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Abstract. We compute partition functions of Chern–Simons type theories for

cylindrical spacetimes I×Σ, with I an interval and dim Σ = 4l+2, in the BV-
BFV formalism (a refinement of the Batalin–Vilkovisky formalism adapted to

manifolds with boundary and cutting–gluing). The case dim Σ = 0 is consid-

ered as a toy example. We show that one can identify—for certain choices of
residual fields—the “physical part” (restriction to degree zero fields) of the BV-

BFV effective action with the Hamilton–Jacobi action computed in the com-

panion paper [16], without any quantum corrections. This Hamilton–Jacobi
action is the action functional of a conformal field theory on Σ. For dim Σ = 2,

this implies a version of the CS-WZW correspondence. For dim Σ = 6, using

a particular polarization on one end of the cylinder, the Chern–Simons par-
tition function is related to Kodaira–Spencer gravity (a.k.a. BCOV theory);

this provides a BV-BFV quantum perspective on the semiclassical result by
Gerasimov and Shatashvili.
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1. Introduction

This paper is a sequel to the paper “Constrained systems, generalized Hamilton–
Jacobi actions, and quantization” [16] by the same authors (but can be read inde-
pendently).

As announced in [16], the main result of this paper is the explicit computation of
the perturbative partition functions of Chern–Simons theories on cylinders I × Σ,
with respect to various boundary polarizations. Their restriction to degree zero
fields turns out to be the exponential of the corresponding Hamilton–Jacobi action,
defined in [16] and recalled in Section 2, without any quantum corrections.

Interestingly, the Hamilton–Jacobi actions of the theories we consider can be
related to action functionals of conformal field theories on Σ. This means that the
partition function of Chern–Simons theories (with certain boundary conditions)
can be identified with the partition function of a conformal field theory (coupled to
sources) — a property that one might call “holographic duality.” In that terminol-
ogy, among other results, we show the following:

• The holographic dual theory of 3D abelian Chern–Simons theory is the 2D
free boson CFT, see Section 1.2.1 (while for a different choice of boundary
polarization, we obtain the beta-gamma system as the dual, see (24)).
• The holographic dual of the 3D nonabelian Chern–Simons theory is the

WZW theory (see Section 1.2.2).
• The holographic dual of 7D Chern–Simons theory is a free 2-form theory

for the “standard” polarization and the Kodaira–Spencer gravity for a par-
ticular nonlinear polarization (see Section 1.2.3).

The first motivating point for this paper and its prequel [16], suggested to us by
S. Shatashvili, concerned precisely the last item: namely, the systematical under-
standing of the relation between 7D abelian Chern–Simons theory and 6D Kodaira–
Spencer [30] gravity (otherwise known as BCOV theory [9]) from the BV-BFV per-
spective. At the semiclassical level, the relation is a result of Gerasimov–Shatashvili
[26] (see also our review in [16, Section 7.6]). In this paper, we explore the per-
turbative BV-BFV quantization and show that, for an appropriate choice of gauge
fixing, no quantum corrections are added to the semiclassical result.

Before passing to a detailed description of our results, we give a brief recollection
of abelian Chern–Simons theory in the BV-BFV formalism, which can be safely
skipped by readers familiar with the subject.

1.1. Chern–Simons theory in the BV-BFV formalism. We consider abelian
Chern–Simons theory in dimensions d = 4l + 3 with l a positive integer. For a
d-dimensional spacetime manifold N (possibly with boundary), the space of fields
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is defined as FN = Ω2l+1(N) and the action functional is

SN [A] =
1

2

∫
N

A ∧ dA.

In dimension d = 3, we also consider nonabelian Chern–Simons theory. Here
there is a structure Lie algebra G of coefficients endowed with a nondegenerate
invariant pairing 〈·, ·〉. The space of fields on N is then the space of G-valued 1-
forms FN = Ω1(N,G) (thought of as the space of connections on a trivial principal
G-bundle N ×G with G the connected and simply connected Lie group integrating
G). The action functional is

SN [A] =

∫
N

1

2
〈A, dA〉+

1

6
〈A, [A,A]〉.

Since these theories are gauge theories, to define the perturbative partition we
require a gauge fixing formalism. In this paper, we will use the BV-BFV formal-
ism, the modification of the Batalin–Vilkovisky (BV) formalism for manifolds with
boundary introduced by two of the authors together with N. Reshetikhin in [12, 15].
Let us briefly explain this formalism by means of our main example.

The BV-BFV extension of abelian Chern–Simons theory has Z-graded space of
fields FN = Ω•(N)[2l+1]. This notation is shorthand for saying that a homogeneous
form ω is assigned ghost number gh(ω) = 2l + 1 − deg(ω), so that all forms have
total degree gh + deg = 2l + 1. In particular F0

N = FN . The space FN is an odd
symplectic vector space with odd symplectic form

ωN (A,B) =

∫
N

A ∧ B,

where A,B are nonhomogeneous differential forms and only the top degree part
contributes to the integral.1 The BV extended action functional of abelian Chern–
Simons theory is

SN [A] =
1

2

∫
N

A ∧ dA.
In particular, restricting to forms of ghost number 0, we recover the classical action
SN [A].

If ∂N = ∅, then (SN ,SN ) = 0, where (·, ·) denotes the Poisson bracket induced
by ωN . This equation is called classical master equation in the BV formalism, and
it implies Q2

N = 0, where

QN =

∫
N

dA ∧ δ

δA
is the odd hamiltonian vector field of SN .

If ∂N 6= ∅, then we assign additional BFV2 data to the boundary. The space of
boundary fields is F∂∂N = Ω•(∂N)[2l + 1] with even symplectic form

ω∂∂N (A,B) =

∫
∂N

A ∧ B.

This symplectic form is the de Rham differential (on F∂∂N ) of the 1-form

α∂∂N =
1

2

∫
∂N

A ∧ δA.

1The symplectic form is odd because it pairs components of A,B of opposite parity, which in
turn is due to the fact that dimN is odd.

2BFV is short for Batalin–Fradkin–Vilkovisky [7, 20].



CHERN–SIMONS ON CYLINDERS 5

Finally, using the surjective submersion π : FN → F∂∂N , given by pullback of differ-
ential forms from N to ∂N , we can project the vector field3 QN to F∂∂N . One can
check that it is also hamiltonian. For degree reasons it then automatically has a
unique odd hamiltonian function that we denote by S∂∂N . The important structural
relation between the boundary BFV data (F∂∂N , α∂∂N ,S∂∂N ) and the bulk “broken”
BV data (FN , ωN ,SN , QN , π) is

(1) δSN = ιQNωN + π∗α∂∂N .

The data, together with the structural relation (1), are the content of the classical
BV-BFV formalism. For more details we refer to [12].

For f a function on F∂∂N , there is a symmetry of the data given by shifting

SN → SfN = SN +π∗f and α∂∂N → α∂,f∂N = α∂∂N + δf . Clearly this is a symmetry of
Equation (1).

Remark 1.1. The BV-BFV formulation of abelian Chern–Simons theory can be
extended—as a Z2-graded theory—to dimension d = 1, see Section 3. Instead of
R-valued forms, there one has to consider forms with values in an odd vector space
Πg, with g an ordinary vector space equipped with an inner product. This is the
abelian version of the model studied in [2].

Let us explain now how to define the BV-BFV partition function. We will be
very brief here; for a detailed exposition we refer to [15]. We will require some
additional pieces of data. The first one is a polarization P (involutive lagrangian
distribution) on F∂∂N . We say that the boundary 1-form α∂ is compatible with P
if it vanishes on vectors belonging to P. Typically this is not the case, but it may
be achieved by means of the symmetry α∂ → α∂ + δf discussed above. Denote by
B the leaf space of the polarization. In the examples of this paper we actually have
F∂∂N ∼= T ∗B.

Next, we require a splitting FN ∼= B × Y where Y is also an odd symplectic
vector space. Finally, we choose the data of a gauge fixing on Y: another splitting
Y ∼= V ×Y ′ into odd symplectic vector spaces and a lagrangian L ⊂ Y ′ such that 0
is an isolated critical point of SN when restricted to B×V ×L ⊂ B×V ×Y ′ ∼= FM ,
fiberwise over B × V. The odd symplectic space V is called the space of residual
fields and L is called the gauge-fixing lagrangian.

Given all these data, we can define the perturbative partition function as the
integral of the exponentiated BV action over L:

ZN (A, a) =

∫
α∈L⊂Y′

Dα exp

(
i

~
SfN (A, a, α)

)
= exp

(
i

~
Seff(A, a)

)
.

The partition function Z and the effective action Seff are both functions on B ×V.
The integral is defined as a sum over Feynman diagrams—i.e., modeled on finite-

dimensional Gaussian integrals. As a consequence of the structural equation (1),
one expects ZN to satisfy the modified quantum master equation (mQME)

(2) (ΩB − ~2∆V)ZN = 0,

where ∆V is the BV operator acting on functions on the odd symplectic vector space
V of residual fields, given in Darboux coordinates (qi, pi) by

∑
i± ∂

∂qi
∂
∂pi

, and ΩB is

a quantization of the BFV action S∂∂N acting on functions on B. If we write F∂∂N =

3The vector field QN is no longer the hamiltonian vector field of SN . It is instead defined via
the formula above.
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T ∗B 3 (b, b′), then ΩB is given by S∂∂N (b,−i~ ∂
∂b ), with all derivatives to the right.

At lowest order in ~, we have Ω2
B = 0 as a consequence of (S, S) = 0. To ensure

this to all orders, one might have to add higher order corrections (although there
is no guarantee in general that the corrections exist). In all problems considered
in this paper, ΩB squares to zero without further corrections (see Theorem A).
Since these operators anticommute with each other and square to zero, there is a
double complex where ZN defines a cohomology class [ZN ]. This cohomology class
is invariant under deformation of the choices made in the construction. For more
details on the mQME (2), we refer to [13],[15].

Remark 1.2 (Choice of residual fields). The choice of the space V ⊂ Y is not unique.
In fact, there is a partially ordered set of such choices, with maximal element Y
and a minimal element Vmin, and one can pass from a bigger to a smaller choice by
a BV pushforward. A more detailed discussion can be found in [15, Appendix F].
In this paper, when we deal with dimensions d 6= 1, we usually first have a “big”
(infinite-dimensional) choice of V. In some cases we are able to compute the BV
pushforward to Vmin.

1.2. Main results of the paper. We are now ready to describe the main results of
this paper. We consider only spacetime manifolds N that are cylinders: N = I×Σ.
We think of the interval as I = [0, 1], so that ∂N = {0} × Σ t {1} × Σ, and we
denote by Σin,Σout the two components. The BFV space of boundary fields F∂∂N
then splits as F∂∂N = F∂in ×F∂out.

We will consider polarizations of the space of boundary fields F∂∂N that are
products of two polarizations on the two factors. We will work mostly with linear
polarizations, i.e., splittings F∂Σ ⊗ C = B ⊕ B′ where B,B′ are complementary

complex lagrangian subspaces of F∂Σ⊗C, so that we have an injection ω]Σ : B′ → B∗.
We will then write (suppressing the complexification) F∂Σ ∼= T ∗B and say that
we are using the B-representation.4 In ghost number 0 we also allow nonlinear
polarizations with smooth leaf space B such that F ∂Σ

∼= T ∗B.5

Consider now a representation F∂∂N ∼= T ∗Bin × T ∗Bout. Denote by EL the zero
locus of Q. This consists of (nonhomogeneous) closed forms in the abelian case
and of “flat” nonhomogoneous forms in the nonabelian one. We call the projection
L := π(EL) ⊂ F∂∂N the BV evolution relation. Denoting by F ∂∂N the ghost number
0 part, we get a product of two ordinary cotangent bundles F ∂∂N

∼= T ∗Bin×T ∗Bout.
We denote the restriction of the graded evolution relation by L := L|gh=0 and call
it simply the evolution relation. One can show that it is a lagrangian subspace
and that it consists of boundary fields that can be extended to solutions of the
Euler–Lagrange equations. A generalized generating function for L is given by the
Hamilton–Jacobi action SHJ[bin, bout, e] ∈ C∞(Bin × Bout × Vaux), where Vaux is

4A comment on complex vs. real spaces: by default, spaces of fields and spaces of boundary

fields are real vector spaces. In this paper, we have to complexify them to impose convenient
boundary conditions/polarizations. The splittings involved in the gauge fixing (and thus in the

corresponding spaces Y, V, Y ′, L) are only defined over C. The equations of motion and the

evolution relation are defined over R but need to be complexified to be described by a generating
function (involving a complex polarization). When writing down path integrals an implied step is

a choice of a real contour in the complexified space of fields, see Appendix A.1 for an illustration

of the principle.
5In general, one might have to restrict to neighborhoods in F∂∂N and B to achieve this

isomorphism.
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some space of additional parameters. This is discussed in detail in the companion
paper [16] and recalled in the Section 2 below. A first set of results can then be
summarized as follows.

Theorem A. Consider one of the following BV-BFV theories:

(1) 1D abelian Chern–Simons theory with linear or nonlinear polarizations,
(2) d = 4l + 3-dimensional Chern–Simons theory with linear or nonlinear po-

larizations,
(3) 3-dimensional nonabelian Chern–Simons theory with linear polarizations.

Then there exists a space of residual fields V and a gauge-fixing lagrangian L such
that the ghost number 0 component of V coincides with Vaux and the ghost number
0 component of Seff coincides with SHJ.

In particular, there are no quantum corrections to the effective action (notice
that the HJ action can be computed, as shown in [16, Section 7], completely at the
classical level). Our second main result concerns the mQME.

Theorem B. In all cases of Theorem A with linear polarizations, the BV-BFV
partition function Z satisfies the modified quantum master equation

(Ω− ~2∆)Z = 0

with Ω = ΩBin
+ ΩBout

given by the standard quantization of the boundary action
at both endpoints. For nonlinear polarizations F ∂Σ = T ∗B 3 (b, b′), the mQME is
satisfied whenever the constraint dΣA = 0 is linear in the momenta b′.

Again, in this case there are no quantum corrections to Ω. These theorems
summarize the results obtained in the various sections of this paper, where we
discuss the different examples individually. We will outline the paper in slightly
more detail in Section 1.3 below. Before that, let us comment on some of the more
specific results in more detail.

1.2.1. Three-dimensional abelian Chern–Simons theory. In three-dimensional Chern–
Simons theory, in ghost number 0 we have the lagrangian splitting

F ∂Σ ⊗ C = Ω1(Σ,C) = Ω1,0(Σ)⊕ Ω0,1(Σ).

For instance, one can define

Bout = Ω0(Σ,C)⊕ Ω1,0(Σ) 3 (A0
out,A

1,0
out)

and

Bin = Ω0,1(Σ)⊕ Ω2(Σ,C) 3 (A0,1
in ,A

2
in).

As discussed in Section 4.2, a possible choice for the space of residual fields is

Vsmall = {dt · (A0
I res + A2

I res) + (1− t) · A0
res + t · A2

res} ⊂ Ω•(I × Σ,C),

where AkI res,A
k
res are complex valued k-forms on Σ, t is the coordinate on I = [0, 1]

and the ghost numbers are gh(AkI res) = −k, gh(Akres) = 1 − k. We will denote by
σ := A0

I res the only ghost number 0 field in Vsmall. The BV-BFV partition function
is then computed as

Zsmall = exp
i

~

(∫
Σ

(
A1,0

outA
0,1
in + (∂A0,1

in + ∂̄A1,0
out) σ +

1

2
σ∂∂̄σ

)
︸ ︷︷ ︸

SHJ

+
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+

∫
Σ

(
− A0

outA
2
in + A0

outA
2
res − A2

inA
0
res +

1

2
A2

resA
0
res

))
.

In particular, focusing on the summand of the effective action in the first line, we
recognize the Hamilton–Jacobi action from Example 2.2, as an instance of Theorem
A. It is the action functional of a 2D free boson conformal field theory, coupled to
the boundary fields A1,0

out and A0,1
in . We arrive at the same result in ghost number

0 in Section 5.3.1, using Bin = Ω0(Σ,C) ⊕ Ω0,1(Σ). One can integrate out the
remaining residual fields to obtain then the fact that the partition function of
three-dimensional Chern–Simons theory for the minimal space of residual fields (cf.
Remark 1.2) coincides with the partition function of the 2D free boson CFT. In
particular, one can observe the Weyl anomaly in the 3D Chern–Simons partition
function. See Remark 4.3.

1.2.2. Three-dimensional nonabelian Chern–Simons theory and CS-WZW corre-
spondence. The same lagrangian splitting as above can be used to study the 3D
nonabelian Chern–Simons theory—see Section 5.3. The representation we use in
that section is F∂∂N = T ∗Bin × T ∗Bout with

Bout = Ω0(Σ,GC)⊕ Ω1,0(Σ,G) 3 (A0
out,A

1,0
out)

and

Bin = Ω0(Σ,GC)⊕ Ω0,1(Σ,G).

As a space of residual fields one can use

dt · Ω0(Σ,GC)⊕ Ω2(Σ,GC)[−1] 3 (dt · σ,A∗res)

with gh(σ) = 0, gh(A∗res) = −1. We compute the effective action in Lemma 5.12
and see that it has a tree part Seff(0) and a 1-loop part W:

Seff = Seff(0) + i~W = S
eff(0)
ph + S

eff(0)
gh + i~W

(the subscript ph denotes the terms involving only fields of ghost number 0, the
subscript gh denotes terms involving fields with nonzero ghost number). At first
glance the explicit formula (58) seems obscure, but we observe a number of inter-
esting phenomena:

i) One has to restrict the residual field σ to a certain “Gribov region” B0 ⊂ GC—
a region where the exponential map exp: GC → GC is injective—to make sure

that certain power series appearing in S
eff(0)
gh converge (Remark 5.13).

ii) As shown in Lemma 5.14, when we restrict σ to B0, we can reparametrize by

g = e−σ : Σ→ GC. In this reparametrization, we can rewrite S
eff(0)
ph as

S
eff(0)
ph =

∫
Σ

(
〈A1,0

out, g A
0,1
in g

−1〉 − 〈A1,0
out, ∂̄g · g−1〉 − 〈A0,1

in , g
−1∂g〉

)
+ WZW(g)

with the Wess–Zumino–Witten term

WZW(g) = −1

2

∫
Σ

〈∂g · g−1, ∂̄g · g−1〉 − 1

12

∫
Σ×I
〈dh · h−1, [dh · h−1, dh · h−1]〉

and h = e(t−1)σ. This coincides with the Hamilton–Jacobi action of Chern–
Simons theory, see Example 2.3.
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iii) The term i~W in principle violates Theorem A and is divergent. However, it
has a nice interpretation as a change of path integral measure from Dσ to Dg,
see Section 5.3.4. In particular, if one interprets Z as a half-density rather than
a function on the space of residual fields, and thus Seff as a log-half-density,
the effective action has no quantum corrections in the (g, g∗) coordinates on V
(here g∗ is the Darboux coordinate for g). It is in this sense that Theorem A
holds.

iv) In Section 5.3.6 we show that Z satisfies the modified quantum master equa-
tion in the different interpretations of Z (partition function vs. half-density).
Interestingly, in the (g, g∗) representation the mQME implies the well-known
Polyakov–Wiegmann identity for the WZW action.

We thus observe a strong version of the CS-WZW correspondence: Namely, the
effective theory of nonabelian Chern–Simons theory on I × Σ is a “gauged WZW
theory,” i.e., a WZW theory on Σ coupled to chiral gauge fields A1,0

in ,A
0,1
out.

We also compute expectation values of vertical Wilson lines (Section 5.3.7) and
show that they are given by field insertions in this WZW theory. This extends the
CS-WZW correspondence to the level of observables. See the discussion in Section
5.3.8.

Formally, after integrating over the residual group-valued field g, the Chern–
Simons partition function agrees with the partition function of the gauged WZW
theory. One can use this to heuristically show the holomorphic factorization of the
WZW model, as argued in Section 5.3.9.

Different versions of the relation between nonabelian Chern–Simons theory and
the WZW model were studied in the literature before. A connection somewhat close
to the one we are discussing appeared in [11, Section 4]; one important difference
is that we are focusing on the homological (BV-BFV) aspects obtaining WZW as
an effective BV theory. The other point is that the logic of our computation is
different (it is a pure perturbative computation; it does not rely on quantum gauge
invariance but has it as a result), see Remark 5.22.

1.2.3. Seven-dimensional Chern–Simons theory and the CS-BCOV correspondence.
Finally, let us consider seven-dimensional Chern–Simons theory on a cylinder N =
I ×M with M a Calabi–Yau manifold. In particular, the complex structure on M
defines a lagrangian splitting of F ∂M = Ω3(M,C):

Ω3(M,C) = X+⊕X−, X+ = Ω3,0(M)⊕Ω2,1(M), X− = Ω1,2(M)⊕Ω0,3(M).

This lagrangian splitting determines a polarization of F ∂M .
On a Calabi–Yau manifold, however, there is another polarization of F ∂M due

to Hitchin [28]. Namely, a complex three-form A on M which is not itself de-
composable, i.e., a wedge product of three 1-forms on M , has a decomposition
A = A+,nl + A−,nl where A±,nl are decomposable three-forms uniquely defined up
to exchange of + and −. This polarization is discussed in 6.3.1.

We can compute the partition function Z on the cylinder with

Bin = Ω≤2(M,C)⊕X+ 3 (cin,A
+,l
in )

and

Bout = Ω≤2(M,C)×X−,nl 3 (cout,A
−,nl
out ).

In this case, Theorem A holds—as shown in Section 5.2—and Theorem B holds
because the constraint dMA = 0 is linear in the momentum A+,nl. Thus, the
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physical part of the effective action coincides with the Hamilton–Jacobi action
computed in [16, Section 7.6] and is given by

Sph[A+,l
in ,A−,nl

out ,A
2,0
I res,A

1,1
I res,A

0,2
I res]

=
1

2

∫
M

∂A1,1
I res∂̄A

1,1
I res+

∫
M

A+,l
in dA0,2

I res+A2,1
in ∂̄A

1,1
I res−G(A+,l

in +dA2,0
I res+∂A

1,1
I res;A

−,nl
out )

with no quantum corrections in our choice of gauge fixing. Here Ap,qI res denote 2-
forms of Hodge type (p, q) which are the residual fields of ghost number 0, and
G(A+,l, A−,nl) is the generating function satisfying δG = A−,lδA+,l −A+,nlδA−,nl.
Since the partition function Z satisfies, by Theorem B, the modified quantum mas-
ter equation, when changing the gauge fixing the partition function changes by an
(Ω− ~2∆)-exact term.

The partition function Z can be interpreted as the integral kernel of a generalized
Segal–Bargmann transform, see Appendix A. We thus show that the approximation
used by Gerasimov and Shatashvili in [26]—where they were only assuming this
representation to be true in the semiclassical limit—is exact. Following [26], we
can then relate the Chern–Simons partition function to the partition function of
Kodaira–Spencer or BCOV theory, defined in [9] and recalled in Appendix B, as

follows. One can consider a certain (Ω-closed) state ψ(A−,nl
out , cout) in the A−,nl-

representation. We then apply the operator Z to ψ — by multiplying and formally
integrating over Bout— and show that the result Z · ψ is still (Ω − ~2∆)-closed.

Next we identify a gauge-fixing lagrangian L ⊂ V and compute Z ′′[A3,0
in ,A

2,1
in , cin] =∫

L Z · ψ. One can then show that in ghost number 0

Z ′′ph[A3,0
in = ω0,A

2,1
in = x] ∼ ZKS [x],

where ω0 is a normalized generator of H3,0
∂ (M), x is a ∂-harmonic form, and ZKS [x]

is the Kodaira-Spencer partition function with background x. For the precise state-
ment see Section 6.3.3. In particular, we see that this statement holds not only in
the semiclassical approximation to ZCS as in [26], but that it is exact. For gen-

eral boundary conditions A3,0
in ,A

2,1
in , the Chern–Simons partition function can be

computed from the mQME.

1.3. Structure of the paper. We summarize the remaining results by outlining
the structure of the paper.
In Section 2, we recall the construction of the Hamilton–Jacobi action from [16],
and the important examples (abelian and nonabelian Chern–Simons theory) from
that paper.

In Section 3, we consider as a warm-up the example of the abelian 1D CS theory.
This is the 1D AKSZ theory with target a vector space g that we assume to have
an inner product and a compatible complex structure J , so that g⊗ C = g+ ⊕ g−

splits into ±i-eigenspaces of J . We then compute the partition function for both
Bin = Bout = g+ in Section 3.1 and Bin = g+,Bout = g− in Section 3.2 and
comment briefly on the Theorems A and B in this context (which are in this case
rather trivial).

In Section 4, we consider the 3D abelian Chern–Simons theory on I × Σ as a
1D theory with values in g = Ω•(Σ). Choosing a complex structure on Σ, we split
g = g+ ⊕ g− and consider Bin = Bout = g+ in Section 4.1 and Bin = g−,Bout = g+

in Section 4.2. In both cases, we comment on the HJ and mQME properties, and
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in the second case also the pushforward to the minimal space of residual fields and
the relation to the 2D free boson CFT is discussed.

In Section 5, we consider the case where Bin and Bout both have components
only in nonnegative ghost number, and agree in positive ghost number. We call
these “parallel ghost polarization”. In Section 5.1, we consider 1D Chern–Simons
theory with values in a complex, with opposite linear polarizations in ghost number
0. In Section 5.2, we consider the same theory with a possibly nonlinear polariza-
tion on the out-boundary. These subsections serve as a toy model for the higher-
dimensional Chern–Simons theories considered later. In Section 5.3, we return to
the three-dimensional Chern–Simons theory, with opposite linear polarization in
degree 0. After briefly studying again the abelian case in Section 5.3.1, we discuss
the nonabelian case in more detail, the results are summarized already in Section
1.2.2 above. Finally in Section 5.4, we consider the nonabelian theory with parallel
polarizations both in the ghost and physical sectors.

In Section 6, we turn to Chern–Simons theories of arbitrary dimension. We
consider both linear polarizations that are transversal in the ghost sector at opposite
ends (Section 6.1) and parallel in the ghost sector (Section 6.2). Finally in Section
6.3 we turn our attention to nonlinear polarizations at one boundary, in particular
the 7D case with Hitchin polarization, that was summarized in Section 1.2.3 above.

The appendices contain some complementary material. In Appendix A we show
how to recover the usual Segal–Bargmann transform as a BV-BFV partition func-
tion on an interval with a particular choice of boundary polarizations. This is
an illustration of the maxim that topological partition functions on cylinders yield
instances of generalized Segal–Bargmann transforms. We also comment on the con-
tour integration in the complexified space of fields. In Appendix B, we recall very
briefly the Kodaira–Spencer theory of deformations of complex structures and the
BCOV action functional.

1.4. Outlook. Finally, let us point out some interesting directions for further re-
search.

• All our partition functions depend nontrivially on the choice of complex
structure on the boundary.6 This dependence should be described by ex-
tending the partition function to a (projectively flat) section of a vector
bundle over the moduli space of complex structures on the boundary, for
instance the one constructed in [4].
• Recently [32] it has been suggested that the partition function of a 3D U(1)

Chern–Simons theory can be computed by averaging over Narain moduli
space of boundary CFT’s. We believe our methods could be generalized to
include nontrivial flat bundles and we plan to investigate this proposal.
• Our results on the CS-WZW correspondence strongly suggest that the space

of n-point conformal blocks can be described as the Ω-cohomology (see
Section 5.3.8; the genus-zero case of this statement was a result of [1]).
This would provide an interesting new description of the space of confor-
mal blocks. We also hope it would lead to a better understanding of the
relationship between Chern–Simons theory and the KZ(B) connection.

6As a matter of fact, they even depend on the Riemmanian metric inducing the complex
structure on the boundary, a phenomenon known as conformal anomaly. See Remark 4.3.(b).
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• It would be highly interesting to compare our findings on the CS-BCOV
correspondence to other approaches to the subject such as [17].
• Another proposal to compute holographic duals of action functionals from

BV-BFV formalism on manifolds with boundary was made by the second
and third authors together with M. Schiavina in [34]. The point of view
there was more focused on descent equations and extensions to higher codi-
mension, while the present paper emphasizes the role of the BV effective
action. The relationship between the two constructions needs to be ex-
plored.

1.5. Notations and Conventions.

This is a quantum paper and notations fluctuate. Fixing one makes
a complementary one explode.

In this paper we study field theories on cylinders N = I × Σ from different
viewpoints, with I = [0, 1] the interval with its standard orientation, and a Σ a (d−
1)-dimensional closed oriented manifold. Notations are adapted to the individual
sections.
We are considering Chern–Simons-type theories, in different dimensions and with
different targets. The Chern–Simons superfield is denoted A ∈ Ω•(I × Σ,Πg).

When we are considering 1-dimensional theories (with a possibly infinite-dimensional
target) as in Sections 3, 5.1, 5.2, we denote the components of the superfield
A = ψ + A, where ψ ∈ Ω0(I, g) and A ∈ Ω1(I, g). Decoration of ψ,A with su-
perscripts denotes components w.r.t. a splitting of g. Decoration of ψ,A with
subscripts denotes components w.r.t. a splitting of Ω•(I). Typical subscripts are
in and out, denoting fields supported on the in or out boundary (elements of Bin

or Bout) respectively, res for residual fields (elements of V), and fl for fluctuations
(elements of L).
When we are thinking about higher-dimensional theories (still on cylinders) as in
Section 4 , 6, we denote the components of A = A+dt ·AI , with A,AI ∈ Ω0,•(I×Σ).
Superscripts now denote components of homogeneous form degree in Σ.
In Sections 5.3, 5.4, it is convenient to revert to a more “traditional” notation
A = c+A+A∗ + c∗, here the nonhomogeneous differential form is split according
to form degree. There we also denote the (finite-dimensional) coefficient Lie algebra
by G.

Acknowledgment. We thank Samson Shatashvili for suggesting the study of 7D
abelian Chern–Simons theory in the quantum BV-BFV formalism, now in Sec-
tion 6.3, which was the original motivation out of which this paper and [16] grew.
We also thank Ivan Contreras, Philippe Mathieu, Nicolai Reshetikhin, Pavel Safronov,
Michele Schiavina, Stephan Stolz, Alan Weinstein, Ping Xu and Donald Youmans
for useful discussions.

2. Constrained systems and generalized Hamilton–Jacobi actions

We start with a short review of the results of [16] that are relevant for this paper.
We focus on action functionals of the form7

S[p, q, e] =

∫
I

(pdq − 〈H(p, q), e〉),

7Such an action functional is the classical part of an AKSZ theory [3] on an interval I. See

also [6] for the study of such a theory in the Dirac formalism.
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where I is the interval [0, 1], (p, q) are coordinates on a given cotangent bundle T ∗B
(and, by abuse of notation, also stand for a map from I to T ∗B), e is a one-form
on I taking value in some vector space h, and H is a given map T ∗B → h∗. The
pairing between the p and the q coordinates is understood, whereas for the pairing
between h and its dual we use the notation 〈 , 〉. In the applications of this paper
the space h and the manifold B are infinite-dimensional (typically, Fréchet spaces).

To be more precise, T ∗B denotes some given vector bundle over B with a non-
degenerate pairing to TB; we denote by θ the canonical one-form on it (which we
will also call the Noether 1-form in the following) and by ω = dθ the canonical
symplectic form; by h∗ we denote a given subspace of the dual of h such that its
pairing to h is still nondegenerate. The first term in the action can also be written
in coordinate-free way as x∗θ in terms of a path x : I → T ∗B. For the second term,
we assume a given map X from h to the vector fields on T ∗B and define, up to
carefully chosen constants, the map H by ιXω = dH. (Note that H is a map from
h to the functions on T ∗B, and we assume that, dually, it belongs to the chosen
subspace h∗.)

Example 2.1 (3D Chern–Simons theory). Consider 3D Chern–Simons theory for a
quadratic Lie algebra G on I×Σ, where Σ is a closed oriented surface with a chosen
complex structure. The complexified phase space is T ∗B = Ω1,0(Σ)⊗G⊕Ω0,1(Σ)⊗G
with B = Ω0,1(Σ) ⊗ G. We then have h = Ω0(Σ) ⊗ G and h∗ = Ω2(Σ) ⊗ G. The
pairings are induced by the given pairing on G and by integration on Σ. An element
of T ∗B is a connection one-form, the map X yields the gauge transformations, and
H is the curvature two-form.

We split the fields into two classes: the dynamical field (the map x to T ∗B) and
the Lagrange multiplier (the h-valued one-form e). We accordingly split the Euler–
Lagrange (EL) equations into the evolution equation, the variations with respect
to the dynamical field,

dx = 〈X, e〉,
and the constraints, the variations with respect to the Lagrange multiplier,

H = 0.

Note that the constraints must be satisfied at every time.
We define the evolution relation L as the possible boundary values (at 0 and 1

in I) that a solution to the EL equations can have. Assuming it to be a (possibly
immersed) submanifold, L turns out to be an isotropic submanifold of T ∗B × T ∗B
[12], where the bar means that we use the opposite symplectic form. We assume it
to be actually split lagrangian (i.e., for every point v of L, its tangent space TvL,
which is isotropic in general, must have an isotropic complement).8 Thanks to the
Hodge decomposition theorem, this assumption is satisfied in all the examples of
this paper.

We then denote by C the projection of L on either factor T ∗B and we assume it
to be a submanifold. As observed in [13], if L is lagrangian, then C is coisotropic. In
particular, at every point c ∈ C and for every ξ ∈ h, the vector 〈X(c), ξ〉 is tangent
to C. Moreover, the span of these vectors at each point defines an involutive
distribution on C, called the characteristic distribution (the reduced phase space

8In particular, this implies that L is lagrangian, i.e., that the symplectic orthogonal of TvL is
TvL itself for every point v of L.
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of the theory is then defined as the reduction of C with respect to its characteristic
distributon).9

In the case at hand, we have that C is the zero locus of H. The evolution
equation, for a given e, is then the hamiltonian evolution for the (time-dependent)
hamiltonian 〈H, e〉. Since C is coisotropic, this evolution does not leave C—so it is
enough to implement the constraint H = 0 at the initial, or final, endpoint—and lies
along the characteristic distribution. It follows that the evolution relation L consists
of pairs of points on C lying on the same leaf of the characteristic distribution.

Next we are interested in solutions to the EL equations. For this we have to fix
boundary conditions; namely, we have to choose lagrangian submanifolds L0 and L1

of T ∗B at the endpoints of I, and we assume that the intersection of L0×L1 with the
evolution relation L is discrete.10 For simplicity, we will work with a unique solution.
We are also interested in letting boundary conditions vary, so we consider families
of lagrangian submanifolds (polarizations). Concretely, at the initial endpoint we
take the L0s to be the fibers of T ∗B, which we then parametrize by B, whereas at
the final endpoint we realize T ∗B as T ∗B′, with B′ a possibly different manifold,
and take the L1s to be the fibers of T ∗B′, which we then parametrize by B′.11 We
want the variations of the action with the given boundary conditions not to have
boundary terms. This is automatically satisfied at the initial point, where we take
the polarization T ∗B, but we have to adapt the action to the canonical one-form
θ′ of T ∗B′ at the final endpoint. For this, we assume that there is a function f on
B ×B′ such that θ = θ′ + df and we modify the action to

Sf [p, q, e] := S[x, e]− f(q(1), Q(p(1), q(1))),

where Q is the base coordinate of T ∗B′.

We define the Hamilton–Jacobi (HJ) action SfHJ of the theory with respect to the
given polarizations as the evaluation of Sf on a solution (which we assume to be

unique) to the evolution equation for each choice of e. Note that SfHJ is a function
on B×B′×Ω1(I, h) 3 (qin, Qout, e). Also note that we do not impose the constraints

in the definition of SfHJ. It was proved in [16] i) that SfHJ is invariant under certain
equivalence transformations of e, and ii) that it is a generalized generating function
for the evolution relation L with respect to the given polarizations.

Let us elaborate on this. As for i), assume for simplicity that, as in every
example of this paper, h is actually a Lie algebra and H is an equivariant momentum
map (for the infinitesimal action X of h on T ∗B). Then e may be regarded as a
connection one-form on I. The equivalence transformations are in this case gauge
transformations that are trivial at the endpoints. As for ii), the statement means

9In the case of 3D Chern–Simons theory, Example 2.1, C is the space of flat connections

on the surface Σ, and the reduced phase space is the space of flat connections modulo gauge
trnasformations.

10More precisely, one looks for solutions of the EL equations that are critical points for the

action. This requires changing the boundary one-form by an exact term in such a way that it
vanishes on L0 and L1. In particular, this can only happen if L0 and L1 are isotropic. Moreover,
we want the intersection of L0 × L1 with L to be discrete, so that locally the solution is unique.
At each intersection point, the tangent spaces to L0×L1 and to L are then complementary, which
implies that they are not only isotropic but split lagrangian. We want this to happen for generic

boundary conditions. This is the reason why L is required to be split lagrangian.
11In the examples of this paper, B is a vector space, so T ∗B is of the form B∗ ⊕ B. We are

also interested in complex polarizations. In the case at hand, this simply means allowing B to be
a complex vector space. Then the complexified phase space is B∗ ⊕B.
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that, upon setting to zero the variation of SfHJ with respect to (the equivalence

class of) e, we recover the final P variables of a solution as the variation of SfHJ

with respect to Qout and the initial p variables of a solution as minus the variation

of SfHJ with respect to qin.
Explicit examples, relevant for this paper, are discussed in [16, Section 7]. We

recall the results.

Example 2.2 (Abelian 3D Chern–Simons theory). We use the notations of Ex-
ample 2.1, but now with g = R. We take the initial polarization as T ∗B, with
B = Ω0,1(Σ), and the final polarization as T ∗B′, with B′ = Ω1,0(Σ).12 We denote
by ∂ and ∂̄ the Dolbeault operators. The HJ action then reads

SfHJ =

∫
Σ

(
A1,0

outA
0,1
in + σ(∂̄A1,0

out + ∂A0,1
in ) +

1

2
σ∂∂̄σ

)
,

with A0,1
in ∈ B, A1,0

out ∈ B′, and σ ∈ Ω0(Σ).

Example 2.3 (Nonabelian 3D Chern–Simons theory). Again we use the notations
of Example 2.1. The initial and final polarizations now are T ∗B, withB = Ω0,1(Σ)⊗
G, and T ∗B′, with B′ = Ω1,0(Σ)⊗G. We assume the exponential map from G to the
its simply connected Lie group G to be surjective. In this case the gauge-invariant
parameter g ∈ Map(Σ, G) is of the form g = e−σ with σ ∈ Map(Σ,G). The HJ
action then reads

SfHJ =

∫
Σ

(
〈A1,0

out, g A
0,1
in g

−1〉 − 〈A1,0
out, ∂̄g · g−1〉 − 〈A0,1

in , g
−1∂g〉

)
+ WZW(g)

with the Wess–Zumino–Witten term

WZW(g) = −1

2

∫
Σ

〈∂g · g−1, ∂̄g · g−1〉 − 1

12

∫
Σ×I
〈dh · h−1, [dh · h−1, dh · h−1]〉,

where h = e(t−1)σ.13 Thus, the HJ action of Chern–Simons theory can be identi-
fied with a “gauged WZW action” (see for instance [23]). This points at a deep
relationship between these two theories.

3. BV-BFV approach warm-up: 1D abelian Chern–Simons

As a warm-up exercise before the BV-BFV treatment of 3D Chern–Simons, let
us consider one-dimensional abelian Chern–Simons theory14 on an interval I = [0, 1]
— the AKSZ theory with Z2-graded space of BV fields

F = Map(T [1]I,Πg) = Ω•(I)⊗Πg.

Here g is a vector space of coefficients endowed with a nondegenerate inner product
(, ) and Π is the parity-reversal symbol. A vector in F is the superfield ψ+A, with
ψ a Πg-valued 0-form and A a g-valued 1-form, and the BV action is:

(3) S(ψ +A) =

∫
I

1

2
(ψ, dIψ)

12This polarization is known in the literature on Chern–Simons theory. In a context close to
the context of the present paper, it was discussed in [14, Section 2.4.4] and in [1].

13Here we are using the conventions of Section 5.3 (Lemma 5.14) which are different from the

conventions of [16].
14This is the abelian version of the theory considered in [2].
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with dI = dt ddt the de Rham differential on the interval t ∈ [0, 1]. The odd sym-

plectic form on F is given by ω = −
∫
I
(δA, δψ). The cohomological vector field

(BRST operator) Q on F is defined by Q : ψ 7→ 0, A 7→ dIψ.
The BFV phase space assigned to a point is F∂pt = Πg, equipped with Noether

1-form αpt± = ± 1
2 (ψ, δψ) where ± corresponds to the orientation of the point; the

BFV action is zero,15 Spt = 0. We are using the following sign convention for the
BV-BFV structure relation:

(4) δS = ιQω + π∗α∂ .

Assume that g is equipped with a complex structure J ∈ End(g), J2 = −Id,
compatible with the inner product. We have a splitting of the complexification of
g into ±i-eigenspaces of J :

(5) gC = g+ ⊕ g−

— the “holomorphic” and “antiholomorphic” subspaces of gC = g ⊗ C, which are
lagrangian due to compatibility between J and (, ).

3.1. Holomorphic-to-holomorphic boundary conditions. Consider the bound-
ary polarization Span( ∂

∂ψ− ) imposed at both t = 0 and t = 1 (a.k.a. ψ+ − ψ+

representation, as the partition function will depend on the boundary value ψ+
in at

t = 0 and boundary value ψ+
out at t = 1). For compatibility with this polarization,

we need to modify the action (3) by boundary terms:

(6) S 7→ Sf = S +
1

2
(ψ+, ψ−)

∣∣
t=1
− 1

2
(ψ+, ψ−)

∣∣
t=0

.

Then the corresponding boundary 1-form is:

αf∂I =

(
1

2
(ψ, δψ) + δ

1

2
(ψ+, ψ−)

)∣∣∣∣
t=1

−
(

1

2
(ψ, δψ) + δ

1

2
(ψ+, ψ−)

)∣∣∣∣
t=0

= (ψ−, δψ+)
∣∣
t=1
− (ψ−, δψ+)

∣∣
t=0

— the canonical 1-form in the chosen representation, as desired (cf. Section 1.1;
see [16, Section 9] and references therein for more details). The space of fields F is
fibered over the base B = Πg+ ⊕Πg+ = {(ψ+

in, ψ
+
out)} with the fiber

Y = Ω•(I, ∂I; Πg+)⊕ Ω•(I; Πg−).

Here the first summand on the r.h.s. is g+-valued forms vanishing on the boundary
and the second summand is g−-valued forms with free boundary conditions. The
cochain complex Y admits the following splitting (a Hodge decomposition):

(7) Y =
(
dt · g+ ⊕ 1 ·Πg−

)︸ ︷︷ ︸
V

⊕
⊕(

Ω0(I, ∂I; Πg+)⊕ Ω0∫
=0(I; Πg−)

)︸ ︷︷ ︸
Y′K−ex

⊕(
Ω1∫

=0(I; g+)⊕ Ω1(I; g−)
)︸ ︷︷ ︸

Y′d−ex

.

Here the first term (“residual fields”) is a deformation retract of Y (in this case,
in fact, its cohomology). The subscript

∫
= 0 means “forms with vanishing total

integral” (against dt in 0-form case). The two last terms jointly form an acyclic
subcomplex Y ′ of Y, split into a d-exact part and its direct complement — the

15It is nonzero in nonabelian theory: there one has Spt± = ± 1
6

(ψ, [ψ,ψ]).
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K-exact part, where K : Y• → Y•−1 is the chain homotopy between identity and
projection onto V. Explicitly, K kills all 0-forms and acts on g+- and g−-valued
1-forms as follows:

(8) K :
dt g+(t) 7→

∫ t
0
dt′g+(t′)− t

∫ 1

0
dt′g+(t′),

dt g−(t) 7→ −
∫ 1

t
dt′g−(t′) +

∫ 1

0
dt′ t′ g−(t′).

The integral kernel of K is the propagator:

(9) η(t, t′) = π+ ⊗ (θ(t− t′)− t) + π− ⊗ (t′ − θ(t′ − t)),
where π± are the projectors from g to g± and θ is the step function.

The BV-BFV partition function is given by the following path integral (see [15]
for the general construction):

(10) Z(ψ+
in, ψ

+
out;ψ

−
res, A

+
res) =

=

∫
Y′K−ex⊂Y′

Dψ+
fl Dψ−fl e

i
~S

f

(
ψ̃+

in+ψ̃+
out+ψ

+
fl +ψ−res+ψ

−
fl +dt·A+

res

)
.

Here the notations are:

• ψ̃+
in is the discontinuous extension16 of ψ+

in at t = 0 by zero at t > 0; likewise,

ψ̃+
out is the discontinuous extension of ψ+

out at t = 1 by zero at t < 1;
• the “fluctuation” (ψ+

fl , ψ
−
fl ) ∈ Y ′K−ex is the field we integrate over (while

setting to zero the component in Y ′d−ex is the gauge fixing);

• (ψ−res, dt ·A+
res) ∈ V, with ψ−res ∈ Πg− and A+

res ∈ g+, is the residual field.

Continuing the computation (10), we have the Gaussian integral

(11) Z =

∫
Dψ+

fl Dψ−fl exp
i

~

( 1

2

∫
I

(
ψ−res + ψ−fl , dI(ψ̃

+
out + ψ̃+

in)
)

︸ ︷︷ ︸
a

+

+
1

2

∫
I

(
ψ̃+

out + ψ̃+
in, dI(ψ

−
res + ψ−fl )

)
︸ ︷︷ ︸

b

+
1

2

∫
I

(
ψ−res + ψ−fl , dIψ

+
fl

)
︸ ︷︷ ︸

c

+
1

2

∫
I

(
ψ+

fl , dI(ψ
−
res + ψ−fl )

)
︸ ︷︷ ︸

d

+

+
1

2
(ψ+

out, ψ
−
res + ψ−fl

∣∣
t=1

)︸ ︷︷ ︸
e

−1

2
(ψ+

in, ψ
−
res + ψ−fl

∣∣
t=0

)︸ ︷︷ ︸
f

)

=

∫
Dψ+

fl Dψ−fl e
i
~ (
∫
I
(ψ−fl ,dIψ

+
fl )+(ψ+

out,ψ
−
res+ψ

−
fl (1))−(ψ+

in,ψ
−
res+ψ

−
fl (0)))

= e
i
~ (ψ+

out−ψ
+
in,ψ

−
res).

Here the terms in the first expression above are:

• Term a is a pure boundary term, in fact a = e+ f , which leads to 1
2 factors

of the boundary terms e, f being doubled and replaced by 1 in the second
equality in (11).
• b = 0.
• c = d = 1

2

∫
I
(ψ−fl , dIψ

+
fl ).

16See [15] and [16, Section 9] for the details on discontinuous extension of boundary fields.
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3.2. Antiholomorphic-to-holomorphic boundary conditions. Next, consider
imposing the polarization ∂

∂ψ+ at t = 0 and ∂
∂ψ− at t = 1 (a.k.a. ψ− − ψ+ repre-

sentation: we are fixing the boundary value ψ−in at t = 0 and ψ+
out at t = 1). The

“polarized action” (the counterpart of (6)) in this case is:

(12) Sf = S +
1

2
(ψ+, ψ−)

∣∣
t=1

+
1

2
(ψ+, ψ−)

∣∣
t=0

and the corresponding boundary 1-form is:

αf∂I =

(
1

2
(ψ, δψ) + δ

1

2
(ψ+, ψ−)

)∣∣∣∣
t=1

−
(

1

2
(ψ, δψ)− δ 1

2
(ψ+, ψ−)

)∣∣∣∣
t=0

= (ψ−, δψ+)
∣∣
t=1
− (ψ+, δψ−)

∣∣
t=0

.

This 1-form vanishes along the chosen polarization, as desired.
Next, the fiber of the space of fields F over the base B = Πg− ⊕ Πg+ =

{(ψ−in, ψ+
out)} is the complex

(13) Y = Ω•(I, {1}; Πg+)⊕ Ω•(I, {0}; Πg−),

which admits the following decomposition:

(14) Y =
(
dt · gC ⊕ (1− t) ·Πg+ ⊕ t ·Πg−

)︸ ︷︷ ︸
V

⊕
⊕(

Ω0∫
=0(I, {1}; Πg+)⊕ Ω0∫

=0(I, {0}; Πg−)
)︸ ︷︷ ︸

Y′K−ex

⊕

⊕ ({
g+(t)dt ∈ Ω1(I; g+)

∣∣∣ ∫I dt g+(t) · t = 0
}
⊕

⊕
{
g−(t)dt ∈ Ω1(I; g−)

∣∣∣ ∫I dt g−(t) · (1− t) = 0
})

︸ ︷︷ ︸
Y′d−ex

Again, this is a splitting of Y into a deformation retract17 and an acyclic subcom-
plex, with the latter split in turn into the d-exact part and a direct complement —
the K-exact part, with the chain homotopy K taking the form

K :
dt g+(t) 7→ −

∫ 1

t
dt′ g+(t′) + 2(1− t)

∫ 1

0
dt′ t′ g+(t′),

dt g−(t) 7→
∫ t

0
dt′ g−(t′)− 2t

∫ 1

0
dt′ (1− t′) g−(t′).

Its integral kernel — the propagator — is

(15) η(t, t′) = π+ ⊗
(
− θ(t′ − t) + 2(1− t) t′

)
+ π− ⊗

(
θ(t− t′)− 2t (1− t′)

)
.

We write an element of the space of residual fields V as (1−t)·ψ+
res+t·ψ−res+dt·Ares,

with ψ+
res ∈ Πg+, ψ−res ∈ Πg−, Ares ∈ gC.

The BV-BFV partition function is:

(16) Z(ψ−in, ψ
+
out;ψ

+
res, ψ

−
res, Ares) =

=

∫
Y′K−ex⊂Y′

Dψ+
fl Dψ−fl e

i
~S

f

(
ψ̃−in+ψ̃+

out+(1−t)·ψ+
res+t·ψ

−
res+ψ

+
fl +ψ−fl +dt·Ares

)

17Note that here we have chosen V to be larger than cohomology (which in fact vanishes in
this case).
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=

∫
Dψ+

fl Dψ−fl exp
i

~

(∫
(ψ−fl , dIψ

+
fl )+

1

2
(ψ−res, ψ

+
res)+(ψ+

out, ψ
−
res+ψ

−
fl (1))−(ψ−in, ψ

+
res+ψ

+
fl (0))

)
= exp

i

~

(
1

2
(ψ−res, ψ

+
res) + (ψ+

out, ψ
−
res)− (ψ−in, ψ

+
res) + (ψ−in, ψ

+
out)

)
.

Here the last term comes from the simple Feynman diagram with a single propagator
connecting ψ+

out and ψ−in.

Remark 3.1. One can further integrate out ψ±res in (16) resulting in the partition
function

(17) Z(ψ−in, ψ
+
out) = e

i
~ (ψ+

out,ψ
−
in).

It corresponds to choosing the space of residual fields in (13) to be zero (which is
possible since the full complex Y is acyclic). Thus, (17) is the minimal realization
of the partition function of the theory on the interval with prescribed boundary
polarizations, and it is the BV pushforward of the nonminimal realization (16).

Remark 3.2. The exponent SHJ = (ψ+
out, ψ

−
in) in (17) is the Hamilton–Jacobi action

for the theory: it is the action (12) evaluated on the (unique) solution of EL equation

ψ̇ = 0 satisfying the boundary conditions ψ−|t=0 = ψ−in, ψ+|t=1 = ψ+
out. Also, SHJ

is the generating function for the evolution relation of the theory:

LSHJ =
{
ψ|t=1 = ψ+

out +
∂SHJ

∂ψ+
out

= ψ+
out +ψ−in , ψ|t=0 = ψ−in−

∂SHJ

∂ψ−in
= ψ−in +ψ+

out

}
=
{
ψ|t=1 = ψ|t=0

}
⊂ Πg×Πg.

This provides a simple example of Hamilton–Jacobi formalism, see [16] and Section
2, with the phase space being the symplectic supermanifold Πg.

Moreover, the exponent in (16) is a generalized generating function for the evo-
lution relation, with ψ±res the auxiliary parameters. It can also be seen as the
Hamilton–Jacobi action for the action Sf +

∫
dt(λ, ψ − 1

2ψres) with Sf as in (12)
and where λ ∈ Πg (a constant along I) is a Lagrange multiplier.

4. BV-BFV approach to 3D abelian Chern–Simons on a cylinder

Consider the 3-dimensional abelian Chern–Simons theory on a cylinder I × Σ,
with Σ a closed oriented surface and I = [0, 1] the interval parametrized by the
coordinate t. The space of BV fields, as given by the AKSZ construction, is the
Z-graded mapping space

F = Map(T [1](I × Σ),R[1]) = Ω•(I × Σ)[1].

Exploiting the fact that the source is a cylinder, we can also write it as a free (i.e.,
with a quadratic action) 1-dimensional AKSZ theory with the target given by forms
on Σ:

F = Map(T [1]I,Map(T [1]Σ,R[1])) = Ω•(I,Ω•(Σ)[1]).

The BV action is:

(18) S =

∫
I×Σ

1

2
A ∧ dA =

∫
I

1

2
(A, dIA) +

1

2
(A, dΣA).

Here d = dI +dΣ is the de Rham operator on the cylinder splitting into the surface
part and the interval part; the pairing is integration over the surface: (u, v) =



20 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI∫
Σ
u ∧ v. The field splits into 0- and 1-form components along I as

A = A + dt · AI
with A,AI two t-dependent nonhomogeneous forms on Σ; their homogeneous com-
ponents are prescribed internal Z-grading (ghost number) as follows: gh(A(p)) =

1− p, gh(A
(p)
I ) = −p.

Comparing to the discussion of Section 3, this theory can be seen as 1-dimensional
Chern–Simons on I with coefficients in g = Ω•(Σ). Here the fact that g is itself a
cochain complex with differential dΣ gives rise to an additional term in the action.
Also, the fact that g has a degree −2 (rather than degree 0) graded-symmetric pair-
ing allows one to prescribe Z-grading to fields (in such a way that the action has
degree 0 and the odd symplectic form has degree −1) rather than just Z2-grading.

The BFV phase space assigned to a boundary surface ({1} × Σ or {0} × Σ) is
F∂Σ = Ω•(Σ)[1] which is 0-symplectic, with the Noether 1-form ±

∫
Σ

1
2A∧ δA where

the sign is + for the out-boundary and − for the in-boundary. The phase space
carries a degree −1 BFV action

(19) SΣ = ±
∫

Σ

1

2
A ∧ dΣA.

Next, assume that Σ is endowed with a complex structure, so that complex-
valued 1-forms split as Ω1

C(Σ) = Ω1,0(Σ)⊕ Ω0,1(Σ). Then, mimicking (5), we split
the (complexified) space of all forms on Σ as follows:

(20) Ω•C(Σ)︸ ︷︷ ︸
gC

= (Ω0
C(Σ)⊕ Ω1,0(Σ))︸ ︷︷ ︸

g+

⊕
(Ω0,1(Σ)⊕ Ω2

C(Σ))︸ ︷︷ ︸
g−

.

This is, clearly, a splitting into lagrangian subspaces.

4.1. Holomorphic-to-holomorphic boundary conditions. Consider the po-
larization Span{ δ

δA− } on both boundary surfaces, at t = 0 and t = 1, i.e., the one

where we prescribe boundary values A+
in, A+

out. The corresponding modification of
the action by boundary terms adjusting for the polarization is:

Sf = S +
1

2

∫
{1}×Σ

A+A− − 1

2

∫
{0}×Σ

A+A−

and the corresponding Noether 1-form is:

αfΣ×∂I =

∫
{1}×Σ

A−δA+ −
∫
{0}×Σ

A−δA+.

The fiber of the (complexified) space of fields over the space of boundary condi-
tions B = g+[1]⊕ g+[1] = {(A+

in,A
+
out)} is:

Y = Ω•(I, ∂I; g+[1])⊕ Ω•(I; g−[1]).

Hodge decomposition (7) holds (where one should replace Π with degree shift [1])
and the formula for the chain homotopy (8) and the propagator (9) also. Writing
out the projectors π± explicitly in our case, we obtain the following formula for the
propagator:

(21) η((z, z̄, t) ; (z′, z̄′, t′)) =

= δ(2)(z − z′) i
2

(
− dz ∧ dz̄′ + dz′ ∧ dz̄′

) (
θ(t− t′)− t

)
+
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+ δ(2)(z − z′) i
2

(
dz̄ ∧ dz′ + dz ∧ dz̄

) (
t′ − θ(t′ − t)

)
.

— This is a distributional 2-form on (I ×Σ)× (I ×Σ). Here z is the local complex
coordinate on Σ. Our convention for the normalization of the delta function is:∫
i
2dz ∧ dz̄ δ(2)(z − z′) = 1.
Note that the propagator (21) is for the dI term in the action (18) only, whereas

the dΣ term is treated as a perturbation.
The space of residual fields is:

V = dt · g+ ⊕ 1 · g− = {dt · A0
I res + dt · A1,0

I res + A0,1
res + A2

res},

where A0
I res, A1,0

I res, A0,1
res , A2

res are t-independent forms on Σ of de Rham degree
0, (1, 0), (0, 1), 2, respectively, with internal degree 0,−1, 0,−1, respectively.

Remark 4.1 (Axial gauge). We call the gauge fixing introduced here the axial gauge:
it sets the “axial” field fluctuations — those which are 1-forms along I and forms
of any degree along Σ — to zero.

On the level of homological algebra, for M,N closed manifolds, one can con-
struct a chain contraction K from Ω•(M × N) to H•(M) ⊗ Ω•(N) of the form
K = KM ⊗ idN with KM a chain contraction from forms on M to its cohomology
(cohomology can be swapped for any deformation retract of the de Rham complex
in the construction). The integral kernel of K — the propagator — is a distribu-
tional form on (M ×N)×2 containing the delta form on N ×N . A version of the
axial gauge for Chern–Simons theory was first employed in [21]. In our situation,
N = Σ and M = I is not a closed manifold and hence the construction has to be
adapted for boundary conditions — which is exactly what we did above. The chain
contraction, corresponding to (21), has the form K = KI,∂I⊗ idg+ +KI⊗ idg− . We
will encounter versions of this construction for different choices of boundary con-
ditions further in this paper (e.g., in the case of Section 4.2, the chain contraction
has the form KI,{1} ⊗ idg+ +KI,{0} ⊗ idg−).18

The BV-BFV partition function is readily calculated:

(22) Z(A0
in,A

1,0
in︸ ︷︷ ︸

A+
in

,A0
out,A

1,0
out︸ ︷︷ ︸

A+
out

;A0
I res,A

1,0
I res︸ ︷︷ ︸

A+
I res

,A0,1
res ,A

2
res︸ ︷︷ ︸

A−res

) =

=

∫
Y′K−ex⊂Y′

DA+
fl DA−fl e

i
~S

f

(
Ã+

in+Ã+
out+A+

fl +A−res+A−fl +dt·A+
I res

)

=

∫
DA+

fl DA−fl e
i
~

( ∫
I×Σ

A−fl dIA
+
fl +
∫
{1}×Σ

A+
outA

−−
∫
{0}×Σ

A+
inA
−+
∫
I×Σ

1
2A dΣA

)
=

∫
DA+

fl DA−fl exp
i

~

(∫
I×Σ

A−fl dIA
+
fl +

∫
Σ

A+
out (A−res + A−fl

∣∣
t=1

)−

−
∫

Σ

A+
in (A−res + A−fl

∣∣
t=0

) +

∫
Σ

A0
I res∂A

0,1
res +

∫
I×Σ

dt A+
I res ∂̄A

+
fl

)
.

18Depending on the choice of boundary conditions (e.g., in the case of Section 4.2), the space

of forms subject to boundary conditions Y[−1] may fail to be a subcomplex of Ω•(I × Σ) with
respect to the total de Rham differential dI + dΣ. However, the operator K we are constructing

can be seen as a chain contraction for just the “axial” differential dI .
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Here we are using the splitting dΣ = ∂ + ∂̄ of de Rham operator on Σ into the
holomorphic and antiholomorphic Dolbeault operators. Finally, computing this
Gaussian integral, we obtain

(23) Z = exp
i

~

∫
Σ

(
(A+

out − A+
in) A−res + A0

I res ∂A
0,1
res +

1

2
(A+

out + A+
in) ∂̄A+

I res

)
.

Here the last term arises from the Wick contraction〈 ∫
Σ

A+
out A

−
fl

∣∣
t=1

∫
I×Σ

dt′A+
fl ∂̄A

+
I res

〉
=

∫
I

dt′ (t′ − θ(t′ − t))
∣∣
t=1︸ ︷︷ ︸

1/2

∫
Σ

A+
out ∂̄A

+
I res,

and a similar one with A+
in talking to ∂̄A+

I res.
Graphically, the diagrams contributing to (23) are:

A+
outΣ

I

A+
in

Figure 1. Feynman diagrams for the abelian theory on a cylinder
in holomorphic-to-holomorphic polarization.

Here the conventions (Feynman rules) are:

• Boundary vertices are decorated by A+
out on the out-boundary and by A+

in

on the in-boundary.
• White bulk vertices are decorated by A−res, gray bulk vertices are decorated

by A+
I res.

• Long edges are decorated by the propagator η.
• Bulk vertices connected to two residual fields carry ∂ and bulk vertices

connected to a single residual field and one propagator carry ∂̄.

We will return to the version of the result (23) in the context of nonabelian
Chern–Simons theory in Section 5.4.

4.1.1. Comparison with Hamilton–Jacobi action. We can write the result (23) in
the form

(24) Z = exp
i

~

(∫
Σ

(
(A1,0

out − A1,0
in )λ+ λ∂σ +

1

2
(A1,0

out + A1,0
in )∂̄σ

)
︸ ︷︷ ︸

SHJ

+
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+

∫
Σ

(
(A0

out − A0
in)A2

res +
1

2
(A0

out + A0
in)∂̄A1,0

I res

))
,

where we introduced the alternative notation for degree zero residual fields

λ := A0,1
res , σ := A0

I res.

In the first integral in (24) we recognize the Hamilton–Jacobi action [16, Eq. (48)],
which can be seen as the conformal βγ-system coupled to the boundary fields, while
in the second integral we collected the contribution of nonzero-degree fields.

4.1.2. Quantum master equation. The space of states on a surface with A+-fixed
polarization is the space of functions of A+, equipped with the differential (the
quantum BFV operator)

(25) Ω+
Σ =

∫
Σ

(
−i~ ∂A0 δ

δA1,0
+ εA1,0 ∂̄A0

)
with the sign ε = +1 for the out-boundary and ε = −1 for the in-boundary;19 the
superscript in Ω+

Σ is a reminder of the choice of polarization. This operator is the
canonical quantization of the boundary BFV action (19),

(26) SΣ = ε

∫
Σ

A1,0 ∂̄A0 + A0,1 ∂A0.

In the quantization, A0,A1,0 become multiplication operators and A0,1 7→ −ε i~ δ
δA1,0 ,

A2 7→ −ε i~ δ
δA0 become derivations.

Lemma 4.2. The partition function (23) satisfies the BV quantum master equation
modified by the boundary terms (see [15]):

(27)
(∫

Σ

(
− i~ ∂A0

out

δ

δA1,0
out

+ A1,0
out ∂̄A

0
out

)
︸ ︷︷ ︸

Ω+
out

+

∫
Σ

(
− i~ ∂A0

in

δ

δA1,0
in

− A1,0
in ∂̄A0

in

)
︸ ︷︷ ︸

Ω+
in

−

− ~2

∫
Σ

δ

δA−res

δ

δA+
I res︸ ︷︷ ︸

∆res

)
Z = 0.

Proof. One checks this by a direct computation:

(28) (Ω+
out + Ω+

in)Z =

= Z ·
∫

Σ

(
(∂A0

out−∂A0
in)A0,1

res +
1

2
(∂A0

out +∂A0
in) ∂̄A0

I res +A1,0
out ∂̄A

0
out−A1,0

in ∂̄A0
in

)
.

On the other hand,

(29) ~2∆resZ = Z ·
∫

Σ

(
A+

out − A+
in − ∂A+

I res

) (
∂A−res +

1

2
∂̄(A+

out + A+
in)
)
.

Inspecting this expression, we see that it coincides with (28), which proves (27). �

Following the terminology of [15], we call the equation (Ω∂ − ~2∆res)Z = 0 the
modified (by the boundary term) quantum master equation (mQME).

19The integral over Σ in (25) is understood as being w.r.t. the “standard” orientation, which
coincides with the induced one from the cylinder on the out-boundary and is opposite to the

induced one on the in-boundary.
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4.2. Antiholomorphic-to-holomorphic boundary conditions. Consider the
polarization Span{ δ

δA+ } at t = 0 and Span{ δ
δA− } at t = 1. I.e., we prescribe bound-

ary values A−in,A
+
out. The corresponding modification of the action by boundary

terms adjusting for the polarization is:

Sf = S +
1

2

∫
{1}×Σ

A+A− +
1

2

∫
{0}×Σ

A+A−

and the modified boundary Noether 1-form is:

αfΣ×∂I =

∫
{1}×Σ

A−δA+ −
∫
{0}×Σ

A+δA−.

The fiber of the (complexified) space of fields over the space of boundary condi-
tions B = g−[1]⊕ g+[1] = {(A−in,A+

out)} is the complex

Y = Ω•(I, {1}; g+[1])⊕ Ω•(I, {0}; g−[1]).

Hodge decomposition (14) holds (where one replaces Π→ [1]) and the propagator
is given by (15) or, more explicitly,

η((z, z̄, t) ; (z′, z̄′, t′)) =

= δ(2)(z − z′) i
2

(−dz ∧ dz̄′ + dz′ ∧ dz̄′)
(
− θ(t′ − t) + 2(1− t) t′

)
+

+ δ(2)(z − z′) i
2

(dz̄ ∧ dz′ + dz ∧ dz̄)
(
θ(t− t′)− 2t (1− t′)

)
.

The space of residual fields is:

(30) V = dt · gC ⊕ (1− t) · g+[1]⊕ t · g−[1] = {dt · AI res + (1− t) · A+
res + t · A−res},

where AI res, A+
res, A−res are t-independent forms on Σ. The homogeneous com-

ponents of these residual fields and their internal degrees (ghost numbers) are as
follows:
AI res = A0

I res+ A1,0
I res+ A0,1

I res+ A2
I res A+

res = A0
res+ A1,0

res A−res = A0,1
res+ A2

res

0 −1 −1 −2 1 0 0 −1
The BV-BFV partition function is:

(31) Z(A−in,A
+
out;AI res,A

+
res,A

−
res) =

=

∫
Y′K−ex⊂Y′

DA+
fl DA−fl e

i
~S

f

(
A−in+A+

out+(1−t)·A+
res+t·A

−
res+A+

fl +A−fl +dt·AI res

)

=

∫
DA+

fl DA−fl e
i
~

( ∫
I×Σ

(
A−fl +tA−res

)
dI

(
A+

fl +(1−t)A+
res

)
+
∫
{1}×Σ

A+
outA

−−
∫
{0}×Σ

A−inA
++
∫
I×Σ

1
2A dΣA

)
=

∫
DA+

fl DA−fl exp
i

~

(∫
I×Σ

A−fl dIA
+
fl +

1

2

∫
Σ

A−resA
+
res +

∫
Σ

A+
out(A

−
res + A−fl

∣∣
t=1

)−

−
∫

Σ

A−in(A+
res + A+

fl

∣∣
t=0

) +
1

2

∫
Σ

AI res dΣ(A+
res + A−res)

)
= exp

i

~

∫
Σ

(
− A+

outA
−
in + A+

outA
−
res − A−inA

+
res +

1

2
A−resA

+
res+

+
1

2

(
A0,1
I res∂A

0
res + A1,0

I res∂̄A
0
res + A0

I res(∂A
0,1
res + ∂̄A1,0

res)
))
.
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Here the first term in the final result is a contribution of the diagram where A+
out

is contracted by a propagator with A−in.

4.2.1. Partial integral over residual fields and comparison with Hamilton–Jacobi
action. Motivated by comparison with the Hamilton–Jacobi formalism, we consider
the BV pushforward of the partition function (31) along the odd symplectic fibration

p : V → Vsmall = {dt · (A0
I res + A2

I res) + (1− t) · A0
res + t · A2

res}.
In its kernel, we choose the gauge-fixing lagrangian subspace L cut out by equa-
tions A1,0

I res = A0,1
I res = 0 and parametrized by A1,0

res ,A
0,1
res . The corresponding BV

pushforward is:

(32) Zsmall =

∫
DA1,0

res DA0,1
res Z =

= exp
i

~

(∫
Σ

(
A1,0

outA
0,1
in + (∂A0,1

in + ∂̄A1,0
out) σ +

1

2
σ∂∂̄σ

)
︸ ︷︷ ︸

SHJ

+

+

∫
Σ

(
− A0

outA
2
in + A0

outA
2
res − A2

inA
0
res +

1

2
A2

resA
0
res

))
.

Here we denoted the degree zero scalar residual field by

σ := A0
I res ∈ Ω0

C(Σ).

In the first bracket in (32) we recognize the Hamilton–Jacobi action [16, Eq. (47)]
(see also Example 2.2) — the action of a free (conformal) massless boson inter-
acting with the boundary fields,20 while in the second bracket we collected the
contributions of nonzero-degree fields.

4.2.2. Full integral over residual fields. If we wish to integrate out the remaining
residual fields completely, we construct the gauge-fixing lagrangian Lsmall ⊂ Vsmall

as follows. Choose an area form µ on Σ. Consider the splitting of 0-forms into
constants and forms with vanishing integral against µ: A0 = A0

c +A0. Also, consider
the splitting of 2-forms into constant multiples of µ and forms of vanishing total
integral: A2 = µ · A2

c + A2. Then, we define the lagrangian Lsmall ⊂ Vsmall by
equations A2

I res = σc = A2
res = 0. Thus, the lagrangian is parametrized by A0

res, σ,

A2
res,c.21

The resulting full BV integral is:

Z∗ =

∫
Lsmall⊂Vsmall

DA0
res Dσ DA2

res,c Zsmall =

= δ(A2
in)e−

i
~
∫
Σ
µ·A2

in,cA
0
out,c

∫
Dσ exp

i

~

∫
Σ

(
A1,0

outA
0,1
in +(∂A0,1

in +∂̄A1,0
out) σ+

1

2
σ∂∂̄σ

)
.

Further, assume that the area form µ =
√

det g d2x is the Riemannian area form
associated to a certain metric g on Σ inducing simultaneously the complex structure

20 One can see SHJ as the abelian version of the gauged Wess–Zumino–Witten theory, see e.g

(2.7) in [24].
21We have to split off the constants from σ, because they are in the kernel of the Laplacian

∂∂̄ and thus would obstruct the evaluation of the integral of (32) over σ.
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we use in our polarization. Then the integral over σ evaluates finally to

(33) Z∗ = δ(A2
in) e−

i
~
∫
Σ
µ·A2

in,cA
0
out,c ·

(
det′Ω0(Σ)∆g

)− 1
2 · e i~ I(A1,0

out,A
0,1
in )

where

• ∆g is the metric Laplace operator acting on 0-forms, det′ means the zeta-
regularized product of nonzero eigenvalues.
• The exponent in (33) is

(34)

I =

∫
Σ

A1,0
outPharm(A0,1

in )−i
∫

Σ×Σ 3(z,z′)

∂̄A1,0
out

∣∣
z
G(z, z′) ∂̄A1,0

out

∣∣
z′

+∂A0,1
in

∣∣
z
G(z, z′) ∂A0,1

in

∣∣
z′
.

Here G is the Green’s function for ∆g, viewed as a function on Σ×Σ with
a logarithmic singularity at the diagonal.22 The operator Pharm : A0,1 7→
A0,1− 2i

∫
Σ3z′ ∂̄G(z, z′)∂A0,1

∣∣
z′

is the projector onto harmonic (0, 1)-forms
in the Hodge decomposition.

Written in different notations, the exponent in (33) is:

(35) I =

∫
Σ

A1,0
out (1−∂̄(∂∂̄)−1∂)A0,1

in −
1

2
A1,0

out ∂̄(∂∂̄)−1∂̄ A1,0
out−

1

2
A0,1

in ∂(∂∂̄)−1∂ A0,1
in .

Remark 4.3. (a) The exponent I in (33) depends only on the complex structure on
Σ, not on the particular compatible metric g. In other words, it is invariant
under Weyl transformations of the metric g 7→ eφ g. Weyl-invariance of I is
manifest in the form (35).

(b) Unlike I, the full quantum answer (33) is not Weyl-invariant, since the determi-
nant of the Laplacian is not invariant (a phenomenon known as the “conformal
anomaly” or “trace anomaly” of the free scalar field as a conformal field the-
ory). In addition to that quantum effect, the dependence of Z∗ on boundary
gh 6= 0 fields A2

in,A
0
out involves the metric area form µ.

(c) The lagrangian generated by I is

LI =

{
Aout = A1,0

out + δI
δA1,0

out

,

Ain = A0,1
in − δI

δA0,1
in

}
=

{
Aout = (1− ∂̄(∂∂̄)−1∂̄)A1,0

out + PharmA0,1
in ,

Ain = (1 + ∂(∂∂̄)−1∂)A0,1
in + PharmA1,0

out

}
.

It is easy to see that this lagrangian coincides with the evolution relation of
abelian Chern–Simons theory on the cylinder I × Σ,

LCS =
{

(Aout,Ain) ∈ Ω1(Σ)×Ω1(Σ)
∣∣ dAout = 0, dAin = 0, Aout−Ain = d(· · · )

}
.

Thus, I is a (nongeneralized23) Hamilton–Jacobi action for the abelian theory
on the cylinder.

(d) Classically, one can obtain I from the generalized Hamilton–Jacobi action (Ex-

ample 2.2) as the conditional extremum of SHJ in σ, with A1,0
out and A0,1

in fixed.

Remark 4.4. To make (b) of Remark 4.3 above more explicit: if gτ = eφτ g0 is a
τ -dependent family of metrics compatible with the given complex structure on Σ,
one has

(36)
d

dτ
Zgτ∗ = (Ω+

out + Ω−in)(ξZgτ∗ ) + Zgτ∗ ·
1

48π

∫
Σ

µgτRgτ φ̇τ

22Recall that, in terms of Dolbeault operators and the area form, the metric Laplace operator
is: ∆g = 2i

µ
∂∂̄.

23I.e., with no auxiliary fields.
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with R the scalar curvature of the metric, µgτ the Riemannian area form of gτ , the Ω

operators given by (37), (38) below and24 ξ = Ain,c

∫
Σ×Σ

(∂̄A1,0
out+∂A

0,1
in )zG(z, z′)µ̇z′ .

The second term in (36) is the trace anomaly. Furthermore, one can compensate
the anomaly term by including the Liouville action as a counterterm,25 i.e., by
introducing

Ẑg = Zg∗ · e−
1

48π

∫
Σ

1
2dφ∧∗dφ+Rgφµg ,

where φ is defined by g = eφg0 with g0 some “reference” metric in the same confor-
mal class (e.g., one can take g0 to be the uniformization metric on Σ — spherical,
flat or hyperbolic metric for Σ of genus 0, 1 or ≥ 2, respectively). Then, for a

conformal variation of metric we have δϕẐ
eϕg = (Ω+

out + Ω−in)(ξZg∗ ).
As an aside, it is tempting to compare the two phenomena:

(i) The anomalous metric dependence (under a Weyl transformation gΣ → eφgΣ)
of the partition function on the cylinder and the cancellation of that depen-
dence by a Liouville action counterterm.

(ii) The anomalous metric dependence (under gM → gM + δgM ) of the pertur-
bative Chern–Simons partition function on a closed 3-manifold M and the
cancellation of that dependence by the gravitational Chern–Simons countert-
erm introducing the dependence on framing M , see [39, 5].

But in fact, these effects seem different. In particular, the dependence on Weyl
transformations in (i) rescales Z by a real factor, whereas the anomalous metric
dependence in (ii) affects only the phase of the partition function.

4.2.3. Quantum master equation. The space of states on the out-surface with A+-
fixed polarization was discussed in Section 4.1.2: it is the space of functions of A+

out

with the BFV operator

(37) Ω+
out =

∫
Σ

(
−i~ ∂A0

out

δ

δA1,0
out

+ A1,0
out ∂̄A

0
out

)
.

The space of states on the in-surface with A−-fixed polarization is the space of
functions of A−in with the BFV operator

(38) Ω−in =

∫
Σ

(
− i~ ∂A0,1

in

δ

δA2
in

+ ~2 δ

δA0,1
in

∂̄
δ

δA2
in

)
.

This is the quantization of the BFV action (26) where A0,1,A2 become multiplica-
tion operators and A1,0 7→ −ε i~ δ

δA0,1 , A0 7→ −ε i~ δ
δA2 become derivations, where

ε = −1 for the in-boundary, as in Section 4.1.2.
The BV Laplacian on residual fields (30) is:26

∆res = 2

∫
Σ

δ

δA−res

δ

δA+
I res

+
δ

δA+
res

δ

δA−I res

.

24This is the quantization of the hamiltonian H = A2
res,c

∫
Σ σµ̇ generating the family of la-

grangians given by µgτ , see [15, Section 2].
25We are referring to the fact that in a conformal field theory with central charge c, the

partition function has the following behavior under Weyl transformations of metric: Ze
φg

CFT =

ZgCFT · e
c

48π

∫
Σ

1
2
dφ∧∗dφ+Rφµg , see, e.g., [22].

26Here the factor 2 comes from the fact that the odd symplectic form on V, induced from
the standard BV 2-form on the space of fields, ωF =

∫
I×Σ

1
2
δA δA, is ωV = 1

2

∫
Σ δA

+
res δA

−
I res +

δA−res δA
+
I res. The factor 1

2
in the latter expression comes from

∫ 1
0 dt(1− t) =

∫ 1
0 dt t = 1

2
.
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Lemma 4.5. Partition function (31) satisfies the modified quantum master equa-
tion (

Ω+
out + Ω−in − ~2∆res

)
Z = 0.

Proof. Indeed, a straightforward computation gives:

Ω+
outZ = Z ·

∫
Σ

(
− ∂A0

out (A0,1
in − A0,1

res) + A1,0
out ∂̄A

0
out

)
,

Ω−inZ = Z ·
∫

Σ

(
∂A0,1

in (A0
out − A0

res)− (A1,0
out − A1,0

res) ∂̄(A0
out − A0

res)
)
,

−~2∆resZ = Z ·
∫

Σ

(
(∂A0,1

res + ∂̄A1,0
res) (−A0

out +
1

2
A0

res)+

+∂̄A0
res (−A1,0

out +
1

2
A1,0

res +
1

2
∂A0

I res) + ∂A0
res (A0,1

in −
1

2
A0,1

res +
1

2
∂̄A0

I res)
)
.

The sum of these three expressions is zero. �

Similarly, one can check the quantum master equation for the “small” realization
(32): (

Ω+
out + Ω−in − ~2∆small

)
Zsmall = 0,

where

∆small = 2

∫
Σ

δ

δA2
res

δ

δσ
+

δ

δA0
res

δ

δA2
I res

is the BV Laplacian on Vsmall.
Finally, the result of the full integration over residual fields (33) satisfies the

BFV cocycle (gauge-invariance) condition(
Ω+

out + Ω−in
)
Z∗ = 0.

5. Chern–Simons theory in “parallel ghost polarization”

In three-dimensional Chern–Simons theory there is another way of picking a
pair of polarizations on the opposite sides of a cylinder: we can use the (A0

out,A
0,1
out)

representation on the out-boundary surface and the (A0
in,A

1,0
in ) representation on the

in-surface. Thus, the corresponding polarizations are transversal in ghost number
0 and parallel in ghost number 6= 0. See also the discussion of quantization of 1D
systems with this class of polarizations in [16, Section 11].

5.1. One-dimensional Chern–Simons theory with values in a cochain com-
plex. As a warm-up, we consider again the one-dimensional theory, with a slightly
different setup. Fix an odd integer k. Let

g =
⊕

gi

be a graded vector space with a differential dg and a compatible graded symmetric
pairing (·, ·) of degree −2k.27 Now, we let X = g[k] - this is a 0-shifted graded
symplectic vector space. We call the induced grading on C∞(X) the ghost number.
It is convenient to express elements of C∞(X) in terms of the shifted identity map
ψ ∈ Hom(X, g) which has total degree (ghost number + degree) k.28 We denote

27The prime example being g = Ω•(M) with M a 2k-manifold, dg the de Rham differential

and (α, β) =
∫
M α ∧ β.

28If {ta} is a basis in g and {ψa} is the shifted dual basis in X∗, then we have ψ =
∑
a taψ

a ∈
Hom(X, g). If the degree of ta is |a|, then the ghost number of ψa is k− |a|, and thus ψ is indeed

an object of total degree k.



CHERN–SIMONS ON CYLINDERS 29

the ghost number l component of a field ϕ by ϕ[l]. In particular, the ghost number
l component ψ[l] of ψ has degree k − l. For instance, the function

Θ(ψ) =
1

2
(ψ, dgψ)

has ghost number +1. Its hamiltonian vector field Q has ghost number +1 and
satisfies Q2 = 0, thus (X,ω,Q) is a BFV vector space.

We split the complexification of the ghost number 0 component of X as X
[0]
C =

X+ ⊕X−, with X± the degree 0 ±i-eigenspaces of a complex structure J on X [0]

compatible with the pairing. Thus, XC admits the total decomposition

(39) XC = X
[>0]
C ⊕X+ ⊕X− ⊕X [<0]

C

where X [>0], X [<0] are the components of positive (resp. negative) ghost num-
ber.29 We also introduce the notations d+

g , d
−
g for the composition of the differential

X [1] → X+ ⊕X− with projections and similarly for the restriction of the differen-
tial X− ⊕X+ → X [−1] (so that d−g = dg

∣∣
X+ , d+

g = dg
∣∣
X−

). We automatically have

(d+
g )2 = (d−g )2 = 0 and d+

g d
−
g = −d−g d+

g .30

5.1.1. Setup. We now consider the 1-dimensional AKSZ theory with target the
symplectic graded vector space (X, (·, ·)) and hamiltonian Θ(ψ). The space of
fields is

F = Ω•(I;X).

It is parametrized by the superfield A valued in Ω•(I; g). We denote the 0- and
1-form components of A by ψ and A, respectively. The total degrees of A, ψ,A are
all odd. The action is

S[ψ +A] =
1

2

∫
I

(A, dIA) +
1

2

∫
I

(A, dgA) =
1

2

∫
I

(ψ, dIψ) +

∫
I

(A, dgψ).

The space of boundary fields is

F∂ = Xin ×Xout 3 (ψin, ψout).

The boundary 1-form is

α∂I = α∂out + α∂in =
1

2
(ψout, δψout)−

1

2
(ψin, δψin) =

1

2
(ψ, δψ)

∣∣∣∣t=1

t=0

.

Splitting elements of XC according to (39), ψ = ψ[<0] + ψ+ + ψ− + ψ[>0], the
boundary 1-form splits similarly:

α∂out =
1

2

[
(ψ

[<0]
out , δψ

[>0]
out ) + (ψ+

out, δψ
−
out) + (ψ−out, δψ

+
out) + (ψ

[>0]
out , δψ

[<0]
out )

]
and similarly for α∂in.

29I.e., coordinates, e.g., on X[>0] have positive ghost number so X[>0] =
⊕
i<k g

i[k].
30A particularly important example is the case g = Ω•(M) where M is a 2k-manifold, with

k = 2l+1 odd, endowed with a complex structure that allows us to decompose ΩkC(M) = Ω+(M)⊕
Ω−(M) into lagrangian subspaces with respect to (α, β) =

∫
M α ∧ β, with the splitting given by

(103) below. In the case k = 1, we have d+
g = ∂, d−g = ∂̄.
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5.1.2. Parallel ghost polarization. Let us now consider the case where the polariza-
tions are parallel in the ghost sector (of the target) and transversal in the physical
sector:

P = Pin × Pout,

Pin =

{
δ

δψ
[<0]
in

,
δ

δψ+
in

}
,

Pout =

{
δ

δψ
[<0]
out

,
δ

δψ−out

}
,

so that we are using the (ψ
[>0]
in , ψ−in) representation at t = 0 and the (ψ

[>0]
out , ψ

+
out)

representation at t = 1, i.e.:

B = Bin × Bout, Bin = X
[>0]
C ⊕X−, Bout = X

[>0]
C ⊕X+.

The polarized 1-form is αf∂I = α∂,Pout + α∂,Pin with

α∂,Pin = −(ψ
[<0]
in , δψ

[>0]
in )− (ψ+

in, δψ
−
in) = α∂in − δfin,

α∂,Pout = (ψ
[<0]
out , δψ

[>0]
out ) + (ψ−out, δψ

+
out) = α∂out + δfout,

where31 fin = 1
2 (ψ

[>0]
in , ψ

[<0]
in ) − 1

2 (ψ+
in, ψ

−
in), fout = 1

2 (ψ
[>0]
out , ψ

[<0]
out ) + 1

2 (ψ+
out, ψ

−
out),

so that αf∂I = α∂I + δf with

f(ψout, ψin) = fout(ψout)− fin(ψin)

=
1

2
(ψ

[>0]
out , ψ

[<0]
out ) +

1

2
(ψ+

out, ψ
−
out)−

1

2
(ψ

[>0]
in , ψ

[<0]
in ) +

1

2
(ψ+

in, ψ
−
in).

The polarized action is

Sf [A] =
1

2

∫
I

(A, dIA) +
1

2

∫
I

(A, dgA) + f(A).

5.1.3. Gauge fixing. The kernel Y of the map F → B is

(40) Y = Ω•(I, ∂I;X
[>0]
C )⊕ Ω•(I, {0};X−)⊕ Ω•(I, {1};X+)⊕ Ω•(I;X

[<0]
C ).

Choosing the minimal space of residual fields

V = 〈dt〉 ⊗X [>0]
C ⊕ 〈1〉 ⊗X [<0]

C 3 Ares = dt ·Ares + 1 · ψres,

we obtain

Y = V × Y ′ 3 (Ares,Afl)

with

Y ′ = Ω•(I, ∂I;X
[>0]
C )∫=0⊕Ω•(I, {0};X−)⊕Ω•(I, {1};X+)⊕Ω•(I;X

[<0]
C )∫ ·∧dt=0.

Here the notation
∫
· = 0 (resp.

∫
·dt = 0) denotes acylic subcomplexes of forms

with vanishing integral (resp. forms whose product with dt has vanishing integral).
Choosing an extension

ψ̃ = ψ̃
[>0]
in + ψ̃−in + ψ̃

[>0]
out + ψ̃+

out

31Since ψ is odd, we have, e.g., δ(ψ+, ψ−) = (ψ−, δψ+)− (ψ+, δψ−).



CHERN–SIMONS ON CYLINDERS 31

of boundary fields into the bulk, we obtain a splitting of A = ψ +A into

ψ +A = ψ̃ + ψres + ψfl + dt ·Ares +Afl.

Inside Y ′, we have the gauge-fixing lagrangian L ⊂ Y ′ given by forms of degree 0
in I — i.e., L is given by Afl = 0 — and we write for ψfl ∈ L

ψfl = ψ
[>0]
fl + ψ−fl + ψ+

fl + ψ
[<0]
fl .

Recollecting, for a field ψ +A ∈ B × V × L we obtain

ψ = ψ̃ + ψres + ψfl(41)

= ψ̃
[>0]
in + ψ̃−in + ψ̃

[>0]
out + ψ̃+

out + ψres + ψ
[>0]
fl + ψ−fl + ψ+

fl + ψ
[<0]
fl ,

A = dt ·Ares.

The gauge-fixed polarized action is then computed as follows:

Lemma 5.1. Restricted to the gauge-fixing lagrangian, the polarized action can be
written as
(42)
Sf [A] = Ssource[ψin, ψout, ψfl]+S0[ψfl]+Sint[ψres, ψfl, Ares]+Sback[ψin, ψout, ψres, Ares],

where

Ssource[ψin, ψout, ψres, ψfl] = (ψ+
out, ψ

−
fl (1))− (ψ−in, ψ

+
fl (0)) + (ψ

[>0]
out , ψ

[<0]
fl (1))− (ψ

[>0]
in , ψ

[<0]
fl (0)),

S0[ψfl] =

∫
I

(ψ+
fl , dIψ

−
fl ) +

∫
I

(ψ
[<0]
fl , dIψ

[>0]
fl ),

Sint[ψfl, Ares] = −
∫
I

dt(d+
g A

[1]
res, ψ

−
fl )−

∫
I

dt(d−g A
[1]
res, ψ

+
fl ) +

∫
I

dt(A[>1]
res , dgψ

[<0]
fl ),

Sback[ψin, ψout, ψres, Ares] = (ψ
[>0]
out − ψ[>0]

in , ψres) + (A[>1]
res , dgψres).

Here we have introduced the notation A
[1]
res, A

[>1]
res for the components of Ares

valued in X [1] and in X [>1], respectively.32

Proof. The polarized action is

Sf [ψ +A] =
1

2

∫
I

(ψ, dIψ) +

∫
I

(A, dgψ) + f(ψ),

where

f(ψ) = fout(ψ(1))− fin(ψ(0))

=
1

2
(ψ

[>0]
out , ψ

[<0]
fl (1)) +

1

2
(ψ+

out, ψ
−
fl (1))− 1

2
(ψ

[>0]
in , ψ

[<0]
fl (0)) +

1

2
(ψ+

fl (0), ψ−in).

Splitting ψ as in (41) and letting the support of ψ̃ go towards ∂I we obtain that

1

2

∫
I

(ψ, dIψ) =
1

2

∫
I

(ψ̃ + ψres + ψfl, dI(ψ̃ + ψres + ψfl))

=
1

2
(ψ̃, ψres)

∣∣∣∣t=1

t=0

+
1

2
(ψ̃, ψfl)

∣∣∣∣t=1

t=0

+
1

2

∫
I

(ψfl, dIψfl)

32We understand A
[k]
res as valued in X[k] but with ghost number k − 1; the shift is due to the

fact that A
[k]
res is a coefficient of a 1-form on the source. This shift is a standard feature of the

AKSZ construction. In particular, A
[1]
res is an object of ghost number zero.
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=
1

2
(ψ

[>0]
out − ψ[>0]

in , ψres) +
1

2
(ψ

[>0]
out , ψ

[<0]
fl (1)) +

1

2
(ψ+

out, ψ
−
fl (1))

− 1

2
(ψ

[>0]
in , ψ

[<0]
fl (0))− 1

2
(ψ−in, ψ

+
fl (0)) +

∫
I

(ψ+
fl , dIψ

−
fl ) +

∫
I

(ψ
[<0]
fl , dIψ

[>0]
fl )

and ∫
I

(dt ·Ares, dgψ) =−
∫
I

dt(d+
g A

[1]
res, ψ

−
fl )−

∫
I

dt(d−g A
[1]
res, ψ

+
fl )

+

∫
I

dt(A[>1]
res , dgψ

[<0]
fl ) + (A[>1]

res , dgψres).

Collecting the various terms, we obtain (42). �

Notice that adding f has the effect of doubling the boundary source terms.

5.1.4. Effective action. The effective action is defined by

Z = e
i
~Seff [ψin,ψout,ψres,Ares] =

∫
Dψfl e

i
~S

f [ψin,ψout,ψres,ψfl,Ares]

= e
i
~Sback

∫
Dψfl e

i
~ (Ssource+S0+Sint)

where the integral is defined in terms of Feynman diagrams.

Proposition 5.2. The effective action is given by

Seff = Sph + Sgh with

Sph = (ψ+
out, ψ

−
in) + (ψ−in, d

+
g A

[1]
res) + (ψ+

out, d
−
g A

[1]
res) +

1

2
(d−g A

[1]
res, d

+
g A

[1]
res),

Sgh = (ψ
[>0]
out − ψ[>0]

in , ψres) + (A[>1]
res , dgψres).

Proof. In terms of Feynman diagrams, Ssource generates boundary vertices (figure
2a), Sint generates bulk vertices (Figure 2b).33

ψ−in ψ+
out

(a) Boundary vertices

d+
g A

[1]
res d−g A

[1]
res

(b) Bulk vertices

Figure 2. Vertices in 1D AKSZ theories with linear polarizations

The term S0 generates the propagators

ηph(t, t′) =
i

~
〈ψ+

fl (t)ψ−fl (t′)〉 = (θ(t′ − t)) · ω−1

ηgh(t, t′) =
i

~
〈ψ[>0]

fl (t)ψ
[<0]
fl (t′)〉 = (θ(t− t′)− t) · ω−1

with θ(t) the Heaviside function and ω−1 the inverse of the pairing on g. There are
three types of connected Feynman diagrams contributing to Seff (see Figure 3):

(1) A single edge connecting the two boundary vertices (Figure 3a). That
diagram evaluates to (ψ−in, ψ

+
out).

33We are ignoring here the ghost vertices that in this case do not contribute to the effective
action since no vertex carries as ψ[>0].
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(2) A single edge connecting a boundary vertex to a bulk vertex (Figure 3b) .

Those diagrams yield (ψ−in, d
+
g A

[1]
res) + (ψ+

out, d
−
g A

[1]
res).

(3) A single edge connecting the two bulk vertices (Figure 3c) . This diagram

gives, using
∫
I×I ηph(t, t′) = 1

2 , the contribution 1
2 (d−g A

[1]
res, d+

g A
[1]
res).

ψ−in ψ+
out

(a) Single edge connecting two
boundaries

ψ−in ψ+
out

d+
g A

[1]
res d−g A

[1]
res

(b) Single edge connecting bulk and boundary

d+
g A

[1]
res

d−g A
[1]
res

(c) Single edge connecting two bulk vertices

Figure 3. Connected Feynman diagrams in effective action

In total we obtain the effective action

(43) Seff [ψin, ψout, ψres, Ares] = (ψ
[>0]
out − ψ[>0]

in , ψres)− (ψ−in, ψ
+
out)

+ (ψ−in, d
+
g A

[1]
res) + (ψ+

out, d
−
g A

[1]
res) +

1

2
(d−g A

[1]
res, d

+
g A

[1]
res) + (A[>1]

res , dgψres).

Separating the term depending only on ghost number 0 fields from the rest, we
obtain the proof. �

Proposition 5.3. The lagrangian generated by the gh = 0 part of the action is the

evolution relation in X
[0]
in ×X

[0]
out.

Proof. The Euler-Lagrange equations of the theory in ghost number 0 are

dIψ
[0] = −dgA[1],

dgψ
[0] = 0.

Projecting to boundary values (ψin, ψout) we obtain the equations

d−g ψ
+
in + d+

g ψ
−
in = d+

g ψ
−
out + d−g ψ

+
out = 0,(44)

ψ+
out − ψ+

in = d+
g a,(45)

ψ−out − ψ−in = d−g b,(46)

for some a, b ∈ X [1], and the first equation forces a = b (up to a d+
g and d−g -closed

term). On the other hand, the lagrangian generated by Sph is given by

ψ+
in = −∂Sph

∂ψ−in
= ψ+

out − d+
g A

[1]
res,

ψ−out =
∂Sph

∂ψ+
out

= ψ−in + d−g A
[1]
res,

0 =
∂Sph

∂A
[1]
res

= d+
g ψ
−
in + d−g ψ

+
out + d+

g d
−
g A

[1]
res.
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The first two equations are equivalent to equations (45),(46), while the last equation
enforces the constraint (44). �

5.1.5. Quantum master equation. The modified quantum master equation

(−~2∆res + Ω)e
i
~Seff

is equivalent to

(47)

(
1

2
{Seff , Seff}res − i~∆resSeff + Ω

)
Z = 0.

Here we denote by {·, ·}res the BV (+1-shifted Poisson) bracket on V.

Proposition 5.4. The effective action Seff given by (43) satisfies the mQME (47)
with boundary BFV operator Ω given by the standard quantization of

Θ(ψ) =
1

2
(ψ, dgψ) = (ψ+, d−g ψ

[1]) + (ψ−, d+
g ψ

[1]) + (ψ[<0], dgψ
[>1]).

Proof. Expanding degree-wise as a differential operator, we obtain Ω = Ω(1) +

Ω(0) = Ω
(1)
out + Ω

(0)
out + Ω

(1)
in + Ω

(0)
in with

Ω
(0)
out =

(
d−g ψ

[1]
out, ψ

+
out

)
,

Ω
(0)
in = −

(
d+
g ψ

[1]
in , ψ

−
in

)
,

i

~
Ω

(1)
out =

(
d+
g ψ

[1]
out,

δ

δψ+
out

)
+

(
dgψ

[>1]
out ,

δ

δψ
[>0]
out

)
,

i

~
Ω

(1)
in =

(
d−g ψ

[1]
in ,

δ

δψ−in

)
+

(
dgψ

[>1]
in ,

δ

δψ
[>0]
in

)
.

First of all, notice that ∆VSeff = 0 since in the only possibly nonvanishing term

(A
[1]
res, dgψres) fields are not paired with their antifields because of the degree shift

by the differential. Computing the BV bracket we obtain

(48)
1

2
{Seff , Seff}res =

= −(ψ
[1]
out − ψ[1]

in , d
−
g ψ

+
out + d+

g ψ
−
in + d+

g d
−
g A

[1]
res)− (ψ

[>1]
out − ψ[>1]

in , dgψres)

(only terms of opposite ghost number survive in the pairing). On the other hand,
since Ω(0) is a multiplication operator and Ω(1) contains only derivatives of first
order, we have ΩZ = Ω(0)Z + i

~Ω(1)(Seff)Z and

i

~
Ω

(1)
outSeff = (ψ−in, d

+
g ψ

[1]
out) + (d+

g ψ
[1]
out, d

−
g A

[1]
res) + (dgψ

[>1]
out , ψres),

i

~
Ω

(1)
in Seff = −(d−g ψ

[1]
in , ψ

+
out) + (d−g ψ

[1]
in , d

+
g A

[1]
res)− (dgψ

[>1]
in , ψres).

A straightforward computation shows that Ω(0) + i
~Ω(1)Seff coincides with (48),

thus completing the proof. �
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5.2. General polarizations. Next, we will consider the case whereX
[0]
C is equipped

with another polarization Pnl which is not necessarily linear (see [16, Section 12]
for the corresponding toy model). Let the base BPnl be locally parametrized by a
coordinate ψQ, and the fibers by a coordinate ψP . Suppose G(ψ−, ψQ) is a gen-
erating function of the canonical transformation34 (ψ−, ψ+) → (ψQ, ψP ). Then
we have that ψ+ = F (ψ−, ψQ) = ∂G

∂ψ− . We assume that G is analytic in ψ− in a

neighborhood U of {0} × BPnl .
We now consider again the 1D AKSZ theory on the interval, where we choose

the polarizations at the two endpoints to be parallel in the ghost sector. In the
physical sector we choose the ψ−-representation on the in-boundary and the ψQ-
representation on the out-boundary:

P = Pin × Pout with

Pin =

{
δ

δψ
[<0]
in

,
δ

δψ+
in

}
,

Pout =

{
δ

δψ
[<0]
out

,
δ

δψPout

}
.

The base is

B = Bin × Bout, Bin = X
[>0]
C ⊕X−, Bout = X

[>0]
C × BPnl .

The polarized 1-form is αf∂I = α∂,Pout + α∂,Pin with

α∂,Pin = −(ψ
[<0]
in , δψ

[>0]
in )− (ψ+

in, δψ
−
in) = α∂in − δfin,

α∂,Pout = (ψ
[<0]
out , δψ

[>0]
out ) + (ψPout, δψ

Q
out) = α∂out + δfout,

where

fin =
1

2
(ψ

[>0]
in , ψ

[<0]
in )− 1

2
(ψ+

in, ψ
−
in),

fout =
1

2
(ψ

[>0]
out , ψ

[<0]
out )− 1

2
(ψ+

out, ψ
−
out)−G(ψ−out, ψ

Q
out).

Thus, αf∂I = α∂I + δf with

f(ψout, ψin) = fout(ψout)− fin(ψin)

=
1

2
(ψ

[>0]
out , ψ

[<0]
out )− 1

2
(ψ+

out, ψ
−
out)−G(ψ−out, ψ

Q
out)−

1

2
(ψ

[>0]
in , ψ

[<0]
in ) +

1

2
(ψ+

in, ψ
−
in).

5.2.1. Splitting the fields. The goal is to find again a symplectomorphism Φ: B ×
V × Y ′ → F .35 Here the trick is that we keep the space of fluctuations Y as above
in Equation (40). In ghost number zero, the map Φ is defined as follows. For

boundary values ψ−in ∈ B
[0]
in and ψQout ∈ B[0]

out and fluctuations ψ−fl , ψ
+
fl ∈ Y (recall

that ψ−fl (0) = ψ+
fl (1) = 0), we let

ψ−(t) =

{
ψ−fl (t) for t > 0,

ψ−in for t = 0,

34I.e., the function G(ψ−, ψQ) satisfying δG = ψ+δψ− − ψP δψQ.
35Strictly speaking, the range of Φ is not F , but rather a certain regularization of F more

suitable for quantization. See the discussion in [16, Section 9.2.3].
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ψQout

i1
i2

ik

 ∂G(x,y)

∂xi1 ···∂xik
∣∣
(x,y)=(0,ψQout)

Figure 4. Additional vertex in 1D AKSZ theory with a general

polarization on X
[0]
out.

and

ψ+(t) =

{
ψ+

fl (t) for t < 1,

F (ψ−fl (1), ψQout) for t = 1.

The map Φ is given by

(49) Φ(ψ
[>0]
in , ψ−in, ψ

[>0]
out , ψ

Q
out, ψres, ψfl, A) = ψ−(ψ−in, ψ

−
fl ) + ψ+(ψ+

fl , ψ
−
fl , ψ

Q
out)

+ ψres + ψ̃
[>0]
in + ψ̃

[>0]
out + ψ

[6=0]
fl +A.

In nonzero ghost number, this coincides with the splitting considered in the previous
section. In what follows, we will discuss only the physical sector, i.e., the part in
ghost number 0. The analysis in the ghost sector proceeds exactly as in Section 5.1
and results in the ghost effective action Sgh described in Proposition 5.2.

5.2.2. Effective action. Again, we can use the gauge-fixing lagrangian L ⊂ Y ′ given
by zero forms. Restricted to B × V × L and fields of ghost number 0, we have

Sf [ψ−in, ψ
Q
out, ψ

−
fl , ψ

+
fl , dt ·Ares] = −(ψ−in, ψ

+
fl (0))−G(ψ−fl (1), ψQout)

+

∫
I

(ψ+
fl , dIψ

−
fl )− dt(d+

g A
[1]
res, ψ

−
fl )− dt(d−g A[1]

res, ψ
+
fl )

where the computation is very similar to the one in the proof of Lemma 5.1. The
BV-BFV effective action is defined by

Z = e
i
~Seff [ψin,ψout,ψres,Ares] =

∫
Dψfl e

i
~S

f [ψin,ψout,ψres,ψfl,Ares]

= e
i
~Sback

∫
Dψfl e

i
~ (Ssource+S0+Sint)

where the integral is defined in terms of Feynman diagrams.

Proposition 5.5. The effective action (in ghost number 0) is

(50) Sph
eff [ψ−in, ψ

Q
out, A

[1]
res] = −G(ψ−in + d−g A

[1]
res, ψ

Q
out)− (d+

g A
[1]
res, ψ

−
in +

1

2
d−g A

[1]
res)

Proof. In terms of Feynman diagrams, the source term creates a vertex of arbitrary
incoming valence on the out-boundary decorated by derivatives of G, and a univa-
lent (outgoing) vertex on the in-boundary decorated by ψ−in. The interaction term

creates univalent in- and outgoing bulk vertices decorated by d±g A
[1]
res as in the proof

of Proposition 5.2. The connected Feynman diagrams contributing to the effective
action are:
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γin

γin

γin ψQout

Figure 5. Additional Feynman diagrams in 1D AKSZ with gen-

eral polarization on X
[0]
out.

(1) Diagrams involving the G-vertex on the out-boundary. The outgoing half-
edges can connect either to the bulk vertex involving ψ+

fl or the vertex on
the in-boundary (see Figure 5). Summing over all valences, we obtain the

Taylor series in x of G(x, y) in the first argument at (0, ψQout) evaluated on

ψ−in + d−g A
[1]
res. Hence, by analyticity of G those vertices sum up to

−G(ψ−in + d−g A
[1]
res, ψ

Q
out).

(2) Diagrams involving the univalent incoming bulk vertex. Here the outgoing
half-edges connect to either the vertex on the in-boundary or an outgoing
bulk vertex, giving

−(d+
g A

[1]
res, ψ

−
in +

1

2
d−g A

[1]
res).

Those diagrams are the same as in the linear case (Figure 3).

In total, we obtain the effective action (50). �

Remark 5.6. In the main case of interest for this paper, the target g = Ω•(M) is
infinite-dimensional and the propagator contains a delta form as the “inverse” of
the pairing (τ1, τ2) =

∫
M
τ1 ∧ τ2 (cf. Remark 4.1). However, our computations here

are still valid. Indeed, even though Feynman diagrams contain products of delta
functions, since all these diagrams are actually trees, no problematic terms like δ(0)
arise when computing the integrals.

Proposition 5.7. The lagrangian generated by (50) is the evolution relation in

X
[0]
in ×X

[0]
out.

Proof. We know that in the ψ± variables, the evolution relation is given by ψ−out =

ψ−in +d−g A
[1]
res, ψ

+
out = ψ+

in +d+
g A

[1]
res. The lagrangian generated by Sph

eff [ψ−in, ψ
Q
out, A

[1]
res]

is

−ψ+
in =

∂Sph
eff

∂ψ−in
= −F (ψ−in + d−g A

[1]
res, ψ

Q
out) + d+

g A
[1]
res

= −F (ψ−out, ψ
Q
out) + d+

g A
[1]
res = −ψ+

out + d+
g A

[1]
res,

ψPout =
∂Sph

eff

∂ψQout

= −∂G(ψ−out, ψ
Q
out)

∂ψQout

,

0 =
∂Sph

∂A
[1]
res

= d+
g ψ
−
in + d−g ψ

+
out + d+

g d
−
g A

[1]
res.

This lagrangian coincides with the evolution relation. �
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5.2.3. Modified quantum master equation. Let us also comment on the mQME.
Again, we can compute the BV bracket (we ignore higher ghosts for simplicity)

1

2
{Seff , Seff}res = {Sgh

eff , S
ph
eff } = −(ψ

[1]
out−ψ[1]

in , d
−
g F (ψ−in+d−g A

[1]
res, ψ

Q
out)+d

+
g ψ
−
in+d+

g d
−
g A

[1]
res).

As before, we have Ωin = −(d+
g ψ

[1]
in , ψ

−
in)− i~(d−g ψ

[1]
in ,

δ
δψ−in

) and

Z−1ΩinZ = −(d+
g ψ

[1]
in , ψ

−
in)Z − (d−g ψ

[1]
in , F (ψ−in + d−g A

[1]
res, ψ

Q
out)) + (d−g ψ

[1]
in , d

+
g A

[1]
res)

= −(ψ
[1]
in , d

−
g F (ψ−in + d−g A

[1]
res, ψ

Q
out) + d+

g ψ
−
in + d+

g d
−
g A

[1]
res).

Thus, the mQME is equivalent to
(51)

Z−1ΩoutZ = (ψ
[1]
out, d

−
g F (ψ−in + d−g A

[1]
res, ψ

Q
out) + d+

g ψ
−
in + d+

g d
−
g A

[1]
res) = (ψ

[1]
out, dgψ

[0]
out).

The operator Ωout acting on ghost number 0 fields should be obtained as a quanti-

zation of Θ(ψ) in the ψPout, ψ
Q
out variables,

(52) Θ(ψPout, ψ
Q
out) = (d+

g ψ
[1]
out, ψ

−(ψPout, ψ
Q
out)) + (d−g ψ

[1]
out, ψ

+(ψPout, ψ
Q
out)).

The standard quantization Ωstd
out of (52) — i.e., replacing all ψPout variables with

−i~δ/δψQout and moving all derivatives to the right - satisfies (51) to 0-th order
in ~, but there are terms of higher order in ~ corresponding to higher derivatives

in ψQout acting on G. To prove the mQME to all orders, one would have to find
quantum corrections to Ωstd

out such that these terms are cancelled and the deformed
operator still squares to 0.

Remark 5.8. A particularly simple case occurs when ψ(ψP , ψQ) = ψP + ψQ. A
rather trivial example of this case is ψQ = ψ+, ψP = ψ−. A nontrivial example will
be considered in Section 6.3. In this case, we may define

Ωout =

(
dgψ

[1]
out, ψ

Q
out − i~

δ

δψQout

)
.

Then, from ∂G/∂ψQ = ψP we immediately get Z−1ΩoutZ = (dgψ
[1]
out, ψ

Q
out+ψPout) =

(ψ
[1]
out, dgψ

[0]
out), i.e., Equation (51), and hence the mQME, are satisfied. In general,

we have the mQME whenever the constraints are linear both in the original and
the new momenta, see [16, Section 12].

Remark 5.9. Let Znl,⊥ be the partition function with transversal ghost polarization
and a general polarization in ghost number 0, to be precise, we are choosing the
(ψ−, ψ[<0]) on the in-boundary and the (ψQ, ψ[>0]) on the out-boundary. In this
case, there are no residual fields, and following a computation similar to the above,
one finds36

Znl,⊥ = exp

(
− i
~
G(ψ−in, ψ

Q
out) +

i

~
ψ

[<0]
in ψ

[>0]
out

)
.

The mQME for this partition function is just (Ωin + Ωout)Z = 0, since there are
no residual fields. We can observe that the only obstruction for the mQME to
hold is the existence of a suitable Ωout in a general polarization. Then, one can

36There are no bulk vertices in this polarization. The two contributing terms come from
multivalent out-boundary vertices in ghost number 0 and univalent boundary vertices in the

ghost sector.
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obtain the partition function Znl,‖ -with parallel ghost polarization and (ψ−, ψQ)-
representation in ghost number 0, as given by (50) by composition of the partition
function Zl,‖ with parallel ghost polarization and linear polarization in ghost num-
ber 0, given by (43) with the partition function Znl,⊥: Znl,‖ = Znl,⊥ ◦ Zl,‖. Since
we know that Zl,‖ satisfies the mQME, Znl,‖ will satisfy it if Znl,⊥ does.

5.3. 3D nonabelian Chern–Simons with parallel ghost polarization and
antiholomorphic-to-holomorphic polarization in ghost degree zero. Next,
we return to the example of 3D Chern–Simons with parallel ghost polarization. In
this context, it is convenient to use the traditional notation for the components of
the superfield A:

A = c+A+A∗ + c∗,

where φ∗ denotes the BV antifield of the field φ.
In this section we will use some special notations for field components (as com-

pared to Section 4): a1,0 = A1,0
fl , a0,1 = A0,1

fl , c = A0, A∗ = A2, σ = A0
I res.

5.3.1. Abelian case. The action with polarization terms is:

Sf =

∫
I×Σ

1

2
AdA+

∫
{1}×Σ

1

2

(
A1,0A0,1 + cA∗

)
−
∫
{0}×Σ

1

2

(
A0,1A1,0 + cA∗

)
.

The space of fields is:

F = Ω•(I,Ω1,0 ⊕ Ω0,1 ⊕ Ω0[1]⊕ Ω2[−1])

— here Ωp in the coefficients stands for Ωp(Σ). It is fibered over

B = (Ω0,1 ⊕ Ω0[1])
⊕

(Ω1,0 ⊕ Ω0[−1]) 3 ((A0,1
in , cin), (A1,0

out, cout))

with fiber

Y = Ω•(I, {0}; Ω0,1)⊕ Ω•(I, {1}; Ω1,0)⊕ Ω•(I, {0, 1}; Ω0[1])⊕ Ω•(I; Ω2[−1]).

The space of residual fields is given by the (relative) cohomology in I-direction:

V = H•(I, {0, 1}; Ω0[1])⊕H•(I; Ω2[−1]) 3 (dt · σ,A∗res).

The gauge-fixing lagrangian L in the fiber of Y → V is given by setting to zero the
(relatively) exact 1-form components of fields along I.

Thus, on L we have

gh = 0 : A(1) = Ã1,0
out + Ã0,1

in + a1,0 + a0,1 + dt · σ,
gh = 1 : A(0) = c̃out + c̃in + cfl,

gh = −1 : A(2) = A∗res + A∗fl,

gh = −2 : A(3) = 0,

with tilde denoting the discontinuous extension by zero from t = 1 or t = 0,
respectively. Fluctuations are understood to satisfy

a1,0|t=1 = 0, a0,1|t=0 = 0, cfl|t=0 = cfl|t=1 = 0,

∫ 1

0

dt A∗fl = 0.

The gauge-fixed polarized action is:

Sf |L =∫
I×Σ

a1,0dIa
0,1 +

∫
I×Σ

dt (a1,0 + a0,1)dΣσ +

∫
Σ

A1,0
outa

0,1
∣∣
t=1
−
∫

Σ

A0,1
in a

1,0
∣∣
t=0
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+

∫
I×Σ

A∗fldIcfl −
∫

Σ

(A∗res + A∗fl
∣∣
t=1

)cout +

∫
Σ

(A∗res + A∗fl
∣∣
t=0

)cin.

The propagators are given by:

〈a0,1(t, z)a1,0(t′, z′)〉 = −i~ θ(t− t′) δ(2)(z − z′) i
2
dz̄ dz′,(53)

〈cfl(t, z)A∗fl(t′, z′)〉 = −i~ (θ(t− t′)− t) δ(2)(z − z′) i
2
dz′ dz̄′.(54)

The corresponding effective action is:

(55) Seff =

∫
Σ

A1,0
outA

0,1
in + A1,0

out∂̄σ + A0,1
in ∂σ −

1

2
∂σ∂̄σ − A∗res(cout − cin).

Remark 5.10 (Hamilton–Jacobi property, mQME). Notice that (55) coincides with
(43) above upon specializing g = Ω•(Σ), X+ = Ω1,0(Σ), X− = Ω0,1(Σ). Thus
(55) satisfies the modified quantum master equation, and the gh = 0 part of (55)
generates the evolution relation of abelian Chern–Simons theory.

Remark 5.11 (Integrating out residual fields). As in Section 4.2.2, we can integrate
out the residual fields σ,A∗res by choosing a Riemannian metric compatible with the
complex structure and decomposing fields as σ = σc +σ,A∗res = µ ·A∗res,c +A∗res. As

expected, the result differs from (33) only in the ghost sector:

Z∗[cout, cin,A
1,0
out,A

0,1
in ] = δ(cout,c − cin,c)

(
det′Ω0(Σ)∆g

)− 1
2 · e i~ I(A1,0

out,A
0,1
in ).

Here I is given by (34).

5.3.2. Nonabelian case. In the nonabelian Chern–Simons theory with coefficients in
a semisimple Lie algebra G (corresponding to a compact group37 G), the superfield
is A ∈ Ω•(I×Σ,G[1]) and all the splittings are as before, just with components un-
derstood as G-valued forms, paired in the quadratic part of the action via the Killing
form 〈, 〉 on G. The interaction term of the nonabelian theory, when restricted to
the gauge-fixing lagrangian, yields

Sint =
1

6

∫
〈A, [A,A]〉 = −

∫
Σ

∫
I

dt〈a1,0, adσa
0,1〉 −

∫
Σ

∫
I

dt〈cfl, adσ(A∗res + A∗fl)〉.

This adds two new bivalent vertices and a univalent vertex to the Feynman rules.
Let us introduce the following notations:

F+(x) =
x

1− e−x =
∑
n≥0

(−1)n
Bn
n!
xn, F−(x) = − x

ex − 1
= −

∑
n≥0

Bn
n!
xn,(56)

j(σ) =

∞∑
n=2

Bn
n · n!

trG(adσ)n = trG log
sinh adσ

2
adσ

2

,(57)

with Bn the Bernoulli numbers, B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , . . .

Lemma 5.12. The partition function of the nonabelian Chern–Simons theory on

a cylinder is Z = e
i
~S

eff

with the following effective action:

(58) Seff =

37To simplify the notations, and to be able to write expressions like g−1∂g below, we will
assume that G is a matrix group. Otherwise, we should use left/right translations in G.
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=

∫
Σ

〈A1,0
out, e

−adσ ◦ A0,1
in 〉+ 〈A1,0

out,
1− e−adσ

adσ
◦ ∂̄σ〉+ 〈A0,1

in ,
eadσ − 1

adσ
◦ ∂σ〉

− 〈∂σ, e
−adσ + adσ − 1

(adσ)2
◦ ∂̄σ〉 − 〈A∗res, F+(adσ) ◦ cout + F−(adσ) ◦ cin〉 − i~W(σ).

In (58), the 1-loop correction W stands for the contribution of “ghost wheels”
— cycles of n ≥ 1 ghost-antifield propagators (at the vertices, they interact with
the residual field σ). These graphs are ill-defined in the chosen axial gauge; their
formal evaluation yields the expression

(59) W(σ) =
∑
n≥1

Bn
n · n!

trC∞(Σ,G)(adσ)n = trC∞(Σ)j(σ)·

This expression heuristically stands for the “sum over points z of Σ” of j(σ(z)).

We refer the reader to [16, Section 11.3] for a one-dimensional toy model of this
statement.

Proof. One has the following classes of Feynman diagrams contributing to the ef-
fective action:

(viii)

σ

σ

σ

σ

σ

σ σ σ σ

∂̄σ A1,0
out

· · ·

σ σ σ σ

A0,1
in ∂σ

· · ·

σ σ σ σ

∂̄σ ∂σ

· · ·

σ σ σ σ

A∗
res cout

· · ·

σ σ σ σ

cin A∗
res

· · ·

σ σ σ σ

A0,1
in A1,0

out

· · ·

σ

σ

σ

σ

σ

σ

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Figure 6. Feynman diagrams in nonabelian theory on a cylinder
with “parallel ghost” polarization.

Here the solid lines represent the “physical propagator” (53) and the dashed
lines represent the “ghost propagator” (54).

These diagrams are calculated easiest by introducing the propagators dressed
with σ-insertions:

〈a0,1(t, z)⊗ a1,0(t′, z′)〉dressed = −i~ θ(t− t′) δ(2)(z − z′) i
2
dz̄ dz′

∞∑
k=0

∫
t′<t1<···<tk<t

dt1 · · · dtk(−adσ)k

= −i~ θ(t− t′) e−(t−t′)adσ δ(2)(z − z′) i
2
dz̄ dz′,
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〈cfl(t, z)⊗ A∗fl(t′, z′)〉dressed = −i~ δ(2)(z − z′) i
2
dz′ dz̄′·

·
∞∑
k=0

∫
t1,...,tk∈[0,1]

dt1 · · · dtk (θ(t− t1)− t) (θ(t1 − t2)− t1) · · · (θ(tk − t′)− tk)︸ ︷︷ ︸
Bk+1(1−t′)−Bk+1(t−t′)

(k+1)! , t > t′

(−1)k Bk+1(t′−t)−Bk+1(t′)
(k+1)! , t < t′

(−adσ)k

= −i~ δ(2)(z − z′) i
2
dz′ dz̄′ · e

(t′−t+θ(t−t′))adσ − et′adσ

eadσ − 1
.

Here Bk(t) are the Bernoulli polynomials.
Computing the tree Feynman diagrams (i)–(vi) in Figure 6, we have the follow-

ing.

(i)

∫
Σ

〈A1,0
out, a

0,1
∣∣
t=1
〉
∫

Σ

〈a1,0
∣∣
t=0

,A0,1
in 〉 =

∫
Σ

〈A1,0
out, e

−adσ ◦ A0,1
in 〉. Here the con-

traction is the dressed propagator.

(ii)

∫
Σ

〈A1,0
out, a

0,1
∣∣
t=1
〉
∫
I×Σ

dt 〈a1,0, ∂̄σ〉 =

∫
Σ

〈A1,0
out,

∫ 1

0

dt e−(1−t)adσ ◦ ∂̄σ〉

=

∫
Σ

〈A1,0
out,

1− e−adσ

adσ
◦ ∂̄σ〉.

(iii) Similarly to (ii), −
∫
I×Σ

dt 〈∂σ, a0,1〉
∫

Σ

〈a1,0
∣∣
t=0

,A0,1
in 〉 = −

∫
Σ

〈∂σ,
∫ 1

0

dt e−tadσA0,1
in 〉

= −〈∂σ, 1− e−adσ

adσ
◦ A0,1

in 〉 = 〈e
adσ − 1

adσ
◦ A0,1

in , ∂σ〉.

(iv) −
∫
I×Σ

dt 〈∂σ, a0,1〉
∫
I×Σ

dt′ 〈a1,0, ∂̄σ〉 = −
∫

Σ

〈∂σ,
∫ 1

0

dt

∫ 1

0

dt′ e−(t−t′)adσ◦∂̄σ〉

= −
∫

Σ

〈∂σ, e
−adσ + adσ − 1

(adσ)2
◦ ∂̄σ〉.

(v) −
∫
I×Σ

dt 〈adσA
∗
res, cfl〉

∫
Σ

〈A∗fl
∣∣
t=1

, cout〉 −
∫

Σ

〈A∗res, cout〉

= −
∫

Σ

〈adσA
∗
res,

∫ 1

0

dt
e(1−t)adσ − eadσ

eadσ − 1
◦ cout〉 −

∫
Σ

〈A∗res, cout〉

= −
∫

Σ

〈A∗res,
adσ

1− e−adσ
◦ cout〉.

(vi) Similarly to (v),

∫
I×Σ

dt 〈adσA
∗
res, cfl〉

∫
Σ

〈A∗fl
∣∣
t=0

, cin〉+

∫
Σ

〈A∗res, cin〉

=

∫
Σ

〈adσA
∗
res,

∫ 1

0

dt
e(1−t)adσ − 1

eadσ − 1
◦ cin〉+

∫
Σ

〈A∗res, cin〉

=

∫
Σ

〈A∗res,
adσ

eadσ − 1
◦ cin〉.

Thus, the Feynman diagrams (i)-(vi) in Figure 6 yield the O(~0) part of the answer
(58).

Next, consider the one-loop graphs in Figure 6. The “physical wheels” — dia-
grams (vii) — vanish due to the form of the propagator (53): they are proportional
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to ∫
t1,...,tk∈[0,1]

dt1 · · · dtk θ(t1 − t2)θ(t2 − t3) · · · θ(tk−1 − tk)θ(tk − t1) = 0.

Finally, consider the “ghost wheels” — diagrams (viii). The propagator (54)

is the integral kernel of an operator Kgh = id ⊗ Kgh
I acting on C∞(Σ) ⊗ Ω•(I)

with Kgh
I : f(t) + dt g(t) 7→

∫ 1

0
dt′ (θ(t − t′) − t) g(t′). As a regularization, let us

replace C∞(Σ) with C∞(X), with X a finite set of points — the set of vertices of
some triangulation of the surface Σ. In particular, C∞(X) is a finite-dimensional
vector space. Then, the regularized value of the ghost wheel diagram (viii) with k
σ-insertions is the supertrace:

−i~ strC∞(X)⊗Ω•(I,G)(−Kgh dt adσ)k = −i~ trC∞(X) strΩ•(I,G)(−Kgh
I dt adσ)k.

For the supertrace over the interval, we have (see, e.g., [33]):

strΩ•(I,G)(−Kgh
I dt adσ)k

= trG

∫
t1,...,tk∈[0,1]

(θ(t1−t2)−t1)dt2adσ · · · (θ(tk−1−tk)−tk−1)dtkadσ(θ(tk−t1)−t1)dt1adσ

=
Bk
k!

trG(adσ)k.

Summing over the values of k ≥ 1 and taking into account the symmetric factor
1/k (due to the automorphisms of the wheel graph), we obtain∑

k≥1

1

k
strΩ•(I,G)(−Kgh

I dt adσ)k = j(σ),

with j as in (57). Thus, finally, the total contribution of graphs (viii) to the effective
action is

−i~W = −i~ trC∞(X)j(σ) = −i~
∑
z∈X

j(σ(z)).

Trying to pass to a limit of dense triangulation X obviously leads to an ill-defined
result here.

Put another way, the regularized computation of a ghost wheel diagram is:

−i~
∑
z1∈X

∫
I

dt1〈A∗fl,−adσcfl〉
∑
z2∈X

∫
I

dt2〈A∗fl,−adσcfl〉 · · ·
∑
zk∈X

∫
I

dtk〈A∗fl,−adσcfl〉

= i~
∑
z∈X

∫
I

dt1 · · ·
∫
I

dtk(θ(t1−t2)−t1) · · · (θ(tk−1−tk)−tk−1)(θ(tk−t1)−tk)trG(−adσ)k

= −i~ Bk
k!

∑
z∈X

trG(adσ(z))
k.

where the contractions are the nondressed propagators (54) with the delta form in
z replaced with Kronecker symbol δzz′ . In this regularized setup we understand
the fields cfl,A

∗
fl, σ as supported at the vertices of X; fields cfl,A

∗
fl also depend on

t ∈ [0, 1]. �

Remark 5.13. An implicit assumption in Lemma 5.12 is that the residual field σ
takes values in a sufficiently small neighborhood of zero in G, so that the sums of
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Feynman diagrams in Figure 6 converge.38 In fact, they converge iff σ is valued in
B0 ⊂ G where B0 is the connected component of the origin in{

σ ∈ G
∣∣detG

sinh adσ
2

adσ
2

6= 0

}
⊂ G.

In other words, B0 is the subset of G where all eigenvalues of adσ lie in the open
interval (−2πi, 2πi) ⊂ iR. Thus, we are assuming that σ takes values in B0 ⊂ G
(cf. the discussion of the Gribov region in the context of 2D Yang-Mills in [29,
Section 2.4.1]). Furthermore, note that the exponential map exp : G → G is a
diffeomorphism from B0 onto its image exp(B0). Moreover, exp(B0) is an open
dense subset of G.

5.3.3. Group-valued parametrization of the residual field. Let us parametrize the
residual field σ by a group-valued map g = e−σ : Σ→ G.

Lemma 5.14. The effective action (58) can be rewritten as

(60) Seff =

∫
Σ

(
〈A1,0

out, g A
0,1
in g

−1〉 − 〈A1,0
out, ∂̄g · g−1〉 − 〈A0,1

in , g
−1 ∂g〉

+ 〈A∗res, F−(adlog g) ◦ cout + F+(adlog g) ◦ cin〉
)

+ WZW(g)− i~W.

Here

(61) WZW(g) = −1

2

∫
Σ

〈∂g · g−1, ∂̄g · g−1〉 − 1

12

∫
I×Σ

〈dg̃ · g̃−1, [dg̃ · g̃−1, dg̃ · g̃−1]〉.

is the Wess–Zumino–Witten action, where g̃ = e(t−1)σ is the extension of g to a
mapping I × Σ→ G, interpolating between g̃ = g at t = 0 and g̃ = 1 at t = 1.39

Remark 5.15. Under the convergence assumption that σ is valued inB0 (see Remark
5.13), or equivalently that g is valued in exp(B0) — a contractible open dense subset
of G, WZW(g) is a single-valued function of g, and hence Seff is also a single-valued
expression. If g is allowed to roam the entire group G, WZW(g) (and thus Seff)

becomes multi-valued, defined only mod 4π2Z. In the latter case, for e
i
~S

eff

to be
a single-valued expression, one needs ~ = 2π

k with k ∈ Z an integer level. The fact
that quantization of ~ is necessary in one case but not in the other can be traced
to the fact that the Cartan 3-form (whose pullback by g̃ is the integrand in the
second term in the r.h.s. of (61)) represents a nontrivial cohomology class on G
but is exact when restricted to exp(B0).

38Curiously, the issue of convergence arises only in diagrams (v), (vi), (viii) — the diagrams

involving ghosts.
39By the standard result on Wess–Zumino terms, WZW(g) mod 4π2Z is independent of the

choice of g̃ interpolating between g on one end of the cylinder and 1 on the other.
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Proof of Lemma 5.14. First terms in (58) and (60) obviously match. We have

g−1∂g = eσ
∫ 1

0

dτ e−τσ(−∂σ)e−(1−τ)σ =

∫ 1

0

dτ eτadσ (−∂σ)

=
eadσ − 1

adσ
(−∂σ),

∂̄g · g−1 =

∫ 1

0

dτ e−τσ(−∂̄σ)e−(1−τ)σeσ =

∫ 1

0

dτ e−τadσ (−∂̄σ)

=
1− e−adσ

adσ
(−∂̄σ).

Thus, second and third terms in (58) and (60) also match. Next, evaluating the
Wess-Zumino term on our preferred extension g̃ = e(t−1)σ, we have

(62) − 1

12

∫
I×Σ

〈dg̃ · g̃−1, [dg̃ · g̃−1, dg̃ · g̃−1]〉

= −1

4

∫
Σ

∫ 1

0

dt
〈
σ,

∫ 1−t

0

dτ

∫ 1−t

0

dτ ′
[
e−τσ(−dσ)e−(1−t−τ)σe(1−t)σ, e−τ

′σ(−dσ)e−(1−t−τ ′)σe(1−t)σ
]〉

=
1

4

∫
Σ

∫ 1

0

dt

∫ 1−t

0

dτ

∫ 1−t

0

dτ ′
〈
dσ,
[
σ, e(τ ′−τ)adσdσ

]〉
=

1

2

∫
Σ

〈
dσ,
[
σ,
( sinh adσ − adσ

(adσ)3

)
dσ
]〉

=
1

2

∫
Σ

〈
dσ,
( sinh adσ − adσ

(adσ)2

)
dσ
〉
.

The WZW kinetic term is:

(63) − 1

2

∫
Σ

〈∂g · g−1, ∂̄g · g−1〉

= −1

2

∫
Σ

∫ 1

0

dτ

∫ 1

0

dτ ′
〈
e−τσ(−∂σ)e−(1−τ)σeσ, e−τ

′σ(−∂̄σ)e−(1−τ ′)σeσ
〉

= −1

2

∫
Σ

∫ 1

0

dτ

∫ 1

0

dτ ′
〈
∂σ, e(τ−τ ′)adσ ∂̄σ

〉
= −

∫
Σ

〈
∂σ,

cosh adσ − 1

(adσ)2
∂̄σ
〉
.

Putting the kinetic term (63) and the Wess-Zumino term (62) together, we obtain

WZW(g) =

∫
Σ

−
〈
∂σ,

cosh adσ − 1

(adσ)2
∂̄σ
〉

+
〈
∂σ,

sinh adσ − adσ
(adσ)2

∂̄σ
〉

= −
∫

Σ

〈
∂σ,

e−adσ + adσ − 1

(adσ)2
∂̄σ
〉
.

Thus, finally, WZW term in (60) coincides with the fourth term in (58).
Ghost terms and the 1-loop contributions in (58) and (60) are identified directly.

�

5.3.4. A comment on ghost wheels. To understand the role of the term W (ghost
wheels) in (60), recall that, for µG the Haar measure on the group G and µG the
Lebesgue measure on the Lie algebra, one has exp∗ µG = ej ·µG , with j the function
on G defined by the formula (57). Therefore, the half-density on the space of residual
fields associated to the effective action (60) is, heuristically, the following:40

40Recall, see [36], that on an (n|n)-dimensional odd symplectic supermanifold (M, ω), half-
densities can be understood as cohomology classes of the differential ω∧ acting on differential forms
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(64) e
i
~S

effD 1
2σ D 1

2A∗res ∼ e
i
~S

effDσ
= e

i
~S

eff (0)

“
∏
z∈Σ

ej(σ(z))µG(σ(z))︸ ︷︷ ︸
µG(g(z))

” = e
i
~S

eff (0) Dg.

Here Seff (0) stands for (60) without the W term41 — the latter was used in trans-
forming the functional measure from the pointwise product of Lebesgue measures
for σ to the product of Haar measures for g. The equivalence (64) of a half-densities
is an extension of a rigorous result presented in [16] for a finite-dimensional system.

The odd symplectic form on residual fields is

(65)

ωres =

∫
Σ

〈δA∗res, δσ〉 = δ

∫
Σ

〈A∗res, δσ〉

= δ

∫
Σ

〈A∗res,−
adσ

1− e−adσ
◦ (δg · g−1)〉 = δ

∫
Σ

〈− adσ
eadσ − 1

◦ A∗res, δg · g−1〉

=

∫
Σ

〈δg∗, δg〉,

where we introduced the notation

(66) g∗ = −g−1 ·
(
F+(adlog g) ◦ A∗res

)
=
(
F−(adlog g) ◦ A∗res

)
· g−1

— a reparametrization of the residual field A∗res such that (g, g∗) form Darboux
coordinates on V.

Rewritten in terms of the parametrization (g, g∗) for residual fields, the half-
density (64) becomes

(67) e
i
~S

effD 1
2σ D 1

2A∗res = e
i
~S

eff (0)D 1
2 g D 1

2 g∗.

I.e., in the (g, g∗)-parametrization, the ghost loops go away and the effective action
has no quantum corrections.

Remark 5.16. In the context of BV formalism, it is natural to think of Seff as a
“log-half-density” (see, e.g., [33, section 2.6]) on the space of residual fields, rather
than a function, i.e., behaving under a change of Darboux coordinates as

Seff
[x,ξ](x, ξ) = Seff

[x′,ξ′](x
′, ξ′)− i~ log sdet

∂(x, ξ)

∂(x′, ξ′)
,

so that one has e
i
~S

eff
[x,ξ](x,ξ)d

1
2xD

1
2 ξ = e

i
~S

eff
[x′,ξ′](x

′,ξ′)d
1
2x′D

1
2 ξ′. Here the superde-

terminant (Berezinian) sdet · · · is the Jacobian of the transformation. With that
in mind, the effective action (58) is Seff

[σ,A∗res]
— relative to the coordinate system

(σ,A∗res) on V. On the other hand, Seff (0) given by (60) without the −i~W term is
Seff

[g,g∗] — relative to the coordinate system (g, g∗).

Ω•(M). Moreover, if (xi, ξi) are Darboux coordinates, i = 1, . . . , n, with xi the even coordinates,
then each cohomology class has a unique representative of the form ρ(x, ξ)dx1 · · · dxn ∈ Ωn(M)

corresponding to the half-density ρ(x, ξ)
∏
i d

1
2 xD

1
2 ξ, with ρ some function. In (64), “∼” refers

this choice of preferred representative for a half-density.
41The superscript (0) means the “0-loop part,” corresponding to the expansion in powers of

~: Seff =
∑∞
k=0(−i~)kSeff (k). In the present case, we have only k = 0, 1 terms.
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5.3.5. Effective action vs. Hamilton–Jacobi. Denote

(68) I(A0,1
in ,A

1,0
out; g) =

=

∫
Σ

(
〈A1,0

out, gA
0,1
in g

−1〉 − 〈A1,0
out, ∂̄g · g−1〉 − 〈A0,1

in , g
−1∂g〉

)
+ WZW(g)

— the effective action (60) restricted to fields of ghost number zero and without
the O(~) term.

Function (68) produces, as a generalized generating function (see [16, Appendix
A] and Section 2), with g an auxiliary parameter, the following lagrangian L ⊂
F∂in ×F∂out in the phase space for the boundary of the cylinder:

(69)

L =
{
A|t=1 = A1,0

out + gA0,1
in g

−1 − ∂̄g · g−1︸ ︷︷ ︸
A0,1

∣∣
t=1

= δI
δA

1,0
out

,

A|t=0 = A0,1
in + g−1A1,0

outg + g−1 · ∂g︸ ︷︷ ︸
A1,0

∣∣
t=0

=− δI
δA

0,1
in

∣∣∣ Y = 0
}
,

where we denoted42

(70) Y = − δI
δg · g−1

=

= [A1,0
out, gA

0,1
in g

−1] + (∂̄ − ad∂̄g·g−1)A1,0
out + ∂(gA0,1

in g
−1)− ∂(∂̄g · g−1).

Lemma 5.17. The lagrangian (69) generated by the functional (68) — the tree part
of the effective action, restricted to gh = 0 fields — coincides with the evolution

relation in F∂in ×F∂out for Chern–Simons theory on the cylinder I × Σ.

Proof. We are restricting our attention only the to gh = 0 connection field A+dt ·a
with A a t-dependent 1-form on Σ and a a t-dependent 0-form on Σ (both are G-
valued). The equation of motion — zero-curvature condition — FA+dt a = 0 splits
into

dΣA +
1

2
[A,A] = 0,(71)

∂tA = (dΣ + [A,−])a.(72)

Equation (72) says that A changes by a continuous gauge transformation on Σ as
t changes, with a the infinitesimal generator. Thus,

(73) A|t=1 = g A|t=0 g
−1 + gdΣg

−1, with g = P←−exp

(
−
∫ 1

0

dt a

)
.

This implies that we can recover the (1, 0) component of A at t = 0 from its known
value at t = 1 and can recover the (0, 1) component at t = 1 from its known value
at t = 0. Thus,

A|t=1 = A1,0
out + A0,1|t=1 = A1,0

out + gA0,1
in g

−1 + g∂̄g−1,(74)

A|t=0 = A0,1
in + A1,0|t=0 = A0,1

in + g−1A1,0
outg + g−1∂g.(75)

42The notation Y = − δI
δg·g−1 means that variation of I under the variation of g is δgI =

−
∫
Σ〈δg · g−1, Y 〉.
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Note that these two equations coincide with the first two equations in (69). Next,
equation (71) means that the curvature of A must vanish on Σ× {t} for any t. In
fact, it suffices to verify it just for one value of t, because for all others it would
follow from (72). Checking (71) at t = 1, we have

(76) FA

∣∣
t=1

= ∂̄A1,0
out + ∂(gA0,1

in g
−1 − ∂̄g · g−1)︸ ︷︷ ︸

dΣA|t=1

+[A1,0
out, gA

0,1
in g

−1 − ∂̄g · g−1] = 0.

This equation coincides with the constraint Y = 0 in (69) coming from equating to
zero the variation of the generating function I in the auxiliary parameter g.

Thus, we have checked that the lagrangian in the boundary phase space induced
from the equations of motion (the evolution relation) coincides with the lagrangian
generated by I. �

Remark 5.18. The function I given by (68) is also the Hamilton–Jacobi action (see
[16, Section 7.2]): it is the evaluation of the Chern–Simons action with polarization
terms, restricted to degree-zero fields,

Sfph =

∫
I×Σ

(1

2
〈A, dA〉+ 1

6
〈A, [A,A]〉

)
+

∫
{1}×Σ

1

2
〈A1,0,A0,1〉−

∫
{0}×Σ

1

2
〈A0,1,A1,0〉,

on any connection 1-form A solving the “evolution equation” ι ∂
∂t
FA = 0 subject

to boundary conditions (A|t=1)1,0 = A1,0
out, (A|t=0)0,1 = A0,1

in and with the parallel
transport of A along the interval I × {z} given by g(z) ∈ G for any z ∈ Σ. One
proves this by an explicit computation similar to the proof of Lemma 5.14, picking a
convenient gauge equivalent representative for A = A+a dt with a constant along I
(but allowed to vary in Σ direction). Here we are using gauge-invariance of Chern–
Simons action mod 4π2Z w.r.t. gauge transformations trivial on the boundary.

5.3.6. Quantum master equation. Quantum BFV operators on in- and out-states
Ωin,Ωout are given by canonical quantization of the boundary BFV action

SBFV
Σ = ±

∫
Σ

〈c, FA〉+ 〈A∗, 1

2
[c, c]〉

with ± corresponding to out-/in-boundary. Explicitly, quantum BFV operators
are43

Ωout =

∫
Σ

〈
cout, ∂̄A

1,0
out − i~(∂ + [A1,0

out,−])
δ

δA1,0
out

〉
− i~

〈
1

2
[cout, cout],

δ

δcout

〉
,

(77)

Ωin =

∫
Σ

〈
cin,−∂A0,1

in − i~(∂̄ + [A0,1
in ,−])

δ

δA0,1
in

〉
− i~

〈
1

2
[cin, cin],

δ

δcin

〉
.(78)

Lemma 5.19. The partition function Z = e
i
~S

eff

with Seff given by (58), (60)
satisfies the modified quantum master equation

(79) (Ωout + Ωin − ~2∆res)Z = 0

with ∆res =
∫

Σ
〈 δδσ , δ

δA∗res
〉 the BV Laplacian on residual fields.

43The BFV operator (78), its generalization to the case of Wilson lines intersecting the bound-
ary — see (92) below — and its cohomology in genus zero were discussed in [1].
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Proof. Given the ansatz Z = e
i
~S

eff

, the equation (79) can be written as

(80) Z−1ΩinZ + Z−1ΩoutZ +
1

2
{Seff , Seff}res − i~∆resS

eff !
= 0

with {, }res the odd Poisson bracket on residual fields associated with the symplectic
structure (65). Moreover, using the decomposition Seff = Seff (0) − i~W(σ), the
mQME can be further rewritten as

(81) Z−1ΩinZ + Z−1ΩoutZ +
1

2
{Seff (0), Seff (0)}res−

− i~
(
{Seff (0),W}res + ∆resS

eff (0)
)

!
= 0.

It is easiest to compute the term 1
2{Seff (0), Seff (0)}res using (g, g∗) - parametrization

of residual fields. We have

Seff (0) = I +

∫
Σ

〈g∗, coutg − gcin〉,

δ

δg
Seff (0) = −g−1Y + g∗cout + cing

∗,

δ

δg∗
Seff (0) = coutg − gcin,

with I as in (68) and Y as in (70). Thus,

1

2
{Seff (0), Seff (0)}res = Seff (0)

(∫
Σ

〈
←−
δ

δg
,

−→
δ

δg∗
〉
)
Seff (0)

=

∫
Σ

〈cout − gcing−1,−Y + gg∗cout + gcing
∗〉.

Acting on the partition function with the boundary BFV operators yields

Z−1ΩoutZ =

∫
Σ

〈
cout, ∂̄A

1,0
out + (∂ + [A1,0

out,−])(gA0,1
in g

−1 − ∂̄g g−1)
〉
− 1

2
〈[cout, cout], gg

∗〉,

Z−1ΩinZ =

∫
Σ

〈
cin,−∂A0,1

in − (∂̄ + [A0,1
in ,−])(g−1A1,0

outg + g−1∂g)
〉

+
1

2
〈[cin, cin], g∗g〉.

Putting together these computations, we find that

(82) Z−1ΩinZ + Z−1ΩoutZ +
1

2
{Seff (0), Seff (0)}res = 0

— all the terms in this combination cancel out. This gives us the mQME in the
leading order O(~0).

For the two remaining terms, {Seff (0),W}res and ∆resS
eff (0), we will use the

(σ,A∗res)-parametrization for residual fields. The variation of j(σ) (see (57)) in σ is

δσj(σ) = trGP (adσ)adδσ, where P (x) =
1

2
coth

x

2
− 1

x
.

Therefore, using (59), we have

(83)

{Seff (0),W}res =
∑
z∈Σ

trGP (adσ)[−F+(adσ) ◦ cout − F−(adσ) ◦ cin, •]

=
∑
z∈Σ

trGP (adσ)[−cout + cin, •].
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Here the last simplification relies on the identity

(84) trG [(adx)a ◦ y, (adx)b•] = 0 for a ≥ 1, b ≥ 0,

which follows from the cyclic property of the trace and Jacobi identity. We also
have

(85)

∆resS
eff (0) =

∑
z∈Σ

−trG
∑
r,s≥0

Br+s+1

(r + s+ 1)!
(adσ)rad•

(
(−1)r+s+1(adσ)scout−(adσ)scin

)
=
∑
z∈Σ

trG
∑
r,s≥0

Br+s+1

(r + s+ 1)!

[
(−1)r+s+1(adσ)scout − (adσ)scin, (adσ)r •

]
=

(84)

∑
z∈Σ

trG
∑
r≥0

Br+1

(r + 1)!
[cout − cin, (adσ)r•] =

∑
z∈Σ

trG adcout−cin ◦ P (adσ).

Comparing (83) and (85), we see that they exactly cancel each other pointwise on
Σ. Thus,

{Seff (0),W}res + ∆resS
eff (0) = 0.

Together with (82), this finishes the proof of mQME (81). �

Remark 5.20. The check of the mQME above clearly breaks into two parts:

(a) The classical part

(86) Z−1ΩinZ + Z−1ΩoutZ +
1

2
{Seff (0), Seff (0)} = 0,

which is unambiguous and requires no regularization.
(b) The quantum part

{Seff (0),W}res + ∆resS
eff (0) = 0,

which makes sense with the same regularization as the one used in the proof of
Lemma 5.12: replacing Σ with the set of vertices of a triangulation.

Aside: mQME and Polyakov-Wiegmann formula. The classical part of
the mQME, equation (86), itself splits into two parts: terms involving the anti-
field g∗ and others. The terms involving g∗ cancel due to invariance of the inner
product. The cancellation of the remaining terms can be understood in terms of
the WZW model as follows. The part of the effective action I(A0,1

in ,A
1,0
out; g) defined

in (68) can be identified as the WZW action coupled to two external chiral gauge

fields A0,1
in ,A

1,0
out, see, e.g., eq. (4.5) in [23, §4.2]. This coupling is sometimes called

“gauging the GL × GR symmetry”, for instance in [40]. For us it is more natural
to call it the Gin × Gout-action. Explicitly, the action of (hin, hout) ∈ G × G on

(A0,1
in ,A

1,0
out; g) is

(87) (hin, hout) · (A0,1
in ,A

1,0
out; g) =

(
hin(A0,1

in ), hout(A1,0
out);houtgh

−1
in

)
.

It is well known that under the transformation (87) I is not invariant, but transforms
according to the Polyakov–Wiegmann [35] formula:
(88)

I
(
hin(A0,1

in ), hout(A1,0
out);houtgh

−1
in

)
= I(A0,1

in ,A
1,0
out; g)−I(A0,1

in , 0;hin)+I(0,A1,0
out;hout).

We claim that this equation is just the finite version of the classical part of the
mQME, eq. (86) above. To see this, consider a path (hin(t), hout(t)) of gauge
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transformations starting at the identity and compute the derivative of (88) at t = 0.
The computation is quite straightforward and we just sketch it: using eq. (70), we
get

d

dt

∣∣∣∣
t=0

I
(
A0,1

in ,A
1,0
out, hout(t)ghin(t)−1

)
=

∫
Σ

〈ḣout − gḣing
−1, Y 〉.

Upon identifying cin = ḣin, cout = ḣout this gives the piece of 1
2{Seff (0), Seff (0)} of

(86) not involving g∗. Then, we find that

d

dt

∣∣∣∣
t=0

I
(
hin(t)(A0,1

in ),A1,0
out, g

)
+ I(A0,1

in , 0, hin(t))

= −∂̄A0,1
in
ḣin(g−1A1,0

outg+g−1∂g)−
∫
〈ḣin, Y

∣∣
g=1,A0,1

out=0
〉 = Z−1ΩinZ

∣∣∣∣
g∗=0,cin=ḣin,cout=ḣout

and similarly for the action of hout. Overall, we find

d

dt

∣∣∣∣
t=0

[
I
(
hin(A0,1

in ), hout(A1,0
out);houtgh

−1
in

)
+ I(A0,1

in , 0, hin(t))− I(0,A1,0
out, hout(t)

]
=

[
Z−1ΩinZ + Z−1ΩoutZ +

1

2
{Seff (0), Seff (0)}

]
g∗=0,cin=ḣin,cout=ḣout

,

which proves the claim that (a part of) the ~ = 0 part of the mQME is equivalent
to the infinitesimal Polyakov–Wiegmann formula. We will comment further on the
relationship between Chern–Simons theory on Σ × I and WZW theory on Σ in
Section 5.3.8 below.

Remark 5.21. In the mQME (79) and the proof above we were using the (g,A∗res)-
parametrization of residual fields for the BV Laplacian. The corresponding state-
ment for the BV Laplacian in (g, g∗)-parametrization,

∆[g,g∗] =

∫
Σ

〈 δ
δg
,
δ

δg∗
〉 =

∫
Σ

〈 δ

δg g−1
,

δ

g δg∗
〉,

is:

(89) (Ωout + Ωin − ~2∆[g,g∗]) e
i
~S

eff (0)

= 0.

Note that here we should not be including the −i~W term in the effective action,
cf. Remark 5.16. The proof of (89) is exactly as before in the order O(~0). In the
order O(~1), we have

∆[g,g∗]S
eff (0) =

∑
z∈Σ

1

2
divT∗[−1]G

{
〈g∗, coutg − gcin〉, •

}
.

The hamiltonian vector field generated by the ghost term in the effective action is
the cotangent lift to T ∗[−1]G of the vector field

X = 〈cout,
∂

∂g g−1
〉 − 〈cin,

∂

g−1∂g
〉.

— This is a sum of a right-invariant and a left-invariant vector field on G. Since
the Haar measure is bi-invariant, X has divergence zero. Therefore,

∆[g,g∗]S
eff (0) =

∑
z∈Σ

divGX = 0.



52 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

Ultimately, to avoid the ambiguity as to whether we should be including the
term −i~W into the partition function or not, we can use the invariant formulation
where the partition function is a half-density (rather than a function) on residual
fields and the BV Laplacian is the canonical BV Laplacian on half-densities. Then
the mQME is

(Ωout + Ωin − ~2∆can
res )Zcan = 0,

where Zcan = e
i
~S

eff
[x,ξ]d

1
2xD

1
2 ξ. Here (x, ξ) can be any Darboux coordinate system

on V, e.g., (σ,A∗res) or (g, g∗).
Summary. Summarizing the main results of Section 5.3, we have the following:

• The canonical partition function of the nonabelian theory on the cylinder

[0, 1]×Σ with the “parallel ghost” polarization is: Zcan = e
i
~S

eff
[g,g∗]D 1

2 gD 1
2 g∗

where the effective action relative to the coordinate system (g, g∗) on V is
given explicitly by

(90) Seff
[g,g∗] =

=

∫
Σ

(
〈A1,0

out, gA
0,1
in g

−1〉 − 〈A1,0
out, ∂̄g · g−1〉 − 〈A0,1

in , g
−1∂g〉

)
+ WZW(g)

+

∫
Σ

−〈cout, g g
∗〉+ 〈cin, g∗g〉.

In particular, there are no quantum corrections in Seff
[g,g∗].

• Zcan satisfies the modified quantum master equation.
• The restriction of Seff

[g,g∗] to ghost number zero fields is the Hamilton–Jacobi

action, i.e., is the generalized generating function for the evolution relation
of the classical theory obtained by evaluating the classical action on a so-
lution of the evolution equations, see Section 2.

Remark 5.22. The relation between 3D nonabelian Chern–Simons theory and the
(gauged) WZW model was studied from different angles in the literature. The
closest discussion to ours, perhaps, was in [11]: G/G WZW theory was recovered
from Chern–Simons on a cylinder, using essentially the same gauge fixing and
polarization as the ones we employ. But there are crucial differences in the two
approaches. We have an explicit Feynman diagram computation of the partition
function and prove the QME and the gauge invariance property at the quantum
level. In [11], on the other hand, quantum gauge invariance was assumed and was
used to evaluate the Chern–Simons partition function.

5.3.7. “Vertical” Wilson lines. One can enrich Chern–Simons theory with Wilson
line observables given classicaly by the parallel transport of the connection field A
along a curve γ ending on the boundary; the parallel transport is evaluated in some
linear representation ρ of G on a vector space R.

Let us consider a very simple case: several “vertical” Wilson lines with γj =
I × {zj} connecting the in- and out-boundaries of the cylinder I × Σ; here zj are
a collection of points on Σ, j = 1, . . . , n. We are fixing representations ρj for the
Wilson lines, with Rj the respective representation spaces.
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out

zj

zj
Rj

R∗
j

ρj

in

Figure 7. Vertical Wilson lines.

Note that for our choice of gauge fixing, we have for the Wilson lines

Wj = ρj(P
←−exp(−

∫
γj

A)) = ρj(e
−σ(zj)) = ρj(g(zj)) ∈ End(Rj).

I.e., vertical Wilson lines depend only on the residual fields.
Thus, the partition function of the theory enriched with vertical Wilson lines is:

(91) ZI×Σ,{γj} = ZI×Σ ·
⊗
j

ρj(g(zj))

with ZI×Σ = e
i
~S

eff

the partition function without the Wilson lines.

The space of out-states is given by functionals of A1,0
out, cout with values in

⊗
j Rj ,

while the space of in-states is given by functionals of A0,1
in , cin also with values in⊗

j R
∗
j .

44 The BFV operators are:45

(92) Ω
Σ,{zj}
out = ΩΣ

out + i~
∑
j

ρj(cout(zj)) , Ω
Σ,{zj}
in = ΩΣ

in + i~
∑
j

ρ∗j (cin(zj)),

where ΩΣ
out, ΩΣ

in are the BFV operators for the theory without the Wilson lines,
given by (77), (78); ρ∗j is the dual representation to ρj with representation space
R∗j .

As a direct consequence of Lemma 5.19, one has that the partition function with
Wilson lines (91) satisfies the modified quantum master equation:

(Ω
Σ,{zj}
out + Ω

Σ,{zj}
in − ~2∆res)ZI×Σ,{γj} = 0.

Here we understand that the ρ∗j term in Ωin acts on the second factor in ρj(g(zj)) ∈
Rj ⊗R∗j , while the ρj term in Ωout acts on the first factor.

44Our convention is that the partition function is not a homomorphism from in-states to out-

states (depending on residual fields), but an element of Hout⊗̂Hin, i.e., without dualization of the
in-factor. In this description, gluing of two cylinders involves a pairing between the out-states of

the first cylinder HIout and the in-states HIIin of the second.
45See [1] for a construction of these BFV operators from the presentation of Wilson lines via a

path integral over auxiliary fields supported on γj (the Alekseev–Faddeev–Shatashvili formula).
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5.3.8. The CS-WZW correspondence: WZW theory as an effective theory of Chern–
Simons. Equation (90) is evidence of a strong relationship between the Chern–
Simons theory on a manifold with boundary Σ and the WZW theory on the Rie-
mann surface Σ. This relationship has, of course, already been subject to a lot of
scrutiny after Witten’s seminal article [39]. In the approach of this paper, this rela-
tionship stems from the fact that the gauged WZW action emerges as an effective
action of the Chern–Simons theory, as is clear from eq. (90). To be precise, the
following two theories are equivalent:

i) The BV-BFV effective theory of Chern–Simons on a I × Σ, restricted to the
gauge-fixing lagrangian L = {g∗ = 0} ⊂ T ∗[−1]G.

ii) The WZW theory with gauged “Gin ×Gout”-symmetry.

This is a very strong statement of equivalence: It means that essentially all quanti-
ties computed from the action functional in gauged WZW theory have an expression
in Chern–Simons theory. We summarize this relationship in Table 1 below.

Object in CS on I × Σ Object in gauged WZW on Σ

Effective action Seff
[g,g∗] Gauged WZW action I(A0,1

in ,A
1,0
out; g)

mQME (Ω−∆res)Z = 0
Polyakov–Wiegmann formula (88)

(group 1-cocycle property)

Expectation value W of Wilson line
γ = I × {z} in rep. ρ

Field insertion ρ(g(z))

Table 1. The CS-WZW correspondence

Remark 5.23. One might wonder why in Table 1 on the left hand side we have
objects defined in the quantization on the Chern–Simons theory, while on the right-
hand side we have entirely classical objects in the WZW model. This apparent
puzzle is resolved by the observation that on the left-hand side we are seeing only
the semiclassical limit of the quantum Chern–Simons theory (which in this case
happens to be exact, since there are no loop contributions46). This fits in with the
broader framework of holographic correspondences in physics, where one expects
the semiclassical approximation of the bulk theory to be described by a boundary
theory. See for instance [18]

Remark 5.24 (Nonequivalent gauge-fixing lagrangians). Instead of L = {g∗ = 0},
one could restrict the effective Chern–Simons action (90) also to another lagrangian
L′ ⊂ T ∗[−1]G given by g = 1. In that way, one obtains

(93) Seff
[g,g∗]

∣∣∣∣
g=1

=

∫
Σ

〈A1,0
out,A

0,1
in 〉+

∫
Σ

〈g∗, cin − cout〉.

Upon integrating Z over L or L′, one obtains two (Ωin + Ωout)-cocycles Z1, Z2.
Z1 is concentrated in ghost degree 0 (we will discuss it in more detail in the next

46Up to the subtleties concerning ghost loops discussed above.
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subsection) while

Z2 = exp

(
i

~

∫
Σ

〈A1,0
out,A

0,1
in 〉
)
δ(cin − cout)

has nonzero ghost number (formally, it is infinite, gh = dim Ω0(Σ, g)). Therefore,
L and L′ provide an example of nonequivalent gauge-fixing lagrangians.

In the (g, g∗)-coordinates we can define a particularly simple gauge-fixing la-
grangian L given by g∗ = 0 (for the general remarks in this section, we will allow
ourselves to ignore issues arising from possible zero modes).
(94)

Seff
∣∣
L = WZW(g)+〈A1,0

out, gA
0,1
in g

−1〉−〈A1,0
out, ∂̄g·g−1〉−〈A0,1

in , g
−1∂g〉 ≡ I[A1,0

out,A
0,1
in ; g].

Here I[A1,0
out,A

0,1
in ; g] is the standard way of gauging the WZW action, see, e.g., eq.

(4.5) in [23, §4.2]. We can then express the Chern–Simons partition function on
I × Σ as

(95) ZI×Σ[A1,0
out,A

0,1
in , cin, cout] ≡ ZI×Σ[A1,0

out,A
0,1
in ] =

∫
g

exp
i

~
I[A1,0

out,A
0,1
in ; g]Dg

(notice the partition function does not depend on cin, cout). This is the definition of
the partition function ZWZW

A of gauged WZW, see, e.g., eq. (4.7) in [23, §4.2]. Here

we abbreviate A = (A1,0
out,A

0,1
in ). Similarly, we see that a correlator in the gauged

WZW theory can be expressed as the partition function of Chern–Simons theory
enriched with Wilson lines:

(96) 〈ρ1(g(z1))⊗ . . .⊗ ρn(g(zn))〉A

=

∫
g

ρ1(g(z1))⊗ . . .⊗ ρn(g(zn))e
i
~ I[g,A]Dg =

∫
g

ZI×Σ,{γj}Dg.

For the purposes of this subsection, we will treat the path integral expressions
on the right hand side of (95) and (96) heuristically. In the literature, these objects
are typically defined via representation theory. In this paper, we are typically
interpreting path integral expressions as defined via Feynman graphs and rules,
but for WZW the absence of a natural linear structure on the target (the group
G) obstructs the treatment of the path integral as a perturbed Gaussian integral.
We will therefore simply assume that the partition function exists and defines an
element in Ω-cohomology. In [1] it was shown that in genus 0, the Ω-cohomology
with n Wilson lines ending on the boundary can be identified with the n-point
space of conformal blocks. We expect this to hold for all genera, and assume it
for the purpose of the next section. We summarize the content of the CS-WZW
correspondence after integrating over L in Table 2 below.

5.3.9. An application: Holomorphic factorization of the WZW theory. We will now
discuss an application of the correspondence observed above. The arguments in
this section will be more heuristic in nature.

Suppose we fix the boundary condition on one side, e.g., fix the antiholomorphic
boundary condition at the in-boundary by setting A0,1

in = 0 (remember that in our

treatment of boundary conditions, setting A0,1
in = 0 means that A

∣∣
Σin
∈ Ω1,0(Σ, g) ),

and take the out-boundary in the A1,0
out-representation. We will call such a cylinder

a “chiral cylinder.”
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Object in CS on I × Σ Object in gauged WZW on Σ

CS partition function ZI×Σ[A1,0
out,A

0,1
in ] Gauged WZW partition function ZWZW

A

Expectation value W of n Wilson lines
γ = I × {zi} in rep. ρ1, . . . ρn

Gauged WZW correlator
〈ρ1(g(z1)) · · · ρn(g(zn))〉A

Ω-cohomology with n Wilson lines n-point space of conformal blocks

Table 2. The CS-WZW correspondence after integrating over the
gauge-fixing lagrangian L.

Σin

A0,1
in = 0

Σout

A1,0
out

Figure 8. A chiral cylinder: antiholomorphic boundary condi-
tions on Σin, A1,0

out-representation on Σout. Gray indicates that we
fix a boundary condition on this boundary, while hatching indicates
we fix only the polarization.

After integrating out g, we obtain the partition function ψ(A1,0
out) of a “chiral

gauged WZW theory,” i.e., a WZW theory coupled to a chiral gauge field, see, e.g.,
[40].47 This partition function is not a number, but rather a holomorphic gauge
invariant section of a line bundle over the space of connections on Σ.48 We can
glue the chiral cylinder to another “antichiral” cylinder with opposite boundary
conditions (see Figure 9). In this way, we obtain – as explained in [40] – the
square of the norm of ψ.49 Here, the “norm square” should be taken with respect
to a well-defined inner product on the Ω-cohomology, i.e., the finite-dimensional
moduli space of gauge-invariant holomorphic sections.50 On the other hand, from
the general principles of the BV-BFV formalism, we will then obtain the partition
function of Chern–Simons theory with opposite chiral boundary conditions, which

47Where Witten suggests that “this in fact can be regarded as the essential relation between
the WZW model and Chern–Simons theory.”

48In our approach, holomorphicity simply follows from the fact that it depends only on A1,0
out,

while gauge invariance is the statement that Ωoutψ = 0.
49A missing factor of

∫
Σ A

1,0A0,1 in comparison with [40] comes from the gluing conventions

in BV-BFV, see Appendix A.
50See, for instance, [25] for a more detailed discussion in genus 0, or [19] for a discussion in

genus 1. The authors do not know of an explicit construction of this inner product in higher
genera.



CHERN–SIMONS ON CYLINDERS 57

* =

Figure 9. Gluing a chiral and an antichiral cylinder into a cylin-
der with opposite chiral boundary conditions. Gray indicates a
fixed boundary condition, hatching indicates a polarized bound-
ary.

is given by specializing to A1,0
out = A1,0

in = 0 in (95):

(97) |ψ|2 = ZCS
I×Σ = ZWZW

Σ .

Here on the left-hand side we have the norm-square of the partition function of
chiral WZW, in the middle we have Chern–Simons partition function on the cylin-
der with opposite chiral boundary conditions, while on the right-hand side we have
the definition of the WZW partition function. Equation (97) is sometimes called
“holomorphic factorization of the WZW model”, because one sees that the parti-
tion function of the full WZW model — which does not vary holomorphically on
the moduli space of conformal structures — splits into a sum of products of holo-
morphic and antiholomorphic factors, which do depend (anti)holomorphically on
the complex structure. Thus, holomorphic factorization of the WZW model follows
from the self-similarity of the Chern–Simons partition function on cylinders.
Using the results of Section 5.3.7, in particular equation (91), these results for the
partition function generalize to correlators in chiral and full WZW. Namely, sup-
pose we are given n Wilson lines colored by representations R1, . . . , Rn, and let
V = ⊗jRj . Then, the Chern–Simons partition function with Wilson lines on a chi-
ral cylinder ψ{γj} is naturally a degree zero element of V ⊗Hout with Hout the space

of functionals of A1,0
out, cout with values in V ∗. Gluing with an antichiral cylinder, we

obtain the Chern–Simons partition function with Wilson lines and opposite bound-
ary conditions - the correlator 〈ρ1(g(z1)) · · · ρn(g(zn))〉 ∈ V ⊗ V ∗ in a full WZW
model. On the other hand, explicitly computing the BV-BFV gluing we obtain51

(ψ,ψ) ∈ V ⊗V ∗. Here (·, ·) is the inner product on the space on n-point conformal
blocks. Thus, we obtain the generalization of (97) to the case with Wilson lines:

(98) (ψ{γj}, ψ{γj}) = ZCSI×Σ,{γj} = 〈ρ1(g(z1)) · · · ρn(g(zn))〉.

5.4. 3D nonabelian Chern–Simons theory in holomorphic-to-holomorphic
polarization. Next, consider the nonabelian Chern–Simons theory on Σ × [0, 1]
with polarizations as in Section 4.1. The residual fields

A+
I res = A0

I res + A1,0
I res, A−res = A0,1

res + A2
res

51The gluing is defined as a formal functional integral, but its restriction to the finite-
dimensional Ω-cohomology gives rise to a well-defined inner product.
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and the gauge fixing are as in Section 4.1 (but now all forms are G-valued). We will
use the notations σ = A0

I res, λ = A0,1
res for gh = 0 residual fields, as in Section 4.1.1.

In this subsection we will present only the results; the computations are similar
to those of Section 5.3.

The Feynman diagrams for the partition function Z = e
i
~S

eff

are:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

∂σ
σ

σ

σ

σ

σ

σ σ

λ

· · · · · ·
cout/in

A1,0
I res

λ

σ

σ

σ

σ

σ

σ

A1,0
out/in

σ σ σ σ

A2
res cout/in

· · ·

cout/in

σ σ σ σ

∂̄A1,0
I res

· · ·

σ σ σ σ· · · · · ·
cout/in

A1,0
I res

σ σ σ σ

∂̄σ

· · ·

∂̄σ

σ σ σ σ

λ A1,0
out/in

· · ·

σ σ

Figure 10. Feynman diagrams in nonabelian theory on a cylinder
in holomorphic-to-holomorphic polarization.

Here the “physical wheels” (viii) and the “ghost wheels” (ix) cancel each other,
due to the form of propagators in the chosen polarization.

Calculating the Feynman diagrams, one finds the following expression for the
effective action:

(99) Seff = Seff
ph + Seff

gh ,

where the part depending only on “physical” (gh = 0) fields (the contribution of
diagrams (i), (ii), (iii)) is

(100) Seff
ph =

∫
Σ

〈λ, ∂σ〉+

〈
A1,0

out,
adσ

eadσ − 1
◦ λ+

(
− 1

eadσ − 1
+

1

adσ

)
◦ ∂̄σ

〉
+

〈
A1,0

in ,−
adσ

1− e−adσ
◦ λ+

(
1

1− e−adσ
− 1

adσ

)
◦ ∂̄σ

〉
and the ghost-dependent part (the contribution of diagrams (iv)–(vii)) is

(101) Seff
gh =

∫
Σ

〈
cout,

∑
k≥0

B−k
k!

(adσ)kA2
res −

∑
k≥0

B−k+1

(k + 1)!
(adσ)k∂̄A1,0

I res
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+
∑
k,l≥0

B−k+l+1

(k + l + 1)!
(adσ)kadA1,0

I res
(adσ)lλ−

∑
k,l≥0

B−k+l+2

(k + l + 2)!
(adσ)kadA1,0

I res
(adσ)l∂̄σ

〉

+

〈
cin,−

∑
k≥0

B+
k

k!
(adσ)kA2

res +
∑
k≥0

B+
k+1

(k + 1)!
(adσ)k∂̄A1,0

I res

−
∑
k,l≥0

B+
k+l+1

(k + l + 1)!
(adσ)kadA1,0

I res
(adσ)lλ+

∑
k,l≥0

B+
k+l+2

(k + l + 2)!
(adσ)kadA1,0

I res
(adσ)l∂̄σ

〉
.

Here B±n are the Bernoulli numbers with B±1 = ± 1
2 and with B+

n = B−n the usual
Bernoulli numbers for n 6= 1 (thus, B−n = Bn are the standard Bernoulli numbers
for n = 0, 1, 2, . . .):

n 0 1 2 3 4 5 6 · · ·
B+
n 1 + 1

2
1
6 0 - 1

30 0 1
42 · · ·

B−n 1 − 1
2

1
6 0 - 1

30 0 1
42 · · ·

Remark 5.25. Another form of the ghost-dependent part of the effective action
(101), with sums over k, l below evaluated explicitly, is:

Seff
gh =

∫
Σ

〈
cout,

adσ
eadσ − 1

◦ A2
res +

(
− 1

eadσ − 1
+

1

adσ

)
◦ ∂̄A1,0

I res

+ adA1,0
I res

1

eadσ − 1
◦ λ− adσ

1− e−adσ
ad

(
1− e−adσ

adσ
◦ A1,0

I res

)
1

eadσ − 1
◦ λ

− 1

adσ
adA1,0

I res

1

adσ
∂̄σ +

1

eadσ − 1
ad

(
eadσ − 1

adσ
◦ A1,0

I res

)
1

1− e−adσ
◦ ∂̄σ

〉
+
〈
cin,

(
σ → −σ,A2

res → −A2
res

)〉
.

Here the coefficient of cin is obtained from the coefficient of cout by replacing σ with
−σ and replacing A2

res with −A2
res.

Next, one can introduce a new parametrization of the space of residual fields by
a group-valued map g : Σ→ G, a (0, 1)-form Λ, a (1, 0)-form Λ∗ and a 2-form g∗:52

g = e−σ,

Λ = coefficient of A1,0
out in (100)

=
adσ

eadσ − 1
◦ λ+

(
− 1

eadσ − 1
+

1

adσ

)
◦ ∂̄σ,

Λ∗ =
1− e−adσ

adσ
◦ A1,0

I res,

g∗ = (coefficient of cin in (101) ) · g−1.

This change of parametrization has Jacobian 1 and changes one Darboux coordinate
system w.r.t. the BV symplectic form on V into another one:

ωres =

∫
Σ

〈δσ, δA2
res〉+ 〈δλ, δA1,0

I res〉 =

∫
Σ

〈δg, δg∗〉+ 〈δΛ, δΛ∗〉.

52Λ,Λ∗ are G-valued forms while g∗ is a G-valued form translated by g−1. The ghost number
is 0 for g,Λ and is −1 for g∗,Λ∗.
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In terms of this new parametrization, the effective action (99) can be written more
concisely:

(102) Seff = −WZW(g−1)−
∫

Σ

〈Λ, ∂g · g−1〉

+

∫
Σ

〈A1,0
out,Λ〉+ 〈A1,0

in , g
−1Λg+ g−1∂̄g〉+ 〈cout,−g g∗+ ∂̄Λ∗+ [Λ,Λ∗]〉+ 〈cin, g∗g〉,

where WZW is the Wess–Zumino–Witten action defined as in (61).
The effective action (102) satisfies the following properties:

• Its restriction to gh = 0 fields satisfies the Hamilton–Jacobi property, i.e.,
it is the generalized generating function for the evolution relation of non-
abelian Chern–Simons theory. From this identification one can see that,
on-shell, Λ can be interpreted as the (0, 1)-component of the connection
field at t = 1.53

• One has the modified quantum master equation

(Ωout + Ωin − ~2∆res)e
i
~S

eff

= 0

with the boundary BFV operators

Ωout/in =

∫
Σ

〈
c,±∂̄A1,0 − i~(∂ + [A1,0,−])

δ

δA1,0

〉
− i~

〈1

2
[c, c],

δ

δc

〉
.

Here the sign ± is + for out-boundary and − for in-boundary; we also
suppressed the out/in subscript in the boundary fields A1,0 and c.

6. BV-BFV approach to higher-dimensional Chern–Simons theories

The observations on abelian Chern–Simons theory in Sections 3 and 4 generalize
readily to cylinders I ×M of other dimensions d. Observe that d must be odd
because we want the field A to belong to the superspace Ω•(I×M) or ΠΩ•(I×M)
and, in either case, the BV action S =

∫
I×M

1
2A ∧ dA is even iff d is odd.

In the following, we will actually focus on the graded case where the field A
belongs to the graded space Ω•(I×M)[k] for some integer k and the BV action has
degree zero. This forces d = 2k+ 1. If k were even, we would have A∧dA = 1

2dA2,
so the BV action would have no bulk contribution. Therefore, we will have to
assume that k is odd. To summarize:54

d = dim(I ×M) = 2k + 1, k = 2l + 1.

53There is, of course, a similar change of variables where instead we take the (0, 1)-component

at t = 0 to be a coordinate on V. It leads to an expression for Seff where the symmetry between

in/out boundaries is broken in the opposite way to (102): the coefficients of A1,0
in , cout are simple

and the coefficients of A1,0
out, cin are more complicated.

54There are other ways to get at this results. For example, we may consider the classical

theory with action Scl =
∫
I×M

1
2
AdA with A a k-form for some k. This immediately forces

d = 2k + 1. For k even, we have AdA = 1
2
dA2, so the classical action has no bulk term. We then

have to assume k odd. Another option is to consider the AKSZ construction with target R[k], for
some k, endowed with a symplectic form. If we denote by x the coordinate, the general 2-form is

ω = f(x)dxdx with f a function. If k is even, dxdx = 0 and ω is degenerate, so we have to assume
k odd. In this case f(x) = a + bx for some real numbers a and b. Now ω is closed iff b = 0 and

nondegenerate iff a 6= 0 (we may, e.g., take a = 1
2

). We then have that ω has degree 2k. Since we

want to produce a BV form (i.e., degree equal to −1) on I ×M by the AKSZ construction, we
need d = 2k + 1.
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The case k = 1 has been considered in Section 4. We will briefly describe the
general case before turning to the next example of interest, k = 3.

Next we assume that the 2k-dimensional manifold M is closed and oriented.
Again, we can construct a BV-BFV theory by the AKSZ construction as

F = Map(T [1](I ×M),R[k]) = Ω•(I ×M)[k]

and rewrite this space of fields in the form

F = Ω•(I,Ω•(M)[k]),

exhibiting the theory as a 1-dimensional Chern–Simons theory with coefficients in
g = Ω•(M). The BV action is then, mimicking (18),

S =

∫
I×M

1

2
A ∧ dA =

∫
I

1

2
(A, dIA) +

1

2
(A, dMA),

where d = dI + dM and (a, b) =
∫
M
a ∧ b. Again, the field A can be split as

A = A + dt · AI and the boundary phase space is F∂M = Ω•(M)[k] with Noether
1-form

α =
1

2

∫
{1}×M

A ∧ δA− 1

2

∫
{0}×M

A ∧ δA.

Next, assume that M carries a complex structure. Then we can split the space
of complexified k-forms as

ΩkC(M) =
⊕

j1+j2=k

Ωj1,j2(M).

Given that k is odd, the splitting

(103) ΩkC(M) =

l⊕
j=0

Ωk−j,j(M)︸ ︷︷ ︸
Ωk+(M)

⊕
k⊕

j=l+1

Ωk−j,j(M)︸ ︷︷ ︸
Ωk−(M)

provides a splitting into lagrangian subspaces of ΩkC(M) (which is the degree 0
subspace of F∂M ). The splitting (20) generalizes to

Ω•C(M)︸ ︷︷ ︸
gC

=

k−1⊕
j=0

ΩjC(M)⊕ Ωk+(M)︸ ︷︷ ︸
g+
C

⊕Ωk−(M)⊕
d−1⊕
j=k+1

ΩjC(M)︸ ︷︷ ︸
g−C

.

Correspondingly, we split the fields A into its components A = A+ + A−, and
similarly for AI . The de Rham differential restricted to the subcomplex Ωk−1(M)→
Ωk+(M)⊕Ωk−(M)→ Ωk+1(M) splits as dM = d+

M + d−M as in Section 5.1,55 see also
Figure 11 below.

55In more detail, for a (p, q)-form α with p+ q = k − 1 we have

d+
Mα =


dMα, q < l,

∂α, q = l,

0, q > l.

and vice versa for d−M .
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Ωp,q

p

q

0 1 2 3

0

1

2

g−

g+

X−

X+

X [1]

3

Figure 11. Splitting of Ωp,q into g+ (below the thick line) and
g− (above the thick line), in the case k = 3. Solid arrows are com-
ponents of d−, dashed arrows are components of d+. Horizontal
arrows (dashed or not) are ∂, vertical ones are ∂̄.

In particular, we have (A+, dMA+) = (A+, d−MA+). Before turning to the partic-
ular example of k = 3, let us briefly have a look at the general form of the partition
function in the two polarizations considered already in the last section.

6.1. Partition functions in 4l+ 3-dimensional CS theories. First, let us take
g+ as the base of the polarization on both ends of the cylinder. This means that

B = g+[k]⊕ g+[k] 3 (A+
in,A

+
out)

with fiber
Y = Ω•(I, ∂I; g+[k])⊕ Ω•(I, g−[k]).

Again, we can gauge fix the polarized theory by choosing

V = dt · g+[k]⊕ 1 · g−[k] 3 (dt · A+
I,res,A

−
res)

and using Hodge decomposition (7) with chain contraction (8) and corresponding
propagator (9). Thus, we obtain the splitting

A = Ã+
in + Ã+

out + dt · A+
I,res + A−res + A+

fl + A−fl ,

where Ã+
in, Ã

+
out are the discontinuous extensions of A+

in,A
+
out into the bulk. In terms

of this splitting, we can rewrite the “perturbation” 1
2

∫
I×M A ∧ dMA as

1

2

∫
I×M

A ∧ dMA =

∫
I

dt

∫
M

A+
I,resdM (A−res + A+

fl + A−fl ),

since dt · A+
I,res is the only term containing a dt. By definition (see (7)) the A−fl

fluctuations have vanishing integral over I. Applying the fact that dM = d+
M +d−M ,

we obtain

1

2

∫
I×M

A ∧ dMA =

∫
I

dt

(∫
M

A+
I,resdMA−res +

∫
M

A+
I,resd

−
MA+

fl

)
.

The BV-BFV partition function - as in (22) - is then given by
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(104) Z(A+
in,A

−
out,A

+
I,res,A

−
res) =

=

∫
Y′K−ex⊂Y′

DA+
fl DA−fl e

i
~S

f

(
Ã+

in+Ã+
out+A+

fl +A−res+A−fl +dt·A+
I res

)

=

∫
DA+

fl DA−fl e
i
~

( ∫
I×M A−fl dIA

+
fl +
∫
{1}×M A+

outA
−−
∫
{0}×M A+

inA
−+
∫
I×M

1
2A dMA

)
=

∫
DA+

fl DA−fl exp
i

~

(∫
I×M

A−fl dIA
+
fl +

∫
M

A+
out (A−res + A−fl

∣∣
t=1

)−

−
∫
M

A+
in (A−res + A−fl

∣∣
t=0

) +

∫
M

A+
I resdMA−res +

∫
I×M

dt A+
I res d

−
MA+

fl

)
.

This is structurally the same formula as in Section 4 before, with the difference
that the pairing on residual fields in slightly more complicated in this case. The
Feynman diagrams defining this functional integral are the same as in (23) and
yield

Z = exp
i

~

∫
M

(
(A+

out − A+
in) A−res + A+

I res dMA−res +
1

2
(A+

out + A+
in) d−MA+

I res

)
.

Similarly, the partition function in the holomorphic-to-antiholomorphic polariza-
tion, with space of boundary conditions

B = g−[k]⊕ g+[k] 3 (A−in,A
+
out)

and space of residual fields

V = dt · gC[k − 1]⊕ (1− t) · g+[k]⊕ t · g−[k] 3 dt · AI res + (1− t) · A+
res + t · A−res,

is

Z(A−in,A
+
out;AI res,A

+
res,A

−
res)

= exp
i

~

(∫
M

−A+
outA

−
in + A+

outA
−
res − A−inA

+
res +

1

2
A−resA

+
res+

+
1

2

∫
M

A+
I res (d−MA+

res + dMA−res) +
1

2

∫
M

A−I resdMA+
res

)
.

6.2. Parallel ghost polarization. We can also choose again the “parallel ghost”
polarization discussed in Section 5.1. To be more explicit, and in preparation for
the next section, let us fix k = 3. Then we have g = Ω•(M,C) where M is a 6-
dimensional manifold with a complex structure, and X = g[3].56 For later purposes,
let us suppose that M is endowed with a Kähler metric g. We use the complex
structure to define the polarization of the gh = 0 component of X:

X [0] = Ω3
C(M) = Ω3,0(M)⊕ Ω2,1(M)︸ ︷︷ ︸

X+

⊕Ω1,2(M)⊕ Ω0,3(M)︸ ︷︷ ︸
X−

.

Correspondingly, we split the field A = A≤2 + A3,+ + A3,− + A≥4 and similarly for
AI . We denote by P [<0],− the polarization given by

P [<0],− =

{
δ

δA≥4
,

δ

δA3,−

}
,

56We use freely the notation from Section 5.1.
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whose base is parametrized by (A≤2,A3,+), and by P [<0],+ the similar polarization
with − and + exchanged. The maps d+

g , d
−
g : X [1] → X [0] defined in Section 5.2 are

given by projecting the de Rham differential

dM : Ω2
C(M)→ Ω3

C(M)

to X±. Explicitly, they are given by

d+
g

∣∣
Ω2,0 = dM

∣∣
Ω2,0 , d+

g

∣∣
Ω1,1 = ∂M

∣∣
Ω1,1 , d+

g

∣∣
Ω0,2 = 0,

d−g
∣∣
Ω2,0 = 0, d−g

∣∣
Ω1,1 = ∂̄M

∣∣
Ω1,1 , d−g

∣∣
Ω0,2 = dM

∣∣
Ω0,2 ,

see Figure 11. Now, we consider the cylinder I ×M with with P [<0],+ on the in-
boundary and P [<0],− on the out-boundary. We then have the following fields in
the effective action (referring to notation from Section 5.1):

• ψ+
out = A3,+

out = A3,0
out + A2,1

out — physical boundary field on out-boundary,

• ψ−in = A3,−
in = A0,3

in + A1,2
in — physical boundary field on in-boundary,

• (ψ
[>0]
in , ψ

[>0]
out ) = (A≤2

in ,A
≤2
out) — boundary fields in higher ghost number (col-

lected in a superfield),

• A[1]
res = A2

I res = A2,0
I res + A1,1

I res + A0,2
I res — 2-form, residual field in ghost

number 0,

• (A
[>1]
res , ψres) = (A<2

I res,A
>3
res) — residual fields of higher ghost number (form

degree < 2) or negative ghost number (form degree > 3).

The effective action (43) then reads

Seff [Aout,Ain,AI res,Ares] = Sph + Sgh,

where

Sph =

∫
M

A3,0
outA

0,3
in + A2,1

outA
1,2
in + A3,0

out∂̄A
0,2
I res + A0,3

in ∂A
2,0
I res

+

∫
M

A1,2
in ∂A

1,1
I res + A1,2

in ∂̄A
2,0
I res + A2,1

out∂A
0,2
I res + A2,1

out∂̄A
1,1
I res

+
1

2

∫
M

∂̄A1,1
I res∂A

1,1
I res,

Sgh =

∫
M

(A≤2
out − A≤2

in )A>3
res + A>3

resdMA<2
I res.

A similar formula holds for higher-dimensional Chern–Simons theories. Some com-
ments:

i) As a consequence of Propositions 5.4 and 5.3, the effective action satisfies the
modified quantum master equation, and the gh = 0 part Sph satisfies the
generalized Hamilton–Jacobi equations. In particular, Sph can be identified
with the HJ action.

ii) One can rewrite Sph as

Sph =

∫
M

(A3,+
out − d+

g A
2
I res)(A

3,−
in + d−g A

2
I res)−

1

2
∂̄A1,1

I res∂A
1,1
I res

— a higher-dimensional version of an abelian gauged WZW model, see also
footnote 20.
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6.2.1. Pushforward over residual fields. The space of residual fields is

V = {dt · A≤2
I res + A≥4

res} = Ω≤2
C (M)[2]⊕ Ω≥4

C (M)[3].

In particular, the components and their ghost numbers are

field A0
I res A1

I res A2
I res A4

res A5
res A6

res

ghost number 2 1 0 -1 -2 -3

A gauge-fixing lagrangian can be constructed by using the Hodge decomposition
for ∂̄: Namely, using the Kähler metric g, we decompose

Ωp,q(M) = Hp,q(M)⊕ Ωp,q
∂̄−ex

⊕ Ωp,q
∂̄−coex

where the middle and rightmost terms denote the spaces of ∂̄-exact and ∂̄∗-exact
forms, respectively. The gauge-fixing lagrangian L ⊂ V is then defined as

(105) L =
⊕
p+q≤2

Ωp,q
∂̄−coex

⊕
⊕
p+q≥4

(
Hp,q(M)⊕ Ωp,q

∂̄−coex

)
.

Restricted to this gauge-fixing lagrangian, the effective action is nondegenerate in
residual fields and the integral gives

Z∗ ∝ δ(∂̄A3,0
out + ∂A2,1

out,∂̄−ex
) δ(∂̄A1,2

in + ∂A0,3

in,∂̄−ex
) δ(A≤2

out,harm − A≤2
in,harm)·

· exp
i

~

(∫
M

(
A3,0

outA
0,3
in + A2,1

out(id− P∂̄−ex)A1,2
in

)
−

− 1

2

∫
M×M

∂̄A2,1
out(x)K(x, x′)∂̄A2,1

out(x
′)− 1

2

∫
M×M

∂A1,2
in (x)K(x, x′)∂A1,2

in (x′)

)
,

where K(x, x′) is the integral kernel of the inverse of the operator (∂∂̄) restricted

to Ω1,1

∂̄−coex
.

6.3. 7D Chern–Simons and Kodaira–Spencer action functional. We now
turn our attention to 7-dimensional Chern–Simons theory on a cylinder with a
particular polarization on the out-boundary. This polarization was first discovered
by Hitchin [28]. It was used in [26] to argue that the semi-classical approximation of
the Chern–Simons wave function can be expressed in terms of the Kodaira–Spencer
action functional introduced in [9] whose classical solutions are deformations of
complex structures on a Kähler manifold (see Appendix B for a brief review of
the Kodaira-Spencer theory). Here we argue that this semiclassical approximation
is in fact exact in the axial gauge. From the general arguments of the BV-BFV
formalism, it follows that a change of gauge fixing will result in an Ω-exact change
of the partition function, hence its Ω-cohomology class is well-defined and given by
the Kodaira–Spencer partition function. A caveat is that in this section we do not
take care of determinants arising in Gaussian path integrals. Those might lead to
anomalies similar to the discussion of Remark 4.4, and would have to be treated
separately.

6.3.1. General polarizations in 4l+3-dimensional Chern–Simons theory. Using the
results of Section 5.2, one can consider also more general polarizations in higher-
dimensional Chern–Simons theories, in dimension d = 2k + 1 = 4l + 3.

Suppose that P [0] is any polarization on X [0] = ΩkC(M) such that we have lo-
cal coordinates AQ on the base and AP on the fibers, and let G = G(A−,AQ) be
the corresponding generating function. From Section 5.2 we know that the par-
tition function of abelian Chern–Simons theory with P [<0],+-polarization on the
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in-boundary and P [<0],P -polarization on the out-boundary is Z = exp( i~Seff) with
Seff = Sph + Sgh and

Sph[A−in,A
Q
out,AI res] =

1

2

∫
M

∂MAl,lI res∂̄MAl,lI res +

∫
M

Ak,−in d+
g A

k−1
I res

−G(Ak,−in + d−g A
k−1
I res,A

Q
out),

Sgh[A
[>0]
in ,A

[>0]
out ,AI res,Ares] =

∫
M

(A
[>0]
out − A

[>0]
in )A[<0]

res +

∫
M

A[<0]
res dMA

[>0]
I res.(106)

See also the toy model in considered [16, Section 12].

6.3.2. Hitchin polarization on 6-dimensional manifolds and effective action. In 7-
dimensional Chern–Simons theory, there is an interesting — nonlinear — polariza-
tion on the boundary phase space, coming from the special geometry of three-forms
in six dimensions first described by Hitchin in [28]. The idea is as follows. A com-
plex 3-form A on a six-dimensional manifold with a complex structure decomposes
as

(107) A = A+,nl +A−,nl

where A+,nl and A−,nl are decomposable complex 3-forms, i.e., triple wedge prod-
ucts:

A±,nl = θ±1 ∧ θ±2 ∧ θ±3 , θ±i ∈ Ω1(M,C).

The 3-form A is called nondegenerate if A+,nl ∧ A−,nl is everywhere nonvanishing
(which is equivalent to the fact that the form A is not decomposable). In this
case A+,nl and A−,nl are uniquely determined by A and define a polarization of
Ω3(M)nd, the subset of nondegenerate forms. For more details on this polarization,
we refer to [26]. The effective action on the cylinder with P [<0],−,l-polarization
on the in-boundary57 and P [<0],+,nl-polarization on the out-boundary thus reads
Seff = Sph + Sgh with Sgh given by (106) and

(108) Sph[A+,l
in ,A−,nl

out ,A
2,0
I res,A

1,1
I res,A

0,2
I res]

=
1

2

∫
M

∂A1,1
I res∂̄A

1,1
I res+

∫
M

A+,l
in dA0,2

I res+A2,1
in ∂̄A

1,1
I res−G(A+,l

in +dA2,0
I res+∂A

1,1
I res;A

−,nl
out ).

Proposition 6.1. The partition function is given by

Z = exp
i

~
(Sph + Sgh) ,

with Sph given by (108) and Sgh given by (106). It satisfies the modified quantum
master equation

(Ωin + Ωout − ~2∆res)Z = 0,

with Ωin, Ωout given by the standard quantization of the BFV boundary action
1
2

∫
M

AdA:

Ωin =

∫
M

dA2
in

(
A+,l

in − i~
δ

δA+,l
in

)
− i~

∫
M

dA1
in

δ

δA4
in

− i~
∫
M

dA0
in

δ

δA5
in

,

Ωout =

∫
M

dA2
out

(
A−,nl

out − i~
δ

δA−,nl
out

)
− i~

∫
M

dA1
out

δ

δA4
out

− i~
∫
M

dA0
out

δ

δA5
out

.

57For consistency with [26] and [9], we switch here to the polarization with base parametrized

by A3,+,l, as opposed to the rest of the paper.
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Proof. We are in the situation of Remark 5.8 here because of the fact that the
boundary action is linear in the canonical variables defining the Hitchin polariza-
tion, see equation (107). It follows that the mQME is satisfied for the standard
quantization of the boundary action. �

Remark 6.2. We want to stress that in this gauge, the semiclassical approximation
to this partition function that was used as an ansatz in [26] (the integral kernel
of the generalized Segal–Bargmann transform58 from the linear to the nonlinear
polarization) is found to be exact : there are no quantum corrections. Adapting
the proof of [16, Appendix B] to the infinite-dimensional setting one can show that
changing the gauge fixing by changing the propagator on the interval results in a
change of the partition function by a (~2∆res − Ω)-cocycle.

Remark 6.3. To be precise in comparison with [26], one should identify the residual
fields in (108) with the Lagrange multipliers enforcing the constraint dMA = 0 in
[26]. This, of course, is precisely their role when interpreting (108) as the Hamilton–
Jacobi action for 7D Chern–Simons theory in the chosen polarizations.

6.3.3. Comparison with Kodaira–Spencer gravity. Following [26], we want to com-
pare the Chern–Simons effective action (108) with the Kodaira–Spencer action func-
tional (142). Let us fix a reference holomorphic 3-form ω0 ∈ Ω3,0(M). Its conjugate
is an antiholomorphic 3-form ω0 ∈ Ω0,3(M). We can then parametrize A+,nl and
A−,nl as

A+,nl = ρeµω0,

A−,nl = ρeµω0,

where ρ, ρ ∈ Ω0
C(M), µ ∈ Ω−1,1(M), µ ∈ Ω1,−1(M) and

(109) ρeµω0 = ρ

(
ω0 + µω0 +

µ2

2
ω0 +

µ3

6
ω0

)
,

where µω0 should be interpreted as extension of contraction to forms with values
in vector fields.

Of course, a complex 3-form still has a decomposition A = A+,l + A−,l, with
A+,l ∈ Ω3,0(M)⊕ Ω2,1(M), and A−,l ∈ Ω1,2(M)⊕ Ω0,3(M).

The following expression for G is given in [26]:

(110) G(A3,0, A2,1, ρ, µ) =

=

∫
M

ρ(A3,0ω0 +A2,1µω0) + ρ2〈µ3〉ω0ω0 −

〈(
(A2,1 − 1

2ρµ
2ω0)∨

)3〉
(A3,0)∨ − ρ〈µ3〉 ω0ω0.

For completeness, we present a derivation of this formula in Appendix B.2. Here
for µ ∈ Ω1,−1(M) the function 〈µ3〉 is defined in (124) and for any A ∈ Ωp,q we
define A∨ ∈ Ωp−3,q by A∨ω0 = A.

Consider now the state

(111) ψ
(
ρout, µout,A

[>0]
out

)
= δ(µout)δ

(
A

[>0]
out

)
exp

i

~

∫
M

ρoutω0ω0.

58See Appendix A for a motivation for the comparison of BV-BFV partition function with
standard Segal–Bargmann transform.
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This is an extension of the physical state59

ψph(µ, ρ) = δ(µout) exp
i

~

∫
M

ρoutω0ω0

to the ghost sector. Note that this state trivially satisfies the mQME because
Ωoutψph is linear in the ghost fields, but we are multiplying with the ghost delta
function.60 Now we compute (formally) the vector Z |ψ〉 (put differently, we are
specifying a boundary condition on the out-boundary for the quantum theory).
This means computing the following functional integral:

Z |ψ〉 =

∫
DρoutDµoutDA[>0]

out Z · ψ

=

∫
DρoutZ[A+,l

in ,A
[>0]
in , ρout, 0, 0,A

≥4
res ,A

≤2
I res] exp

i

~

∫
M

ρoutω0ω0

=: Z ′[A+,l
in ,A

[>0]
in ,A≥4

res ,A
≤2
I res].

The partition function Z depends on ρout only through G and we have

(112)

∫
Dρ e− i

~G(A3,0,A2,1,ρ,0)+ i
~
∫
M
ρω0ω0 =

= δ(A3,0 − ω0) exp

(
− i
~

∫
M

1

6
〈A2,1, A2,1, A2,1〉

)
.

Here for A ∈ Ω2,1(M) we have 1
6 〈A,A,A〉 := 〈(A∨)3〉ω0ω0. Thus, Z ′ has the

following expression:

Z ′ = Z ′phZ
′
gh, where

Z ′ph = δ(A3,0
in + ∂A2,0

I res − ω0) exp
i

~

(
1

2

∫
M

∂A1,1
I res∂̄A

1,1
I res +

∫
M

A3,0
in ∂̄A

0,2
I res(113)

+

∫
M

A2,1
in ∂A

0,2
I res + A2,1

in ∂̄A
1,1
I res − 〈((A2,1

in + ∂̄A2,0
I res + ∂A1,1

I res)
∨)3〉ω0ω0

)
,

Z ′gh = exp
i

~

(∫
M

−A≤2
in A≥4

res +

∫
M

A≥4
resdMA≤1

I res

)
.(114)

We stress that Z ′ was obtained from Z through a formal functional integral. How-
ever, we have the following result.

Lemma 6.4. The function Z ′[A+,l
in ,A

[>0]
in ,A≥4

res ,A
≤2
I res] satisfies the modified quantum

master equation, i.e., is an (Ωin − ~2∆res)-cocycle, where Ωin = Ω
(0)
in + Ω

(1)
in is the

standard quantization of − 1
2

∫
M

AdMA in the P [<0],−-polarization, explicitly given
by

Ω
(0)
in = −

∫
M

A2,1
in ∂̄A

1,1
in + A2,1

in ∂A
0,2
in + A3,0

in ∂̄A
0,2
in ,

i

~
Ω

(1)
in = −

∫
M

δ

δA3,0
in

∂A2,0
in +

δ

δA2,1
in

∂̄A2,0
in +

δ

δA2,1
in

∂A1,1
in +

δ

δA≤2
in

dA≤1
in .

59This state ψph was proposed in [26] as a way of “fixing the string coupling constant.” It is a
quantization of the lagrangian given by µ = 0, pρ = 1, where pρ denotes the canonical momentum

of ρ.
60This is just the identity xδ(x) = 0.
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This is expected because ψ satisfies Ωoutψ = 0 and Z satisfies the mQME. See
also the discussions of gluing in [16, Sections 11.4,12.2]. The interpretation of this
Lemma is that Z ′ is a valid state in the linear polarization.

Proof. We will only prove the claim in ghost number 0, since in positive ghost
number the effective action is the same as for linear polarizations. To begin, we note

that any function of A3,0
in +∂A2,0

I res or A2,1
in + ∂̄A2,0

I res +∂A1,1
I res is (i~{Sgh, •}res−Ω

(1)
in )-

closed since {Sgh, •}res

∣∣
gh=0

=
∫
M

Ai,jin
δ

δAi,jI res

. This implies that the delta function

in (113) and the last term in (114) are ~2∆res−Ω(1) closed. It is a straightforward
check that the remaining exponential terms are (~2∆res−Ω(0)−Ω(1))-closed, which
concludes the proof. �

We will now argue that formally integrating out the residual fields, in ghost
number 0 we obtain the Kodaira–Spencer action. Let us restrict to the gauge-
fixing lagrangian L defined similarly to (105), but given in ghost number 0 by
∂∗-exact 2-forms. We will denote

Z ′′[A3,0
in ,A

2,1
in ,A

[>0]
in ] =

∫
L
Z ′[A+,l

in ,A
[>0]
in ,A≥4

res ,A
≤2
I res].

The modified quantum master equation implies that for a (2, 0)-form χ one has

Z ′[A+,l
in + dχ,A

[>0]
in ,A≥4

res ,A
≤2
I res] = Z ′[A+,l

in ,A
[>0]
in ,A≥4

res ,A
≤2
I res − χ].

By a change of variables, this implies

Z ′′[A3,0
in + ∂χ,A2,1

in + ∂̄χ,A
[>0]
in ] = Z ′′[A3,0

in ,A
2,1
in ,A

[>0]
in ].

We can use this property to reduce the computation of Z ′′ to the case A3,0 = ρ0ω0,
where ρ0 is a constant. The δ function in Z ′ph then factorizes as δ(ρ0−1)δ(∂A2,0

I res).

Since ∂ is an isomorphism on the gauge-fixing lagrangian, the integral over A2,0
I res

gives

Z ′′ph =

∫
DA0,2

I resA
1,1
I resδ(ρ0 − 1) exp

i

~

(
− 1

2

∫
M

∂A1,1
I res∂̄A

1,1
I res+

+

∫
M

A2,1
in ∂A

0,2
I res + A2,1

in ∂̄A
1,1
I res − 〈((A2,1

in + ∂A1,1
I res)

∨)3〉ω0ω0

)
and the integral over A0,2

I res then gives

Z ′′ph =

∫
DA1,1

I resδ(ρ0 − 1)δ(∂A2,1
in )·

· exp
i

~

(∫
M

1

2
∂A1,1

I res∂̄A
1,1
I res + A2,1

in ∂̄A
1,1
I res − 〈((A2,1

in + ∂A1,1
I res)

∨)3〉ω0ω0

)
.

Finally, writing A2,1
in in the Hodge decomposition A2,1

in = x + ∂λ + ∂∗τ , we obtain

by another change of variables61 b = A1,1
I res + λ the expression

(115) Z ′′ph[ρ0, x, λ, τ ] = δ(ρ0 − 1)δ(∂∂∗τ)·

·
∫
L∩Ω1,1(M)

Db exp
i

~

∫
M

(
−1

2
∂λ∂̄λ+

1

2
∂b∂̄b+ ∂̄b∂λ+

1

6
〈(x+ ∂b), (x+ ∂b), (x+ ∂b)〉

)
,

61We can choose λ such that ∂∗λ = 0, so that b ∈ L ∩ Ω1,1(M).
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which coincides with eq. (2.50) in [26]. Thus, we see that the Chern–Simons parti-
tion function on a cylinder, paired with the state (111), coincides with the partition
function of Kodaira–Spencer theory with background x and action functional given
in (142) for λ = 0. The latter integral can be evaluated perturbatively in terms of
Feynman graphs and rules. It would be interesting to compare our results to other
constructions of the BCOV theory, such as in [17].

Remark 6.5 (On gauge invariance of Z ′′). If one uses formally the properties of the
BV integral, it is immediate that the Z ′′ gives a class in Ωin-cohomology indepen-
dent of the gauge-fixing lagrangian L.62 We see here that this cohomology class has
a representative given in terms of the KS partition function. The partition func-
tion Z ′′ can be also interpreted as the BV-BFV partition function on the cylinder
paired with the state ψ at the out-boundary, with all fields integrated out using an
axial-type gauge (the components of the gauge field involving dt are set to zero).
Another open question is how Z ′′ behaves when we deform away from this type of
gauge to a general gauge fixing on the cylinder (say, one given by a Riemannian
metric). This is a subject of ongoing research.

Appendix A. Segal–Bargmann transform via BV-BFV

Recall (see [27] for details) that the Segal–Bargmann space HSB is the Hilbert
space of holomorphic functions ψ(z) on C satisfying∫

C

i

4π~
dz dz̄ e−

|z|2
2~ ψ(z)ψ(z) <∞

(here we assume that ~ is a fixed positive number), equipped with inner product

(116) 〈ψ1, ψ2〉 =

∫
C

i

4π~
dz dz̄ e−

|z|2
2~ ψ1(z)ψ2(z).

The Segal–Bargmann space is isomorphic to the Hilbert space L2(R) of square-
integrable functions on R, with the unitary isomorphism L2(R) → HSB given by
the Segal–Bargmann transform:

(117) χ(x) 7→ ψ(z) = (π~)−
1
4

∫
R
dx e

− 1
~

(
z2

4 −zx+ x2

2

)
χ(x).

Now we would like to show how the transformation (117) can be seen as the par-
tition function for topological quantum mechanics on an interval with appropriate
boundary polarizations.

Consider topological quantum mechanics on the interval I parametrized by 0 ≤
t ≤ 1 — the theory with 0-form fields x, p ∈ Ω0(I) and action

(118) S =

∫
I

p dx.

In the BV-BFV formalism, we adjoin the anti-fields x∗, p∗ ∈ Ω1(I) — 1-form fields
carrying ghost number −1 (while x, p carry ghost number 0), so that the odd
symplectic form on BV fields is:

∫
I
δx ∧ δx∗ + δp ∧ δp∗. The BFV phase space

62To give a rigorous proof of this statement would require to give a strict interpretation of the

functional integral in (115), which is beyond the scope of the present paper. It should be noted
that the restriction of b to the subspace ∂∗b = 0 is a gauge-fixing condition for the KS theory, so

one should consider also the the gauge independence of ZKS .
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assigned to a point pt± (where ± is the orientation) is: F∂ = R2 3 (x, p) with the
Noether 1-form αpt± = ±p δx and vanishing BFV action Spt = 0.

Alongside the real coordinates x, p on the phase space, we will consider the
complex coordinates z = x− ip, z̄ = x+ ip. The symplectic structure on the phase
space is ωpt± = δαpt± = ±δp∧ δx. Written in complex coordinates it has the form

∓ i
2δz̄ ∧ δz.
Consider the polarization Span{ ∂∂p} (i.e., x fixed) at t = 0 and the polarization

Span{ ∂∂z̄} (i.e., z fixed) at t = 1. The corresponding modification of the action
(118) by a boundary term is:

(119) Sf = S−
( i

4
x2 +

1

2
xp+

i

4
p2
)

︸ ︷︷ ︸
f

∣∣∣
t=1

— this boundary term is chosen so that one has − i
2 z̄δz = pδx + δf . Thus, the

corresponding boundary Noether 1-form is:

(120) αf∂I = − i
2
z̄ δz

∣∣
t=1
− p δx

∣∣
t=0

— it vanishes along the chosen polarization, as desired.
Next consider the following splitting of the (complexified) phase space

F∂C = g+ ⊕ g−,

where g+ is parametrized by z and g− is parametrized by x (we are borrowing the
notations from (5) here). The space of fields F = Ω•(I, g+) ⊕ Ω•(I, g−) is fibered
over B 3 (zout, xin) with the fiber

Y = Ω•(I, {1}; g+)⊕ Ω•(I, {0}; g−) =

=
(
Ω0(I, {1}; g+)⊕ Ω0(I, {0}; g−)

)︸ ︷︷ ︸
Y′K−ex

⊕(
Ω1(I; g+[−1])⊕ Ω1(I; g−[−1])

)︸ ︷︷ ︸
Y′d−ex

.

This is an acyclic complex, and thus we can choose the space of residual fields to
be zero (cf. Remark 3.1). The corresponding propagator — the integral kernel of
the chain contraction K — is:

η(t, t′) = −π+ ⊗ θ(t′ − t) + π− ⊗ θ(t− t′).
The BV-BFV partition function is then given by the following path integral

(121) Z(zout, xin) =

∫
Dzfl Dxfl e

i
~S

f (z̃out+zfl,x̃in+xfl)

=

∫
Dzfl Dxfl e

i
~

(
i
∫
I
zfl dxfl+

(
−ixfl(1)zout+

i
4 z

2
out

)
+
(
−izfl(0) xin+ i

2x
2
in

))
= e−

1
~

(
z2out

4 −zoutxin+
x2
in
2

)
.

Here we have a contribution from the Feynman diagram with single propagator
connecting zout and xin. In (121) we recognize the integral kernel of the Segal–
Bargmann transform (117). This is, of course, to be expected: the partition function
for a cylinder (in this case, an interval), with polarization P1 on the in-boundary
and polarization P2 on the out-boundary, maps P1-states to P2-states.
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Remark A.1. Note that the Hamilton–Jacobi action for the theory (118) on the
interval with our choice of in/out polarizations is:

SHJ = Sf
(
x(t) = xin, z(t) = zout

)
=

i

4
z2

out − izoutxin +
i

2
x2

in.

Here we again recognize the expression in the exponent in (117).

Finally, the measure e−
|z|2
2~ in (116) from the BV-BFV standpoint originates

from the gluing of intervals (more precisely, from gluing the out-end of one interval
with z-fixed polarization to the in-end of another interval with z̄-fixed polarization).
Indeed, consider the theory (118) on the interval I = [t0, t1] with some polarization
P at t0 and z-fixed polarization at t1, and also the same theory on the interval
I ′ = [t1, t2], with some polarization P ′ at t2 and with z̄-fixed polarization at t1.

I ′

z z̄uin vout

t0 t1 t2t1

I

The respective actions including the boundary terms adjusting for the polarization
are

SfI = − i
2

∫
I

z̄dz + fP
∣∣
t0

, SfI′ = − i
2

∫
I′
z̄dz − i

2
zz̄
∣∣
t1

+ fP
′ ∣∣
t2
,

with fP , fP
′
the appropriate63 boundary terms at t0, t2. It follows that the partition

function for the glued interval I ∪ I ′ = [t0, t2] is:

(122) ZI∪I′(vout, uin) =

∫
Dz(t)Dz̄(t) e

i
~ (SfI + i

2 zz̄
∣∣
t1

+Sf
I′ ) =

=

∫
C

i dz dz̄

4π~
ZI′(vout, z̄) e

− zz̄2~ ZI(z, uin).

In the first integral, the term i
2zz̄
∣∣
t1

compensates the boundary term of SfI′ at

t1. The final integral is over the values of z, z̄ at t = t1. Also, we denoted uin

a coordinate parametrizing the space of leaves of the polarization P and similarly
vout a coordinate paramterizing the space of leaves of P ′. In (122), we see the

Segal–Bargmann measure i dz dz̄
4π~ e−

|z|2
2~ , cf. (116), appearing. The normalization

factor i
4π~ is chosen in such a way that, choosing P ′ = Span{ ∂∂z̄}, we have

ZI∪I′(zout, uin) = ZI(zout, uin),

which in turn follows from the identity∫
i

4π~
dz dz̄ e

zoutz̄
2~︸ ︷︷ ︸

ZI′ (zout,z̄)

e−
|z|2
2~ Ψ(z) = Ψ(zout)

true for any holomorphic function Ψ(z) (for which the l.h.s. converges), applied to
Ψ(z) = ZI(z, uin).

63I.e., chosen in such a way that i
2
z̄δz + δfP vanishes along P and − i

2
z̄δz + δfP

′
vanishes

along P ′.
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A.1. Aside: contour integration in the complexified space of fields, a lat-
tice toy model. Throughout the paper we are dealing with complexified phase
spaces (so that we can impose the convenient holomorphic/antiholomorphic po-
larizations) and complexified spaces of fields where the path integral should be
understood as an integral over a real contour.

A toy model is provided by topological quantum mechanics S =
∫
I
pdx, as above.

The phase space for a point is Φ = R2. We consider the model with boundary
polarization Span

{
∂
∂z

}
(i.e., z̄ fixed) at t = 0 and Span

{
∂
∂z̄

}
(i.e., z fixed) at t = 1;

these polarizations are defined on the complexified phace space ΦC = C2. The
action modified by the appropriate boundary term is Sf =

∫
I
(− i

2 z̄dz)− i
2zz̄
∣∣
t=0

.
The path integral for this model can be presented by a lattice approximation

(which happens to be exact):

(123) Z(zout = zN , z̄in = z̄0) =

∫
C⊂YC

N−1∏
k=1

i dzkdz̄k
4π~

e
1
2~

(∑N
k=1(zk−zk−1)z̄k−1+z0z̄0

)

=

∫
C⊂YC

N−1∏
k=1

i dzkdz̄k
4π~

e
1
2~

(
z1z̄0−z1z̄1+z2z̄1−z2z̄2+···−zN−1z̄N−1+zN z̄N−1

)
.

Here:

• We understand that the interval I = [0, 1] is partitioned into N ≥ 1 smaller
intervals [t0 = 0, t1], [t1, t2], . . . , [tN−1, tN = 1].
• The space YC = (C2)N−1 — the fiber of the complexified space of fields

over boundary conditions — is the product of complexified phase spaces
corresponding to t1, . . . , tN−1. In particular, we understand that zk and
z̄k are independent complex variables: they do not have to be complex
conjugates of each other.
• The integration is over a “contour” C ⊂ YC — a real 2(N − 1)-dimensional

subspace. In particular, the integrand in (123) is a holomorphic 2(N − 1)-
form on YC pulled back to C by the inclusion.

For the contour C, we can consider the following two examples:

(i) Contour C1 given by z̄k = z∗k, k = 1, . . . , N − 1, where ∗ is the complex
conjugation.

(ii) Contour C2 given by reality conditions zk ∈ R ⊂ C, z̄k ∈ iR ⊂ C.

For C = C1, (123) is an absolutely convergent Gaussian integral (for arbitrary
boundary conditions) and yields

Z(zout, z̄in) = e
1
2~ z̄inzout .

For C = C2, (123) is an oscillatory Fresnel integral which is only conditionally con-
vergent and even that only under special assumptions on the boundary conditions
(z̄in ∈ iR, zout ∈ R).64 When the integral over C2 converges, its value coincides with
the result of integration over C1 (which is clear, e.g., from a contour deformation
argument).

In summary, we have the complexified space of fields of the lattice theory F IC 3
(z̄0, z1, z̄1, . . . , zN−1, z̄N−1, zN ) fibered over the complex space of boundary condi-
tions B∂IC 3 {z̄in, zout} with complex fiber YC (lattice fields with zero boundary

64Absolute/conditional convergence property is particularly clear in the simplest case N = 2:

here (123) becomes
∫
C⊂C2

i dz1dz̄1
4π~ e

1
2~ (z1z̄0−z1z̄1+z2z̄1).
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conditions), and the integration in the lattice path integral (123) is over a contour
C ⊂ YC — a half-dimensional real submanifold.

Appendix B. Kodaira–Spencer theory

We briefly review the definition of the Kodaira–Spencer action functional that
was introduced in [9, Section 5], where it was used to analyze the target space
physics of the B-model. See also [26, Section 2.1].

B.1. Some operations on complex forms. Let M be a 6-dimensional Calabi–
Yau manifold with a reference holomorphic 3-form ω0 (sometimes the pair (M,ω0)
is called a gauged Calabi–Yau manifold). We denote by Ωp,q(M) complex forms
of Hodge type (p, q) — sections of the bundle ∧p(T ∗CM)1,0 ⊗ ∧q(T ∗CM)0,1 and by
Ω−p,q(M) sections of the bundle ∧p(TCM)1,0 ⊗ ∧q(T ∗CM)0,1, i.e., (0, q)-forms with
values in (p, 0)-vector fields. Contraction with the reference holomorphic 3-form
provides a map

Ω−p,q(M)→ Ω3−p,q(M)

A 7→ A∨ = Aω0

(we omit the symbols for wedge products and contractions). For a (p, q)-form A
with p ≥ 0, we set A∨ = Aω−1

0 ∈ Ωp−3,q, in particular we have (A∨)∨ = A. For
A,B,C ∈ Ω−1,1(M), we further define the operations

A∨ ◦B∨ = (AB)∨ = (AB)ω0 ∈ Ω1,2(M),

〈A∨, B∨, C∨〉 = A∨(B∨ ◦ C∨) = A∨(BC)ω0 ∈ Ω3,3(M),

〈A3〉 = −1

6

〈A∨, A∨, A∨〉
ω0ω0

=
1

6
(A3ω0)(ω0)−1 ∈ Ω0,0(M),(124)

and the same operations make sense for Ā, B̄, C̄ ∈ Ω1,−1(M) if we replace ω0 by ω̄0.
The minus sign in (124) ensures that 〈A3〉ω0 = 1

6A
3ω0. Also, in the last equation

we made use of the fact that one can divide by sections of a line bundle. By a
lemma of Tian [38], if ∂A = ∂B = 0, we have

(125) [A,B]∨ = ∂(A∨ ◦B∨).

B.2. The generating function for Hitchin polarization. For completeness,
we include here a derivation of the generating function (110) for the transformation
from the linear polarization to the nonlinear polarization. A complex 3-form A
has decompositions A = A+,l + A−,l, with A+,l ∈ Ω3,0(M)⊕ Ω2,1(M), and A−,l ∈
Ω1,2(M)⊕ Ω0,3(M), and

A = A+,nl +A−,nl,

where A+,nl and A−,nl are decomposable complex 3-forms. The 3-form A is called
nondegenerate if A+,nl ∧A−,nl is everywhere nonvanishing. We parametrize

A+,nl = ρeµω0,

A−,nl = ρeµω0,

where ρ, ρ ∈ Ω0
C(M), µ ∈ Ω−1,1(M), µ ∈ Ω1,−1(M) and

(126) ρeµω0 = ρ

(
ω0 + µω0 +

µ2

2
ω0 +

µ3

6
ω0

)
.
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To write the generating function from the linear to the nonlinear polarization, we
use

(127) G(A+,l, A−,nl) =
1

2

∫
M

A+,lA−,l −A−,nlA+,nl.

Lemma B.1. In the variables A3,0, A2,1, ρ, µ, the generating function is given by

(128) G(A3,0, A2,1, ρ, µ) =

=

∫
M

ρ(A3,0ω0 +A2,1µω0) + ρ2〈µ3〉ω0ω0 −

〈(
(A2,1 − 1

2ρµ
2ω0)∨

)3〉
(A3,0)∨ − ρ〈µ3〉 ω0ω0.

Proof. This is a tedious but straightforward computation. One way to do it is to
express G in terms of ρ, µ, ρ, µ first. To this end, notice that the decomposition in
(126) is a decomposition into forms of definite Hodge type. Thus, we can write

A3,0 = ρω0 + ρ
µ3

6
ω0 =

(
ρ+ ρ〈µ3〉

)
ω0,(129)

A2,1 = ρµω0 + ρ
µ2

2
ω0,(130)

and similarly for A0,3 and A1,2. We thus obtain

A3,0A0,3 = ρρ(1 + 〈µ3〉〈µ3〉)ω0ω0 +
(
ρ2〈µ3〉 + ρ2〈µ3〉

)
ω0ω0,(131)

A2,1A1,2 = ρρ

(
µω0µω0 +

1

4
µ2ω0µ

2ω0

)
+

1

2

(
ρ2µω0µ

2ω0 − ρ2µω0µ
2ω0

)
.(132)

On the other hand, we have

(133) A−,nlA+,nl = ρρ

(
ω0ω0 + µω0µω0 +

1

4
µ2ω0µ

2ω0 + 〈µ3〉〈µ3〉ω0ω0

)
.

Summing (131) and (132) and subtracting (133), the last two terms in (133) cancel
and we obtain

(134) A+,lA−,l −A−,nlA+,nl = 2ρρ (ω0ω0 − µω0µω0)

+ ρ2

(
〈µ3〉ω0ω0 +

1

2
µω0µ

2ω0

)
+ ρ2

(
〈µ3〉ω0ω0 −

1

2
µω0µ

2ω0

)
.

Recall that µω0µ
2ω0 = (µ3ω0)ω0 = 6〈µ3〉ω0ω0, hence we can simplify this expres-

sion to

A+,lA−,l −A−,nlA+,nl = 2ρρ (ω0ω0 − µω0µω0)− 2
(
ρ2〈µ3〉+ ρ2〈µ3〉

)
ω0ω0.

From equations (129), (130) we get

ρω = A3,0 − ρ〈µ3〉ω0,

ρµω0 = A2,1 − 1

2
ρµ2ω0,

which we use to rewrite the first term as

2ρρ (ω0ω0 − µω0µω0) = 2ρA3,0ω0 − 2ρ2〈µ3〉ω0 + 2ρA2,1µω0 + 6ρ2〈µ3〉ω0ω0.

In total, (127) evaluates to

(135) G =

∫
M

ρA3,0ω0 + ρA2,1µω0 + ρ2〈µ3〉ω0ω0 −
〈(ρµ)3〉

ρ
ω0ω0.
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Formula (128) may now be obtained by solving equations (129),(130) for ρ and ρµ,
which gives

ρ =
A3,0 − 1

6ρµ
3ω0

ω0
= (A3,0)∨ − ρ〈µ3〉,(136)

ρµ =
A2,1 − 1

2ρµ
2ω0

ω0
=

(
A2,1 − 1

2
ρµ2ω0

)∨
.(137)

Plugging (136),(137) into (135) we obtain (128). �

The defining property of G is the following.

Lemma B.2. We have δG = θl− θnl where θl = A−,lδA+,l and θnl = A+,nlδA−,nl.

Proof. This follows from Equation (127). But one can also check it through direct
computation: we have

δG

δA3,0
= ρω0 +

〈((
A2,1 − 1

2ρµ
2ω
)∨)3

〉
(A3,0)∨ − ρ〈µ3〉2 (ω0)−1ω0ω0 = ρω0 +

〈(ρµ)3〉
ρ2

ω0 = A3,0.

Notice that we have
δ

δµ
〈µ3〉 =

1

2
(µ2ω)(ω)−1.

It follows that

δ

δA2,1
〈((A2,1)∨)3〉 =

1

2
(((A2,1)∨)2ω0)ω−1

0 ω−1
0 = −

1
2 (((A2,1)∨)2ω0)

ω0ω
−1
0

(note the sign) and therefore

δG

δA2,1
= ρµω +

1

2
ρµ2ω0 = A1,2.

This proves that δG/δA+,l = A−,l. Computing δG/δρ gives

δG

δρ̄
δρ = δρ

(
A3,0ω0 +A2,1µω0 + 2ρ〈µ3〉ω0ω0 +

1

2
ρµ2ω0(

1

2
µ2ω0) + ρ〈µ3〉ω0〈µ3〉ω0

)
= −ρeµω0e

µω0δρ.

Finally, computing δG/δµ gives

δG

δµ
δµ = −ρA2,1(δµω0) +

1

2
ρ2(µ2ω0)(δµω0) +

1

2
ρµ2ω0(ρµ δµω0) + ρ〈µ3〉(δµω0)

1

2
ρµ2ω0

= −ρρµω0(δµω0) +
1

2
ρµ2ω0(ρµ δµω0) + ρ〈µ3〉(δµω0)

1

2
ρµ2ω0

= −ρρ(eµω0)δµ(ω0 + µω0 +
1

2
µ2ω0).

Using

δA−,nl = δρeµω0 = eµω0δρ+ ρδµ(ω0 + µω0 +
1

2
µ2ω0),

we obtain

δG = A+,lδA−,l −A+,nlδA−,nl.

�
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B.3. Deformations of complex structures. Let M be a compact Calabi–Yau
manifold supplied with a reference holomorphic 3-form ω0. A deformation of the
complex structure is equivalent to a deformation of the ∂̄ operator ∂̄ → ∂̄Ā = ∂̄+Ā,
where Ā ∈ Ω−1,1(M) = Γ(T 1,0M ⊗ (T ∗)0,1M). The integrability condition ∂̄2

A = 0
is equivalent to ([30])

(138) ∂̄Ā+
1

2
[Ā, Ā] = 0.

The moduli space of complex structures is thus given by solutions of (138) modulo
gauge transformations

(139) δĀ = ∂̄ε+ [Ā, ε],

with ε ∈ Ω−1,0(M). The tangent space to the moduli space of complex structures
is given by the linearization of (138), i.e., it is the quotient of {α : ∂̄ᾱ = 0} by
linearized gauge transformations δα = ∂̄ε.
After Tian ([38]), this problem can be reformulated using Ā∨ as follows. Imposing
the constraint ∂Ā∨ = 0 and using (125), we can rewrite (138) as

(140) ∂̄Ā∨ + ∂(Ā∨ ◦ Ā∨) = 0.

B.4. Kodaira–Spencer action. The Kodaira–Spencer action functional as intro-
duced in [9] is

(141) SKS [Ā∨] =

∫
M

1

2
Ā∨∂−1∂̄Ā∨ +

1

6
〈Ā∨, Ā∨, Ā∨〉.

Here the first term is well-defined due to ∂∂̄-lemma. The equation of motion of
(141) is (140). One can resolve the nonlocality by writing Ā∨ = x+ ∂b, where x is
a ∂-harmonic (2, 1)-form. The action functional then becomes

(142) SKS(x; b) =

∫
M

1

2
∂b∂̄b+

1

6
〈(x+ ∂b), (x+ ∂b), (x+ ∂b)〉.

This action functional has the following remarkable property. From eq. (140), it
follows that any harmonic (2, 1)-form x = Ā∨1 can be interpreted as a first order de-
formation of the complex structure. The tree level diagrams of (142) then generate
forms Ā∨n with the property that Ā∨ =

∑
εnĀ∨n is a solution of the Kodaira–Spencer

equation (140). We refer to [9, Section 5.2] for details.
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