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Abstract. Mechanical systems (i.e., one-dimensional field theories) with con-

straints are the focus of this paper. In the classical theory, systems with

infinite-dimensional targets are considered as well (this then encompasses also
higher-dimensional field theories in the hamiltonian formalism). The proper-

ties of the Hamilton–Jacobi (HJ) action are described in details and several

examples are explicitly computed (including nonabelian Chern–Simons the-
ory, where the HJ action turns out to be the gauged Wess–Zumino–Witten

action). Perturbative quantization, limited in this note to finite-dimensional

targets, is performed in the framework of the Batalin–Vilkovisky (BV) formal-
ism in the bulk and of the Batalin–Fradkin–Vilkovisky (BFV) formalism at the

endpoints. As a sanity check of the method, it is proved that the semiclassical
contribution of the physical part of the evolution operator is still given by the

HJ action. Several examples are computed explicitly. In particular, it is shown

that the toy model for nonabelian Chern–Simons theory and the toy model
for 7D Chern–Simons theory with nonlinear Hitchin polarization do not have

quantum corrections in the physical part (the extension of these results to the

actual cases is discussed in the companion paper [21]). Background material
for both the classical part (symplectic geometry, generalized generating func-

tions, HJ actions, and the extension of these concepts to infinite-dimensional

manifolds) and the quantum part (BV-BFV formalism) is provided.
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1. Introduction

The Hamilton–Jacobi (HJ) action for a nondegenerate system is a generating
function for the graph of the hamiltonian flow of the system and is obtained by
substituting a solution of the Euler–Lagrange (EL) equations into the action func-
tional. We extend this result to degenerate systems (i.e., systems with constraints).
More precisely, we consider one-dimensional field theories with constraints in invo-
lution (a.k.a. first-class constraints), i.e., theories constrained to live in a coisotropic
submanifold of the (possibly infinite-dimensional) target. In the finite-dimensional
case, we also study their perturbative quantization.

This paper is mainly based on a discussion of examples. The two main general
results, on the role of the HJ action, are presented in Theorem 4.2 on page 21 at
the classical level and in Theorem 11.4 on page 65 at the quantum level.

Among the many examples, we discuss in particular Chern–Simons theory and
its finite-dimensional toy model versions, get the gauged WZW action as the gen-
eralized generating function of the evolution relation via the HJ action, and, in
the finite-dimensional version, show that there are no quantum corrections in the
physical sector. We will prove the latter result in the infinite-dimensional case in
the companion paper [21].

We start with a recollection of the known results for a regular mechanical system
(i.e., a one-dimensional field theory with regular lagrangian). In this case, the EL
equations define a hamiltonian flow and therefore its graph, which we call the
evolution relation, is a lagrangian submanifold of the product of the symplectic
manifolds associated to the two endpoints (in the framework of this paper the
symplectic manifold associated to an endpoint is the target symplectic manifold, up
to the sign of the symplectic form which depends on the orientation of the endpoint).
The HJ action, defined as the evaluation of the classical action on solutions of the
EL equation for a given choice of endpoint polarizations1 (boundary conditions), is
then a generating function2 for the evolution relation. At the quantum level, the
HJ action appears as the dominant contribution in the semiclassical expansion of
Feynman’s path integral (simply as the evaluation of the action on a background
classical solution).

In a constrained system, the following differences occur:

(1) In the framework of this paper,3 the EL equations split into two classes
which we call the evolution equations (those that involve a time derivative)

1By polarization we mean, in this paper, an explicit realization of a symplectic manifold as

a cotangent bundle. Generating functions, wave functions and integral kernels of operators will
always be understood as functions on the base of the cotangent bundle.

2A generating function for a lagrangian submanifold L of a cotangent bundle is a function on
the base that yields L as the graph of its differential.

3with the exception of the first part of Section 7.4 which portrays a more general situation
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and the constraints (those that do not involve time derivatives). The fields
actually split into two classes: maps to the target symplectic manifolds and
Lagrange multipliers; the evolution equations arise from variations with
respect to the former and the constraints from variations with respect to
the latter.

(2) Solutions of the EL equations still define a lagrangian submanifold—which
we keep calling the evolution relation—of the product of the symplectic
manifolds associated to the two endpoints. Yet, this submanifold is no
longer a graph.4

(3) The HJ action, defined as the evaluation of the classical action on solutions
of the evolution equation for a given choice of endpoint polarizations, is
then a generalized generating function5 for the evolution relation. Note
that the constraints are not used in the definition of the HJ action but are
recovered from it (as they appear in the definition of the evolution relation).

(4) The HJ action depends parametrically on the Lagrange multipliers but
is invariant under a (Lie algebra or, more generally, Lie algebroid) gauge
transformation thereof that is trivial at the endpoints.

(5) At the quantum level, the path integral requires a gauge-fixing procedure
one has to keep track of. The formalism we use in this paper is the one due
to Batalin and Vilkovisky, in particular in its version coupled to the bound-
ary, referred to as the BV-BFV formalism. The HJ action then appears as
the physical (i.e., ghost independent) part of the dominant contribution
of the perturbative expansion of the path integral for certain choices of
endpoint polarizations and of residual fields (the latter being, in physical
parlance, a choice of infrared components, not to be integrated out, of the
fields). The HJ action now arises from the resummation of tree diagrams
and not from the evaluation of the action on a background classical solution,
which is not at hand in the BV-BFV formalism.

Points (3) and (4) are the content of Theorem 4.2 and point (5) of Theorem 11.4—
see also equations (101) and (117).

One topic we are interested in is the change of (say, final) endpoint polarization.
This is realized by a generating function of the corresponding symplectomorphism.
At the classical level, the HJ action for the new polarization is simply the com-
position of the HJ action for the old polarization with the generating function for
the change of polarization. At the quantum level, one has to find an appropriate
quantization of the latter generating function. There are two, in general irrecon-
cilable, wishes: unitarity and compatibility with the BV-BFV formalism. In this
paper we focus on the latter and show that a BV-BFV quantization is possible if
the constraints are linear in the momenta of both endpoint polarizations. This is a
serious limitation, yet it applies to some very interesting examples.

1.1. Structure of the paper. This paper consists of three parts.

4Geometrically, the constraints define a coisotropic submanifold C, and the evolution equations

describe a motion along a leaf ot the characteristic distribution. The evolution relation then

consists of pairs of points of C that lie on the same leaf.
5A generalized generating function is a generating function, see footnote 2, that depends on

additional parameters. It defines the lagrangian submanifold of the given cotangent bundle as the
intersection of the graph of its differential with respect to the base variables and the vanishing

locus of the differential with respect to the additional parameters.
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In the first part (Sections 2 to 6), we discuss the HJ action for constrained
systems (after briefly reviewing the regular, unconstrained case). We discuss several
examples (in particular constraints that are linear or affine in both the positions
and the momenta), prove Theorem 4.2, i.e., point (2) of the above list, describe how
to incorporate a nontrivial evolution in addition to the constraints, and extend the
discussion of generating functions and HJ actions to some bad endpoint conditions.

In the second part (Section 7), we compute the HJ action for several examples
with infinite-dimensional target (Chern–Simons theory, BF theory, 2D Yang–Mills
theory, abelian Yang–Mills theory in any dimension).

In the third part (Sections 8 to 12), we discuss the BV-BFV quantization. We
start with a review of BV and BFV, tailored to the theories we consider in this
paper (which are ultimately one-dimensional AKSZ models). Next we discuss the
quantization in the case of finite-dimensional targets, both with linear and nonlinear
endpoint polarizations, proving in particular Theorem 11.4, i.e., point (5) of the
above list, and show that in the linear and affine examples (the toy models for
Chern–Simons theory) no quantum corrections arise in the physical sector: see
equations (108), (109) and (118).

In Appendix A we review several results on symplectic geometry and on (gen-
eralized) generating functions, both in the finite- and in the infinite-dimensional
case.

In Appendix B we prove a technical result that ensures that the BV-BFV quan-
tization works in the case at hand.

We defer the BV-BFV quantization with infinite-dimensional target (mainly,
Chern–Simons theories) to the companion paper [21].

1.2. How to read this paper. The first part is necessary for the whole paper,
with the exception of Section 5 which is relevant only for Sections 7.4, 11.5 and 11.6.

The second and the third part can be read independently from each other, as
they focus on different developments of the first part.

Appendix A contains additional material that completes the discussion in the
first part and provides a rigorous foundation for the second part. Appendix B
contains results for the foundation of the third part.

1.3. Notations. To simplify the reading of the paper, we collect here some of the
main notations and some terminology.

Arguments (e.g., of an action, a HJ action, a partition function) are written in
square brackets if they are fields (i.e., if they depend on the variable on the source
interval) and in round brackets otherwise.

We will use the subscript HJ to denote a HJ action. We will have several versions

thereof, with notations like SHJ, SfHJ or ŜfHJ referring to different incarnations
(change of polarization by f ; dependency on gauge classes of the parameters). This
pedantic notation is important to avoid confusion, but the only important point to
focus on is that these are all HJ actions in their own way. In the arguments of HJ
actions, or more generaly of generalized generating functions, we will consistenly
separate the generalized position variables from the parameters by a semicolon.

In the BFV formalism, the classical master equation (CME) is the equation
{S, S} = 0, where { , } is the given even Poisson bracket and S is an odd functional.
By Ω we will denote a coboundary operator that quantizes S.



6 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

In the BV formalism, the CME is the equation (S, S) = 0, where ( , ) is the
given odd Poisson bracket and S is an even functional. By ∆ we will denote the
BV Laplacian (on functions or on half-densities, depending on the context). The
quantum master equation (QME) is the equation ∆ψ = 0, where ψ is an even

function or half-density. For ψ of the form e
i
~S , under the condition ∆S = 0

(which we usually assume), the QME for ψ is equivalent to the CME for S.
In the BV-BFV formalism, where we have both ∆ and Ω, the modified quantum

master equation (mQME) is the equation (Ω + ~2∆)ψ = 0. We often use the
abbreviation ∆Ω := ∆ + 1

~2 Ω.
For a partition function (or a state), we will use the notation Z, possibly with

some label denoting the case we are considering. If we define it as a half-density,
we will use the notation Ẑ.

1.4. Teaser. We illustrate one of the results of the paper (summarizing the content
of Sections 4.2, 11.3, and 12, with simplified, adapted notations for this introduc-
tion).

The data of the system are a quadratic Lie algebra g, a vector space Z and two
derivations: v : g → g ⊗ Z and v̄ : g → g ⊗ Z∗. The target symplectic manifold is
T ∗(g⊗Z) which we identify with g⊗Z∗ ⊕ g⊗Z 3 (q̄, q) (using the nondegenerate
pairing 〈 , 〉 on g).6 The fields are a path (q̄, q) : [0, 1]→ T ∗(g⊗ Z) and a g-valued
one-form e (i.e., a connection one-form) on [0, 1]. The action functional, a toy model
for nonabelian Chern–Simons theory (see Section 7.2),7 is

S[q̄, q, e] =

∫ 1

0

(〈q̄,deq〉 − 〈q̄, v(e)〉 − 〈v̄(e), q〉),

where de denotes the covariant derivative.
Under the assumption that the exponential map to the simply connected Lie

group G integrating g is surjective, we compute the HJ action—for initial value qa
of q, final value q̄b of q̄, and a parameter g = eξ ∈ G—as

ŜHJ(qa, q̄
b; g) = −〈q̄b, g−1qag〉 − 〈q̄b, g−1v(g)〉 − 〈v̄(g)g−1, qa〉 −WZW(g)

with the Wess–Zumino–Witten term

WZW(g) =
1

2
〈v̄(g)g−1, v(g)g−1〉+

1

2

∫ 1

0

〈v̄(h)h−1, [v(h)h−1,dhh−1]〉,

where h = etξ.
The BV-BFV quantization then provides an integral kernel which, in adddition

to the classical coordinates (qa, q̄
b), also depends on “ghost variables” ca, cb ∈ g[1]

and is a half-density on T ∗[−1]G 3 (g, g+):

Ẑ(qa, ca, q̄
b, cb; g, g

+) = e
i
~ ŜHJ(qa,q̄

b;g) e−
i
~ 〈g

+,gca−cbg〉 µG,

where µG is the Haar measure.
This integral kernel satisfies the modified quantum master equation (mQME)

(Ω + ~2∆)Ẑ = 0—and is defined up to the image of Ω + ~2∆—where ∆ is the

6We write q̄ for the image of the momentum p under the isomorphism g∗ ⊗ Z∗ → g⊗ Z∗.
7In this case, we have g = Ω0(Σ, g′) and Z = Ω0,1(Σ), where g′ is a finite-dimensional quadratic

Lie algebra, and Σ is a closed, oriented surface with a choice of complex structure. The derivations

v, v̄ are now the Dolbeault operators ∂, ∂̄.
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canonical BV Laplacian on half-densities on T ∗[−1]G and

Ω =

〈
i~

∂

∂qa
, v(ca)

〉
+ 〈v̄(ca), qa〉 −

i~
2

〈
[ca, ca],

∂

∂ca

〉
−
〈
q̄b, v(cb)

〉
−
〈
v̄(cb), i~

∂

∂q̄b

〉
− i~

2

〈
[cb, cb],

∂

∂cb

〉
is a quantization of the endpoint BFV action describing the coisotropic reduction
by the constraints.

In the abelian case, where we use the multiplicative convention for the group G,
we write g = eT , and the HJ action becomes

ŜHJ(qa, q̄
b;T ) = −〈q̄b, qa〉 − 〈q̄b, v(T )〉 − 〈v̄(T ), qa〉 −

1

2
〈v̄(T ), v(T )〉.

In this case it is also interesting, as a toy model for 7D Chern–Simons theory
with endpoint Hitchin polarization (see Section 7.6), to change the final Darboux
coordinates by some generating function f(q,Q) with 〈q̄,dq〉 = 〈Q̄,dQ〉+ df . The
HJ action for initial value qa of q and final value Qb of Q is then

ŜfHJ(qa, Qb;T ) = −f(qa + v(T ), Qb)− 〈v̄(T ), qa〉 −
1

2
〈v̄(T ), v(T )〉.

The BV-BFV quantization turns out to be possible when the transformed g∗-
valued hamiltonian H̃(Q̄,Q) = v∗(q̄(Q̄,Q)) + v̄∗(q(Q̄,Q)), with ∗ denoting trans-
position, is linear in Q̄. In this case, the integral kernel, with (T, T+) ∈ T ∗[−1]g,
is

Ẑf (qa, ca, Qb, cb;T, T
+) = e

i
~ Ŝ

f
HJ(qa,Qb;T )e−

i
~T

+
α (cαa−c

α
b )
√

dkTdkT+,

with k = dim g. This integral kernel also satisfies the modified quantum master
equation (mQME), with ∆ the canonical BV Laplacian on half-densities on T ∗[−1]g
and

Ω =

〈
i~

∂

∂qa
, v(ca)

〉
+ 〈v̄(ca), qa〉 −

〈
cb, H̃

(
−i~

∂

∂Qb
, Qb

)〉
.

Remark 1.1 (Parameters and quantum corrections). In the examples just presented,

there are no quantum corrections in the physical part of the partition function Ẑ.
This statement if of course correct only if we compare the classical and quantum
theory in the presence of parameters. The point is that usually one can get rid of
(some of) the parameters. Let us discuss for simplicity the case when all param-
eters can be eliminated. In the classical theory, the constraints are recovered by
setting to zero the differential of the HJ action as a function of the parameters g or
T (parametrized by the generalized position variables). If the Hessian is nondegen-
erate, we can (locally) solve these equations and write the parameters as functions
of the generalized position variables. Inserting this back into the HJ action yields
a new, equivalent generating function, now without parameters. At the quantum
level, we can instead integrate out the parameters g or T in the partition function,
after setting their odd momenta g+ or T+ to zero. In the abelian case with linear
polarization (generalized position variables qa and q̄b), this is equivalent to the clas-
sical procedure (apart from an irrelevant constant depending on the determinant
of the quadratic form 〈v̄(T ), v(T )〉). In the other cases (abelian case with non-
linear polarization and nonabelian case), the quantum procedure yields nontrivial
quantum corrections.
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2. Hamilton–Jacobi for nondegenerate actions

In this section we collect several known facts on the Hamilton–Jacobi action,
which will be used in the rest of the paper (for a general reference, see, e.g., [3,
Sections 47-48]). We only focus on actions of the form

S[p, q] =

∫ tb

ta

(pidq
i −H(p, q)dt),

where a sum over repeated indices is understood. Here (p, q) denotes a point (or
a path) in the cotangent bundle T ∗M of a fixed manifold M , and H is a smooth
function on T ∗M . By abuse of notation, we denote by dqi both the coordinate 1-
form on M and its pullback by the map q : [ta, tb]→M (which then actually means
q̇idt). We will later be interested in some generalizations, like adding constraints
and working with an infinite-dimensional target.

Recall that the Euler–Lagrange (EL) equations for the above action are Hamil-
ton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Next assume that for every qa, qb ∈M these equations have a unique solution, which
we will denote by (pqa,qb , qqa,qb), satisfying qqa,qb(ta) = qa and qqa,qb(tb) = qb. Then
one defines the Hamilton–Jacobi (HJ) action (a.k.a. Hamilton’s principal function)

SHJ(qa, qb) := S[pqa,qb , qqa,qb ].

Jacobi’s theorem then, in particular, asserts that

(1) pqa,qbi (tb) =
∂SHJ

∂qib
, pqa,qbi (ta) = −∂SHJ

∂qia
.

In other words, SHJ is a generating function for the graph of the hamiltonian flow
of H (from ta to tb), see Appendix A (in particular, Remark A.32). Let us briefly
review the proof because we will need some generalization thereof in the following.
The variation of the action reads

δS = EL + pi(tb)δq
i(tb)− pi(ta)δqi(ta),

where EL denotes the bulk term responsible for the EL equations. If we insert a
solution of the EL equations, the EL term vanishes. In particular, inserting the
solution (pqa,qb , qqa,qb) yields

δSHJ = pqa,qbi (tb)δq
i
b − p

qa,qb
i (ta)δqia,

which implies (1).
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Remark 2.1 (Time dependency). Above we have considered the time endpoints ta
and tb as fixed, but one can let them vary as well. We put the explicit dependence
in the notation:

S[p, q](ta, tb) =

∫ tb

ta

(pidq
i −H(p, q)dt).

The time-dependent HJ action is then

(2) SHJ(qa, qb; ta, tb) := S[pqa,qb , qqa,qb ](ta, tb),

where the solution is still required to satisfy qqa,qb(ta) = qa and qqa,qb(tb) = qb. As
a result, (pqa,qb , qqa,qb) also depends on ta and tb (even though we do not include
this in the notation). In addition to the formulae in (1), we now also have8

(3)
∂SHJ

∂tb
= −H(pqa,qb(tb), qb),

∂SHJ

∂ta
= H(pqa,qb(ta), qa).

To get these formulae, we have to observe that, e.g., a variation δtb of tb produces not
only a variation in the final endpoint of the integral, which yields (pqa,qbi (tb)q̇

i
qa,qb

(tb)−
H(pqa,qb(tb), qb))δtb, but also an induced variation −q̇qa,qb(tb)δtb of q at the final
endpoint.

Remark 2.2 (Uniqueness). For simplicity we have assumed that there is a unique
solution (pqa,qb , qqa,qb) satisfying qqa,qb(ta) = qa and qqa,qb(tb) = qb. This might not
be true. Generically one may exclude focal points qa, qb connected by a continuous
family of solutions,9 but typically we may expect a discrete, or finite, family to exist.
In this case, the above procedure is actually meant to work in a neighborhood of a
given nonfocal pair (qa, qb) for a choice of one solution in the discrete set. When one
varies qa or qb (or the time interval), it is understood that one follows the variation
of the chosen solution. The resulting HJ action is then a local generating function.
To get the whole graph of the hamiltonian flow of H one needs the various, possibly
infinitely many, HJ actions associated to the different solutions.

Example 2.3. A simple example where uniqueness of solutions with given end-
points is not satisfied is the free particle on S1, the unit circle.10 The hamiltonian

is simply H(p, q) = p2

2m . The EL equations are ṗ = 0 and q̇ = p
m . The graph of the

hamiltonian flow of H is then

L :=

{
(pa, qa, p

b, qb) ∈ T ∗S1 × T ∗S1 | pb = pa, qb = qa +
pa

m
(tb − ta) mod 2π

}
.

On the other hand, if we fix qa and qb, we have the solutions

p(t) =
m(qb − qa + 2kπ)

tb − ta
,

q(t) = qa + (qb − qa + 2kπ)
t− ta
tb − ta

mod 2π,

8Equations (1) and (3) are also important because they imply that SHJ is a solution of the

Hamilton–Jacobi equation.
9For instance, if the target M is a Riemannian manifold with metric g and we take H(p, q) =

‖p‖2g
2m

, then the solutions to the EL equations are cotangent lifts of parametrized geodesics. If M is

the sphere with round metric and we take antipodal points qa and qb, then we have a continuous
family of solutions joining them. However, it is enough to perturb one of them, to get a discrete

family.
10The nonuniqueness in this example is due to the fact that S1 is not simply connected, but

it is possible to find examples of nonuniqueness on simply connected configuration spaces as well.
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for each k ∈ Z. It follows that, for a given k, the HJ action reads

SHJ,k(qa, qb) =
1

2
m

(qb − qa + 2kπ)2

tb − ta
,

which is indeed a generating function for L in a neighborhood of (q0
a, p0, q

0
b , p0) with

p0 =
m(q0

b−q
0
a+2kπ)

tb−ta . To generate the whole L, one needs all the SHJ,ks.

Remark 2.4 (Semiclassical approximation). In the path integral approach to quan-
tum mechanics (say, on the configuration space M = Rn), the integral kernel
K(qa, qb) for the evolution operator is, formally, given by the path integral [26,
28, 29]

(4) K(qa, qb) =

∫
q(ta)=qa
q(tb)=qb

DpDq e
i
~S[p,q].

Assuming for simplicity that there is a unique solution (pqa,qb , qqa,qb) satisfying
qqa,qb(ta) = qa and qqa,qb(tb) = qb, one usually makes the affine change of variables
(translation)

(5) p 7→ pqa,qb + p̂, q 7→ qqa,qb + q̂,

getting

K(qa, qb) = e
i
~SHJ(qa,qb)

∫
q̂(ta)=q̂(tb)=0

Dp̂Dq̂ e
i
~ Ŝ(qa,qb)

[p̂,q̂]

with

Ŝ(qa,qb)[p̂, q̂] = S[pqa,qb + p̂, qqa,qb + q̂]− SHJ(qa, qb).

Since (pqa,qb , qqa,qb) is a solution, Ŝ(qa,qb) starts with a quadratic term in (p̂, q̂), so
one can define the path integral perturbatively. One then sees that the HJ action
yields the semiclassical approximation to K. The crucial point here is that the
Hessian of S at a solution is nondegenerate (one also says that the action or the
lagrangian is regular). This does not happen for degenerate actions (e.g., in gauge
theories). In this case one has to use some technique to gauge fix the action, but
one also has to take into account that the symplectic space of initial conditions is
defined via some symplectic reduction. A cohomological way to resolve these issues
is to use the BV formalism [7] in the bulk and the BFV formalism [6, 30] on the
boundary. In [19] it was shown how to reconcile the two formalisms, into what
was termed the quantum BV-BFV formalism, and it was in particular observed
that, in general, extending boundary values to a solution of the EL equations is
incompatible with the formalism (we will review this in Sections 9.2.3 and 9.2.6).
The above argument to show that the semiclassical contribution to the integral
kernel of the evolution operator is the HJ action is therefore no longer valid. We
will see in Theorem 11.4 that the result still holds, yet the HJ action is recovered
not by evaluating the classical action on a solution but via resumming trees in the
Feynman diagrams expansion.

Remark 2.5 (Changing the endpoint conditions). Fixing q at the endpoints yields
the EL equations as critical points for S. One may however be interested in choosing
different endpoint conditions. In general, they have to correspond to a lagrangian
submanifold of T ∗M , not necessarily the zero section, but one has to adapt the
one-form pidq

i. For simplicity, we now assume M = Rn. Let (Pi, Q
i) be another

set of Darboux coordinates on T ∗Rn and assume (see also Example A.33 for a more
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general viewpoint) that we have a generating function f(q,Q) for the transfomation:
namely,

pidq
i = PidQ

i + df,

i.e.,

pi =
∂f

∂qi
, Pi = − ∂f

∂Qi
.

Assume we want to fix Q at the final endpoint and q at the initial endpoint. We
then change the action by a boundary term:

Sf [p, q] := −f(q(tb), Q(p(tb), q(tb))) +

∫ tb

ta

(pidq
i −H(p, q)dt).

When we take a variation, we now get

δSf = EL + Pi(tb)δQ
i(tb)− pi(ta)δqi(ta),

with the same EL term as before. Therefore, the solutions of the EL equations
are the critical points of Sf with fixed q at the initial endpoint and Q at the final
endpoint. We define the corresponding HJ action as

SfHJ(qa, Qb) := Sf [pqa,Qb , qqa,Qb ],

where (pqa,Qb , qqa,Qb) is the (assumedly unique) solution ot the EL equations with
qqa,Qb(ta) = qa and Q(pqa,Qb(tb), qqa,Qb(tb)) = Qb. Exactly as in the case discussed
at the very beginning of this section, inserting a solution into the variation of Sf

kills the EL term, so we get

Pi(p
qa,Qb , qqa,Qb)(tb) =

∂SfHJ

∂Qib
, pqa,Qbi (ta) = −

∂SfHJ

∂qia
.

In other words, SfHJ is a generating function for the graph of the hamiltonian
flow of H (from ta to tb) with respect to the new set of coordinates (see again
Remark A.32). The dependency on time can be studied repeating the steps of
Remark 2.1 verbatim.

Example 2.6. Consider the case when H = 0, i.e., S[p, q] =
∫ tb
ta
pidq

i. Since the

EL equations have constant solutions, we have S[pqa,Qb , qqa,Qb ] = 0 and q(tb) = qa.
Therefore

(6) SfHJ(qa, Qb) = −f(qa, Qb).

Remark 2.7. For simplicity, we only discuss the change of the final endpoint con-
ditions, but of course the same discussion may be repeated for the initial endpoint
and for both endpoints at the same time.

Example 2.8. A very common case is when one wants to fix q at the initial point
and p at the final point. This fits in the above construction by choosing Q = p and
P = −q and f(q,Q) = Qiq

i. In this case, we simply have

Sf [p, q] := −pi(tb)qi(tb) +

∫ tb

ta

(pidq
i −H(p, q)dt),

δSf = EL− qi(tb)δpi(tb)− pi(ta)δqi(ta),

and

(7) qiqa,pb(tb) = −
∂SfHJ

∂pbi
, pqa,p

b

i (ta) = −
∂SfHJ

∂qia
.
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If we apply this to the Example 2.3 of the free particle on the circle, we get a unique
solution for a given (qa, p

b) and the HJ action

SfHJ(qa, p
b) = −pbqa −

(pb)2

2m
(tb − ta).

If we instead consider the case H = 0 of Example 2.6, we get, as a particular case
of (6),

(8) SfHJ(qa, p
b) = −pbqa.

Remark 2.9 (Legendre transform). One can pass from SfHJ(qa, p
b) to SHJ(qa, qb),

and back, by the Legendre transform:

SHJ(qa, qb) = λcrit
i qib + SfHJ(qa, λ

crit),

where λcrit is the critical point (assumed to be unique) of the variable pb for the

function f(pb) := pbiq
i
b + SfHJ(qa, p

b):

∂f

∂pb
= 0 at pb = λcrit.

We will return to this in Section 6.2.

Remark 2.10. In terms of the path-integral computation of the evolution opera-
tor, see Remark 2.4, changing the endpoint conditions, as discussed in Remark 2.5,
corresponds to assigning different Hilbert space representations, corresponding to
different choices of polarization, to the endpoints. For example, fixing p at the final
endpoint, as in Example 2.8, corresponds to computing the integral kernel K̂(qa, p

b)
for the position representation at the initial endpoint and the momentum represen-
tation at the final one. This is the Fourier transform of K(qa, qb) with respect to
the second argument. One can see a classical track of this in the pi(tb)q

i(tb) term
in Sf (and in the Legendre transform of the previous remark).

Example 2.11. Consider

K̂(qa, p
b) =

∫
q(ta)=qa
p(tb)=p

b

DpDq e
i
~S

f [p,q].

with Sf [p, q] = −p(tb)q(tb)+S[p, q] for the simple action S[p, q] =
∫ tb
ta
p dq. (Nothing

changes if we have many p and q variables: just think of a hidden scalar product
pdq = pidq

i.) As the EL equations imply that the solutions are constant, the
change of variables (5) is now

p 7→ pb + p̂, q 7→ qa + q̂,

with p̂(tb) = 0 and q̂(ta) = 0. Since Sf [p, q] = −pb(qa + q̂(tb)) +
∫ tb
ta

(pb + p̂)dq̂, we

have

K̂(qa, p
b) = e−

i
~p
bqa

∫
q̂(ta)=0
p̂(tb)=0

Dp̂Dq̂ e
i
~ (−pbq̂(tb)+

∫ tb
ta
pbdq̂+

∫ tb
ta
p̂dq̂).

This is a Gaussian integral with quadratic term
∫ tb
ta
p̂dq̂ and no p̂-sources, so it

simply yields a constant (which we normalize to one), and we get

(9) K̂(qa, p
b) = e−

i
~p
bqa ,

the integral kernel for the Fourier transform, whose exponent is given by the HJ
action (8).
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Example 2.12 (Formal quantum change of polarization). The computation of
Example 2.11 may be generalized to the general case discussed in Remark 2.5.
Namely, we have

K̂f (qa, Qb) =

∫
q(ta)=qa

Q(p(tb),q(tb))=Qb

DpDq e
i
~S

f [p,q],

with Sf [p, q] = −f(q(tb), Q(p(tb), q(tb))) + S[p, q]. Again we consider S[p, q] =∫ tb
ta
p dq. The change of variables (5) now becomes

p 7→ p0 + p̂, q 7→ qa + q̂,

with the constant solution p0 given by

p0 =
∂f

∂q
(qa + q̂(tb), Qb),

and endpoint conditions p̂(tb) = 0 and q̂(ta) = 0.11 In general this change of
variables is no longer affine, since p0 depends on q̂, possibly in a nonlinear way. On
the other hand, the Jacobian determinant of the transformation is (formally) 1 (the
Jacobian is lower triangular with “1”s on the diagonal). We now have

K̂f (qa, Qb) =

∫
q̂(ta)=0
p̂(tb)=0

Dp̂Dq̂ e
i
~ (−f(qa+q̂(tb),Qb)+

∫ tb
ta
p0dq̂+

∫ tb
ta
p̂dq̂),

which is again a Gaussian integral with quadratic term
∫ tb
ta
p̂dq̂ and no p̂-sources,

Therefore,

(10) K̂f (qa, Qb) = e−
i
~ f(qa,Qb),

the exponential of the HJ action (6).

Digression 2.13 (Unitarity). The result (10) of the previous Example 2.12 is cor-
rect insofar as the starting point is the quantization of the action Sf as a partition
“function.” This has to be corrected if we understand the integral kernel as a
half-density in the boundary variables, which is more appropriate for composition.
The idea is that the functional measure is the product over points of the measure
dp dq/(2π~) (for simplicity we discuss this for the target T ∗R). At the end points
we then retain only the square root of the fixed boundary variable, as the other
corresponding square root will come from another integral kernel we want to com-
pose with. For example, in passing from the q- to the p-representation, the integral
kernel half-density will be

K(qa, p
b) =

√
dqa e−

i
~p
bqa

√
dpb

2π~
instead of (9). Note that K is unitary:∫
{pb}

K(q, pb) K(pb, q′) =
√

dq

(∫
{pb}

e
i
~p
b(q′−q) dpb

2π~

) √
dq′ =

√
dq δ(q′− q)

√
dq′.

Unitarity is somehow expected, since reversing the orientation of the interval on
which the theory is defined produces K(pb, q′), and the composition of the quantum

11Note that the endpoint fluctuations of p and q are constrained by the condition
Q(p(tb), q(tb)) = Qb. We have arranged the change of variables so that, while p0 may fluctu-

ate at the endpoint, p̂ does not.
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evolution on an interval with the reversed one should be the identity. In Exam-
ple 2.12, we could follow the same reasoning and expect unitarity (indeed, at the
classical level, composition of the generating functions f(q′, Qb) and −f(q,Qb), see
Remark A.37, yields a generating function for the identity); however, in general,
this is not the case at the quantum level as we will see in a moment. In this example
as well we split the fields in terms of the initial q and final p variables, but then
we expressed the final values in terms of Qb. The change of variables we perfomed
there entails in particular

(11) p(tb) =
∂f

∂q
(qa + q̂(tb), Qb)

and therefore

dp(tb) =
∂2f

∂q ∂Q
(qa + q̂(tb), Qb) dQb +

∂2f

∂q2
(qa + q̂(tb), Qb) (dqa + dq̂(tb)).

The terms in dqa and dq̂(tb) can be neglected, since they already appear in the
functional measure. Therefore, we only retain the first term, of which we eventually
have to take the square root, getting the integral kernel half-density

Kf (qa, Qb) =
√

dqa

(∫
q̂(ta)=0
p̂(tb)=0

Dp̂Dq̂ e
i
~ (−f(qa+q̂(tb),Qb)+

∫ tb
ta
p0dq̂+

∫ tb
ta
p̂dq̂)

√
∂2f

∂q ∂Q
(qa + q̂(tb), Qb)

) √
dQb
2π~

,

where we have assumed the nonzero ∂2f
∂q ∂Q term to be actually positive. Again,

since this is a Gaussian integral with quadratic term
∫ tb
ta
p̂dq̂ and no p̂-sources, we

get

(12) Kf (qa, Qb) =
√

dqa e−
i
~ f(qa,Qb)

√
∂2f

∂q ∂Q
(qa, Qb)

√
dQb
2π~

instead of (10). In a neighborhood of the diagonal q = q′, Kf is almost unitary:
i.e., ∫

{Qb}
Kf (q,Qb) K

f
(Qb, q

′) =
√

dq (1 +O(~))δ(q′ − q)
√

dq′,

where the O(~) term is a differential operator. This may be seen by the (q and q′

dependent) change of variable

λ(Qb) =
f(q′, Qb)− f(q,Qb)

q′ − q
in the dQb integral.12 Note that (12) resembles the starting point of the WKB
approximation (see, e.g., [44, Appendix], [25, Section 15], and references therein).
Indeed, one possible way to get corrections to it to make it unitary is to regard,
if possible, f as the Hamilton–Jacobi action for some hamiltonian system (on the

12In some cases, Kf is exactly unitary. This happens, e.g., when f has product form: f(q,Q) =
α(q)β(Q). (In particular, this happens when we have a linear symplectomorphism, in which case,

moreover, the correction term ∂2f
∂q ∂Q

is constant.) In this case, we have∫
{Qb}

Kf (q,Qb) K
f

(Qb, q
′) =

√
dq

(∫
{Qb}

e
i
~β(Qb)(α(q′)−α(q))

√
α′(q)α′(q′)β′(Q)

dQb

2π~

) √
dq′,
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other hand, the corrections are not uniquely determined, since the choice of this
hamiltonian system is not unique).

3. Systems with one constraint

Our first generalization is an action of the form13

S[p, q, e] =

∫ tb

ta

(pidq
i − eH(p, q)),

where the new field e, the Lagrange multiplier, is a one-form on the interval [ta, tb].
We will first consider the case when e is different from zero everywhere. This

restriction will allow us to deal with endpoint conditions on the qs. Next we will
consider the general case, which, however, will force us to pick different endpoint
conditions.

3.1. Nondegenerate Lagrange multiplier. We assume e to be different from
zero everywhere. A variation of the action yields

δS = EL + pi(tb)δq
i(tb)− pi(ta)δqi(ta)

with the EL equations

dqi = e
∂H

∂pi
, dpi = −e∂H

∂qi
, H(p, q) = 0.

The last equation, the variation with respect to e, is imposed at all times. Note
that the endpoint symplectic structures are the same as in the nondegenerate case
and depend only on p and q. This in particular means that no endpoint condition
on e has to be imposed.

To solve the EL equations, we first define

τ(t) :=

∫ t

ta

e.

The first two sets of EL equations now read

dqi

dτ
=
∂H

∂pi
,

dpi
dτ

= −∂H
∂qi

,

so they are the usual Hamilton equations for the hamiltonian H in the time variable

τ ∈ [0, T ], with T :=
∫ tb
ta
e. The last EL equation, H = 0, is automatically satisfied

at any point if we impose it at the initial point (or at the final point). We then
have that the endpoint values for (p, q) corresponding to solutions form the set

L = {(pa, qa, pb, qb) ∈ T ∗M × T ∗M | H(pb, qb) = 0

and ∃T ∈ R6=0 : (pb, qb) = ΦHT (pa, qa)},

where we have assumed the nonzero α′ and β′ terms to be actually positive. By the change of

variable µ = β(Qb), we get∫
{Qb}

Kf (q,Qb) K
f

(Qb, q
′) =

√
dq

(∫
{µ}

e
i
~µ(α(q′)−α(q))

√
α′(q)α′(q′)

dµ

2π~

) √
dq′

=
√

dq δ(α(q′)− α(q))
√
α′(q)α′(q′)

√
dq′ =

√
dq δ(q′ − q)

√
dq′.

13If one requires e 6= 0 everywhere, this action may also be regarded as the first-order version

of one-dimensional gravity, described by the coframe e, coupled to matter, described by q. Its

BV-BFV quantization is studied in [22].
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where ΦHτ denotes the hamiltonian flow of H at time τ . Note that in this case L is
not the graph of a map T ∗M → T ∗M , but just a subset of T ∗M × T ∗M . We will
call it the evolution relation of the system. (See Remark A.38 for a more general
perspective.)

For a fixed e, let (pqa,qb , qqa,qb) denote the (assumedly unique) solution to the first
two sets of EL equations (i.e., we do not impose the constraint H = 0) satisfying

qqa,qb(ta) = qa and qqa,qb(tb) = qb. Since we may rewrite the action as
∫ T

0
(pidq

i −
H(p, q)dτ), we get that the HJ action is

SHJ(qa, qb)[e] := S[pqa,qb , qqa,qb , e] = SHHJ(qa, qb; 0, T ),

where the last term denotes the HJ action for the system with hamiltonian H over
the time interval [0, T ].

The first remark is that the HJ action depends on e only via its integral T ; we
will then simply write

(13) ŜHJ(qa, qb;T ) := SHJ(qa, qb)[e], with T =

∫ tb

ta

e,

so

ŜHJ(qa, qb;T ) = SHHJ(qa, qb; 0, T ).

The second remark, which follows immediately from (1) and (3), is that the
evolution relation L is determined by the equations

pbi =
∂ŜHJ

∂qib
, pai = −∂ŜHJ

∂qia
,

∂ŜHJ

∂T
= 0.

In other words, ŜHJ is a generalized generating function14 for the lagrangian sub-
manifold L, see Appendix A (in particular, Remark A.11 for the linear case and
Remark A.27 for the general case).

3.2. The general case. The assumption e 6= 0 everywhere is only needed to ensure
that the map t 7→ τ is a diffeomorphism and hence to relate ŜHJ to the HJ function
for the system with hamiltonian H. The existence of a HJ action, however, holds
also in the general case where we make no assumptions on e, provided we choose
the endpoint conditions more carefully.

First observe that the first two sets of EL equations, which we will call the
evolution equations,

dqi = e
∂H

∂pi
, dpi = −e∂H

∂qi
,

can be uniquely solved, for fixed e, in terms of initial conditions pa, qa. In fact, in
the regions (closed intervals) where e = 0, the solution is constant and on the other
regions we can make a change of variables t 7→ τ as above. Moreover, the function
H is constant when evaluated on a solution to the evolution equations, which means
that it is enough to impose this constraint at the initial (or final) endpoint to have
it satisfied at every time.

Let L still denote the evolution relation of the system, i.e., the set of endpoint
values for solutions to the EL equations. Note that, for a given e = edt, we have

14In the terminology of [9, Section 4.3], the triple (M×R6=0, π1, ŜHJ), where π1 is the projection

to the first factor, is a Morse family generating L.
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to compute the “flow” ΦH̃T of the time-dependent hamiltonian H̃ = eH up to time

T =
∫ tb
ta
e. We then have

L = {(pa, qa, pb, qb) ∈ T ∗M × T ∗M | H(pb, qb) = 0

and ∃e : (pb, qb) = ΦH̃T (pa, qa)}.

Remark 3.1. We can have a better geometric description if we assume that the
differential of H is different from zero at every point of the zero locus C of H. This
ensures that C is a submanifold of T ∗M and that the hamiltonian vector field XH

of H restricted to C has no zeros, so it defines a distribution of lines. Note that C
is an example of what is called a coisotropic submanifold and spanXH |C is called
its characteristic distribution (see Definition A.19 and Remark A.25 for more on
this). In this geometric framework, the evolution relation L ⊂ T ∗M×T ∗M consists
of pairs of points on C that can be connected by a path along the characteristic
distribution. (It is therefore lagrangian by Lemma A.29.)

Now observe that fixing qa and qb is problematic, as for e = 0 we have no solution
unless qa = qb. For this reason we have to choose different endpoint conditions, as
in Remark 2.5; for instance, we can fix p at one endpoint as in Example 2.8.

We denote by (pqa,Qb , qqa,Qb , e) a solution (pqa,Qb , qqa,Qb) to the evolution equa-
tions for the given e (but we do not impose the constraint H = 0) satisfying
qqa,Qb(ta) = qa and Q(pqa,Qb(tb), qqa,Qb(tb)) = Qb. We then set

SfHJ(qa, Qb)[e] := Sf [pqa,Qb , qqa,Qb , e]

with

Sf [p, q, e] = −f(q(tb), Q(p(tb), q(tb))) +

∫ tb

ta

(pidq
i − eH(p, q)).

We then have

δSfHJ = Pi(tb)δQ
i
b − pi(ta)δqia −

∫ tb

ta

δeH(pqa,Qb , qqa,Qb)

= Pi(tb)δQ
i
b − pi(ta)δqia −

(∫ tb

ta

δe

)
H(pqa,Qb(tb), qqa,Qb(tb))

= Pi(tb)δQ
i
b − pi(ta)δqia − δT H(pqa,Qb(tb), qqa,Qb(tb)),

(14)

where, as above, we set T =
∫ tb
ta
e. Note that SfHJ is invariant under variations of e

with vanishing integral, so we may define ŜfHJ like in (13):

ŜfHJ(qa, Qb;T ) := SfHJ(qa, Qb)[e], with T =

∫ tb

ta

e.

Then the above equation reads

δŜfHJ = Pi(tb)δQ
i
b − pi(ta)δqia − δT H(pqa,Qb(tb), qqa,Qb(tb)),

and we see that the equations

Pi(p
qa,Qb , qqa,Qb)(tb) =

∂ŜfHJ

∂Qib
, pai = −

∂ŜfHJ

∂qia
,

∂ŜfHJ

∂T
= 0

define L.
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The HJ action, obtained inserting a solution of the evolution equa-
tions but ignoring the constraint, is a generalized generating func-
tion for the evolution relation determined by all EL equations.

Example 3.2 (Linear case). Consider M = Rn and suppose H is linear on T ∗Rn:

H(p, q) = piv
i + wiq

i,

where the (vi, wi)s are given constants. In this case the evolution equations simply
read

dqi = evi, dpi = −ewi.
They can be easily solved in terms of the initial conditions, so we get the evolution
relation

L ={(pa, qa, pb, qb) ∈ T ∗Rn × T ∗Rn |

| ∃T ∈ R : pbiv
i + wi(q

i
a + Tvi) = 0, pa = pb + Tw, qb = qa + Tv},

where T corresponds to
∫ tb
ta
e, and we have evaluated the constraint H = 0 at the

final endpoint. As in Example 2.8 we now fix qa and pb. The evolution equations
can then be easily integrated for the given endpoint conditions as

qiqa,pb(t) = qia +

∫ t

ta

evi = qia + τ(t)vi,

pqa,p
b

i (t) = pbi +

∫ tb

t

ewi = pbi + (T − τ(t))wi,

with τ(t) =
∫ t
ta
e. For this choice of endpoint conditions we consider

Sf [p, q, e] := −pi(tb)qi(tb) +

∫ tb

ta

(pidq
i − eH(p, q)).

Now observe that

pqa,p
b

i dqiqa,pb(t)− eH(pqa,p
b

, qqa,pb) = pqa,p
b

i evi − epqa,p
b

i vi − ewiqiqa,pb
= −dτwi(q

i
a + τvi),

which implies∫ tb

ta

(pqa,p
b

i dqiqa,pb(t)− eH(pqa,p
b

, qqa,pb)) = −Twiqia −
T 2

2
wiv

i.

On the other hand,

pqa,p
b

i (tb)q
i
qa,pb

(tb) = pbi (q
i
a + Tvi).

In conclusion, we get

(15) ŜfHJ(qa, p
b;T ) = −pbiqia − T (pbiv

i + wiq
i
a)− T 2

2
wiv

i,

which is readily seen to be a generalized generating function for L.

Remark 3.3. Sometimes it is possible to solve for T the constraints and then obtain
a standard (i.e., without parameters) generating function for the evolution relation
L. For instance, in the linear case of Example 3.2, the constraint is

pbiv
i + wiq

i
a + Twiv

i = 0,
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which can be solved if wiv
i 6= 0. In this case we get

T = −p
b
iv
i + wiq

i
a

wivi
,

which can be inserted back into Ŝf to get the standard generating function

S̃f (qa, p
b) = −pbiqia +

(pbiv
i + wiq

i
a)2

2wivi
.

In the one-dimensional case, n = 1, we get

S̃f (qa, p
b) = −pbqa +

(pbv + wqa)2

2wv
=

1

2

v

w
(pb)2 +

1

2

w

v
(qa)2,

which correctly generates the evolution relation

L = {(pa, qa, pb, qb) ∈ T ∗R× T ∗R | pav + wqa = 0 and pbv + wqb = 0}.

Note that in this very particular example the evolution plays no role and L has the
product form L = L′ × L′, with L′ = {(p, q) ∈ T ∗R | pv + wq = 0}.

Remark 3.4 (Integrable systems I). The case n = 1 can also be regarded as a one-
dimensional integrable system with vanishing hamiltonian. In this case, another
expression for the HJ action can be derived as follows. Around a point (p0, q0)
where dH 6= 0, by the Carathéodory–Lie–Jacobi theorem15 we may extend H to a
Darboux chart (P,Q) with P = H (P is what is called the action variable and Q
the corresponding angle variable). Let f(q,Q) be the generating function satisfying
p dq = P dQ+ df . We may then write

Sf [p, q, e] := −f(q(tb), Q(tb))+

∫ tb

ta

(p dq−eH) = −f(q(ta), Q(ta))+

∫ tb

ta

(P dQ−eP ),

where P = P (p, q), Q = Q(p, q). The evolution equations now simply read dP =
0,dQ = e. Evaluating on a solution of the evolution equations, the action vanishes
and we get

(16) SfHJ(qa, Qb;T ) = −f(qa, Qb − T )

for (qa, Qb) in a neighborhood of (q0, Q(p0, q0)). Alternatively, if g(q, P ) is the
generating function satisfying p dq = −QdP + dg, we can express the HJ action
with final endpoint condition on P by

(17) SgHJ(qa, P
b;T ) = −TP b − g(qa, P

b).

Notice also that (17) is the Legendre transform of (16). We will revisit the case of
integrable systems in Remarks 4.5 and 5.1.

15The Carathéodory–Lie–Jacobi theorem says that if H1, . . . , Hk are functions on a symplectic
manifold (M,ω) such that {Hi, Hj} = 0 and dH1, . . . , dHk are linearly independent at some

p ∈ M , then there exists a Darboux chart (qi, p
i) containing p with q1 = H1, . . . , qk = Hk. See,

for instance, [40, Theorem 13.4.1].
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4. Systems with several constraints

From now on we consider an action of the form16

(18) S[p, q, e] =

∫ tb

ta

(pidq
i − eαHα(p, q)),

where the eαs (the Lagrange multipliers) are one-forms on the interval [ta, tb] and
the Hαs are given functions (the constraints). (The sum over α, like that over i, is
now understood.) The EL equations are

dqi = eα
∂Hα

∂pi
, dpi = −eα ∂Hα

∂qi
, Hα(p, q) = 0.

Again we will call the first two sets of equations the evolution equations and the
last set the constraints. Evaluating the constraints on a solution of the evolution
equations yields

dHα =
∂Hα

∂pi
dpi +

∂Hα

∂qi
dqi = −{Hα, Hβ}eβ ,

where { , } denotes the Poisson bracket.17 If we assume, as we will do from now
on, that the constraints are in involution,18 i.e., that there are structure functions
fγαβ such that

(19) {Hα, Hβ} = fγαβHγ ,

then the previous equations become

(20) dHα = −fγαβe
βHγ .

This implies that, if the constraints are imposed at the initial (or final) endpoint,
they will be satisfied at every time.

Remark 4.1. As in Remark 3.1, it may be convenient to assume that the differen-
tials of the Hαs are linearly independent at every point of the common zero locus
C of the Hαs. This ensures that C is a submanifold of T ∗M and that the hamil-
tonian vector fields XHα restricted to C are linearly independent, so they define
a regular distribution. It follows that C is also an example of what is called a
coisotropic submanifold and span{XH

α |C} is called its characteristic distribution
(see Definition A.19 and Remark A.25 for more on this).19 As a consequence of
(19), the characteristic distribution is involutive (and hence, by Frobenius’ theorem,
integrable). In this geometric framework, the evolution relation L ⊂ T ∗M × T ∗M
consists of pairs of points on C that can be connected by a path along the char-
acteristic distribution and is therefore lagrangian in T ∗M × T ∗M , where the bar
denotes that one takes the opposite symplectic form.

16Such an action functional is the classical part of an AKSZ theory [2] on the interval [ta, tb];

see Section 8 for a review. See also [5] for the study of such a theory in the Dirac formalism.
17We define the Poisson bracket as {f, g} = ∂f

∂pi

∂g
∂qi
− ∂f
∂qi

∂g
∂pi

.
18Using Dirac’s terminology, one also says that they are first-class constraints.
19The characteristic distribution is also the same as the kernel of the restriction of the sym-

plectic form to C.
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Like in the case with a single constraint, fixing qa and qb is problematic, as for
eα = 0 for all α we have no solution unless qa = qb. Therefore, we choose different
endpoint conditions, as in Remark 2.5; for instance, we can fix p at one endpoint
as in Example 2.8.

We will denote by (pqa,Qb , qqa,Qb , e) a solution (pqa,Qb , qqa,Qb) to the evolution
equations with the given e (but we do not impose the constraints Hα = 0) satisfying
qqa,Qb(ta) = qa and Q(pqa,Qb(tb), qqa,Qb(tb)) = Qb. We then set

SfHJ(qa, Qb)[e] := Sf [pqa,Qb , qqa,Qb , e]

with

Sf [p, q, e] = −f(q(tb), Q(p(tb), q(tb))) +

∫ tb

ta

(pidq
i − eαHα(p, q)).

By taking a variation, we get

δSfHJ = Pi(tb)δQ
i
b − pi(ta)δqia −

∫ tb

ta

δeαHα(pqa,Qb , qqa,Qb).

This shows that SfHJ is indeed a generalized generating function for the evolution
relation L. However, there is a lot of redundancy because the variations with respect
to the eα(t)s yield the constraints for every t ∈ [ta, tb], whereas we have observed
that it is enough to impose them at the initial (or final) endpoint. This is related to

the fact that, thank to (20) and upon integration by parts, SfHJ is invariant under
a variation of e of the form

(21) δeα = dγα + fγαβe
αγβ ,

with the γs arbitrary functions on [ta, tb] that vanish at both endpoints. We call a

transformation as in (21) a gauge transformation. We therefore see that SfHJ only
depends on the eα(t)s via their gauge classes. Analogously to the case of equation
(13), we define

(22) ŜfHJ(qa, Qb; [e]) := SfHJ(qa, Qb, e), with e ∈ [e].

In summary, we have the following

Theorem 4.2. The generalized HJ action ŜfHJ, obtained by inserting into the clas-
sical action Sf the solution of the evolution equations, is a generalized generating
functions for the evolution relation, which is defined in terms of all the EL equations
(evolution and constrains).

In the next subsections we will discuss more explicitly the gauge classes and how
the HJ action depends on them. We will proceed in increasing order of difficulty.
In Section 4.1, we will consider the strictly involutive case where all the structure
functions fγαβ vanish. This case, which is a straightforward generalization of the
single-constraint case, comprises the case where the constraints Hα are linear, see
Example 4.3, and will be important for abelian Chern–Simons theory. Next, in
Section 4.2, we will consider the case when the structure functions are actually
constant, so that there is an underlying Lie algebra structure (the Hαs are in
this case the components of an equivariant momentum map). This case will be
important for nonabelian Chern–Simons theory. Finally, for completeness, we will
treat the general case in Section 4.3: this case requires knowledge of Lie algebroids
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and Lie groupoids, see [42] for a general introduction, but will not be used in the
rest of the paper, so it may be safely skipped.

4.1. The strictly involutive case. Suppose that all the structure functions fγαβ
vanish; i.e., {Hα, Hβ} = 0 for all α and β. This implies that, evaluating on a
solution to the evolution equations, we have dHα = 0 for all α. If we define

τα(t) :=

∫ t

ta

eα,

we then have eα = dτα and τα(ta) = 0. Observe that the computation in (14) can
be repeated verbatim yielding

δSfHJ = Pi(tb)δQ
i
b − pi(ta)δqia − δTαHα(pqa,Qb(tb), qqa,Qb(tb)),

with Tα = τα(tb) =
∫ tb
ta
eα. Again, this first implies that SfHJ is invariant under

variations of the eαs with vanishing integral, so we may define ŜfHJ as in (22) as

ŜfHJ(qa, Qb;T ) := SfHJ(qa, Qb)[e], with Tα =

∫ tb

ta

eα.

Second, the above computation shows that ŜfHJ is a generalized generating function
for L.

Example 4.3 (Linear case). Assume

Hα = piv
i
α + wiαq

i = pvα + wαq,

where the (viα, wiα)s are given constants and we use the product of row and col-
umn vectors to make the notation a bit lighter. The Poisson bracket of any two
constraints is a constant function. The involutivity conditions (19) then imply that
all these constant functions vanish, so we actually have

{Hα, Hβ} = 0.

This is equivalent to the conditions wαvβ = wβvα for all α and β. For future
convenience we define the (symmetric!) matrix

(23) Aαβ := wαvβ = wβvα.

We now want to compute ŜfHJ explicitly as a function of qa and pb. First observe
that the evolution equations read

dq = eαvα, dp = −eαwα,

and can be easily integrated for the given endpoint conditions:

qqa,pb(t) = qa + τα(t)vα,

pqa,p
b

(t) = pb + (Tα − τα(t))wα.

Moreover, we have

pqa,p
b

dqqa,pb(t)− e
αHα(pqa,p

b

, qqa,pb) = eαpqa,p
b

vα − eαpqa,p
b

vα − eαwαqqa,pb
= −dταwα(qa + τβvβ) = −dταwαqa − dτατβAαβ

= −dταwαqa −
1

2
d(τατβ)Aαβ
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with Aαβ the symmetric matrix defined in (23). This implies∫ tb

ta

(pqa,p
b

dqqa,pb(t)− e
αHα(pqa,p

b

, qqa,pb)) = −Tαwαqa −
1

2
TαT βAαβ .

On the other hand,

pqa,p
b

(tb)qqa,pb(tb) = pb(qa + Tαvα).

In conclusion, we get

(24) ŜfHJ(qa, p
b, T ) = −pbqa − Tα(pbvα + wαqa)− 1

2
TαT βAαβ ,

which generalizes (15) to the the case of several linear constraints.

Remark 4.4 (General change of endpoint conditions). The above example is simple
enough for the answer to be computable for a general change of endpoint conditions
as in Remark 2.5. Let f(q,Q) be a generating function for the change and fix qa
and Qb. By inspection in the previous computation, we see that to compute ŜfHJ we
actually only have to solve q(t) for the given initial condition qa (this is independent
of Qb), which has already been done above. We then get in general

(25) ŜfHJ(qa, Qb;T ) = −f(qa + Tαvα, Qb)− Tαwαqa −
1

2
TαT βAαβ .

Note that this may also be obtained as the composition of the generating func-
tions (24) and (6), following Remark A.36. Namely, let us write

S1(qa, p
b;T ) = −pbqa − Tα(pbvα + wαqa)− 1

2
TαT βAαβ ,

and

S2(qa, Qb) = −f(qa, Qb).

Let

S3(qa, p
b, q̄a, Qb;T ) := S1(qa, p

b, T ) + S2(q̄a, Qb) + pbq̄a.

The composition of S1 and S2 is the evaluation of S3 at its critical point in (pb, q̄a):

q̄a +
∂S1

∂pb
= 0, pb +

∂S2

∂q̄a
= 0.

One easily sees that the result is (25).

Remark 4.5 (Integrable systems II). As a generalization of Remark 3.4, we may
consider the case where we have exactly n constraintsH1, . . . ,Hn in strict involution
- an n-dimensional integrable system with vanishing hamiltonians. Around a point
(p0, q0) where dH1, . . . ,dHn are linearly independent, again by the Carathéodory–
Jacobi–Lie theorem, see footnote 15, we may find a Darboux chart (P,Q) with
Pi = Hi (the action-angle coordinates). By the same computation as in Remark
3.4, in this chart the HJ action is expressed as

(26) SfHJ(qa, Qb;T ) = −f(qa, Qb − T )

and

(27) SgHJ(qa, P
b;T ) = −T iP bi − g(qa, P

b).
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4.2. The Lie algebra case. We now suppose that all the fγαβs are constant (but

not necessarily zero). They can be viewed as structure constants of some Lie algebra
g. In turn the eαs may be viewed as the components of a g valued one-form e on
[ta, tb] or, equivalently, as a connection one-form. We may also view the Hαs as
the components of a map H : T ∗M → g∗, where T ∗M is the target symplectic
manifold. The involutivity conditions (19) say that H is an equivariant momentum
map, whereas (20) may be read as the condition deH = 0 that the composition of
H with a solution to the evolution equations is covariantly constant. We rewrite
the action as

S[p, q, e] =

∫ tb

ta

(pidq
i − 〈H(p, q), e〉),

where 〈 , 〉 denotes the pairing of g∗ with g. Next we define

(28) h(t) = P e
∫ t
ta
e ∈ G,

where P denotes the path ordered product and G is the simply connected Lie group
with Lie algebra g. Note that h(ta) = 1 and e = h−1dh.20 We write

g := h(tb) = P e
∫ tb
ta
e.

Finally, we define H̃ := Ad∗hH. Observe that, when evaluated on a solution to the

evolution equations, H̃ is constant. We now repeat the computation as in (14):

δSfHJ = Pi(tb)δQ
i
b − pi(ta)δqia −

∫ tb

ta

〈H(pqa,Qb , qqa,Qb), δe〉

= Pi(tb)δQ
i
b − pi(ta)δqia −

∫ tb

ta

〈H̃(pqa,Qb , qqa,Qb),Adh δe〉

= Pi(tb)δQ
i
b − pi(ta)δqia −

〈
H̃(pqa,Qb(tb), qqa,Qb(tb)),

∫ tb

ta

d(δhh−1)

〉
= Pi(tb)δQ

i
b − pi(ta)δqia −

〈
H̃(pqa,Qb(tb), qqa,Qb(tb)), δgg

−1
〉

= Pi(tb)δQ
i
b − pi(ta)δqia −

〈
H(pqa,Qb(tb), qqa,Qb(tb)), g

−1δg
〉
.

This explicitly shows that SfHJ is invariant under variations of e that do not change
g. As in (22), we define

(29) ŜfHJ(qa, Qb; g) := SfHJ(qa, Qb)[e], with g = P e
∫ tb
ta
e,

and it immediately follows that ŜfHJ is a generalized generating function for the
evolution relation L.

Example 4.6 (Biaffine case). Consider a target T ∗V = V ∗ ⊕ V 3 (p, q) and
constraints that are affine both on V and on V ∗; namely,

Hα(p, q) = −pi(ρα)ijq
j + piv

i
α + wiαq

i = −pραq + pvα + wαq,

20We use for simplicity the matrix notation. If G is not a matrix Lie group, the correct formula
is

e(t) = (d1lh)−1dth : TtI → g,

where 1 denotes the unit of G and lh : G→ G denotes the left translation g 7→ hg.
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where, for each α, ρα is a given endomorphism of V , vα is a given vector in V and
wα is a given vector in V ∗ (we denote the pairing between V ∗ and V simply by
juxtaposition). The involutivity conditions (19) are equivalent to the relations

[ρα, ρβ ] = fγαβργ ,

ραvβ − ρβvα = fγαβvγ ,

wαρβ − wβρα = fγαβwγ ,

wβvα − wαvβ = 0.

(30)

The first relation says that ρ is a representation of the Lie algebra g on V , the
second and the third that v : g→ V and w : g→ V ∗ are Lie algebra 1-cocycles, and
the last is what we already saw in Example 4.3. The evolution equations read

deq = eαvα = v(e), dep = −eαwα = −w(e),

where we introduced the covariant derivatives

deq := dq + eαραq, dep := dp− eαpρα.

Let R : G → Aut(V ) denote the representation that integrates ρ to the simply
connected Lie group G. If we introduce q̃(t) := Rh(t)q(t) with h defined in (28),
then the first evolution relation becomes

dq̃ = Rhv(e),

which has solution, for the the inital condition q̃(ta) = q(ta) = qa, given by q̃(t) =

qa +
∫ t
ta
Rhv(e). Therefore,

qqa,pb(t) = R−1
h(t)

(
qa +

∫ t

ta

Rhv(e)

)
.

Similarly, we get

pqa,p
b

(t) = R̄−1
h(t)

(
pb +

∫ tb

t

R̄hw(e)

)
,

where R̄h := (R−1
h )∗ is the dual representation on V ∗. For later convenience we

introduce the 1-forms on G (valued in V and V ∗, respectively)

α(h) := Rhv(e), β(h) := R̄hw(e).

As a consequence of the second and third relations of (30) (and of the fact that the
Maurer–Cartan 1-form e is flat), we get that α and β are closed. This implies that∫
γ
α and

∫
γ
β are invariant under homotopies of the path γ : [ta, tb]→ G with fixed

endpoints. In particular, if γ is a path joining the identity in G to some element g,
then we define

Φ(g) :=

∫
γ

α, Ψ(g) :=

∫
γ

β.
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Note that, since G is simply connected, we get well-defined maps Φ: G → V and
Ψ: G→ V ∗.21 We now want to compute the HJ action. First observe that

pqa,p
b

dqqa,pb − e
αHα(pqa,p

b

, qqa,pb) = pqa,p
b

deqqa,pb − p
qa,p

b

v(e)− w(e)qqa,pb

= −w(e)qqa,pb = −w(e)R−1
h

(
qa +

∫ •
ta

Rhv(e)

)
,

so ∫ tb

ta

(pqa,p
b

dqqa,pb − e
αHα(pqa,p

b

, qqa,pb)) = −Ψ(g)qa −WZW(g)

with g = h(tb). We introduced the following notation (which will become the WZW
term in the case of Chern–Simons theory):

(31) WZW(g) :=

∫
t1<t2

β2 α1

with αi := π∗i α, βi := π∗i β and πi : [ta, tb]
2 → G, πi(t1, t2) = γ(ti), where γ is

a(ny) path joining the identity to g (e.g., the path h(t)). The fact that WZW(g) is
invariant under homotopies of γ with fixed endpoints follows from the fact that α
and β are closed and from the fourth relation in (30). Finally, we have

pqa,p
b

(tb)qqa,pb(tb) = pbR−1
g (qa + Φ(g)) ,

so

(32) ŜfHJ(qa, p
b; g) = −pbR−1

g qa − pbR−1
g Φ(g)−Ψ(g)qa −WZW(g),

which generalizes (24) to the case of biaffine constraints.

Remark 4.7 (Exponential map). We now want to rewrite the WZW term (31) of
the last example to facilitate the comparison with the case of Chern–Simons theory
under the assumption that the exponential map g → G is surjective. To simplify
the notation, we also assume ta = 0 and tb = 1. In this case, given g = eξ, we may
choose h(t) = etξ. It follows that e = ξdt. We introduce

W2(g) := Ψ(g)Φ(g) =

∫
t1<t2

β2 α1 +

∫
t2<t1

β2 α1,

W3(g) :=

∫ 1

0

Ψ(h)ρeΦ(h) =

∫
t1<t2,t3<t2

β3ρe2α1.

(33)

We have

W3(g) =

∫
t1<t2,t3<t2

w(e3)R−1
h3
ρe2α1 =

∫
t1<t2,t3<t2

w(ξ)R−1
et3ξ

ρ(ξ)dt3dt2α1

=

∫
t1<t2,t3<t2

w(ξ)ρ(ξ)R−1
et3ξ

dt3dt2α1 = −
∫
t1<t2,t3<t2

w(ξ)
d

dt3
R−1

et3ξ
dt3dt2α1

= −
∫
t1<t2

w(ξ)R−1
et2ξ

dt2α1 +

∫
t1<t2

w(ξ)dt2α1

= −
∫
t1<t2

β2 α1 +

∫
t1<t2

w(ξ)dt2α1.

21One can easily show that Φ(g1g2) = Φ(g1) + Rg1Φ(g2) and Ψ(g1g2) = Ψ(g1) + R̄g1Ψ(g2);

i.e., Φ and Ψ are 1-cocycles on G with values in V and V ∗, respectively. Our formulae give an
explicit integration of the Lie algebra 1-cocycles to the corresponding Lie group 1-cocycles, which

is guaranteed by general arguments, see [41, Lemma 2.13].
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Therefore,

W2(g)−W3(g) = 2WZW(g) +

(∫
t2<t1

β2 α1 −
∫
t1<t2

w(ξ)dt2α1

)
.

We now want to show that the term in brackets vanishes. In fact,∫
t2<t1

β2 α1 =

∫
t2<t1

w(ξ)Re(t1−t2)ξv(ξ)dt2dt1
s=t1−t2=
r=t1

∫
s<r

w(ξ)Resξv(ξ)drds.

On the other hand,∫
t1<t2

w(ξ)dt2α1 =

∫
t1<t2

w(ξ)Ret1ξv(ξ)dt2dt1
s=t1=
r=t2

∫
s<r

w(ξ)Resξv(ξ)drds.

In conclusion,

(34) WZW(g) =
1

2
W2(g)− 1

2
W3(g).

Example 4.8 (Adjoint representation). We now specialize the above example and
remark to the case when (V, ρ) = (g, ad) is the adjoint representation. Note that
the second relation of (30) now says that v is a derivation of g. As such it may
be extended to the universal enveloping algebra as a derivation22 and then to (the
image of the exponential map in) the group. We have

v(eξ) =

∫ 1

0

eξtv(ξ)eξ(1−t)dt.

In this case, for g = eξ, we get

Φ(g) = v(g)g−1,

where again for notational simplicity we have assumed to have a matrix Lie group.
We further assume that g is a quadratic Lie algebra, i.e., it is equipped with an
invariant nondegenerate pairing 〈 , 〉, which we can use to identify g∗ with g. We
will then denote by q̄ the image of p under this isomorphism (and we will then take
the target to be g⊕ g with symplectic structure induced from the pairing) and by
v̄ the composition of w with the isomorphism. We can then rewrite (32) as

(35) ŜfHJ(qa, p
b; g) = −〈q̄b, g−1qag〉 − 〈q̄b, g−1v(g)〉 − 〈v̄(g)g−1, qa〉 −WZW(g)

and, using (33) and (34), the WZW term as

(36) WZW(g) =
1

2
〈v̄(g)g−1, v(g)g−1〉+

1

2

∫ 1

0

〈v̄(h)h−1, [v(h)h−1,dhh−1]〉.

Remark 4.9 (A trivial extension). The last example may be generalized to the
case when V = g ⊗ Z, with Z a trivial representation of g. We keep denoting the
representation by ad: adx(y⊗z) = [x, y]⊗z. Now v : g→ g⊗Z is a derivation in the
sense that v([x, y]) = adxv(y)−adyv(x) for all x, y ∈ g. We identify V ∗ with g⊗Z∗
using the nondegenerate pairing on g and denote by q̄ and v̄ the composition of p
and w with this isomorphism. Note that v̄ is also a derivation in the above sense.
The HJ action is again given by (35) and (36) with the obvious understanding of
notations.

22This is well-defined because, if v is a Lie algebra derivation and is extended to the ten-
sor algebra as a derivation, then it preserves the ideal generated by elements of the form

ξ ⊗ η − η ⊗ ξ − [ξ, η].
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Remark 4.10 (General solution via the exponential map). In the general case, but
under the assumption that the exponential map g→ G is surjective, the HJ action

can also be characterized as follows. As in (29), we set g = P e
∫ tb
ta
e. We then take

T ∈ g with eT = g and define

h(t) = e
− t−ta
tb−ta

T
P e
∫ t
ta
e.

We have e = h−1dh+ h−1 T dt
tb−tah, which shows that we can reduce e to e0 := T dt

tb−ta
by a gauge transformation. Since (29) does not depend on which representative of
[e] we take, we may pick e0. With the change of variable s = t

tb−ta , the action then
becomes

S[p, q, e0] =

∫ 1

0

(pidq
i − H̃(p, q)ds), H̃ := 〈H,T 〉,

As a result,

(37) ŜfHJ(qa, Qb; g) = Sf,H̃HJ (qa, Qb; 0, 1),

where Sf,H̃HJ denotes the HJ action for a system with hamiltonian H̃. This formula
is very general, but, unlike the previous ones for the biaffine case, not explicit.

4.3. The general case. We briefly discuss the general case, where we make no
simplifying assumptions on the structure functions fγαβ , only for completeness, as
this will not be needed for the rest of the paper. As a consequence, this section,
which requires knowledge of Lie algebroids and Lie groupoids, may be safely skipped
by the not interested reader.

We will assume that the differentials of the Hαs on their common zero locus
C are linearly independent. This in particular implies that C is a submanifold
of N := T ∗M and, as observed in Remark 4.1, that the hamiltonian vector fields
Xα := XHα restricted to C are linearly independent, so they define a regular
distribution: the characteristic distribution of the coisotropic submanifold C. (See
Definition A.19 and Remark A.25.)

The first remark is that the structure functions fγαβ and the hamiltonian vector
fields Xα of the constraints Hα define a Lie algebroid A over C. As a vector bundle,
A is the trivial product C × Rk, where k is the number of constraints. The anchor
map ρ : A→ TC is given by the vector fields Xα:

ρ(x, uα) = Xα(x),

where (u1, . . . , uk) is the standard basis of Rk. We can expand a section σ ∈ Γ(A)
as σαuα, where now the uαs are regarded as constant sections of A. We then have
ρ(σ) = σαXα. The Lie bracket is defined as

[σ, τ ]γ = fγαβσ
ατβ + σαXα(τγ)− ταXα(σγ).

Remark 4.11. The Lie algebroid A is isomorphic to the characteristic distribution
of C viewed as a Lie subalgebroid of TC. Note that in general the conormal bundle
N∗C of a coisotropic submanifold of a symplectic manifold N has a canonical Lie
algebroid structure, isomorphic to the characteristic distribution, which makes it
into a Lie subalgebroid of T ∗N . In our particular case, since C is defined by
constraints, its normal bundle, and therefore its conormal bundle, can be trivialized,
and this is what have done above.
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The Lie algebroid A→ C can be extended to the vector bundle Â→ N = T ∗M
with Â = N×Rk. We can then view the Hαs as a section H of Â∗. It is also possible
to extend the anchor map and the bracket as defined above, but in general Â will
not be a Lie algebroid (it is, though, when the structure functions are constant).

Next we denote the map (p, q) : I → T ∗M , with I the interval [ta, tb], as x : I →
N . The field e may be regarded as a section of T ∗I ⊗ x∗Â. The constraints Hαs
composed with x define a section of x∗Â∗, which we keep denoting as H. As a
consequence, we may rewrite the action as

S[p, q, e] =

∫ tb

ta

(pidq
i − 〈H(p, q), e〉),

where 〈 , 〉 denotes the pairing of Â∗ with Â. A solution (x, e) of the evolution

equations is the same as an anchor-preserving morphism TI → Â.

The generalized HJ action ŜfHJ is defined as in (13) and, by Theorem 4.2, is a
generalized generating function for the evolution relation.

It is possible to give a more transparent expression for ŜfHJ(qa, Qb; [e]), analogous
to the one we have in the Lie algebra case, when the x component of the assumedly
unique solution of the evolution equations specified by qa, Qb, and e has image in
C (note that, if x(t) is in C for some t, then x(t) is in C for every t). In fact, in
this case we may view (x, e) as an anchor-preserving morphism x : TI → A, which
is the same as a Lie algebroid morphism TI → A. Denote by G the source simply
connected Lie groupoid of A (i.e., up to isomorphism, the monodromy groupoid
of the characteristic distribution). The Lie algebroid morphism (x, e), with initial
condition x(ta) = xa ∈ C, may be then uniquely integrated to a Lie groupoid
morphism E : I × I → G. If we denote by α and β the source and target maps of
G, then we have, in particular,

x(s) = α(E(s, t)) ∀t ∈ I, x(t) = β(E(s, t)) ∀s ∈ I.
Define h(t) := E(ta, t). We then have

h(ta) = 1xa , α(h(t)) = xa ∀t ∈ I,
where 1x denotes the unit of G at x ∈ N . In particular, h is a map I → α−1(xa).

We may now recover e from h, generalizing footnote 20, as follows. First con-
sider the linear map dth : TtI → Th(t)α

−1(xa). Next consider the left translation

lh : α−1(β(h))→ α−1(α(h)), lhg = hg. Since h1β(h) = h, we get the linear map

d1β(h)
lh : Aβ(h) → Thα

−1(α(h)).

Using β(h(t)) = x(t) and α(h(t)) = xa, we get the linear map

e(t) = (d1x(t)
lh)−1dth : TtI → Ax(t),

which may be shown to be the value at t of our section e of T ∗I ⊗ x∗Â.
The rest of the computation is now like in the Lie algebra case, and we have

ŜfHJ(qa, Qb; g) = SfHJ(qa, Qb)[e] with g = h(tb) ∈ α−1(x(ta)) ∩ β−1(x(tb)).

Finally, we can take variations with respect to qa, Qb, and g, getting

δŜfHJ(qa, Qb; g) = Pi(tb)δQ
i
b − pi(ta)δqia −

〈
H(x(tb)), (d1x(tb)

lg)
−1δg

〉
,

with x(tb) = (pqa,Qb(tb), qqa,Qb(tb)). This is consistent with ŜfHJ being a generalized
generating function for the evolution relation L (it is in general a weaker statement,
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as we are now only allowed to take variations in the class of variables for which the
x component of a solution lies in C).

Remark 4.12. The case of constant structure functions, hence corresponding to a
Lie algebra g, fits into the general case as the action Lie algebroid T ∗M × g with
the action Lie groupoid T ∗M ×G as its integration. In this case, the Lie algebroid
and the Lie groupoid are actually defined over the whole of T ∗M and not only over

C, so the formula for ŜfHJ(qa, Qb; g) has no restrictions.

5. Systems with nontrivial evolution and constraints

For completeness, we briefly discuss here the case of systems which, in addition
to constraints Hα, α = 1 . . . , k, also have a nontrivial evolution with hamiltonian
H. Namely, we consider an action of the form

S[p, q, e] =

∫ tb

ta

(pidq
i − dtH − eαHα(p, q)).

In addition to assuming involutivity of the constraints, as in (19), we also assume
them to be constants of motion for H: namely, {H,Hα} = 0 for all α.

This system can actually be treated as above simply adding H to the set of
the, now k + 1, constraints, say, as H0. The only difference is that the one-form
e0 instead of being free will be set to be dt. This is a possible choice, as the Lie
group G̃ (in the case of structure constants fγαβ ; otherwise, more generally, the Lie

groupoid G̃) corresponding to the rank-(k+1) Lie algebra (Lie algebroid) factorizes
as R×G (R× G), so we can fix tb − ta in the first factor.

The HJ action, which serves as a generalized generating function, is then, in the
Lie algebra case,

ŜfHJ(qa, Qb; g) := SfHJ(qa, Qb)[dt, e], with g = P e
∫ tb
ta
e.

In the Lie algebroid case, we get, more generally,

ŜfHJ(qa, Qb; g) := SfHJ(qa, Qb)[dt, e],

with g := πG(h̃(tb)) ∈ α−1(x(ta)) ∩ β−1(x(tb)) and πG the projection G̃ → G.

5.1. Classical mechanics. A more conceptual way is to add two new canonically
conjugated variables (E, t) and consider instead the action

S[p, q, E, t, e0] =

∫ tb

ta

(pidq
i − Edt− e0(H − E)− eαHα(p, q)).

Note that the constraints Hα, α = 0 . . . , k, with H0 = H − E, are still first class.
This is then a system as the ones we have studied in the previous sections. One
of the evolution equations is now dE = 0, which says that eventually E will be a
constant (the energy). Another important evolution equation is dt = e0, which can
be used to substitute dt to e0, so that we may regard t as time. Note that, if we set
endpoint conditions t(ta) = ta and t(tb) = tb, we actually get the time evolution
from ta to tb.

In the following, we focus on the case Hα = 0 for all α > 0, i.e.,

S[p, q, E, t, e0] =

∫ tb

ta

(pidq
i−Edt− e0(H − E)).
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The evolution equations are

dqi = e0 ∂H

∂pi
, dpi = −e0 ∂H

∂qi
, dE = 0, dt = e0,

and the constraint is H(p, q) = E. The evolution relation is then
(38)
L = {(pa, Ea, qa, ta, pb, Eb, qb, tb) | (p, q)b = φHtb−ta((p, q)a), Eb = Ea = H(pa, qa)}

where φHT denotes the hamiltonian flow of H for time T .
We now consider endpoint conditions (qa, ta, qb, Eb). We thus evaluate the mod-

ified action Sf [p, q, E, t, e0] := E(tb)t(tb) + S[p, q, E, t, e0] on the solution, with

components (p̃, q̃, t̃), of the evolution equations for fixed (qa, ta, qb, Eb) and fixed
e0. The first remark is that −Edt + e0E vanishes on a solution. Therefore,

SfHJ(qa, ta, qb, E
b, e0) = Eb t̃(tb) +

∫ tb

ta

(p̃idq̃
i − dt̃H(p̃, q̃)).

We can actually pick e0 constant or at least of constant sign (by a gauge trans-

formation). With this choice we are sure that the map t 7→ t̃(t) = ta +
∫ t
ta
e0 is a

diffeomorphism. We can then make this change of variable in the integral, getting

ŜfHJ(qa, ta, qb, tb;T ) = Eb (ta + T ) +

∫ ta+T

ta

(p̌idq̌
i − dt̃H(p̌, q̌)),

with p̌(t̃) := p̃(t(t)), q̌(t̃) := q̃(t(t)) and T :=
∫ tb
ta
e0. But now we recognize in

the second term on the right hand side the time-dependent HJ action (2) for the
hamiltonian H from time ta to time ta + T . Therefore, we have

ŜfHJ(qa, ta, qb, E
b;T ) = SHHJ(qa, qb; ta, ta + T ) + Eb(ta + T )

= SHHJ(qa, qb; 0, T ) + Eb(ta + T ).
(39)

One can easily verify that ŜfHJ is a generating function for the evolution relation
(38).

The HJ action ŜHJ for endpoint conditions (qa, ta, qb, tb) can be obtained from

(39) by composing, following Remark A.36, ŜfHJ with the generating function −Ebtb
of the identity map, and reducing with respect to the intermediate variable Eb;

namely, ŜHJ is the evaluation of ŜfHJ − Ebtb at its critical point in Eb. We get

(40) ŜHJ(qa, ta, qb, tb) = SHHJ(qa, qb; ta, tb).

One can easily verify that ŜHJ is also a generating function for the evolution relation
(38). Observe that the dependency on T has disappeared.

Note that we could not have computed ŜHJ directly because fixing the endpoint
conditions (qa, ta, qb, tb) yields no solution in general. Namely, choosing e0 arbi-

trarily would lead to no solutions if tb − ta 6= T :=
∫ tb
ta
e0. A way to deal with such

a situation will be discussed in Section 6, see Remark 6.2. As a result, T is fixed
by the endpoint conditions and therefore is no longer an independent variable for
ŜHJ.

The HJ action for the time-independent, constrained system (a parametrization
invariant theory) we considered in this section turns out to be the same as the usual
HJ action for a time dependent system describing a hamiltonian evolution. In this
case, time is restored via the endpoint conditions.
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For simplicity we have obtained this result choosing e0 constant, so that we could
make the change of variable globally. We might have also worked with a generic
e0. In this case we would have made changes of variables in all regions where it
is different from zero and ignored the other regions. The “time” variable t̃ would
have suffered slowing down, speeding up, freezing and even rewinding, but with no
change in the final result described in (40) by ŜHJ.23

Remark 5.1 (Integrable systems III). As a generalization of Remarks 3.4 and 4.5,
let us consider the case of an integrable system where we have exactly n strictly
involutive constraints H1, . . . ,Hn that are integrals of motion for a hamiltonian H,
i.e., we have {H,Hi} = {Hi, Hj} = 0 for all i, j. Around a point (p0, q0) where the
differentials dH1, . . . ,dHn are linearly independent, again by the Carathéodory–
Jacobi–Lie theorem, see fotonote 15, we may find a Darboux chart (Pi, Q

i) with
Pi = Hi. Changing coordinates from (pi, q

i) to (Pi, Q
i) in the integral we get

Sg[p, q, E, t, e0, e] = −g(q(ta), P (ta)) +

∫ tb

ta

(QidPi − Edt− e0(H − E)− eiPi).

Notice that, since the constraints are integrals of motion, in (Pi, Q
i) coordinates

the hamiltonian H depends only on Pi: 0 = {H,Hi} = {H,Pi} = ∂H/∂Qi. On
solutions, we have dPi = 0, dQi = ei + e0 ∂H

∂Pi
and dH = 0. The HJ action then

reads

(41) ŜgHJ(qa, P
b, ta, tb;T ) = −g(qa, P

b)− (tb − ta)H(P b)− T iPi
in a neighborhood of (p0, q0).24 We may also compute the HJ action with Q end-
point conditions. We have

Sf [p, q, E, t, e0, e] = −f(q(ta), Q(ta)) +

∫ tb

ta

(PidQ
i − Edt− e0(H − E)− eiPi).

Solving the evolution equation for Qi we obtain the HJ action25

(42)

ŜfHJ(qa, Qb, ta, tb;T ) = −f
(
qa, Qb − T − (tb − ta)

∂H

∂P

)
+ (tb − ta)H(P (qa, Qb)).

5.2. The free relativistic particle. The above discussion generalizes easily to
the case of a free, relativistic particle. In this case, there is no dynamics but only
the constraint E2 = m2 + p2. (For simplicity, we omit indices. If we are not in
one dimension, p2 means

∑
i(pi)

2. Similarly, in the action we will simply write pdq
instead of pidq

i). Therefore, we consider the action

S[p, q, E, t, e0] =

∫ tb

ta

(
pdq − Edt− e0

2
(p2 +m2 − E2)

)
,

where we have introduced the factor 1
2 just for convenience. The evolution equations

are simply
dq = e0p, dp = 0, dE = 0, dt = e0E,

23As the prince observed, “Most people think time is like a river that flows swift and sure in
one direction, but I have seen the face of time and I can tell you they are wrong. Time is an ocean

in a storm,” yet “what is written in the timeline cannot be changed.”
24Here T stands for the collection T i :=

∫ tb
ta
ei, i > 0. The parameter T 0 :=

∫ tb
ta
e0 does not

appear, as in (40), because we fix ta and tb.
25As in footnote 24, T stands for the collection T i, i > 0.
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whereas the constraint is

p2 +m2 − E2 = 0.

We first compute the HJ action, without fixing e0, for endpoint conditions given
by (qa, ta, pb, Eb). This means the we have to insert a solution of the evolution
equations into

Sf [p, q, E, t, e0] = E(tb)t(tb)− p(tb)q(tb) + S[p, q, E, t, e0].

The first evolution equation implies pdq = e0p2. The second implies that p(t) =
pb for all t, so we actually have pdq = e0(pb)2. The third equation implies E(t) = Eb

for all t, which together with the last equation implies Edt = e0(Eb)2. Therefore,

S|solution =

∫ tb

ta

e0

2
((pb)2 −m2 − (Eb)2) =

T

2
((pb)2 −m2 − (Eb)2),

where we have set T :=
∫ tb
ta
e0. Solving the evolution equations explicitly yields

q(tb) = qa + pbT and t(tb) = ta + EbT,

which implies

p(tb)q(tb) = pbqa + (pb)2T and E(tb)t(tb) = Ebta + (Eb)2T

on solutions. We then have

(43) ŜfHJ(qa, ta, p
b, Eb;T ) = Ebta − pbqa +

(Eb)2 − (pb)2 −m2

2
T,

and one can easily verify that this is a generating funciton for the evolution relation.
We may now easily pass to the HJ action for endpoint conditions (qa, ta, qb, tb)

simply composing the generating function ŜfHJ with the generating function pbqb −
Ebtb of the identity map, and reducing with respect to the intermediate variables

(pb, Eb); namely, we evaluate ŜfHJ + pbqb − Ebtb at its critical point in (pb, Eb).
Setting the derivatives with respect to pb and Eb to zero yields

pb =
∆q

T
and Eb =

∆t
T
,

where we have set

∆q := qb − qa and ∆t := tb − ta.
Inserting, we get

(44) ŜHJ(qa, ta, qb, tb;T ) =
(∆q)2 − (∆t)2

2T
− 1

2
m2T.

We can finally try to reduce with respect to the variable T , i.e., to evaluate ŜHJ

at its critical point in T . Setting the derivative with respect to T to zero yields

T 2 =
(∆t)2 − (∆q)2

m2
.

This shows that we can perform this reduction if and only if the endpoint conditions
select a timelike trajectory: (∆t)2 > (∆q)2.26 There are two roots in T which yield,

26This is actually a necessary condition for a solution to exist. In fact, solving the evolution

equations for t and q yields ∆t = ET and ∆q = pT , so (∆t)2−(∆q)2 = (E2−p2)T 2 = m2T 2 ≥ 0.
The case (∆t)2 = (∆q)2 would however imply T = 0, so ∆t = 0 and ∆q = 0, which is excluded

because the initial and final conditions must be distinct in the HJ setting.
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not unexpectedly,

(45) SHJ(qa, ta, qb, tb) = ∓m
√

(∆t)2 − (∆q)2,

i.e., the Minkowskian length up to the factor ∓m. Both choices of sign give a
generating function for the evolution relation.27

Remark 5.2. In the massless case m = 0, equation (44) becomes

ŜHJ(qa, ta, qb, tb, T ) =
(∆q)2 − (∆t)2

2T
,

so the last step—reduction in the variable T—is not possible (the critical point in T
does not exist for general values of qa, ta, qb, tb). Still, the vanishing of the derivative
in T correctly yields the “lightlike displacement” constraint: (∆q)2 − (∆t)2 = 0.

6. Generalized generating functions for “bad” endpoint conditions

The presence of constraints is not the only source for the appearance of extra
parameters in the generating function for the evolution relation. Another instance
occurs when we choose “bad” endpoint conditions that do not ensure existence of
a solution.

6.1. No evolution and no constraints. We discuss a simple example here (more
examples, also coupled to the presence of constraints, will appear in the rest of the
paper). Consider the action

S[p, q] =

∫ tb

ta

pq̇ dt.

The EL equations are simply ṗ = q̇ = 0, so the evolution relation is just the diagonal
in T ∗R× T ∗R:

L = {(p, q, p, q) ∈ T ∗R× T ∗R, (p, q) ∈ T ∗R}.
If we now choose endpoint conditions qa and qb, we will get no solutions unless
qa = qb, in which case we get a whole family of solutions, parametrized by p solving
ṗ = 0. Nevertheless, there is a generalized generating function for L:28

Sgen(qa, qb;λ) = λ (qb − qa).

In fact,
∂Sgen

∂λ = 0 yields the condition qa = qb, whereas p(ta) = −∂Sgen

∂qa
= λ and

p(tb) =
∂Sgen

∂qb
= λ imply p(ta) = p(tb).

This generating function may also be regarded as a sort of Hamilton–Jacobi
action, where we impose only one EL equation: namely, ṗ = 0. (The other equation,
q̇ = 0, cannot be imposed anyway because generically it has no solutions.) The
parameter λ arises here as the constant value of p, so it parametrizes the family of
solutions.

We may also obtain the generating function Sgen(qa, qb, λ) by a partial Legendre
transform, i.e., as

Sgen(qa, qb;λ) = λqb + SfHJ(qa, λ),

27Note that taking derivatives with respect to ta and tb yields Ea = Eb = ±m ∆t√
(∆t)2−(∆q)2

.

In particular, for ∆q = 0, we get Ea = Eb = ±m sgn ∆t. For ∆t > 0, it is the plus sign that yields
the relation E = m for the relativistic particle, the minus sign corresponding to its antiparticle.

28This generalized generating function can also be obtained as the composition, in the sense
of Remark A.37, of the generating functions ψ1(qa, λ) = −λqa and ψ2(λ, qb) = λqb that do and

undo a −π-rotation in phase space.
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where

SfHJ(qa, p
b) = −pbqa

is the HJ action for the good choice (qa, p
b) of endpoint conditions. Unlike the true

Legendre transform (see Remark 2.9), we do not evaluate at λcrit, which in this
case does not exist. We will put this observation more in context in Section 6.2.

The generating function Sgen may appear even more naturally from the viewpoint
of path integral quantization. In fact, since there is no evolution at all, the evolution
operator is the identity operator, so, for the chosen polarizations, its integral kernel
is a delta function:

K(qa, qb) = δ(qa − qb).
By Fourier transform, we we can also write

K(qa, qb) =

∫
dλ

2π~
e

i
~Sgen(qa,qb,λ).

One formal way to get this result directly from the path integral is as follows.
We start with (4) and write p = λ+ p̂, where λ is a constant (a solution to ṗ = 0).
Note that λ here is still a variable to be integrated out, so we have to make sure
that p̂ : [ta, tb]→ R is in a complement to the space of constant maps. For example,

we may impose
∫ tb
ta
p̂ dt = 0.29 Then we have

S[λ+ p̂, q] = λ (qb − qa) +

∫ tb

ta

p̂q̇ dt.

Inserting into (4), we get

K(qa, qb) =

∫
dλ e

i
~ λ (qb−qa)

∫
q(ta)=qa
q(tb)=qb∫ tb
ta
p̂ dt=0

Dp̂Dq e
i
~
∫ tb
ta
p̂q̇ dt.

The second integral formally does not depend on qa and qb: in fact, we can make
the affine change of variables q 7→ q̂ with

q̂(t) = q(t)− t− tb
ta − tb

qa −
t− ta
tb − ta

qb.

Observe that
∫ tb
ta
p̂q̇ dt =

∫ tb
ta
p̂ ˙̂q dt, since q̇− ˙̂q is constant, and that q̂(ta) = q̂(tb) = 0.

Therefore,

K(qa, qb) =

∫
dλ e

i
~ λ (qb−qa)

∫
q̂(ta)=q̂(tb)=0∫ tb

ta
p̂ dt=0

Dp̂Dq̂ e
i
~
∫ tb
ta
p̂ ˙̂q dt

∝
∫

dλ

2π~
e

i
~Sgen(qa,qb,λ).

In this example, one might also think of λ as parametrizing the vacua of the
theory. Instead of integrating over vacua, one may decide to select just one, labeled
by λ, and in this case interpret Sgen(qa, qb, λ) as the corresponding semiclassical
contribution, more in line with Hamilton–Jacobi.

29Let c be the space of constant maps and d the space of maps p̂ : [ta, tb]→ R with vanishing

integral. We have C∞([ta, tb]) = c⊕d. In fact, if λ is constant and (ta− tb)λ =
∫ tb
ta
λ dt = 0, then

λ vanishes, and we have shown that c∩ d = 0. On the other hand, every map p can be written as

λ+ p̂ with λ = 1
tb−ta

∫ tb
ta
p(t)dt. It follows immediately that

∫ tb
ta
p̂ dt = 0.
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Remark 6.1. For an analysis of this example in the BV-BFV setting, see [19, Sect.
4.4]

Remark 6.2 (Classical mechanics). We may apply the above considerations to the
system with one constraint described in Section 5.1. We fix (qa, ta, qb, tb) and let

T =
∫ tb
ta
e0. From the evolution equation dt = e0, we get that there is no solution

unless T = tb − ta. Therefore, we have to introduce a new parameter λ to fix this
condition, and we get

ŠHJ(qa, ta, qb, tb;T, λ) = SHHJ(qa, qb; ta, ta + T ) + λ (T − tb + ta).

Of course this generating function may be reduced. Setting the derivative with
respect to λ to zero, we get back T = tb − ta, which may be inserted into ŠHJ

yielding ŜHJ as in (40).

6.2. The partial Legendre transform. Suppose our system has a unique solu-

tion for endpoint conditions (qa, p
b), so that we have the HJ action SfHJ(qa, p

b) as

in Example 2.8. We define the partial Legendre transform of SfHJ as

Sgen(qa, qb, λ) := λiq
i
b + SfHJ(qa, λ).

It follows from (7) that Sgen is a generalized generating function for the same

evolution relation as SfHJ is. In fact, LSgen is determined by Sgen via the equations

pbi =
∂Sgen

∂qib
, pai = −∂Sgen

∂qia
,

∂Sgen

∂λ
= 0.

Since
∂Sgen

∂qib
= λi, we get pb = λ. Moreover, by using (7), the last equation reads

qb − qqa,λ(tb) = 0 and the middle equation yields pa = pqa,λ(ta). Therefore, LSgen

consists of endpoint values (pa, qa, p
b, qb) of a solution and is thus the evolution

relation.30

The above argument extends immediately to the case with constraints. Namely,

suppose we have the HJ action SfHJ(qa, p
b)[e]. Then we define its partial Legendre

transform as

Sgen(qa, qb, λ)[e] := λiq
i
b + SfHJ(qa, λ)[e],

and one immediately verifies, as above, that this is also a generalized generating
function for the evolution relation.

Example 6.3 (Partial Legendre transform for linear constraints). Consider the
case of a system with linear constraints in strict involution as described in Exam-
ple 4.3. We will suppress the target-space index i. If we apply the partial Legendre
transform to (24), we get

Ŝgen(qa, qb;λ, T ) := λqb+Ŝ
f
HJ(qa, λ;T ) = λ(qb−qa)−Tα(λvα+wαqa)− 1

2
TαT βAαβ ,

which is also a generating function for the evolution relation. We may change this
expression a bit by observing that the derivative with respect to λ (i.e., qb − qa −
Tαvα) will have to be set to zero to define the evolution relation. We can insert this

30It may of course happen that the last equation, qb − qqa,λ(tb) = 0, can be solved for a

unique λ, which we then denote as λcrit. We may then insert this value into Sgen(qa, qb, λ) and
get a generating function without extra parameters, the true Legendre transform SHJ(qa, qb) as
in Remark 2.9.
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relation into Ŝgen (without having to solve with respect to λ). Actually, multiplying
the relation with T βwβ and using (23), we get

TαT βAαβ = T βwβqb − T βwβqa.
We can use this to get rid of the quadratic term in the T s getting the generalized
generating function

S̃gen(qa, qb, λ, T ) = λ(qb − qa)− Tαλvα −
1

2
Tαwαqa −

1

2
Tαwαqb

=

(
λ− 1

2
Tαwα

)
qb −

(
λ+

1

2
Tαwα

)
qa − Tαλvα.

(46)

7. Infinite-dimensional targets

For simplicity, up to now we have only discussed examples where the target
symplectic manifold is finite-dimensional. The whole discussion can be generalized,
almost verbatim, to the case when the target is infinite-dimensional and there are
possibly infinitely many constraints. We will touch upon more analytical issues
in Appendix A, and in particular in A.3. Note that the main problem is that, in
principle, the evolution relation might fail to be lagrangian.31 In in this section we
will only be considering infinite-dimensional examples where this problem does not
actually arise (mainly thanks to the Hodge decomposition of differential forms).

7.1. Three-dimensional abelian Chern–Simons theory. As a warm up, we
discuss here the case of abelian Chern–Simons theory in three dimensions. The
action for a cylinder I × Σ, where I = [ta, tb] is an interval and Σ is a closed,
oriented surface, is

S[A] =
1

2

∫
I×Σ

AdA

with A ∈ Ω1(I × Σ). A variation of the action yields

δS =

∫
I×Σ

δAdA− 1

2

∫
{tb}×Σ

AδA+
1

2

∫
{ta}×Σ

AδA,

from which we read off the EL equations dA = 0 and the boundary symplectic
structure:

F∂ = Ω1(Σ), ω = −1

2

∫
Σ

δAδA.

We may split A into its “horizontal” and “vertical” part

A = AΣ +AI

and regardAΣ as a map I → Ω1(Σ) = F∂ , with target symplectic form− 1
2

∫
Σ
δAΣδAΣ,

and AI as a one-form on I with values in Ω0(Σ). Splitting also d as dΣ + dI , we
then have

S′[AΣ, AI ] := S[AΣ +AI ] =

∫
I×Σ

(
1

2
AΣdIAΣ +AIdΣAΣ

)
,

from which we see that AΣ represents the dynamical variables, whereas AI repre-
sents the Lagrange multipliers. Moreover, we now split the EL equations into the
evolution equations

dIAΣ = −dΣAI

31This is due to intrinsically analytical problems. See [16, Sect. 5.9] for an example.
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and the constraints

dΣAΣ = 0.

This is a system with linear constraints (in strict involution, since d2 = 0) that,
almost, fits into Example 4.3. What is missing is a splitting of the symplectic
space of fields into p and q variables (or, more precisely, a splitting in the sense of
Remark A.6). We do it in the complexified version F∂C = Ω1(Σ) ⊗ C, which splits
as Ω1,0(Σ)⊕Ω0,1(Σ) in terms of a complex structure on Σ.32 We write accordingly
AΣ = A1,0 +A0,1 and dΣ = ∂ + ∂̄, so

S′[AΣ, AI ] =

∫
I×Σ

(
1

2
A1,0dIA

0,1 +
1

2
A0,1dIA

1,0 +AI(∂̄A
1,0 + ∂A0,1)

)
.

We can integrate by parts the second term, so that the action reduces, up to a
boundary term, to

S′′(A1,0, A0,1, AI) =

∫
I×Σ

(
A1,0dIA

0,1 +AI(∂̄A
1,0 + ∂A0,1)

)
,

where we recognize A1,0 as the p variables and A0,1 as the q variables. The variation
now, correctly, produces the boundary one-form

∫
Σ
A1,0δA0,1.

We can finally apply the results of Example 4.3 to this case where, up to signs,
the matrix viα is now replaced by the operator ∂̄ and the matrix wiβ is replaced by
the operator ∂. We write σ :=

∫
I
AI ∈ Ω0(Σ) instead of T , A0,1

a instead of qa and

A1,0
b instead of pb, so equation (24) becomes

(47) ŜfHJ =

∫
Σ

(
A1,0
b A0,1

a + σ(∂̄A1,0
b + ∂A0,1

a ) +
1

2
σ∂∂̄σ

)
.

Following Example 6.3 we may also get the generating function for the same
choice of both endpoint conditions. Namely, extending (46) to this case, we get

(48) S̃gen =

∫
Σ

(
A1,0
b

(
λ+

1

2
∂̄σ

)
− A1,0

a

(
λ− 1

2
∂̄σ

)
+ λ∂σ

)
with λ ∈ Ω0,1(Σ).

7.2. Nonabelian Chern–Simons theory. In this case the action is

S[A] =

∫
I×Σ

(
1

2
〈A,dA〉+

1

6
〈A, [A,A]〉

)
,

where now A takes values in a quadratic Lie algebra (g, 〈 , 〉).
Proceeding as in the abelian case, we get

S′′(A1,0, A0,1, AI) =

∫
I×Σ

(
〈A1,0,dIA

0,1〉+ 〈AI , ∂̄A1,0 + ∂A0,1 + [A0,1, A1,0]〉
)
,

where we recognize the data of Example 4.8 and Remark 4.9 with −A1,0 as the q̄,
A0,1 as the q, AI as the e variables, ∂ as the derivation v̄, and ∂̄ as the derivation

32This actually corresponds to choosing a complex polarization for the real Chern–Simons
theory.
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v.33 We write A0,1
a instead of qa and −A1,0

b instead of q̄b, so (35) becomes

ŜfHJ =

∫
Σ

(
〈A1,0
b , g−1 A0,1

a g〉+ 〈A1,0
b , g−1∂̄g〉+ 〈A0,1

a , ∂g · g−1〉
)

+ WZW(g)

with g = P e
∫
I
AI ∈ Ω0(Σ, G). For g = eξ, ξ ∈ Ω0(Σ, g), from (36) we get

WZW(g) = −1

2

∫
Σ

〈∂g · g−1, ∂̄g · g−1〉 − 1

12

∫
Σ×I
〈dh · h−1, [dh · h−1,dh · h−1]〉,

with h = etξ. Thus, the HJ action of Chern–Simons theory can be identified with
a “gauged WZW action” (see for instance [33]). This points at a deep relationship
between these two theories. We will revisit this correspondence in more detail in
[21].

7.3. Nonabelian BF theory. Consider BF theory, defined by the action

(49) SBF =

∫
M

〈B,FA〉.

Here M is an n-manifold and the fields are a g-valued 1-form A (viewed as a
connection with curvature 2-form FA = dA+ 1

2 [A,A]) and a g∗-valued (n−2)-form

B;34 g is the Lie algebra of some fixed Lie group G.
On an n-dimensional cylinder M = I × Σ, the action becomes

(50) SBF =

∫
I×Σ

〈BΣ,dIAΣ〉+ 〈AI ,dAΣ
BΣ〉+ 〈BI , FAΣ

〉,

where dAΣ
BΣ = dBΣ + [AΣ, BΣ] is the covariant exterior derivative. Here we

expanded the fields according to form degree on I: A = AΣ+AI , B = BΣ+BI . Note
that AI and BI in (50) are Lagrange multipliers corresponding to the constraints
dAΣ

BΣ = 0 and FAΣ
= 0.

Using Aa, Bb boundary conditions, the generalized HJ action reads

ŜHJ(Aa, Bb; g, β) =

∫
Σ

〈β, FAa〉 − (−1)n〈Bb, g−1Aag + g−1dΣg〉.

Here the auxiliary fields are g = P e
∫ tb
ta
AI ∈ Map(Σ, G) and β =

∫ tb
ta

Ad∗
P e

∫ t
ta
AI

(BI) ∈
Ωn−3(Σ, g∗). The case of (Aa, Ab) boundary conditions is treated by the partial
Legendre transform:

Sgen(Aa, Ab; g, β, λ) =

∫
Σ

〈β, FAa〉 − (−1)n〈λ, g−1Aag + g−1dΣg〉+ (−1)n〈λ,Ab〉.

A similar expression appeared in [43] as a holographic dual of BF theory (in
the three-dimensional case and with a different—holomorphic—polarization on the
boundary).

33To be more precise, the Lie algebra of Remark 4.9 is now Ω0(Σ, g) with pointwise Lie bracket
induced from that of g, the trivial representation space Z is Ω0,1(Σ), and their tensor product,

over Ω0(Σ), is V = Ω0,1(Σ, g). The dual space V ∗ is now replaced by Ω1,0(Σ, g) with pairing to
V induced by the paring 〈 , 〉 on g and integration on Σ.

34More generally, A is a connection in a principal G-bundle P over M and B is an (n−2)-form

valued in the coadjoint bundle of P. In the context of a cylinder M = I × Σ, we would take
P = π∗PΣ where PΣ is a G-bundle over Σ and π : I × Σ → Σ is the projection. The results of
this subsection and of subsection 7.4 generalize immediately to this setup.
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Remark 7.1 (Relation to Group Quantum Mechanics). Specializing to n = 2, and
assuming Σ to be connected, we have Σ = S1. On Ω•(S1, g) we can consider a set
of canonical coordinates given by Q = B, P = A − ∗S1B, where ∗S1 denotes the
Hogde star for some choice of Riemannian metric on S1. We choose the coordinates
q = A, p = B at ta and Q,P at tb. The corresponding generating function is
f(A,B) =

∫
S1〈B,A〉 − 1

2 〈B, ∗S1B〉 and the HJ action is given by

(51) ŜfHJ(Aa, Bb, g) = −
∫
S1

〈Bb, g−1Aag + g−1dS1g〉 − 1

2
〈Bb, ∗S1Bb〉.

One may further specialize by choosing the boundary condition Aa = 0 and im-
posing the equation of motion Bb = − ∗S1 g−1dg for Bb. The action then reduces
to

(52) SGQM (g) =
1

2

∫
S1

〈g−1dg, ∗S1g−1dg〉,

the action for a free particle moving in the group G, studied for instance in [32].
We thus recover a relation between a 2D theory and group quantum mechanics
which could be seen as an instance of holographic correspondence. In the case
G = PSL(2,R) (corresponding to a model of 2D gravity whose classical solutions
are constant negative curvature geometries) it was discussed in the literature on
AdS2/CFT1 correspondence. In [48] a very interesting subsequent reduction from
SGQM was considered, in the case G = PSL(2,R), leading to the Schwarzian 1D
theory.

7.4. More examples: 2D Yang–Mills theory and electrodynamics in gen-
eral dimension. In this section we discuss two examples of systems with nontriv-
ial evolution and constraints: two special cases of Yang–Mills theory on a cylinder.
They provide (generalized) examples of the setup of Section 5.

Consider the first-order formulation of Yang–Mills theory,

(53) SYM[A,B] =

∫
M

〈B,FA〉 −
1

2
〈B, ∗B〉,

where M is a pseudo-Riemannian n-manifold which we will take to be a cylinder
M = I × Σ with product metric g = −(dt)2 + gΣ and gΣ a Riemannian metric on
Σ; here ∗ is the associated Hodge star operator. Note that the action (53) is an
extension of the BF action (49) by a metric-dependent term.

Expanding the fields on the cylinder according to form degree along I as A =
AΣ +AI , B = BΣ +BI , we can write the action (53) as

(54) SYM =

∫
I×Σ

〈BΣ,dIAΣ −
1

2
∗BΣ〉+ 〈BI , FAΣ −

1

2
∗BI〉+ 〈AI ,dAΣBΣ〉.

The EL equations read

dIAΣ + dAΣ
AI − ∗BΣ = 0,(55a)

dIBΣ + [AI , BΣ] + dAΣ
BI = 0,(55b)

FAΣ
− ∗BI = 0,(55c)

dAΣ
BΣ = 0.(55d)

Here AI is a Lagrange multiplier and (55d) is the corresponding constraint; BI
is not a Lagrange multiplier (enters the action quadratically) and although the
corresponding equation (55c) does not contain time derivatives, it does not impose
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constraints on the fields in the phase space (which BI is not a part of). Therefore,
(55c) is treated as part of the evolution relations, alongside (55a) and (55b), for
the purpose of computing the HJ action.

Introducing a group-valued variable h(t) = P e
∫ t
ta
AI ∈ Map(I × Σ, G) and per-

forming a change of variables

AΣ = h−1ÃΣh+ h−1dΣh, BΣ = h−1B̃Σh, BI = h−1B̃Ih

we can rewrite the evolution equations as

∂2
t ÃΣ + (−1)n ∗Σ dÃΣ

∗Σ FÃΣ
= 0,(56)

B̃I = ∗FÃΣ
, B̃Σ = ∗Σ∂tÃΣ.

Thus, essentially, one has to solve the (generally very complicated) nonlinear equa-
tion (56) and recover the remaining fields using the other two equations. Equation
(56) becomes linear in two cases: the case n = 2 (as the second term in (56) vanishes
by a degree reason) and the abelian case.

7.4.1. 2D Yang–Mills theory. In the two-dimensional case (with Σ = S1), we have
BI = 0 for a degree reason (and thus B = BΣ), so we are exactly in the setting of
Section 5. The action (54) on I × S1 becomes

SYM =

∫
I×S1

〈B, dIAΣ −
1

2
∗B〉+ 〈AI ,dAΣ

B〉.

In terms of the boundary conditions (Aa, Bb), we obtain the following generalized
HJ action:

ŜfHJ(Aa, Bb; g) =

∫
Σ

−〈Bb, g−1Aag + g−1dΣg〉 −
τ

2
〈Bb, ∗ΣBb〉,

where τ = tb − ta. Here g = h(tb) = P e
∫ tb
ta
AI ∈ Map(Σ, G), the group-valued

auxiliary variable for the generalized HJ action. We can also consider (Aa, Ab)
boundary conditions, and then the answer is

Sgen(Aa, Ab; g, λ) =

∫
Σ

−〈λ, g−1Aag + g−1dΣg〉 −
τ

2
〈λ, ∗Σλ〉+ 〈λ,Ab〉.

Here λ ∈ Ω1(Σ, g∗) is the new auxiliary field.

7.4.2. Electrodynamics (general dimension). Next consider Yang–Mills theory (53)
on a cylinder of general dimension in the abelian case, G = R. Solving the evolution
equations and plugging the result into the action, we find, for boundary conditions
(Aa, Bb), the following generalized HJ action:35

(57) ŜHJ(Aa, Bb; γ) =

∫
Σ

(
−τ

2
Bcocl
b ∧ ∗ΣBcocl

b −Acl
a ∧Bcocl

b − dΣγ ∧Bb
)

+

+
∑
σ

(
−1

2

tanωστ

ωσ
(Bσb )2 − 1

2
ωσ tanωστ (Aσa)2 − 1

cosωστ
AσaB

σ
b

)
.

Here:

35In particular, equation (56) reads ∂2
t ÃΣ + (−1)n ∗Σ dΣ ∗Σ dΣÃΣ = 0 (where the change of

variables is AΣ = ÃΣ + dΣ

∫ t
ta
AI). It breaks into two equations for the closed and coexact parts

of ÃΣ: ∂2
t Ã

cl
Σ = 0 and ∂2

t Ã
coex
Σ = −∆ΣA

coex
Σ . The solution of the boundary problem is then

Ãcl
Σ = Acl

a + (−1)n ∗Σ Bcocl
b t, Ãcoex

Σ =
∑
σ χσ

(
sinωσt

ωσ cosωσ(tb−ta)
Bσb +

cosωσ(tb−t)
cosωσ(tb−ta)

Aσa

)
.
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• τ = tb − ta.
• γ =

∫ tb
ta
AI ∈ C∞(Σ) is an auxiliary field.

• We introduce {χσ}, an orthonormal basis of coexact 1-forms on Σ which
diagonalize the Laplacian: ∆Σχσ = ω2

σχσ. We split the field Aa, according
to the Hodge decomposition, into its closed and coexact parts: Aa = Acl

a +∑
σ χσ A

σ
a .

• Similarly, {∗Σχσ} is an orthonormal basis of exact (n− 2)-forms on Σ and
we have a splitting Bb = Bcocl

b +
∑

Σ ∗Σχσ Bσb into coclosed and exact parts.

Note that the term
∫

Σ
dΣγ ∧Bb in ŜHJ depends in fact only on the coexact part of

Bb.
We also remark that the summand in the sum over σ in (57) is the HJ action

of the harmonic oscillator with frequency ωσ. Here the oscillator corresponds to
the field Aσ(t) (the coefficient of the expansion of Acoex

Σ in the basis {χσ}) with
corresponding momentum Bσ(t) (the coefficient of the expansion of Bex

Σ in the basis
{∗Σχσ}).

Remark 7.2 (p-form electrodynamics). The case of abelian Yang–Mills theory gen-
eralizes straightforwardly to “p-form electrodynamics”—the theory defined by the
action

Sp−form =

∫
M

B ∧ dA− 1

2
B ∧ ∗B,

where the fields are A ∈ Ωp(M), B ∈ Ωn−p−1(M). The generalized HJ action on a
cylinder is given by an expression identical to (57) up to signs:

ŜHJ(Aa, Bb; γ) =

∫
Σ

(
−τ

2
Bcocl
b ∧ ∗ΣBcocl

b + εAcl
a ∧Bcocl

b + εdΣγ ∧Bb
)

+

+
∑
σ

(
−1

2

tanωστ

ωσ
(Bσb )2 − 1

2
ωσ tanωστ (Aσa)2 +

ε

cosωστ
AσaB

σ
b

)
.

Here ε = (−1)np+n+p; Aσa are the coefficients of the expansion on Acoex
a in the

orthonormal basis χσ of coexact p-forms on Σ; Bσb are the coefficients of the ex-
pansion of Bex

b in the orthonormal basis ∗Σχσ of exact (n− p− 1)-forms on Σ; the
auxiliary field γ is a (p − 1)-form on Σ. Note that the case p = 0 corresponds to
the massless scalar theory which has no constraints (and the field γ disappears for
a degree reason).

7.5. Higher-dimensional Chern-Simons theory. The results of Section 7.1 are
easily generalized to higher-dimensional abelian Chern–Simons theories. Consider
again a cylinder I × M , where M is now a 4k + 2-dimensional manifold (k =
0, 1, 2, . . .) with a complex structure and

(58) S[A] =
1

2

∫
I×M

AdA,

for A ∈ Ω2k+1(M). Proceeding as above, we obtain A = AM +AI with AM a map
I → Ω2k+1(M) and AI a one-form on I with values in Ω2k(M), and we have

(59) S′[AM , AI ] =

∫
I×M

1

2
AMdIAM +AIdMAM .
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To obtain a splitting of the symplectic space of fields Ω2k+1(M), we pass to the
complexification and employ a decomposition by complex bidegree, namely
(60)
F∂C = Ω2k+1(M,C) = Ω2k+1,0(M)⊕ · · · ⊕ Ωk+1,k(M)︸ ︷︷ ︸

Ω2k+1
+ (M)

⊕Ωk,k+1(M)⊕ · · · ⊕ Ω0,2k+1(M)︸ ︷︷ ︸
Ω2k+1
− (M)

and accordingly we write AM = A+
M +A−M . Plugging this decomposition into (59),

we obtain, up to a boundary term,

(61) S′′(A+
M , A

−
M , AI) =

∫
I×M

A−MdIA
+
M +AI(dMA

+
M + dMA

−
M )

with corresponding boundary 1-form A−MδA
+
M . We will choose the endpoint con-

ditions A+
M on M × {0} and A−M on M × {1}.36 Notice that for the component of

AI of Hodge type (k, k), the last term reads Ak,kI (∂̄Ak+1,k
M + ∂Ak,k+1

M ). This gives
rise to the only nonvanishing “component” of the matrix Aαβ of Example 4.3, the
other components vanishing because of d2

M = 0. Relabeling
∫
AI =: σ ∈ Ω2k(M)

we obtain the HJ action

(62) ŜfHJ =

∫
M

A−b A
+
a + σ(dMA+

a + dMA−b )− 1

2
σk,k∂∂̄σk,k.

In applications it is interesting to consider more general coordinates on the space
Ω2k+1(M). Assume that (AQ, AP ) is such a set of coordinates and that f(A+

M , A
Q)

is the corresponding generating function. Then, according to Remark 4.4, the HJ
action is

(63) ŜfHJ = f(A+
a + d+

Mσ,A
Q
b ) +

∫
M

σdMA+
a −

∫
M

1

2
σk,k∂∂̄σk,k,

where d+
M is the composition of dM with the projection to Ω2k+1

+ (M), and the sign
in front of the last term is due to using the +-representation on the a-boundary.

7.6. A nonlinear polarization in 7D Chern–Simons theory and the Kodaira–
Spencer action. Let us now focus on the 7D case (k = 1 in the section above):
i.e., M is now a 6-dimensional manifold with a complex structure. We will now
actually assume that it is Kähler, and fix a reference nonvanishing holomorphic
3-form ω0. Let us fix some notation. We denote by Ω−p,q(M) sections of the bun-
dle

∧p
(TCM)1,0 ∧

∧q
(T ∗CM)0,1, i.e., (0, q)-forms with values in (p, 0)-vector fields.

Contraction with the reference holomorphic 3-form provides a map

Ω−p,q(M)→ Ω3−p,q(M)

A 7→ A∨ =: Aω0

(we omit symbols for wedge products and contractions). For A,B,C ∈ Ω−1,1(M),
we further define the operations

A∨ ◦B∨ = (AB)ω0 ∈ Ω1,2(M),(64a)

〈A∨, B∨, C∨〉 = A∨(B∨ ◦ C∨) ∈ Ω3,3(M),(64b)

〈A3〉 =
1

6

〈A∨, A∨, A∨〉
ω0ω0

∈ Ω0(M),(64c)

36The attentive reader will have noticed that for the 3D case k = 0 this gives the opposite
boundary conditions than in Section 7.1. This flips the sign of the last term in (62) below.
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and similarly for A,B,C ∈ Ω1,−1(M) by replacing ω0 with its conjugate ω̄0.
The symplectic space of boundary fields is F∂ = Ω3(M)C. The geometry of

this space was studied by Hitchin in [35]. The main point of interest for us is

that any complex 3-form admits a splitting37 AM = A+,nl
M + A−,nl

M where A±,nl
M

are decomposable three-forms. Here, a 3-form A is called decomposable if around
every point there exists a local coframe θi in which A = θ1 ∧ θ2 ∧ θ3. We will call A

nondegenerate if A+,nl
M ∧ A−,nl

M is everywhere nonvanishing. All three-forms which
are not themselves decomposable are nondegenerate and for nondegenerate 3-forms
A±,nl are uniquely determined by A [35]. This splitting defines a polarization Pnl,−

on38 Ω3(M)C by letting PAM ⊂ TAMΩ3(M)C
∼= Ω3(M)C be the subspace spanned

by the A+,nl
M , whose leaf space is parametrized by A−,nl

M . To write down a generating

function f(A+
M , A

−,nl
M ), we parametrize A−,nl

M by

(65) A−,nl = ρeµω0 = ρ

(
ω0 + µω0 +

µ2

2
ω0 +

µ3

6
ω0

)
,

where ρ ∈ Ω0
C(M) and µ ∈ Ω1,−1(M), and µω0 should be interpreted as extension of

contraction to forms with values in vector fields. An expression for the generating
function is then [34]

(66) f(A3,0, A2,1, ρ, µ) =

=

∫
M

ρ(A3,0ω0 +A2,1µω0) + ρ2〈µ3〉ω0ω0 −

〈(
(A2,1 − 1

2ρµ
2ω0)∨

)3〉
(A3,0)∨ − ρ〈µ3〉

ω0ω0.

The HJ action is then

(67) ŜfHJ = −1

2

∫
M

σ1,1∂∂̄σ1,1 +

∫
M

σ1,1∂̄A2,1
a + σ0,2(∂A2,1

a + ∂̄A3,0
a )

+ f
(
A3,0
a + ∂σ2,0,A2,1

a + ∂σ1,1 + ∂̄σ2,0, ρ, µ
)
.

To see the connection to the Kodaira–Spencer action functional introduced in [8],
take the following quantum state considered in [34]:

(68) ψGS(ρ, µ) = δ(µ) exp
i

~

∫
M

ρω0ω0.

ψGS is the quantization of the lagrangian LGS ⊂ Ω3
C(M) given by µ = 0, pρ =

ω0ω0 (here pρ is the canonical momentum coordinate associated to ρ). LGS has
the following generalized generating function, with λ ∈ Ω−1,1(M) an auxiliary
parameter:

(69) SGS(µ, ρ;λ) =

∫
M

(λµ+ ρ)ω0ω0.

Let ev : Ω3
C(M) 9 Ω3

C(M) denote39 the Chern–Simons evolution relation and in-
terpret LGS as a canonical relation {pt} 9 Ω3

C(M). We want to compute the

37The superscript nl stands for “nonlinear” and indicates that the map AM 7→ (A+,nl
M , A−,nl

M )

is nonlinear, as opposed to AM 7→ (A+
M , A

−
M ), which is linear.

38Strictly speaking, the polarization is defined only on the open subset of nondegenerate forms.
39We use the notations of equation (124) of Appendix A.1.4 for canonical relations.
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composition40 L := evT ◦ LGS : {pt} 9 Ω3
C(M). This, following Remark A.37,

has the generalized generating function S = −ŜfHJ + SGS, where µ, ρ now become
auxiliary fields. We can immediately solve the constraint µ = 0 to obtain a new
generalized generating function for L,:

(70)

S′ =
[
−ŜfHJ + SGS

]
µ=0

=
1

2

∫
M

σ1,1∂∂̄σ1,1−
∫
M

σ1,1∂̄A2,1
a −

∫
M

σ0,2(∂A2,1
a +∂̄A3,0

a )

−
∫
M

ρb(A
3,0
a + ∂σ2,0 − ω0)ω0 +

∫
M

〈((A2,1
a + ∂σ1,1 + ∂̄σ2,0)∨)3〉

(A3,0
a + ∂σ2,0)∨

ω0ω0.

We now proceed with solving the constraint equations by setting derivatives with
respect to auxiliary fields to zero. The equation δS′/δρ = 0 is

(71) − δS′

δρ
= A3,0

a + ∂σ2,0 − ω0 = 0

which implies ∂̄A3,0
a = −∂̄∂σ2,0. The equation δS′/δσ0,2 = 0 then gives

(72) − δS′

δσ0,2
= ∂A2,1

a + ∂̄A3,0
a = ∂(A2,1

a + ∂̄σ2,0) = 0.

Evaluating S′ on the set given by those constraints we obtain

S′′ =
1

2

∫
M

σ1,1∂∂̄σ1,1 −
∫
M

σ1,1∂̄A2,1
a +

∫
M

〈((A2,1
a + ∂σ1,1 + ∂̄σ2,0)∨)3〉ω0ω0.

By (72) and Hodge decomposition for ∂, there are a unique harmonic (2, 1)-form x
and a (1, 1)-form β such that x+ ∂β = A2,1

a + ∂̄σ2,0. Letting b = σ1,1 + β, we have
∂̄A2,1

a = ∂̄∂β = ∂∂̄(σ1,1 − b). Plugging this into S′′, we obtain

(73) S′′′ =
1

2

∫
M

σ1,1∂∂̄σ1,1−
∫
M

σ1,1∂∂̄σ1,1+

∫
M

σ1,1∂∂̄b+
1

6
〈x+∂b, x+∂b, x+∂b〉.

After imposing the constraint

δS′′′

δσ1,1
= 0 = −∂∂̄σ1,1 + ∂∂̄b,

the action becomes

(74) SKS(x, b) =
1

2

∫
M

b∂∂̄b+
1

6
〈x+ ∂b, x+ ∂b, x+ ∂b〉,

the action functional for Kodaira–Spencer gravity defined in [8]. For any A ∈
Ω2,1(M) we have

δ

δA
〈(A∨)3〉ω0ω0 =

1

2
A ◦A ∈ Ω1,2.

Thus, the equation for b finally becomes

(75) ∂∂̄b+
1

2
∂(x+ ∂b) ◦ (x+ ∂b) = 0,

the Kodaira–Spencer equation for A = x+ ∂b.
Finally, we can characterize the lagrangian L as follows:

40The relation ev goes from A+,l to A−,nl, in the composition we require the transpose relation
evT . This changes the sign of the generating function: the generalized generating function of evT

is −ŜfHJ.
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Proposition 7.3. Let ω0 be a reference holomorphic 3-form on a compact Calabi–
Yau manifold M . Then the composition L = evT ◦ LGS ⊂ Ω3

C(M) of the Chern–
Simons evolution relation ev on M × I and the lagrangian LGS defined by (69) is
given by complex 3-forms with decomposition A = A3,0+A2,1+A1,2+A0,3 satisfying

A3,0 = ω0 − ∂σ2,0,(76a)

A2,1 = x+ ∂b− ∂̄σ2,0 − ∂σ1,1,(76b)

A1,2 =
1

2
(x+ ∂b) ◦ (x+ ∂b)− ∂̄σ1,1 − ∂σ0,2,(76c)

A0,3 = cω0 − ∂̄σ0,2,(76d)

where x is a harmonic (2, 1) form and b ∈ Ω1,1 such that x+∂b satisfies the Kodaira–
Spencer equation in the form (75), c ∈ C is a constant and σ = σ2,0 +σ1,1 +σ0,2 ∈
Ω2

C(M) is any 2-form.

Proof. Equation (76a) is (71). Equation (76b) follows from (72) and the definition
of b. Equation (76c) follows from A1,2 = δS′/δA2,1 together with the constraint
equation (71). Finally, we have

A0,3 =
δS′

δA3,0
= −∂̄σ0,2 − ρω0 −

〈((A2,1
a + ∂σ1,1 − ∂̄σ2,0)∨)3〉
((A3,0

a + ∂σ2,0)∨)2
ω0,

and again the denominator is 1 by (71). Now, the equation

0 =
δS′

δσ2,0
= ∂ρω0 + ∂

〈((A2,1
a + ∂σ1,1 − ∂̄σ2,0)∨)3〉
((A3,0

a + ∂σ2,0)∨)2
ω0

+ ∂̄
(A2,1
a + ∂σ1,1 − ∂̄σ2,0) ◦ (A2,1

a + ∂σ1,1 − ∂̄σ2,0)

((A3,0
a + ∂σ2,0))2

ω0

implies, again using (71),

∂̄∂(ρ+ 〈((A2,1
a + ∂σ1,1 − ∂̄σ2,0)∨)3〉)ω0 = 0,

which means that the expression in brackets is constant. �

Remark 7.4. It follows from the general discussion of Appendix A that L is isotropic,
but one can also check it directly. To this end, compute the restriction of the
symplectic form

∫
M
δA3,0 ∧ δA0,3 + δA2,1 ∧ δA1,2 to L. Denoting B = x + ∂b, we

get

δA3,0 ∧ δA0,3 =

∫
M

∂∂̄δσ2,0δσ0,2

δA2,1 ∧ δA1,2 =

∫
M

δσ1,1 ∧ δ(∂̄B +
1

2
B ◦B) +

∫
M

∂̄∂δσ2,0δσ0,2

(other terms cancel due to ∂̄2 = ∂2 = 0 or integration by parts). The terms
containing σ0,2σ2,0 cancel, while the remaining term is zero by (75).

Remark 7.5. Given a harmonic (2, 1)-form x, solutions b ∈ Ω1,1(M) of the Kodaira–
Spencer equation are determined only up to a ∂-exact term. However, for fixed x
one can find a unique solution bx by demanding that ∂̄∗bx = 0, see [47] or [8],
where ∂∗ denotes the formal adjoint of ∂ with respect to the Kähler metric. Let
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L = {(ω0, x+ ∂bx,
1
2 (x+ ∂bx) ◦ (x+ ∂bx), cω0)} with notation as in Propostion 7.3.

We can then rewrite Proposition 7.3 as saying that

(77) L = L+ dΩ2
C(M)

(L is a submanifold of Ω3
C(M) but not a subspace). At any point (y, dσ) ∈ L, the

tangent space is TyL⊕dΩ2
C(M). For y = (ω0, x+∂bx+ 1

2 (x+∂bx)◦ (x+∂bx), cω0),
the tangent space is

TyL = {(0, ẋ, x ◦ ẋ, ċ), ẋ ∈ H2,1(M), ċ ∈ C}.
Thus, L is actually split lagrangian, with isotropic complement given by L′ =
H3,0(M)⊕H1,2(M)⊕ d∗Ω4

C(M).

8. BFV, AKSZ and BV

The degenerate action (18) we have been focusing on so far can be put into BV
form, which is suitable for the perturbative quantization (which we will consider in
the next sections).

The first step consists in resolving the constraint manifold C = {(p, q) |Hα(p, q) =
0 ∀α} in terms of the BFV formalism [6, 30]. For this we introduce new odd vari-
ables cα, one for each constraint, of ghost number 1 and their momenta bα, odd
and of ghost number −1;41 i.e., we extend the symplectic structure to the BFV
symplectic structure

ωBFV = dpidq
i + dbαdcα.

The BFV action is then defined as the odd function of ghost number 1

SBFV(p, q, b, c) = cαHα(p, q) + · · · ,
where the dots denote terms in the ghost momenta bα such that the Poisson bracket
of SBFV with itself vanishes (this is called the classical master equation). The BFV
action exists and is uniquely defined up to symplectomorphisms [6, 30, 46]. Note
that the linear term in the bs depends on the structure functions,

SBFV(p, q, b, c) = cαHα(p, q)− 1

2
fγαβ(p, q) bγc

αcβ + · · · ,

and that the higher-order terms are not needed in the Lie algebra case (in which
the fγαβs are constant).

The next step is the AKSZ construction [2], which in this special case takes the
following very simple form. We consider the replacements42

pi → pi + q+
i , qi → qi − pi+, cα → cα − eα, bα → −e+

α + c+α ,

where, in each assignment, the first term on the right hand side is a function on
[ta, tb] with the same Grassmann parity and ghost number as the variable on the left
hand side, whereas the second term is a 1-form on [ta, tb] with opposite Grassmann
parity and with ghost number reduced by 1. Note, in particular, that we recover
the even 1-forms eα of ghost number zero. With this notation we define the BV
action as

41Here odd means a Grassmann variable, whereas even refers to an ordinary variable; ghost

number is an additional degree which is helpful for bookkeeping. The original variables p and q
are even and are assigned ghost number zero.

42The “weird” choice of signs is purely conventional. It is done in such a way that i) the
classical part of the BV action SBV introduced below agrees with (18), and ii) the BV form ωBV

introduced a bit later has the usual form.
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SBV[p, q, e, c, p+, q
+, e+, c+] :=∫ tb

ta

((pi+q
+
i )d(qi−pi+)+(−e+

α+c+α )d(cα−eα)+SBFV(p+q+, q−p+,−e++c+, c−e))

=

∫ tb

ta

(pidq
i − e+

αdcα + SBFV(p+ q+, q − p+,−e+ + c+, c− e)),

where only the one-form components get integrated.

Example 8.1. In the main cases of interest for this paper, the structure functions
fγαβ are constant. We then get

SBFV(p, q, b, c) = cαHα(p, q)− 1

2
fγαβ bγc

αcβ ,

SBV[p, q, e, c, p+, q
+, e+, c+] =

∫ tb

ta

(
pidq

i − e+
αdcα − eαHα(p, q)

+ cα
(
q+
i

∂Hα

∂pi
(p, q)− pi+

∂Hα

∂qi
(p, q)

)
− 1

2
fγαβ c

+
γ c

αcβ + fγαβ e
+
γ c

αeβ
)
.

These are the BFV and BV actions that we are going to consider in the next
sections.

Let us return to the general case for the remaining part of this section. The BV
action satisfies the following properties:

(1) It is even and of ghost number zero.
(2) The terms independent of the antifields (i.e., the fields with a + label) are

the action (18).
(3) If we ignore boundary terms (or impose periodic boundary conditions for all

fields), its Poisson bracket with itself, with respect to the odd symplectic43

form of ghost number −1

ωBV :=

∫ tb

ta

(δq+
i δq

i + δpi+δpi + δe+
α δe

α + δc+α δc
α),

vanishes.

This is the starting point for the BV quantization.

Remark 8.2 (Chern–Simons). If we apply this construction to the Chern–Simons
case decribed in the previous section, we get the BV formalism for Chern–Simons
theory in [ta, tb]× Σ. We will return to this in the forthcoming paper [21].

Remark 8.3. The case where in addition to constraints there is also a nontrivial
hamiltonianH can be treated as at the beginning of Section 5, as originally proposed
in [24], or, more conceptually, as in Section 5.1.

43The nondegeneracy of ωBV is actually not needed for classical considerations. At the quan-
tum level only a partial nondegeneracy is actually needed, namely the one along the directions

for which one considers integration; see more on this in Section 9.2.3.
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9. An outline of elements of BV-BFV quantization

The BV and BFV structures discussed in Section 8 can be put together, and
this may be used towards quantization [17, 19]. We briefly review this story in the
case at hand assuming a finite-dimensional target. The case of infinite-dimensional
targets discussed in Section 7 will be addressed in the forthcoming paper [21].

9.1. The classical BV-BFV setting. As described in Section 8 we have a space
F of BV fields (p, q, e, c, p+, q

+, e+, c+) associated to the bulk [ta, tb] and a space
of BFV variables (p, q, b, c) associated to each boundary point. As the boundary of
[ta, tb] actually consists of two endpoints (with opposite orientation), we define the
space F∂ of BFV variables by doubling the (p, q, b, c)s:

F∂ 3 (pa, qa, b
a, ca, p

b, qb, b
b, cb).

The BFV symplectic form and the BFV action are now

ωBFV = dpai dqia + dbaαdcαa − dpbidq
i
b − dbbαdcαb

and

SBFV = cαaHα(pa, qa)− 1

2
fγαβ(pa, qa) baγc

α
a c
β
a + · · ·

− cαbHα(pb, qb) +
1

2
fγαβ(pb, qb) b

b
γc
α
b c
β
b − · · · .

The bulk setting (F , SBV, ωBV) and the boundary BFV theory (F∂ , SBFV, ωBFV)
are related as follows:

(1) We have a surjective submersion π : F → F∂ given by

pb = p(tb) qb = q(tb) bb = −e+(tb) cb = c(tb)

pa = p(ta) qa = q(ta) ba = −e+(ta) ca = c(ta)

(2) If we denote by QBV the hamiltonian vector field of SBV with respect to
ωBV, obtained by ignoring boundary terms (or by imposing periodic bound-
ary conditions for all fields), and by QBFV the hamiltonian vector field of
SBFV with respect to ωBFV we get

(78) [QBV, QBV] = 0, [QBFV, QBFV] = 0, dπ(QBV) = QBFV,

where dπ denotes the differential of the map π (the last equation may be
equivalently formulated, more algebraically, as the property that π∗(QBFVh) =
QBVπ

∗h for every function h on F∂).
(3) If we introduce the potential

αBFV = pai dqia + baαdcαa − pbidqib − bbαdcαb

for the BFV form ωBFV, then the modified classical master equation (mCME)

(79) ιQBV
ωBV = δSBV + π∗αBFV

is satisfied. Here the variation δ of the BV action is computed by taking the
boundary terms into account (they are precisely compensated by π∗αBFV)
and is regarded as producing a 1-form on F .

A simple consequence of the above, see [19], is that we also have the equation

(80)
1

2
ιQBV

ιQBV
ωBV = π∗SBFV,
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where the left hand side may be read as the correct replacement for the otherwise
ill-defined Poisson bracket, induced by ωBV, of SBV with itself, whereas the right
hand side yields the error boundary terms. This equation will play an important
role in quantization.

Remark 9.1 (Changing the endpoint conditions). As in the purely classical setting,
see Remark 2.5, we might want to use other variables, say P and Q, at the final
endpoint via a generating function f(q,Q). We can arrange for this by subtracting
f from the BV action,

SfBV[p, q, e, c, p+, q
+, e+, c+] := SBV[p, q, e, c, p+, q

+, e+, c+]−f(q(tb), Q(p(tb), q(tb))),

and at the same time adding df to the BFV potential,

αfBFV := αBFV + df(qb, Q(pb, qb)) = pai dqia + baαdcαa − P bi dQib − bbαdcαb .

This way we get the wished-for classical part of the symplectic form at the final
endpoint, yet preserving the mCME (79), now in the form

ιQBVωBV = δSfBV + π∗αfBFV.

Remark 9.2 (Changing the endpoint field and ghost conditions). We might also
want to exchange the role of b and c at the final endpoint. To do so, we consider
the extended generating function

f̃(q,Q, c, C) = f(q,Q) + cC.

We then get

Sf̃BV[p, q, e, c, p+, q
+, e+, c+] = SfBV[p, q, e, c, p+, q

+, e+, c+] + cα(tb)e
+(tb)

and

αf̃BFV = pai dqia + baαdcαa − P bi dQib − cαb dbbα.

The mCME (79) now reads

(81) ιQBV
ωBV = δSf̃BV + π∗αf̃BFV.

Remark 9.3. The induced equation (80) holds as it is, since it is independent of the
choice of the 1-form.

9.2. The quantum BV-BFV setting. In this section, we give a very short
overview of the BV-BFV quantization, tailored for the examples of this paper.
For a more general exposition, see [19].

9.2.1. Boundary polarization. For the quantum setting, we first have to choose a
polarization in F∂ . Concretely, in the case at hand, we write F∂ as T ∗B, for
a suitable lagrangian submanifold B, with canonical symplectic form. We require
that the BFV 1-form of (79) should be the canonical 1-form of the cotangent bundle.
This means that the choice of B is related to the choice of boundary polarization.
(Recall that, on the initial endpoint, we choose qa and ca as coordinates on B; on
the final endpoint, we choose Qb and cb or Qb and bb—i.e., we work in the setting

of Remark 9.1 or 9.2, and we consider the corresponding 1-form αfBFV or αf̃BFV.)
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9.2.2. Splitting. For simplicity, we assume the target (for the (p, q) fields) to be
T ∗Rn. In this case B is a (graded) vector space, and F∂ = B∗ ⊕ B. The crucial
point is to write the space of bulk fields as

(82) F̃ = Y ⊕ B,

where F̃ is a suitable replacement (regularization) of the space of bulk fields, com-
patible with the boundary polarization by this splitting. Note that B∗ is now a
subspace of Y. We assume that equations (78) and (81), and therefore also (80),

are satisfied (now working on F̃ instead of F and with a suitable replacement S̃f̃BV

of Sf̃BV).

Example 9.4. The q-field component of B is qa. As q-component of Y we can
then take the space C∞0 ([ta, tb],Rn) 3 q̂ of maps that vanish at ta. If we define

q(t) = qa + q̂(t),

as we did in Remark 2.4, then we see that the q-component of F̃ is the space of
smooth maps [ta, tb]→ Rn, as in F . If on the other hand we set

q(t) =

{
qa t = ta

q̂(t) t > ta
,

then we get, in F̃ , maps with a possible discontinuity at ta, unlike in F . In this case,
the quantum space of bulk fields F̃ is slightly different from its classical counterpart
F . It turns out that, in general, these discontinuous extensions are more suitable
for the BV-BFV formalism, as we explain below (see Section 11 and 12 for examples

and also for the correct definition of S̃BV in these cases).

9.2.3. Good splittings. Given a splitting (82), we decompose

QBV = QY +QB

and

ωBV = ωYY + ωYB + ωBB

according to which (co)tangent space(s) the vector field/2-form belongs. We assume
ωYY to be closed and (weakly) nondegenerate as a 2-form on Y. The mCME (81)
now reads, in Y- and B-components,44

ιQYωYY + ιQBωYB = δY S̃
f̃
BV

ιQYωYB + ιQBωBB = δBS̃
f̃
BV + αf̃BFV,

where we have omitted writing π∗. Note that, by assumption, αf̃BFV only has B-
components.

We say that we have a good splitting if ιQBωYB = 0, for in this case QY is

the hamiltonian vector field, with respect to ωYY , of S̃f̃BV on Y (with everything
parametrized by B). We assume from now on that we have a good splitting. We
denote by ( , )Y the Poisson bracket induced by ωYY , so we have

(S̃f̃BV, S̃
f̃
BV)Y = ιQY ιQYωYY = ιQBV

ιQBV
ωBV − ιQB ιQBωBB.

44We write the formulae with generating function f̃ . Of course, they hold also with f instead.



52 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

By the induced equation (80), we then get

(S̃f̃BV, S̃
f̃
BV)Y = 2SBFV − ιQB ιQBωBB.

If the latter term depends only on the T ∗B variables, which we assume from now
on, we may define a new function

S∂ := SBFV −
1

2
ιQB ιQBωBB

on T ∗B, and we have

(83) (S̃f̃BV, S̃
f̃
BV)Y = 2S∂ .

Remark 9.5. Usually we do not have a good splitting. A way out, as also suggested
in Remark 2.33 of [19], is to consider a family of splittings such that there is a limit
in which the theory exists and corresponds to a good splitting (but of a different
space of fields). For instance, one can define a section sε of the short exact sequence

0 → Y ι→ F → B → 0 by multiplying fields in B by a smooth function equal to 1
close to the boundary and with support contained in a collar of length ε. We thus
obtain a family of BV-BFV theories

Fε =
(
Y ⊕ B, (ι⊕ sε)∗ωBV, (ι⊕ sε)∗Sf̃BV, (ι⊕ sε)

∗QBV, π ◦ (ι⊕ sε)
)

over (F∂ , SBFV, ωBFV ) isomorphic to (F , ωBV, S
f̃
BV, QBV, π) for ε > 0. The limit

as ε→ 0 gives a well-defined theory F0 on Y ⊕ B (one just integrates by parts the
terms containing dsε), but it does not arise from a well-defined section s - rather, it
corresponds to the discontinuous extension in Example 9.4.45 This theory on Y⊕B
is then the replacement as in (82) which is suitable for quantization. The space F̃

can be constructed by embedding F in a larger space ˜̃F where the limit s0 : B → ˜̃F
exists, and then we let F̃ = (ι⊕ s0)(Y ⊕B). For our purposes one can typically let
˜̃F be smooth functions on the interval with a discontinuity at the endpoints.

9.2.4. The modified quantum master equation. In the BV setting, one has a second-
order differential operator ∆Y , the BV Laplacian, acting on functions on Y with
the properties

∆2
Y = 0, ∆Y(fg) = ∆Y(f)g ± f∆Yg ± (f, g)Y .

In the finite-dimensional case, this operator is actually canonically defined on half-
densisties [37, 45]. It is then transferred to functions upon the choice of a non-
degenerate, ∆Y -closed, reference half-density. In the infinite-dimensional setting,
the definition of ∆Y requires a regularization, which we presently assume to have.

Moreover, for simplicity, we assume ∆Y S̃
f̃
BV = 0. Therefore, we have

∆Y e
i
~ S̃

f̃
BV = − 1

2~2
(S̃f̃BV, S̃

f̃
BV)Y e

i
~ S̃

f̃
BV = − 1

~2
S∂ e

i
~ S̃

f̃
BV .

The final step consists in finding some operator Ω on the space of functions on B
satisfying

(84) Ω e
i
~ S̃

f̃
BV = S∂ e

i
~ S̃

f̃
BV .

45In this theory the BV form is nondegenerate along Y, but degenerate otherwise. This is all
what is needed to define BV quantization.
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If we find such an operator, then we get the modified Quantum Master Equation
(mQME)

(85) (Ω + ~2∆Y) e
i
~ S̃

f̃
BV = 0,

which is a quantization of (81).
Note that Ω commutes with ∆Y (the former acts on functions on B, the latter

on functions on Y), so the operator

(86) ∆Ω
Y := ∆Y +

1

~2
Ω

squares to zero if and only if Ω does so, which we are going to assume. The reason
for this normalization, in which we prefer to regard ∆Ω

Y as a modification of ∆Y by

a contribution due to the boundary,46 will become clear in Section 9.2.7, where we
will address gauge fixing and gauge-fixing independence. The mQME can now be
rewritten as

∆Ω
Y e

i
~ S̃

f̃
BV = 0.

There are two main settings for the construction of Ω, which we describe in the
next two sections. (In principle, there may be more choices available, but we are
not aware of them.)

9.2.5. Case I: No boundary symmetries. Suppose Q∂ = 0. This implies QB = 0
and S∂ = SBFV = 0. In this case, every splitting is good and, moreover, we have

(S̃f̃BV, S̃
f̃
BV)Y = 0. Therefore, we obtain the mQME by simply setting Ω = 0.

Note, in particular, that we might choose a splitting as in the first part of Ex-

ample 9.4 for all fields, so that F̃ = F and S̃f̃BV = Sf̃BV. We may also choose, say
for the q part, to split q(t) = q0(t) + q̂(t), where q0 is the solution to the EL equa-
tions with the given boundary conditions. We then recover the usual procedure
for dealing with a path integral without gauge symmetries, as in equation (5) of
Remark 2.4.

9.2.6. Case II: Discontinuous splitting. A rather general procedure for dealing with
the BV-BFV quantization, proposed in [19], is based on a discontinuous splitting
of the fields, as in the second part of Example 9.4 and in Remark 9.5. In this case,

F̃ 6= F and S̃f̃BV 6= Sf̃BV. Moreover, the regularization of ∆Y requires some care,
so we will be rather sketchy here. The main advantage of such a choice is that
ωYB = ωBB = 0. This is then a good splitting in which S∂ = SBFV and

δBS̃
f̃
BV = −αf̃BFV.

46One might also as well argue that the coboundary operator should be defined as ΩY := Ω +

~2∆Y—i.e., as a modification of Ω by a contribution due to the bulk—stressing that what matters

more are the boundary fields, as the bulk fields will eventually be integrated out in the functional

integration. One might also argue that, since, without boundary, one has −i~∆
(

e
i
~ S̃BVO

)
=

e
i
~ S̃BV (QBVO − i~∆), where on the right hand side we see the quantum modification of the

BV operator QBV, then −i~∆ is the correct coboundary operator in the bulk, so the correct
coboundary operator in the presence of a boundary should be −i~∆Ω

Y = −i~∆Y − i
~Ω.
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Since αf̃BFV is by assumption the canonical 1-form of the cotangent bundle T ∗B =

B∗ ⊕ B 3 (z∗, z), we write αf̃BFV = z∗µdzµ. Therefore, the last equation becomes

∂S̃f̃BV

∂zµ
= −z∗µ.

It then follows that, if we define Ω to be the Schrödinger quantization of SBFV,

(87) Ω := SBFV

(
i~
∂

∂z
, z

)
with all the derivatives to the right (standard ordering), then we get

Ωe
i
~ S̃

f̃
BV = SBFV(z∗, z)e

i
~ S̃

f̃
BV ,

which is (84) (recall that we now have S∂ = SBFV).

Remark 9.6. A general observation at this point is that Ω is a quantization of
SBFV and that the classical master equation {SBFV, SBFV} = 0 is the lowest-order
condition for Ω2 = 0. Note that nothing guarantees that this condition is satisfied
at all orders. This actually becomes a consistency condition for the theory. (See
more, e.g., in Section 10).

In this presentation, we treated ∆Y rather formally. The correct argument re-
quires a regularization and a careful analysis of the Feynman diagrams, which we
present in Appendix B, and relies on certain assumptions.

The simplest case when the above argument turns out to be correct is when the
initial and final polarizations are related by a linear transformation (i.e., f(q,Q)
is linear in the qs and in the Qs). This is the setting of [19], which we will use in
Section 10 (in the particular case f(q,Q) = Qiq

i as, e.g., in Example 2.8).
For a more general f , a compatibility conditions between the constraints and

f is required, see Assumption 12.1 or B.1. In particular, the above procedure
actually works for a system as in Section 4 with the conditions that i) all the

hamiltonians Hα are linear in the p variables and ii) all the hamiltonians H̃α are

linear in the P variables, where H̃α(P,Q) := Hα(p(P,Q), q(P,Q)), and we use the
symplectomorphism induced by f (no matter how nonlinear it is; what saves the
game here is the linearity of the hamiltonians in the momenta). Note that this is
not an artificial, quirky situation, but it actually occurs in important examples, the
main one (although with infinite-dimensional target) being described in Section 7.6.

9.2.7. The BV pushforward. One of the properties of the BV formalism is the fol-
lowing. Assume we can write Y = Y1 ⊕ Y2 as a sum of symplectic subspaces. If L
is a lagrangian submanifold of Y2 and ψ is in the kernel of ∆Ω

Y , then the integral

ψ1 of ψ over L is in the kernel of ∆Ω
Y1

:= ∆Y1
+ 1

~2 Ω; moreover, if we deform L, the

result ψ1 will change by a ∆Ω
Y1

-exact term.

By the mQME (85), e
i
~ S̃

f̃
BV is ∆Ω

Y -closed, so we may apply this procedure, which
is known as the BV pushforward. The result of the pushforward can again be recast

in the form e
i
~S1 , where S1 is a formal power series in ~. The choice of L is called

a gauge fixing, and the last property in the previous paragraph is referred to as
gauge-fixing independence. With the normalization in (86), the argument of ∆Ω

Y1

under a change of gauge fixing is a formal power series in ~ times e
i
~S1 , which is

appropriate in perturbation theory.
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We may, in particular, choose Y2 = Y (assuming we can find a lagrangian L
on which the integral of ψ converges). In this case, ψ1 will be a function on B
satisfying Ωψ1 = 0. Note that in this case ∆Ω is just Ω/~2.

Two remarks are here in order. The first is that this procedure is more in-
variantly defined in terms of half-densitites instead of functions. The second is
that there might be lagrangian submanifolds L and L′ that are not deformations
of one another (at least through a path of lagrangian submanifolds on which the
integral of ψ converges); in this case, the two results of integration might not be
∆Ω
Y1

-cohomologous; see, e.g., Example 9.8 below.

Remark 9.7. The BV pushforward may of course be iterated. The setting is then
the following. We have a fixed space B with a fixed coboundary operator Ω acting
on its functions. We then have, for some ordered indices k, an odd symplectic space
Yk and a ∆Ω

Yk -closed function ψk on Yk × B. The ∆Ω
Yk+1

-closed function ψk+1 on

Yk+1×B is obtained by BV-pushforward. On the new spaces Yk×B one can recover
some derived structures reminiscent of the original one on Y × B; see [19, Remark
2.17] and [20, Proposition 9.1].

Example 9.8. As a toy example (actually a BV-BFV quantization of Example 3.2
with n = 1, v = 0 and w = 1 after a first BV pushforward), we consider B =

R⊕ R[1]⊕ R⊕ R[1] 3 (qa, ca, p
b, cb), Y1 = R⊕ R[−1] 3 (T, T+), ∆Y1 = ∂2

∂T+∂T , and

Ω = caqa − i~cb
∂

∂pb
.

The state
ψ1(qa, ca, p

b, cb, T, T
+) = e−

i
~ (pbqa+Tqa+T+(ca−cb))

is ∆Ω
Y1

-closed. If we consider the lagrangian submanifold L = {T+ = 0} of Y1, we

get47

ψL2 (qa, ca, p
b, cb) =

∫
L
ψ1(qa, ca, p

b, cb, T, T
+) =

∫
dT

2π~
ψ1(qa, ca, p

b, cb, T, 0) = δ(qa),

which is clearly Ω-closed. If, on the other hand, we consider the lagrangian sub-
manifold L̃ = {T = 0}, which cannot be deformed to L, we get

ψL̃2 (qa, ca, p
b, cb) =

∫
L̃
ψ1(qa, ca, p

b, cb, T, T
+) =

∫
i~ dT+ψ1(qa, ca, p

b, cb, 0, T
+)

= (ca − cb) e−
i
~p
bqa = δ(ca − cb) e−

i
~p
bqa ,

which is also Ω-closed but certainly not Ω-cohomologous to ψL2 (the two have dif-
ferent ghost numbers).

9.2.8. Composition. The space B we consider is actually a product Ba×Bb, with Ba
having coordinates qa and ca and with Bb having coordinates Qb and cb or Qb and
bb. We assume that Ω is local, i.e., Ω = Ωa−Ωb, where each summand is an operator
on the space of functions of the corresponding space. In addition, we assume Ωa
and Ωb to be self-adjoint operators on functions on Ba and Bb, respectively.48

For instance, see Example 9.8 where we have Ωa = caqa and Ωb = i~cb ∂
∂pb

. We

will see more examples in Sections 10 and 12.1.

47We conventionally normalize the measures dT and dT+ in order to get nicer looking formulae.
48This is defined in terms of some measure on Ba. A more invariant formulation regards the

states as half-densities, so this choice of measure is not necessary.
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Suppose we have a ∆Ωa−Ωb
Y -closed state ψ on Ba×Bb×Y and a ∆Ωb

Ỹ -closed state

ψb on Bb × Ỹ. We can then pair ψ with ψb integrating over Bb (we assume this
integration to converge). Then49

ψa :=

∫
Bb
ψψb

is a ∆Ωa
Y×Ỹ -closed state on Ba×Y × Ỹ. A further reduction by BV pushforward, as

in Section 9.2.7, is of course possible if we have Y × Ỹ = Y1 × Y2.

Example 9.9. Take ψ = ψ1 as in Example 9.8 and Ỹ to be a point. The ghost-
number-one state

ψb(p
b, cb) = φ(pb)δ(cb) = φ(pb)cb,

where φ is an arbitary function, is obviously Ωb-closed. After pairing, it yields, up
to a multiplicative constant that depends on the choice of measure,

ψa(qa, ca, T, T
+) = e−

i
~ (Tqa+T+ca)φ̂(qa),

where φ̂ is the Fourier transform of φ. Note that

−~2∆Y1
ψa = caqaψa = Ωaψa,

so ψa is ∆Ωa
Y1

-closed. We may now integrate over the lagrangian submanifolds

L = {T+ = 0} or L̃ = {T = 0} getting

ψLa (qa, ca) = δ(qa)φ̂(0) and ψL̃a (qa, ca) = δ(ca)φ̂(qa),

which are clearly Ωa-closed. If, on the other hand, we consider the ghost-number-
zero state

ψ̃b(p
b, cb) = 1,

which is obviously Ωb-closed, then we get, again up to a multiplicative constant,

ψ̃a(qa, ca, T, T
+) = δ(qa)δ(T+) = δ(qa)T+,

which is obviously ∆Y1 - and Ωa-closed, and therefore ∆Ωa
Y1

-closed. By a further BV
pushforward as above, we get

ψ̃La (qa, ca) = 0 and ψ̃L̃a (qa, ca) = δ(qa),

which are clearly Ωa-closed.

Remark 9.10. A generalization of the above is when we have a ∆Ωa−Ωb
Y -closed state

ψ on Ba×Bb×Y and a ∆
Ωb−Ωb′

Ỹ -closed state ψ̃ on Bb×Bb′ × Ỹ. We can then pair

them on Bb, getting a ∆
Ωa−Ωb′

Y×Ỹ -closed state

ψ̂ =

∫
Bb
ψψ̃

on Ba×Bb′×Y×Ỹ (which could possibly be further reduced by BV pushforwards).

If we interpret the above states ψ and ψ̃ as evolution operators corresponding

to the intervals [ta, tb] and [tb, tb′ ], respectively, then ψ̂ can be interpreted as the
corresponding evolution operator on [ta, tb′ ].

49In the composition integral we assume that there is a measure on Bb or that the states are
half-densities, see footnote 48.
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10. BV-BFV boundary structures for linear polarizations

In this section we prepare for the application of the quantum BV-BFV formalism
to the case of one-dimensional systems with constraints, whose classical treatment
was the focus of Sections 2 to 6, with linear polarizations. We discuss here only
the quantization of the boundary structure, whereas the quantization of the bulk
will be discussed in Section 11. We defer the case of nonlinear polarizations to Sec-
tion 12 and the case of infinite-dimensional targets, discussed at the classical level
in Section 7, to [21]. In many places, we also make use of deformation quantization,
for which we refer to the valuable review [27] and references therein.

10.1. Three cases. We will work out some representative cases of linear polariza-
tions. Namely, we assume that the coordinates in Bb are either

Case I: (pb, cb), or
Case II: (pb, bb),

with (qa, ca) as the coordinates in Ba (see Remark 9.2). For completeness, and for
later applications, we will also consider:

Case III: (qa, b
a) as the coordinates in Ba and (pb, cb) as the coordinates in

Bb.
For the quantization we will consider a discontinuous splitting of the bulk fields

(see Example 9.4).
Finally, we confine ourselves to the case when the structure functions are constant

(see Example 8.1); we then have

SBFV = cαaHα(pa, qa)− 1

2
fγαβ b

a
γc
α
a c
β
a − cαbHα(pb, qb) +

1

2
fγαβ b

b
γc
α
b c
β
b ,

SBV =

∫ tb

ta

(
pidq

i − e+
αdcα − eαHα(p, q) + cα

(
q+
i

∂Hα

∂pi
(p, q)−pi+

∂Hα

∂qi
(p, q)

)
− 1

2
fγαβ c

+
γ c

αcβ + fγαβ e
+
γ c

αeβ
)
.

Remark 10.1 (Unimodularity). The BV action satisfies the classical master equa-
tion. To ensure ∆SBV = 0, although at a formal level, we assume the Lie algebra
g, of which the fγαβs are the structure constants, to be unimodular: i.e., fααβ = 0.

Remark 10.2 (The coboundary operator). In all the cases we consider, the operator
Ω is of the form Ωa−Ωb with Ωa and Ωb acting on different spaces, so Ω2 = Ω2

a+Ω2
b

and we have Ω2 = 0 if and only if Ω2
a = 0 and Ω2

b = 0.

10.2. The boundary structure in Case I. We use f̃ = f = piq
i, so

αf̃BFV = αBFV + df(qb, p
b) = pai dqia + baαdcαa + qibdp

b
i − bbαdcαb .

We now proceed as in Section 9.2.6. If we write αf̃BFV = z∗µdzµ, we get

pa = q∗a, ba = c∗a, qb = (pb)∗, bb = −c∗b .

The recipe (87) for constructing Ω is to replace z∗µ with i~ ∂
∂zµ in SBFV. Therefore,

we get

Ωa = cαaHα

(
i~

∂

∂qa
, qa

)
− i~

2
fγαβ c

α
a c
β
a

∂

∂cγa
,
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Ωb = cαbHα

(
pb, i~

∂

∂pb

)
+

i~
2
fγαβ c

α
b c
β
b

∂

∂cγb
.

For example, if the index sets are both {1}, so fγαβ = 0, and we take H1(p, q) = q,
we get the Ω of Example 9.8.

We can easily see that Ω2 = 0 if and only if we have, at both endpoints, the
following quantization of (19):

(88)
[
Ĥα, Ĥβ

]
= i~fγαβĤγ .

Here Ĥα denotes the corresponding quantization of Hα at the given endpoint.
Equivalently, we may reformulate this as

(89) [Hα, ?, Hβ ] = i~fγαβHγ ,

where [φ ?, ψ] := φ ? ψ − ψ ? φ denotes the commutator with respect to either star
product induced from the above quantization (if the condition is satisfied for one
star product, it is automatically satisfied also for the other). Namely, at the initial
endpoint we have

(90) φ ? ψ(p, q) = e
i~ ∂2

∂q̃i∂p̃i φ(p̃, q)ψ(p, q̃)
∣∣∣
p̃=p, q̃=q

,

whereas at the final endpoint we have

(91) φ ? ψ(p, q) = e
i~ ∂2

∂q̃i∂p̃i φ(p, q̃)ψ(p̃, q)
∣∣∣
p̃=p, q̃=q

.

In principle, if (89) is not satisfied on the nose, one may look for ~-deformations
of the Hαs that satisfy it. However, there are in general obstructions to do it. For
the purposes of the present paper the following remark is important.

Remark 10.3. In both the linear case of Example 4.3 and the biaffine case of Ex-
ample 4.6, condition (89) is automatically satisfied, so we have Ω2 = 0.

Digression 10.4. Lemma 4.14 of [19] states that Ω2 = 0 in case of BF -like theories
(like the theories at hand). The regularization was assumed there to be in terms of
the Fulton–MacPherson–Axelrod–Singer compactified configurations spaces [31, 4]
(which is also the case we will consider in the next sections). What was also
implicitly assumed there, although unfortunately not made clear, was that the
bulk dimension should be larger than 1.50 For this reason that lemma does not
apply to the present case. We will briefly discuss in Appendix B the correct version
of the lemma in the case at hand. Note that Lemma 4.14 of [19] also does not apply
directly to the case of infinite-dimensional targets that will be treated in [21], since
the appropriate gauge fixing needed to reduce to the present considerations (the
axial gauge fixing) is not compatible with the aforementioned compactification of
configuration spaces. Actually, the failure of (89) has not only the consequence
that the boundary operator Ω does not square to zero, but also that the classical
master equation (SBV, SBV) = 0 is not enough for the regularized QME to hold in

50The proof of that lemma relied in particular on the contribution of the principal faces—i.e.,
collapses of two points in the bulk—of the boundary of compactified configurations spaces. In d
dimensions, such faces have dimension d− 1, whereas propagators in BF -like theories are (d− 1)-

forms. For d > 1, there must then be exactly one propagator between the two collapsing points;
the sum over all these contributions is zero as a consequence of the classical master equation. For
d = 1, however, there is no bound on the number of propagators between two collapsing points.
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the bulk. What will save the game in [21], where we will consider Chern–Simons
theories on cylinders with the axial gauge, is that the theories considered there are
examples of the linear or of the biaffine case.

10.3. The boundary structure in Case II. We use f̃ = piq
i + cαbα, so

αf̃BFV = αBFV + df̃(qb, cb, p
b, bb) = pai dqia + baαdcαa + qibdp

b
i − cαb dbbα.

In this case, the prescriptions of Section 9.2.6 yield

pa = q∗a, ba = c∗a, qb = (pb)∗, cb = −(bb)∗

and

Ωa = cαaHα

(
i~

∂

∂qa
, qa

)
− i~

2
fγαβ c

α
a c
β
a

∂

∂cγa
,

Ωb = −i~Hα

(
pb, i~

∂

∂pb

)
∂

∂bbα
+

~2

2
fγαβ b

b
γ

∂2

∂bbα∂b
b
β

.

Again Ω2 = 0 if and only if (89) is satisfied at both endpoints.

10.4. The boundary structure in Case III. In this case have to use the one-
form

αf̂BFV = pai dqia + cαadbaα + qibdp
b
i − bbαdcαb .

To achieve this we add piq
i at the final endpoint of the BV action, like in Cases I

and II, but now we subtract cαbα at the initial endpoint. The function f̂ is now

more precisely written as pbiq
i
b− cαa baα and we have αf̂BFV = αBFV + df̂ . In this case,

the prescriptions of Section 9.2.6 yield

pa = q∗a, ca = (ba)∗, qb = (pb)∗, bb = −c∗b ,

and

Ωa = i~Hα

(
i~

∂

∂qa
, qa

)
∂

∂baα
+

~2

2
fγαβ b

a
γ

∂2

∂baα∂b
a
β

,

Ωb = cαbHα

(
pb, i~

∂

∂pb

)
+

i~
2
fγαβ c

α
b c
β
b

∂

∂cγb
.

Also in this case Ω2 = 0 if and only if (89) is satisfied at both endpoints.

11. BV-BFV quantization with linear polarizations

In this section we quantize the constrained one-dimensional systems with linear
polarizations on the endpoints. We refer to the three cases whose boundary struc-
ture has been discussed in Section 10 (see Section 10.1 for the list of the three case).
We postpone the more complicated Case I and start with Cases II and III.

After that, we will discuss the gluing of intervals and the composition of the cor-
responding states. We will conclude the section with the quantization of the systems
with nontrivial evolution discussed in Section 5 at the classical level: in particular,
classical mechanics, Section 5.1, and the free relativistic particle, Section 5.2.
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11.1. Quantization in Case II. First we have to subtract the final-endpoint pull-
back of f̃ = piq

i + cαbα from the BV action getting

Sf̃BV = SBV − pi(tb)qi(tb) + cα(tb)e
+
α (tb).

Next we pick the discontinuous splitting F̃ = Y ⊕ B of Example 9.4 for all bulk
fields. Namely, by decorating the elements of Y with a hat, we set

q(t) =

{
qa t = ta

q̂(t) t > ta
, c(t) =

{
ca t = ta

ĉ(t) t > ta
,

p(t) =

{
p̂(t) t < tb

pb t = tb
, e+(t) =

{
ê+(t) t < tb

−bb t = tb
,

with boundary conditions

q̂(ta) = 0, ĉ(ta) = 0, p̂(tb) = 0, ê+(tb) = 0.

We decorate the remaining fields, all belonging to Y, also with a hat: p̂+, q̂+, ê, ĉ
+.

We now formally integrate by parts51 the terms pidq
i and e+

αdcα in Sf̃BV,∫ tb

ta

pidq
i → −p̂i(ta)qia +

∫ tb

ta

p̂idq̂
i,

∫ tb

ta

e+
αdcα → ê+

α (ta)cαa +

∫ tb

ta

ê+
αdĉα,

in order to get the BV action adapted to this splitting:

S̃f̃BV :=− pbi q̂i(tb)− ĉα(tb)b
b
α − p̂i(ta)qia − ê+

α (ta)cαa

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − êαHα(p̂, q̂)

+ ĉα
(
q̂+
i

∂Hα

∂pi
(p̂, q̂)− p̂i+

∂Hα

∂qi
(p̂, q̂)

)
− 1

2
fγαβ ĉ

+
γ ĉ

αĉβ + fγαβ ê
+
γ ĉ

αêβ
)
.

We finally pick the gauge-fixing lagrangian

(92) L = {p̂+ = q̂+ = ê = ĉ+ = 0},
getting

S̃f̃BV

∣∣∣
L

=− pbi q̂i(tb)− ĉα(tb)b
b
α − p̂i(ta)qia − ê+

α (ta)cαa +

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα

)
.

The propagators defined by the kinetic terms and compatible with the boundary
conditions are

(93) 〈q̂i(s) p̂j(t)〉 = i~δij θ(s− t) and 〈ĉα(s) ê+
β (t)〉 = i~δαβ θ(s− t),

where

θ(t) =

{
0 for t < 0

1 for t > 0

is the Heaviside step function. We can then compute

ZII :=

∫
L

e
i
~ S̃

f̂
BV

51See Remark 9.5.
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as

(94) ZII(qa, ca, p
b, bb) = e−

i
~ (pbiq

i
a−b

b
αc
α
a ).

One can immediately check that ΩZII = 0.
The striking result is that ZII is extremely simple and does not depend on the

constraints Hα. Still its definition requires the whole BV-BFV machinery and, in
particular, condition (89). The reason is that we have chosen a clever gauge fixing
that simplifies the computation, but we want to be sure that the result is invariant
(up to Ω-coboundary terms) under deformations of the gauge-fixing lagrangian (see,
in case, the following Digression).

As we discuss in the following Digression, just deforming the gauge fixing, picking
e different from zero, does not change the result (in ∆Ω-cohomology). Still one can
get a less trivial answer for Case I, as we will dicuss in Section 11.4. The present
“trivial” answer is anyway useful for gluing solutions on different intervals along the
lines of Section 9.2.8. We will see in Section 11.4 how to get a nontrivial answer.

Digression 11.1 (Change of gauge fixing). By the general BV-BFV philosophy—
proved in the case at hand in Appendix B—we know that deformations of L produce
Ω-cohomologous results. Instead of using this general result, as a matter of example
we explicitly consider a particular case. Let

Lu :=

{
p̂+ = q̂+ = ĉ+ = 0, ê = e0 :=

udt

tb − ta

}
,

where, for simplicity, we assume u to be a constant function on [ta, tb]. We now
have

S̃f̃BV

∣∣∣
Lu

=− pbi q̂i(tb)− ĉα(tb)b
b
α − p̂i(ta)qia − ê+

α (ta)cαa

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − eα0Hα(p̂, q̂) + fγαβ ê

+
γ ĉ

αeβ0

)
.

Let us first consider the case when the structure constants vanish. In this case, we
compute, following [19, Section 4.4],

ZuII :=

∫
Lu

e
i
~ S̃

f̂
BV = e−

i
~ (pbiq

i
a−b

b
αc
α
a ) e
− i

~u
αHα

? (pb, qa),

where e? is the star exponential with respect to the initial star product (90). We
have

ΩaZ
u
II = cαaZ

u
II ? Hα, ΩbZ

u
II = cαaHα ? Z

u
II,

so the mQME ΩZuII = 0 is satisfied, provided that (89), which now simply reads
[Hα, ?, Hβ ] = 0, holds. Let us now consider a family of gauge fixings as above,
parametrized by a path u(x), x is some interval, and check gauge-fixing indepen-
dence under the assumption (89). We have

∂ZuII
∂x

= − i

~
duα

dx
Hα ? Z

u
II;

that is,

(95)
∂ZuII
∂x

= ∆Ωψ

with ψ = −bbα duα

dx Z
u
II and ∆Ω = 1

~2 Ω in accordance with (86). The general case
with nonvanishing structure constants is a bit more complicated. We only report
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the final computations. As in Section 4.2, we view the fγαβs as structure constants
of a Lie algebra g for a certain basis; we then view objects with an upper Greek
index as taking value in g and objects with a lower Greek index as taking values in
g∗; finally, we denote by 〈 , 〉 the pairing of g∗ with g. We then get

ZuII = e−
i
~ (pbiq

i
a−〈b

b,Adeu ca〉) e
− i

~ 〈H,u〉
? (pb, qa).

Therefore, we have

ΩaZ
u
II = ZuII ? 〈H, ca〉 −

1

2
〈bb, Adeu [ca, ca]〉ZuII,

ΩbZ
u
II = 〈H, Adeu ca〉 ? ZuII −

1

2
〈bb, Adeu [ca, ca]〉ZuII,

and hence

ΩZuII = ZuII ?
(
〈H, ca〉 −

〈
e

i
~ 〈H,u〉
? ? H ? e

− i
~ 〈H,u〉

? , Adeu ca

〉)
.

Using (89), one can then easily prove that

χ(s) :=
〈

e
i
~ s〈H,u〉
? ? H ? e

− i
~ s〈H,u〉

? , Adesu ca

〉
is constant in s, and therefore ΩZuII = 0. If we consider again a family of gauge
fixings parametrized by a path u(x) and assume (89), we get again (95), now with
ψ = −

〈
bb, Adeu

du
dx

〉
ZuII.

11.2. Quantization in Case III. Case III is very similar to Case II. We proceed
very quickly, just outlining the differences. First, the BV action for the given
boundary polarizations is

Sf̂BV = SBV − pi(tb)qi(tb)− cα(ta)e+
α (ta).

In picking the discontinuous extension, p and q are realized as in Case II, with the
same boundary conditions, whereas

(96) e+(t) =

{
−ba t = ta

ê+(t) t > ta
, c(t) =

{
ĉ(t) t < tb

cb t = tb
,

with boundary conditions

(97) ê+(ta) = 0, ĉ(tb) = 0.

The BV action adapted to this splitting is then

S̃f̂BV =− pbi q̂i(tb)− ê+
α (tb)c

α
b − p̂i(ta)qia + ĉα(ta)baα

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − êαHα(p̂, q̂)

+ ĉα
(
q̂+
i

∂Hα

∂pi
(p̂, q̂)− p̂i+

∂Hα

∂qi
(p̂, q̂)

)
− 1

2
fγαβ ĉ

+
γ ĉ

αĉβ + fγαβ ê
+
γ ĉ

αêβ
)
.

(98)

We pick again the gauge-fixing lagrangian (92). This produces the same p̂q̂ propa-
gator as in Case II, see (93), but now we have

〈ê+
β (s) ĉα(t)〉 = i~δαβ θ(s− t).
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We then get

ZIII(qa, b
a, pb, cb) = e−

i
~ (pbiq

i
a−c

α
b b
a
α).

One can immediately check that ΩZIII = 0.
The considerations of Digression 11.1 of course apply also to this case.

11.3. Quantization in Case I. Finally, we consider Case I. Now we have to
subtract the final-endpoint pullback of f = piq

i from the BV action getting

SfBV = SBV − pi(tb)qi(tb).

Since the boundary values ca and cb are given (as coordinates of B), the fluc-
tuations ĉ of the ghost fields ĉ, in the discontinuous splitting, will have vanishing
boundary conditions at both endpoints. On the other hand, there are no endpoint
conditions on the fluctuations ê+. Proceeding this way, we would get, as in the

previous cases, a term
∫ tb
ta
ê+
αdĉα in the action. This term is not well suited for the

perturbative expansion as d now has a kernel on the space of the ê+ fields (namely,
the constant ones). Since we compute the functional integral perturbatively, we
have to remove this constant term, call it T+. More precisely, we are going to
proceed as in Section 9.2.7; namely, in addition to a splitting F̃ = Y ⊕ B, we also
split Y = Y1⊕Y2, where Y2 contains the fluctuations (which we will denote with a
hat) over which we integrate by perturbation theory, and Y1 is a finite-dimensional,
odd symplectic space of which the T+s are half of the coordinates. The other half
will have to be variables T which are part of the fields e. In general, we will not
integrate over Y1, but in some cases this is possible (yet one has to be careful that
there are in general nonequivalent choices of gauge-fixing lagrangians: see Exam-
ple 9.8 and Remark 11.5). In accordance with [19], we call Y1 the space of residual
fields.

Explicitly, the spaces Y1,Y2,B are defined as follows. In Y1 we have coordinates
(Tα, T+

α ) with canonical odd symplectic structure δT+
α δTα. In Y2 we have the hat

fields p̂, q̂, ê, ĉ, p̂+, q̂
+, ê+, ĉ+ that must obey the following conditions

(99)

q̂(ta) = 0, ĉ(ta) = 0, p̂(tb) = 0, ĉ(tb) = 0,

∫ tb

ta

ê+dt = 0,

∫ tb

ta

ê = 0.

Finally, B has coordinates qa, ca, p
b, cb. We define F̃ = Y1 ⊕ Y2 ⊕ B via

q(t) =

{
qa t = ta

q̂(t) t > ta
, p(t) =

{
p̂(t) t < tb

pb t = tb
, c(t) =


ca t = ta

ĉ(t) ta < t < tb

cb t = tb

,

e(t) =
T dt

tb − ta
+ ê(t), e+(t) = T+ + ê+(t),

and

p+(t) = p̂+(t), q+(t) = q̂+(t), c+(t) = ĉ+(t).

To get the adapted BV action, we use the replacements∫ tb

ta

pidq
i → −p̂i(ta)qia +

∫ tb

ta

p̂idq̂
i,∫ tb

ta

e+
αdcα → −T+

α (cαb − cαa )− ê+
α (tb)c

α
b + ê+

α (ta)cαa +

∫ tb

ta

ê+
αdĉα,
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which yield

S̃fBV = T+
α (cαb − cαa )− pbi q̂i(tb) + ê+

α (tb)c
α
b − p̂i(ta)qia − ê+

α (ta)cαa

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − Tα dt

tb − ta
Hα(p̂, q̂)− êαHα(p̂, q̂)

+ ĉα
(
q̂+
i

∂Hα

∂pi
(p̂, q̂)− p̂i+

∂Hα

∂qi
(p̂, q̂)

)
− 1

2
fγαβ ĉ

+
γ ĉ

αĉβ

− fγαβ T
+
γ ĉ

α T
β dt

tb − ta
+ fγαβ ê

+
γ ĉ

α T
β dt

tb − ta
− fγαβ T

+
γ ĉ

αêβ + fγαβ ê
+
γ ĉ

αêβ
)
.

On the gauge-fixing lagrangian (92) we have

S̃fBV

∣∣∣
L

= T+
α (cαb − cαa )− pbi q̂i(tb) + ê+

α (tb)c
α
b − p̂i(ta)qia − ê+

α (ta)cαa

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − Tα dt

tb − ta
Hα(p̂, q̂)

− fγαβ T
+
γ ĉ

α T
β dt

tb − ta
+ fγαβ ê

+
γ ĉ

α T
β dt

tb − ta

)
.

The p̂q̂ propagator is the same as in Case II, see (93), but the ĉê+ propagator now
has to take into account the conditions (99) on ĉ and ê+. We get

(100) 〈ĉα(s) ê+
β (t)〉 = i~δαβ (θ(s− t)− φ(s))

with

φ(s) =
s− ta
tb − ta

.

Note that there are no mixed terms involving the physical fields p̂q̂ and the ghost

fields ĉê+ in S̃fBV

∣∣∣
L

, so the partition function ZI :=
∫
L e

i
~ S̃

f
BV is the product of

a “physical part” Zphys
I and a “ghost part” Zgh

I . The physical part is computed
following [19, Section 4.4]:

Zphys
I (qa, p

b;T ) = e−
i
~p
b
iq
i
a e
− i

~T
αHα

? (pb, qa).

Remark 11.2. The ?-exponential arises from Feynman diagrams consisting of multi-
edge linear graphs of arbitrary length. The lowest-order terms are the linear trees.
Note that each vertex (either in the bulk or at one endpoint) contributes with a
factor 1

~ , whereas each edge contributes with a factor ~, so a tree of any length yields

a global factor 1
~ . Moreover, such trees simply define the (semi)classical evolution

operator, i.e., the Hamilton–Jacobi action. Therefore,

(101) Zphys
I (qa, p

b;T ) = e
i
~ (ŜfHJ(qa,p

b,eT )+O(~))

with the HJ action as in (37).

Remark 11.3 (Semiclassical expansion). The last formula can also be obtained as
follows. As we have seen, in the Lie algebra case and in the chosen gauge fix-
ing, the physical part completely decouples from the ghost part. Moreover, as
in Remark 4.10, we may view the gauge-fixed action for the physical part as the
action for a mechanical system with hamiltonian H̃ = 〈H,T 〉 (and time variable
s = t

tb−ta ). For such a system we may go back, via a translation in the functional

integral, to the usual nondiscontinuous choice of fields, p(t) = pqa,pb(t) + p̌(t) and
q(t) = qqa,pb(t) + q̌(t), and integrate over the fluctuations p̌ and q̌, getting the
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semiclassical expansion (101). Note that, on the other hand, the discontinuous
extension, besides being the correct one in general for BV-BFV, is also interesting
because it produces the ?-product representation of the partition function.52

We may summarize the content of equation (101) and of the two above remarks
in the following

Theorem 11.4. The physical part of the dominant contribution of the perturbative
expansion of the BV-BFV partition function, in the polarization of Case I, is the
HJ action.

The ghost part is very easy to compute in the abelian case, fγαβ = 0, since the
interaction terms vanish and the boundary source terms cannot be coupled to each
other:

(102) Zgh,abelian
I (ca, cb;T

+) = e−
i
~T

+
α (cαa−c

α
b ).

Therefore,

(103) Zabelian
I (qa, ca, p

b, cb;T, T
+) = e−

i
~p
b
iq
i
a e
− i

~T
αHα

? (pb, qa) e−
i
~T

+
α (cαa−c

α
b ).

It is very easy in this case to check that the mQME holds. In fact, we have

ΩaZ
abelian
I = cαaZ

abelian
I ? Hα, ΩbZ

abelian
I = cαbHα ? Z

abelian
I .

Therefore, since (89) implies in this case that the Hs ?-commute,

ΩZabelian
I = (cαa − cαb )Hα ? Z

abelian
I .

Since the right hand side is also clearly equal to −~2 ∂2

∂Tα∂T+
α
Zabelian

I , the mQME is

satisfied.
In the nonabelian case, the ghost part Zgh

I can be computed in terms of Feynman

diagrams. In Figure 1 we introduce a notation for the ghost propagator. In S̃fBV

∣∣∣
L

,

ê+ ĉ

Figure 1. Ghost propagator

we have three univalent vertices (one at each endpoint, each containing ê+, and
one in the bulk, containing ĉ) and one bulk ê+ĉ-bivalent vertex; see Figure 2.
If a univalent ĉ-vertex is present, we can only build a linear tree, of any length,

, , ,ca cb
T+T T

Figure 2. Ghost vertices

connecting it to one of the endpoint ê+-vertices via the bivalent vertices: these trees
will give rise to the F -terms below (in which we include also the “abelian” term
T+
α (cαa−cαb )); see Figure 3 (where the grey vertices are integrated along the interval;

the dots denote other possible vertices). In addition, we have wheels of any length

52Cf. the Clifford-exponential presentation of the nonabelian 1D Chern–Simons partition func-
tion in [1].
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,ca
T T T T T+T

cb
TTTTT+T

Figure 3. F -diagrams

using only bivalent vertices which produce the W-terms below (note that, thanks to
the unimodularity assumption of Remark 10.1, there are no tadpoles, which would
otherwise have to be regularized); see Figure 4 (where we use a two-dimensional
representation just for pictorial reasons: the grey vertices are still integrated along
the interval). To get a more readable expression, we use again the notations of

T

TT

T

T T

Figure 4. W-diagrams

Section 4.2, and of the second part of Digression 11.1, in terms of the Lie algebra
g, its dual g∗ and their pairing 〈 , 〉. We get
(104)

ZI(qa, ca, p
b, cb;T, T

+) = e−
i
~p
b
iq
i
a e
− i

~ 〈H,T 〉
? e−

i
~ 〈T

+,F−(adT )cb+F+(adT )ca〉 eW(T ).

The series F+, F−,W can be explicitly computed, although we do not present the
details here:

F+(x) =
x

1− e−x
=
∑
n≥0

(−1)n
Bn
n!
xn,

F−(x) = − x

ex − 1
= −

∑
n≥0

Bn
n!
xn,

W(T ) =
∑
n≥1

Bn
n · n!

tr(adT )n = tr log
sinh adT

2
adT

2

,

where the Bns are the Bernoulli numbers: B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0,

B4 = − 1
30 ,. . . . The mQME can also be directly verified.

Remark 11.5 (Reduction of the residual fields). We may sometimes perform a fur-
ther BV pushforward on Y1. One possibility, which leads to a less interesting result
as in Case II, consists in choosing the lagrangian Ltriv = {T = 0}. We get in this
case

(105) ZL
triv

I (qa, ca, p
b, cb) = e−

i
~p
b
iq
i
a δ(cb − ca).

More interesting choices consist in taking L to be the conormal bundle, shifted by
−1, of a submanifold of the Lie algebra g. For example, we can take the whole g
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as such a submanifold, and therefore L = {T+ = 0}, which yields

(106) ZLI (qa, p
b) =

∫
g

e−
i
~p
b
iq
i
a e
− i

~ 〈H,T 〉
? dkT,

where k = dim g and dkT is the Lebesgue measure (of course under the assumption
that the integral converges). Note that ZLI does no longer depend on the ghost
variables.

Remark 11.6 (Passing to the group). In the nonabelian case, assuming the expo-
nential map to be surjective, it is convenient to make a change of variables, setting
g = ψ(T ) := eT . A first advantage of this transformation is that the semiclassical
term of the physical part of ZI is brought to the form of Section 4.2. Since we are in
the BV setting, we have to complete this transformation to a symplectomorphism.
We do it by taking the cotangent lift:

Ψ: T ∗[−1]g → T ∗[−1]G

(T, T+) 7→
(

eT , (deleT )∗,−1 ad∗T
1−e−ad∗

T
T+
)
,

where e denotes the identity element of G and lg the left multiplication by g:
lg(h) = gh. The first term of the ghost part now simplifies as follows:

〈T+, F−(adT )cb + F+(adT )ca〉 = 〈(delg)∗g+, ca −Ad−1
g cb〉.

Finally, we have to observe that, more appropriately for the BV formalism [37, 45],
the partition function should be regarded as a half-density:

ẐI = ZI

√
dkTdkT+,

with k = dim g, dkT the Lebesgue measure, and dkT+ the standard Berezinian mea-
sure. We have, again under the assumption of unimodularity (see Remark 10.1),53

that

ψ∗µG = det
sinh adT

2
adT

2

dkT = eW(T )dkT,

where µG is the Haar measure. Therefore,

ẐI(qa, ca, p
b, cb; g, g

+) = e−
i
~p
b
iq
i
a e
− i

~ 〈H,log g〉
? e−

i
~ 〈(delg)∗g+,ca−Ad−1

g cb〉 µG,

where we reinterpret the Haar measure µG on G as a half-density on T ∗[−1]G.
We can now “improve” (106) by taking L := {g+ = 0} = G—the zero section of
T ∗[−1]G—getting

(107) ZLI (qa, p
b) =

∫
G

e−
i
~p
b
iq
i
a e
− i

~ 〈H,log g〉
? dµG,

which converges for G compact. The integral in (106) usually does not converge,
as it corresponds to summing infinitely many copies of the integral over G (this is
an instance of what is known as Gribov’s ambiguity in the physics literature). The

53In the case of a nonunimodular Lie algebra, one may extend the ĉê+ propagator of (100) to

the diagonal as 〈ĉα(s) ê+β (s)〉 = −i~δαβ φ(s). With this regularization, the tadpoles produce the

additional factor e−
1
2

tr adT in ZI. On the other hand, without the assumption of unimodularity,

one has ψ∗µG = eW(T )e−
1
2

tr adT dkT , so the results discussed in this remark in principle also hold
without the assumption of unimodularity.
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“improved” formula (107) corresponds to choosing one single domain in g diffeo-
morphic to G (up to a measure zero subset). A similar procedure was developed in
[36].

We conclude by discussing two important examples.

Example 11.7 (Linear case). Consider linear constraints as in Example 4.3. There

are then two simplifications. The first is that in the computation of Zphys
I we only

have linear vertices in q̂ and p̂, so the only connected Feynman graphs have one
single edge: connecting two boundary points, or one boundary and a bulk point,
or two bulk points. See Figure 5 for our notation for the physical propagator and
Figure 6 for the connected Feynman graphs. These graphs correspond exactly to

q̂ p̂

Figure 5. Physical propagator

, , ,pbqa pb
T

qa
T TT

Figure 6. Linear case

the terms in (24) (this result is of course consistent with Remarks 11.2 and 11.3.)
The second simplification is that the structure functions vanish, so the ghost part
is simply the one of equation (102). In conclusion, we get

ZI(qa, ca, p
b, cb;T, T

+) = e−
i
~ (pbiq

i
a+Tα(pbiv

i
α+wα,iq

i
a)+ 1

2T
αTβAαβ+T+

α (cαa−c
α
b ))

= e
i
~ Ŝ

f
HJ(qa,p

b,T )e−
i
~T

+
α (cαa−c

α
b ),

(108)

with ŜfHJ as in (24). This result is the prototype for abelian Chern–Simons theory,
see [21, Sections 5.3.1 and 6]. We may also integrate over the residual fields with
the gauge fixing T+ = 0 as in (106). In general, there will be some linear terms in
T , corresponding to the kernel of A, which produce delta functions. The remain-
ing terms yield a Gaussian integration which produces quadratic terms in the p, q
variables. This is the quantum analogue of solving some of the constraints. For
example, in the case of Remark 3.3, we get

ZLI (qa, p
b) = e

i
~ S̃

f (qa,p
b) = e

i
~ ( 1

2
v
w (pb)2+ 1

2
w
v (qa)2).

Example 11.8 (Biaffine case). In the case of constraints that are affine both in
the p and in the q variables, see Example 4.6, the physical part of the partition
function can still be computed explicitly, as no multiple edges appear. We then end
up having only linear trees in the computation of the ?-exponential; see Figure 7.
Therefore, we get (37) with HJ action (32), putting g = eT , and with no O(~)
corrections. The partition half-density is then more naturally expressed in group
variables as in Remark 11.6. We get

(109) ẐI(qa, ca, p
b, cb; g, g

+) = e
i
~ Ŝ

f
HJ(qa,p

b,g) e−
i
~ 〈(delg)∗g+,ca−Ad−1

g cb〉 µG
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, , ,pb
TT

qa pb
TTT

qa
T T T T T T T

Figure 7. Biaffine case

= e−
i
~ (pbR−1

g qa+pbR−1
g Φ(g)+Ψ(g)qa+WZW(g)+〈(delg)∗g+,ca−Ad−1

g cb〉) µG.

In the particular case of the adjoint representation, using the results of Example 4.8,
we may also write

ẐI(qa, ca, q̄
b, cb; g, g

+) =

= e−
i
~ (〈q̄b,g−1qag〉+〈q̄b,g−1v(g)〉+〈v̄(g)g−1,qa〉+WZW(g)+〈(delg)∗g+,ca−Ad−1

g cb〉) µG

with the WZW term as in (36). This result is the prototype for nonabelian Chern–
Simons theory, see [21, Sections 5.3 and 5.4]. Also in this case we may integrate
over the residual fields, now with the gauge fixing g+ = 0, as in (107). We get

ZLI (qa, q̄
b) =

∫
G

e−
i
~ (〈q̄b,g−1qag〉+〈q̄b,g−1v(g)〉+〈v̄(g)g−1,qa〉+WZW(g)〉) dµG.

11.4. Gluing. Partition functions may be composed as described in Section 9.2.8.
Here we are interested in composing a partition function from (qa, ca) to (p1, c1) with
a partition function from (p1, c1) to (q2, c2) with a partition function from (q2, c2)
to (pb, bb), where (p1, c1) and (q2, c2) are some intermediate boundary fields. The
first partition function belongs to Case I and the last to Case II. The intermediate
one will be discussed below. The result will be a partition function from (qa, ca) to
(pb, bb), so of type II. See Figure 8.

(qa, ca) (pb, bb)Znew
II

=
(qa, ca) (p1, c1)ZI (q2, c2)ZL

triv

I’ (pb, bb)ZII

Figure 8. Composition of the partition function Znew
II

The intermediate partition function can be computed along the lines of Case I,
with the only difference that we now fix p at the initial endpoint and q at the final
one (instead of the other way around). We are actually interested in the version
where we integrate out the residual fields, as we did in Remark 11.5 for Case I. The
analogue of (105) is now

(110) ZL
triv

I’ (pa, ca, qb, cb) = e
i
~p
a
i q
i
b δ(cb − ca),

and we refer to this as Case I’, in the trivial gauge fixing.
We now proceed to the computation of the “new” version of Case II as

Znew
II (qa, ca, p

b, bb;T, T+) :=

∫
ZI(qa, ca, p

1, c1;T, T+)

ZL
triv

I’ (p1, c1, q2, c2)ZII(q2, c2, p
b, bb)

dnp1 dnq2

(2π~)n
dkc1 d

kc2(−i~)k,

where n is the dimension of the target configuration space, k is the dimension
of the Lie algebra, and we have conveniently normalized the measure. A simple
computation yields
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Znew
II (qa, ca, p

b, bb;T, T+) = e−
i
~p
b
iq
i
a e
− i

~ 〈H,T 〉
?

e
i
~ 〈T

+,F+(adT )ca〉 eW(T ) δ(bb + F−(adT )∗T+).

If we now reduce it using the “trivial” gauge-fixing lagrangian {T = 0}, we get
exactly ZII as in (94).

If we instead choose the gauge-fixing lagrangian {T+ = 0}, possibly passing to
group variables, typically we get a less trivial, nonequivalent result.

This shows that the results of Section 11.1 actually correspond to choosing a
somewhat trivial gauge fixing, but that more interesting results can be obtained
also in this case. We saw in Digression 11.1 that just deforming the gauge fixing,
picking e different from zero, does not change the result (in ∆Ω-cohomology). To
get interesting results, we should actually split the space Y as Y1 ⊕ Y2, make (the
analogue of) gauge fixing (92) and then choose a nontrivial gauge fixing on Y1. To
get a glimpse of (the outcome of) this procedure, take the formula that defined
Znew

II but now without integrating over c1. We get

Z̃new
II (qa, ca, p

b, bb;T, T+, c1) = e−
i
~p
b
iq
i
a e
− i

~ 〈H,T 〉
?

e
i
~ 〈T

+,F−(adT )c1+F+(adT )ca〉 eW(T ) e
i
~ 〈b

b,c1〉.

We should view this as a BV pushforward, where we have set to zero the momenta
c+1 of c1. The residual fields T, T+, c1, c

+
1 arise as part of the fields e, e+, c, c+.

Remark 11.9. The above discussion shows that leaving some residual fields is im-
portant not to end up with a trivial answer. It moreover teaches us that, in gluing
several intervals together, it is enough to retain residual fields in the partition func-
tion associated to one interval, whereas on each of the others we can safely consider
a fully reduced, “trivial” partition function. Similar considerations were presented
in [36, Remark 3.13].

11.5. Quantum mechanics. The system described in Section 5.1 is a particular
case of what we have considered above. The only, notational, difference is that we
have an additional position variable t and its momentum E; moreover, they appear
in the action with an extra minus sign. Since there is a single hamiltonian, H −E,
we are in the abelian case of (103). This taken into account, we get

ZQM
I (qa, ta, ca, p

b, Eb, cb;T, T
+) =

= e
i
~ (Ebta−pbiq

i
a) e
− i

~T (H−E)
? (pb, Eb, qa, ta) e

i
~T

+ (cb−ca).

Since E commutes with the (p, q) variables and H does not depend on t, we actually
have

e
− i

~T (H−E)
? (pb, Eb, qa, ta) = e

i
~TE

b

e
− i

~TH
? (pb, qa),

so

ZQM
I (qa, ta, ca, p

b, Eb, cb;T, T
+) = e−

i
~p
b
iq
i
a e

i
~E

b(ta+T ) e
− i

~TH
? (pb, qa) e

i
~T

+ (cb−ca),

which is the quantum version of (39).
We are also interested in the partition function from (qa, ta, ca) to (qb, tb, cb).

We can obtain it, following the strategy of Section 11.4, by composing a partition
function from (qa, ta, ca) to (p1, E1, c1) with a partition function from (p1, E1, c1)

to (qb, tb, cb). The first is Case I, ZQM
I , with a relabeling of the endpoint variables.



CONSTRAINTS, HAMILTON–JACOBI, QUANTIZATION 71

The second is of type I’, which again we compute with trivial gauge fixing as in
(110):

(111) ZQM,Ltriv

I’ (pa, Ea, ca, qb, tb, cb) = e
i
~p
a
i q
i
b e−

i
~E

atb δ(cb − ca).

We then get

Z̃QM(qa, ta, ca, qb, tb, cb;T, T
+) :=

∫
ZQM

I (qa, ta, ca, p
1, E1, c1;T, T+)

ZQM,Ltriv

I’ (p1, E1, c1, qb, tb, cb)
dnp1

(2π~)n
dE1

2π~
dc1,

that is,

Z̃QM(qa, ta, ca, qb, tb, cb;T, T
+) =

∫
e

i
~p

1
i (q

i
b−q

i
a) e
− i

~TH
? (p1, qa)

e
i
~T

+ (cb−ca) δ(T + ta − tb)
dnp1

(2π~)n
.

In this case, using the gauge-fixing lagrangian L = {T+ = 0},

ZQM(qa, ta, qb, tb) :=

∫
Z̃QM(qa, ta, ca, qb, tb, cb;T, 0) dT,

yields the interesting result

ZQM(qa, ta, qb, tb) =

∫
e

i
~p

1
i (q

i
b−q

i
a) e
− i

~ (tb−ta)H
? (p1, qa)

dnp1

(2π~)n
,

which is the quantum version of (40). To see this more clearly, observe that we
have the relation

〈p|e− i
~TĤ |q〉 = e−

i
~piq

i

e
− i

~TH
? (p, q)

between the operator formalism and the ?-product formalism. Therefore,

ZQM(qa, ta, qb, tb) =

∫
e

i
~p

1
i q
i
b 〈p1|e− i

~ (tb−ta)Ĥ |qa〉
dnp1

(2π~)n
= 〈qb|e−

i
~ (tb−ta)Ĥ |qa〉.

Therefore, we eventually get the standard quantum mechanics evolution with hamil-
tonian Ĥ and time lapse tb − ta. In our picture, however, the original theory was
parametrization invariant and (tb, ta) are endpoint variables (and not fixed time
endpoints).

11.6. The quantum relativistic particle. We can adapt the discussion of Sec-
tion 11.5 to the case of the relativistic particle introduced in Section 5.2. Again
we have an additional position variable t and its momentum E, and we are in the
abelian case, now with hamiltonian 1

2 (p2 +m2−E2). Therefore, we have, see (103),

ZQRP
I (qa, ta, ca, p

b, Eb, cb;T, T
+) =

= e
i
~ (Ebta−pbiq

i
a) e
− i

~
T
2 (p2+m2−E2)

? (pb, Eb, qa, ta) e
i
~T

+ (cb−ca).

The simplification now is that the hamiltonian only depends on momentum vari-
ables, so its ?-exponential is just the usual exponential, and we get

ZQRP
I (qa, ta, ca, p

b, Eb, cb;T, T
+) = e

i
~ (Ebta−pbiq

i
a) e−

i
~
T
2 ((pb)2+m2−(Eb)2) e

i
~T

+ (cb−ca).

This shows that the physical part of the partition function, in this polarization, is
exactly the exponential of i/~ times the HJ action (43) with no quantum corrections.
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We can obtain the partition function from (qa, ta, ca) to (qb, tb, cb) exactly as in
Section 11.5:

Z̃QRP(qa, ta, ca, qb, tb, cb;T, T
+) :=

∫
ZQRP

I (qa, ta, ca, p
1, E1, c1;T, T+)

ZQRP,Ltriv

I’ (p1, E1, c1, qb, tb, cb)
dnp1

(2π~)n
dE1

2π~
dc1,

with ZQRP,Ltriv

I’ = ZQM,Ltriv

I’ , see (111). We get

Z̃QRP(qa, ta, ca, qb, tb, cb;T, T
+) =

eiπ4 (1−n)

(2π~T )
n+1

2

e
i
~

(
(∆q)2−(∆t)2

2T − 1
2m

2T

)
e

i
~T

+ (cb−ca),

with ∆q = qb − qa and ∆t = tb − ta. Again we have that, apart from the prefac-

tor T−
n+1

2 , the physical part of the partition function, in this polarization, is the
exponential of i/~ times the HJ action (44).

Finally, we may integrate over the residual fields using the gauge-fixing la-
grangian L = {T+ = 0}. This yields

ZQRP(qa, ta, qb, tb) =

∫ ∞
−∞

eiπ4 (1−n)

(2π~T )
n+1

2

e
i
~

(
(∆q)2−(∆t)2

2T − 1
2m

2T

)
dT.

To make the integral well-defined, we actually have to deform the integration con-
tour, the real line, to avoid the singularity at T = 0: namely, we replace the interval
(−ε, ε) with a half circle of radius ε centered at zero in the upper or in the lower
half plane, and take the limit for ε→ 0 after integrating. We distinguish two cases:

(1) In the timelike case (∆t)2 > (∆q)2, we have to pick the half circle in
the upper half plane to tame the singularity of 1

T in the exponent. The

semiclassical asymptotics of ZQRP can be computed by the saddle-point
approximation around the two critical points of the exponent. Each expan-
sion gives semiclassically the exponential of i/~ times one of the two HJ
actions in (45), but now there are also quantum corrections.

(2) In the spacelike case (∆q)2 > (∆t)2, we have on the other hand to pick
the half circle in the lower half plane to tame the singularity of 1

T in the

exponent. In this case, we get ZQRP = 0, since we can close the contour
with a half circle at infinity in the lower half plane, on which the integrand
is holomorphic. (Note that we cannot use this argument in the timelike
case, for such a contour would bound T = 0. On the other hand, we cannot
pick a half circle at infinity in the upper half plane because of the m2T
term in the exponent.)

Also note that ZQRP satisfies the mQME, which, in this case, is equivalent to saying
that it satisfies the Klein–Gordon equation with mass square m2 both with respect
to (qa, ta) and with respect to (qb, tb).

12. BV-BFV quantization with nonlinear polarizations

In this section we discuss quantization with a nonlinear change of polarization
at the final endpoint, still with finite-dimensional target. As in Remark 2.5, we
assume we have a generating function f(q,Q) such that

pidq
i = PidQ

i + df.
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We then assume that the coordinates in Ba are (qa, ca) and the coordinates in Bb
are (Qb, cb). This is then a generalization of Case I, according to the terminology
at the beginning of Section 10. We will refer to it as INL (NL for nonlinear). Our
goal is to compute the corresponding partition function ZINL. Even though this
can be computed directly generalizing what we did in Section 11.3, we will present
a simpler computation that follows the ideas of Section 11.4.

We start introducing some notation. If Hα(p, q) is one of the constraints (or,
more generally, an arbitrary function of the p, q variables), we write

(112) H̃α(P,Q) := Hα(p(P,Q), q(P,Q)),

where on the right hand side we used the symplectomorphism induced by the gener-
ating function f . It turns out, as briefly announced in Section 9.2.6 (and proved in
Appendix B) that the construction of a boundary operator Ω so that the partition
function satisfies the mQME is possible if we make the following assumption.

Assumption 12.1. We assume

(113) Hα

(
i~
∂

∂q
, q

)
e−

i
~ f = H̃α

(
−i~

∂

∂Q
,Q

)
e−

i
~ f , ∀α.

Remark 12.2. The assumption is automatically satisfied if all the hamiltonians
Hα are linear in the p variables and all the hamiltonians H̃α are linear in the P
variables. Note that these are precisely the quantizability conditions in geometric
quantization. This case is relevant for 7D Chern–Simons theory as in [34].

That this is a sufficient condition follows from a delicate analysis of the Feynman
diagrams near the boundary, generalizing [19, Section 4.2]. We will perform this
analysis in Appendix B. As for this section we will simply check that, under this
assumption, the partition functions we construct indeed satisfy the mQME with Ω
constructed as in Section 9.2.6.

A minimalistic reading of this section, skipping the intricacies of Appendix B,
can of course just be that we produce a solution of the mQME, which is enough for
the applications. We stress here that Assumption 12.1 is satisfied by the important
example of Section 7.6. Therefore, what we dicuss here is a toy model for the
quantization of [34], to which we will return in [21].

12.1. Boundary structure. In the present Case INL, we use f to change the
potential αBFV to

αfBFV = αBFV + df(qb, Qb) = pai dqia + baαdcαa − P bi dQib − bbαdcαb .

Following the recipe (87), we get

Ωa = cαaHα

(
i~

∂

∂qa
, qa

)
− i~

2
fγαβ c

α
a c
β
a

∂

∂cγa
,

Ωb = cαb H̃α

(
−i~

∂

∂Qb
, Qb

)
+

i~
2
fγαβ c

α
b c
β
b

∂

∂cγb
.

The first consequence of Assumption 12.1 is that Ωa and Ωb square to zero, so
Ω2 = 0. In fact, since the hamiltonians are linear in the momentum variables, their
?-commutators, in the induced ?-products, are the same as i~ times their Poisson
brackets, so (89) is automatically satisfied (for the Hs and for the H̃s).
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12.2. Gluing. As announced, we will compute ZINL via a gluing procedure, simi-
larly to what we did in Section 11.4. Namely, we will compose a partition function
from (qa, ca) to (p1, c1) with a partition function from (p1, c1) to (q2, b

2) with a
partition function from (q2, b

2) to (Qb, cb), where (p1, c1) and (q2, b
2) are some in-

termediate boundary fields. See Figure 9. The first partition function belongs to
Case I. The second, which we will denote as Case II’, can be computed along the
lines of Case II with the only difference that we now fix p at the initial endpoint
and q at the final one (instead of the other way around). The analogue of (94) is

ZII’(p
a, ca, qb, b

b) = e
i
~ (pai q

i
b+b

b
αc
α
a ).

The third partition function belongs to the analogue of Case III with Qb instead of
pb. We will call it Case IIINL and compute it in Section 12.3. Equipped with all
this, we have

(114) ZINL(qa, ca, Qb, cb;T, T
+) =

∫
ZI(qa, ca, p

1, c1;T, T+)

ZII’(p
1, c1, q2, b

2)ZIIINL(q2, b
2, Qb, cb)

dnp1 dnq2

(2π~)n
dkc1 d

kb2(−i~)k,

where again n is the dimension of the target configuration space, k is the dimension
of the Lie algebra, and we have conveniently normalized the measure.

(qa, ca) (Qb, cb)ZINL

=
(qa, ca) (p1, c1)ZI (q2, b

2)ZII’ (Qb, cb)ZIIINL

Figure 9. Composition of the partition function ZINL

As a composition of partition functions that satisfy the mQME, ZINL satisfies it
as well.

12.3. The Case IIINL. In this case, we have to use the function f̌(ba, ca, p
b, qb) =

f(qb, Q(pb, qb))− cαa baα to modify the potential

αf̌BFV = αBFV + df̌(qb, Qb) = pai dqia + cαadbaα − P bi dQib − bbαdcαb .

Following again the recipe (87), we get

Ωa = i~Hα

(
i~

∂

∂qa
, qa

)
∂

∂baα
+

~2

2
fγαβ b

a
γ

∂2

∂baα∂b
a
β

,(115a)

Ωb = cαb H̃α

(
−i~

∂

∂Qb
, Qb

)
+

i~
2
fγαβ c

α
b c
β
b

∂

∂cγb
,(115b)

and we clearly have Ω2 = 0 (again by Assumption 12.1). The BV action for the
given boundary polarizations is then

Sf̌BV = SBV − f(q(tb), Q(p(tb), q(tb)))− cα(ta)e+
α (ta).

Next we choose the discontinuous splitting of the fields e+, c as in (96) with
boundary conditions (97). For the p, q fields we choose instead

q(t) =

{
qa t = ta

q̂(t) t > ta
, p(t) =

{
p̂(t) t < tb

p0 t = tb
,
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with

(116) p0 :=
∂f

∂q
(q̂(tb), Qb)

and boundary conditions

q̂(ta) = 0, p̂(tb) = 0.

The BV action adapted to this splitting is then the same as (98) with only the first
term changed:

S̃f̌BV =− f(q̂(tb), Qb)− ê+
α (tb)c

α
b − p̂i(ta)qia + ĉα(ta)baα

+

∫ tb

ta

(
p̂idq̂

i − ê+
αdĉα − êαHα(p̂, q̂)

+ ĉα
(
q̂+
i

∂Hα

∂pi
(p̂, q̂)− p̂i+

∂Hα

∂qi
(p̂, q̂)

)
− 1

2
fγαβ ĉ

+
γ ĉ

αĉβ + fγαβ ê
+
γ ĉ

αêβ
)
.

We pick again the gauge-fixing lagrangian (92). This produces the same p̂q̂ and
ê+ĉ propagators as in Case III (since the hat fields here and there have exactly the
same boundary conditions), and we can then easily compute

ZIIINL(qa, b
a, Qb, cb) = e−

i
~ (f(qa,Qb)−cαb b

a
α).

One can immediately check that ΩZIIINL = 0. Assumption 12.1 plays here a fun-
damental role.

Remark 12.3 (mQME vs unitarity). The physical part of the partition function,

e−
i
~ f(qa,Qb), is exactly the exponential of the HJ action (6) as in (10). This is

not unexpected because, since the physical part decouples from the ghost part, in
the physical part we can go back to the continuous splitting, as in Example 2.12.
Note that the partition function we get is not unitary, as it misses the corrections
discussed in Digression 2.13. In principle, we might add such corrections—e.g., as
in (12)—if possible, but this would spoil the mQME unless we were able to find

corrections to the Hαs and H̃αs that satisfy (113) with the corrected f . There is
no guarantee that such corrections exist. This is the price we have to pay in the
quantum BV-BFV formalism in order to get a solution to the mQME. The mQME
is fundamental to ensure that the result of a composition, as in the procedure of
Section 12.2, also solves the mQME. As a consequence, if there is a conflict, we
prefer to have ZINL solve the mQME at the expense of not being unitary. We wil
return to this in Remark 12.7.

12.4. The computation of ZINL. We can now use (114) to compute

ZINL(qa, ca, Qb, cb;T, T
+) =

∫
e

i
~ (p1

i (q
i
2−q

i
a)−f(q2,Qb))e

− i
~ 〈H,T 〉

? (p1, qa)
dnp1 dnq2

(2π~)n

e
i
~ 〈T

+,F−(adT )cb+F+(adT )ca〉 eW(T ).

Remark 12.4. If f(q,Q) = Qiq
i, then one easily sees that ZINL = ZI with pb = Qb.

Remark 12.5. At the leading order in ~, the physical part of ZI is the exponential
of i/~ times the HJ action, see (101). The integral in the p1, q2 variables then



76 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

produces, also at the leading order, the composition of the generating functions f
and ŜHJ. Therefore, we have

(117) Zphys
INL (qa, Qb;T ) = e

i
~ (ŜfHJ(qa,Qb,e

T )+O(~)).

Example 12.6 (Linear case). In the case of linear constraints of Example 4.3,
there are no corrections in the physical part to the HJ action, see Example 11.7.
Moreover, since the HJ action (24) is at most linear in the momenta, the integral
in the p1, q2 variables produces exactly the composition of the generating functions
f and ŜHJ. Finally, the theory is abelian in this case. Therefore, we get

ZINL(qa, ca, Qb, cb;T, T
+) = e−

i
~ (f(qa+Tαvα,Qb)+T

αwα,iq
i
a+ 1

2T
αTβAαβ+T+

α (cαa−c
α
b ))

= e
i
~ Ŝ

f
HJ(qa,Qb;T )e−

i
~T

+
α (cαa−c

α
b ),

(118)

with ŜfHJ as in (25). This result is the prototype for abelian 7D Chern–Simons
theory with nonlinear polarization, see [21, Sections 6], i.e., for the quantization of
[34].

Remark 12.7. As a consequence of Remark 12.3, the partition function ZINL is in
general nonunitary if we consider a nonlinear change of polarization. On the other
hand, it satisfies the mQME. An application of this, following Section 9.2.8, consists
in composing ZINL with an Ω-closed state ψ in the final variables (Qb, cb). The result
is a state ψ′ in the initial variables (qa, ca) and in the residual fields (T, T+) which
satisfies the mQME. The state ψ′ will not be unitarily equivalent to the state ψ in
general, but the idea is that we introduce the state ψ just to produce the solution
ψ′ of the mQME. In the abelian case, for ψ we may take an arbitrary function of
Qb times a delta function of all the ghost variables. This is automatically Ω closed.
As an application, in [21] we will use the state (68) (times the delta function of the
ghosts) as the final state ψ. This will show that the result of [34], which connects
the Kodaira–Spencer [39] action [8] to 7D Chern–Simons theory (with the nonlinear
Hitchin polarization [35] at the final endmanifold), survives at the quantum level
with no corrections.

Appendix A. Symplectic geometry and generating functions

In this appendix we recall some basic facts on symplectic geometry (also in the
infinite-dimensional case) and on (generalized) generating functions for lagrangian
submanifolds (and canonical relations). Our main reference will be [9]. For the
infinite-dimensional case, we will also follow [13].

We will discuss first the linear case, where actually most of the subtleties are
already present, and then briefly review the extension to manifolds.

A.1. Symplectic spaces. A symplectic form on a vector space V is a skew-
symmetric bilinear form ω with the property of being nondegenerate:

(119) ω(v, w) = 0 ∀w ∈ V ⇒ v = 0.

The pair (V, ω) is called a symplectic space.
A symplectomorphism between symplectic spaces (V, ωV ) and (W,ωW ) is an

isomorphism φ : V →W such that

(120) ωW (φ(v1), φ(v2)) = ωV (v1, v2), ∀v1, v2 ∈ V.
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Remark A.1. Note that to a bilinear form ω on V one can associate the linear map
ω] : V → V ∗,

ω](v)(w) := ω(v, w), v, w ∈ V.
The nondegeneracy of ω is equivalent to the injectivity of ω]. If V is finite-
dimensional, then this implies that ω] is actually a bijection, but this is not guar-
anteed in the infinite-dimensional case.

Remark A.2. In the infinite-dimensional case, the above condition is often referred
to as weak nondegeneracy and ω is called a weak symplectic form, reserving the
term symplectic form to the case when ω] is a bijection. In this paper we will only
consider weak symplectic forms, and we will just call them symplectic forms.

Example A.3. One of the infinite-dimensional examples for this paper is the sym-
plectic space associated to abelian Chern–Simons theory. Let Σ be a closed, oriented
2(2k + 1)-manifold. Let V = Ω2k+1(Σ). Then the bilinear form

ω(α, β) =

∫
Σ

α ∧ β, α, β ∈ V,

is skew-symmetric and nondegenerate, hence symplectic.

A.1.1. Special subspaces. Given a subspace W of V , one defines its orthogonal space
as

W⊥ := {v ∈ V : ω(v, w) = 0, ∀w ∈W}.
Note that V ⊥ = {0}.

Lemma A.4. Let W and Z be two subspaces. Then

(1) W ⊆ Z ⇒ Z⊥ ⊆W⊥;
(2) (W + Z)⊥ = W⊥ ∩ Z⊥.
(3) W ⊆W⊥⊥ and W⊥ = W⊥⊥⊥.
(4) If V is finite-dimensional, then dimV = dimW +dimW⊥ and W = W⊥⊥.

Proof. For (1), let v ∈ Z⊥. By definition ω(v, z) = 0 ∀z ∈ Z. A fortiori ω(v, w) =
0 ∀w ∈W . So v ∈W⊥.

As for (2), observe that v ∈ (W + Z)⊥ if and only if ω(v, w + z) = 0 ∀w ∈
W, ∀z ∈ Z. In particular, taking either w or z equal to zero, we see that v belongs
to both W⊥ and Z⊥. On the other hand, if v ∈ W⊥ ∩ Z⊥, by linearity we get
ω(v, w + z) = ω(v, w) + ω(v, z) = 0 ∀w ∈W, ∀z ∈ Z; so v ∈ (W + Z)⊥.

As for (3), let w ∈ W . Then ω(w, v) = −ω(v, w) = 0 ∀v ∈ W⊥. Hence,
w ∈W⊥⊥. For the second equation, taking orthogonals in the first yields W⊥⊥⊥ ⊆
W⊥. On the other hand, applying the first equation to the subspace W⊥ yields
W⊥ ⊆W⊥⊥⊥.

In finite dimensions, ω yields an isomorphism V/W⊥ →W ∗, so dimV−dimW⊥ =
dimW ∗ = dimW . Moreover,

dimW⊥⊥ = dimV − dimW⊥ = dimV − (dimV − dimW ) = dimW.

�

A subspace W is called isotropic if W ⊆ W⊥, coisotropic if W⊥ ⊆ W and
lagrangian if W = W⊥.

Note that a subspace W is isotropic if and only if ω(w1, w2) = 0 for all w1, w2 ∈
W and that a subspace is lagrangian if and only if it is at the same time isotropic
and coisotropic.
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In the finite-dimensional case, L is lagrangian if and only if L is isotropic and
2 dimL = dimV . Finally, an isotropic subspace L is called split lagrangian if it
admits an isotropic complement. (For more on lagrangian and split lagrangian
subspaces, we refer to [13]).

Lemma A.5.

split lagrangian =⇒ lagrangian

In the finite-dimensional case, the two concepts are equivalent.

Proof. Suppose that L is split lagrangian. Then we can find an isotropic subspace
W such that V = L ⊕W . In particular, V = L + W . By (2) in Lemma A.4, we
then have L⊥ ∩W⊥ = {0}. Since W ⊆ W⊥, we also have L⊥ ∩W = {0}, which
implies L⊥ ⊆ L. Therefore, L is lagrangian.

Suppose on the other hand that L is lagrangian and V is finite-dimensional.
Suppose W is isotropic but not lagrangian and L ∩ W = {0}. Observe that by
dimensional reasons, L + W cannot be the whole V . Therefore (L + W )⊥ cannot
be {0}. Using (2) in Lemma A.4, we then have W⊥ ∩ L 6= {0}.

We now want to show that there is a nonzero vector v ∈W⊥ that does not belong
to L nor to W . In fact, if this were not the case, we would have W⊥ ⊆ W + L.
By (1) and (2) in Lemma A.4, we would then have W ⊇ W⊥ ∩ L⊥ = W⊥ ∩ L.
Intersecting with L, we would conclude {0} = W⊥ ∩ L, which is a contradiction.

Let finally I be the set of isotropic subspaces of V whose intersection with L
is {0}. Note that {0} ∈ I. If W ∈ I is not lagrangian, by the above argument
we can find a nonzero vector v ∈ W⊥ that does not belong to L nor to W . But
then W ⊕ span v is also in I and of dimension strictly higher than that of W .
After finitely many steps, we end up with a W ∈ I which is lagrangian. But since
dimL = dimW = dimV/2, we see that W is a complement to L. �

Remark A.6 (Split symplectic spaces). For applications in field theory, we will only
consider symplectic spaces that admit split lagrangian subspaces. In particular, we
fix a lagrangian subspace W and a lagrangian complement W ′ and write

(121) V = W ⊕W ′.

We will call this a split symplectic space.
Note that in the finite-dimensional case, ω] establishes an isomorphism between

W ′ and W ∗, which in turns establishes a symplectomorphism between V and W ⊕
W ∗ with the canonical symplectic form

(122) ω(v ⊕ a,w ⊕ b) = b(v)− a(w), v, w ∈W, a, b ∈W ∗.

In the infinite-dimensional case, ω]|W ′ : W ′ → W ∗ is only injective. Still, we
may regard W ⊕W ′ as a symplectic subspace of W ⊕W ∗, which is what we will
do in the following.

Example A.7. Consider Example A.3 with k = 0. If we work with complex
valued forms, then we have the splitting of V = Ω1(Σ)⊗ C into W = Ω1,0(Σ) and
W ′ = Ω0,1(Σ), with respect to some complex structure on Σ.

A.1.2. Generating functions. Assume we have a split symplectic space as in (121).
Consider the graph of a linear map φ : W →W ′:

L := {w ⊕ φ(w), w ∈W} ⊂ V.
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Since
ω(w1 ⊕ φ(w1), w2 ⊕ φ(w2)) = ω(w1, φ(w2)) + ω(φ(w1), w2),

we see that L is isotropic, hence split lagrangian because W ′ is an isotropic com-
plement to it, if and only if

ω(w1, φ(w2)) = −ω(φ(w1), w2), ∀w1, w2 ∈W.
In this case, we can use φ and ω to define a quadratic form on W :

ψ(w) :=
1

2
ω(w, φ(w)).

Note then that
δψ(w) = ω(φ(w), δw) = ω](φ(w))(δw),

so
δψ = ω] ◦ φ : W →W ∗

as a one-form on W . Since ω] is injective, it is possible to recover φ out of δψ.
Vice versa, suppose we have a splitting V = W ⊕ W ′, already realized as a

subspace of W ⊕W ∗ with canonical symplectic structure, and a quadratic form ψ
on W . If δψ(W ) ⊆ W ′, then the graph Lψ of δψ is a split lagrangian subspace of
V and ψ is called a generating function for it.

Example A.8. Let I be the closed interval [−1/2, 1/2] and V := C0(I) ⊕ C0(I)
as a real vector space. Define

ω(f ⊕ g, h⊕ k) =

∫
I

(fk − gh) dx.

Then (V, ω) is split symplectic with W = W ′ = C0(I) (more properly W = C0(I)⊕
{0} and W ′ = {0} ⊕C0(I)). The quadratic form ψ(f) = 1

2

∫
I
f2 dx has differential

δfψ = f , so it is a generating function for the diagonal Lψ = {f ⊕ f, f ∈ C0(I)}.
On the other hand, the quadratic form ψ̃(f) = 1

2f(0)2, f ∈ W , has differential

δf ψ̃ = f(0)δ, with δ the delta function at 0, which is an element of W ∗ but not of
W ′, so it is not an allowed generating function.

A.1.3. Symplectic reduction. We will only consider the particular case of coisotropic
reduction, which is of interest for this paper.

Let C be a coisotropic subspace of (V, ω). Then the kernel of the restriction of
ω to C is precisely the orthogonal subspace C⊥. If follows that C := C/C⊥, the
symplectic reduction of C, is endowed with the symplectic form

(123) ω([v], [w]) = ω(v, w), v ∈ [v], w ∈ [w].

Denote by π the canonical projection C → C. If L is a subspace of V , we set
L := π(L ∩ C) ⊆ C.

Lemma A.9 (Relative linear reduction). If L is isotropic in V , then L is isotropic
in C. In the finite-dimensional case, if L is lagrangian in V , then L is lagrangian
in C.

Proof. The first statement may be easily proved observing that, if [v] and [w] are
in L, then every v ∈ [v] and every w ∈ [w] lie in L ∩ C and hence in L. Therefore,
ω(v, w) = 0 and, by (123), we get ω([v], [w]) = 0, so L is isotropic.

A different proof, which also leads to the second statement, is based on the
following:
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π−1(L⊥) = (π−1(L))⊥ ∩ C = (L ∩ C + C⊥)⊥ ∩ C =

= (L ∩ C)⊥ ∩ C ⊃ (L⊥ + C⊥) ∩ C = L⊥ ∩ C + C⊥.

In the last equality we have used the obvious fact that (A+B)∩C = A∩C+B for any

three subspaces A, B, and C with B ⊂ C. Thus, L⊥ ⊃ π(L⊥∩C) ⊃ π(L∩C) = L.
All inclusions are equalities under the assumptions that V is finite-dimensional and
L is lagrangian. �

In infinite dimensions, it may happen that L is lagrangian but L is not:

Example A.10. Consider the symplectic space of Example A.8 and

C := {f ⊕ g ∈ V : g(0) = 0}.

One has that C⊥ = {0}, so C is coisotropic and C = C. Let

L :=

{
f ⊕ g ∈ V :

∫
I

f dx = 0, g constant

}
.

One can easily show that L is lagrangian, actually split lagrangian, in V , but L is
not lagrangian in C.

Remark A.11 (Generalized generating functions in the linear case). Suppose we
have a sum V ⊕ Z of symplectic spaces with Z = B ⊕ B′ split. First observe that
C := V ⊕B⊕{0} is coisotropic in V ⊕Z with C⊥ = {0}⊕B⊕{0}, so C = V . Now
assume that also V = W ⊕W ′ is split and rearrange V ⊕Z as the split symplectic
space (W ⊕ B) ⊕ (W ′ ⊕ B′). Let Lψ be the split lagrangian subspace of V ⊕ Z
with generating function a quadratic function ψ on W ⊕ B. It then follows that
Lψ is isotropic in V . If it is split lagrangian (as it automatically happens in the
finite-dimensional case), then one says that ψ is a generalized generating function
for Lψ, depending on extra parameters in B.

Example A.12. Consider V = W ⊕W ∗ and Z = B ⊕ B∗ with W and B finite-
dimensional. Let F : W → B∗ be a linear map and let F ∗ : B → W ∗ denote its
dual. Then the quadratic form ψ(w⊕b) = (Fw, b), with ( , ) denoting the pairing of
a space with its dual, is a generalized generating function for Lψ = kerF ⊕ imF ∗ =

kerF ⊕ (kerF )0, with 0 denoting the annihilator space. Unless F is the zero map,
Lψ cannot be generated by a function on W only, so extra parameters are indeed
necessary.

Example A.13. The above example may be extended to the infinite-dimensional
case as follows. Let F : W → B′ ⊆ B∗ and F ′ : B → W ′ ⊆ W ∗ be linear maps
such that ιW ′F

′ = (ιB′F )∗ι, where ιB′ : B
′ → B∗ and ιW ′ : W

′ → W ∗ are the
given inclusions and ι : B → B∗∗ is the canonical inclusion. Then the quadratic
form ψ(w⊕ b) = (ιB′Fw, b) = (ιW ′F

′b, w) is a generating function for a lagrangian
subspace Lψ of V ⊕ Z. The corresponding isotropic subspace Lψ of V is kerF ⊕
imF ′.

Example A.14. A simple illustration of the last example is the following. Let Σ be
a closed, oriented two-manifold and let W = W ′ = Ω1(Σ), B = Ω0(Σ), B′ = Ω2(Σ),
with symplectic forms induced by integration over Σ:

ω(α⊕ α′, β ⊕ β′) =

∫
Σ

(α ∧ β′ − β ∧ α′).
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The linear maps F = d: Ω1(Σ) → Ω2(Σ) and F ′ = d: Ω0(Σ) → Ω1(Σ) satisfy the
assumptions, so we have the generalized generating function ψ(w⊕ b) =

∫
Σ

dw ∧ b,
with w ∈ Ω1(Σ) and b ∈ Ω0(Σ). We get Lψ = Ω1

cl(Σ)⊕Ω1
ex(Σ), where the subscripts

denote closed and exact forms. In this example Lψ is actually a split lagrangian.
This follows from the Hodge decomposition theorem. In fact, putting a metric on
Σ one can define the Hodge ∗ operator and the codifferential d∗. As an isotropic
complement of Lψ one can then take Ω1

coex(Σ)⊕ Ω1
cocl(Σ).

A.1.4. Canonical relations. Canonical relations are a generalization of symplecto-
morphisms.

Recall that a linear map φ between (V, ωV ) and (W,ωW ) is called a symplecto-
morphism if it is an isomorphism and respects the symplectic forms as in (120). It
follows that the graph of φ,

Lφ = {v ⊕ φ(v), v ∈ V },
is a split lagrangian subspace of V̄ ⊕W , where V̄ denotes V with symplectic form
−ωV . In fact, we have

ωV̄⊕W (v1 ⊕ φ(v1), v2 ⊕ φ(v2)) = −ωV (v1, v2) + ωW (φ(v1), φ(v2)) = 0,

so Lφ is isotropic. Note that L−φ is also isotropic and, since φ is an isomorphism,
it is a complement to Lφ.

More generally, one calls any (split) lagrangian subspace L of V̄ ⊕W a (split)
canonical relation from V to W . One also writes

(124) L : V 9W.

If V = V1 ⊕ V2 and W = W1 ⊕W2 are split symplectic spaces, then a lagrangian
subspace L of V̄ ⊕W might have a (generalized) generating function ψ, a quadratic
form on V1 ⊕W1(⊕B), which is then called a (generalized) generating function for
the canonical relation L.

Here is an example of a canonical relation that is important for our applications:

Lemma A.15. Let C be a coisotropic subspace of V . Then the subspace LC :=
{(v, v′) ∈ C ⊕ C | v′ − v ∈ C⊥} is isotropic in V̄ ⊕ V . If V is finite-dimensional,
then L is lagrangian, hence a canonical relation from V to itself.

Proof. For v1, v2 ∈ C and w1, w2 ∈ C⊥ we have ω(v1 +w1, v2 +w2)−ω(v1, v2) = 0,
so LC is isotropic. If dimV = 2n and dimC = k, then dimLC = dimC+dimC⊥ =
k + (2n− k) = 2n, so 2 dimLC = dim(V̄ ⊕ V ). �

For an example where LC is not lagrangian, consider C as in Example A.10.
Since C⊥ = {0}, we have that LC = ∆C , the diagonal in C ⊕ C. On the other
hand, L⊥C = ∆V , the diagonal in V ⊕ V , which properly contains ∆C .

Another relation between canonical relations and coisotropic submanifolds is the
following result (observed in [18] in the context of field theory).

Lemma A.16. Let L be a lagrangian subspace of V̄ ⊕ V . Define C := π1(L) ⊆ V ,
with π1 the projection to the first summand. Then C is coisotropic.

Note that this result holds also in the infinite-dimensional case.

Proof. By definition we have that v belongs to C iff there is a w ∈ V such that
(v, w) belongs to L. Now let ṽ be in C⊥, i.e., ω(ṽ, v) = 0 ∀v ∈ C. This implies

ω(ṽ, v)− ω(0, w) = 0 ∀(v, w) ∈ L.
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Therefore, (ṽ, 0) ∈ L⊥ = L, which implies ṽ ∈ C. �

A.2. Symplectic manifolds. We now extend the above results to manifolds.

Definition A.17 (Symplectic manifolds). A symplectic form ω on a smooth man-
ifold M is a nondegenerate closed two-form on it. By nondegenerate we mean that
for each x ∈ M the bilinear form ωx on TxM satisfies (119). Note that, for each
x ∈M , the pair (TxM,ωx) is then a symplectic space. The pair (M,ω) is called a
symplectic manifold.

We allow M to be an infinite-dimensional manifold (for the examples in this
paper a Fréchet manifold). In almost all the examples of this paper the symplectic
manifold M is actually a vector space, but we also consider nonlinear maps and
nonlinear lagrangian submanifolds.

Definition A.18 (Symplectomorphisms). A symplectomorphism between sym-
plectic manifolds (M,ωM ) and (N,ωN ) is a diffeomorphism φ : M → N such that
φ∗ωN = ωM .

Definition A.19 (Special subspaces). A submanifold S of a symplectic manifold
M is called isotropic / coisotropic / lagrangian / split lagrangian if TxS is a subspace
of this class in TxM for every x ∈ S. Note that, as these concepts are defined in
terms of tangent spaces, they make sense both for embedded and for immersed
submanifolds. (Unless we explicitly say otherwise, by submanifold we then mean
an immersed submanifold.)

Definition A.20 (The characteristic distribution). The characteristic distribution
of a coisotropic submanifold C of M is the subbundle C⊥ := ∪x∈C(TxC)⊥ of
TC. It is a subbundle, hence a regular distribution, because it is the kernel of

ω]C : TC → T ∗C, where ωC is the restriction of the symplectic form to C.

Lemma A.21. Let C be a coisotropic submanifold of M . Then

(1) For every X ∈ Γ(C⊥), we have LX ωC = 0, where L denotes the Lie deriv-
ative;

(2) The characteristic distribution C⊥ is involutive.

Proof. By definition ιXωC = 0. Since dωC = 0, we get LX ωC = 0 by Cartan’s
magic formula.

Next suppose that Y is also a section of C⊥. By Cartan’s calculus we have

ι[Y,X]ωC = [ιY ,LX ]ωC ,

where we have also used the above statement. Therefore, [Y,X] ∈ Γ(C⊥). �

Remark A.22 (Split symplectic manifolds). We are now interested in the general-
ization of the concept of split symplectic space of Remark A.6: a split symplectic
manifold. In the finite-dimensional case, this is the notion of a cotangent bundle
T ∗M with its canonical symplectic form (this is the two-form which in local coordi-
nates qi for the base and pi for the fiber reads dpidq

i).54 In the infinite-dimensional

case, more generally, we consider subbundles T̃ ∗M of T ∗M with symplectic form
given by the restriction of the canonical symplectic form.

54More intrinsically, the canonical symplectic form is the differential of the canonical one-

form θ with θ(p,q)(v) := (p, d(p,q)π(v)), with q ∈ M and p ∈ T ∗qM , where π is the projection

T ∗M →M .
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Remark A.23 (Polarizations). A more flexible notion of splitting than that of Re-
mark A.22, which is used in the classical setting, is that of polarization, which
is used for geometric quantization. Namely, a (real) polarization on a symplectic
manifold M is an integrable smooth distribution D (i.e., a subbundle of TM) such
that Dx is split lagrangian in TxM for every x ∈ M . One also uses the notion of
complex polarization, which is an integrable subbundle D of the complexification
TM ⊗ C of the tangent bundle such that Dx is split lagrangian in TxM ⊗ C for
every x ∈M .

Remark A.24 (Generating functions). Let T̃ ∗M be a split symplectic manifold and
φ a section (in particular φ is a one-form on M). Its graph L is then lagrangian,
actually embedded split lagrangian, if and only if φ is closed. If φ = dψ, then ψ is
called a generating function for L, which we also denote as Lψ. Note that a function

ψ on M defines an embedded split lagrangian submanifold Lψ of T̃ ∗M under the
condition that dψ is a section of it.

Remark A.25 (Symplectic reduction). Next we consider symplectic reduction of
coisotropic submanifolds. If C is coisotropic in M , then its characteristic distribu-
tion C⊥ := ∪x∈C(TxC)⊥ is a regular involutive distribution on C by Lemma A.21
If C is defined by constraints, one can verify that the characteristic distribution is
spanned by the hamiltonian vector fields of the constraints (which therefore must
be in involution under the Poisson bracket).55 If M is a Banach manifold (e.g.,
it is finite-dimensional), then the characteristic distribution is also integrable. In
the Fréchet case, integrability is not guaranteed. Assuming that the characteristic
distribution is integrable, we denote by C its leaf space and by π : C → C the
canonical projection. If C is smooth, than it has a unique symplectic structure ω
such that π∗ω = ι∗Cω, with ιC : C → M the inclusion map. In particular, for each
x ∈ C, the symplectic form ωx is defined as in Section A.1.3.

Remark A.26 (Relative reduction). Assume C to be smooth. If L is an isotropic
submanifold of M and L := π(L ∩C) is a submanifold of C, then, by Lemma A.9,
L is an isotropic submanifold of C. If in addition M is finite-dimensional and L is
lagrangian, then L is also lagrangian.

Remark A.27 (Generalized generating functions). Our main example, which ex-
tends Remark A.11 to the nonlinear case, will be the product of two split symplec-
tic manifolds, N = T̃ ∗M × T̃ ∗B = T̃ ∗(M × B), with C = T̃ ∗M × B and hence

C = T̃ ∗M . Let ψ be a function on M × B such that the one-form dψ is a section
of T̃ ∗(M ×B) and let Lψ the split lagrangian submanifold in N it generates. If Lψ
is a split lagrangian submanifold of C = T̃ ∗M , then we say that ψ is a generalized
generating function for Lψ. In the finite-dimensional case, one only has to check
that that Lψ is a submanifold because it is then automatically split lagrangian.
Some conditions for this to happen are presented in [9, Section 4.3]. There, more
generally, B is just assumed to be the typical fiber of a submersion π : E →M and
the triple (E, π, ψ), such that Lψ is a submanifold, is called a Morse family for Lψ.

55The hamiltonian vector field of a function H is the unique vector field XH such that ιXω+
dH = 0. (Note that in the infinite-dimensional case the existence of a hamiltonian vector field is
an assumption, but its uniqueness is guaranteed.) The Poisson bracket of two functions H and G,

with hamiltonian vector fields XH and XG, is the function {H,G} := XG(H) = ιXH ιXGω. Its

hamiltonian vector field is [XH , XG].
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Explicitly, if we denote by qi and Tα the coordinates on M and B, respectively,
and by pi and Eα their momenta, the lagrangian submanifold Lψ is given by the

equations pi = ∂ψ
∂qi and Eα = ∂ψ

∂Tα . Intersecting with C = T̃ ∗M ×B corresponds to

imposing ∂ψ
∂Tα = 0. Therefore, Lψ is given by the equations

pi =
∂ψ

∂qi
,

∂ψ

∂Tα
= 0.

Definition A.28 (Canonical relations). A (split) canonical relation L between two
symplectic manifolds (M1, ω1) and (M2, ω2) is a (split) lagrangian submanifold of
M̄1×M2 (i.e., M1×M2 with symplectic form π∗2ω2−π∗1ω1 with πi : M1×M2 →Mi

the canonical projections). In particular, the graph of a symplectomorphism from
M1 to M2 is an embedded split canonical relation.

Here is an example (generalizing Lemma A.15):

Lemma A.29. Let C be a coisotropic submanifold of M and assume that its in-
volutive characteristic distribution is actually integrable. We say that two points
(x, x′) ∈ C × C lie on the same leaf of the characteristic distribution if there is a
path in C with endpoints x and x′ and tangent vector at each point lying in the
characteristic distribution. Then, if

LC := {(x, x′) ∈ C×C | x, x′ lie on the same leaf of the characteristic distribution}

is a submanifold, it is isotropic in M̄ ×M . If M is finite-dimensional, then L is
lagrangian, hence a canonical relation from M to itself.

Proof. Let (x, x′) be a point in LC . By integrability, there is a neighborhood U
of x that is mapped to a convex open subspace of a vector space in which the
distribution corresponds to a family of linear subspaces. We first consider the case
where x′ ∈ U . The images y and y′ of x and x′ can then be actually connected
by a straight line. We consider the constant vector field corresponding to this
direction and its flow Φ at time 1, a translation mapping a neighborhood of y to
a neighborhood of y′ satisfying Φ(y) = y′. Since Φ is a flow along a vector field in
the kernel of the image of the restriction of the symplectic form, it leaves the latter
invariant by Lemma A.21. Let A be the differential of Φ at y pulled back to x.
Therefore, A is a linear isomorphism TxC → Tx′C satisfying

ωx(v, w) = ωx′(Av,Aw) ∀v, w ∈ TxC.

By construction A(TxC
⊥) = Tx′C

⊥. Therefore, A induces a symplectomorphism
A between TxC := TxC/TxC

⊥ and Tx′C := Tx′C/Tx′C
⊥. The first consequence of

this is that

(v, v′) ∈ T(x,x′)LC ⇐⇒ v′ −Av ∈ Tx′C⊥ ⇐⇒ [v′] = A[v].

The second consequence is that T(x,x′)LC is isotropic. In fact, for (v, v′), (w,w′) ∈
T(x,x′)L we get

ωx′(v
′, w′) = ωx′(Av,Aw) = ωx(v, w).

For a generic point (x, x′) in LC , we have by definition a path γ : [0, 1] → C
such that γ(0) = x, γ(1) = x′ and dtγ ∈ Tγ(t)C

⊥ ∀t ∈ [0, 1]. By compactness of
[0, 1], we may find a finite partition 0 = t0 < t1 < t2 < · · · < tn = 1 such that, for
each i = 0, . . . , n − 1, the points γ(ti) and γ(ti+1) lie in a neighborhood Ui as in
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the previous paragraph. Set xi := γ(ti) and proceed as above. We then have that
(vi, vi+1) ∈ T(xi,xi+1)LC iff [vi+1] = Ai[vi]. Therefore,

(v, v′) ∈ T(x,x′)LC ⇐⇒ [v′] = An−1 . . . A1A0[v] ⇐⇒ v′−An−1 . . . A1A0v ∈ Tx′C⊥.

Given v ∈ TxC, we set [vi+1] := Ai . . . A1A0[v] and choose representatives vi+1 ∈
[vi+1]. For (v, v′), (w,w′) ∈ T(x,x′)L, we then have

ωxi+1
(vi+1, wi+1)− ωxi(vi, wi) = 0 ∀i = 0, . . . , n− 1.

Summing over i, we get

ωx′(v
′, w′)− ωx(v, w) = 0,

which shows that T(x,x′)LC is isotropic.
In the finite-dimensional case, we easily check, as in the proof of Lemma A.15,

that dimL = 1
2 dim(M̄ ×M). �

We also have the following straightforward generalization of Lemma A.16.

Lemma A.30. Let L be a lagrangian submanifold of M̄×M . If C := π1(L), where
π1 is the projection to the first factor, is a submanifold of M , then C is coisotropic.

Proof. By definition we have that x belongs to C iff there is a y ∈ M such that
(x, y) belongs to L. Moreover, v belongs to TxC iff there is a w ∈ TyM such that
(v, w) belongs to T(x,y)L. Now let ṽ be in TxC

⊥, i.e., ωx(ṽ, v) = 0 ∀v ∈ TxC. This
implies

ωx(ṽ, v)− ωy(0, w) = 0 ∀(v, w) ∈ T(x,y)L.

Therefore, (ṽ, 0) ∈ T(x,y)L
⊥ = T(x,y)L, which implies ṽ ∈ TxC. �

Remark A.31 (Applications in field theory). The above two lemmata, A.29 and A.30,
are important for the applications in field theory. In the finite-dimensional case, we
have assumed in Section 4, see Remark 4.1, that the constraints define a coisotropic
submanifold C. Then the evolution relation L coincides with LC and is therefore
lagrangian by Lemma A.29. In the infinite-dimensional case, it is instead better to
start from the evolution relation L, which is automatically isotropic. If we can prove
that it is lagrangian (e.g., by the Hodge decomposition theorem), as we can do in
all the examples in Section 7, we then get by Lemma A.30 that C is coisotropic.
Finally, we just have to check that L = LC .

If Mi = T̃ ∗Ni, i = 1, 2, then we may identify M̄1 × M2 with T̃ ∗(N1 × N2)

(changing the sign of the T̃ ∗N1 components of the canonical symplectic form). A
(split) lagrangian submanifold L of M̄1×M2 might have a (generalized) generating
function ψ on N1×N2, which is then called a (generalized) generating function for
the (split) canonical relation L from M1 to M2.

Remark A.32 (Generating function for a canonical relation). Explicitly, if we denote
by qi and Qi the coordinates on N1 and N2, respectively, and by pi and Pi their
momenta, the canonical relation defined by a generating function ψ is given by the
equations

Pi =
∂ψ

∂Qi
, pi = − ∂ψ

∂qi
.
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Example A.33 (Generating function for a change of polarization). A particular
case is when M1 = M2 and L is the graph of the identity map, which is obviously
a symplectomorphism, but we choose N1 and N2 to be different. If there is a
generating function ψ for L, with respect to these splittings, then the coordinates
on T̃ ∗N1 and T̃ ∗N2 are related by the last equation.

Remark A.34 (Generalized generating function for a canonical relation). If we have
instead a generalized generating function ψ on N1 × N2 × B, with coordinates
qi, Qi, Tα, then the corresponding canonical relation is defined by the equations

Pi =
∂ψ

∂Qi
, pi = − ∂ψ

∂qi
,

∂ψ

∂Tα
= 0.

Remark A.35 (Composition of canonical relations). If we have a relation L1 from
M1 to M2 and a relation L2 from M2 to M3 (i.e., L1 ⊆M1×M2 and L2 ⊆M2×M3),
we may set-theoretically compose them to a relation L2 ◦ L1 from M1 to M3:

(125) L2◦L1 := {(x1, x3) ∈M1×M3 | ∃x2 ∈M2 : (x1, x2) ∈ L1 and (x2, x3) ∈ L2}.
If M1, M2 and M3 are manifolds and L1 and L2 are submanifolds, there is no
guarantee that L2 ◦ L1 is also a submanifold. Let us assume this to be the case
and also that L1 and L2 are (split) canonical relations—i.e., M1, M2 and M3

are symplectic manifolds and L1 and L2 are (split) lagrangian submanifolds of
M̄1 ×M2 and M̄2 ×M3, respectively. Then the composition (125) may be realized
as a particular case of Remark A.26. Namely, we consider the (split) lagrangian
submanifold L := L1 × L2 and the coisotropic submanifold C := M1 ×∆M2 ×M3

in M̄1×M2× M̄2×M3, where ∆M2
:= {(x2, x2) ∈M2×M2} denotes the diagonal

submanifold. We clearly have C = M̄1 ×M3 and L = L2 ◦ L1. Therefore, in the
finite-dimensional case L is lagrangian, whereas in the infinite-dimensional case, at
least it is isotropic and one has to check separately if it is also (split) lagrangian.

Remark A.36 (Composition of generating functions I: mixed polarizations). Let
us assume that the composition of the (split) canonical relations L1 and L2 of
Remark A.35 is a (split) canonical relation. Let us also assume that L1 and L2

have (generalized) generating functions ψ1 and ψ2 in the following way. We assume

Mi = T̃ ∗Ni, i = 1, 3, M2 = U ×U ′ with U and U ′ open subsets of V and V ′ ⊆ V ∗,
respectively, and that ψ1 ∈ C∞(N1 × U ′ × B) and ψ2 ∈ C∞(U ×N3 × B̃), where

B and B̃ are parameter spaces. For notational simplicity, we work as in the finite-
dimensional case and avoid writing component indices. We denote the coordinates
as follows: (p, q) for T̃ ∗N1, (p̃, q̃) for T̃ ∗N3, T for B, and T̃ for B̃. For the first copy
of M2 we denote the coordinates in U × U ′ by (Q,P ) and for the second copy by

(Q̂, P̂ ). Then ψ1 is a function of q, P, T and L1 is given by the equations

Q = −∂ψ1

∂P
, p = −∂ψ1

∂q
,

∂ψ1

∂T
= 0,

whereas ψ2 is a function of Q̂, q̃, T̃ and L2 is given by the equations

p̃ =
∂ψ2

∂q̃
, P̂ = −∂ψ2

∂Q̂
,

∂ψ2

∂T̃
= 0.

Since C is defined by the equations P̂ = P and Q̂ = Q, we see that L has generalized
generating function, on N1 ×N3 ×B × B̃ × U ′ × U ,

ψ3(q, q̃;T, T̃ , P,Q) = ψ1(q, P ;T ) + ψ2(Q, q̃; T̃ ) + PQ,



CONSTRAINTS, HAMILTON–JACOBI, QUANTIZATION 87

where the last term is defined via the pairing. Note that this is a generalized
generating function with parameter space B×B̃×M2. The conditions with respect
to M2, given by

∂ψ1

∂P
+Q = 0 and

∂ψ2

∂Q
+ P = 0,

are precisely the first condition for L1 and the second condition for L2. If we can
solve these equations with respect to (P,Q), we also get a (generalized) generating

function ψ
3
∈ C∞(N1×N3×B× B̃), which is the critical value of ψ3 at this point.

Note that if ψ1 and ψ2 are not generalized (i.e., B and B̃ are one-point sets), then
ψ

3
is also not generalized.

Remark A.37 (Composition of generating functions II: same polarization). In the
setting of the preceding Remark A.36, we now assume that ψ1 ∈ C∞(N1 ×U ×B)

and ψ2 ∈ C∞(U ×N3 × B̃). Now ψ1 is a function of q,Q, T and L1 is given by the
equations

P =
∂ψ1

∂Q
, p = −∂ψ1

∂q
,

∂ψ1

∂T
= 0,

whereas, as before, ψ2 is a function of Q̂, q̃, T̃ and L2 is given by the equations

p̃ =
∂ψ2

∂q̃
, P̂ = −∂ψ2

∂Q̂
,

∂ψ2

∂T̃
= 0.

Setting P̂ = P and Q̂ = Q, yields

∂ψ1

∂Q
+
∂ψ2

∂Q
= 0.

Therefore, the composition L has generalized generating function, on N1 × N3 ×
B × B̃ × U ,

ψ3(q, q̃;T, T̃ , Q) = ψ1(q,Q;T ) + ψ2(Q, q̃; T̃ ).

Note that now the parameter space is B × B̃ × U . Also in this case, it might
be possible to solve the critical equation in Q and get a (generalized) generating

function ψ
3
∈ C∞(N1×N3×B× B̃), which is not generalized if ψ1 and ψ2 are not.

Remark A.38 (Evolution relations and generalized generating functions in field
theory). Let us conclude with the application to field theory [38, 18]. Under some
regularity assumptions, a lagrangian field theory in d + 1 dimensions produces a
(usually infinite-dimensional) symplectic manifold F∂Σ of boundary fields on every
closed d-manifold Σ (roughly speaking, this is the space of fields and some of their
normal jets on which the boundary one-form obtained after integration by parts
from the variation of the action functional is the potential for a symplectic form).
The field theory on I×Σ, where I is an interval, produces a subset L, which we call
the evolution relation, of F∂Σ × F∂Σ given by the boundary data corresponding to
possible solutions to the EL equations. If L is a submanifold, it is then automatically

isotropic in F̄∂Σ×F∂Σ. In a good field theory, we require L to be split lagrangian, so a
canonical relation from F∂Σ to itself. (In the case of a field theory with nondegenerate
lagrangian, L is the graph of the associated hamiltonian flow, so it is an embedded
split canonical relation.) In this case, there might be a (generalized) generating
function for L with respect to a split symplectic structure on F∂Σ. Throughout this
paper we have constructed (generalized) generating functions for several examples
from field theory. The discussion of the first part of this paper shows how to
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construct a generalized generating function for the evolution relation in terms of
the HJ action. Note that in the infinite-dimensional case one has to show separately
(e.g., by Hodge decomposition theorem) that it is actually split lagrangian.

Remark A.39 (Gauge-fixing fermion). Another application of the formalism of (gen-
eralized) generating functions occurs in the gauge-fixing procedure in the BRST or
BV formalism, where the symplectic manifold is actually a supermanifold and the
symplectic form is odd with respect to the internal grading. In this case a gener-
ating function ψ for a gauge-fixing lagrangian Lψ must be odd, and for this reason
it is usually called a gauge-fixing fermion. Usually, there is no generating function
on the base F of the BV space of fields ΠT̃ ∗F , so one really has to resort to a
generalized generating function on F × B, where B is a space of parameters. For
example, in abelian gauge theories (on a trivial principal bundle) on a manifold M ,
one has F = Ω1(M) × ΠΩ0(M) 3 (A, c), where A is the connection and c is the
ghost. We denote the corresponding momenta, with opposite parity, by A+ and
c+. To impose the Lorenz gauge fixing d∗A = 0 (working in the complement of
cohomology) actually means defining L as the conormal bundle of the submanifold
of F defined by this equation, which clearly does not have a generating function.
One therefore introduces extra parameters c̄ ∈ B = ΠΩtop(M) and the generalized
generating function (the gauge-fixing fermion) ψ =

∫
M
c̄d∗A. The corresponding

gauge-fixing lagrangian L = Lψ is then correctly given by the equations

A+ = d∗c̄, c+ = 0, d∗A = 0.

In field theory, one prefers to introduce the last condition (namely, c̄+ = ∂ψ
∂c̄ = 0)

in terms of a Lagrange multiplier λ ∈ B′ = Ω0(M),

δ(c̄+) =

∫
Dλe

i
~
∫
M
λc̄+ ,

and then to regard
∫
M
λc̄+ as a new term to be added to the action. The extended

BV space of fields eventually is ΠT̃ ∗(F × B × B′). (For a slightly more general
presentation of this, see [12, Sect. 3.2.1].)

A.3. Generalized Hamilton–Jacobi actions with infinite-dimensional tar-
gets. We now give more details on the constructions of Section 7, in the case of an
infinite-dimensional target. This is based on results of [17] and [23].

The first thing we have to generalize is the target T ∗Rn and the term pidq
i in the

action. We focus on the case when the target is linear (as this is the case for all the
examples in this paper) and we take it to be a split symplectic space V = W ⊕W ′
as in Remark A.6. More concretely, we assume we have it realized with W ′ ⊆ W ∗

and canonical symplectic form ω induced from the pairing as in (122). We may
also write ω as the differential of the 1-form α on V defined by

(α(v ⊕ a), w ⊕ b) := a(w).

The map (p, q) : [ta, tb] → T ∗Rn is now generalized to a map φ : [ta, tb] → V and

the term in the action
∫ tb
ta
pidq

i is generalized to
∫ tb
ta
φ∗α.

Next we have to generalize the Lagrange multipliers eα, the contraints Hα and

the second term in the action:
∫ tb
ta
eαHα. For this we take a (possibly infinite-

dimensional) vector space U and a subspace U ′ of its dual U∗ such that the canonical
pairing 〈 , 〉 of U ′ with U is still weakly nondegenerate. We assume we are given a
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(possibly nonlinear) map H : V → U ′ and introduce e as a 1-form on [ta, tb] taking
values in U . We can then write the action as

S[φ, e] =

∫ tb

ta

(φ∗α− 〈e,H ◦ φ〉).

We denote by F the space of fields (φ, e) as an infinite-dimensional Fréchet manifold
and assume S to be a smooth function on F . Integrating by parts, we may express
its differential as

(126) δS = EL + π∗bα− π∗aα,
where EL is again expressed as an integral over [ta, tb] and πb, πa : F → V are the
surjective submersions πb : (φ, e) 7→ φ(tb) and πa : (φ, e) 7→ φ(ta).

To define the EL equations we have to assume that, for every x ∈ V , dxH ∈
V ∗ ⊗ U ′ lies in the image of ω] ⊗ Id : V ⊗ U ′ → V ∗ ⊗ U ′. We then have a unique
Xx ∈ V ⊗ U ′ such that ω](Xx) = dxH. The EL equations then read

dφ = 〈e,X〉, H ◦ φ = 0.

Again we call the first equation the evolution equation and the second the con-
straint.

Remark A.40. In the case of field theory, the existence of the family X of hamilton-
ian vector fields is ensured by locality. Namely, V and U are (modeled on) spaces
of sections of fiber bundles over a closed manifold Σ. The fields (φ, e) are then
sections of fiber bundles over [ta, tb]×Σ. Finally, H and α are assumed to be local
(over Σ).

We can now define the evolution relation L as the set of pairs of points in V
that can be connected by solutions of the EL equations. We will assume L to be
a (possibly immersed) lagrangian submanifold.56 Note that L does not depend on
the choice of splitting of V , since the EL equations are defined only in terms of H
and the symplectic form.

Remark A.41. That L is isotropic is guaranteed, under some regularity assump-
tions. Indeed, we have L = πa × πb(EL), where EL ⊂ F is the set of solutions to
the EL equations. If we assume that EL is a (possibly immersed) submanifold, then
(126) implies that L is isotropic. In fact, with π := πa × πb and αV̄⊕V := (−α, α),
we have

ι∗ELδS = π∗ι∗L(αV̄⊕V ),

with ιs denoting the inclusion maps. This implies π∗ι∗L(δαV̄⊕V ) = 0 and, therefore,
ι∗L(δαV̄⊕V ) = 0 because π is a submersion.

Let πi : V ⊕ V → V , i = 1, 2, denote the two projections and set Ci = πi(L). It
then follows that C1 = C2 = C := H−1(0). In fact, since the constraints have to be
satisfied everywhere, they are satisfied in particular at the endpoints, so Ci ⊆ C.
On the other hand, for e = 0, we have the constant solutions (c, c) with c ∈ C, so
C ⊆ Ci. Since, by definition, L ⊂ C1 × C2, we then have L ⊂ C × C.57 Next we
assume that C is a (possibly immersed) submanifold of V .

56For the boundary value problem to be well-defined, one should actually ask for L to be split

lagrangian, but this is not needed in the present section.
57Note that, as a relation on V , L is symmetric and transitive, but in general not reflexive,

and that C is the largest subset of V on which L restricts as an equivalence relation.
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Lemma A.42. C is coisotropic in V .

Proof. Fix u ∈ C and û ∈ π−1
1 (u) ⊂ L. We have assumed that TûL is lagrangian,

and we want to prove that (TuC)⊥ ⊆ TuC. We have

TuC = {v ∈ V | ∃w ∈ V : (v, w) ∈ TûL}.
By definition, if ṽ ∈ V belongs to (TuC)⊥, then ω(ṽ, v) = 0 for every v ∈ TuC,
i.e., ω(ṽ, v) = 0 for every (v, w) ∈ TûL. This implies (ṽ, 0) ∈ (TûL)⊥. Since L is
lagrangian, we get (ṽ, 0) ∈ TûL, so ṽ ∈ TuC. �

Observe that, for every t ∈ [ta, tb], the right hand side of the evolution equa-
tion lies in (Tφ(t)C)⊥. Since C is coisotropic, this is contained in Tφ(t)C. As a
consequence, a solution of the evolution equation starting at some point of C will
never leave C, i.e., if the constraints are imposed at the initial (or final) endpoint,
they will be satisfied at every time. (In the finite-dimensional case, this statement
followed from (20).)

Remark A.43. The above assumptions that V is split and L is lagrangian are
satisfied in the case of Chern–Simons theory thanks to the Hodge decomposition
of differential forms (actually one even proves that L is split lagrangian). One can
also easily check that L and C are submanifolds.

We now move to the HJ action. For this we might want to choose a different
splitting V = Z⊕Z ′ at the final endpoint. The HJ action as a generalized generating
function for L will depend on the choices of splitting, even though L does not. We
denote by β the 1-form corresponding to this splitting. We assume that we have a
generating function f on W ⊕Z for the change of polarization, as in Example A.33.
In particular, α = β + δf . If we define

Sf := S − π∗bf,
we get

δSf = EL + π∗bβ − π∗aα.
Finally we define SfHJ, as a function on W × Z × Ω1([ta, tb], U), as Sf evaluated
on the assumedly unique solution φ̄ of the evolution equation with given endpoint
conditions for φ in W and Z. We then get

δSfHJ = −
∫ tb

ta

〈δe,H ◦ φ̄〉+ π∗bβ − π∗aα,

which shows that SfHJ is a generalized generating function for L. In general, it may

be difficult to characterize the variations of e that leave SfHJ invariant, since we
cannot use (20). This may be however done explicitly, e.g., when U is a Lie algebra
and H : V → U ′ is an equivariant momentum map. In this case, which is enough
to treat Chern–Simons theory, one easily sees that δe = dγ + [e, γ], with γ a map

[ta, tb]→ U that vanishes at the endpoints, leaves SfHJ invariant.

Appendix B. The modified differential quantum master equation

Following [15] and [19, Section 4.2], we explain how the mQME and the (ap-
propriate notion of) invariance under deformations of gauge fixing arise from the
perturbative treatment of the theory. We will be rather sketchy and rely on some
knowledge of such references.
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B.1. Assumptions. We focus on the case where the constraints are in involution
with structure constants; i.e., the constraints Hα are the components of an equi-
variant momentum map as in (19):

(127) {Hα, Hβ} = fγαβHγ , ∀α, β.

Moreover, if we change the polarization via a generating function f(q,Q), we define

the transformed constraints H̃α as in (112), so we have the relations

(128) Hα

(
∂f

∂q
, q

)
= H̃α

(
− ∂f
∂Q

,Q

)
, ∀α.

For example, if we just interchange the p and q variables—Q = p, P = −q, f = qQ—
then we have the definition H̃α(P,Q) := Hα(Q,−P ) and the relation Hα(Q, q) =

H̃α(−q,Q).
As already mentioned several times in the paper, our result is based on the

following

Assumption B.1. We assume that the constraints Hα are quantized to the com-
ponents of a quantum equivariant momentum map as in (88), i.e,

(129)
[
Ĥα, Ĥβ

]
= i~fγαβĤγ ,

with

Ĥα = Hα

(
i~
∂

∂q
, q

)
,

and that they are compatible, at the quantum level, with the generating function
f(q,Q) of the change of polarization as in (113), i.e,

(130) Hα

(
i~
∂

∂q
, q

)
e−

i
~ f = H̃α

(
−i~

∂

∂Q
,Q

)
e−

i
~ f , ∀α.

Remark B.2. Observe the following:

(1) In the above formulae, the standard ordering is assumed, i.e., all the deriva-
tives are placed to the right.

(2) The assumptions (129) and (130) can equivalently be written using star
products.

(3) The classical relations (127) automatically imply the quantum relations
(129) if the constraints Hα are linear or biaffine.

(4) The classical relations (128) automatically imply the quantum relations
(130) if
(a) the endpoint polarizations are linear (in particular, f is bilinear in

(q,Q)), or
(b) the constraints Hα(p, q) are linear in p and the transformed constraints

H̃α(P,Q) are linear in P .
(5) If the assumptions (129) and (130) are not satisfied on the nose, one may

try to deform the Hαs and the H̃αs with ~-corrections in order to impose
the relations, but there is no guarantee that this is possible.

(6) If the change of polarization is not linear, e−
i
~ f might not be the integral

kernel of a unitary operator. One might try to deform f , if possible, with
~-corrections in order to make the operator unitary. One should then try
to find deformations of the Hαs and the H̃αs so as to achieve the relations
(129) and (130). Note that the classical condition of point (4b) that the
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nondeformed Hαs and H̃αs are linear in the respective momenta is no longer
enough for the relation (130) to be satisfied on the nose, since the H̃α are
defined using the nondeformed f .

B.2. The propagator and the mdQME. The starting point for our discussion
is the propagator η, which is an inverse of (more precisely, a parametrix for) the
de Rham differential d, compatible with the endpoint conditions.

For example, in the quantization in Case II, the propagator is η(s, t) = θ(s−t)—
the Heaviside step function—for all fields, see (93). In Case I, because of the
different endpoint conditions (and the choice of e), the propagator in the ghost
sector is η(s, t) = θ(s − t) − φ(s), where φ is a chosen function with the property
φ(tb)− φ(ta) = 1.

In general, the propagator η is a smooth function on the compactified configu-
ration space, see [31, 4], of two points on the interval I = [ta, tb], i.e.,

C2(I) = {(s, t) ∈ I × I | s ≤ t} t {(s, t) ∈ I × I | s ≥ t},

that satisfies the endpoint conditions and the limit η|s→t+ − η|s→t− = 1 and such
that dη = χ, where χ is a smooth 1-form on I × I containing information on the
cohomology and the endpoint conditions.

The endpoint conditions are fixed throughout. However, the choices of χ and
η are not unique and correspond to different gauge fixings and choices of residual
fields. We can actually change η by adding to it a smooth function g on I × I
that satisfies the endpoint conditions and simultaneously change χ by adding dg to
it. It is convenient to interpolate between the two propagators using a parameter
u ∈ J := [0, 1] defining ηu := η + ug and χu = χ+ udg. It is even better to define
η̌ ∈ C∞(C2(I)× J) as η̌(s, t, u) = ηu(s, t) and χ̌ ∈ Ω1(C2(I)× J) via58

(131) dη̌ = χ̌,

where now d denotes the total differential on Ω•(C2(I)× J).
As the choice of χu is related to the choice of the residual fields, we have to

deform them accordingly. We next compute the partition “form” for these choices
and we denote it as Ž ∈ Ω•(J). Note that the zero-form component is the usual
partition function, depending on the parameter u.

We claim that (131) and Assumption B.1 imply that the partition form satisfies
the differential mQME (mdQME)

(Ω + i~dJ + ~2∆)Ž = 0,

where dJ = du ∂
∂u is the de Rham differential on J . The zero-form part of the

mdQME is the mQME for the partition function (for every value of u), whereas the
one-form part implies that the partition function changes by an (Ω + ~2∆)-exact
term under a deformation of the data. These are the two statements we wanted to
prove. Therefore, we are just left with showing that the mdQME holds.

58In our theory we use two propagators—the propagator in the physical sector (p, q, p+, q+)

and the propagator in the ghost sector (e+, c, c+, e)—and we may want to take different choices
for them. This means that we will have a pair (η̌, χ̌) for the physical sector and a possibly different

one for the ghost sector.
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B.3. Proof of the mdQME. To prove this we simply apply i~dJ to Ž and ob-
serve that, for every integral in the Feynman diagram expansion, we can use the
generalized Stokes’s formula

dJ

∫
= ±

∫
d ±

∫
∂

,

where the signs depend on dimensions (number of vertices) and on the choices of
orientation.

The first contribution on the right hand side replaces the propagators, one by
one, by χ̂. The sum of all these diagrams corresponds to the application of i~∆.

The second contribution is related to Ω, as we are going to see. First observe that
we are considering integrals over boundaries of compactified configuration spaces
Cn(I) of n points on the interval I = [ta, tb]. Such boundaries are of two types.

Internal boundaries: In this case k > 1 points collapse together in the
interior of I. Such a boundary component fibers over Cn−k+1(I) with a
(k − 2)-dimensional fiber.

Endpoint boundaries: In this case k ≥ 1 points collapse together at one
endpoint of I. Such a boundary component fibers over Cn−k(I) with a
(k − 1)-dimensional fiber.

The crucial point is that the residual fields and the forms χ̂, which have no
discontinuities, are basic in the above fibrations. Along the fibers we only have to
integrate the product of the propagators η̂ whose both vertices are in the fiber. As
the propagators are zero-forms, we may get a nonzero integral only if

(1) we are at an internal boundary component with k = 2, or
(2) we are at an endpoint boundary component with k = 1.

In the first case, we have three kinds of collapsing diagrams (we call physical
vertices those containing the constraint hamiltonians—and their derivatives—and
ghost vertices those containing the structure constants):

i. Two physical vertices collapse together: these diagrams—which may have any
positive number of physical propagators—produce a contribution of the form
[Hα, ?, Hβ ].

ii. One physical vertex collapses with a ghost vertex: these diagrams produce a
contribution of the form fγαβHγ .

iii. Two ghost vertices collapse together: these diagrams sum up to zero thanks to
the Jacobi identity.

The contributions in i. and ii. cancel each other thanks to (129) in Assumption B.1.
Therefore, we are only left with the case of a single bulk vertex collapsing at one

endpoint. We consider the following cases:

(a) Consider first the case of a ghost vertex collapsing, say, at the initial endpoint.
It is a very simple situatation, as the fiber contains one or two ghost propa-
gators, connecting the vertex to initial endpoint insertions. This corresponds

to the application of fγαβ c
α
a c
β
a

∂
∂cγa

or fγαβ b
a
γ

∂2

∂baα∂b
a
β

, depending on the choice of

endpoint condition. The case of the final endpoint is similar.
(b) Next consider the case of a physical vertex collapsing at the initial endpoint,

where, by convention, we always choose a linear polarization. Depending on
the ghost initial endpoint conditions, the ghost propagator stemming from the
vertex is either connected to an initial endpoint insertion—corresponding to the
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insertion of a ca—or leaves the collapsing diagram—corresponding to the appli-
cation of a derivative with respect to a ba. Besides, there is an arbitrary number
of physical propagators stemming from the collapsing vertex, some connecting
it to an initial endpoint insertion and some leaving the collapsing diagram.
Depending on the physical initial endpoint conditions, summing over all such

diagrams corresponds to the application of Hα

(
i~ ∂
∂qa

, qa

)
or Hα

(
pa,−i~ ∂

∂pa

)
.

This together with the result of (a) for the initial endpoint corresponds to the
application of Ωa.

(c) Finally consider the case of a physical vertex collapsing at the final endpoint.
If the polarization is linear, this is very similar to case (b) and, together with
the result of (a) for the final endpoint, corresponds to the application of Ωb. In
general, we have instead several propagators connecting the collapsing ver-
tex to several f insertions. This sums up to a final endpoint insertion of

Hα

(
i~ ∂
∂q , q

)
e−

i
~ f |q=q̂(tb),Q=Qb .

59 By the assumed relation (130), we have60

H̃α

(
−i~

∂

∂Qb
, Qb

)
e−

i
~ f(q̂(tb),Qb) = Hα

(
i~
∂

∂q
, q

)
e−

i
~ f |q=q̂(tb),Q=Qb ,

so this contribution, together with the result of (a) for the final endpoint,
corresponds to the application of Ωb as in (115b).

B.4. Historical remarks. The first instance of the method described in this ap-
pendix for tracking the changes under deformation of the gauge fixing goes back to
[4] in the case of Chern–Simons theory without boundary, without residual fields
and with gauge fixings parametrized by a Riemannian metric. The method was ex-
tended in [11] to more general propagators. In [15] the case with residual fields was
first considered, and in [19, Section 4.2] the general method delineated here—for
general AKSZ theories, in presence of boundary and with residual fields—was in-
troduced. By this method the boundary-related operator Ω is constructed in terms
of boundary terms as explained above. The main difference with the present study
is that there the case of dimension larger than one was considered, where some van-
ishing theorems simplify the computations. A differential, compatible with the BV
structure, was explicitly introduced in [10] to keep track of changes in the choice
of background, leading to the differential QME (dQME). The incorporation of the
boundary, along the lines of [19], leading to the mdQME was finally presented in
[14].
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