
Brownian survival among Poissonian traps

with random shapes at critical intensity

M. van den Berg ∗

E. Bolthausen †

F. den Hollander ‡

16th July 2003

Abstract

In this paper we consider a standard Brownian motion in Rd, starting at 0 and observed
until time t. The Brownian motion takes place in the presence of a Poisson random
field of traps, whose centers have intensity νt and whose shapes are drawn randomly and
independently according to a probability distribution Π on a certain class of compact
subsets of Rd. The Brownian motion is killed as soon as it hits one of the traps. With the
help of a large deviation technique developed in an earlier paper, we find the tail of the
probability St that the Brownian motion survives up to time t when

νt =
{
ct−2/d, d ≥ 3,
ct−1 log2 t, d = 2,

where c ∈ (0,∞) is a parameter. This choice of intensity corresponds to a critical scaling.
We give a detailed analysis of the rate constant in the tail of St as a function of c, including
its limiting behaviour as c→∞ or c ↓ 0. For d ≥ 3, we find that there are three different
regimes, depending on the choice of Π. In one of the regimes there is a collapse transition
at a critical value c∗ ∈ (0,∞), where the optimal survival strategy changes from being
diffusive to being subdiffusive. This transition comes with a slope discontinuity. For d = 2,
the rate constant is independent of Π, and the collapse transition has a continuous slope.
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1 Introduction and main results

1.1 Motivation

The model studied in this paper has two random ingredients:

1. Let β = {β(s) : s ≥ 0} be the standard Brownian motion in Rd – the Markov process
with generator ∆/2 – starting at 0. We write P,E to denote probability and expectation
with respect to β.

2. For t ≥ 0, let
Kt =

⋃
x∈ωt

[x+Ax], (1.1.1)

where ωt is a Poisson point process with intensity

νt =
{
ct−2/d, d ≥ 3,
ct−1 log2 t, d = 2,

(1.1.2)

c ∈ (0,∞) is a parameter and, given ωt,

Ax, x ∈ ωt, (1.1.3)

are i.i.d. random sets drawn according to a probability distribution Π on the class Q of
subsets of Rd given by

Q =
{
A ⊂ Rd : A compact, A = cl(int(A)), int(A) 3 0

}
, (1.1.4)

where cl(A) denotes the closure of A and int(A) the interior of A. We write Pt,Et to
denote probability and expectation with respect to Kt.

The construction of a probability distribution Π on the class of closed subsets of Rd:
C = {A ⊂ Rd : A closed} is given in Molchanov [10, Chapter 1]. This class is endowed with
the topology generated by the Hausdorff metric ρH : C × C → [0,∞] given by

ρH(A1, A2) = inf{ε > 0: A1 ⊂ Aε2, A2 ⊂ Aε1}, (1.1.5)

where Aε = ∪x∈ABε(x) is the ε-environment of A (with Bε(x) the closed ball of radius ε
centred at x). The probability distribution Π lives on the Borel sigma-algebra generated by
ρH . In the present paper we assume that Π is such that Π(Q) = 1 and∫

Q
|A|Π(dA) <∞. (1.1.6)

Let
τKt = inf{s ≥ 0: β(s) ∈ Kt} (1.1.7)

and
St = (Et × P )(τKt > t). (1.1.8)

In other words, we view Kt as a collection of randomly located and randomly shaped traps,
τKt as the trapping time for the Brownian motion, and St as the probability of survival up to
time t. The goal of the present paper is to identify the asymptotic behaviour of St for large t.
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As will become clear later on, the choice of intensity in (1.1.2) corresponds to a critical scaling.
Our main results show that the tail of St has an interesting dependence on the parameter c,
with three different regimes for d ≥ 3, depending on the choice of Π, and one regime for d = 2.
The proof of these results relies on a large deviation technique developed in van den Berg,
Bolthausen and den Hollander [2]. For each of the regimes we provide a detailed analysis of
the rate constant controlling the tail behaviour of St, including its scaling as c→∞ or c ↓ 0.
We show that for d ≥ 3, in one of the regimes, the rate constant exhibits a collapse transition
in the optimal survival strategy at a critical value c∗ ∈ (0,∞). We analyse the behaviour of
the rate constant near c∗ and show that a slope discontinuity occurs. For d = 2 there is a
collapse transition with a continuous slope.

1.2 Representation in terms of Wiener sausages

The starting point of our analysis is a representation formula expressing St as an exponential
functional of a family of Wiener sausages with varying shape. This formula is the analogue of
the well-known formula for the fixed shape case.

The Wiener sausage with shape A ∈ Q is the random process defined by

WA(t) =
⋃

0≤s≤t
[β(s) +A], t ≥ 0. (1.2.1)

Proposition 1.2.1 For any d ≥ 1, Π ∈M+
1 (Q) and t ≥ 0,

St = E

(
exp

[
−νt

∫
Q

Π(dA) |WA(t)|
])

. (1.2.2)

Proof. Let Π−,Π+ ∈M+
1 (Q) be discrete probability distributions such that

Π− � Π � Π+ (1.2.3)

in the sense of stochastic ordering by inclusion. Then

St(Π+) ≤ St(Π) ≤ St(Π−), t ≥ 0. (1.2.4)

For Π a discrete probability distribution, say,

Π̂ =
∑
n∈N

anδAn ,
∑
n∈N

an = 1, an ≥ 0, An ∈ Q, (1.2.5)

the Poisson random field of traps with random shapes drawn according to Π̂ and intensity νt
is an independent superposition of Poisson random fields of traps with shape An and intensity
anνt. The probability, under the law Pt, that up to time t the traps labelled by n avoid a
given Brownian path β equals exp[−νt(an|WAn(t)|)]. The probability that up to time t all
the traps avoid the given β is the product of the latter quantity over n, which is the same as
the right-hand side of (1.2.2) for Π = Π̂.

Any Π ∈M+
1 (Q) can be sandwiched, as in (1.2.3), by sequences (Π̂−

j ) and (Π̂+
j ) of discrete

probability distributions, of the type (1.2.5), such that

Π̂±
j ⇒ Π as j →∞ (1.2.6)
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(⇒ denotes weak convergence). One way to do this is by approximating A ∈ Q from the inside
and from the outside by a union of hypercubes of size ε and letting ε ↓ 0. Since A 7→ |WA(t)|
is continuous on Q in the Hausdorff metric ρH , we get from (1.2.6) that

lim
j→∞

∫
Q

Π̂±
j (dA) |WA(t)| =

∫
Q

Π(dA) |WA(t)|. (1.2.7)

Therefore (1.2.2) holds for all Π ∈M+
1 (Q).

Note that (1.1.6) guarantees that the integral in the right-hand side of (1.2.2) is finite
P -a.s.

1.3 Survival theorems

This section contains our main results for the tail behaviour of St as t→∞.
For d ≥ 3, let κ(A) be the Newtonian capacity of A associated with the Green function of

(−∆/2)−1.

Theorem 1.3.1 Let d ≥ 3 and fix Π ∈M+
1 (Q). For every c > 0,

lim
t→∞

1
t(d−2)/d

logSt = −JΠ
d (c) (1.3.1)

with
JΠ
d (c) = inf

{
1
2‖∇φ‖

2
2 + cFΠ

d (φ2) : φ ∈ H1(Rd), ‖φ‖2
2 = 1

}
, (1.3.2)

where
FΠ
d (φ2) =

∫
Rd

dx

∫
Q

Π(dA)
(
1− e−κ(A)φ2(x)

)
. (1.3.3)

Theorem 1.3.1 identifies the tail of St for d ≥ 3 in terms of a variational problem involving Π.
Since the dependence on Π enters only via the capacity of the random set A, we may rewrite
(1.3.3) as

FΠ
d (φ2) =

∫
Rd

dx

∫ ∞

0
Θ(dκ)

(
1− e−κφ

2(x)
)

(1.3.4)

with Θ = Π ◦ κ−1 the probability distribution on (0,∞) induced from Π by κ. Note that
κ(A) ∈ (0,∞) for all A ∈ Q.

A similar result holds for d = 2, but without a role for Π.

Theorem 1.3.2 Let d = 2 and fix Π ∈M+
1 (Q). For every c > 0,

lim
t→∞

1
log t

logSt = −J2(c) (1.3.5)

with
J2(c) = inf

{
1
2‖∇φ‖

2
2 + cF2(φ2) : φ ∈ H1(R2), ‖φ‖2

2 = 1
}
, (1.3.6)

where
F2(φ2) =

∫
R2

dx
(
1− e−2πφ2(x)

)
. (1.3.7)

The scale of the large deviation in Theorem 1.3.2 is different from that in Theorem 1.3.1. This
is due to the different choice of intensity in (1.1.2). However, the variational formula has the
same structure. The difference is that κ(A) is replaced by 2π, so that the dependence on Π
drops out. This fact turns out to be related to the recurrence of planar Brownian motion.
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1.4 Analysis of the variational problems

In this section we give a detailed analysis of c 7→ JΠ
d (c) in (1.3.2) and c 7→ J2(c) in (1.3.6).

Let 〈·〉 denote expectation with respect to Θ. For d ≥ 3 there are three regimes:

(I) 〈κ〉 <∞, and
JΠ
d (c) = c〈κ〉 for 0 ≤ c ≤ c∗,

< c〈κ〉 for c > c∗,
(1.4.1)

for some c∗ ∈ (0,∞).

(II) 〈κ〉 <∞, and (1.4.1) with c∗ = 0.

(III) 〈κ〉 = ∞.

We consider two subclasses for Θ with 〈κ〉 <∞:

SI =
{
Θ: there existκ0 ∈ (0,∞) andK ∈ (0,∞) such that for all κ ≥ κ0

Θ(dκ) ≤ Kκ−1− d+2
d dκ

}
,

SII =
{
Θ: there existκ1 ∈ (0,∞) andL : [κ1,∞) → (0,∞)

non-decreasing with lim
κ→∞

L(κ) = ∞ such that for all κ ≥ κ1

Θ(dκ) ≥ L(κ)κ−1− d+2
d dκ, and 〈κ〉 <∞

}
.

(1.4.2)

Note that the separation between the classes SI and SII is thin, and is very close to where
〈κ(d+2)/d〉 diverges.

Theorem 1.4.1 Let d ≥ 3.
(i) For every Π ∈M+

1 (Q), c 7→ JΠ
d (c) is continuous, strictly increasing and concave on (0,∞),

with JΠ
d (0) = 0.

(ii) If Θ ∈ SI , then JΠ
d falls in regime (I). If, in addition, 〈κη〉 < ∞ for some η > d+2

d , then
the variational problem in (1.3.2) has a minimiser with full support for c = c∗, and

[JΠ
d ]′(c∗+) < 〈κ〉. (1.4.3)

(iii) If Θ ∈ SII , then JΠ
d falls in regime (II), and

[JΠ
d ]′(0+) = 〈κ〉. (1.4.4)

(iv) In regime (III),
[JΠ
d ]′(0+) = ∞. (1.4.5)

(v) The variational problem in (1.3.2) has a minimiser with full support for

c > c∗ when Θ ∈ SI ,
c > 0 when Θ ∈ SII or 〈κ〉 = ∞.

(1.4.6)
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Theorem 1.4.2 Let d ≥ 3.
(i) For every Π ∈M+

1 (Q),

lim
c→∞

c−2/(d+2)JΠ
d (c) =

d+ 2
2

(
λd
d

)d/(d+2)

, (1.4.7)

where λd is the principal Dirichlet eigenvalue of −∆ on the ball of unit volume.
(ii) For Θ ∈ SII , let Θ(dκ) = θ(κ)dκ with θ(κ) = Kκ−1−γ [1 + o(1)] as κ → ∞ and 1 < γ <
d+2
d , 0 < K <∞. Then

lim
c↓0

{2KΓ(−γ)c}−2/(2−d(γ−1)) [c〈κ〉 − JΠ
d (c)

]
= 1

2Md(γ), (1.4.8)

where

Md(γ) = − inf
{
‖∇ψ‖2

2 −
∫
|ψ|2γ : ψ ∈ H1(Rd), ‖ψ‖2

2 = 1
}
∈ (0,∞). (1.4.9)

(iii) In regime (III), let Θ(dκ) = θ(κ)dκ with θ(κ) = Kκ−1−γ [1 + o(1)] as κ → ∞ and
0 < γ < 1, 0 < K <∞. Then

lim
c↓0

{2K[−Γ(−γ)]c}−2/(2+d(1−γ)) JΠ
d (c) = 1

2M̃d(γ), (1.4.10)

where

M̃d(γ) = inf
{
‖∇ψ‖2

2 +
∫
|ψ|2γ : ψ ∈ H1(Rd), ‖ψ‖2

2 = 1
}
∈ (0,∞). (1.4.11)

The qualitative behaviour of c 7→ JΠ
d (c) found in Theorems 1.4.1 and 1.4.2 is summarized

below.

0 c∗

(I)

t
0

(II)

0

(III)

Fig. Qualitative behaviour of c 7→ JΠ
d (c) in the three regimes for d ≥ 3.

Theorem 1.4.3 Let d = 2.
(i) c 7→ J2(c) is continuous, strictly increasing and concave on (0,∞), with J2(0) = 0.
(ii) There exists a number c∗ ∈ (0,∞), given by

c∗ =
1

4π2
inf
{
‖∇φ‖2

2

‖φ‖4
4

: φ ∈ H1(R2), ‖φ‖2
2 = 1

}
, (1.4.12)
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such that
J2(c) = 2πc for 0 ≤ c ≤ c∗,

< 2πc for c > c∗,
(1.4.13)

and
[J2]′(c∗+) = 2π. (1.4.14)

(iii) Formula (1.4.7) holds with d = 2.
(iv) The variational problem in (1.3.6) has a minimiser if and only if c > c∗. This minimiser
has full support.

1.5 Discussion

The idea behind Theorem 1.3.1 is that for d ≥ 3 the optimal strategy for the Brownian motion
to survive the traps is to behave like a Brownian motion in a drift field xt1/d 7→ (∇φ/φ)(x)
for some smooth φ : Rd 7→ [0,∞). The cost, under the law P , of adopting this drift during a
time t is

exp
[
−t× t−2/d 1

2

∫
Rd

dx |∇φ(x)|2
]
. (1.5.1)

The effect of the drift is to push the Brownian motion towards the origin, so that it lives on
space scale t1/d, which is well below the diffusive scale. Conditioned on adopting the drift,
the Brownian motion spends time φ2(x) per unit volume in the neighbourhood of xt1/d, and
it turns out that, for each A, the Wiener sausage with shape A associated with the Brownian
motion covers a fraction 1 − exp[−κ(A)φ2(x)] of that unit volume. The cost, under the law
Pt, of the traps avoiding the Brownian motion is

exp
[
−ct−2/d × t

∫
Rd

dx

∫
Q

Π(dA)
(
1− e−κ(A)φ2(x)

)]
(1.5.2)

(recall the superposition argument in the proof of Proposition 1.2.1). Combining (1.5.1) and
(1.5.2), we see that the best choice of the drift field is therefore given by a minimiser of the
variational problem in (1.3.2), or by a minimising sequence.

Theorem 1.3.2 shows that for d = 2 the survival probability decays polynomially rather
than exponentially fast. The optimal survival strategy is of the same type as for d ≥ 3,
but now the Brownian motion lives on space scale

√
t/ log t, which is only slightly below the

diffusive scale. Apparently, the limiting behaviour does not depend on Π, which says that the
Brownian motion manages to stay far away from the traps.

Theorems 1.4.1 and 1.4.2 show that for d ≥ 3 there are three regimes: 1

(I) There is a critical threshold (c∗ > 0). For c < c∗, the Brownian motion prefers to ignore
the survival strategies parametrised by φ and to move on space scale

√
t. In doing so,

it behaves like a typical Brownian motion and sees the average trap capacity, i.e., also
the traps field is typical . For c > c∗, on the other hand, the Brownian motion prefers
to follow the survival strategy parametrised by a minimiser φ̄ and to move on space
scale t1/d. In doing so, it does a large deviation and sees less than the average trap
capacity. Also the trap field does a large deviation, because it keeps traps out of the

1Even though we interpret our results in terms of an optimal survival strategy, we do not have pathwise
statements. More work would be needed to prove that, conditional on survival, the Brownian motion and the
trap field behave as suggested.
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“spongy structure” that is formed by the Brownian motion. Since φ̄ has full support, the
Brownian motion “sneeks around the traps and moves about” rather than “finds a large
trap free hole and stays there”. At c = c∗ there is a collapse transition from diffusive
behavior to subdiffusive behavior. This collapse transition is discontinuous because a
minimiser persists at the critical threshold, which leads to a slope discontinuity of JΠ

d

at c = c∗.

(II) There is no critical threshold (c∗ = 0). There is a minimiser φ̄ for all c > 0, meaning that
the optimal survival strategy is always subdiffusive. As c ↓ 0, this minimiser flattens
out, the Brownian motion gradually covers more space and gradually sees the average
trap capacity. The thinner the tail of Π (i.e., the closer Π to the boundary with regime
(I)), the faster JΠ

d approaches the line with slope 〈κ〉.

(III) The behaviour is similar as in regime (II), but with an infinite slope at c = 0. The
thicker the tail of Π (i.e., the farther Π from the boundary with regime (II)), the steeper
JΠ
d approaches the vertical axis.

Theorem 1.4.3 shows that for d = 2 the behaviour is similar to that for d ≥ 3 in regime
(I). There is again a collapse transition, associated with a crossover in the optimal strategy.
Hoever, this collapse transition is continuous because no minimiser persists as c ↓ c∗.

The high intensity limit c → ∞ corresponds to the minimiser contracting to a high and
narrow peak. This corresponds to the optimal survival strategy looking more and more like
“find a large trap free hole and stay there”. This is the optimal survival strategy for all
intensities that are larger than the one in (1.1.2), which is why the choice in (1.1.2) is critical.

Finally, the results in the present paper belong to a regime of critical scaling. Results of
a similar nature appear in van den Berg, Bolthausen and den Hollander [3], where the large
deviation behaviour of the volume of the intersection of two Wiener sausages is identified,
and in a sequence of papers by Merkl and Wüthrich [7], [8], [9], which look at the principal
eigenvalue of the Schrödinger operator −∆+Vt with Vt a potential consisting of a Poisson field
of obstacles with a height that shrinks to zero in a critical manner with t and with Dirichlet
boundary conditions on a box of size t.

1.6 Outline

Theorems 1.3.1 and 1.3.2 are proved in Section 2. The proof closely follows Sections 2, 3 and
4 in van den Berg, Bolthausen and den Hollander [2] (henceforth referred to as vdBBdH).
We sketch the main line of the argument, so that the present paper can be read almost
independently. Theorems 1.4.1, 1.4.2 and 1.4.3 are proved in Section 3 and rely on variational
calculus and Sobolev inequalities.

2 Proof of Theorems 1.3.1 and 1.3.2

2.1 Scaling, compactifying and coarse-graining

Recalling (1.1.2), we have from Proposition 1.2.1 that

St =

{
exp

[
−t(d−2)/d × cV Π(t)

]
, d ≥ 3,

exp
[
− log t× cV Π(t)

]
, d = 2,

(2.1.1)
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where we define

V Π(t) =


1
t

∫
Q

Π(dA) |WA(t)|, d ≥ 3,

log t
t

∫
Q

Π(dA) |WA(t)|, d = 2.

(2.1.2)

It follows from Spitzer [11] that, for every A ∈ Q,

E|WA(t)| = [1 + o(1)]×
{
κ(A)t, d ≥ 3,
2πt/ log t, d = 2,

t→∞. (2.1.3)

Hence

lim
t→∞

EV Π(t) =
{
〈κ〉, d ≥ 3,
2π, d = 2.

(2.1.4)

Thus, by (2.1.1), the large deviations of V Π(t) driving Theorems 1.3.1 and 1.3.2 take place
on the scale of its mean, which is order 1 for d ≥ 3 when 〈κ〉 <∞ and order 1 for d = 2.

2.1.1 Scaling

By Brownian scaling,

1
t
|WA(t)| .= |WAt−1/d

(t(d−2)/d)|, d ≥ 3,

log t
t
|WA(t)| .= |WA

√
log t/t(log t)|, d = 2,

(2.1.5)

where .= denotes equality in distribution. Hence, abbreviating

τ =
{
t(d−2)/d, d ≥ 3,
log t, d = 2,

Tτ =
{
τ2/(d−2), d ≥ 3,
eτ/τ, d = 2,

(2.1.6)

we find from (2.1.1) and (2.1.2) that

St = E
(
exp

[
−cτV Π

τ (τ)
])

(2.1.7)

with
V Π
τ (τ) =

∫
Q

Π(dA) |WA/
√
Tτ (τ)|. (2.1.8)

The right-hand side involves Wiener sausages at time τ with a shape that shrinks with 1/
√
Tτ .

We aim for the large deviations of V Π
τ (τ).

2.1.2 Compactifying

We will obtain upper and lower bounds on St by wrapping the scaled Brownian motion around
a finite torus, respectively, by killing it at the boundary of this torus. This compactification
will be exploited in Sections 2.2 and 2.3, where we prove a large deviation principle (LDP) for
(V Π
τ (τ))τ>0 restricted to the torus and use it to compute asymptotics of exponential moments.

This LDP will lead to a lower, respectively, upper bound on the variational characterisation
of the rate functions JΠ

d and J2 in Theorems 1.3.1 and 1.3.2. By letting the torus tend to Rd

afterwards, we will obtain the variational characterisation as claimed.
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2.1.3 Coarse-graining

The proof of the LDP for the Brownian motion on the torus consists of three steps, taken
from vdBBdH:

• Step 1: For ε > 0, we chop the Brownian motion into excursions of length ε, and define

Xτ,ε = {βN (iε)}1≤i≤τ/ε, (2.1.9)

which is the collection of the endpoints of the excursions. The lower index N refers to
the restriction to the torus of size N , and for notational convenience we assume that τ/ε
is integer. Let V Π

τ,N (τ) be the analogue of (2.1.8) for the Brownian motion on the torus
of size N . We approximate V Π

τ,N (τ) by Eτ,ε(V Π
τ,N (τ)), where Eτ,ε denotes the conditional

expectation given Xτ,ε. We prove that the difference between V Π
τ,N (τ) and Eτ,ε(V Π

τ,N (τ))
is negligible in the limit as τ →∞ followed by ε ↓ 0. This is done by an application of
a concentration inequality of Talagrand.

• Step 2: We represent Eτ,ε(V Π
τ,N (τ)) as a functional of the bivariate empirical measure

Lτ,ε =
ε

τ

τ/ε∑
i=1

δ(
βN ((i−1)ε),βN (iε)

). (2.1.10)

According to Donsker and Varadhan, (Lτ,ε)τ>0 satisfies an LDP. We need some further
approximations to get the dependence of Eτ,ε(V Π

τ,N (τ)) on Lτ,ε in a suitable form, but
based on just this LDP we get an LDP for (Eτ,ε(V Π

τ,N (τ)))τ>0 via a contraction principle.

• Step 3: We take the limit ε ↓ 0. By Step 2 we already know that V Π
τ,N (τ) is well approx-

imated by Eτ,ε(V Π
τ,N (τ)). It therefore suffices to have an appropriate approximation for

the variational formula in the LDP for (Eτ,ε(V Π
τ,N (τ)))τ>0.

These steps were used in vdBBdH to derive an LDP for the quantity in (2.1.8) when
Π = δBa(0), the point measure on the ball of radius a ∈ (0,∞) centred at 0. All we therefore
have to do is to see how the integral over Π can be incorporated and carried along. A priori,
this is not difficult. However, the argument in vdBBdH is rather delicate, involving various
estimates on Brownian motion and hitting times of shrinking balls. We need to check that
these estimates can be handled when the balls are replaced by sets with a random shape.
Therefore we provide a sketch of the main ingredients of the argument and guide the reader
along.

In Sections 2.2 and 2.3 we give the proof for d ≥ 3 when Π has finite support, i.e.,

Π =
n∑

m=1

amδAm ,

n∑
m=1

am = 1, am ≥ 0, Am ∈ Q, n ∈ N. (2.1.11)

In Section 2.4 we explain why the proof for arbitrary Π follows via sandwiching, as in the
proof of Proposition 1.2.1. In Section 2.5 we briefly indicate how to amend the proof for the
case d = 2, taking (2.1.6)–(2.1.8) into account.
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2.2 Upper bound in d ≥ 3

Write ΛN to denote the torus of size N , i.e., [−N/2, N/2)d with periodic boundary conditions.
Let βN (s), s ≥ 0, be the Brownian motion wrapped around ΛN . Let

W
A/
√
Tτ

N (s), s ≥ 0, (2.2.1)

denote its Wiener sausage with shape A scaled down by
√
Tτ , and let

V Π
τ,N (τ) =

∫
Q

Π(dA) |WA/
√
Tτ

N (τ)|. (2.2.2)

The wrapping lowers the volume of the Wiener sausages, and so we have, recalling (2.1.7) and
(2.1.8),

St ≤ E
(
exp

[
−cτV Π

τ,N (τ)
])
. (2.2.3)

The desired upper bound on St will therefore come out of the following LDP:

Theorem 2.2.1 (V Π
τ,N (τ))τ>0 satisfies the LDP on (0,∞) with rate τ and with rate function

IΠ
d,N given by

IΠ
d,N (b) = inf

{
1
2‖∇φ‖

2
2 : φ ∈ H1(ΛN ), ‖φ‖2

2 = 1, FΠ
d (φ2) = b

}
(2.2.4)

with FΠ
d given by (1.3.3).

Proof. Any Π ∈ M+
1 (Q) can be approximated from below, in the sense of (1.2.3), by a se-

quence (Πn) in M+
1 (Q) with finite support, as in (2.1.11). Such an approximation provides

an approximating sequence of upper bounds on St. So we may assume that Π has the form
(2.1.11). In Section 2.4 we will take care of the continuum limit and show why this carries
through.

We follow the three steps indicated in Section 2.1.3.

Step 1:

Proposition 2.2.2 For any δ > 0,

lim
ε↓0

lim sup
τ→∞

1
τ

logP
(
|V Π
τ,N (τ)− Eτ,ε(V Π

τ,N (τ))| ≥ δ
)

= −∞. (2.2.5)

Proof. For Π of the form (2.1.11), we decompose (2.2.2) as

V Π
τ,N (τ) =

n∑
m=1

am|WAm/
√
Tτ

N (τ)|. (2.2.6)

The proof of Proposition 4 in vdBBdH can be copied to show that, for any δ > 0 and
1 ≤ m ≤ n,

lim
ε↓0

lim sup
τ→∞

1
τ

logP
(∣∣∣ |WAm/

√
Tτ

N (τ)| − Eτ,ε
(
|WAm/

√
Tτ

N (τ)|
) ∣∣∣ ≥ δ

)
= −∞, (2.2.7)
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which yields the claim. The only property we need to check for (2.2.7) is the analogue of
(2.23) in vdBBdH, which plays a pivotal role in the proof and which here reads

sup
T≥1

E

(
exp

[
1
T
|WAm(T )|

])
<∞. (2.2.8)

Now, the left-hand side is bounded above by the same expression with Am replaced by BR(0),
where R = max1≤m≤nR(Am) with R(Am) the radius of the smallest ball containing Am
centred at 0. But for a ball with an arbitrary finite radius the bound in (2.2.8) is known to
be true (see van den Berg and Bolthausen [1]).

Step 2: Let I(2)
ε : M+

1 (ΛN × ΛN ) 7→ [0,∞] be the entropy function

I(2)
ε (µ) =

{
h(µ|µ1 ⊗ πε) if µ1 = µ2,

∞ otherwise,
(2.2.9)

where h( · | · ) denotes relative entropy between measures, µ1 and µ2 are the two marginals of
µ, and πε(x, dy) = pε(y − x)dy is the Brownian transition kernel on ΛN associated with an
ε-excursion. Furthermore, let ΦΠ

1/ε : M
+
1 (ΛN × ΛN ) 7→ [0,∞) be the function

ΦΠ
1/ε(µ) =

∫
Q

Π(dA)
∫

ΛN

dx

(
1− exp

[
−κ(A)

ε

∫
ΛN×ΛN

ϕε(y − x, z − x)µ(dy, dz)
])

(2.2.10)

with

ϕε(y, z) =

∫ ε
0 ds ps(−y)pε−s(z)

pε(z − y)
. (2.2.11)

Proposition 2.2.3 (Eτ,ε(V Π
τ,N (τ)))τ>0 satisfies the LDP on (0,∞) with rate τ and with rate

function

b 7→ inf
{

1
ε
I(2)
ε (µ) : µ ∈M+

1 (ΛN × ΛN ), ΦΠ
1/ε(µ) = b

}
. (2.2.12)

Proof. The claim is the analogue of Proposition 5 in vdBBdH. We indicate how the proof is
adapted.

First, we fix K > 0 and cut out holes of radius K/
√
Tτ around the endpoints of the

ε-excursions. To that end, we define

WA,K
i,N = WA

i,N \
[
BK/

√
Tτ

(βN ((i− 1)ε)) ∪BK/√Tτ
(βN (iε))

]
(2.2.13)

with
WA
i,N =

⋃
(i−1)ε≤s≤iε

[
β(s) +A/

√
Tτ

]
, (2.2.14)

and we put

V Π,K
τ,N (τ) =

∫
Π(dA)

∣∣∣∣∣∣
τ/ε⋃
i=1

WA,K
i,N

∣∣∣∣∣∣ , (2.2.15)

which is V Π
τ,N (τ) in (2.2.2) but with the holes cut out. Note that

0 ≤ V Π
τ,N (τ)− V Π,K

τ,N (τ) ≤ (τ/ε+ 1)ωd(K/
√
Tτ )d ≤ 2Kdωd/εTτ (2.2.16)
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(recall (2.1.6); ωd is the volume of the ball with unit radius). The right-hand side tends to
zero as τ →∞ for any K <∞, so the cutting is harmless when we let K →∞ afterwards.

Next, we express Eτ,ε(V Π,K
τ,N (τ)) in terms of the empirical measure Lτ,ε defined in (2.1.10):

Eτ,ε
(
V Π,K
τ,N (τ)

)
=
∫
Q

Π(dA)
∫

ΛN

dx

1− Pτ,ε

x /∈ τ/ε⋃
i=1

WA,K
i,N


=
∫
Q

Π(dA)
∫

ΛN

dx

1−
τ/ε∏
i=1

{
1− Pτ,ε

(
x ∈WA,K

i,N

)}
=
∫
Q

Π(dA)
∫

ΛN

dx(
1− exp

[τ
ε

∫
ΛN×ΛN

log
(
1− qAτ,ε(y − x, z − x) 1{y−x,z−x/∈BK/

√
Tτ

(0)}

)
Lτ,ε(dy, dz)

])
.

(2.2.17)
Here,

qAτ,ε(y, z) = Pε,y,z

(
σA/

√
Tτ
≤ ε
)

(2.2.18)

with σA/√Tτ
the first time the Brownian motion enters A/

√
Tτ , and

Pε,y,z(·) = P
(
βN ([0, ε]) ∈ · | βN (0) = y, βN (ε) = z

)
(2.2.19)

the probability law of the Brownian bridge of length ε from y to z.
The key property of the quantity in (2.2.18) needed in the proof is the following analogue

of Lemma 2 in vdBBdH:
(a) lim

K→∞
lim sup
τ→∞

sup
y,z /∈BK/

√
Tτ

(0)
qAτ,ε(y, z) = 0 for all A ∈ Q, ε > 0,

(b) lim
τ→∞

sup
y,z /∈Bρ(0)

|τqAτ,ε(y, z)− κ(A)ϕε(y, z)| = 0 for all 0 < ρ < N/4 and A ∈ Q, ε > 0.

(2.2.20)
Property (2.2.20)(a) is immediate, since qAτ,ε(y, z) is non-decreasing in A and for A = BR(0)
the proof is in vdBBdH. For property (2.2.20)(b) the key ingredient is the analogue of (2.64)
in vdBBdH, which reads

lim
b↓0

1
κ(bA)

Py (σbA ≤ t) =
∫ t

0
ps(−y)ds for all y ∈ Rd, t ≥ 0, A ∈ Q (2.2.21)

with Py(·) = Py(β([0,∞)) ∈ · | β(0) = y) (see Le Gall [5]). It is through this relation that
κ(A) appears on the stage.

Next, (2.2.20) allows us to linearise the logarithm in the last line of (2.2.17) and to replace
it by −κ(A)ϕε(y − x, z − x)/τ , which brings us to (2.2.10) with µ = Lτε. To do this properly
we need some continuity properties, which are the analogues of Lemmas 3 and 4 in vdBBdH
and which rely on (2.2.20)(b). Since Π has finite support, this part of the extension is again
straightforward.

The combination of (2.2.16), (2.2.17) and (2.2.20) leads us to the conclusion that

lim
τ→∞

∥∥∥Eτ,ε(V Π
τ,N (τ))− ΦΠ

1/ε(Lτ,ε)
∥∥∥
∞

= 0 for all ε > 0. (2.2.22)

Finally, we note the following:
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(1) µ 7→ ΦΠ
1/ε(µ) is continuous in the total variation norm.

(2) (Lτ,ε)τ>0 satisfies the LDP on M+
1 (ΛN ×ΛN ) with rate τ and with rate function 1

ε I
(2)
ε .

Therefore the claim in Proposition 2.2.3 now follows by using the contraction principle in
combination with (2.2.22).

Step 3: This step consists of two approximation lemmas.

• Let ΨΠ
1/ε : M

+
1 (ΛN ) 7→ [0,∞) be the function

ΨΠ
1/ε(ν) =

∫
Q

Π(dA)
∫

ΛN

dx

(
1− exp

[
−κ(A)

ε

∫ ε

0
ds

∫
ΛN

ps(x− y)ν(dy)
])

. (2.2.23)

Lemma 2.2.4 For any K > 0,

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

∣∣∣ΦΠ
1/ε(µ)−ΨΠ

1/ε(µ1)
∣∣∣ = 0. (2.2.24)

Proof. For Π of the form (2.1.11), we decompose (2.2.10) and (2.2.23) as

ΦΠ
1/ε(µ) =

n∑
m=1

amΦδAm

1/ε (µ), ΨΠ
1/ε(ν) =

n∑
m=1

amΨδAm

1/ε (ν). (2.2.25)

The proof of Lemma 6 in vdBBdH can be copied to show that, for any K > 0 and 1 ≤ m ≤ n,

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

∣∣∣ΦδAm

1/ε (µ)−ΨδAm

1/ε (µ1)
∣∣∣ = 0, (2.2.26)

which yields the claim. The only property needed for the proof of (2.2.26) is κ(Am) <∞.

• Let I : M+
1 (ΛN ) 7→ [0,∞] be the standard large deviation rate function for the empirical

distribution of the Brownian motion, given by

I(ν) = 1
2

∫
ΛN

|∇φ|2(x)dx if dν
dx = φ2 with φ ∈ H1(ΛN ),

= ∞ otherwise.
(2.2.27)

Let Iε : M+
1 (ΛN ) 7→ [0,∞] be the projection of I(2)

ε onto M+
1 (ΛN ), given by

Iε(ν) = inf
{
I(2)
ε (µ) : µ1 = ν

}
. (2.2.28)

Then
lim
ε↓0

1
ε
Iε(ν) = I(ν) for all ν ∈M+

1 (ΛN ) (2.2.29)

(see vdBBdH Lemma 5).

Lemma 2.2.5 For any K > 0,

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

∣∣∣ΨΠ
1/ε(ν)− FΠ

d

(
dν
dx

)∣∣∣ = 0 (2.2.30)

with FΠ
d given by (1.3.3). (Note that if Iε(ν) < ∞, then dν � dx because ν ⊗ πε � dx ⊗ dy

by (2.2.9) and (2.2.28)).
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Proof. For Π of the form (2.1.11), we decompose (2.2.23) and (1.3.3) as

ΨΠ
1/ε(ν) =

n∑
m=1

amΨδAm

1/ε (ν), FΠ
d (φ2) =

n∑
m=1

amF
δAm
d (φ2). (2.2.31)

The proof of Lemma 7 in vdBBdH can be copied to show that, for any K > 0 and 1 ≤ m ≤ n,

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

∣∣∣ΨδAm

1/ε (ν)− F
δAm
d

(
dν
dx

)∣∣∣ = 0, (2.2.32)

which yields the claim. The only property needed for the proof of (2.2.32) is κ(Am) <∞.

Having completed Steps 1–3, the proof of Theorem 2.2.1 now follows easily. Indeed, for
any f : (0,∞) 7→ R bounded and continuous we have

lim
τ→∞

1
τ

logE
(

exp
[
τf(V Π

τ,N (τ))
])

= lim
ε↓0

lim
τ→∞

1
τ

logE
(
exp

[
τf(Eτ,ε(V Π

τ,N (τ)))
])

= lim
ε↓0

sup
µ

{
f(ΦΠ

1/ε(µ))− 1
ε
I(2)
ε (µ)

}
= lim

K→∞
lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

{
f(ΦΠ

1/ε(µ))− 1
ε
I(2)
ε (µ)

}

= lim
K→∞

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

{
f(ΨΠ

1/ε(µ1))−
1
ε
I(2)
ε (µ)

}

= lim
K→∞

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

{
f(ΨΠ

1/ε(ν))−
1
ε
Iε(ν)

}
= lim

K→∞
lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

{
f

(
FΠ
d

(
dν

dx

))
− 1
ε
Iε(ν)

}
= sup

ν

{
f

(
FΠ
d

(
dν

dx

))
− I(ν)

}
= sup

φ∈H1(ΛN ) : ‖φ‖22=1

{
f(FΠ

d (φ2))− 1
2
‖∇φ‖2

2

}
.

(2.2.33)

Here, the first equality uses Proposition 2.2.2, the second equality Proposition 2.2.3, the fourth
equality Lemma 2.2.4, the fifth equality (2.2.29), the sixth equality Lemma 2.2.5, while the
last equality comes from (2.2.27). The claim in Theorem 2.2.1 follows by applying to (2.2.33)
the inverse of Varadhan’s lemma due to Bryc [4].

It follows from (2.2.3) and Theorem 2.2.1 that

lim sup
τ→∞

1
τ

logSt ≤ −JΠ
d,N (c) (2.2.34)

with
JΠ
d,N (c) = inf

{
cb+ IΠ

d,N (b) : b ∈ (0,∞)
}

= inf
{

1
2‖∇φ‖

2
2 + cFΠ

d (φ2) : φ ∈ H1(ΛN ), ‖φ‖2
2 = 1

}
.

(2.2.35)
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This is the same as (1.3.2), but with Rd replaced by ΛN . Thus, to complete the proof of the
upper bound for Π with finite support it suffices to show that

lim
N→∞

JΠ
d,N (c) = JΠ

d (c). (2.2.36)

The latter is a standard exercise, for which the reader is referred to vdBBdH Section 2.6.

2.3 Lower bound in d ≥ 3

If Π has unbounded support, then it cannot be approximated from above, in the sense of
(1.2.3), by a sequence (Πn) with finite support. However, we can truncate and estimate
(2.2.2) by

V Π
τ,N (τ) ≤ V Π

τ,N,R(τ) + δR |ΛN |, R > 0, (2.3.1)

where
V Π
τ,N,R =

∫
Q

Π(dA) 1{R(A)≤R} |W
A/
√
Tτ

N (τ)|, (2.3.2)

with R(A) the radius of the smallest ball containing A centred at 0, and δR = Π({A ∈
Q : R(A) > R}). Since limR→∞ δR = 0, it suffices to give the proof for V Π

τ,N,R(τ). The point
is that Π restricted to {R(A) ≤ R} can be approximated by a sequence with finite support.
Thus, we may again assume that Π has the form (2.1.11).

A lower bound on the survival probability is obtained by killing the Brownian motion at
∂ΛN−R/√Tτ

. Therefore we have from (2.3.1), recalling (2.1.7) and (2.1.8), that

St ≥ e−cτδR|ΛN |E
(
exp

[
−cτV Π

τ,N,R(τ)
]

1CN,R(τ)

)
, (2.3.3)

where CN,R(τ) is the event that the Brownian motion does not hit ∂ΛN−R/√Tτ
until time τ .

On the event CN,R(τ) we can use Theorem 2.2.1, which leads us to

lim inf
τ→∞

1
τ

logSt ≥ −cδR|ΛN | − λN + lim
τ→∞

1
τ

logE
(
exp

[
−cτV Π

τ,N (τ)
]
| CN,R(τ)

)
= −cδR|ΛN | − λN − JΠ

d,N,∗(c).

(2.3.4)

Here, λN is the principal Dirichlet eigenvalue of −∆/2 on ΛN , while JΠ
d,N,∗(c) is given by

(2.2.4), except that φ has the additional restriction supp(φ) ∩ ∂ΛN = ∅. First let R → ∞
to get rid of the first term in the right-hand side of (2.3.4). Next let N → ∞ and use that
limN→∞ λN = 0 to see that it suffices to show that

lim
N→∞

JΠ
d,N,∗(c) = JΠ

d (c). (2.3.5)

The latter is again a standard exercise, for which the reader is referred to vdBBdH Section
2.6.

2.4 Continuum limit of Π

The bounds in (2.2.34) and (2.3.4) in combination with the limits in (2.2.36) and (2.3.5) yield
Theorem 1.3.1 for all Π with finite support, as assumed in (2.1.11). It therefore remains to
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show that the variational characterisation of JΠ
d in (1.3.2) is stable under the continuum limit

on Π. In order to do so, we note that

{An, A ∈ Q, ρH(An, A) → 0} =⇒ {κ(An) → κ(A)}. (2.4.1)

Consequently,

{Πn ⇒ Π in M+
1 (Q)} =⇒ {Θn ⇒ Θ in M+

1 ((0,∞))} (2.4.2)

with Θ = Π ◦ κ−1. Hence it suffices to show stability under the continuum limit on Θ. This
is again a standard exercise. We refer the reader to the analysis in Section 3.

2.5 Extension to d = 2

The extension to d = 2 is minor and follows vdBBdH Section 4. The ingredients (2.2.8),
(2.2.20) and (2.2.21) need to be properly modified, for which we refer to (4.8), Lemma 8 and
(4.14) in vdBBdH, respectively. The rest of the argument is the same, with the notation
introduced in (2.1.6).

3 Proof of Theorems 1.4.1, 1.4.2 and 1.4.3

3.1 Proof of Theorem 1.4.1(i) and Theorem 1.4.3(i)

According to (1.3.2) and (1.3.6), c 7→ JΠ
d (c) and c 7→ J2(c) are infima over functions that are

linear. Consequently, both are concave, and therefore also continuous except possibly at the
boundary point c = 0. It is obvious that JΠ

d (0) = J2(0) = 0. From the general upper bound
proved in (3.6.5) below, it follows that limc↓0 J

Π
d (c) = limc↓0 J2(c) = 0. Therefore continuity

extends to the boundary. It is further obvious from (1.3.2) and (1.3.6) that JΠ
d (c) and J2(c)

are non-decreasing in c. By concavity, both are strictly increasing in c unless they are constant
from some finite c onwards. But this is ruled out by the asymptotics for c→∞ in Theorem
1.4.2(i) and Theorem 1.4.3(iii) respectively.

3.2 Proof of Theorem 1.4.1(ii)

Lemma 3.2.1 Let d ≥ 3. Then JΠ
d (c) ≤ c〈κ〉 for all c ≥ 0.

Proof. Since 1 − e−x ≤ x, x ≥ 0, we have from (1.3.3) that FΠ
d (φ2) ≤ 〈κ〉‖φ‖2

2. Hence the
claim follows from (1.3.2), since inf{‖∇φ‖2

2 : ‖φ‖2
2 = 1} = 0.

The critical value c∗ is the unique threshold such that JΠ
d (c) < c〈κ〉 if and only if c > c∗.

In Lemma 3.2.2 below we derive a lower bound on c∗ in regime (I). To do so, we first rewrite
(1.3.2) as

c〈κ〉 − JΠ
d (c) = − inf

{
1
2‖∇φ‖

2
2 − cGΠ

d (φ2) : ‖φ‖2
2 = 1, φ RSNI

}
, (3.2.1)

where RSNI means radially symmetric and non-increasing (see vdBBdH Lemma 10), and

GΠ
d (φ2) =

∫
Rd

dx

∫ ∞

0
Θ(dκ)

(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.2.2)
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From (3.2.1) we see that

c∗ = inf

{
1
2‖∇φ‖

2
2

GΠ
d (φ2)

: ‖φ‖2
2 = 1, φ RSNI

}
. (3.2.3)

Lemma 3.2.2 Let d ≥ 3. If Θ ∈ SI , then

c∗ ≥ Sd

(
4κd/(d−1)

0 +
d2K

d− 2

)−1

(3.2.4)

where Sd is the Sobolev constant given in (3.2.15).

Proof. We estimate the contribution to the double integral in (3.2.2) as follows.
First let A < ∞. The contribution of the rectangle (0, κ0) × {x ∈ Rd : φ2(x) < A} is

bounded from above by∫ κ0

0
Θ(dκ)

∫
{φ2<A}

dxκ2φ4(x) ≤ κ2
0A

2(d−2)/d

∫
Rd

dxφ2(d+2)/d(x), (3.2.5)

where we have used that e−x− 1 + x ≤ x2, x ≥ 0. On the other hand, the contribution of the
rectangle (0, κ0)× {x ∈ Rd : φ2(x) ≥ A} is bounded from above by∫ κ0

0
Θ(dκ)

∫
{φ2≥A}

dxκφ2(x) ≤ κ0

∫
{φ2≥A}

dxφ2(x)
(
φ2(x)
A

)2/d

≤ κ0A
−2/d

∫
Rd

dxφ2(d+2)/d(x).

(3.2.6)

We choose A = κ
−d/2(d−1)
0 to get from (3.2.5) and (3.2.6) that the contribution of (0, κ0) is

bounded from above by

2κd/(d−1)
0

∫
Rd

dxφ2(d+2)/d(x). (3.2.7)

Next, the contribution of the rectangle [κ0,∞)×{x ∈ Rd : φ2(x) < 1/κ0} is bounded from
above by∫

{φ2<1/κ0}
dx

∫ 1/φ2(x)

κ0

Θ(dκ)κ2φ4(x) +
∫
{φ2<1/κ0}

dx

∫ ∞

1/φ2(x)
Θ(dκ)κφ2(x)

≤ K

∫
{φ2<1/κ0}

dx

∫ 1/φ2(x)

κ0

dκκ−2/dφ4(x) +K

∫
{φ2<1/κ0}

dx

∫ ∞

1/φ2(x)
dκκ−(d+2)/dφ2(x)

≤ K

∫
{φ2<1/κ0}

dxφ4(x)
∫ 1/φ2(x)

0
dκκ−2/d +K

∫
{φ2<1/κ0}

dxφ2(x)
∫ ∞

1/φ2(x)
dκκ−(d+2)/d

=
d2K

2(d− 2)

∫
{φ2<1/κ0}

dxφ2(d+2)/d(x),

(3.2.8)
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where we have used the upper bound on Θ(dκ) that defines SI . On the other hand, the
contribution of the rectangle [κ0,∞)× {x ∈ Rd : φ2(x) ≥ 1/κ0} is bounded from above by∫

{φ2≥1/κ0}
dx

∫ ∞

κ0

Θ(dκ)κφ2(x) ≤ K

∫
{φ2≥1/κ0}

dxφ2(x)
∫ ∞

κ0

dκκ−(d+2)/d

=
dK

2

∫
{φ2≥1/κ0}

dxφ2(x)κ−2/d
0

≤ dK

2

∫
{φ2≥1/κ0}

dxφ2(d+2)/d(x).

(3.2.9)

Combining (3.2.7), (3.2.8) and (3.2.9), we arrive at

GΠ
d (φ2) ≤

(
2κd/(d−1)

0 +
d2K

2(d− 2)

)∫
Rd

dxφ2(d+2)/d(x). (3.2.10)

Next, for any 0 < α < 1 and conjugate exponents p, q > 1, we estimate∫
φ2(d+2)/d ≤

(∫
φ[2(d+2)/d]αp

)1/p(∫
φ[2(d+2)/d](1−α)q

)1/q

. (3.2.11)

Choosing α, p, q such that

[2(d+ 2)/d]αp = 2d/(d− 2), [2(d+ 2)/d](1− α)q = 2, (3.2.12)

i.e.,
p = d/(d− 2), q = d/2, α = d/(d+ 2), (3.2.13)

and using that ‖φ‖2
2 = 1, we obtain∫

φ2(d+2)/d ≤
(∫

φ2d/(d−2)

)(d−2)/d

= ‖φ‖2
2d/(d−2). (3.2.14)

By the Sobolev inequality (see Lieb and Loss [6] page 190)

‖∇φ‖2
2 ≥ Sd ‖φ‖2

2d/(d−2) (3.2.15)

we obtain that ∫
φ2(d+2)/d ≤ 1

Sd
‖∇φ‖2

2. (3.2.16)

We obtain the claim by (3.2.3), (3.2.10) and (3.2.16).

We proceed by proving the slope discontinuity at c∗.

Lemma 3.2.3 Let d ≥ 3. For Θ ∈ SI , if 〈κη〉 < ∞ for some η > d+2
d , then limc↓c∗ [JΠ

d (c) −
JΠ
d (c∗)]/(c− c∗) < 〈κ〉.

Proof. Let ψc∗ be any minimiser for (1.3.2) at c = c∗, the existence of which we prove in
Lemma 3.5.3 below under the condition stated. Then

JΠ
d (c∗) = 1

2‖∇ψc∗‖
2
2 + c∗ FΠ

d (ψ2
c∗). (3.2.17)

But, for any δ > 0, we have

JΠ
d (c∗ + δ) ≤ 1

2‖∇ψc∗‖
2
2 + (c∗ + δ)FΠ

d (ψ2
c∗). (3.2.18)

Combining this with (3.2.17), we get
1
δ

[
JΠ
d (c∗ + δ)− JΠ

d (c∗)
]
≤ FΠ

d (ψ2
c∗) <

1
c∗
JΠ
d (c∗) = 〈κ〉. (3.2.19)
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3.3 Proof of Theorem 1.4.1(iii)

Lemma 3.3.1 Let d ≥ 3. If Θ ∈ SII , then limc↓0
1
cJ

Π
d (c) = 〈κ〉.

Proof. As shown in Lemma 3.5.2 below, for all c > 0 we have the existence of a minimiser for
(1.3.2), say ψc. Hence

1
c
JΠ
d (c) =

1
c
‖∇ψc‖2

2 +
∫

Rd

dx

∫ ∞

0
Θ(dκ)

(
1− e−κψ

2
c (x)
)
. (3.3.1)

Let ε > 0 and R <∞. Then, since e−x − 1 + x ≤ 1
2x

2, x ≥ 0, we have

1
c
JΠ
d (c) ≥

∫
{ψ2

c≤ε}
dx

∫
{κ≤R}

Θ(dκ)
(
1− e−κψ

2
c (x)
)

≥
∫
{ψ2

c≤ε}
dx

∫
{κ≤R}

Θ(dκ)
(
κψ2

c (x)−
1
2
κ2ψ4

c (x)
)

≥
∫
{ψ2

c≤ε}
dxψ2

c (x)
∫
{κ≤R}

Θ(dκ)κ− 1
2
R2ε,

(3.3.2)

where we have used that ‖ψc‖2
2 = 1. We will show that, for any ε > 0,

lim
c↓0

∫
{ψ2

c>ε}
dxψ2

c (x) = 0. (3.3.3)

Combining this with (3.3.2) and again using that ‖ψc‖2
2 = 1, we obtain

lim inf
c↓0

1
c
JΠ
d (c) ≥

∫
{κ≤R}

Θ(dκ)κ− 1
2
R2ε. (3.3.4)

By letting ε ↓ 0 and then letting R→∞, we arrive at

lim inf
c↓0

1
c
JΠ
d (c) ≥ 〈κ〉. (3.3.5)

This proves the claim, since we already know from Lemma 3.2.1 that 1
cJ

Π
d (c) ≤ 〈κ〉.

It remains to prove (3.3.3). We have∫
{ψ2

c>ε}
dxψ2

c (x) ≤
∫
{ψ2

c>ε}
dxψ2

c (x)
(
ψ2
c (x)
ε

)2/(d−2)

≤ ε−2/(d−2)

∫
Rd

dxψ2d/(d−2)
c (x)

≤ ε−2/(d−2)S
−d/(d−2)
d ‖∇ψc‖2d/(d−2)

2 ,

(3.3.6)

where we have used the Sobolev inequality (3.2.15). But limc↓0 J
Π
d (c) = 0 by Lemma 3.2.1,

and therefore limc↓0 ‖∇ψc‖2
2 = 0. Consequently, (3.3.6) implies (3.3.3).

Lemma 3.3.2 Let d ≥ 3. If Θ ∈ SII , then c∗ = 0.
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Proof. By (3.2.2) and the lower bound on Θ(dκ) that defines SII , we have

GΠ
d (φ2) ≥

∫
Rd

dx

∫ ∞

κ1

dκL(κ)κ−1−(d+2)/d
(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.3.7)

Hence we get, for all φ ∈ H1(Rd) that are RSNI with ‖φ‖2
2 = 1 and κ1φ

2(0) ≤ 1,

GΠ
d (φ2) ≥

∫
Rd

dx

∫ ∞

1/φ2(x)
dκL(κ)κ−1−(d+2)/d

(
e−κφ

2(x) − 1 + κφ2(x)
)

≥ L

(
1

φ2(0)

)∫
Rd

dx

∫ ∞

1/φ2(x)
dκκ−1−(d+2)/d

(
e−κφ

2(x) − 1 + κφ2(x)
)

≥ L

(
1

φ2(0)

)∫
Rd

dx

∫ ∞

1/φ2(x)
dκκ−1−(d+2)/d

(
κφ2(x)
e

)
=

d

2e
L

(
1

φ2(0)

)∫
Rd

dxφ2(d+2)/d(x),

(3.3.8)

where we have used that e−x − 1 + x ≥ x/e, x ≥ 1. Inserting (3.3.8) into (3.2.3), we find

c∗ ≤ e

d
inf
{

1
L(1/φ2(0))

‖∇φ‖2
2∫

φ2(d+2)/d
: ‖φ‖2

2 = 1, φ RSNI, κ1φ
2(0) ≤ 1

}
. (3.3.9)

The choice
φ(x) = εd/2e−πε

2|x|2/2, ε > 0, (3.3.10)

yields that, for all 0 < ε ≤ κ
−1/d
1 ,

c∗ ≤ eπ

2
[(d+ 2)/d]d/2

1
L(ε−d)

. (3.3.11)

We obtain the claim by letting ε ↓ 0 and using that lim
κ→∞

L(κ) = ∞.

3.4 Proof of Theorem 1.4.1(iv)

Lemma 3.4.1 Let d ≥ 3. In regime (III), lim
c↓0

1
cJ

Π
d (c) = ∞.

Proof. The limit in (3.3.3) and the lower bound in (3.3.4) are valid also in regime (III).
Therefore the claim is immediate from 〈κ〉 = ∞.

3.5 Proof of Theorem 1.4.1(v)

Lemma 3.5.1 Let d ≥ 3. In regime (III), (1.3.2) has a minimiser for all c > 0, which is
RSNI.

Proof. Fix c > 0, and let (ψj) be a minimising sequence for the variational problem in (1.3.2).
We can extract a subsequence, also denoted by (ψj), such that ψj → ψc as j → ∞ for some
ψc almost everywhere and in D1(Rd). It follows that ψc is RSNI, and that

JΠ
d (c) ≥ 1

2
‖∇ψc‖2

2 + cFΠ
d (ψ2

c ). (3.5.1)
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If we manage to show that ‖ψc‖2
2 = 1, then

JΠ
d (c) ≤ 1

2
‖∇ψc‖2

2 + cFΠ
d (ψ2

c ), (3.5.2)

and we may conclude that ψc is a minimiser.
To prove that ‖ψc‖2

2 = 1, we let ε ∈ (0, 1) be arbitrary and use that

JΠ
d (c) ≤ d+ 2

2

(
λd
d

)d/(d+2)

c2/(d+2), (3.5.3)

which will be proved in (3.6.5) below. Since 〈κ〉 = ∞, there exists a κε <∞ such that

4
c

(∫ κε

0
κΘ(dκ)

)−1 d+ 2
2

(
λd
d

)d/(d+2)

c2/(d+2) < ε. (3.5.4)

We put

Rε =
(
κε
ωd

)1/d

, (3.5.5)

and estimate that, for j large enough,

2JΠ
d (c) ≥ 1

2
‖∇ψj‖2

2 + cFΠ
d (ψ2

j )

≥ c

∫ κε

0
Θ(dκ)

∫
Rd

dx
(
1− e−κψ

2
j (x)
)

≥ c

∫ κε

0
Θ(dκ)

∫
{|x|>Rε}

dx
(
1− e−κψ

2
j (x)
)
.

(3.5.6)

Since ψj is RSNI and ‖ψj‖2
2 = 1, for any R > 0 we have that

ωdR
dψ2

j (x) ≤ 1, |x| > R. (3.5.7)

It follows from (3.5.5) and (3.5.7) that

κψ2
j (x) ≤ 1 (3.5.8)

on the set (0, κε)× {x ∈ Rd : |x| > Rε}. Hence, by (3.5.6) and the inequality 1− e−x ≥ x/2,
0 ≤ x ≤ 1, we have

2JΠ
d (c) ≥ c

2

∫ κε

0
Θ(dκ)κ

∫
{|x|>Rε}

dxψ2
j (x). (3.5.9)

By the choice of κε in (3.5.4), the bounds in (3.5.3) and (3.5.9) combine to yield∫
{|x|>Rε}

dxψ2
j (x) < ε. (3.5.10)

Since ψj → ψc as j →∞ almost everywhere, we get∫
Rd

dxψ2
c (x) ≥

∫
{|x|<Rε}

dxψ2
c (x) ≥ 1− ε. (3.5.11)

Since ε ∈ (0, 1) was arbitrary, we conclude that ‖ψc‖2
2 = 1.
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Lemma 3.5.2 Let d ≥ 3. If 〈κ〉 < ∞, then (1.3.2) has a minimiser in regimes I and II for
all c > c∗ (with c∗ = 0 in regime II).

Proof. By definition of c∗ we have JΠ
d (c) < c〈κ〉 for c > c∗. For c > 0, define

KΠ
d (c)

= inf
{

1
2
‖∇ψ‖2

2 − c

∫ ∞

0
Θ(dκ)

∫
Rd

dx
(
e−κψ

2(x) − 1 + κψ2(x)
)

: ‖ψ‖2
2 = 1, ψ RSNI

}
,

K̂Π
d (c)

= inf
{

1
2
‖∇ψ‖2

2 − c

∫ ∞

0
Θ(dκ)

∫
Rd

dx
(
e−κψ

2(x) − 1 + κψ2(x)
)

: ‖ψ‖2
2 ≤ 1, ψ RSNI

}
.

(3.5.12)
Then, for c > c∗,

K̂Π
d (c) ≤ KΠ

d (c) < 0. (3.5.13)

Let (ψj) be a minimising sequence of the variational problem for K̂Π
d (c). As in the proof of

Lemma 3.5.1, we extract a subsequence, also denoted by (ψj), such that ψj → ψc as j → ∞
for some ψc almost everywhere and in D1(Rd). It follows that ψc is RSNI and that ψc is a
minimiser for K̂Π

d (c). Moreover, ‖ψc‖2
2 > 0 (because ‖ψc‖2

2 = 0 would imply ψc = 0 almost
everywhere, which in turn would imply K̂Π

d (c) = 0, which contradicts (3.5.13)). Suppose that
‖ψc‖2

2 = 1− ρ with 0 ≤ ρ < 1. Define

φ(x) =
1
q
ψc(qx), (3.5.14)

where we choose q > 0 such that ‖φ‖2
2 = 1, i.e.,

q = (1− ρ)1/(d+2). (3.5.15)

Then
‖∇φ‖2

2 = (1− ρ)−d/(d+2)‖∇ψc‖2
2 (3.5.16)

and

c

∫ ∞

0
Θ(dκ)

∫
Rd

(
e−κφ

2(x) − 1 + κφ2(x)
)

= c(1− ρ)−d/(d+2)

∫ ∞

0
Θ(dκ)

∫
Rd

(
e−κ(1−ρ)

−2/(d+2)ψ2
c (x) − 1 + κ(1− ρ)−2/(d+2)ψ2

c (x)
)

≥ c(1− ρ)−d/(d+2)

∫ ∞

0
Θ(dκ)

∫
Rd

(
e−κψ

2
c (x) − 1 + κψ2

c (x)
)
.

(3.5.17)
Inserting (3.5.16) and (3.5.17) into the definition of KΠ

d (c), and using the definition of K̂Π
d (c),

we get
KΠ
d (c) ≤ (1− ρ)−d/(d+2)K̂Π

d (c). (3.5.18)

By (3.5.13) and (3.5.18) we conclude that ρ = 0. Hence ‖ψc‖2
2 = 1, and ψc is a minimiser for

KΠ
d (c).

Lemma 3.5.3 Let d ≥ 3. For Θ ∈ SI , if 〈κη〉 < ∞ for some η > d+2
d , then (1.3.2) has a

minimiser for c = c∗.
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Proof. Define

ĉ = inf

{
1
2‖∇φ‖

2
2

GΠ
d (φ2)

: 0 < ‖φ‖2
2 ≤ 1, φ RSNI

}
. (3.5.19)

We begin by showing that ĉ = c∗. Trivially, by comparing (3.2.3) and (3.5.19), we get ĉ ≤ c∗.
To prove the converse, let (φ̂j) be a minimising sequence for (3.5.19). Put 0 < aj = ‖φ̂j‖2

2 ≤ 1,
and

φj(x) = a
−1/(d+2)
j φ̂j

(
a

1/(d+2)
j x

)
. (3.5.20)

Then ‖φj‖2
2 = 1, and

c∗ ≤
1
2‖∇φj‖

2
2

GΠ
d (φ2

j )
=

1
2‖∇φ̂j‖

2
2

GΠ
d (a−2/(d+2)

j φ̂ 2
j )
≤

1
2‖∇φ̂j‖

2
2

GΠ
d (φ̂ 2

j )
. (3.5.21)

But the right-hand side of (3.5.21) converges to ĉ as j →∞. Hence, c∗ ≤ ĉ.
By extracting a subsequence, also denoted by (φ̂j), we may assume that φ̂j → φ̂ as j →∞

for some φ̂ almost everywhere and weakly in D1(Rd). It follows that φ̂ is RSNI. Below we
will show that ‖φ̂‖2

2 > 0. If ‖φ̂‖2
2 = 1, then φ̂ is a minimiser of (3.2.3). If, on the other hand,

0 < ‖φ̂‖2
2 = 1− ρ < 1, then define, as in (3.5.14),

φ∗(x) =
1
q
φ̂(qx), (3.5.22)

where q is given by (3.5.15). Then ‖φ∗‖2
2 = 1 and, as in (3.5.21),

c∗ ≤
1
2‖∇φ

∗‖2
2

GΠ
d (φ∗ 2)

≤
1
2‖∇φ̂‖

2
2

GΠ
d (φ̂2)

= ĉ = c∗. (3.5.23)

It follows that φ∗ is a minimiser of (3.2.3). It then obviously also is a minimiser of (1.3.2) for
c = c∗ (recall (3.2.1), (3.2.2) and (3.2.3)).

It remains to prove that ‖φ̂‖2
2 > 0. For this it suffices to show that there exist δ, ε > 0

such that, for any minimising sequence (φ̂j) of (3.5.19),

|{x ∈ Rd : φ̂ 2
j (x) ≥ ε}| ≥ δ for all j. (3.5.24)

Indeed, (3.5.24) implies that ‖φ̂j‖2
2 ≥ εδ for all j, and hence that

‖φ̂‖2
2 ≥ εδ. (3.5.25)

To prove (3.5.24), we argue by contradiction. Suppose that there exists a minimising
sequence (φ̂j) of (3.5.19) with the property that, for all ε > 0,

lim
j→∞

|{x ∈ Rd : φ̂ 2
j (x) ≥ ε}| = 0. (3.5.26)

Then, for all ε > 0, there exists an L1(ε) ∈ N such that, for all j ≥ L1(ε),

|{x ∈ Rd : φ̂ 2
j (x) ≥ ε}| < εd[η−(d+2)/d]/2. (3.5.27)
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We already know that there exists an L2 ∈ N such that, for all j ≥ L2,

1
2‖∇φ̂j‖

2
2

GΠ
d (φ̂2

j )
≤ 2 ĉ. (3.5.28)

To arrive at a contradiction, we will show that the left-hand side of (3.5.28) is at least 5 ĉ/2
for j ≥ L1(ε0) ∨ L2 for some ε0 > 0.

By the Sobolev inequality in (3.2.15), we have

‖∇φ̂j‖2
2 ≥ Sd‖φ̂j‖2

2d/(d−2). (3.5.29)

Since 〈κη′〉 < ∞ implies that 〈κη〉 < ∞ for η ≤ η′, we may assume that d+2
d < η ≤ 2.

To estimate the contribution of the strip {φ̂ 2
j < ε} to the integral for GΠ

d (φ̂ 2
j ), we use that

e−x + 1− x ≤ xη, x ≥ 0, to obtain, via (3.2.14),∫ ∞

0
Θ(dκ)

∫
{φ̂ 2

j <ε}
dx (κφ̂ 2

j (x))η = 〈κη〉
∫
{φ̂ 2

j <ε}
dx φ̂ 2η

j (x)

≤ 〈κη〉εη−(d+2)/d

∫
{φ̂ 2

j <ε}
dx φ̂

2(d+2)/d
j (x)

≤ 〈κη〉εη−(d+2)/d‖φ̂j‖2
2d/(d−2).

(3.5.30)

Furthermore, by Hölder’s inequality and (3.5.27) we have, for j ≥ L1(ε),∫ ∞

0
Θ(dκ)

∫
{φ̂ 2

j ≥ε}
dxκφ̂ 2

j (x) = 〈κ〉
∫

Rd

dx φ̂ 2
j (x)1{φ̂ 2

j (x)≥ε}

≤ 〈κ〉
(∫

Rd

dx φ̂
2d/(d−2)
j (x)

)(d−2)/d(∫
Rd

dx 1{φ̂ 2
j (x)≥ε}

)2/d

≤ 〈κ〉‖φ̂j‖2
2d/(d−2)ε

η−(d+2)/d.

(3.5.31)
Combining (3.5.29), (3.5.30) and (3.5.31) we have, for j ≥ L1(ε),

GΠ
d (φ̂ 2

j ) ≤ (〈κ〉+ 〈κη〉) 1
Sd
εη−(d+2)/d‖∇φ̂j‖2

2, (3.5.32)

or
1
2‖∇φ̂j‖

2
2

GΠ
d (φ̂2

j )
≥ 1

2
Sdε

−[η−(d+2)/d] (〈κ〉+ 〈κη〉)−1 . (3.5.33)

Now choose ε = ε0 with ε0 the root of

1
2
Sdε

−[η−(d+2)/d]
0 (〈κ〉+ 〈κη〉)−1 =

5
2
ĉ, (3.5.34)

to get that (3.5.33) contradicts (3.5.28) for all j ≥ L1(ε0) ∨ L2.
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3.6 Proof of Theorem 1.4.2(i) and Theorem 1.4.3(iii)

We give the proof for d ≥ 3. The proof for d = 2 is the same but uses (1.3.7) instead of (1.3.4).
From (1.3.4) we have

FΠ
d (φ2) ≤ |supp(φ)|, (3.6.1)

and so (1.3.2) gives

JΠ
d (c) ≤ inf

{
1
2 ‖∇φ‖

2
2 + c |supp(φ)| : ‖φ‖2

2 = 1
}
. (3.6.2)

We get an upper bound on the infimum by restricting supp(φ) to a ball B with volume |B|.
Therefore

JΠ
d (c) ≤ inf

{
1
2
‖∇φ‖2

2

‖φ‖2
2

+ c |B| : supp(φ) ⊂ B

}
= 1

2λd(B) + c |B|, (3.6.3)

with λd(B) the principal Dirichlet eigenvalue of −∆ on B. By scaling B, we have

λd(B) = |B|−2/dλd, (3.6.4)

Substituting this into (3.6.3) and taking the infimum over |B|, we arrive at

JΠ
d (c) ≤ inf

|B|

{
1
2
λd|B|−2/d + c|B|

}
=
d+ 2

2

(
λd
d

)d/(d+2)

c2/(d+2). (3.6.5)

This proves the upper bound in (1.4.7).
To prove the lower bound we first scale φ to obtain

c−2/(d+2)JΠ
d (c)

= inf
{

1
2
‖∇φ‖2

2 +
∫

Rd

dx

∫ ∞

0
Θ(dκ)

(
1− e−κc

d/(d+2)φ2(x)
)

: ‖φ‖2
2 = 1, φ RSNI

}
.

(3.6.6)
We know that this variational problem has a minimiser when c > c∗. Call this minimiser ψ.
Pick 0 < δ < 1/(2 ∨ λd), and let

Bδ =
{
x ∈ Rd : ψ(x) ≥ δ

}
. (3.6.7)

Restricting the x-integration to Bδ, we get

rhs (3.6.6) ≥ 1
2

∫
Bδ

dx |∇ψ(x)|2 + |Bδ| −
∫
Bδ

dx

∫ ∞

0
Θ(dκ) e−κc

d/(d+2)δ2 . (3.6.8)

By Lebesgue’s dominated convergence theorem, for every ε > 0 there exists a C = C(δ, ε,Θ)
such that ∫

Bδ

dx

∫ ∞

0
Θ(dκ) e−κc

d/(d+2)δ2 ≤ ε ∀ c ≥ C. (3.6.9)

Hence
rhs (3.6.8) ≥ 1

2

∫
Bδ
dx |∇ψ(x)|2 + |Bδ| − ε. (3.6.10)

Next, define φ by

φ(x) =
{
ψ(x)− δ x ∈ Bδ,
0 x ∈ Rd \Bδ.

(3.6.11)
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Then φ is RSNI and satisfies the Dirichlet boundary condition on ∂Bδ. Since ‖ψ‖2
2 = 1, we

have ∫
Bδ

φ =
∫
Bδ

ψ − δ|Bδ| ≤ |Bδ|1/2 − δ|Bδ|. (3.6.12)

Hence
1 =

∫
Rd

ψ2 =
∫
Bδ

(φ+ δ)2 = δ2|Bδ|+ 2δ
∫
Bδ

φ+
∫
Bδ

φ2

≤ −δ2|Bδ|+ 2δ|Bδ|1/2 +
∫
Bδ

φ2 ≤ 2δ|Bδ|1/2 + ‖φ‖2
2.

(3.6.13)

By (3.6.11) and the Rayleigh-Ritz variational characterisation of λd(Bδ), we have∫
Bδ

|∇ψ|2 =
∫
Bδ

|∇φ|2 ≥ λd(Bδ) ‖φ‖2
2. (3.6.14)

Combining (3.6.6), (3.6.8), (3.6.10), (3.6.13) and (3.6.14), we obtain for c ≥ C,

c−2/(d+2)JΠ
d (c) ≥ 1

2
λd(Bδ)

(
1− 2δ|Bδ|1/2

)
+ |Bδ| − ε

=
1
2
λd|Bδ|−2/d

(
1− 2δ|Bδ|1/2

)
+ |Bδ| − ε

≥ 1
2
λd|Bδ|−2/d (1− 2δ) + |Bδ| (1− δλd)− ε

≥
(

1
2
λd|Bδ|−2/d + |Bδ|

)
[1− δ(2 ∨ λd)]− ε

≥ d+ 2
2

(
λd
d

)d/(d+2)

[1− δ(2 ∨ λd)]− ε,

(3.6.15)

where the second line uses (3.6.4) and the fifth line uses (3.6.5). Now let c → ∞, and
subsequently let δ, ε ↓ 0, to get the lower bound in (1.4.7).

3.7 Proof of Theorems 1.4.2(ii) and 1.4.2(iii)

Fix ε ∈ (0,K/2). Then there exists an Rε ∈ (0,∞) such that

(K − ε)κ−1−γ ≤ θ(κ) ≤ (K + ε)κ−1−γ , κ ≥ Rε. (3.7.1)

By (3.2.1) and (3.2.2),

c〈κ〉 − JΠ
d (c)

= − inf
{

1
2
‖∇φ‖2

2 − cGΠ
d (φ2) : ‖φ‖2

2 = 1
}

≥ − inf
{

1
2
‖∇φ‖2

2 − c

∫
Rd

dx

∫ ∞

Rε

dκ θ(κ)
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
≥ − inf

{
1
2
‖∇φ‖2

2 − c

∫
Rd

dx

∫ ∞

Rε

dκ (K − ε)κ−1−γ
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
= − inf

{
1
2
‖∇φ‖2

2 − c(K − ε)
∫

Rd

dx |φ(x)|2γ
∫ ∞

Rεφ2(x)
dκκ−1−γ (e−κ − 1 + κ

)
: ‖φ‖2

2 = 1

}
,

(3.7.2)
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where the second inequality uses the lower bound in (3.7.1). Inserting the scaling φ(x) =
δd/2ψ(δx), δ > 0, we obtain

c〈κ〉 − JΠ
d (c) ≥ − inf

{1
2
δ2‖∇ψ‖2

2 − c(K − ε)δd(γ−1)

∫
Rd

dx |ψ(x)|2γ

×
∫ ∞

δdRεψ2(x)
dκκ−1−γ (e−κ − 1 + κ

)
: ‖ψ‖2

2 = 1
}
.

(3.7.3)

We choose δ to be the root of 1
2δ

2 = c(K − ε)δd(γ−1). Since this root is greater or equal than
(cK)1/(2−d(γ−1)), we obtain

(2cK)−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf

{
‖∇ψ‖2

2 −
∫

Rd

dx |ψ(x)|2γ
∫ ∞

(cK)d/(2−d(γ−1))Rεψ2(x)
dκκ−1−γ (e−κ − 1 + κ

)
: ‖ψ‖2

2 = 1

}
.

(3.7.4)
Next we note that ∫ ∞

0
dκκ−1−γ (e−κ − 1 + κ

)
= Γ(−γ) ∈ (0,∞). (3.7.5)

Let β ∈ (γ, 2]. Since e−κ − 1 + κ ≤ κβ , κ ≥ 0, we have∫ (cK)d/(2−d(γ−1))Rεψ2(x)

0
dκκ−1−γ (e−κ − 1 + κ

)
≤ 1
β − γ

(
(cK)d/(2−d(γ−1))Rεψ

2(x)
)β−γ

.

(3.7.6)
By (3.7.4)– (3.7.6) we obtain that

(2cK)−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf
{
‖∇ψ‖2

2 − Γ(−γ)
∫

Rd

dx |ψ(x)|2γ + Eβ,γ(ε, c;ψ2) : ‖ψ‖2
2 = 1

} (3.7.7)

with an error term

Eβ,γ(ε, c;ψ2) =
1

β − γ
Rβ−γε (cK)(β−γ)/(2−d(γ−1))

∫
Rd

dx |ψ(x)|2β. (3.7.8)

Furthermore for 0 < α < 1 and conjugate exponents p, q > 1, we estimate∫
Rd

|ψ|2β ≤
(∫

Rd

|ψ|2αβp
)1/p(∫

Rd

|ψ|2(1−α)βq

)1/q

. (3.7.9)

Choosing α, β, p, q such that

2αβp = 2d/(d− 2), p = d/(d− 2), 2(1− α)βq = 2, (3.7.10)

i.e.,
α = d/(d+ 2), β = (d+ 2)/d, p = d/(d− 2), q = d/2, (3.7.11)
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we obtain from (3.7.9), using ‖ψ‖2
2 = 1 and the Sobolev inequality (3.2.15), that

(2cK)−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf
{

(1 + Eγ(ε, c)) ‖∇ψ‖2
2 − Γ(−γ)

∫
Rd

dx |ψ(x)|2γ : ‖ψ‖2
2 = 1

} (3.7.12)

with an error term
Eγ(ε, c) = R(2−d(γ−1))/d

ε

d

Sd(2− d(γ − 1))
cK. (3.7.13)

Finally, we insert the scaling φ(x) = ηd/2ψ(ηx), η > 0, and choose η the root of η2(1+
Eγ(ε, c)) = Γ(−γ)ηd(γ−1), to arrive at

{2cKΓ(−γ)}−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≥ 1

2

(
K

K − ε

1
1 + Eγ(ε, c)

)−2/(2−d(γ−1))

Md(γ),

(3.7.14)
where we have used the definition ofMd(γ) in (1.4.9). Now let c ↓ 0 and use that limc↓0Eγ(ε, c) =
0 for all ε > 0. Then let ε ↓ 0, to get

lim inf
c↓0

{2cKΓ(−γ)}−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≥ 1

2
Md(γ), (3.7.15)

which is the desired lower bound.
The proof of the upper bound runs as follows. Let ε and Rε be as before. We estimate,

similarly as in (3.7.2),

c〈κ〉 − JΠ
d (c)

≤ − inf
{1

2
‖∇φ‖2

2 − c

∫
Rd

dx

∫ ∞

Rε

dκ θ(κ)
(
e−κφ

2(x) − 1 + κφ2(x)
)
− Eθ(ε, c;φ2) : ‖φ‖2

2 = 1
}

(3.7.16)
with an error term

Eθ(ε, c;φ2) = c

∫
Rd

dx

∫ Rε

0
dκ θ(κ)

(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.7.17)

Since e−x − 1 + x ≤ x(d+2)/d, x ≥ 0, we may use the Sobolev inequality (3.2.15) to estimate

Eθ(ε, c;φ2) ≤ c

∫
Rd

dx

∫ Rε

0
dκ θ(κ) (κφ2(x))(d+2)/d ≤ cmθ(ε)S−1

d ‖∇φ‖2
2, (3.7.18)

where we abbreviatemθ(ε) =
∫ Rε

0 dκ θ(κ)κ(d+2)/d. Combining (3.7.16) and (3.7.18), we obtain,
for c small enough,

c〈κ〉 − JΠ
d (c)

≤ − inf
{(1

2
− cmθ(ε)S−1

d

)
‖∇φ‖2

2

− c(K + ε)
∫

Rd

dx

∫ ∞

Rε

dκκ−1−γ
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
≤ − inf

{(1
2
− cmθ(ε)S−1

d

)
‖∇φ‖2

2

− c(K + ε)Γ(−γ)
∫

Rd

dx |φ(x)|2γ − Eγ(ε, c;φ2) : ‖φ‖2
2 = 1

}
,

(3.7.19)
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where in the second inequality we use the upper bound in (3.7.1) and the identity in (3.7.5),
and introduce an error term

Eγ(ε, c;φ2) = c(K + ε)
∫

Rd

dx

∫ Rε

0
dκκ−1−γ

(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.7.20)

The integral in (3.7.20) can be estimated from above along the lines of the argument connecting
(3.7.7), (3.7.8) with (3.7.12), (3.7.13). This leads to

c〈κ〉 − JΠ
d (c)

≤ − inf
{(1

2
− Eγ(ε, c)

)
‖∇φ‖2

2 − c(K + ε)Γ(−γ)
∫

Rd

dx |φ(x)|2γ : ‖φ‖2
2 = 1

} (3.7.21)

with an error term

Eγ(ε, c) = cmθ(ε) + c(K + ε)R(2−d(γ−1))/d
ε

d

Sd(2− d(γ − 1))
. (3.7.22)

Via the scaling φ(x) = δd/2ψ(δx), δ > 0, with δ the root of δ2(1
2 − cEγ(ε, c)) = c(K +

ε)Γ(−γ)δd(γ−1), we arrive at

{2KcΓ(−γ)}−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≤ 1

2

(
K + ε

K

1
1− 2Eγ(ε, c)

)2/(2−d(γ−1))

Md(γ).

(3.7.23)
Now let c ↓ 0 and use that limc↓0Eγ(ε, c) = 0 for all ε > 0. Then let ε ↓ 0, to get

lim sup
c↓0

{2KcΓ(−γ)}−2/(2−d(γ−1))
[
c〈κ〉 − JΠ

d (c)
]
≤ 1

2
Md(γ), (3.7.24)

which is the desired upper bound.
It remains to prove that Md(γ) ∈ (0,∞) for all γ ∈ (1, (d+ 2)/d). By scaling we have, for

any ε > 0,

Md(γ) = −ε2 inf
{
‖∇ψ‖2

2 − ε−(2−d(γ−1))

∫
|ψ|2γ : ‖ψ‖2

2 = 1
}
. (3.7.25)

We get a strictly positive lower bound by choosing for ψ the function

ψ(x) = π−d/4e−|x|
2/2 (3.7.26)

and by subsequently choosing ε sufficiently small.
To prove that Md(γ) is finite for γ ∈ (1, d+2

d ), we use the Sobolev inequality (3.2.15) to
(1.4.9). This gives

Md(γ) ≤ − inf
{
Sd‖ψ‖2

2d/(d−2) −
∫
|ψ|2γ : ‖ψ‖2

2 = 1
}
. (3.7.27)

Since ‖ψ‖2
2 = 1 and γ ∈ (1, d/(d− 2)), Hölder’s inequality gives∫

|ψ|2γ ≤
(∫

|ψ|2d/(d−2)

)(d−2)(γ−1)/2

. (3.7.28)
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Inserting this into (3.7.27), we get

Md(γ) ≤ sup
{
‖ψ‖d(γ−1)

2d/(d−2) − Sd‖ψ‖2
2d/(d−2) : ‖ψ‖

2
2 = 1

}
≤ sup

ρ∈(0,∞)

{
ρd(γ−1) − Sdρ

2
}
.

(3.7.29)

The supremum in the right-hand side is finite because d(γ − 1) < 2.

This completes the proof of Theorem 1.4.2(ii). The proof of Theorem 1.4.2(iii) is very
similar. The argument needs one order less in the expansion since there is no term c〈κ〉 to
subtract.

3.8 Proof of Theorem 1.4.3(ii)

In d = 2 the analogue of (3.2.3) reads (recall that κ is replaced by 2π)

c∗ = inf

{
1
2‖∇φ‖

2
2

G2(φ2)
: ‖φ‖2

2 = 1

}
(3.8.1)

with
G2(φ2) =

∫
R2

dx
(
e−2πφ2(x) − 1 + 2πφ2(x)

)
. (3.8.2)

Lemma 3.8.1 (3.8.1) has no minimiser. If (φn) is a minimising sequence that is RSNI, then
limn→∞

∫
{φn>δ} dx = 0 for any δ > 0.

Proof. Suppose that the variational problem for the right hand side of(3.8.1) has a minimiser,
say ψ∗. Then

c∗ =
1
2‖∇ψ

∗‖2
2

G2(ψ∗2)
. (3.8.3)

For ε > 0, put
ψ∗ε (x) = εψ∗(εx). (3.8.4)

Since ‖ψ∗ε ‖2
2 = 1, we have

c∗ ≤
1
2‖∇ψ

∗
ε ‖2

2

G2(ψ∗2ε )
=

1
2‖∇ψ

∗‖2
2

ε−4G2(ε2ψ∗2)
. (3.8.5)

Next, we claim that

y 7→ 1
y2

(
e−κy − 1 + κy

)
, y > 0, (3.8.6)

is strictly decreasing on (0,∞) for any κ > 0. Indeed, its derivative at y equals

2
y3

[(
1− κy

2

)
−
(
1 +

κy

2

)
e−κy

]
. (3.8.7)

Abbreviate z = κy/2 and note that z 7→ (1+z)e−2z+z, z ≥ 0, is strictly increasing on [0,∞),
and equal to 1 at z = 0, to get the claim. Finally, using that (3.8.6) is strictly decreasing, we
get from (3.8.2) that ε 7→ ε−4G2(ε2ψ∗2) is strictly decreasing, which clearly contradicts (3.8.3)
and (3.8.5) when ε < 1.
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To prove the last claim, let (φn) be a minimising sequence for (3.8.1). Then, for any δ > 0,

lim
n→∞

∫
{φn>δ}

dx = 0. (3.8.8)

Indeed, if (3.8.8) fails, then there exists an η > 0 and a subsequence (φnj ) such that∫
{φnj>δ}

dx ≥ η. (3.8.9)

But now the above argument shows that the sequence (φεnj
) with φεnj

(x) = εφnj (εx) yields a
strictly lower infimum when ε < 1, which is a contradiction.

Lemma 3.8.2 Let d = 2. Then

c∗ =
1

4π2
inf
{
‖∇φ‖2

2

‖φ‖4
4

: ‖φ‖2
2 = 1

}
(3.8.10)

and c∗ ∈
[

27
64π ,

1
2π

]
.

Proof. Since e−x ≤ 1− x+ 1
2x

2, x ≥ 0, we get from (3.8.2) that

G2(φ2) ≤ 2π2‖φ‖4
4. (3.8.11)

Substituting (3.8.11) into (3.8.1), we obtain the desired lower bound

c∗ ≥ 1
4π2

inf
{
‖∇φ‖2

2

‖φ‖4
4

: ‖φ‖2
2 = 1

}
. (3.8.12)

To prove the converse of (3.8.12), let (φn) be a minimising sequence for (3.8.10) that is
RSNI. Then (φεn) with φεn(x) = εφn(εx) is a minimising sequence too. Replacing ε by ε/φn(0),
we may assume that φn(0) = 1. It suffices to show that

lim sup
ε↓0

lim sup
n→∞

(
‖∇φεn‖2

2

G2(φε 2n )
− ‖∇φεn‖2

2

2π2‖φεn‖4
4

)
≤ 0. (3.8.13)

Since (φεn) is a minimising sequence, there exists an N such that for n ≥ N ,

φεn(0) = ε, ‖∇φεn‖2
2/‖φεn‖4

4 <∞, ‖φεn‖2
2 = 1. (3.8.14)

Since e−x − 1 + x− 1
2x

2 ≥ −1
6x

3, x ≥ 0, it follows from (3.8.2) that

G2(φε 2n ) ≥
∫ [

1
2
(2πφε 2n )2 − 1

6
(2πφε 2n )3

]
≥ 2π2

[
1− 2πε2

3

] ∫
φε 4n , (3.8.15)

where we use that φn ≤ φn(0) = ε. Hence, for n ≥ N ,

‖∇φεn‖2
2

(
1

G2(φε 2n )
− 1

2π2‖φεn‖4
4

)
≤ 1

2π2

([
1− 2πε2

3

]−1

− 1

)
‖∇φεn‖2

2

‖φεn‖4
4

. (3.8.16)

As n → ∞, the quotient in the right-hand side converges to 2c∗. Now let ε ↓ 0, to get the
claim in (3.8.13).
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Finally, the numerical bounds on c∗ are obtained as follows. First note that in d = 2 we
have the Sobolev inequality

‖∇φ‖2
2 ≥ S−2

2,4‖φ‖
2
4 − ‖φ‖2

2 (3.8.17)

(see Lieb and Loss [6] page 190). With the substitution φp(x) = φ(x/p), p > 0, this inequality
transforms into

‖∇φ‖2
2 ≥ S−2

2,4 p ‖φ‖
2
4 − p2 ‖φ‖2

2. (3.8.18)

After optimisation over p this yields the Sobolev inequality

‖∇φ‖2
2 ≥ 1

4S
−4
2,4‖φ‖4

4 ‖φ‖
−2
2 . (3.8.19)

Substituting (3.8.19) into (3.8.12), we find the lower bound

c∗ ≥ 1
16π2

S−4
2,4 . (3.8.20)

This implies that c∗ ≥ 27/64π, because S−4
2,4 = 27π/4. To obtain the upper bound on c∗, we

pick ψ as in (3.7.26) with d = 2. Since ‖∇ψ‖2
2 = 1, ‖ψ‖2

2 = 1 and ‖ψ‖4
4 = 1

2π , subsitution into
(3.8.10) yields that c∗ ≤ 1/2π.

Lemma 3.8.3 Let d = 2. Then limc↓c∗ [J2(c)− J2(c∗)]/(c− c∗) = 2π.

Proof. By the concavity of c 7→ J2(c) stated in Theorem 1.4.3(i), it suffices to prove that

lim inf
c↓c∗

J2(c)− J2(c∗)
c− c∗

≥ 2π. (3.8.21)

Since J2 does not depend on Π, it is given by the expression we obtained in vdBBdH Theorem
2 and Corollary 2 for the case where Π = δBa(0) with a > 0 arbitrary, namely,

J2(c) = inf
0<b≤2π

[bc+ I2(b)] (3.8.22)

with

I2(b) =
{

1
2
‖∇φ‖2

2 : φ ∈ H1(R2), ‖φ‖2
2 = 1,

∫
(1− e−2πφ2

) = b

}
(3.8.23)

(see also vdBBdH Equations (5.7) and (5.13)). Now, from vdBBdH Theorems 3(i) and 4(ii)
we know that

b 7→ I2(b)
2π − b

(3.8.24)

is strictly decreasing on (0, 2π), with

lim
b↑2π

I2(b)
2π − b

=
1

4π2
inf
{
‖∇φ‖2

2 : φ ∈ H1(R2), ‖φ‖2
2 = 1, ‖φ‖4

4 = 1
}

= c∗ (3.8.25)

(compare with (3.8.10)). Put

∆(b) =
I2(b)

2π − b
− c∗. (3.8.26)

Using (3.8.22), we may then write

J2(c)− J2(c∗)
c− c∗

= inf
0<b≤2π

[
b+

(2π − b)∆(b)
c− c∗

]
. (3.8.27)

Since ∆(b) > 0 for all 0 < b < 2π, the minimiser in the right-hand side tends to 2π as c ↓ c∗,
which yields (3.8.21).
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3.9 Proof of Theorem 1.4.3(iv)

The proof is the same as that of Lemma 3.5.2.
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