dLIJK ∧ π∗1([XI ] ∧ [XJ ]) ∧ π∗2[XK ]± i~
∫
∂1M

LIJK ∧ [XI ] ∧ [XJ ] ∧ [XK ],

with LIJK = π∂∗LIJK , where π∂ : ∂C2(∂1M)→ ∂1M is the canonical projection.
Notice that for any two regular functionals S1 and S2 we have

Ω0(S1 • S2) = Ω0(S1) • S2 ± S1 • Ω0(S2).
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The other generators that we allow are products of expressions of the form∫
∂1M

LJI1...Ir
[
XI1
]
∧ · · · ∧

[
XIr
] δ|J |

δ[XJ ]
(68) ∫

∂2M
LJ

1...J`

I [EJ1 ] ∧ · · · ∧ [EJ` ]
δ|I|

δ[EI ]
.(69)

Definition 2.46 (Full BFV boundary operator). The full BFV boundary operator is given by

(70) Ω∂M := Ω0 + ΩX
pert + ΩE

pert︸ ︷︷ ︸
Ωpert

,

where
(71)

ΩX
pert :=

∑
n,k≥0

∑
Γ′1

(i~)loops(Γ′1)

|Aut(Γ′1)|

∫
∂1M

(
σΓ′1

)J1...Jk

I1....In
∧
[
XI1
]
∧ · · · ∧

[
XIn
](

(−1)kd(i~)k
δ|J1|+···+|Jk|

δ [XJ1 · · ·XJk ]

)
,

(72)

ΩE
pert :=

∑
n,k≥0

∑
Γ′2

(i~)loops(Γ′2)

|Aut(Γ′2)|

∫
∂2M

(
σΓ′2

)I1....In
J1...Jk

∧ [EI1 ] ∧ · · · ∧ [EIn ]

(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [EJ1 · · ·EJk ]

)
where, for F1 = X and F2 = E and ` ∈ {1, 2}, Γ′` runs over graphs with

• n vertices on ∂`M , where vertex s has valence |Is| ≥ 1, with adjacent half-edges oriented

inwards and decorated with boundary fields [FI1` ], . . . , [FIn` ] all evaluated at the point of
collapse p ∈ ∂`M ,
• |J1|+ · · ·+ |Jk| outward leaves if ` = 1 and |J1|+ · · ·+ |Jk| inward leaves if ` = 2, decorated

with variational derivatives in boundary fields

(−1)di~
δ

δ[FJ1
` ]
, . . . , (−1)di~

δ

δ[FJk` ]

at the point of collapse,
• no outward leaves if ` = 2 and no inward leaves if ` = 1 (graphs with them do not con-

tribute).

The form σΓ′`
is obtained as the integral over the compactified configuration space C̃Γ′`

(Hd), where

Hd denotes the d-dimensional upper half plane, given by

(73) σΓ′`
=

∫
C̃Γ′

`
(Hd)

ωΓ′`
,

with ωΓ′`
being the product of limiting propagators at the point p of collapse and vertex tensors.

Theorem 2.47 ([22]). Let M be a smooth manifold (possibly with boundary). Then the following
hold:

(1) The full covariant state ψM satisfies the modified Quantum Master Equation:

(74) (~2∆VM + Ω∂M )ψM = 0.

(2) The full BFV boundary operator Ω∂M squares to zero:

(75) (Ω∂M )2 = 0.

(3) A change of propagator or residual fields leads to a theory related by change of data as in
2.26.



ON THE GLOBALIZATION OF THE PSM IN THE BV-BFV FORMALISM 19

Figure 3. Example of a graph collapsing to the boundary with three bulk and two
boundary vertices. The semicircle represents the collapsing of the graph.

3. Quantization of AKSZ Sigma Models

In [24] it was shown that one can construct a globalized quantum state in the guise of perturbative
quantization for any possibly nonlinear BF -like AKSZ Sigma Model [1] on manifolds with boundary.
This is done by considering techniques of formal geometry as in [37, 8] and the BV-BFV formalism.
In this section we want to recall the most important concepts of [24].

3.1. AKSZ Sigma Models. Let us recall the definition of differential graded symplectic manifolds
and AKSZ Sigma Models.

Definition 3.1 (Differential graded symplectic manifold). A dg symplectic manifold of degree d
is a graded manifold M endowed with a symplectic form ω = dα of degree d and a Hamiltonian
function Θ of degree d+ 1 satisfying {Θ,Θ} = 0, where { , } is the Poisson bracket induced by ω.

Remark 3.2. This is sometimes also called a Hamiltonian manifold.

Definition 3.3 (AKSZ Sigma Model). The AKSZ Sigma Model with target a Hamiltonian manifold
(M, ω = dα,Θ) of degree d − 1 is the BV theory, which associates to a d-manifold Σ the BV
manifold (FΣ, ωΣ, SΣ), where17 FΣ = Map(T [1]Σ,M), ωΣ is of the form ωΣ =

∫
Σ ωµνδAµ∧ δAν , and

SΣ[A] =
∫

Σ (αµ(A)dAµ + Θ(A)), where A ∈ FΣ, ωµν are the components of the symplectic form ω,
αµ are the components of α and Aµ are the components of the superfield A in local coordinates.

In [24], we study the following type of AKSZ Sigma Models.

Definition 3.4 (Split AKSZ Sigma Model). We call an AKSZ Sigma Model split18, if the target is
of the form

(76) M = T ∗[d− 1]M

with canonical symplectic structure, where M is a graded manifold.

3.2. Formal geometry. We briefly recall the aspects of formal geometry which are most relevant
for this paper. Let M be a smooth manifold.

Definition 3.5 (Generalized exponential map). A generalized exponential map is a map ϕ : U →M ,
where U ⊂ TM is an open neighborhood of the zero section, such that ϕ(x, 0) = x and dϕ(x, 0) =
idTxM .

Remark 3.6. For x ∈M and y ∈ TxM ∩ U we write ϕ(x, y) = ϕx(y).

Example 3.7. An example would be the actual exponential map of a torsion-free linear connection.

17This is the infinite-dimensional graded manifold adjoint to the Cartesian product (internal morphisms).
18Note that in BF -like AKSZ theories we have a target T ∗[d−1](V [1]) = V [1]⊕V ∗[d−2], where V is some graded

vector space, whereas in the “split” case the target is of the form T ∗[d− 1]M for a graded manifold M .
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Definition 3.8 (Formal exponential map). A formal exponential map is an equivalence class of
generalized exponential maps, where two generalized exponential maps are said to be equivalent if
their vertical jets at the zero section agree to all orders.

For a function f ∈ C∞(M), we can produce a section σ ∈ Γ(ŜT ∗M) by defining

(77) σx := Tϕ∗xf,

where T denotes the Taylor expansion in the fiber coordinates around y = 0. We denote by Ŝ the
completed symmetric algebra. Note that we use any representative of ϕ to define the pullback. We
denote this section by Tϕ∗f . Moreover, since it only depends on the jets of the representative, it
is independent of the choice of representative.

Definition 3.9 (Grothendieck connection). Given a formal exponential map ϕ, we can define the

associated Grothendieck connection19 DG on ŜT ∗M , given by DG = d +R, where d is the de Rham

differential and R ∈ Γ(T ∗M ⊗ TM ⊗ ŜT ∗M) is a 1-form with values in derivations of Γ(ŜT ∗M),
defined in local coordinates by Ridx

i with

(78) Ri(x; y) :=

((
∂ϕx
∂y

)−1
)k
j

∂ϕjx
∂xi

∂

∂yk
=: Y k

i (x; y)
∂

∂yk
.

Remark 3.10. One can show that (78) does not depend on the choice of coordinates. In fact,
we are able to find counterterms for the action to correct for a quantum anomaly since by formal
geometry one may resolve functions, differential forms, multivector fields, etc., so actually there is
a complex with trivial cohomology in all degrees different from zero. In particular, we get

(79) H•DG
(Γ(ŜT ∗M)) = H0

DG
(Γ(ŜT ∗M)) = Tϕ∗C∞(M) ∼= C∞(M).

3.3. Globalized BV-BFV Quantization. Now one can use the constructions above to formulate
a globalized quantum state, which we call the full covariant state as in [24]. For this we need to
extend the action by a formal globalization term, where we also lift the fields as the pullback of the
formal exponential map at a constant field x : Σ → M . This corresponds to linearizing the space
of fields FΣ around these constant maps. Following [7] we give the following definition:

Definition 3.11 (Formal globalized action). For (X,η) ∈ FΣ, we define the formal globalized action
by

(80) S̃Σ,x(X̂, η̂) :=

∫
Σ

(
η̂i ∧ dX̂i + Tϕ̃∗xΘ(X,η) + Y j

i (x; X̂)η̂j ∧ dxi
)
,

where ϕ̃x : Map(T [1]Σ, T ∗[d− 1]TxM)→ Map(T [1]Σ,M) denotes the lift of the formal exponential

map ϕx for x ∈ Σ and (X̂, η̂) is the preimage of (X,η) under this lift.

Remark 3.12. Note that X = ϕx(X̂) and η =
(

dϕx(X̂)∗
)−1

η̂.

Remark 3.13. A similar approach to globalization for closed manifolds was done by Grady–
Gwilliam, Costello, Grady–Li–Li [40, 29, 39]. Their construction is based on the idea that one can
replace the target by an L∞ equivalent one, whereas the one introduced in [7] before was based
on the idea of using formal geometry to define a symplectomorphism on a neighborhood of each
solution in the space of fields to start the perturbation theory. The two approaches are essentially
equivalent. However, in [40, 29, 39] they only get BF∞ theories since they start with theories of

19This connection can be extended to a differential on the complex of ŜT ∗M -valued differential forms on

Γ(
∧• T ∗M ⊗ ŜT ∗M). Since Γ(

∧• T ∗M ⊗ ŜT ∗M) is the algebra of functions on the formal graded manifold
M := T [1]M ⊕ T [0]M , the extended differential, which we also denote by DG, gives M the structure of a differ-
ential graded manifold. In particular since DG vanishes on the body, we may linearize at each x ∈ M and get an
L∞-algebra structure on TxM [1]⊕ TxM ⊕ TxM .
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Figure 4. Summary of Feynman graphs and rules

a particular simple type. We consider more general theories that do not fit into this framework.
Here BF∞ means that one of the two fields appears at most linearly, but this is not the case in our
setting (e.g., in the Poisson Sigma Model for a nonlinear Poisson structure). Moreover, one should
work around more general solutions than just the constant ones. In principle, one should do formal
geometry on the moduli space of solutions. Note also that this construction can be generalized to
non AKSZ models.

The Feynman rules corresponding to the formal globalized action as in (80) are given in Figure 4.

Definition 3.14 (Principal covariant quantum state). The principal covariant quantum state ψ̃Σ,x

is defined as in Definition 2.39, using the Feynman rules given in Figure 4 coming from the formal

global action S̃Σ,x.

As in the linear case, one needs to define the full covariant state to prove the modified differential
Quantum Master Equation.

Definition 3.15 (Full covariant quantum state). We define the full covariant quantum state ψ̃Σ,x

as in Definition 2.43, using the Feynman rules in Figure 4 coming from the formal global action

S̃Σ,x and additionally with the rules for the boundary vertices as in Figure 2.

One of the main result of [24] is that this state statisfies the globalized version of the modified
Quantum Master Equation, which we call the modified differential Quantum Master Equation. It
is stated as the following theorem.

Theorem 3.16 (modified differential Quantum Master Equation for split AKSZ theories). Con-

sider the full covariant perturbative state ψ̃Σ,x as a quantization of an anomaly free and unimodular
split AKSZ theory with target T ∗[d− 1]M, where M is a graded manifold. Then

(81)

(
dx−i~∆VΣ

+
i

~
Ω∂Σ

)
ψ̃Σ,x = 0,

where we denote by dx the de Rham differential on M , the body of the graded manifold M.
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Note that ∇G :=
(
dx−i~∆VΣ

+ i
~Ω∂Σ

)
is an operator on the total state space ĤP

Σ,tot. Influenced
from the classical case, we call it the quantum Grothendieck BFV operator. Another main result of
[24] is the following Theorem.

Theorem 3.17. The quantum Grothendieck BFV operator ∇G squares to zero, i.e.

(82) (∇G)2 ≡ 0.

Remark 3.18. One can also think of ∇G as a flat connection on the total bunlde of states [24].

4. Review of the Poisson Sigma Model

The Poisson Sigma Model [41, 53, 52] is a 2-dimensional topological field theory, with important
relation to deformation quantization [45, 13, 17], see also Appendix B.4, and in particular a special
case of an AKSZ Sigma Model. In this section we will very briefly review some aspects of its
classical version.

4.1. Classical Poisson Sigma Model. Let us fix a Poisson manifold (P,Π).

Definition 4.1 (Classical Poisson Sigma Model). The classical Poisson Sigma Model associates to
a smooth, oriented, compact and connected 2-manifold Σ (usually called the worldsheet) the space
of fields FΣ = VBun(TΣ, T ∗P) of vector bundle maps from TΣ to T ∗P. An element of FΣ will
be identified with a pair (X, η) where X : Σ→P is the base map and η ∈ Γ(Σ, T ∗Σ⊗X∗T ∗P) is
a 1-form on Σ with values in X∗T ∗P. The action functional is

(83) SΣ[(X, η)] =

∫
Σ

(
〈η,dX〉+

1

2
〈Π(X), η ∧ η〉

)
,

where 〈 , 〉 denotes the pairing between vectors and covectors.

Remark 4.2. In local coordinates xi on P, we can write η = ηidx
i and X = (X1, . . . , Xn). Then

the action reads

(84) SΣ[(X, η)] =

∫
Σ

(
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj

)
,

where we use the Einstein summation convention.

4.2. BV-BFV extension. The Poisson Sigma Model is a gauge theory, in the sense that the
Lagrangian is invariant under infinitesimal gauge transformations. More precisely there is a dis-
tribution on the space of fields which leaves the action invariant and closes on shell, i.e. once the
equations of motions are imposed. In particular, the infinitesimal symmetries for the Poisson Sigma
Model are given by the following gauge transformations

δβX
i = Πij(X)βj ,(85)

δβηi = −dβi − ∂iΠij(X)ηjβk,(86)

where βi is an infinitesimal parameter that is a section of X∗T ∗M . If ∂Σ 6= ∅, we also want that
βi vanishes on ∂Σ since one wants η to vanish on the boundary.
Because the gauge symmetries only close on shell, the BRST formalism fails, and one needs to
revert to the BV formalism [13, 17] on closed surfaces and to the BV-BFV formalism on surfaces
with boundary [21, 22]. The BV extended action and space of fields for the Poisson Sigma Model
can be constructed from the AKSZ formalism as discussed in [15].

Definition 4.3 (BV extended Poisson Sigma Model). The BV theory associated to the Poisson
Sigma Model is given by the triple

(FΣ, ωΣ, SΣ),
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where the BV space of fields is given by

(87) FΣ := Map(T [1]Σ, T ∗[1]P) 3 (X,η)

with X : T [1]Σ→P a map and η a section of X∗T ∗[1]P, the BV action is given by

(88) SΣ[(X,η)] :=

∫
T [1]Σ

(
〈η, DX〉+

1

2
〈Π(X),η ∧ η〉

)
,

where D = θµ ∂
∂uµ

is the differential on T [1]Σ for local even coordinates {uµ} on Σ and odd

coordinates {θµ}, and the BV symplectic form is given by

(89) ωΣ :=

∫
Σ
δX ∧ δη.

Remark 4.4. In local coordinates on P we can write

(90) SΣ[(X,η)] :=

∫
Σ

(
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj

)
.

On closed surfaces, this action satisfies the Classical Master Equation

(91) (SΣ, SΣ) = 0.

Here ( , ) is the odd Poisson bracket (BV bracket) associated to the odd symplectic form ωΣ.
One can reformulate the Classical Master Equation in terms of the cohomological vector field as
QΣ (SΣ) = 0 where QΣ = (SΣ, ) in local coordinates on P is given by

(92) QΣ =

∫
Σ

((
dXi + Πij(X) ∧ ηj

)
∧ δ

δXi
+

(
dηi +

1

2

∂

∂xi
Πjk(X)ηj ∧ ηk

)
∧ δ

δηi

)
.

In the BV-BFV formalism the boundary conditions are left unspecified and hence the Classical
Master Equation no longer makes sense. However, one can still define the symplectic form ωΣ by
(89), the action by (88) and the vector field QΣ by (92).

Definition 4.5 (BV-BFV extended Poisson Sigma Model). The BV-BFV theory associated to
the Poisson Sigma Model is given by associating to a manifold Σ with boundary ∂Σ the BV-BFV
manifold

(F∂∂Σ, πΣ, ω
∂
∂Σ = δα∂∂Σ, S

∂
∂Σ, Q

∂
∂Σ)

over the BV manifold (FΣ, ωΣ, SΣ), where

F∂∂Σ := Map(T [1]∂Σ, T ∗[1]P),(93)

α∂∂Σ :=

∫
∂Σ
η ∧ δX,(94)

Q∂∂Σ :=

∫
∂Σ

((
dXi + Πij(X) ∧ ηj

)
∧ δ

δXi
+

(
dηi +

1

2

∂

∂xi
Πjk(X)ηj ∧ ηk

)
∧ δ

δηi

)
,(95)

S∂∂Σ :=

∫
∂Σ

(
〈η, dX〉+

1

2
〈Π(X),η ∧ η〉

)
,(96)

and the map πΣ : FΣ → F∂∂Σ given by restriction of maps.

As shown in [21], these then satisfy the axioms of a BV-BFV theory20:

Q2
Σ = 0,(97)

δπΣ(QΣ) = Q∂∂Σ,(98)

ιQΣ
ωΣ = δSΣ + π∗Σα

∂
∂Σ.(99)

20This is automatic for theories which admit an AKSZ formulation.
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Moreover, ιQ∂∂Σ
ω∂∂Σ = δS∂∂Σ. As in Subsection 2.3, we have the modified Classical Master Equation

ιQΣ
ιQΣ

ωΣ = 2π∗ΣS
∂
∂Σ.

5. Globalized BV-BFV Quantization of the Poisson Sigma Model

In this section, we analyze in detail the construction explained in Section 3 applied to the Poisson
Sigma Model. In particular, we want to describe the BFV boundary operator Ω∂Σ for the Poisson
Sigma Model in the case of a worldsheet where we have a single boundary component endowed
with a certain polarization (see Figure 5). As a preparation for the remainder of the paper, we also
discuss how the boundary operator behaves under certain modifications of the formal globalized
action.

5.1. Globalization at the classical level. We consider the Poisson Sigma Model action as a
perturbation of the quadratic part of the action,

(100) S0,Σ =

∫
Σ
〈η,dX〉.

Recall that we expand around critical points of S0,Σ, which in particular satisfy dX = 0. Hence
the ghost number 0 component of X is a constant map, which we denote by its image x ∈ P. As
discussed in [16, 7, 25] and Appendix F of [22], it makes sense to perform perturbative quantization
around points in the moduli space of classical solutions. Since the Euler–Lagrange equations for the
Poisson Sigma Model are given by dX + Π(X)η = 0, we will perturb around the classical solution
X = x = const. and η = 0 and gauge equivalent solutions. Hence for the Poisson Sigma Model the
appropriate moduli space is given by

(101) M0 = {(x, 0)|x const map to P} ∼= P.

In this special case we have M0 ⊂ FΣ. Instead of fixing a single classical solution x ∈ M0 and

expanding around it, we want to vary x itself. As in Subsection 3.3 we consider the fields X̂ and η̂

given by X = ϕx(X̂) and η = ((dϕx)∗)−1η̂.
We get a formally globalized action for the Poisson Sigma Model as in Definition 3.11 by

(102) S̃Σ,x[(X̂, η̂)] =

∫
Σ
η̂i ∧ dΣX̂i︸ ︷︷ ︸
=:Ŝ0,Σ

+
1

2

∫
Σ

(Tϕ∗xΠ)ij
(

X̂
)
η̂i ∧ η̂j︸ ︷︷ ︸

=:ŜΠ,Σ,x

+

∫
Σ
Y j
i

(
x; X̂

)
η̂j ∧ dM0x

i︸ ︷︷ ︸
=:ŜΣ,x,R

,

where we denote by dM0 and dΣ the de Rham differentials on M0 and Σ respectively (we only write
it once and leave out the indication every time it is clear).

5.2. The boundary BFV operator. In this subsection we want to see how Ω∂Σ is constructed

for a formal linearized action but without any globalization term, i.e. for ŜΣ,x = Ŝ0,Σ + ŜΠ,Σ,x

in the notation of Equation (102). We can formulate the boundary operator Ω∂Σ for the Poisson
Sigma Model by the usual construction of the collapsing of subgraphs Γ′ using Definition 2.46 for
the non-globalized theory. We briefly review the results of [22, Section 4.8], where the boundary
operator of the non-globalized theory was computed. Recall the splitting of the space of fields as
in (36)

FΣ → BP
∂Σ ⊕ VP

Σ ⊕ Y′

(X,η) 7→ (X,E)⊕ (x, e)⊕ (X ,E ).
(103)

We now describe the BFV boundary operator for the different representations21.

21We call the δ
δE -polarization the X-representation and vice versa.
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∂Σ

F

Σ

Figure 5. Example of a higher genus worldsheet with one connected boundary
component and different polarization. Here F denotes either X or E.

5.2.1. E-representation. We look first at the E-representation.

Proposition 5.1. In the E-representation, the boundary operator is given by

(104) ΩE
∂Σ = ΩE

0 + ΩE
pert,

where

(105) ΩE
pert =

∫
∂Σ

∑
I,J,K,R,S

(−i~)|K|−|I|−|J |+1

(|K|+ |R|+ |S|)!
∂KB

IJ(Tϕ∗xΠ)[EIER][EJES ]
δ|K|+|R|+|S|

δ[EK ]δ[ER]δ[ES ]
,

where the BIJs are defined as the coefficients in the star product on C∞(Rn)[[~]] by

(106) f?g = fg +
∑
I,J

BIJ ∂
|I|

∂xI
f
∂|J |

∂xJ
g = fg − i~

2

∑
ij

(Tϕ∗xΠ)ij
∂f

∂xi
∂g

∂xj
+O(~2),

where I, J are multi-indices and i and j are indices and BIJ = 0 if |I| = 0 or |J | = 0, and ?
denotes Kontsevich’s star product [45].

Proof. Consider a graph Γ′ with n bulk vertices and k boundary vertices collapsing on the E-

boundary. Note that we have dim C̃Γ′(Hd) = 2n + k − 2, which has to be the same as the form
degree of ωΓ′ so that the integral

(107) σΓ′ =

∫
C̃Γ′ (Hd)

ωΓ′

does not vanish.
Thus we need to have 2n+ k− 2 = 2n, since n is the number of points in the bulk which represent
the Poisson tensor, i.e. emitting two arrows that have to remain inside the collapsing subgraph
(otherwise the contribution vanishes by the boundary condition on the propagator). Hence we get
k = 2, i.e. the graph has exactly two boundary vertices. We label one boundary vertex by u0

and the other one by u1. Let L be a multiindex labeling the inward leaves of Γ′. We decompose
L as L = (R,K, S), where R,K, S are again multiindices, representing different types of inward
leaves. R labels the leaves arriving directly at u0, S labels the leaves arriving directly to u1 and K
labels the leaves arriving at some bulk vertices of Γ′. Moreover, we label by the multiindex I the
arrows arriving at u0 from some bulk vertices of Γ′ and by the multiindex J the arrows arriving
at u1 from some bulk vertices of Γ′ (see Figure 6). Since we have exactly two boundary vertices
(k = 2), the graphs when considered without leaves are given by the same graphs as in Kontsevich’s
star product. If we sum over all graphs having the same multiindices K, I, J , we obtain the K’th
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derivative of the BIJ coefficient in the star product, since the limiting propagator coincides with
Kontsevich’s propagator, and hence we get (104). �

[EIER]
u0

[EJES ]
u1

Π
Π

Π

Figure 6. An example of a subgraph collapsing as in the description. Here we have
three incoming arrows to the boundary for the collapsing graph Γ′ on the right side
corresponding to the index S, three incoming arrows to the boundary on the left
side corresponding to the index R, three incoming arrows to Γ′ corresponding to the
index K, two incoming arrows to u0 from Γ′ corresponding to the index I and one
incoming arrow to u1 from Γ′ corresponding to the index J .

To analyze the BFV boundary operator, we introduce the notion of certain multiplication operators
appearing from collapsing graphs on the boundary endowed with the E-representation. Therefore
we give the following definition:

Definition 5.2 (Exponential multiplication operator). The exponential multiplication operator for
the boundary field E is given by the map

e
i
~ [E]y : ĤΣ → ĤΣ[[y]](108)

φ 7→ e
i
~ [E]yφ :=

∑
k≥0

(
i

~

)k ∑
I
|I|=k

yI
(∫

∂Σ
[EI ]

)
· φ(109)

On the total space ĤΣ,tot, the multiplication operator is given by a map

(110) ĤΣ,tot → ĤΣ,tot ⊗ ŜT ∗P.

Remark 5.3. Note that the exponential multiplication operator takes regular functionals to regular

functionals. The construction in [16], recalled in Appendix B, yields a bundle E = ŜT ∗P[[~]] of
?-algebras on P by applying Kontsevich’s deformation quantization in every tangent space.
Thus, we can define a map

(111) ? : Γ(ĤΣ,tot ⊗ ŜT ∗P)⊗ Γ(ĤΣ,tot ⊗ ŜT ∗P)→ Γ(ĤΣ,tot ⊗ ŜT ∗P),

given by multiplication in Γ(ĤΣ,tot) and the fiber wise star product in ŜT ∗P[[~]], i.e. we consider

the tensor product of the two algebra bundles ĤΣ,tot and ŜT ∗P over C[[~]].

Remark 5.4. Note that we can define a map from Γ(ĤΣ,tot ⊗ ŜT ∗P) to the space of operators,

by replacing the fiber coordinates yI by functional derivatives δ
δ[EI ] . Thus, if we have a section σ

of ĤΣ,tot, we can define the boundary operator ΩE
pert by

(112) ΩE
pertσ =

(
e

i
~ [E]y ? e

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

σ.
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Then one can check that (104) is given by the standard quantization22 of the boundary action

(113) S∂∂Σ =

∫
∂Σ

(
〈η̂, dX̂〉+

1

2

[
e

i
~ η̂, e

i
~ η̂
]
?

(X̂)

)
,

where 〈 , 〉 denotes the canoncial pairing of TxP with T ∗xP, where x is the constant background
field Σ → P, [ , ]? is the star commutator, and ? is the star product in TxP. Note that the
interesting part here is that we can view the BFV boundary operator as the standard quantization
of a deformed boundary action.

Remark 5.5. The fact that (ΩE
∂Σ)2 = 0 is equivalent to the associativity of the Kontsevich star

product.

5.2.2. X-representation. Next, we consider the X-representation.

Proposition 5.6. In the X-representation, the boundary operator is given by

(114) ΩX
∂Σ = ΩX

0 + ΩX
pert,

where

(115) ΩX
pert =

∞∑
k=0

1

k!

∫
∂Σ

∑
L,I1,...,Ik,R1,...,Rk

(−i~)|L|−(|I1|+···+|Ik|)+1

(|L|+ |R1|+ · · ·+ |Rk|)!
·

· ∂LaI1,...,Ik(Tϕ∗xΠ)
k∏
j=1

[XIjXRj ]
δ|L|+|R1|+···+|Rk|

δ[XL]δ[XR1 ] · · · δ[XRk ]
,

where aI1,...,Ik are given by the sum of the weights over all Feynman graphs with k boundary vertices
and |Ij | outgoing arrows for 1 ≤ j ≤ k.

Proof. In the X-representation there can be arbitrarily many vertices on the boundary, since the
arrows emanating from the bulk vertices can now leave the graph. Denote the number of vertices
on the boundary by k. Then we have a similar construction as for the E-representation, only with
the difference that for each boundary vertex we can have arbitrarily many outgoing arrows either
out of the collapsing graph Γ′ (left or right) and arbitrarily many outgoing arrows going into Γ′.
Label the vertices u on the boundary by 1, . . . , k. We denote by L the multiindex labeling the
leaves, which emanate from bulk vertices of Γ′, by Ij the multiindices labeling the arrows which
start at uj and end at some bulk vertices of Γ′ for 1 ≤ j ≤ k and by Rj the multiindices labeling
the outward leaves which start at uj for 1 ≤ j ≤ k (see Figure 7). Summing over all such graphs
Γ′, we get (114). �

Remark 5.7. The coefficients aI1,...,Ik can be regarded as the coefficients of an A∞-algebra [14].

The fact that ΩX
∂Σ squares to zero corresponds to the A∞-relations.

5.3. The globalized BFV operator. We now give a formulation for Ω∂Σ where we also consider

the globalization term ŜΣ,x,R. Recall that graphically this amounts to introducing new vertices
emanating only a single arrow, representing the vector field R as explained in the Feynman rules
of Section 3. This means that Ω∂Σ now becomes an inhomogeneous form on the Poisson manifold
P, since R is a 1-form on P. As before, we distinguish between the E- and the X-representation.

22Choosing a leaf b ∈ BP
∂Σ one considers it’s conjugated momentum −i~ δ

δb
.
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[XI1XR1 ]
u1

[XI2XR2 ]
u2

Π
Π

Π

Figure 7. An example of a subgraph collapsing as in the description. We consider
a term for k = 2 as before and we label them by u1 and u2. Here we have three
outgoing arrows for the collapsing graph Γ′ on the right side corresponding to the
index R1, three outgoing arrows on the left side corresponding to the index R1, three
outgoing arrows to Γ′ corresponding to the index L and one incoming to Γ′ out of
each of the two boundary points corresponding to the indices I1 and I2.

5.3.1. E-representation. We start with the E-representation.

Proposition 5.8. In the E-representation, the globalized boundary operator is given by

(116) Ω̃
E
∂Σ = ΩE

(0) + ΩE
(1) + ΩE

(2),

where

ΩE
(0) := ΩE

∂Σ,(117)

ΩE
(1) =

∑
I,J,L

∫
∂Σ

(−i~)|L|−|I|

(|L|+ |J |)!
∂LA

I(R,Tϕ∗xΠ)[EIEJ ]
δ|L|+|J |

δ[EL]δ[EJ ]
,(118)

ΩE
(2) =

∑
L

∫
∂Σ

(−i~)|L|+1

|L|!
∂LF (R,R,Tϕ∗xΠ)

δ|L|

δ[EL]
,(119)

where AI denotes the sum of weights of graphs with a single boundary vertex, where the incoming
arrows at the boundary vertex are labeled by I, and F denotes the sum of weights of graphs with no
boundary vertices.

Remark 5.9. Recall that in the globalization of the Poisson Sigma Model after [16], briefly reviewed
in Appendix B.3, the choice of a formal exponential map on P induces a Fedosov connection
DG = d +A on the bundle of ?-algebras given by applying Kontsevich formality for (TxP,Tϕ∗xP)
for every x ∈P. Here DG arises by “quantizing” the Grothendieck connection DG. In particular,
the graphs appearing in ΩE

(1) are exactly the ones appearing in the definition of the connection

1-form A as in (183). The connection DG is not flat, (DG)2σ = [F, σ]?. The graphs appearing in
ΩE

(2) are exactly the ones appearing in the Definition of the curvature 2-form F as in (184). Note

that, by the notation as before, we can also write

ΩE
(1) =

(
A(R,Tϕ∗xΠ)(e

i
~ [E]y)

) ∣∣∣
y= δ

δ[E]

,(120)

ΩE
(2) = F (R,R,Tϕ∗xΠ)

(
δ

δ[E]

)
.(121)

Proof of Proposition 5.8. We have seen that degree counting implies that there are exactly two
boundary vertices in a collapsing graph. Now we have to take the R vertices into account. Consider
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a collapsing graph with n bulk and k boundary vertices. Then the dimension of the corresponding
configuration space is 2n + k − 2. On the other hand, there are now two types of bulk vertices:
Suppose there are m vertices labeled by the Poisson bivector field (emitting two arrows) and r
vertices labeled by the vector field R (emitting one arrow). Since arrows cannot leave the collapsing
graph, the total form degree is 2m+ r, which has to be equal to 2n+ k − 2. Since n = m+ r, this
implies that r+ k = 2. This means there can be either zero, one or two vertices labeled by R with
two, one or zero boundary vertices respectively, as shown in Figure 8.

[EiEj ] [EkEl]

Π

ΠΠ

i1

i2

(a) r = 0, k = 2

[Ei]

R

Π

Π

i1

(b) r = 1, k = 1

R

R
Π

i1

(c) r = 2, k = 0

Figure 8. Possible graphs in the E-representation.

The first contribution r = 0 and k = 2 is exactly the operator ΩE
(0) given in (104) from the non-

globalized case. We get graphs with exactly one boundary vertex labeled by R and graphs with
exactly two boundary vertices labeled by R.
In the case r = 1 and k = 1 we obtain precisely the graphs with a single boundary vertex and
a single R bulk vertex (there can be an arbitrary number of vertices labeled by Π). This proves
Equation (118). In the case r = 2 and k = 0 we obtain Equation (119). �

5.3.2. X-representation. Next, we consider the X-representation.

Proposition 5.10. In the X-representation, the globalized boundary operator is given by

(122) Ω̃
X
∂Σ =

dim(P)∑
j=0

ΩX
(j),

where ΩX
(0) := ΩX

∂Σ and ΩX
(j) is the sum of all graphs with j vertices labeled by R for 1 ≤ j ≤ dim(P).

Proof. In the X-representation, arrows can leave the collapsing graph, so we cannot do a degree
count like in the E-representation; in particular, the number of R vertices in a collapsing graph is
only bounded by the dimension of P. �

5.4. Algebraic structure in the flatness conditon for the BFV operator. We know from

[24] that (∇G)2 = 0, and that this is equivalent to dxΩ̃∂Σ + 1
2 [Ω̃∂Σ, Ω̃∂Σ] = 0. For the Poisson Sigma

Model it is interesting to see how this condition can be derived by looking at the explicit structure

of Ω̃∂Σ as discussed in 5.3. We again consider the two different representations separately.
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σ τ

dx =

σ τ

R
+

σ τ

R

+

σ τ

R

Figure 9. Schematics of the diagrammatic content of (129). σ and τ are arbitrary
sections of Γ(E). We sum over all possible graphs. By dx we mean that we apply
dx to the result of the integration. An R means that there is precisely one vertex
labeled by R in every graph.

5.4.1. E-represention. Recall that

(123) Ω̃
E
∂Σ = ΩE

(0) + ΩE
(1) + ΩE

(2),

where ΩE
(j) denotes the part of form degree j for j ∈ {0, 1, 2}.

Proposition 5.11. We have the following equations:

[ΩE
(0),Ω

E
(0)] = 0,(124)

dxΩ
E
(0) + [ΩE

(0),Ω
E
(1)] = 0,(125)

dxΩ
E
(1) + [ΩE

(0),Ω
E
(2)] +

1

2
[ΩE

(1),Ω
E
(1)] = 0,(126)

dxΩ
E
(2) + [ΩE

(1),Ω
E
(2)] = 0,(127)

[ΩE
(2),Ω

E
(2)] = 0,(128)

Proof. Proposition 5.11 follows from general arguments in [24], but here we give an independent
proof. First we look at Equation (125).

The construction in [16], recalled in Appendix B, yields a bundle E = ŜT ∗P[[~]] of ?-algebras on P
by applying Kontsevich’s deformation quantization in every tangent space. Picking a Grothendieck
connection DG = dx + R on P, and applying the Kontsevich formality map to R, one obtains a
connection DG = dx + A on E. In [16] it is shown that this connection is a derivation of Γ(E), i.e.
for σ, τ ∈ Γ(E), we have

(129) DG(σ ? τ) = (DGσ) ? τ + σ ? (DGτ).

We claim that this equation is equivalent to (125). This can be done directly by writing out (125)
and (129) in coefficients, but it is best seen through Feynman diagrams (after all, A and the star
product are defined through Feynman diagrams). First, rewrite (129) into

(130) dx(σ ? τ)− dxσ ? τ − σ ? dxτ = −A(σ ? τ) + (Aσ) ? τ + σ ? (Aτ).

The left hand side of this equation is given by applying dx to the coefficients of the star product.
Schematically, we represent the diagrammatic content as in Figure 9.
Recall from [24] that the commutator [ΩE

(0),Ω
E
(1)] can be expressed by replacing the boundary

vertices in the graphs defining ΩE
(1) by the graphs appearing in ΩE

(0) and vice versa. If we ignore

possible arrows arriving at the boundary vertices from outside the graph, this yields precisely the
graphs on the right hand side of Figure 9: The first term are the graphs of ΩE

(0) placed at the

boundary vertex of graphs appearing in ΩE
(1), and the second and the third term represent the

graphs of ΩE
(1) placed at one of the boundary vertices of ΩE

(0). Arriving arrows from outside the

graph corresponds to taking derivatives of σ and τ . On the other hand, the left hand side yields
precisely dxΩ

E
(0).

The other equations are proven in a similar fashion, using the following relations:
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• Equation (124) holds, since the non-globalized boundary operator squares to zero (which is
in turn a consequence of the Classical Master Equation, see [22] and [24]).
• Equation (128) holds, since there are no E-field contributions in ΩE

(2).

• Equation (127) corresponds to the Bianchi identity.
• Equation (126) corresponds to the equation dxA+ 1

2 [A,A] = [F, ]?.

In the last two points, the proof is similar to the proof of the degree 1 case (125). �

Remark 5.12. Note that the fact that the non-globalized BFV operator Ω∂Σ (which depends on
the constant background field x : Σ→P) gives rise to a family of star products, constructed from
the Poisson structure Tϕ∗xΠ on TxP. Moreover, the fact that it squares to zero corresponds to the
associativity of these star products. Similarly the globalized BFV operator contains the data of
a connection and its curvature and the fact that it is flat corresponds to the structural equations
relating these objects. Hence we naturally recover the construction of the globalized version of
Kontsevich’s star product as it was discussed in [16]. In [16] the connection was twisted by a
1-form γ with values in the deformed jet bundle of ?-algebras to obtain a flat connection DG, i.e.
we have the following chain (see also Appendix B.3)

(131) DG
Π−→ DG

γ−→ DG.

This motivates the introduction of an additional term SΣ,γ in the action to obtain Ω̃∂Σ correspond-

ing to the connection DG (see Section 5.5).

5.4.2. X-representation. In the X-representation, one can similarly decompose the boundary oper-

ator into form degrees Ω̃
X
∂Σ =

∑dim P
j=0 ΩX

(j), and for every k = 0, . . . , r one obtains the equations

(132) dxΩ
X
(k−1) +

1

2

∑
i+j=k

[ΩX
(i),Ω

X
(j)] = 0.

The form degree zero part is again the fact that the non-globalized boundary operator squares to
zero. It would be interesting to investigate whether there is an algebraic structure underlying the
equations in the other form degrees, similar to the E-representation.

5.5. Modification of the action. We modify the classical BV action by using results of [7, 16,

19] as we also discuss in Appendix B. Let E := ŜT ∗P[[ε]] for some deformation parameter ε. Recall
from Appendix B.3, that given ω ∈ Ω2(P,E) such that DGω = 0 and [ω, ]? = 0, we can always
find γ ∈ Ω1(P,E) such that

(133) F
P
ω := FP + εω + DGγ + γ ? γ = 0.

This is equivalent to equation (198).
According to Remark 5.12, we now formulate a new “modified” action.

Definition 5.13 (Modified formal globalized action). Let γ ∈ Ω1(P,E) be a solution of equation
(198) for ω ∈ Ω2(P,E) as above (here the formal parameter ε is given by (−i~)/2). Then the
modified formal globalized action SΣ,x is given by

(134) SΣ,x = S̃Σ,x + SΣ,γ + SΣ,ω,
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where23

SΣ,γ =

∫
∂Σ
γ
(
x; X̂

)
=
∑
k≥1

(−1)k
(

i~
2

)k∑
I

dxi
∫
∂Σ
γ

(k)
i,I (x)X̂I ,(135)

SΣ,ω =

∫
Σ
ω
(
x; X̂

)
=
∑
k≥1

(−1)k
(

i~
2

)k∑
J

dxi ∧ dxj
∫

Σ
ω

(k)
ij,J(x)X̂J .(136)

Remark 5.14. Here we integrate the source 1-form part of X̂ along the boundary, which, since

the X̂-fluctuation vanishes on components of the boundary in X-representation, implies that for a

single boundary with X-representation SΣ,γ does not give any contribution to Ω̃
X
∂Σ. Therefore we

only need to look at the E-representation. Moreover, note that γ = O(~), i.e. it is already a type of
quantum counterterm which is not present classically, so it does not violate the modified Classical
Master Equation.

Proposition 5.15. The BFV boundary operator Ω̃
E,γ
∂Σ for the modified formal globalized action SΣ,x

is given by

(137) Ω̃
E,γ
∂Σ = ΩE

∂Σ + ΩE
(1) +

(
[e

i
~ [E]y, γ]?

) ∣∣∣
y= δ

δ[E]

,

where ? denotes again the fiberwise star product on E as in 5.2.

Proof. Considering again a degree counting, we get different cases of boundary vertex configura-
tions. For the case (r = 0, k = 2), we can either have two E-field boundary vertices, one E-field
and one γ boundary vertex or two γ boundary vertices. For the case (r = 1, k = 1), we can have
either one E-field boundary vertex or one γ boundary vertex. For the case (r = 2, k = 0) we have
the same contribution as before. In the case ω 6= 0, there is a configuration where (r = k = 0),
but there is a single ω vertex. These different diagrams contribute to different terms for the new
boundary operator, which are:

• r = 0, k = 2 (E,E on the boundary): Summing over all these graphs, this corresponds to
the term

(138) ΩE
∂Σ,

• r = 0, k = 2 (γ, γ on the boundary): Summing over all these graphs, this corresponds to

(139) (γ ? γ)

(
δ

δ[E]

)
,

• r = 0, k = 2 (E, γ on the boundary): Summing over all these graphs, this corresponds to

(140)
(

[e
i
~ [E]y, γ]?

) ∣∣∣
y= δ

δ[E]

,

• r = 1, k = 1 (E on the boundary): Summing over all these graphs, this corresponds to the
term

(141)
(
A(R,Tϕ∗xΠ)(e

i
~ [E]y)

) ∣∣∣
y= δ

δ[E]

,

• r = 1, k = 1 (γ on the boundary): Summing over all these graphs, this corresponds to the
connection term

(142) A(R,Tϕ∗xΠ)(γ) = A(R,Tϕ∗xΠ)

(
γi

(
δ

δ[E]

))
dxi,

23The reason why such counter terms always exists is due to the fact that the cohomology which would provide
obstructions is trivial [16] (see also Remark 3.10).
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• r = 2, k = 0 (nothing on the boundary): Summing over all these graphs, this corresponds
to the curvature term

(143) F (R,R,Tϕ∗xΠ),

• r = k = 0 (just one ω vertex in the bulk): Summing over all graphs this just yields ω.

By Equation (198) and (190), we obtain that the terms (139), (140), (143) and possibly ω, can be
put together as

(144) A(R,Tϕ∗xΠ)(γ)− F (R,R,Tϕ∗xΠ)− γ ? γ − ω = dxγ.

Hence they do not contribute to the boundary operator, since they cancel the terms in dxψ̃Σ,x in
the modified differential Quantum Master Equation, where the full state is defined by the action
SΣ,x. �

Remark 5.16. By equation (194) and the fact that dxe
i
~E = 0, the surviving terms will correspond

to

(145)
(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

=
(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

+
(

[e
i
~ [E]y, γ]?

) ∣∣∣
y= δ

δ[E]

,

where DGe
i
~ [E]y means that we apply DG to the fiber coordinates y of e

i
~ [E]y. Hence the boundary

operator is given by

(146) Ω̃
E,γ
∂Σ = ΩE

∂Σ +
(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

.

5.5.1. The twisted state. Using the modified action (134) one can define a state twisted by γ as
follows.

Definition 5.17 (Twisted full covariant quantum state). Let Σ be a manifold, possibly with
boundary. Given a BF -like BV-BFV theory πΣ : FΣ → F∂∂Σ, a polarization P on F∂∂Σ, a splitting

FΣ
∼= BP

∂Σ ⊕ VP
Σ ⊕ Y′, and a gauge-fixing Lagrangian LΣ,x ⊂ Y′, we define the twisted full covariant

quantum state by the formal perturbative expansion of the BV integral

(147) ψ̃
γ

Σ,x(X,E; x, e) :=

∫
LΣ,x⊂Y′

e
i
~SΣ,x[(X̂,η̂)] ∈ Ω•(Σ, ĤP

Σ,tot),

using the Feynman rules in Figure 1 and additionally with the rules for the boundary vertices as
in Figure 2 and Figure 10.

The reason to introduce this state will become clear in the next two sections, when we analyze the
anomaly arising from alternating boundary conditions. Essentially, the twist localizes the anomaly
at the corners (Theorem 6.6), where it can be canceled by changing the boundary operator (Theorem
7.3).
The twisted state is closed with respect to the operator

(148) ∇γG :=

(
dx − i~∆VΣ

+
i

~
Ω̃

E,γ
∂Σ

)
.

This is a consequence of Theorem 6.6 below.

5.5.2. Flatness. The following Proposition tells us that the twisted quantum Grothendieck BFV

operator still remains a differential, i.e. squares to zero for Ω̃
E,γ
∂Σ .

Proposition 5.18. The operator

(149) ∇γG =

(
dx − i~∆VΣ

+
i

~
Ω̃

E,γ
∂Σ

)
on ĤΣ,tot squares to zero.
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ω

i1

i2

is
 
∑

k≥1(−1)k
(

i~
2

)k
dxi ∧ dxjω

(k)
ij,i1···ik(x)

(a) New interaction vertices in the bulk representing ω

γ

i2 i1
ik

 
∑

k≥1(−1)k
(

i~
2

)k
dxiγ

(k)
i,i1···ik(x)

(b) New boundary vertices representing γ

Figure 10. New vertices appearing in the Feynman rules

Proof. Note that the flatness condition of ∇γG, is equivalent to

(150) dxΩ̃
E,γ
∂Σ +

1

2

[
Ω̃

E,γ
∂Σ , Ω̃

E,γ
∂Σ

]
= 0.

Separating the equation by form degree in P this is equivalent to

1

2

[
ΩE
∂Σ,Ω

E
∂Σ

]
= 0(151)

dxΩ
E
∂Σ +

[
ΩE
∂Σ,
(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

]
= 0(152)

dx

((
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

)
+

[(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

,
(
DGe

i
~ [E]y

) ∣∣∣
y= δ

δ[E]

]
= 0.(153)

Equation (151) is just saying that the standard BFV boundary operator squares to zero. Equation
(153) is true because DG is a flat connection. Equation (152) means that ΩE

∂Σ is a DG-closed section.

This comes from the fact that the coefficients of ΩE
∂Σ are the same as in the star product. �

6. Alternating boundary conditions and the modified differential Quantum
Master Equation

6.1. Consistent boundary conditions. In [13] it was shown that the perturbative expansion
of the QFT given from of the Poisson Sigma Model on the disk coincides with Kontsevich’s star
product, where we expand around the gauge equivalent classical solutions of the given Euler–
Lagrange equations, which are X = x = const., η = 0 (recall Subsection 5.1 and see also Appendix
B). The boundary conditions on the disk D are exactly set such that η|∂D = 0 in order to be
consistent with these types of solutions.

6.2. Construction of boundary conditions. In [24], the globalization construction was only
considered for boundaries with a single polarization. We want to extend the methods developed in
the previous sections following [24] to describe deformation quantization of the relational symplectic
groupoid [18, 11, 12] extending what we did in [25] in the case of a constant Poisson structure.
This requires that we perform the BV-BFV quantization in the presence of “alternating” boundary
conditions, which we can formulate for any worldsheet Σ: Let ∂Σ =

⊔
` ∂Σ(`) and consider a

partition into two distinguished components for every connected component ∂Σ(`) of the boundary
given by ∂Σ(`) = ∂0Σ(`) t ∂PΣ(`). Each ∂Σ(`) is given as a disjoint union of an even number
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of intervals I
(`)
1 , . . . , I

(`)
n , such that ∂0Σ(`) =

⊔
1≤j≤n
j odd

I
(`)
j and ∂PΣ(`) =

⊔
1≤j≤n
j even

I
(`)
j . Now the

alternating condition is that on components of ∂0Σ(`) we set η̂ = 0, and on components of ∂PΣ(`)

we choose some polarization Pj for each Ij , and consider the corresponding boundary fields. We
think of the endpoints of the intervals as “corners”. Moreover, we denote by ∂1Σ the components
of ∂PΣ with the δ

δE -polarization and by ∂2Σ the components of ∂PΣ with the δ
δX -polarization.

Remark 6.1. The choice of polarization imposes boundary conditions on the fluctuations. The
boundary conditions corresponding to our polarizations for split AKSZ theories are some general-
ization of Dirichlet and Neumann conditions. Note that, even if fixing a field (to zero, in the case
of a fluctuation) on the boundary looks like a Dirichlet boundary condition, it may also be thought
as a Neumann one, for our theory is of first order.

∂Σ(1)

∂Σ(2)

Σ

Figure 11. Example of a worldsheet manifold Σ with genus g = 3 and two disjoint
boundary components ∂Σ(1) and ∂Σ(2).

∂Σ(`)

I1

I2

I3

I4

I5

I6

Figure 12. Example of a boundary component of Σ as in Figure 11, where the

boundary ∂Σ(`) is split into n = 6 disjoint components, i.e. ∂Σ(`) =
⊔

1≤j≤6 I
(`)
j

with ∂0Σ(`) =
⊔
j∈{1,3,5} I

(`)
j and ∂PΣ(`) =

⊔
j∈{2,4,6} I

(`)
j . On ∂0Σ(`) we set η̂ =

0. On I
(`)
2 , I

(`)
4 , I

(`)
6 we choose polarizations and take the corresponding boundary

conditions.
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6.3. Curvature Anomaly. Unlike in the constant case discussed in [25], upon quantization24 the
modified differential Quantum Master Equation fails to be satisfied. This effect arises from the
curvature of the deformed Grothendieck connection.

Proposition 6.2. Consider the full state ψ̃Σ,x defined by S̃Σ,x as in Definition 3.15. Then

(154) ∇Gψ̃Σ,x = exp

(
i

~

∫
∂0Σ

F (R,R,Tϕ∗xΠ)(X )

)
ψ̃Σ,x,

where we integrate the X-fluctuation X in F along ∂0Σ. Here F denotes the curvature of the
deformed Grothendieck connection DG defined in Appendix B.3 and ∇G is the quantum Grothendieck
BFV operator defined as in (81).

Proof. If we try to prove the modified differential Quantum Master Equation as in [24], when
integrating over the boundary of the compactified configuration space there are strata where a bulk
graph collapses at a point u ∈ ∂0Σ, i.e. one of the boundary components where η̂ = 0. The degree
count as we have seen before, shows that we will only end up with graphs without any boundary
vertices and precisely two R vertices in the bulk. Summing over all these graphs one obtains the
curvature of the Grothendieck connection as in Appendix B. However, since there are no boundary
fields on ∂0Σ, these terms cannot be cancelled by a term in the BFV boundary operator. �

Remark 6.3. This can be interpreted as a quantum anomaly, since this problem is not present
at the classical level. To restore the modified differential Quantum Master Equation, we can add
additional terms to the action, reminiscent to the addition of counterterms. This will yield new
boundary terms, but they can be cancelled by adding appropriate terms to the BFV boundary
operator as we have already seen in Subsection 5.5, if we allow for a slight extension of the space
of states (see Subsection 7.1).

6.4. New boundary contributions in the proof of the modified differential Quantum
Master Equation. To cancel this anomaly we add quantum counterterms to the action, specifi-
cally, the terms SΣ,γ and SΣ,ω defined in (135) and (136) respectively. The new terms in the action
give rise to additional vertices. Namely, we now have vertices of arbitrary valence on components

of the boundary where X̂ 6= 0, i.e. on the η̂ = 0 boundary components and the components of
∂PΣ in E-representation. At such a vertex we place the corresponding derivative of γ in the formal
directions. Also, there are new bulk vertices labeled by ω, which are similarly labeled by derivatives
of ω in the formal directions.
Let C denote the set of all corner points of Σ. There are two types of corners: Let C2 ⊂ C denote
the subset containing those corner points which connect a δ

δX -polarized connected component (i.e. a
component in E-representation) of ∂0Σ with a connected component of ∂PΣ and let C1 ⊂ C denote
the subset containing those corner points which connect a δ

δE -polarized connected component of
∂0Σ with a connected component of ∂PΣ.

Definition 6.4 (Twisted quantum Grothendieck BFV operator). We define the twisted quantum
Grothendieck BFV operator by

(155) ∇γG := dx − i~∆VΣ
+

i

~

(
Ω̃

X
∂1Σ + Ω̃

E,γ
∂2Σ

)
︸ ︷︷ ︸

=:Ω̃
P,γ
∂Σ

.

Remark 6.5. The twisted quantum Grothendieck BFV operator is also a coboundary operator.

This follows from Proposition 5.18 and the fact that Ω̃
X
∂1Σ also squares to zero.

24Note that we are not performing “extended” quantization of a manifold with corners in the sense of extended
TQFTs, but simply apply BV-BFV quantization where we allow boundary conditions to change along connected
components of the boundary.
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η̂ = 0

C E
(a) A corner in C2

η̂ = 0

C X

(b) A corner in C1

Figure 13. The two types of corners.

We can now state the main theorem of this section.

Theorem 6.6. Consider the twisted full state ψ̃
γ

Σ,x defined in Definition 5.17 and the twisted

quantum Grothendieck BFV operator ∇γG defined in Definition 6.4. Then

(156) ∇γGψ̃
γ

Σ,x =
∑
C∈C1

T (C)ψ̃
γ

Σ,x,

where T (C) are functionals on BP
∂Σ with values in Ω1(P), depending only on the values of the fields

at the corner point C.

Remark 6.7. In particular, T (C) are non-regular functionals in the sense of 2.32. In Section 7, we
discuss an extension of the space of operators and states, which will allow us to rewrite equation
(156) as a closedness condition with respect to a differential on this extended space.

6.5. Proof of Theorem 6.6. If we try to proceed with the proof of the modified differential
Quantum Master Equation as in [24], we get terms where a part of a graph collapses on ∂0Σ, i.e.
the part of the boundary where η̂ = 0. We will now analyze these terms more closely. Let Γ′ ⊂ Γ
be a subgraph that collapses on a point of the boundary, and denote by Γ/Γ′ the resulting graph.
Suppose Γ′ has n bulk and k boundary vertices on ∂0Σ. Then the dimension of the corresponding
boundary stratum is 2n + k − 2 as we have seen before. The contribution of the graph is non-
vanishing only if the form degree of ωΓ′ is also 2n+ k − 2. The bulk vertices correspond to either
Π or R, the former has two outgoing arrows, the latter only one. If one of these arrows points
out of Γ′, then ωΓ/Γ′ = 0, since it contains a propagator with the tail evaluated on the η̂ = 0
boundary component. Hence all these arrows must point to another vertex in Γ′. Suppose there
are m vertices with two outgoing arrows and r vertices with one outgoing arrow. Then we must
have the following system of equations:

2n+ k − 2 = 2m+ r(157)

n = m+ r,(158)

which is equivalent to r = 2− k (m is arbitrary, and n = m+ r). Since r ≥ 0, we conclude that k
is either 0, 1, or 2. Let us analyze these possibilities in more detail.

6.5.1. Terms with k = 0. In these terms there are no boundary vertices. They are also present if
we do not add SΣ,γ to the action. We have r = 2−k = 2, so these terms are given by graphs with R
at two vertices. Summing over all these terms yields the curvature of the Grothendieck connection,
F (again, see Appendix B for details).
This is what spoils the modified differential Quantum Master Equation, since we cannot cancel it
with terms in the BFV boundary operator, which can only cancel the boundary contributions on
boundary components with free boundary fields. We are thus forced to add other terms to the
action to cancel the appearance.
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6.5.2. Terms with k = 1. In these terms there is one boundary vertex labeled by γ, and one bulk
vertex labeled by the vector field R. If we sum over all such graphs, we get

(159) A(R,Tϕ∗xΠ)(γ) = A(R,Tϕ∗xΠ)(γi)dx
i

by the Definition of A as in Appendix B.

6.5.3. Terms with k = 2. In these terms there are two boundary vertices labeled by γ, and no
vertices labeled by the vector field R. If we sum over all such terms, we get precisely the star
product γ ? γ.

R

R

Π

(a) Graph with
r = 2, k = 0

γ R

(b) Graph with r =
k = 1

γ

γ

Π

(c) Graph with r =
0, k = 2

Figure 14. Different contributions at the boundary

6.5.4. New contributions at the corners. Introducing alternating boundary conditions means that
the compactification of the configuration space changes. Namely, there are new boundary strata
corresponding to the collapse of vertices at one of the corners. Such a collapse can be modeled
on a configuration of points on the upper right quadrant, with a choice of boundary conditions on
both sides. Here there is no translation symmetry, so the dimension of the boundary stratum is
different. Adding SΣ,γ to the action cancels the anomaly that comes from allowing for alternating
boundary conditions. However, it results in new boundary contributions that come from graphs
collapsing at the corners, as we will show presently. The propagator still vanishes when its tail is
evaluated at one of the corners (this can be checked from the explicit formula for the propagator in
Appendix C). For this reason, as above if some subgraph Γ′ of a graph Γ collapses at a corner, the
contribution is only non-vanishing if no arrows leave Γ′. Let us start at a corner C in C2. Then we
cannot have propagators ending at the δ

δX -polarized boundary, since otherwise we need to evaluate
the E-field at the corner point, which is equal to zero because of its boundary condition. So, any
subgraph collapsing at C can only have bulk vertices, say n = m + r of them, where m denotes
the number of interaction and r the number of R vertices, and vertices and ∂PΣ, say k of them.
Counting the dimensions we arrive at the following system of equations:

2n+ k − 1 = 2m+ r(160)

n = m+ r,(161)

which has the solutions k = 0, r = 1 and k = 1, r = 0, with m arbitrary. However, at these corners,
graphs with bulk vertices do not contribute, this is the statement of the following lemma.

Lemma 6.8. If Γ′ is a subgraph of Γ containing bulk points, then the integral of ωΓ, defined as in
(44), over the boundary face of CΓ where Γ′ collapses at a corner C ∈ C2 vanishes.
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Proof. The point is that at these corners the boundary conditions are the same on both sides, so we
can map the configuration to a configuration of points on the upper half plane, where we use the
usual Kontsevich propagator, but without taking the quotient with respect to translations along
the real axis. Instead we fix the image of the corner point to be a given point, e.g. 0. See also
Figure 15. Now, observe that configurations with one bulk point evaluate to 0: These are either
k = 0,m = 0, r = 1, but this case is ruled out because there are no tadpoles, or k = 1,m = 1, r = 0,
but this is 0 because graphs cannot double edges. For more than two bulk points, note that the
Kontsevich propagator depends on the the real parts of the points in the configuration only through
their differences. Hence the product of propgators that is to be integrated has no component in the
real part of the center of mass of the configuration, so integrating along this direction yields 0. �

γ

γ

C

C

h

E = 0

E = 0 E = 0 E = 0

Figure 15. Here h represents the mapping of the corner with the interior to the
upper half plane, where the corner point is mapped to zero (with the same boundary
conditions). The dashed circle represents some graph in the bulk with vertices
corresponding to the Poisson structure Π and the globalization term R, with some
outgoing arrows deriving γ on the boundary. In particular, the map h is given by
z 7→ z2 on the upper half plane.

This means the only possibly nonzero contributions are those with k = 1, n = 0, i.e. subgraphs
Γ′ consisting of a single γ vertex - possibly with any number of inward leaves - approaching the
corner. This vertex can either lie on the ∂0Σ or ∂PΣ component and the corresponding boundary
faces have opposite orientation. Hence all terms cancel out: there are no extra contributions from
corners in C2.
Next let us turn to corners C ∈ C1. Here the boundary conditions change, so the propagator does
not have translation symmetry along the axis. However, by continuity, now it vanishes when either
the head or the tail are evaluated at the point of collapse. This implies that a subgraph collapsing
at C can have neither inward nor outward leaves, i.e. only entire connected components of graphs
can collapse at corner C ∈ C1. Counting dimensions as above, we see that there are again the
two possibilities r = 0, k = 1 and r = 1, k = 0, with m arbitrary; in addition now we can have an
arbitrary number b of vertices at the boundary with X-representation.
Since only connected components of a graph can collapse, the corresponding action on the state is
a multiplication operator T (C) that multiplies states with a functional of the values of X at corners
in C1, given by summing over all possible boundary contributions. Since γ and R are both 1-forms
on P, T (C) takes values in 1-forms on P. This is not a regular functional as in 2.32, as it contains
evaluation of fields on the corners. This completes the proof of Theorem 6.6.

7. The modified differential Quantum Master Equation for the globalized
Poisson Sigma Model with alternating boundary conditions

We have seen that the modified differential Quantum Master Equation fails if we impose alternating
boundary conditions as in Proposition 6.2 and Theorem 6.6. Hence we need to extend the quantum
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η̂ = 0

C
X

X

γ

(a) Example of an r = 0, k = 1 con-
figuration

η̂ = 0

C
X

X

R

(b) Example of an r = 1, k = 0 con-
figuration

Figure 16. Possibilities for graphs collapsing at C ∈ C1.

Grothendieck BFV operator on an extended space of operators and states such that the modified
differential Quantum Master Equation holds for the extended connection. The plan is to promote
the corner terms T (C) to multiplication operators on the state space. This requires the extensions
of the state space to include functionals which evaluate fields at the corners.

7.1. Extension of states. There are two different terms in T (C), namely the one where we have
a single γ on the boundary approaching the corner and no vector field R, or no boundary vertex
on the η̂ = 0 component and one single vector field R included in the graph from the bulk (see also
Figure 16). To interpret them as multiplication operators we have to enlarge the space of states to
allow for functionals evaluating boundary fields at corners.

Definition 7.1 (Space of corner states). For C ∈ C1, we define the space of corner states by

(162) HC :=

{
F : BP

∂Σ → C[[~]]
∣∣∣F (X) =

∑
J

BJ [XJ(C)], where BJ ∈ C[[~]]

}
Definition 7.2 (Extended state space). We define the extended state space by

(163) ĤC
∂Σ,x := Ĥ∂Σ,x ⊗

⊗
C∈C1

HC .

Moreover, the total space is given by ĤC
∂Σ,tot :=

⊔
x∈P ĤC

∂Σ,x.

Now we can define a state to be given as a nonhomogeneous differential form on P with values in

ĤC
∂Σ,tot, i.e. an element of Ω•(P, ĤC

∂Σ,tot).

7.2. Extension of operators. Recall from [22] that the algebra of the operators is generated by

Ωprinc
0 , which is the standard quantization of S0,Σ, and simple operators, which are of the form

(164)

∫
∂Σ
LJI1···Ir [X

I1
] · · · [XIr ] δ

|J |

δXJ
,

where LJI1···Ir ∈ Ω•(∂Σ) are some coefficients. Note that we can also have a similar expression
for E. We want to extend this space by the multiplication operators coming from the corners as
described above. The space of operators is extended by the multiplication operators that appear
in the case of corners. The algebra of boundary operators acts on the algebra of corner operators
by commutators. E.g. ∂kΠ

ijXk δ
δ[XiXj ] is a boundary operator and [XiXj ](C)∂iγ∂jγ is a corner

operator, with C ∈ C1. Then the commutator is given by

(165)

[
∂kΠ

ijXk
δ

δ[XiXj ]
, [XiXj ](C)∂iγ∂jγ

]
= ∂kΠ

ijXk(C)∂iγ∂jγ.



ON THE GLOBALIZATION OF THE PSM IN THE BV-BFV FORMALISM 41

The extended space now consists of operators taking a state in Ω•(P, ĤC
∂Σ,tot) and multiplying it

with an element in Ω•(P,HC).

7.3. modified differential Quantum Master Equation and Flatness. Now we are able to
define the extended operator as follows. Let ΩC := −

∑
C∈C1

T (C), where T (C) is as in Theorem

6.6. The new operator ∇̃γG is then defined by

(166) ∇̃γG := dx − i~∆VΣ
+

i

~

(
Ω̃

P,γ

∂Σ + ΩC

)
.

7.3.1. The modified differential Quantum Master Equation. We have the following theorem.

Theorem 7.3 (modified differential Quantum Master Equation for alternating boundary condi-

tions). Let ∇̃γG be given as before, and consider the twisted full state ψ̃
γ

Σ,x. Then

(167) ∇̃γGψ̃
γ

Σ,x = 0

Proof. This follows immediatley from Theorem 6.6. �

7.3.2. Flatness. We have the following theorem.

Theorem 7.4. The operator ∇̃γG is a coboundary operator, i.e. (∇̃γG)2 = 0.

Proof. The flatness condition is equivalent to the fact that Ωext = Ω̃
P,γ

∂Σ + ΩC is a Maurer–Cartan

element of the differential graded Lie algebra of differential forms with values in End(ĤC
∂Σ,tot).

Hence the proof of Theorem 7.4 is given by the Proposition 7.5. �

Proposition 7.5. dxΩ
ext + 1

2

[
Ωext,Ωext

]
= 0.

Proof. First of all note that dxΩ̃
P,γ

∂Σ + 1
2

[
Ω̃

P,γ

∂Σ , Ω̃
P,γ

∂Σ

]
= 0. This means we only need to prove

(168) dxΩC +
1

2
[ΩC ,ΩC ] +

[
ΩC , Ω̃

P,γ

∂Σ

]
= 0.

We can show this similarly to [22, 24]. Namely, since Ω̃
P,γ

∂Σ and ΩC are given as sum of integrals
over the boundary of the configuration space of collapsing graphs, we can use Stokes’ Theorem:

(169) dxΩC = dx
∑
Γ′≤Γ

∫
CC

Γ′ (Σ)
σΓ′ =

∑
Γ′≤Γ

∫
CC

Γ′ (Σ)
dσΓ′ −

∫
∂CC

Γ′ (Σ)
σΓ′

Here CC
Γ′(Σ) is the configuration space describing the relative position of the vertices of the subgraph

Γ collapsing to the corner. In the first, the differential can act on the propagators, the boundary
fields, or the vertex tensors Tϕ∗xΠ, γ, R. The restriction of the propagators to this boundary face

is closed, see Appendix C. If the differential acts on the boundary fields, this yields [Ωprinc
0 ,ΩC ].

The differential acting on vertex tensors will be cancelled by boundary terms. Notice that on the
boundary faces the dimension counting is different and we can have either two vertices labeled by
R, one R vertex and one γ vertex on the boundary or two γ vertices on the boundary. A boundary
face of CC

Γ′(Σ) corresponds to a collapse of a subgraph Γ′′ ≤ Γ′ to a single point. There are four
distinct possibilities for that point (see Figure 17):

• The point can be in the bulk. If Γ′′ contains more than two vertices then the contribution
is zero by a Kontsevich vanishing lemma. If it contains exactly two vertices, there is a
cancellation similar to the proof of the modified differential Quantum Master Equation
using the classical master equation, the fact that vertex tensors are dx +R closed, and that
[R,R] = 0.
• The point can be the corner. These terms yield [ΩC ,ΩC ].
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• The point can be at the boundary with the η̂ ≡ 0 boundary condition. In that case there
is a cancellation similar to one in the proof of the modified differential Quantum Master
Equation in section 6.4 using the equation dxγ+A(R,Tϕ∗xΠ)(γ)+γ?γ+F (R,R,Tϕ∗xΠ) = 0.

• The point can be on the upper boundary, this corresponds to
[
Ω̃

P,γ

∂Σ ,ΩC

]
, the action of the

algebra of boundary operators on the algebra of corner operators.

η̂ = 0

C
X

(a) Collapsing for a bulk point

η̂ = 0

C
X

(b) Collapsing for a point on the
η̂ = 0 boundary

η̂ = 0

C
X

(c) Collapsing for a corner point

η̂ = 0

C
X

(d) Collapsing for a point on the
polarized boundary

Figure 17. Illustration of the different cases for the collapsing

�

Remark 7.6. The failure of the (modifed) differential Quantum Master Equation and its resolution
is somehow similar to what happens in the Landau–Ginzburg model [43, 9, 46]. Namely, the classical
boundary conditions turn out not to be compatible with quantization. The resolution consists in
coupling the bulk theory with a boundary theory with action SΣ,γ .

8. Outlook

8.1. Relational Symplectic Groupoid.

8.1.1. Kontsevich’s star product. One can construct the Moyal product [49] (deformation quanti-
zation) as the gluing of canonical relations as it was shown in [25]. It still remains to show that
one can also use the gluing of the relational symplectic groupoid to construct a globalized version
of Kontsevich’s star product using the gluing formulas of the BV-BFV formalism. One can use the
results of this paper to deal with the L3 worldsheet structure, which is given as in Figure 18 with
mixed boundary conditions.

8.1.2. Relational symplectic groupoid with handles. Another interesting aspect would be to consider
the relational symplectic groupoid with handles. That is, one considers canonical relations L3 with
non vanishing genus. Since our theory is topological, we are able to move the handle in arbitrary
directions, which means that one has to understand what happens when a hole will approach an



ON THE GLOBALIZATION OF THE PSM IN THE BV-BFV FORMALISM 43

η̂ = 0 η̂ = 0

η̂ = 0
E E

X

Figure 18. The canonical relation L3 with its boundary structure. Here we have
two δ

δX -polarized boundaries (the lower) and one δ
δE -polarized boundary (the upper),

which would correspond to ∂2L3 and the η̂ = 0 boundaries which are components
of ∂1L3.

observable for the gluing of the disk in [24]. Moreover, one has to check what kind of structures
appear for associativity.

8.1.3. Generalization of Kontsevich’s star product. Kontsevich’s star product arises from the com-
putation of expectation values of observables in the Poisson Sigma Model for a genus zero wordsheet
surface. As in string theory, one expects that we should sum over all genera. Since a particular
gluing of the relational symplectic groupoid gives rise to Kontsevich’s star product, one can relate
this structure to the relational symplectic groupoid construction with handles.

We will return on these questions in a forthcoming paper.

8.2. Manifolds with corners. The methods developed in this paper can be useful to give a
description for the the quantization of manifolds with corners. Here the corners arose from the
structure of mixed boundary conditions, but in principle the methods that we develop might be
adapted to the general case. Another paper in this direction is [42].

8.3. Globalization of other theories. AKSZ theories have a particularly nice subset of classical
solutions, the space of constant maps. This subset admits for a natural globalization, as was shown
in [24]. It would be interesting to see whether the methods we used carry over to more complicated
moduli spaces of classical solutions. E.g. in Chern-Simons theory, this subset is just the trivial
connection, since the body of the target in that case is just a point, but one would like to take
non-trivial connections into account as well.

Appendix A. Configuration spaces and their compactifications

To define the quantum state, we need to recall the notion of configuration spaces and their com-
pactification as in [2, 36] due to Fulton–MacPherson and Axelrod–Singer.

A.1. FMAS-compactification. We start with the definition of the configuration space.

Definition A.1. Let M be a manifold and S a finite set. The open configuration space of S in M
is defined as

(170) ConfS(M) := {ι : S ↪→M |ι injection}

Elements of ConfS(M) are called S-configurations. To give an explicit definition of the compacti-
fication that can be extended to manifolds with boundaries and corners, we introduce the concept
of collapsed configurations. Intuitively, a collapsed S-configuration is the result of a collapse of a
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subset of the points in the S-configuration. However, we remember the relative configuration of
the points before the collapse by directions in the tangent space. This is a configuration in the
tangent space that is well-defined only up to translations and scaling. The difficulty is that one
can imagine a limiting configuration where two points collapse first together and then with a third
(see Figure 19). This explains the recursive nature of the following definition. Recall that if X is
a vector space, then X × R>0 acts on X by translations and scaling.

Definition A.2 (Collapsed configuration in M). Let M be a manifold, S a finite set and P =
{S1, . . . , Sk} be a partition of S. A P-collapsed configuration in M is a k-tuple (pσ, cσ) such that
((pσ, cσ))kσ=1 satisfies

(1) pσ ∈M and pσ 6= pσ′ , for σ 6= σ′,

(2) cσ ∈ C̃Sσ(TpσM), where for |S| = 1, C̃S(X) := {pt} and for |S| ≥ 2
(171)

C̃S(X) :=
∐

P={S1,...,Sk}
S=tσSσ ,k≥2

{
(xσ, cσ)1≤σ≤k

∣∣∣∣ (xσ, cσ) P-collapsed S-configuration in X

}/
(X × R>0)

Here, ϕ ∈ X × R>0 acts on (xσ, cσ) by (xσ, cσ) 7→ (ϕ(xσ),dϕxσcσ).

Intuitively, given a partition P = {S1, . . . , Sk}, a k-tuple (pσ, cσ) describes the collapse of the
points in Sσ to pσ. cσ remembers the relative configuration of the collapsing points. This relative
configuration can itself be the result of a collapse of some points.

Definition A.3 (FMAS compactification). The compactified configuration space CS(M) of S in M
is given by

(172) CS(M) :=
∐

S1,...,Sk
S=tσSσ

{
(pσ, cσ)1≤σ≤k

∣∣∣∣ (pσ, cσ) P-collapsed S-configuration in M

}
.

A.2. Boundary strata. A precise description of the combinatorics of the stratification can be
found in [36], where it is also shown that CS(M) is a manifold with corners and is compact if M
is compact. For us, only strata in low codimensions are interesting. Let S = {s1, . . . , sk}. The
stratum of codimension 0 corresponds to the partition P = {{s1}, . . . , {sk}}. For ` > 1, strata
of codimension 1 correspond to the collapse of exactly one subset S′ = {s1, . . . , s`} ⊂ S with no
further collapses, i.e a partition P = {{s1, . . . , s`}, {s`+1}, . . . , {sk}} and configuration (pσ, cσ) with

cσ in the component of C̃S′(X) given by the partition P = {{s1}, . . . , {s`}}. This boundary stratum
will be denoted by ∂S′CS(M), in particular, we have

(173) ∂CS(M) =
∐
S′⊂S

∂S′CS(M).

There is a natural fibration ∂S′CS(M) → CS\S′∪{pt}(M) whose fiber is C̃S(RdimM ). Finally, we
note that if |S| = 2, then CS(M) ∼= Bl∆(M ×M), the differential-geometric blow-up of the diagonal

∆ ⊂ M ×M , and C̃S(X) ∼= SdimX−1. See Figure 19 for an example of a configuration of points
and coresponding boundary strata.

A.3. Configuration spaces for manifolds with boundary. We proceed to recall the definition
of a compactified configuration space for manifolds with boundary. Let M be a compact manifold
with boundary ∂M . Recall that for a manifold M with boundary ∂M , at points p ∈ ∂M there is
a well-defined notion of inward and outward half-space in TpM . If H ⊂ X is a half-space, then
∂H ⊂ X is a hyperplane. ∂H × R>0 acts on H by translations and scaling.
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p1

p3

p2

M

p4

p5p6

Figure 19. An element of CS(M).

Definition A.4 (Configuration spaces for manifolds with boundary). Let M be a manifold with
boundary ∂M . For S, T finite sets, we define the open configuration space by

(174) ConfS,T (M,∂M) := {(ι, ι′) : S × T ↪→M × ∂M}

Definition A.5 (Collapsed configuration on manifolds with boundary). Let (M,∂M) be a manifold
with boundary. Let S, T be finite sets and P = {S1, . . . , Sk} a partition of S t T . Then, a P-
collapsed (S, T )-configuration in M is a k-tuple of pairs (pσ, cσ) such that

(1) pσ ∈M and pσ 6= pσ′ , for all σ 6= σ′,
(2) Sσ ∩ T 6= ∅⇒ pσ ∈ ∂M ,
(3)

cσ ∈

{
C̃Sσ(TpσM) pσ ∈M \ ∂M
C̃S∩Sσ ,T∩Sσ(H(TpσM)) pσ ∈ ∂M

where H(TpσM) ⊂ TpσM denotes the inward half-space in TpσM . Here, for a vector space X and

a half-space H ⊂ X, C̃∅,{pt}(H) := C̃{pt},∅(H) := {pt}, and for |S t T | ≥ 2,
(175)

C̃S,T (H) :=
∐

P={S1,...,Sk}
StT=tσSσ ,k≥2

{
(vσ, cσ)

∣∣∣∣ (vσ, cσ) P-collapsed (S, T )-configuration in H

}/
(∂H×R>0)

Definition A.6 (FMAS compactification for manifolds with boundary). We define the compacti-
fication CS,T (M,∂M) of ConfS,T (M,∂M) by

(176) CS,T (M,∂M) =
∐

P={S1,...,Sk}
StT=tσSσ

{
(pσ, cσ)1≤σ≤k

∣∣∣∣ (pσ, cσ) P-collapsed (S, T )-configuration

}

Again, this is a manifold with corners and is compact if M is compact. We proceed to de-
scribe the strata of low codimension. Let U = {u1, . . . , uk}, V = {v1, . . . , vk}. The codimen-
sion 0 stratum again is given by the partition P = {{u1}, . . . , {uk}, {v1}, . . . , {v`}}. Let us de-
scribe the strata of codimension 1. We denote by ∂I

SCU,V (M,∂M) a boundary stratum where
a subset S ⊂ U collapses in the bulk, described in the same way as above. On manifolds
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with boundary, there are new boundary strata in the compactified configuration space given
by the collapse of a subset of points to a point in the boundary. Concretely, given a subset
S = {u1, . . . , uk′ , v1, . . . , v`′} ⊂ U t V , there is a boundary stratum ∂II

S CU,V (M,∂M) corresponding
to the partition P = {S, {uk′+1}, . . . , {uk}, {v`′+1}, . . . , {v`}} and collapsed configurations (pσ, cσ)
with pσ ∈ ∂M and cσ corresponding to the partition P′ = {{u1}, . . . , {uk}, {v1}, . . . , {v`}}. The
boundary decomposes as

(177) ∂CU,V (M,∂M) =
∐
S⊆U

∂I
SCU,V (M,∂M)q

∐
S⊆UtV

∂II
S CU,V (M,∂M)

A.4. Configuration spaces for manifolds with corners. Finally, we consider a manifold M
with boundary ∂M and corners ∂∂M . Note that around points in corners p ∈ ∂∂M there is a notion
of inward quadrant Q(TpM) ⊂ TpM . It can be defined e.g. in coordinates, since the transition
functions have to preserve both boundaries and corners. If Q ⊂ X is any quadrant, its boundary
is the union of two half-hyperplanes whose intersection is a (dimX − 2)-dimensional subspace W .
This subspace acts on Q by translations. Again, R>0 acts on Q by scaling. Note that in this case,

C̃{pt}(Q) ∼= I, where I is an interval. Hence the definition of collapsed configurations should be
adapted to this case. We want to compactify the open configuration spaces

(178) ConfC
S,T,U (M,∂M, ∂∂M)

where M is a manifold with corners. We proceed to define collapsed configurations as above:

Definition A.7 (Collapsed configurations for manifolds with corners). Let (M,∂M, ∂∂M) be a
manifold with corners. Let S, T, U be finite sets and P = (S1, . . . , Sk) be a partition of S t T t U .
Then a P-collapsed (S, T, U)-configuration in M is a k-tuple of pairs (pσ, cσ) such that

(1) pσ ∈M and pσ 6= pσ′ , for all σ 6= σ′,
(2) Sσ ∩ T 6= ∅⇒ pσ ∈ ∂M ,
(3) Sσ ∩ U 6= ∅⇒ pσ ∈ ∂∂M ,
(4)

cσ ∈


C̃C
Sσ

(TpσM) pσ ∈M \ ∂M
C̃C
S∩Sσ ,T∩Sσ(H(TpσM)) pσ ∈ ∂M \ ∂∂M

C̃C
S∩Sσ ,T∩Sσ ,U∩Sσ(Q(TpσM)) pσ ∈ ∂∂M

where, for Y a quadrant of X, we have C̃C
S,∅,∅(Y ) = C̃C

∅,T,∅(Y ) = {pt}, C̃C
∅,∅,{pt}(Y ) ∼= I, and for

|S t T t U | ≥ 2 we define
(179)

C̃C
S,T,U (Y ) :=

∐
P={S1,...,Sk}

StTtU=tσSσ ,k≥2

{
(yσ, cσ)

∣∣∣∣ (yσ, cσ) P-collapsed (S, T, U)-configuration in Y

}/
(∂Y×R>0)

This compactified configuration space has three types of boundary strata: Strata where a set of
bulk points collapses in the bulk (called Type I strata), strata where a subset of bulk and boundary
points collapses at the boundary (called Type II strata), and strata where a subset of all points
collapses to a corner point (called Type III strata):

(180) ∂CS,T,U (M,∂M, ∂∂M) =
∐
S′⊆S

∂I
S′CS,T,U (M,∂M, ∂∂M)

q
∐

S′⊆StT
∂II
S′CS,T,U (M,∂M, ∂∂M)q

∐
S′⊆StTtU

∂III
S′ CS,T,U (M,∂M, ∂∂M)

Remark A.8. At this point, one can generalize the definitions above to that of compactifications
of configuration spaces on stratified manifolds, with strata of any codimension. This is required for
the extension of perturbative quantization to fully extended theories.
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Notation A.9. For a manifold M without boundary, we also denote the compactified configuration
space of n points C[n](M) on M by Cn(M) (here [n] = {1, . . . , n}). Moreover, for a manifold M
with boundary, we denote the compactified configuration space C[n],[m](M) of n points on the bulk
of M and m points on the boundary ∂M of M by C[n],[m](M,∂M). We will also write CΓ(M) for
C[n],[m](M,∂M), if Γ is a graph with n+m vertices, n vertices in the bulk of M and m vertices on

∂M . Moreover, we will write CC
n,m(M) (or CC

Γ (M)) for CC
[n],[m],∅(M,∂M, ∂∂M), if M is a manifold

with corners.

Appendix B. Deformation quantization and the Poisson Sigma Model

In this section we recollect some aspects of Kontsevich’s star product [45, 10, 27], its globalization
construction [19, 16, 7, 30], and recall the relation with the Poisson Sigma Model [13, 17].

B.1. Kontsevich’s formality map on Rd. Kontsevich’s formality map is an L∞ (quasi-iso)morphism
from multivector fields TpolyRd := Γ

(∧• TRd) to multidifferential operators D•polyRd on Rd. As such
it consists of a family of maps

Un : Γ

(
k1∧
TRd

)
⊕ · · · ⊕ Γ

(
kn∧
TRd

)
→ D•polyRd

(ξ1, . . . , ξn) 7→ Un(ξ1, . . . , ξn) :=
∑

Γ∈Gn,`

wΓBΓ,ξ1,...,ξn ,
(181)

where Gn,` is the set of graphs with n+ ` numbered vertices, with ` := 2− 2n+
∑n

i=1 ki, such that
the jth vertex for 1 ≤ j ≤ n emanates exactly kj arrows (without short loops). Here ki represents
the degree of the multivector field ξi. Note that Un(ξ1, . . . , ξn) acts on ` functions. Here BΓ,ξ1,...,ξn

are multidifferential operators, depending a graph Γ and also on the vector fields ξ1, . . . , ξn, and
the wγ are weights corresponding to a graph Γ as in [45]. For a vector field ξ (i.e. ξ is of degree 1)
and a bivector field Π (i.e. Π is of degree 2) we can define

P (Π) :=

∞∑
j=0

εj

j!
Uj(Π, . . . ,Π),(182)

A(ξ,Π) :=
∞∑
j=0

εj

j!
Uj+1(ξ,Π, ....,Π),(183)

F (ξ1, ξ2,Π) :=

∞∑
j=0

εj

j!
Uj+2(ξ1, ξ2,Π, . . . ,Π).(184)

We have chosen the letters in this way, because later we will think of P to be Kontsevich’s star
product for Π a given Poisson tensor, A as a connection 1-form and F as its curvature. Let us
take a look at some of the graphs appearing for some chosen multivector fields. For example, for a
bivector field Π, we get that the term U1(Π) corresponds to the first graph of Figure 20, whereas
for a multivector field V of degree r we get for U1(V) the second graph of Figure 20. Let now ξ
be a vector field. Note that the number ` for Un(ξ,Π, . . . ,Π) will always be 1 for every n, which
implies that A(ξ,Π) takes a smooth map f as an argument.
We want to look at graphs appearing for higher terms in A. We can, e.g., consider the n = 3 term,
i.e. U3(ξ,Π,Π). Some example of graphs in G3,1, which are taken in account for the sum, are given
in Figure 21.
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Π

f1 f2

(a) Graph corresponding to a bivec-
tor field Π

V

f1 f2 f3 f4 f5 f6 fr

· · ·

(b) Graph corresponding to a multivector field V of degree r, where
f1, . . . , fr ∈ C∞(M)

Figure 20. The graphs U1(Π) and U1(V).

ξ

Π

Π

f

(a)

i1
i3

i5
i2

i4

ξ

Π

Π

f

(b)

ξ

Π

Π

f

(c)

Figure 21. Example of graphs in G3,1.

We can also explicitly say what the differential operator given by a graph will be. E.g. for the
graph as in 21 (b) we get

(185) ∂i1∂i3ξ
i5∂i2∂i2Πi3i4∂i5Πi1i2∂i4(f).

By definition of F , for every n we get that ` = 0, i.e. the image of Un will be a differential operator
of degree zero, which is a smooth function. Some examples for graphs in G3,0 are given in Figure
22.

ξ1

ξ2

Π

(a)

ξ1

ξ2

Π

(b)

ξ1

ξ2

Π

(c)

Figure 22. Example of graphs in G3,0.

B.2. Notions of formal geometry. We recall the most important notions of formal geometry as
in [37, 8] following the presentation as in [16] and [7]. For a smooth manifold P we can consider
a formal exponential map ϕ on P, such that for x ∈P we have ϕx : TxP →P, and we define a
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vector field R ∈ Γ(T ∗P ⊗ TP ⊗ ŜT ∗P), which is a 1-form with values in derivations of ŜT ∗P.

Here Ŝ denotes the completed symmetric algebra. In local coordinates we have R = Ridx
i with

(186) Ri(x; y) =

((
∂ϕx
∂y

)−1
)k
j

∂ϕjx
∂xi

∂

∂yk
=: Y k

i (x; y)
∂

∂yk

Then we can define the classical Grothendieck connection DG := d +R, which is flat. For a vector

field ξ = ξ ∂
∂xi

we have Dξ
G = ξ + ξ̂, where

(187) ξ̂(x; y) = ιξR(x; y) = ξiY k
i (x; y)

∂

∂yk
.

B.3. Globalization. Now let us describe how to generalize the above procedure to an arbitrary
Poisson manifold (P,Π). Namely, let x ∈P, and ϕ a formal exponential map on P. Then Tϕ∗xΠ,

the Taylor expansion of Π around x defined using ϕ, is a Poisson tensor on ŜT ∗xP. Any choice of

coordinates on TxM now allows us to identify ŜT ∗xP ∼= R[[y1, . . . , yd]] and define Kontsevich’s star
product P (Tϕ∗xΠ). See [19] for a discussion of the equivariance of this construction in the choice

of coordinates. In this way we get a new bundle E := ŜT ∗P[[ε]] of ?-algebras. One can use the
Grothendieck connection defined in B.2 to give a description of a subalgebra A ⊂ Γ(E) which is a
deformation quantization of C∞(P) seen as a subalgebra of Γ(E). Formally we have

(188) Γ(E) ⊃ C∞(P)
Deformation Quantization

- A ⊂ Γ(E).

The algebra A is given by closed sections under a deformation of the Grothendieck connection,
which is defined in two steps: For a tangent vector ξ ∈ TxP, we let

(189) D
ξ
G := ξ +A

(
ξ̂,Tϕ∗xΠ

)
= Dξ

G +O(ε),

where again we denote by Tϕ∗xΠ the Poisson tensor Π lifted to a formal neighborhood and ξ̂ is
defined as in (187). One can write

(190) DG = d +A(R,Tϕ∗Π)

interpreting A(R,Tϕ∗Π) as a one-form valued in differential operators on E. At some point x ∈P,
in coordinates xi around x, it is given by

(191) A(R,Tϕ∗xΠ) = dxiA(Ri(x; y),Tϕ∗xΠ) = dxiA

(
Y k
i (x; y)

∂

∂yk
,Tϕ∗xΠ

)
.

One can then show [19] that DG is a globally defined connection on Γ(E), a derivation, and that
(DG)2 is an inner derivation, i.e.

(192) (DG)2σ = [FP , σ]? := FP ? σ − σ ? FP ,

for any σ ∈ Γ(E), where FP is the Weyl curvature tensor of DG given by FP(ξ1, ξ2) := F (ξ̂1, ξ̂2,Tϕ
∗Π),

where ξ1, ξ2 ∈ TxP are two tangent vectors on P. More, precisely, FP is a 2-form valued in sec-
tions of E which in local coordinates can be expressed as

(193) FP
x = dxi ∧ dxjF (Ri(x; y), Rj(x; y),Tϕ∗xΠ).

For the Weyl tensor we get DGF
P = 0. The task is to modify the globalized connection DG slightly

more, so that it becomes flat but still remaining a derivation. One can set25

(194) DG := DG + [γ, ]?,

25For any two E-valued 1-forms γ = γidx
i, σ = σjdx

j ∈ Ω1(P,E) one defines their star product by γ ? σ :=
(γi ? σj)dx

i ∧ dxj
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and observe that for any 1-form γ ∈ Ω1(P,E) this connection is a derivation. Moreover, its Weyl
curvature tensor is then given by

(195) F
P

= FP + DGγ + γ ? γ.

We call (189) the deformed Grothendieck connection and (194) the modified deformed Grothendieck

connection. One then needs to find γ ∈ Ω1(P,E) such that F
P

= 0, which implies that (DG)2 = 0,
so that DG-closed sections will form the algebra A as a deformation quantization of C∞(P). If we
compute (DG)2 explicitly, by using (194) we get

(196) (DG)2 = (DG)2︸ ︷︷ ︸
:=[FP , ]?

+DG[γ, ]? + [γ, [γ, ]?]?.

More precisely, γ has to satisfy

(197) FP + DGγ + γ ? γ = 0.

The existence of such a γ was shown in [16, 19] by homological perturbation theory. One can
actually construct γ to be a solution of the more general equation given by

(198) F
P
ω = FP + εω + DGγ + γ ? γ = 0,

where ω ∈ Ω2(P,E) such that DGω = 0 and [ω, ]? = 0 [19].
Now we want to focus on some special cases. We want to look at two important examples of Poisson
structures.

B.3.1. Constant Poisson structure. The situation of a constant Poisson structure is a first example
to think about. Let (P,Π) be a Poisson manifold with constant Poisson structure Π and ξ ∈ TxP
for x ∈P be a fixed tangent vector. By the definition of A, and the fact that each vertex has only

one outgoing and no incoming arrow, we get A(ξ̂,Tϕ∗Π) = ξ̂, which leads to the fact that

(199) D
ξ
G = (ξ + ξ̂) = Dξ

G.

Therefore we get (DG)2 = 0 and thus FP = 0. We can then choose γ = 0.

B.3.2. Linear Poisson structure. Let now (P = g∗,Π) be a Poisson manifold with linear Poisson

structure Π(x) = Πij
k x

k ∂
∂xi
∧ ∂

∂xj
, where Πij

k represent the structure constants of a Lie algebra g,
and ξ ∈ TxP for x ∈ P be a fixed tangent vector. As in the constant case, we observe that

A(ξ̂,Tϕ∗Π) = ξ̂, which is the case since the integral of a bulk vertex with one incoming and one
outgoing arrow is zero, and since there is at most one incoming arrow for each vertex. Again we
may choose γ = 0.

B.4. Connection to the Poisson Sigma Model. In [13] and [17] it was shown that Kontsevich’s
formality map on Rd can be intepreted as the perturbative computation of expectation values of
observables of the Poisson Sigma Model on the upper half plane (or respectively the disk) with
values in Rd. The graphs which appear in the construction of Kontsevich’s star product on Poisson
manifolds [45] are given on the upper half plane, where they can collapse, according to the boundary
of the configuration space, on the boundary of the upper half plane. This means that the graphs
that appear in the Poisson Sigma Model are exactly the graphs that appear for Kontsevich’s star
product. More precisely, if one considers the disk D in R2 and the classical action of the Poisson
Sigma Model on D given by SD[(X, η)] =

∫
D

(
〈η,dX〉+ 1

2〈Π(X), η ∧ η〉
)
, we can asymptotically

write Kontsevich’s star product for two smooth maps f and g as a perturbative expansion of the
following path integral:

(200) f ? g(x) =

∫
X(∞)=x

f(X(0))g(X(1))e
i
~SD[(X,η)],
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where 0, 1,∞ represent some marked points on the boundary of D. Note that x ∈ Map(D,Rd) is a
constant map, i.e. the we get a local representation of the star product. If one considers a general
Poisson manifold (P,Π), one can consider the constant map x ∈ Map(D,P) as a point sitting in
P giving a local product on each fiber. As already described in B.3, one can then algebraically
construct the star product on all of P.

Appendix C. On the Propagator

We have an explicit propagator for the Poisson Sigma Model, i.e. using the superfields of it,
on a disk with alternating boundary conditions, which was computed in [14], in [26] and, in full
generality, in [31].

C.1. Construction of the branes. Consider an n-sided polygon Pn = u(H+) where u : H+ → Pn
is a suitable homeomorphism between the compactified complex upper half plane H+ and Pn,
depending on the number of the branes considered. Let GSi , be the relevant superpropagators for
the Poisson Sigma Model with n branes defined by constraints Cj = {xµj = 0 | µj ∈ Ij} (also called
branes) and index sets S1 = IC1 ∩ I2 ∩ IC3 ∩ · · · ∩ In, S2 = I1 ∩ IC2 ∩ I3 ∩ · · · ∩ ICn for n even, and
S1 = IC1 ∩ I2 ∩ IC3 ∩ · · · ∩ ICn , S2 = I1 ∩ IC2 ∩ · · · ∩ In for n odd, which are called relevant. It turns
out that the Ci ⊂P are coisotropic submanifolds of P [14].

C.2. Constructing integral kernels. The integral kernels θ(Q,P )Si := − i
~〈X̂

•(Q)η̂•(P )〉 for the
two brane case are given by:

θ(Q;P )Si =
1

2π
d arg

(u− v)(ū− v)

(ū+ v)(u+ v)
,(201)

θ(Q,P )S2 =
1

2π
d arg

(u− v)(ū+ v)

(ū− v)(u+ v)
,(202)

where P2 := u(H+) with u(z) =
√
z, v := u(w), d = du + dv. We identify (P,Q) with the couple

(u, v). Consider e.g. P2 to be the worldsheet disk Σ with boundary ∂Σ =
⊔

1≤j≤6 Jj (we denote

the intervals here by J instead of I such that there is no confusion with the index sets) and the
branes C1 = {xµ1 = 0 | µ1 ∈ I1 = {1, . . . , n}} and C2 = {xµ2 = 0 | µ2 ∈ I2 = ∅}, which
correspond to the boundary conditions of ∂1Σ and ∂tot

2 Σ respectively. The components ∂1Σ and
∂tot

2 Σ are such that ∂Σ = ∂1Σ t ∂tot
2 Σ, where ∂1Σ is chosen to be some J1 endowed with the

δ
δE -polarization and ∂tot

2 Σ =
⊔

2≤j≤6 Jj such that Jj is endowed with the δ
δX -polarization and with

the boundary condition η̂ ≡ 0 for j odd and even respectively. Now we get S1 = IC1 ∩ I2 = ∅
and S2 = I1 ∩ IC2 = {1, . . . , n}. Now P2 is defined by P2 = u(H+), where u is the map z 7→

√
z.

Points (P,Q) ∈ P2×P2 are represented respectively by a pair of complex numbers (u, v) in the first
quadrant, with u = u(z), v = u(w) for all (z, w) ∈ H+ × H+. The boundary ∂1P2 (corresponding
to ∂1Σ) is given by the positive imaginary axis, while ∂2P2 (corresponding to ∂tot

2 Σ) is given by the
positive real axis.

C.3. Construction of superpropagators. The boundary conditions imposed by the index sets
Si are θ(v, u ∈ ∂1P2)S1 = θ(u ∈ ∂2P2, u)S1 = 0, θ(v, u ∈ ∂2P2)S2 = θ(v ∈ ∂1P2, u)S2 = 0. Let

ψ(u, v)S1 = arg
(u− v)(ū− v)

(ū+ v)(u+ v)
,(203)

ψ(u, v)S2 = arg
(u− v)(ū+ v)

(ū− v)(u+ v)
,(204)

which satisfy the same boundary conditions as θ(v, u)Si . Now for vanishing cohomology, we get the
following Theorem.
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Theorem C.1. The integral kernels for the superpropagators GSi in presence of two branes are
given by

(205) θ(v, u)Si =
1

2π
dψ(u, v)Si ,

with angle maps (203) and (204). The integral kernels satisfy the additional boundary conditions
θ(v, u)S1 = θ(v, ū) = θ(−v̄, u)S1, θ(v, u)S2 = θ(v,−ū)S2 = θ(v̄, u)S2, i.e. every boundary component
of P2 is labeled by a boundary condition for both the variables (u, v). By construction θ(v, u)S1 =
θ(u, v)S2, θ(v, u)S2 = θ(u, v)S1.

C.4. Relation to Kontsevich’s propagator. Let φ be Kontsevich’s angle 1-form. Then, one
can show that

θ(v, u)A1 =
1

2π
d arg

(u− v)(u+ v)

(u+ v̄)(u− v̄)
=

1

2π
d arg

(z − w)

(z − w̄)
=

1

2π
dφ(z, w),(206)

θ(v, u)A2 =
1

2π
d arg

(u− v)(u+ v)

(ū− v)(ū+ v)
=

1

2π
d arg

(z − w)

(z̄ − w)
=

1

2π
dφ(w, z),(207)

where A1 = I2 ∩ I2 and A2 = IC1 ∩ IC2 .

Glossary

i: imaginary unit. 3
M : a finite-dimensional manifold. 5
FM : space of fields. 5
SM : local action functional. 5
∆: global BV Laplacian on half-densitites. 7
FM : BV space of fields. 7
ωM : BV symplectic form. 7
SM : BV action functional. 7
ω∂: BFV symplectic form. 7
F∂M : BFV space of boundary fields. 8

S∂: BFV boundary action. 8
Ω∂M : BFV boundary operator. 10
H∂M : space of boundary states. 10
ψM : quantum state. 10

ĤM : the space Dens
1
2 (VM )⊗H∂M . 10

VM : space of residual fields. 10

Dens
1
2 (M): half-densities on a manifold M . 10

P: polarization of F∂M . 11

BP
∂M : leaf space of the polarization P. 11

HP
∂M : full space of boundary states. 13

H
P,princ
∂M : principal space of boundary states. 13

ConfΓ(M): configuration space. 13
CΓ(M): compactified configuration space. 14
ψM : full quantum state. 16
Ωprinc: principal part of the BFV boundary operator. 16
ΩX

0 : X-part of the free BFV boundary operator. 16
ΩE

0 : E-part of the free BFV boundary operator. 16
ΩX

pert: X-part of the perturbative BFV boundary operator. 16

ΩE
pert: E-part of the perturbative BFV boundary operator. 16

Ω∂M : full BFV boundary operator. 18
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ϕ: formal exponential map. 19
T: Taylor expansion. 20

Ŝ: completed symmetric algebra. 20
DG: classical Grothendieck connection. 20
R: vector field in the definition of DG. 20
x: constant background field. 20
Σ: worldsheet manifold with boundary in the Poisson Sigma Model. 20

S̃Σ,x: formal globalized action. 20

X̂: lift of X by ϕx. 20
η̂: lift of η by dϕx. 20

ψ̃Σ,x: principal covariant quantum state. 21

ψ̃Σ,x: full covariant quantum state. 21
∇G: quantum Grothendieck BFV operator. 22
P: Poisson manifold. 22
Π: Poisson structure. 22
X: Base map of the Poisson Sigma Model. 22
η: fiber map of the Poisson Sigma Model. 22
X: superfield version of X. 23
η: superfield version of η. 23
X: boundary field part of X. 24
E: boundary field part of η. 24
x: residual field part of X. 24
e: residual field part of η. 24
X : fluctuation field part of X. 24
E : fluctuation field part of η. 24
?: Kontsevich’s star product. 25
[ , ]?: star commutator. 27

Ω̃
E
∂Σ: E-part of the globalized full BFV boundary operator. 28

DG: deformed Grothendieck connection. 28
A: connection term coming from Kontsevich’s formality map. 28
F : curvature term coming from Kontsevich’s formality map. 28

Ω̃
X
∂Σ: X-part of the globalized full BFV boundary operator. 29

γ: a solution to FP + DGγ + γ ? γ = 0. 31
DG: the flat connection DG + [γ, ]?. 31

E: the deformed bundle ŜT ∗P[[ε]]. 31
ε: formal deformation parameter. 31
ω: a ?-central DG-closed 2-form. 31
SΣ,x: modified formal globalized action. 31
SΣ,γ: γ-action term. 32
SΣ,ω: ω-action term. 32

Ω̃
E,γ
∂Σ : twisted E-part of the full BFV boundary operator. 33

C : set of all corner points of Σ. 36
∇γG: twisted quantum Grothendieck BFV operator. 36
HC : space of corner states. 40

ĤC
∂Σ,x: extended state space. 40

ĤC
∂Σ,tot: total extended state space. 40

ΩC : corner contribution of the full BFV boundary operator. 41

∇̃γG: twisted quantum Grothendieck BFV operator for corners. 41
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FP : Weyl curvature tensor of DG. 49

F
P

: Weyl curvature tensor of DG. 50
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de Lie, Panoramas et Syntheses 20. Société Mathématique de France, 1995.
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Algebr. Geom. Topol. 14.4 (2014), pp. 2299–2377.

[41] N. Ikeda. “Two-Dimensional Gravity and Nonlinear Gauge Theory”. In: Ann. Phys. 235.2
(1994), pp. 435–464.

[42] R. Iraso and P. Mnev. Two-Dimensional Yang-Mills Theory on Surfaces With Corners in
Batalin-Vilkovisky Formalism. 2018. arXiv: 1806.04172v1 [math-ph].

[43] A. Kapustin and Y. Li. “D-branes in Landau-Ginzburg models and algebraic geometry”. In:
JHEP 2003 (2004).

http://arxiv.org/abs/1905.08047
http://arxiv.org/abs/1807.11782v1
http://arxiv.org/abs/1807.11782v1
http://arxiv.org/abs/1112.0816v2
http://arxiv.org/abs/1806.04172v1


56 REFERENCES

[44] H. M. Khudaverdian. “Semidensities on Odd Symplectic Supermanifolds”. In: Commun.
Math. Phys. 247.2 (2004), pp. 353–390.

[45] M. Kontsevich. “Deformation quantization of Poisson manifolds”. In: Lett. Math. Phys. 66.3
(2003), pp. 157–216.

[46] C. I. Lazaroiu. “On the boundary coupling of topological Landau-Ginzburg models”. In: JHEP
2005 (2005).

[47] P. Mnev. Discrete BF theory. 2008. arXiv: 0809.1160.
[48] P. Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum

field theory. 2017. arXiv: 1707.08096 [math-ph].
[49] J. E. Moyal. “Quantum mechanics as a statistical theory”. In: Mathematical Proceedings of

the Cambridge Philosophical Society 45.01 (1949), p. 99.
[50] M. Polyak. “Feynman diagrams for pedestrians and mathematicians”. In: Proc. Symp. Pure

Math. 73 (2005), pp. 15–42.
[51] N. Reshetikhin. “Lectures on Quantization of Gauge Systems”. In: New Paths Towards Quan-

tum Gravity. Springer Berlin Heidelberg, 2010, pp. 125–190.
[52] P. Schaller and T. Strobl. “Introduction to Poisson Sigma models”. In: Low-Dimensional

Models in Statistical Physics and Quantum Field Theory. Ed. by H. Grosse and L. Pittner.
Springer Berlin Heidelberg, 1995, pp. 321–333.

[53] P. Schaller and T. Strobl. “Poisson structure induced (topological) field theories”. In: Mod.
Phys. Lett. A 09.33 (1994), pp. 3129–3136.
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