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Abstract. We consider existence and uniqueness of two kinds of coisotropic embeddings
and deduce the existence of deformation quantizations of certain Poisson algebras of basic
functions. First we show that any submanifold of a Poisson manifold satisfying a certain
constant rank condition, already considered by Calvo and Falceto [4], sits coisotropically
inside some larger cosymplectic submanifold, which is naturally endowed with a Pois-
son structure. Then we give conditions under which a Dirac manifold can be embedded
coisotropically in a Poisson manifold, extending a classical theorem of Gotay.
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1. Introduction

The following two results in symplectic geometry are well known. First: a submanifold C
of a symplectic manifold (M,Ω) is contained coisotropically in some symplectic submanifold
ofM i� the pullback of Ω to C has constant rank; see Marle's work [17]. Second: a manifold
endowed with a closed 2-form ω can be embedded coisotropically into a symplectic manifold
(M,Ω) so that i∗Ω = ω (where i is the embedding) i� ω has constant rank; see Gotay's
work [15].

In this paper we extend these results to the setting of Poisson geometry. Recall that P is a
Poisson manifold if it is endowed with a bivector �eld Π ∈ Γ(∧2TP ) satisfying the Schouten-
bracket condition [Π,Π] = 0. A submanifold C of (P,Π) is coisotropic if ]N∗C ⊂ TC, where
the conormal bundle N∗C is de�ned as the annihilator of TC in TP |C and ] : T ∗P → TP
is the contraction with the bivector Π. Coisotropic submanifolds appear naturally; for
instance the graph of any Poisson map is coisotropic, and for any Lie subalgebra h of a
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Lie algebra g the annihilator h◦ is a coisotropic submanifold of the Poisson manifold g∗.
Further coisotropic submanifolds C are interesting for a variety of reasons, one being that
the distribution ]N∗C is a (usually singular) integrable distribution whose leaf space, if
smooth, is a Poisson manifold.

To give a Poisson-analogue of Marle's result we consider pre-Poisson submanifolds, i.e.
submanifolds C for which TC+ ]N∗C has constant rank (or equivalently prNC ◦ ] : N∗C →
TP |C → NC := TP |C/TC has constant rank). Natural classes of pre-Poisson submanifolds
are given by a�ne subspaces h◦ + λ of g∗, where h is a Lie subalgebra of the Lie algebra
g∗ and λ any element of g∗, and of course by coisotropic submanifolds and by points. More
details are given in [12], where it is also shown that pre-Poisson submanifolds satisfy some
functorial properties. This can be used to show that on a Poisson-Lie group G the graph
of Lh (the left translation by some �xed h ∈ G, which clearly is not a Poisson map) is a
pre-Poisson submanifold, giving rise to a natural constant rank distribution Dh on G that
leads to interesting constructions. For instance, if the Poisson structure on G comes from an
r-matrix and the point h is chosen appropriately, G/Dh (when smooth) inherits a Poisson
structure from G, and [Lh] : G → G/Dh is a Poisson map which is moreover equivariant
w.r.t. the natural Poisson actions of G.

In the following table we characterize submanifolds of a symplectic or Poisson manifold
in terms of the bundle map ρ := prNC ◦ ] : N∗C → NC:

P symplectic P Poisson
Im(ρ) = 0 C coisotropic C coisotropic
Im(ρ) = NC C symplectic C cosymplectic
Rk(ρ) =const C presymplectic C pre-Poisson

In the �rst part of this paper (sections 3- 6) we consider the Poisson-analog of Marle's
result, i.e. we ask the following question:

Given an arbitrary submanifold C of a Poisson manifold (P,Π), under what
conditions does there exist some submanifold P̃ ⊂ P such that
a) P̃ has a Poisson structure induced from Π
b) C is a coisotropic submanifold of P̃?

When the submanifold P̃ exists, is it unique up to neighborhood equivalence
(i.e. up to a Poisson di�eomorphism on a tubular neighborhood which �xes
C)?

We show in section 3 that for any pre-Poisson submanifold C of a Poisson manifold P there is
a submanifold P̃ which is cosymplectic (and hence has a canonically induced Poisson struc-

ture) such that C lies coisotropically in P̃ . Further (section 4) this cosymplectic submanifold
is unique up to neighborhood equivalence; to the best of our knowledge, this uniqueness
result is new even in the symplectic setting. In section 5 we give su�cient conditions and
necessary conditions for the existence of a submanifold P̃ as in the above question and we
provide examples. Then in section 6 we deduce statements about the algebra C∞bas(C) of
functions on C which are basic (invariant), meaning that their di�erentials annihilate the
distribution ]N∗C ∩ TC, and about and its deformation quantization. We show that if
C is a pre-Poisson submanifold so that the �rst and second Lie algebroid cohomology of
N∗C∩]−1TC vanish, then the Poisson algebra of basic functions on C admits a deformation
quantization. Finally in section 7, assuming that the symplectic groupoid Γs(P ) of P exists,
we describe two subgroupoids (an isotropic and a presymplectic one) naturally associated
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to a pre-Poisson submanifold C of P .

The second part of this paper (sections 8 and 9) deals with a di�erent embedding problem,
where we start with an abstract manifold instead of a submanifold of some Poisson manifold.
This is the Poisson-analogue of Gotay's result. The question we ask is:

Let (M,L) be a Dirac manifold. Is there an embedding i : (M,L) → (P,Π)
into a Poisson manifold such that
a) i(M) is a coisotropic submanifold of P
b) the Dirac structure L is induced by the Poisson structure Π?

Is such an embedding unique up to neighborhood equivalence?

In the symplectic setting both existence and uniqueness hold [15]. One motivation for this
question is the deformation quantization of the Poisson algebra of so-called admissible func-
tions on (M,L), for a coisotropic embedding as above allows one to reduce the problem to
[10], i.e. to the deformation quantization of the basic functions on a coisotropic submanifold
of a Poisson manifold.

It turns out (section 8) that the above question admits a positive answer iff the distri-
bution L ∩ TM on the Dirac manifold M is regular. In that case one expects the Poisson
manifold P̃ to be unique (up to a Poisson di�eomorphism �xing M), provided P̃ has mini-
mal dimension. We are not able to prove this global uniqueness; we can just show in section
9 that the Poisson vector bundle T P̃ |M is unique (an in�nitesimal statement along M) and

that around each point of M a small neighborhood of P̃ is unique (a local statement). We
remark that A. Wade [20] has been considering a similar question too. Our result about
deformation quantization is the following (Thm. 8.5): let (M,L) be a Dirac manifold such
that L∩TM has constant rank, and denote by F the regular foliation integrating L∩TM .
If the �rst and second foliated de Rham cohomologies of the foliation F vanish then the
Poisson algebra of admissible functions on (M,L) has a deformation quantization. In Prop.
8.6 we also notice that the foliated de Rham cohomology Ω•F (M) admits the structure of
an L∞-algebra (canonically up to L∞-isomorphism), generalizing a result of Oh and Park
in the presymplectic setting (Thm. 9.4 of [18]).

We end this introduction describing one of our motivations for the �rst question above,
namely an application of the Poisson sigma model to quantization problems. The Poisson
sigma model is a topological �eld theory, whose �elds are bundle maps from TΣ (for Σ a
surface) to the cotangent bundle T ∗P of a Poisson manifold (P,Π). It was used by Felder
and the �rst author [8] to derive and interpret Kontsevich's formality theorem and his star
product on the Poisson manifold P . The Poisson sigma model with boundary conditions on
a coisotropic submanifold C, when suitable assumptions on C are satis�ed and P is assumed
to be an open subset of Rn, provides [9] a deformation quantization of the Poisson algebra of
basic (invariant) functions C∞bas(C) on C. This result was globalized using a supergeometric
version of Kontsevich's formality theorem [10]: when the �rst and second cohomology of
the Lie algebroid N∗C vanish, for C a coisotropic submanifold of any Poisson manifold P ,
the Poisson algebra C∞bas(C) admits a deformation quantization. Notice that the quotient
of C by the distribution ]N∗C is usually not a smooth manifold. Hence C∞bas(C) is usually
not the algebra of functions on any Poisson manifold, and one cannot apply Kontsevich's
theorem [16] on deformation quantization of Poisson manifolds directly.

Calvo and Falceto observed that the most general boundary conditions for the Poisson
sigma model are given by pre-Poisson submanifolds of (P,Π) (which they referred to as
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�strongly regular submanifolds�). They show [5] that when P is an open subset of Rn the
problem of deformation quantizing the Poisson algebra of basic functions on C can be re-
duced to the results of [9]. The computations in [5] are carried out choosing local coordinates
on P adapted to C. The strong regularity condition allows one to choose local constraints
for C such that the number of �rst class constraints (Xµs whose Poisson bracket with all
other constrains vanish on C) and second class constraints (the remaining constraints XA,
which automatically satisfy det{XA, XB} 6= 0 on C) be constant along C. Setting the
second class constraints XA to zero locally gives a submanifold with an induced Poisson
structure, and the fact that only �rst class constraints are left means that C lies in it as a
coisotropic submanifold. Our �rst question above can be seen as a globalization of Calvo
and Falceto's results.

Conventions: We use the term �presymplectic manifold� to denote a manifold endowed
with a closed 2-form of constant rank, i.e. such that its kernel have constant rank. However
we stick to the denominations �presymplectic groupoid� coined in [2] and �presymplectic
leaves� (of a Dirac manifold) despite the fact that the 2-forms on these objects do not have
constant rank, for these denominations seem to be established in the literature.

Acknowledgements: As M.Z. was a graduate student Marius Crainic �rst called to his
attention some of the questions discussed in section 8, and some of the existence results
obtained in the same section arose from discussion between M.Z. and Alan Weinstein, who
at the time was his thesis advisor and whom he gratefully thanks. M.Z. also would like to
thank Aissa Wade for pointing out the necessity of a minimal dimension condition mentioned
in Section 9 and Eva Miranda for showing him the reference [1]. We also thank Rui Loja
Fernandes for comments and the referees for suggesting valuable improvements to a previous
version of this manuscript. A.S.C. acknowledges partial support of SNF Grant No. 20-
113439. This work has been partially supported by the European Union through the FP6
Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652) and by the European
Science Foundation through the MISGAM program. M.Z. acknowledges support from the
Forschungskredit 2006 of the University of Zürich.

2. Basic definitions

We will use some notions from Dirac linear algebra [13] [3]. A Dirac structure on a
vector space P is a subspace L ⊂ P ⊕ P ∗ which is maximal isotropic w.r.t. the natural
symmetric inner product on P ⊕ P ∗ (i.e. L is isotropic and has same dimension as P ). A
Dirac structure L speci�es a subspace O, de�ned as the image of L under the projection
P ⊕ P ∗ → P , and a skew-symmetric bilinear form ω on O, given by ω(X1, X2) = 〈ξ1, X2〉
where ξ1 is any element of P ∗ such that (X1, ξ1) ∈ L. The kernel of ω (which in terms of L
is given as L ∩ P ) is called characteristic subspace. Conversely, any choice of bilinear form
de�ned on a subspace of P determines a Dirac structure on P . Given this equivalence, we
will sometimes work with the bilinear form ω on O instead of working with L.

We consider now Poisson vector spaces (P,Π) (i.e. Π ∈ ∧2P ; we denote by ] : P ∗ → P
the map induced by contraction with Π). The Poisson structure on P is encoded by the
Dirac structure LP = {(]ξ, ξ) : ξ ∈ P ∗}. The image of LP under the projection onto the
�rst factor is O = ]P ∗, and the bilinear form ω is non-degenerate.

Remark 2.1. We recall that any subspace W of a Dirac vector space (P,L) has an induced
Dirac structure LW ; the bilinear form characterizing LW is just the pullback of ω (hence
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it is de�ned on W ∩ O). When (P,Π) is actually a Poisson vector space, one shows that
the symplectic orthogonal of W ∩ O in (O, ω) is ]W ◦. Hence ]W ◦ ∩W is the kernel of the
restriction of ω to W ∩ O, i.e. it is the characteristic subspace of the Dirac structure LW ,
and we will refer to it as the characteristic subspace of W. Notice that pulling back Dirac
structure is functorial [3] (i.e. if W is contained in some other subspace W ′ of P , pulling
back L �rst to W ′ and then to W gives the Dirac structure LW ), hence LW , along with the
corresponding bilinear form and characteristic subspace, is intrinsic to W .

Let W be a subspace of the Poisson vector space (P,Π). W is called coisotropic if
]W ◦ ⊂W , which by the above means that W ∩ O is coisotropic in (O, ω).
W is called Poisson-Dirac subspace [14] when ]W ◦ ∩W = {0}; equivalent conditions are

that W ∩ O be a symplectic subspace of (O, ω) or that the pullback Dirac structure LP

correspond to a Poisson bivector on W . The Poisson bivector on W is described as follows
[14]: its sharp map ]W : W ∗ →W is given by ]W ξ̃ = ]ξ, where ξ ∈ P ∗ is any extension of ξ̃
which annihilates ]W ◦.
W is called cosymplectic subspace if ]W ◦⊕W = P , or equivalently if the pushforward of

Π via the projection P → P/W is an invertible bivector. Notice that if W is cosymplectic
then it has a canonical complement ]W ◦ which is a symplectic subspace of (O, ω). Clearly
a cosymplectic subspace is automatically a Poisson-Dirac subspace.

Now we pass to the global de�nitions. A Dirac structure on P is a maximal isotropic
subbundle L ⊂ TP ⊕T ∗P which is integrable, in the sense that its sections are closed under
the so-called Courant bracket (see [13]). The image of L under the projection onto the �rst
factor is an integrable singular distribution, whose leaves (which are called presymplectic
leaves) are endowed with closed 2-forms. A Poisson structure on P is a bivector Π such
that [Π,Π] = 0.

Coisotropic and cosymplectic submanifolds of a Poisson manifold are de�ned exactly as in
the linear case; a Poisson-Dirac submanifold additionally requires that the bivector induced
on the submanifold by the point-wise condition be smooth [14]. Cosymplectic submanifolds
are automatically Poisson-Dirac submanifolds (the smoothness of the induced bivector is

ensured because LP ∩ ({0} ⊕ N∗P̃ ) has constant rank zero). The Poisson bracket on a

Poisson-Dirac submanifold P̃ of (P,Π) is computed as follows: {f̃2, f̃2}P̃ is the restriction

to P̃ of {f1, f2}, where the fi are extensions of f̃i to P such that dfi|]N∗P̃ = 0 (for at least

one of the two functions). We will also need a de�nition which does not have a linear algebra
counterpart:

De�nition 2.2. A submanifold C of a Poisson manifold (P,Π) is called pre-Poisson if the
rank of TC + ]N∗C is constant along C.

Remark 2.3. An alternative characterization of pre-Poisson submanifolds is the requirement
that Π|∧2N∗C (or equivalently the corresponding sharp map prNC ◦ ] : N∗C → TP |C →
NC := TP |C/TC) have constant rank. Indeed the kernel of N∗C → NC is N∗C ∩ ]−1TC,
which is the annihilator of TC + ]N∗C. The map N∗C → NC is identically zero i� C is
coisotropic and is an isomorphism i� C is cosymplectic.
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Calvo and Falceto already considered [4][5] such submanifolds and called them �strongly
regular submanifolds�. We prefer to call them �pre-Poisson� because when P is a symplectic
manifold they reduce to presymplectic submanifolds1. See Section 5 for several examples.

3. Existence of coisotropic embeddings for pre-Poisson submanifolds

In this section we consider the problem of embedding a submanifold of a Poisson manifold
coisotropically in a Poisson-Dirac submanifold, and show that this can be always done for
pre-Poisson submanifolds.

We start with some linear algebra.

Lemma 3.1. Let (P,Π) be a Poisson vector space and C a subspace. The Poisson-Dirac
subspaces of P in which C sits coisotropically are exactly the subspaces W satisfying

W + ]C◦ ⊃ O(1)

W ∩ (C + ]C◦) = C(2)

where O = ]P ∗. Among the Poisson-Dirac subspaces above the cosymplectic ones are exactly
those of maximal dimension, i.e. those for which W + ]C◦ = P .

Remark 3.2. It is often more convenient to work with the following characterization of the
Poisson-Dirac subspaces W containing coisotropically C: W = R ⊕ C, where the subspace
R satis�es

R⊕ (C + ]C◦) ⊃ O.(3)

Among these, the cosymplectic subspace are those for which R satis�es the stronger condi-
tion R⊕(C+]C◦) = P . When Π corresponds to a linear symplectic form ω, both conditions
become R⊕ (C + Cω) = P .

Proof. The condition that W be a Poisson-Dirac subspace is

(4) W ∩ ]W ◦ = 0.

Let us denote by ]W the sharp map of the induced bivector on W . The condition that C
is contained in W coisotropically is ]W ξ̃ ∈ C for all elements ξ̃ ∈ W ∗ annihilating C. ]W ξ̃
is obtained extending ξ̃ to some ξ ∈ (]W ◦)◦ = ]−1W and applying ]. Hence the condition
that C is contained in W coisotropically can be phrased as

(5) W ∩ ]C◦ ⊂ C ⊂W.

We show now that conditions (4) and (5) are equivalent to conditions (1) and (2).
We have (5) ⇒ (2), because due to C ⊂ W we have W ∩ (C + ]C◦) = C + (W ∩ ]C◦).

The implication (5)⇐ (2) is immediate.
Now assume that either of (5) or (2) hold true. Applying ](•)◦ we see that condition (1)

is equivalent to C ∩ ]W ◦ = {0}. Since applying condition (5) we have

W ∩ ]W ◦ = (W ∩ ]C◦) ∩ ]W ◦ ⊂ C ∩ ]W ◦ ⊂W ∩ ]W ◦,

the equivalence of conditions (4) and (1) is proven.
To prove the last statement of the lemma let W satisfy eq. (1) and (2); in particular W

is Poisson-Dirac. By dimension counting W is cosymplectic iff the restriction of ] to W ◦ is

1Further reasons are the following: the subgroupoid associated to a pre-Poisson manifold, when it exists,
is presymplectic (see Prop. 7.5). The Hamiltonian version of the Poisson Sigma Model with boundary
conditions on P (at t = 0) and on a submanifold C (at t = 1) delivers a space of solutions which is
presymplectic iff C is pre-Poisson.
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injective, i.e. iff W ◦ ∩ O◦ = {0} or W +O = P . Using eq. (1)this is seen to be equivalent
to W + ]C◦ = P . �

Now we pass from linear algebra to global geometry. Given a submanifold C of a Poisson
manifold P , one might try to construct a Poisson-Dirac submanifold in which C embeds
coisotropically applying the corresponding symplectic construction �leaf by leaf� in a smooth
way. It would then be natural to require that the characteristic �distribution� TC ∩ ]N∗C
of C have constant rank. However this approach generally does not work, because even
when it has constant rank TC ∩ ]N∗C might not be smooth (see example 5.7). The right
condition to ask is instead that TC + ]N∗C have constant rank:

Theorem 3.3. Let C be a pre-Poisson submanifold of a Poisson manifold (P,Π). Then

there exists a cosymplectic submanifold P̃ containing C such that C is coisotropic in P̃ .

Proof. Because of the rank condition on C we can choose a smooth subbundle R of TP |C
which is a complement to TC+]N∗C. Then by Lemma 3.1 at every point p of C we have that
TpC ⊕Rp is a cosymplectic subspace of TpP in which TpC sits coisotropically. �Thicken� C

to a smooth submanifold P̃ of P satisfying T P̃ |C = TC⊕R. Since TpP̃ ⊕]N∗
p P̃ = TpP is an

open condition that holds at every point p of C, it holds at points in a tubular neighborhood
of C in P̃ . Hence, shrinking P̃ if necessary, we obtain a cosymplectic submanifold of P
containing coisotropically C. �

Remark 3.4. The above proposition says that if C is a pre-Poisson submanifold then we
can choose a subbundle R over C with �bers as in eq. (3) and �extend� C in direction of
R to obtain a Poisson-Dirac submanifold of P containing C coisotropically. If C is not a
pre-Poisson submanifold of (P,Π), we might still be able to �nd a smooth bundle R over C
consisting of subspaces as in eq. (3). However �extending� C in direction of this subbundle
will usually not give a submanifold with a smooth Poisson-Dirac structure, see Example 5.4
below.

Now we deduce consequences about Lie algebroids. See section 7 for the corresponding
�integrated� statements.

Lemma 3.5. Let C be a subspace of a Poisson vector space (P,Π) and W a cosymplectic
subspace containing C as a coisotropic subspace. Then C + ]C◦ = C ⊕ ]W ◦.

Proof. The inclusion �⊃� holds because C ⊂ W . The other inclusion follows by this argu-
ment: write any ξ ∈ C◦ uniquely as ξ1 + ξ2 where ξ1 annihilates ]W ◦ and ξ2 annihilates W .
Then ]ξ1 = ]W (ξ1|W ) ∈ C, where ]W denotes the sharp map of W , since C is coisotropic
in W . Hence ]ξ = ]ξ1 + ]ξ2 ∈ C + ]W ◦. Finally, we have a direct sum in C ⊕ ]W ◦ because
]W ◦ ∩W = {0} and C ⊂W . �

Proposition 3.6. Let C be a submanifold of a Poisson manifold (P,Π). Then N∗C ∩
]−1TC is a Lie subalgebroid of T ∗P iff C is pre-Poisson. In that case, for any cosymplectic
submanifold P̃ in which C sits coisotropically, N∗C∩]−1TC is isomorphic as a Lie algebroid
to the annihilator of C in P̃ .

Proof. At every point N∗C∩]−1TC is the annihilator of TC+]N∗C, so it is a vector bundle
iff C is pre-Poisson. So assume that C be pre-Poisson. For any cosymplectic submanifold
P̃ the embedding T ∗P̃ → T ∗P , obtained extending a covector in T ∗P̃ so that it annihilates
]N∗P̃ , is a Lie algebroid morphism (Cor. 2.11 and Thm. 2.3 of [22]). If C lies coisotropically

in P̃ , by Lemma 3.5 TC + ]N∗C = TC ⊕ ]N∗P̃ |C . Hence N∗
P̃
C, the conormal bundle of
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C in P̃ , is mapped isomorphically onto (TC ⊕ ]N∗P̃ )◦ = (TC + ]N∗C)◦ = N∗C ∩ ]−1TC.

Since N∗
P̃
C is a Lie subalgebroid of T ∗P̃ [7], we are done. �

Remark 3.7. The fact that N∗C ∩ ]−1TC is a Lie algebroid if C is pre-Poisson can also
be deduced as follows. The Lie algebra (F ∩ I)/I2 forms a Lie-Rinehart algebra over the
commutative algebra C∞(P )/I, where I is the vanishing ideal of C and F its Poisson-
normalizer in C∞(P ). Lemma 1 of [4] states that C being pre-Poisson is equivalent to
N∗C ∩ ]−1TC being spanned by di�erentials of functions in F ∩ I. From this one deduces
easily that (F ∩ I)/I2 is identi�ed with the sections of N∗C ∩ ]−1TC, and since C∞(P )/I
are just the smooth functions on C we deduce that N∗C ∩ ]−1TC is a Lie algebroid over C.

4. Uniqueness of coisotropic embeddings for pre-Poisson submanifolds

Given a submanifold C of a Poisson manifold (P,Π) in this section we investigate the
uniqueness (up Poisson di�eomorphisms �xing C) of cosymplectic submanifolds in which C
is embedded coisotropically.

This lemma tells us that we need to consider only the case in which C is pre-Poisson and
the construction of Thm. 3.3:

Lemma 4.1. A submanifold C of a Poisson manifold (P,Π) can be embedded coisotropically

in a cosymplectic submanifold P̃ iff it is pre-Poisson. In this case all such P̃ are constructed
(in a neighborhood of C) as in Thm. 3.3.

Proof. In Thm. 3.3 we saw that given any pre-Poisson submanifold C, choosing a smooth
subbundle R with R ⊕ (TC + ]N∗C) = TP |C and �thickening� C in direction of R gives a

submanifold P̃ with the required properties.
Now let C be any submanifold embedded coisotropically in a cosymplectic submanifold P̃ .

By Remark 3.2, for any complement R of TC in T P̃ |C we have R⊕ (TC + ]N∗C) = TP |C .
This has two consequences: �rst the rank of TC + ]N∗C must be constant, concluding
the proof of the �iff� statement of the lemma. Second, it proves the �nal statement of the
lemma. �

When C is a point {p} then P̃ as above is a slice transverse to the symplectic leaf through

p (see Ex. 5.1) and P̃ is unique up Poisson di�eomorphism by Weinstein's splitting theorem
(Lemma 2.2 in [21]; see also Thm. 2.16 in [19]). A generalization of its proof gives

Proposition 4.2. Let P̃0 be a cosymplectic submanifold of a Poisson manifold P and
π : U → P̃0 a projection of some tubular neighborhood of P̃0 onto P̃0. Let P̃t, t ∈ R, be
a smooth family of cosymplectic submanifolds such that all P̃t are images of sections of π.
Then, for t close enough to zero, there are Poisson di�eomorphisms φt mapping open sets
of P̃0 to open sets of P̃t. The φt's can be chosen so that the curves t 7→ φt(y) (for y ∈ P̃0)

are tangent to ]N∗P̃t at time t.

Proof. We will use the following fact, whose straightforward proof we omit: let P̃t, t ∈ R,
be a smooth family of submanifolds of a manifold U , and Yt a time-dependent vector �eld
on U . Then Y + ∂

∂t (considered as a vector �eld on U × R) is tangent to the submanifold⋃
t∈R(P̃t, t) iff for each t̄ and each integral curve γ of Yt in U with γ(t̄) ∈ P̃t̄ we have γ(t) ∈ P̃t

(at all times where γ is de�ned).

Denote by st the section of π whose image is P̃t. We are interested in time-dependent
vector �elds Yt on U such that for all t̄ and y ∈ P̃t̄

(6) Yt̄(y) = st̄∗(π∗Yy) +
d

dt
|t̄st(π(y)).
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We claim that, for such a vector �eld, (Y + ∂
∂t) is tangent to

⋃
t∈R(P̃t, t). Indeed

(Y +
∂

∂t
)(y, t̄) = Yt̄(y) +

∂

∂t
(7)

= st̄∗(π∗Yy) +
d

dt
|t̄st(π(y)) +

∂

∂t
.(8)

Since st̄∗(π∗Yy) is tangent to (P̃t̄, t̄), and d
dt |t̄st(π(y)) + ∂

∂t is the velocity at time t̄ of the
curve (st(π(y)), t), the claimed tangency follows. Hence by the fact recalled in the �rst

paragraph we deduce that the �ow φt of Yt takes points y of P̃0 to P̃t̄ (if φt(y) is de�ned
until time t̄).

So we are done if we realize such Yt as the hamiltonian vector �elds of a smooth family
of functions Ht on U . For each �xed t̄, eq. (6) for Yt̄ is just a condition on the second

component of Yt̄ ∈ TyP = TyP̃t̄ ⊕ keryπ∗ for all y ∈ P̃t̄, and the second component is

determined exactly by the action of Yt̄ on functions f vanishing on P̃t̄. We have

Yt̄(f) = XHt̄
(f) = −dHt̄(]df),

and the restriction of ] to N∗P̃t̄ is injective because P̃t̄ is cosymplectic. Together we obtain
that specifying the vertical component of XHt̄

at points of P̃t̄ is equivalent to specifying

the derivative of Ht̄ in direction of ]N∗P̃t̄, which is transverse to P̃t̄. We can clearly �nd a
function Ht̄ satisfying the required conditions on its derivative along P̃t̄, i.e. so that XHt̄

satis�es (6). Choosing Ht smoothly for every t we conclude that the �ow φt of XHt , which

obviously consists of Poisson di�eomorphisms, will take P̃0 (or rather any subset of it on

which the �ow is de�ned up to time t̄) to P̃t̄.

Choosing each Ht so that it vanishes on P̃t delivers a �ow φt �tangent� to the ]N
∗P̃t's. �

Now we are ready to prove the uniqueness of P̃ :

Theorem 4.3. Let C be a pre-Poisson submanifold (P,Π), and P̃0, P̃1 cosymplectic sub-

manifolds that contain C as a coisotropic submanifold. Then, shrinking P̃0 and P̃1 to a
smaller tubular neighborhood of C if necessary, there is a Poisson di�eomorphism Φ from
P̃0 to P̃1 which is the identity on C.

Proof. In a neighborhood U of P̃0 take a projection π : U → P̃0; choose it so that at points of
C ⊂ P̃0 the �bers of π are tangent to ]N∗P̃0|C . For i = 0, 1 make some choices of maximal

dimensional subbundles Ri satisfying eq. (3) to write T P̃i|C = TC ⊕ Ri, and choose a
smooth curve of subbundles Rt satisfying eq. (3) and agreeing with R0 and R1 at t = 0, 1
(there is no topological obstruction to this because R0 and R1 are both complements to the
same subbundle TC+]N∗C). By Thm. 3.3 we obtain a curve of cosymplectic submanifolds

P̃t, which moreover by Lemma 3.5 at points of C are all transverse to ]N∗P̃0|C , i.e. to the
�bers of π.

Hence we are in the situation of Prop. 4.2, which allows us to construct a Poisson
di�eomorphism from P̃0 to P̃t for small t. Since C ⊂ P̃t for all t, in the proof of Prop.4.2
we have that the sections st are trivial on C, hence by eq. (6) the second component of

XHt ∈ TyP̃t ⊕ keryπ∗ at points y of C ⊂ P̃t is zero. Choosing Ht to vanish on P̃t we obtain

XHt = 0 at points of C ⊂ P̃t. From this we deduce two things: in a tubular neighborhood
of C the �ow φt of XHt is de�ned for all t ∈ [0, 1], and each φt keeps points of C �xed. Now
just let Φ := φ1. �

The derivative at points of C of the Poisson di�eomorphism Φ constructed in Thm. 4.3
gives an isomorphism of Poisson vector bundles T P̃0|C → T P̃1|C which is the identity on TC.
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The construction of Φ involves many choices; we wish now to give a canonical construction
for such a vector bundle isomorphism. We �rst need a linear algebra lemma.

Lemma 4.4. Let C be a subspace of a Poisson vector space (P,Π) and V,W two cosymplectic
subspaces containing C as a coisotropic subspace. There exists a canonical isomorphism of
Poisson vector spaces ϕ : V →W which is the identity on C.

Proof. Notice that V and W have the same dimension by Lemma 3.1. First we consider

A : V → ]V ◦

determined by the requirement that W = {v + Av : v ∈ V }. A is well-de�ned since
]V ◦ is a complement in P both to V (because V is cosymplectic) and to W (because
W ∩ (C + ]C◦) = C by Lemma 3.1 and C + ]C◦ = C ⊕ ]V ◦ by Lemma 3.5). Notice that,
since C lies in both V and W , the restriction of A to C is zero.

Now we mimic a construction in symplectic linear algebra [6] where one deforms canon-
ically a complement of a coisotropic subspace C to obtain an isotropic complement. We
deform A+ Id by adding

B : V → C ∩ ]C◦, v 7→ 1
2
]V (Ω(Av,A•)).

Here ]V is the sharp map of the cosymplectic submanifold V and Ω denotes the symplectic
form on O := ]P ∗. B is well-de�ned because the element Ω(Av,A•) of V ∗ annihilates
C (recall that A|C = 0) and because C is coisotropic in V . Further it is clear that the
restriction of B to C is zero.

At this point we are ready to de�ne

ϕ : V →W, v 7→ v +Av +Bv.

This is well-de�ned (since C ∩ ]C◦ ⊂ W ) and is an isomorphism: if v +Bv + Av = 0 then
v +Bv = 0 and Av = 0 (because V is transversal to ]V ◦); from Av = 0 we deduce Bv = 0
hence v = 0. To show that ϕ matches the linear Poisson structures on V and W we notice
that ϕ restricts to a map from V ∩O toW∩O (because the images if A and B lie in O). This
restriction is an isomorphism because source and target have the same dimension (they both
contain C ∩ O as a coisotropic subspace); we show that it is a linear symplectomorphism.
If v1, v2 ∈ V ∩O we have Ω(ϕv1, ϕv2) = Ω(v1 +Bv1, v2 +Bv2) + Ω(Av1, Av2), for the cross
terms vanish since A takes values in ]V ◦. Now Ω(Bv1, •)|V ∩O = −1

2Ω(Av1, A•)|V ∩O using
the fact that Ω(]ξ, •) = −ξ|O for any covector ξ of P . Further Ω(Bv1, Bv2) vanishes because
B takes values in C ∩ ]C◦. So altogether we obtain Ω(ϕv1, ϕv2) = Ω(v1, v2) as desired. �

Proposition 4.5. Let C be a pre-Poisson submanifold (P,Π), and P̃ , P̂ cosymplectic sub-
manifolds that contain C as a coisotropic submanifold. Then there is a canonical isomor-
phism of Poisson vector bundles ϕ : T P̃ |C → T P̂ |C which is the identity on TC.

Proof. At each point p ∈ C we construct ϕp applying Lemma 4.4 to V = TpP̃ andW = TpP̂ .

We want to check that the resulting map ϕ : T P̃ |C → T P̂ |C is smooth (this is not clear a
priori because the construction of Lemma 4.4 involves the symplectic leaves O of P , which
may be of di�erent dimensions). It is enough to check that if X is a smooth section of

]N∗P̃ |C , then Ω(X, •)|]N∗P̃ : ]N∗P̃ → R is smooth. This follows from the fact that P̃ is

cosymplectic: since ] : N∗P̃ → ]N∗P̃ is bijective, there is a smooth section ξ of N∗P̃ with
]ξ = X, and Ω(X, •)|]N∗P̃ = ξ|]N∗P̃ . Altogether we obtain that ϕ is a smooth, canonical

isomorphism of Poisson vector bundles. �
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Remark 4.6. The isomorphism ϕ : T P̃ |C → T P̂ |C constructed in Prop. 4.5 can be extended
to a Poisson vector bundle automorphism of TP |C , by applying the following at each point
of C.

The linear isomorphism ϕ : V →W of Lemma 4.4 (using the notation of the lemma) can
be extended to a Poisson automorphism of P as follows: de�ne

(ϕ, pr) : V ⊕ ]V ◦ →W ⊕ ]W ◦

where pr denotes the projection of ]V ◦ onto ]W ◦ along C (recall from Lemma 3.5 that
C⊕]V ◦ = C⊕]W ◦). (ϕ, pr) restricts to a linear automorphism of O = (V ∩O)⊕]V ◦ which
preserves the symplectic form: the only non-trivial check is Ω(pr(v1), pr(v2)) = Ω(v1, v2)
for vi ∈ ]V ◦, which follows because pr(vi)− vi ∈ C ∩ ]C◦.

Remark 4.7. The isomorphism ϕ constructed in Prop. 4.5 can be extended to a Poisson
vector bundle automorphism of TP |C as follows: de�ne

(ϕ, pr) : T P̃ ⊕ ]N∗P̃ → T P̂ ⊕ ]N∗P̂

where pr denotes the projection of N∗P̃ onto N∗P̂ along TC (recall from Lemma 3.5

that TC ⊕ N∗P̃ = TC ⊕ N∗P̂ ). (ϕ, pr) restricts to a linear automorphism of TO =
(T P̃ ∩ TO) ⊕ ]N∗P̃ which preserves the symplectic form: the only non-trivial check is

Ω(pr(v1), pr(v2)) = Ω(v1, v2) for vi ∈ ]N∗P̃ , which follows because pr(v1)−v1 ∈ TC∩]N∗C.

5. Conditions and examples

Let C be as usual a submanifold of the Poisson manifold (P,Π); in Section 3 we considered
the question of existence of a Poisson-Dirac submanifold P̃ of P in which C is contained
coisotropically. In Thm. 3.3 we showed that a su�cient condition is that C be pre-Poisson,
which by Prop. 3.6 is equivalent to saying that N∗C ∩ ]−1TC be a Lie algebroid.

A necessary condition is that the (intrinsically de�ned) characteristic distribution TC ∩
]N∗C of C be the distribution associated to a Lie algebroid over C; in particular its rank
locally can only increase. This is a necessary condition since the concept of characteristic
distribution is an intrinsic one (see Remark 2.1), and the characteristic distribution of a
coisotropic submanifold of a Poisson manifold is the image of the anchor of its conormal
bundle, which is a Lie algebroid.

The submanifolds C which are not covered by the above conditions are those for which
N∗C ∩ ]−1TC is not a Lie algebroid but its image TC ∩ ]N∗C under ] is the image of the
anchor of some Lie algebroid over C. Diagrammatically:

{C s.t. N∗C ∩ ]−1TC is a Lie algebroid, i.e. C is pre-Poisson } ⊂

{C sitting coisotropically in some Poisson-Dirac submanifold P̃ of P} ⊂

{C s.t. TC ∩ ]N∗C is the distribution of some Lie algebroid over C}.

In the remainder of this section we present examples of the above situations. We start
with basic examples of pre-Poisson submanifolds; we refer the reader to Section 6 of [12]
for examples in which the Poisson manifold P is the dual of a Lie algebra and C an a�ne
subspace.



COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS 12

Example 5.1. An obvious example is when C is a coisotropic submanifold of P , and in this
case the construction of Thm. 3.3 delivers P̃ = P (or more precisely, a tubular neighborhood
of C in P ).

Another obvious example is when C is just a point p: then the construction of Thm. 3.3
delivers as P̃ any slice through x transversal to the symplectic leaf Op.

Now if C1 ⊂ P1 and C2 ⊂ P2 are pre-Poisson submanifolds of Poisson manifolds, the
cartesian product C1 × C2 ⊂ P1 × P2 also is, and if the construction of Thm. 3.3 gives
cosymplectic submanifolds P̃1 ⊂ P1 and P̃2 ⊂ P2, the same construction applied to C1×C2

(upon suitable choices of complementary subbundles) delivers the cosymplectic submanifold

P̃1 × P̃2 of P1 × P2. In particular, if C1 is coisotropic and C2 just a point p, then C1 × {p}
is pre-Poisson.

The su�cient condition above is not necessary (i.e. the �rst inclusion in the diagram
above is strict), as either of the following simple examples shows.

Example 5.2. Take C to be the vertical line {x = y = 0} in the Poisson manifold (P,Π) =
(R3, f(z)∂x∧∂y), where f is any function with at least one zero. Then C is a Poisson-Dirac

submanifold (with zero as induced Poisson structure), hence taking P̃ := C we obtain a
Poisson-Dirac submanifold in which C embeds coisotropically. The su�cient conditions here
is not satis�ed, for the rank of TC+ ]N∗C at (0, 0, z) is 3 at points where f does not vanish
and 1 at points where f vanishes.

Example 5.3. Consider the Poisson manifold (P,Π) = (R4, x2∂x∧∂y+z∂z∧∂w) as in Example
6 of [14] and the submanifold C = {(z2, 0, z, 0) : z ∈ R}. The rank of TC + ]N∗C is 3 away
from the origin (because there C is an isotropic submanifold in an open symplectic leaf of P )

and 1 at the origin (since Π vanishes there). The submanifold P̃ = {(z2, 0, z, w) : z, w ∈ R}
is Poisson-Dirac and it clearly contains C as a coisotropic submanifold.

The necessary condition above is not su�cient (i.e. the second inclusion in the diagram
above is strict):

Example 5.4. In Example 3 in Section 8.2 of [14] the authors consider the manifold P = C3

with complex coordinates x, y, z. They specify a Poisson structure on it by declaring the
symplectic leaves to be the complex lines given by dy = 0, dz − ydx = 0, the symplectic
forms being the restrictions of the canonical symplectic form on C3. They consider as
submanifold C the complex plane {z = 0} and show that C is point-wise Poisson-Dirac
(i.e. TC ∩ ]N∗C = {0} at every point), but that the induced bivector �eld is not smooth.
Being point-wise Poisson-Dirac, C satis�es the necessary condition above. However there
exists no Poisson-Dirac submanifold P̃ of P in which C embeds coisotropically. Indeed at
points p of C where y 6= 0 we have TpC ⊕ TpO = TP (where as usual O is a symplectic
leaf of P through p), from which follows that ]|N∗

p C is injective and TpC ⊕ ]N∗
pC = TP .

From Lemma 3.1 (notice that the subspace R there must have trivial intersection with
TpC⊕]N∗

pC, so R must be the zero subbundle over C) it follows that the only candidate for

P̃ is C itself. However, as we have seen, the Poisson bivector induced on C is not smooth.
(More generally, examples are provided by any submanifold C of a Poisson manifold P
which is point-wise Poisson-Dirac but not Poisson-Dirac and for which there exists a point
p at which TpC ⊕ TpO = TP .)
Notice that this provides an example for the claim made in Remark 3.4, because the zero
subbundle R over C satis�es equation (3) at every point of C and is obviously a smooth
subbundle.
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We end with two examples of submanifolds C which do not satisfy the necessary condi-
tion above. In particularly they can not be imbedded coisotropically in any Poisson-Dirac
submanifold.

Example 5.5. The submanifold C = {(x1, x2, x
2
2, x

2
1)} of the symplectic manifold (P, ω) =

(R4, dx1 ∧ dx3 + dx2 ∧ dx4) has characteristic distribution of rank 2 on the points with
x1 = x2 and rank zero on the rest of C. The rank of the characteristic distribution locally
decreases, hence C does not satis�es the necessary condition above.

Remark 5.6. If C is a submanifold of a symplectic manifold (P, ω), then the necessary and
the su�cient conditions coincide, both being equivalent to saying that the characteristic
distribution of C (which can be described as ker(i∗Cω) for iC the inclusion) have constant
rank, i.e. that C be presymplectic.

Example 5.7. Consider the Poisson manifold (R6, x1∂x2 ∧ ∂x4 + (∂x3 + x1∂x5)∧ ∂x6). Let C
be the three-dimensional subspace given by setting x4 = x5 = x6 = 0. The characteristic
subspaces are all one-dimensional, spanned by ∂x3 at points of C where x1 = 0 and by ∂x2

on the rest of C. Hence the characteristic subspaces do not form a smooth distribution, and
can not be the image of the anchor map of any Lie algebroid over C. Therefore C does not
satis�es the necessary condition above.

6. Reduction of submanifolds and deformation quantization of pre-Poisson

submanifolds

In this section we consider the set of basic functions on a submanifold of a Poisson
manifold, and show that in certain cases it is a Poisson algebra and that it can be deformation
quantized.

Given any submanifold C of a Poisson manifold (P,Π), it is natural to consider the
characteristic �distribution� ]N∗C ∩TC (which by Remark 2.1 consists of the kernels of the
restrictions to C of the symplectic forms on the symplectic leaves of P ) and the set of basic
functions on C

C∞bas(C) = {f ∈ C∞(C) : df |]N∗C∩TC = 0}.
]N∗C ∩ TC usually does not have a constant rank and may not be smooth; if it is and the
quotient C is a smooth manifold, then C∞bas(C) consists exactly of pullbacks of functions on
C.

Let us endow C with the (possibly non-smooth) point-wise Dirac structure i∗LP , where
i : C → P is the inclusion and LP is the Dirac structure corresponding to Π. Then, since
]N∗C ∩ TC = i∗LP ∩ TC, C∞bas(C) is exactly the set of basic functions of (C, i∗LP ) in the
sense of Dirac geometry. Given basic functions f, g the expression

{f, g}C(p) := Y (g)

is well-de�ned. Here Y is any element of TpC such that (Y, dfp) ∈ i∗LP , and it exists because
the annihilator of i∗LP ∩ TC is the projection onto T ∗C of i∗LP . Notice that C

∞
bas(C) and

{•, •}C are intrinsic to C in the following sense: they depend only on the point-wise Dirac
structure i∗LP on C, and if P̄ is a submanifold of (P,Π) containing C, LP̄ the point-wise
Dirac structure on P̄ induced by P and ī : C → P̄ the inclusion, then ī∗LP̄ = i∗LP by the
functoriality of pullback.

The expression {f, g}C(p) does not usually vary smoothly with p, so we can not conclude
that C∞bas(C) with {•, •}C is a Poisson algebra. There is however a Poisson algebra that C
inherits from P [4], namely F/(F∩I), where I denotes the set of functions on P that vanish
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on C and F := {f̂ ∈ C∞(P ) : {f̂ , I} ⊂ I} (the so-called �rst class functions). F/(F ∩ I)
is exactly the subset of functions f on C which admits an extension to some function f̂
on P whose di�erential annihilates ]N∗C (or equivalently Xf̂ |C ⊂ TC). The bracket of

F/(F ∩ I) is computed as follows:

{f, g} = {f̂ , ĝ}P |C = Xf̂ (g)|C
for extensions as above. Notice that F/(F ∩ I) ⊂ C∞bas(C), and that the Poisson bracket
{•, •} on F/(F ∩ I) coincides with {•, •}C : if f, g belong to F/(F ∩ I) we can compute

{f, g}C by choosing Y = Xf̂ for some extension f̂ ∈ F .

Proposition 6.1. Let C be any submanifold of a Poisson manifold (P,Π). If there exists a

Poisson-Dirac submanifold P̃ of P in which C is contained coisotropically, then the set of
basic functions on C has an intrinsic Poisson algebra structure, and (F/(F ∩ I), {•, •}) is
a Poisson subalgebra.

Proof. We add a tilde in the notation introduced above when we view C as a submanifold
of the Poisson manifold P̃ instead of P . By the last paragraph before the statement of this
proposition, since ]̃N∗C ⊂ TC, it follows that F̃/Ĩ = C∞bas(C). So (C∞bas(C), {•, •}C) is
a Poisson algebra structure intrinsically associated to C, and it contains F/(F ∩ I) as a
Poisson subalgebra. �

By Thm. 3.3 pre-Poisson submanifolds C satisfy the assumption of Prop. 6.1, hence they
admit a Poisson algebra structure on their space of basic functions. This fact was already
established in Theorem 3 of [4], where furthermore it is shown that F/(F ∩ I) is the whole
space of basic functions. Now we state our result about deformation quantization:

Theorem 6.2. Let C be a pre-Poisson submanifold, and assume that the �rst and second Lie
algebroid cohomology of N∗C ∩ ]−1TC vanish. Then the Poisson algebra C∞bas(C), endowed
with the bracket inherited from P , admits a deformation quantization.

Proof. By Thm. 3.3 we can embed C coisotropically in some cosymplectic submanifold
P̃ . We invoke Corollary 3.3 of [10]: if the �rst and second Lie algebroid cohomology of the
conormal bundle of a coisotropic submanifold vanish, then the Poisson algebra of basic func-
tions on the coisotropic submanifold (with the bracket inherited from the ambient Poisson

manifold, which in our case is P̃ ) admits a deformation quantization. Now by Prop. 6.1 the
Poisson bracket on C∞bas(C) induced by P agrees with the one induced by the embedding

in P̃ . Further the conditions in Corollary 3.3 of [10] translate into the conditions stated in

the proposition because the conormal bundle of C in P̃ is isomorphic to N∗C ∩ ]−1TC as
a Lie algebroid, see Prop. 3.6. �

7. Subgroupoids associated to pre-Poisson submanifolds

Let C be a pre-Poisson submanifold of a Poisson manifold (P,Π). In Prop. 3.6 we showed
that N∗C ∩ ]−1TC is a Lie subalgebroid of T ∗P . When ]N∗C has constant rank there is
another Lie subalgebroid associated to C; it is obtained by taking the pre-image of TC under
the anchor map, i.e. it is ]−1TC = (]N∗C)◦. Now we assume that T ∗P is an integrable Lie
algebroid, i.e. that the source simply connected (s.s.c.) symplectic groupoid (Γs(P ),Ω) of
(P,Π) exists. In this section we study the (in general only immersed) subgroupoids of Γs(P )
integrating N∗C ∩ ]−1TC and ]−1TC. Here, for any Lie subalgebroid A of T ∗P integrating
to a s.s.c. Lie groupoid G, we take �subgroupoid� to mean the (usually just immersed) image
of the (usually not injective) morphism G→ Γs(P ) induced from the inclusion A→ T ∗P .
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By Thm. 3.3 we can �nd a cosymplectic submanifold P̃ in which C lies coisotropically.
We �rst make a few remarks on the subgroupoid corresponding to P̃ .

Lemma 7.1. The subgroupoid of Γs(P ) integrating ]−1T P̃ is s−1(P̃ ) ∩ t−1(P̃ ) and is a

symplectic subgroupoid. Its source (target) map is a Poisson (anti-Poisson) map onto P̃ ,
where the latter is endowed with the Poisson structure induced by (P,Π).

Proof. According to Thm. 3.7 of [22] the subgroupoid2 of Γs(P ) corresponding to P̃ , i.e.

the one integrating (]N∗P̃ )◦, is a symplectic subgroupoid of Γs(P ). It is given by s−1(P̃ )∩
t−1(P̃ ), because (]N∗P̃ )◦ = ]−1T P̃ .

To show that the maps s−1(P̃ ) ∩ t−1(P̃ ) → P̃ given by the source and target maps of

s−1(P̃ ) ∩ t−1(P̃ ) are Poisson (anti-Poisson) maps proceed as follows. Take a function f̃ on

P̃ , and extend it to a function f on P so that df annihilates ]N∗P̃ , i.e. so that Xf is tangent

to P̃ along P̃ . Since s : Γs(P ) → P is a Poisson map and s-�bers are symplectic orthogonal

to t-�bers we know that the vector �eld Xs∗f on Γs(P ) is tangent to s−1(P̃ ) ∩ t−1(P̃ ),
i.e. that d(s∗f) annihilates T (s−1(P̃ ) ∩ t−1(P̃ ))Ω. Hence, denoting by s̃ the source map of

s−1(P̃ ) ∩ t−1(P̃ ), we have

s̃∗{f̃1, f̃2} = s̃∗({f1, f2}|P̃ ) = {s∗f1, s
∗f2}|s−1(P̃ )∩t−1(P̃ ) = {s̃∗f1, s̃

∗f1},

i.e. s̃ is a Poisson map. A similar reasoning holds for t̃. �

Now we describe the subgroupoid integrating N∗C ∩ ]−1TC:

Proposition 7.2. Let C be a pre-Poisson submanifold of (P,Π). Then the subgroupoid of
Γs(P ) integrating N∗C ∩ ]−1TC is an isotropic subgroupoid of Γs(P ).

Proof. The canonical vector bundle isomorphism i : T ∗P̃ ∼= (]N∗P̃ )◦ is a Lie algebroid

isomorphism, where T ∗P̃ is endowed with the cotangent algebroid structure coming from
the Poisson structure on P̃ (Cor. 2.11 and Thm. 2.3 of [22]). Integrating this algebroid

isomorphism we obtain a Lie groupoid morphism from Γs(P̃ ), the s.s.c. Lie groupoid in-

tegrating T ∗P̃ , to Γs(P ), and the image of this morphism is s−1(P̃ ) ∩ t−1(P̃ ). Since by

Lemma 7.1 the symplectic form on s−1(P̃ ) ∩ t−1(P̃ ) is multiplicative, symplectic and the

source map is a Poisson map, pulling back the symplectic form on s−1(P̃ )∩ t−1(P̃ ) endows
Γs(P̃ ) with the structure of the s.s.c. symplectic groupoid of P̃ . The subgroupoid of Γs(P̃ )
integrating N∗

P̃
C, the annihilator of C in P̃ , is Lagrangian ([7], Prop. 5.5). Hence i(N∗

P̃
C),

which by Prop. 3.6 is equal to N∗C ∩ ]−1TC, integrates to a Lagrangian subgroupoid of
s−1(P̃ ) ∩ t−1(P̃ ), which therefore is an isotropic subgroupoid of Γs(P ). �

Now we consider ]−1TC. For any submanifold N , ]−1TN has constant rank i� it is a
Lie subalgebroid of T ∗P , integrating to the subgroupoid s−1(N) ∩ t−1(N) of Γs(P ). So
the constant rank condition on ]−1TN corresponds to a smoothness condition on s−1(N)∩
t−1(N).

Remark 7.3. 1) If ]−1TN has constant rank it follows that the Poisson structure on P pulls
back to a smooth Dirac structure on N , and that s−1(N)∩t−1(N) is an over-pre-symplectic
groupoid inducing the same Dirac structure on N (Ex. 6.7 of [2]). Recall from Def. 4.6 of
[2] that an over-pre-symplectic groupoid is a Lie groupoid G over a baseM equipped with a
closed multiplicative 2-form ω such that kerωx∩ker(ds)x∩ker(dt)x has rank dimG−2dimM

2In [22] this is claimed only when the subgroupoid integrating (]N∗P̃ )◦ is an embedded subgroupoid,
however the proof there is valid for immersed subgroupoids too.
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at all x ∈M . Further, s−1(N)∩ t−1(N) has dimension equal to 2dimN + rk(N∗N ∩N∗O),
where O denotes any symplectic leaf of P intersecting N .
2) For a pre-Poisson submanifold C, the condition that ]−1TC have constant rank is equiva-
lent to the characteristic distribution TC∩]N∗C having constant rank. This follows trivially
from rk(]N∗C + TC) = rk(]N∗C) + dimC − rk(TC ∩ ]N∗C).

Proposition 7.4. Let C be a pre-Poisson submanifold with constant-rank characteristic
distribution. Then for any cosymplectic submanifold P̃ in which C embeds coisotropically,
s−1(C) ∩ t−1(C) is a coisotropic subgroupoid of s−1(P̃ ) ∩ t−1(P̃ ).

Proof. By the comments above we know that ]−1TC is a Lie subalgebroid, hence s−1(C) ∩
t−1(C) is a (smooth) subgroupoid of Γs(P ), and it is clearly contained in s−1(P̃ )∩ t−1(P̃ ).
We saw in Lemma 7.1 that s−1(P̃ ) ∩ t−1(P̃ ) is endowed with a symplectic form for which

its source and target maps are (anti-)Poisson maps onto P̃ . Further its source and target

�bers symplectic orthogonals of each other. Since C ⊂ P̃ is coisotropic, this implies that
s−1(C) ∩ t−1(C) is coisotropic in s−1(P̃ ) ∩ t−1(P̃ ). �

We now describe the subgroupoids corresponding to pre-Poisson manifolds.

Proposition 7.5. Let C be any submanifold of P . Then s−1(C) ∩ t−1(C) is a (immersed)
presymplectic submanifold of Γs(P ) i� C is pre-Poisson and its characteristic distribution
has constant rank. In this case the characteristic distribution of s−1(C) ∩ t−1(C) has rank
2rk(]N∗C∩TC)+rk(N∗C∩N∗O), where O denotes the symplectic leaves of P intersecting
C.

Proof. Assume that s−1(C) ∩ t−1(C) is a (immersed) presymplectic submanifold of Γs(P ).
We apply the same proof as in Prop. 8 of [14]: there is an isomorphism of vector bundles
TΓs(P )|P ∼= TP ⊕ T ∗P , under which the non-degenerate bilinear form Ω|P corresponds to
(X1⊕ξ1, X2⊕ξ2) := 〈ξ1, X2〉−〈ξ2, X1〉+Π(ξ1, ξ2). Under the above isomorphism T (s−1(C)∩
t−1(C)) corresponds to TC ⊕ ]−1TC, and a short computation shows that the restriction
of (•, •) to TC ⊕ ]−1TC has kernel (TC ∩ ]N∗C) ⊕ (]−1TC ∩ N∗C), which therefore has
constant rank. From the smoothness of s−1(C) ∩ t−1(C) it follows that (]N∗C)◦ = ]−1TC
has constant rank. This has two consequences: �rst by Remark 7.3 C has characteristic
distribution of constant rank. Second, the above kernel is a direct sum of two intersections
of smooth subbundles, so ]−1TC ∩ N∗C has constant rank, i.e. (taking annihilators) C is
pre-Poisson.

The other direction follows from Prop. 7.4. �

Remark 7.6. One can wonder whether any subgroupoid of a symplectic groupoid (Γs(P ),Ω)
which is a presymplectic submanifold (i.e. Ω pulls back to a constant rank 2-form) is
contained coisotropically in some symplectic subgroupoid of Γs(P ). This would be exactly
the �groupoid� version of Thm. 3.3. The above Prop. 7.4 and Prop. 7.5 together tell us that
this is the case when the subgroupoid has the form s−1(C)∩t−1(C), where C ⊂ P is its base.
In general the answer to the above question is negative, as the following counterexample
shows.

Let (P, ω) be some simply connected symplectic manifold, so that Γs(P ) = (P×P, ω1−ω2)
and the units are embedded diagonally. Take C to be any 1-dimensional closed submanifold
of P . C⇒C is clearly a subgroupoid and a presymplectic submanifold; since ω1 − ω2 there
pulls back to zero, any subgroupoid G of P ×P in which C⇒C embeds coisotropically must
have dimension 2. If the base of G has dimension 2 then G is contained in the identity
section of P × P , which is Lagrangian. So let us assume that the base of G is C. Then G
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must be contained in C ×C, on which ω1 − ω2 vanishes because C ⊂ P is isotropic. So we
conclude that there is no symplectic subgroupoid of P ×P containing C⇒C as a coisotropic
submanifold.

8. Existence of coisotropic embeddings of Dirac manifolds in Poisson

manifolds

Let (M,L) be a smooth Dirac manifold. We ask when (M,L) can be embedded coisotrop-
ically in some Poisson manifold (P,Π), i.e. when there exists an embedding i such that
i∗LP = L and i(M) is a coisotropic submanifold of P . Notice that for arbitrary coisotropic
embeddings i∗LP is usually not even continuous: for example the x-axis in (R2, x∂x ∧ ∂y)
is coisotropic, but the pullback structure is not continuous at the origin.

When M consists of exactly one leaf, i.e. when M is a manifold endowed with a closed
2-form ω, the existence and uniqueness of coisotropic embeddings in symplectic manifolds
was considered by Gotay in the short paper [15]: the coisotropic embedding exists iff kerω
has constant rank, and in that case one has uniqueness up to neighborhood equivalence.
Our strategy will be to check if we can apply Gotay's arguments �leaf by leaf� smoothly over
M . Recall that L ∩ TM is the kernel of the 2-forms on the presymplectic leaves of (M,L).

Theorem 8.1. (M,L) can be embedded coisotropically in a Poisson manifold iff L ∩ TM
has constant rank.

Proof. Suppose that an embedding M → P as above exists. Then L ∩ TM is equal ]N∗C
(where N∗C is the conormal bundle of C in P ), the image of a vector bundle under a
smooth bundle map, hence its rank can locally only increase. On the other hand the rank of
L∩ TM , which is the intersection of two smooth bundles, can locally only decrease. Hence
the rank of L ∩ TM must be constant on M .

Conversely, assume that the rank of E := L ∩ TM is constant and de�ne P to be the
total space of the vector bundle π : E∗ → M . We de�ne the Poisson structure on P as
follows. First take the pullback Dirac structure π∗L (which is smooth and integrable since
π is a submersion). Then choose a smooth distribution V such that E ⊕ V = TM . This
choice gives an embedding i : E∗ → T ∗M , which we can use to pull back the canonical
symplectic form ωT ∗M . Our Poisson structure is LE∗ := τi∗ωT∗M

π∗L, i.e. it is obtained

applying to π∗L the gauge transformation3 by the closed 2-form i∗ωT ∗M . It is clear that
LE∗ is a smooth Dirac structure; we still have to show that it is actually Poisson, and that
the zero section is coisotropic. In more concrete terms (E∗, LE∗) can be described as follows:
the leaves are all of the form π−1(Fα) for (Fα, ωα) a presymplectic leaf of M . The 2-form
on the leaf is given by adding to (π|π−1(Fα))∗ωα the 2-form i∗αωT ∗Fα . The latter is de�ned
considering the distribution V ∩ TFα transverse to E|Fα in TFα, the induced embedding
iα : π−1(Fα) = E∗|Fα → T ∗Fα, and pulling back the canonical symplectic form. (One can
check that i∗αωT ∗Fα is the pullback of i∗ωT ∗M via the inclusion of the leaf in E∗). But this
is exactly Gotay's recipe to endow (an open subset of) π−1(Fα) with a symplectic form so
that Fα is embedded as a coisotropic submanifold. Hence we conclude that a neighborhood
of the zero section of E∗, with the above Dirac structure, is actually a Poisson manifold and
that M is embedded as a coisotropic submanifold. �

3Given a Dirac structure L on a vector space W , the gauge transformation of L by a bilinear form
B ∈ ∧2W ∗ is τBL := {(X, ξ + iXB) : (X, ξ) ∈ L}. Given a Dirac structure L on a manifold, the gauge-
transformation τBL by closed 2-form B is again a Dirac structure (i.e. τBL is again closed under the Courant
bracket).
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We comment on how choices a�ect the construction of Thm. 8.1. We need the following
version of Moser's theorem for Poisson structures (see Section 3.3. of [1]) : suppose we are
given Poisson structures Πt on some manifold P , t ∈ [0, 1]. Assume that each Πt is related
to Π0 via the gauge transformation by some closed 2-form Bt, i.e. Πt = τBtΠ0. This means
that the symplectic foliations agree and on each symplectic leaf O we have Ωt = Ω0 + i∗OBt,
where Ω0,Ωt are the symplectic forms on the leaf O and iO the inclusion. Assume further
that each d

dtBt be exact, and let αt be a smooth family of primitives vanishing on some
submanifold M . Then the time-1 �ow of the Moser vector �eld ]tαt is de�ned in a tubular
neighborhood of M , it �xes M and maps Π0 to Π1. Here ]t denotes the map T ∗P → TP
induced by Πt.

Proposition 8.2. Di�erent choices of splitting V in the construction of Thm. 8.1 yield
isomorphic Poisson structures on E∗. Hence, given a Dirac manifold (M,L) for which
L ∩ TM has constant rank, there is a canonical (up to neighborhood equivalence) Poisson
manifold in which M embeds coisotropically.

Proof. Let V0, V1 be two di�erent splittings as in Thm. 8.1, i.e. E ⊕ Vi = TM for i = 0, 1.
We can interpolate between them by de�ning the graphs Vt := {v + tAv : v ∈ V0} for
t ∈ [0, 1], where A : V0 → E is determined by requiring that its graph be V1. Obviously
each Vt also gives a splitting E ⊕ Vt = TM ; denote by it : E∗ → T ∗M the corresponding
embedding. We obtain Dirac structures τi∗t ωT∗M

π∗L on the total space of π : E∗ → M ; by
Thm. 8.1 they correspond to Poisson bivectors, which we denote by Πt. These Poisson
structures are related by a gauge transformation: Πt = τBtΠ0 for Bt := i∗tωT ∗M − i∗0ωT ∗M .

A primitive of d
dtBt is given by d

dt i
∗
tαT ∗M ; notice that this primitive vanishes at points of

M , because the canonical 1-form αT ∗M on T ∗M vanishes along the zero section. Hence the
time-1 �ow of ]t( d

dt i
∗
tαT ∗M ) �xes M and maps Π0 to Π1. �

Assuming that (M,L) is integrable we describe the symplectic groupoid of (E∗, LE∗), the
Poisson manifold constructed in Thm. 8.1 with a choice of distribution V . It is π∗(Γs(M)),
the pullback via π : E∗ →M of the presymplectic groupoid ofM , endowed with the following
symplectic form: the pullback via π∗(Γs(M)) → Γs(M) of the presymplectic form on the
groupoid Γs(M), plus s∗(i∗ωT ∗M )− t∗(i∗ωT ∗M ), where i : E∗ → T ∗M is the inclusion given
by the choice of distribution V , ωT ∗M is the canonical symplectic form, and s, t are the
source and target maps of π∗(Γs(M)). This follows easily from Examples 6.3 and 6.6 in [2].
Notice that this groupoid is source simply connected when π∗(Γs(M)) is.

Now we can give an a�rmative answer to the possibility raised in [14] (Remark (e) in
Section 8.2), although we prove it �working backwards�; this is the �groupoid� version of
Gotay's embedding theorem. Recall that a presymplectic groupoid is a Lie groupoid G
over M with dim(G) = 2dim(M) equipped with a closed multiplicative 2-form ω such that
kerωx ∩ ker(ds)x ∩ ker(dt)x = 0 at all x ∈M (Def. 2.1 of [2]).

Proposition 8.3. Any presymplectic groupoid with constant rank characteristic distribution
can be embedded coisotropically as a Lie subgroupoid in a symplectic groupoid.

Proof. By Cor. 4.8 iv),v) of [2], a presymplectic groupoid Γs(M) has characteristic distri-
bution (the kernel of the multiplicative 2-form) of constant rank iff the Dirac structure L
induced on its base M does. We can embed (M,L) coisotropically in the Poisson mani-
fold (E∗, LE∗) constructed in Thm. 8.1; we just showed that π∗(Γs(M)) is a symplectic
groupoid for E∗. Γs(M) embeds in π∗(Γs(M)) as s−1(M) ∩ t−1(M), and this embedding
preserves both the groupoid structures and the 2-forms. s−1(M) ∩ t−1(M) is a coisotropic
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subgroupoid of π∗(Γs(M)) because M lies coisotropically in E∗ and s, t are (anti)Poisson
maps. �

Remark 8.4. A partial converse to this proposition is given as follows: if s−1(M)∩t−1(M) is
a coisotropic subgroupoid of a symplectic groupoid Γs(P ), then M is a coisotropic subman-
ifold of the Poisson manifold P , it has an smooth Dirac structure (induced from P ) with
characteristic distribution of constant rank, and s−1(M)∩ t−1(M) is a over -pre-symplectic
groupoid over M inducing the same Dirac structure. This follows from our arguments in
section 7.

Now we draw the conclusions about deformation quantization. Recall that for any Dirac
manifold (M,L) the set of admissible functions

(9) C∞adm(M) = {f ∈ C∞(M) : there exists a smooth vector �eld Xf s.t. (Xf , df) ⊂ L}

is naturally a Poisson algebra [13], with bracket {f, g}M = Xf (g).

Theorem 8.5. Let (M,L) be a Dirac manifold such that L ∩ TM has constant rank, and
denote by F the regular foliation integrating L∩TM . If the �rst and second foliated de Rham
cohomologies of the foliation F vanish then the Poisson algebra of admissible functions on
(M,L) admits a deformation quantization.

Proof. By Thm. 8.1 we can embed (M,L) coisotropically in a Poisson manifold P ; hence
we can apply Corollary 3.3 of [10]: if the �rst and second Lie algebroid cohomology of
the conormal bundle of a coisotropic submanifold vanish, then the Poisson algebra of basic
functions on the coisotropic submanifold admits a deformation quantization. Since L∩TM
has constant rank, the image of L under TM ⊕ T ∗M → T ∗M has constant rank., so the
inclusion C∞adm(M) ⊂ C∞bas(M) is an equality. Further the Poisson algebra structure {•, •}M

on C∞bas(M) coming from (M,L) coincides with the one induced by M as a coisotropic
submanifold of P , as follows from Prop. 6.1 and i∗LP = L. So when the assumptions are
satis�ed we really deformation quantize (C∞adm(M), {•, •}M ).

Notice that in Thm. 8.1 we constructed a Poisson manifold P of minimal dimension, i.e.
of dimension dimM +rk(L∩TM). The anchor map ] of the Lie algebroid N∗C is injective,
hence the Lie algebroids N∗C and L ∩ TM are isomorphic. This allows us to state the
assumptions of Corollary 3.3 of [10] in terms of the foliation F on M . �

Proposition 8.6. Let (M,L) be a Dirac manifold such that L ∩ TM has constant rank,
and denote by F the regular foliation integrating L ∩ TM . Then the foliated de Rham
complex Ω•F (M) admits the structure of an L∞-algebra4 {λn}n≥1, the di�erential λ1 being
the foliated de Rham di�erential and the bracket λ2 inducing on H0

λ1
= C∞bas(M) the natural

bracket {•, •}M . This L∞ structure is canonical up to L∞-isomorphism.

Proof. By the proof of Thm. 8.1 we know that M can be embedded coisotropically in a
Poisson manifold P so that the Lie algebroids N∗M and L ∩ TM are isomorphic. After
choosing an embedding of NM := TP |M/TM in a tubular neighborhood of M in P ,
Thm. 2.2 of [10] gives the desired L∞-structure. By Prop. 8.2 the Poisson manifold P
is canonical up to neighborhood equivalence, so the L∞-structure depends only on the
choice of embedding of NM in P ; the �rst author and Schätz showed in [11] that di�erent
embeddings give the same structure up to L∞-isomorphism. �

4The λn are derivations w.r.t. the wedge product, so one actually obtains what in [10] is called a P∞
algebra.
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9. Uniqueness of coisotropic embeddings of Dirac manifolds

The coisotropic embedding of Gotay [15] is unique up to neighborhood equivalence, i.e.
any two coisotropic embeddings of a �xed presymplectic manifold in symplectic manifolds
are intertwined by a symplectomorphism which is the identity on the coisotropic subman-
ifold. It is natural to ask whether, given a Dirac manifold (M,L) such that L ∩ TM have
constant rank, the coisotropic embedding constructed in Thm. 8.1 is the only one up to
neighborhood equivalence. In general the answer will be negative: for example the origin is
a coisotropic submanifold in R2 endowed either with the zero Poisson structure or with the
Poisson structure (x2 +y2)∂x∧∂y, and the two Poisson structures are clearly not equivalent.

As Aissa Wade pointed out to us, it is necessary to require that the Poisson manifold in
which we embed be of minimal dimension, i.e. of dimension dimM + rk(L ∩ TM). Before
presenting some partial results on the uniqueness problem we need a simple lemma.

Lemma 9.1. Let M be a coisotropic subspace of a Poisson vector space (P,Π). Then
codim(M) = dim(]M◦) iff ]|M◦ is an injective map iff M intersects transversely O := ]P ∗.

Proof. The �rst equivalence is obvious by dimension reasons. For the second one notice that
]|M◦ is injective i� M◦ ∩ O◦ = {0}, which taking annihilators is exactly the transversality
statement. �

9.1. In�nitesimal uniqueness and global issues. We apply the construction of Gotay's
uniqueness proof [15] on each presymplectic leaf of the Dirac manifold M ; then we show
that under certain assumptions the resulting di�eomorphism varies smoothly from leaf to
leaf.

We start establishing in�nitesimal uniqueness, for which we need a Poisson linear algebra
lemma.

Lemma 9.2. Let (P,Π) be a Poisson vector space and M a coisotropic subspace for which
dim(]M◦) = codim(M). Let V be a complement to E := ]M◦ in M .

There exists an isomorphism of Poisson vector spaces

P ∼= V ⊕ E ⊕ E∗

�xing M , where the Poisson structure on the r.h.s. is such that the induced symplectic
vector space is ((V ∩ O)⊕ (E ⊕ E∗),Ω|V ∩O ⊕ ωE). Here (O,Ω) is the symplectic subspace
corresponding to (P,Π) and ωE is the antisymmetric pairing on E ⊕ E∗.

Proof. We claim �rst that V ⊕ ]V ◦ = P : indeed V ∩ O is a symplectic subspace of (O,Ω),
being transverse to E = ker(Ω|O∩M ). Hence (V ∩O)Ω, which by section 2 is equal to ]V ◦,
is a complement to V ∩ O in O, so V ⊕ ]V ◦ = V +O, which equals P by Lemma 9.1.

Now we mimic the construction of Gotay's uniqueness proof [15]: since E is Lagrangian
in the symplectic subspace ]V ◦, by choosing a complementary lagrangian we can �nd a
linear symplectomorphism (]V ◦,Ω|]V ◦) ∼= (E ⊕E∗, ωE) which is the identity on E. Adding
to this IdV we obtain an isomorphism

P = V ⊕ ]V ◦ ∼= V ⊕ E ⊕ E∗,

which preserves the Poisson bivectors because it restricts to an isomorphism O ∼= (V ∩O)⊕
(E ⊕ E∗) which matches the symplectic forms Ω and Ω|V ∩O ⊕ ωE . �

Proposition 9.3. Suppose we are given a Dirac manifold (M,L) for which L ∩ TM has
constant rank k, and let (P1,Π1) and (P2,Π2) be Poisson manifolds of dimension dimM+k
in which (M,L) embeds coisotropically. Then there is an isomorphism of Poisson vector
bundles Φ: TP1|M → TP2|M which is the identity on TM .
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Proof. We choose a smooth distribution V on M completementary to E := L ∩ TM . For
i = 1, 2, at every point x ∈ M we apply the construction of Lemma 9.2 to the coisotropic
subspace TxC of TxPi, obtaining smooth isomorphisms of Poisson vector bundles

TP1|M ∼= V ⊕ E ⊕ E∗ ∼= TP2|M .

Notice that middle Poisson vector bundle depends only on (M,L) and V , because for any
symplectic leaf (O,Ω) of P1 or P2 the bilinear form Ω|Vx∩TxO is determined by the presym-
plectic form on the presymplectic leaf O ∩M of (M,L). �

Making a regularity assumption we can extend the in�nitesimal uniqueness of Prop. 9.3
to a global statement.

Proposition 9.4. Let M ,P1 and P2 be as in Proposition 9.3, and assume additionally
that the presymplectic leaves of (M,L) have constant dimension. Then P1 and P2 are
neighborhood equivalent.

Proof. The symplectic leaves of each Pi have constant dimension in a tubular neighborhood
of Pi, because they are transverse to M by Lemma 9.1 and because of the assumption on
the presymplectic leaves of (M,L). By choosing normal bundles Ni ⊂ TPi|M tangent to
the symplectic leaves of Pi we can �nd identi�cations φi between the normal bundles Ni

and tubular neighborhoods of M in Pi which, for every presymplectic leaf F of M , identify
Ni|F and the corresponding symplectic leaf of Pi.

Using the Poisson vector bundle isomorphism Φ: TP1|M → TP2|M of Proposition 9.3 we
obtain an identi�cation φ2 ◦ Φ ◦ φ−1

1 between tubular neighborhoods of M in P1 and P2.
Using this identi�cation can view Π2 as a Poisson structure on P := P1 with two properties:
it induces exactly the same foliation as Π1, and it coincides with Π1 on TP |M . We want to
show that there is a di�eomorphism near M , �xing M , which maps Π1 to Π2.

To this aim we apply Moser's theorem on each symplectic leaf O of P (Thm. 7.1 of [6]),
in a way that varies smoothly with O. Denote by Ωi the symplectic form given by Πi on a
leaf O. The convex linear combination (1 − t)Ω1 + tΩ2 is symplectic (because Ω1 and Ω2

coincide at points of M). Let F := M ∩O, identify N |F with a neighborhood in O via φ1,
and consider the retraction ρt : N |F → N |F , v 7→ tv where t ∈ [0, 1]. Let Q be the homotopy
operator given by the retraction ρt (see Chapter 6 of [6]); it satis�es dQ−Qd = ρ∗1− ρ∗0. So
µ := Q(Ω2−Ω1) is a primitive for Ω2−Ω1; furthermore Q can be chosen so that µ vanishes
at points of F . Consider the Moser vector �eld, obtained inverting via (1 − t)Ω1 + tΩ2

the 1-form µ. Following from time 1 to time 0 the �ow of the Moser vector �eld gives a
di�eomorphism ψ of O �xing F such that ψ∗Ω2 = Ω1.

Notice that since the symplectic foliation of P is regular near M this construction varies
smoothly from leaf to leaf. Hence we obtain a di�eomorphism ψ of a tubular neighborhood
of M in P , �xing M , which maps Π1 to Π2. �

Since local uniqueness holds (see subsection 9.2) and since by Proposition 9.3 there is no
topological obstruction, it seems that the global uniqueness statement of Prop. 9.4 should
hold in full generality (i.e. without the assumption on the presymplectic foliation of (M,L))
however we are not able to prove this.

The argument from [1] just before our Prop. 8.2 shows that the uniqueness of (minimal
dimensional) coisotropic embeddings of a given Dirac manifold (M,L) is equivalent to the
following: whenever (P1,Π1) and (P2,Π2) are minimal Poisson manifolds in which (M,L)
embeds coisotropically there exists a di�eomorphism φ : P1 → P2 near M so that Π2 and
φ∗Π1 di�er by the gauge transformation by a closed 2-form B vanishing on M . One could
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hope that if φ : P1 → P2 is chosen to match symplectic leaves and to match Π1|M and
Π2|M then a 2-form B as above automatically exists. This is not the case, as the following
example shows.

Example 9.5. Take M = R3 with Dirac structure

L = span{(−x2
1∂x2 , dx1), (x2

1∂x1 , dx2), (∂x3 , 0)}.
There are two open presymplectic leaves (R±×R2, 1

x2
1
dx1∧dx2) and 1-dimensional presym-

plectic leaves {0}×{c}×R with zero presymplectic form (for every real number c); hence our
Dirac structure is a product of the Poisson structure x2

1∂x1∧∂x2 and of the zero presymplec-
tic form on the x3-axis. The characteristic distribution L∩ TM is always span∂x3 . Clearly
the construction of Thm. 8.1 gives

P1 := (R4, x2
1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂y3)

where y3 is the coordinate on the �bers of P1 →M .
Another Poisson structure on R4 with the same foliation as Π1 and which coincides with

Π1 along M is the following:

Π2 := x2
1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂y3 + x1y3∂x2 ∧ ∂x3 .

On each of the two open symplectic leaves R±×R3 the symplectic form corresponding to Π1

is Ω1 = 1
x2
1
dx1∧dx2+dx3∧dy3, whereas the one corresponding to Π2 is Ω2 = Ω1+ y3

x1
dx1∧dy3.

Clearly the di�erence Ω1−Ω2 does not extend to smooth a 2-form on the whole of R4. Hence
there is no smooth 2-form on R4 relating Π1 and Π2.

Nevertheless Π1 and Π2 are Poisson di�eomorphic: an explicit Poisson di�eomorphism

is given by the global coordinate change that transforms x2 into x2 + y2
3
2 x1 and leaves the

other coordinates untouched.

9.2. Local uniqueness. While we are not able to prove a global uniqueness statement in
the general case, we prove in this subsection that local uniqueness holds. We start with a
normal form statement.

Proposition 9.6. Let Mm be a coisotopic submanifold of a Poisson manifold P such that
k := codim(M) equals rk(]N∗M). Then about any x ∈ M there is a neighborhood U ⊂ P
and coordinates {q1, . . . , qk, p1, . . . , pk, y1, . . . , ym−k} de�ned on U such that locally M is
given by the constraints p1 = 0, . . . , pk = 0 and

(10) Π =
k∑

I=1

∂qI ∧ ∂pI +
m−k∑
i,j=1

ϕij(y)∂yi ∧ ∂yj

for functions ϕij : Rm−k → R.

Remark 9.7. The existence of coordinates in which Π has the above split form is guaranteed
by Weinstein's Splitting Theorem [21]; the point in the above proposition is that one can
choose the coordinates (q, p, y) so that M is given by the constrains p = 0.

Proof. We adapt the proof of Weinstein's Splitting Theorem [21] to our setting. To simplify
the notation we will often write P in place of U and M in place of M ∩ U . We proceed by
induction over k; for k = 0 there is nothing to prove, so let k > 0.

Choose a function q1 on P near x such that dq1 does not annihilate ]N∗M . Then
Xq1 |M is transverse to M , because there is a ξ ∈ N∗M with 0 6= 〈]ξ, dq1〉 = −〈ξ,Xq1〉.
Choose a hypersurface in P containing M and transverse to Xq1 |M , and determine the
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function p1 by requiring that it vanishes on the hypersurface and dp1(Xq1) = −1. Since
[Xq1 , Xp1 ] = X1 = 0 the span of Xp1 and Xq1 is an integrable distribution giving rise to
a foliation of P by surfaces. This foliation is transverse to P1, which we de�ne as the
codimension two submanifold where p1 and q1 vanish. M1 := P1 ∩M is a clean intersection
and is a codimension one submanifold of M . To proceed inductively we need

Lemma 9.8. P1 has an induced Poisson structure Π1, M1 ⊂ P1 is a coisotropic submanifold
of codimension k−1, and the sharp-map ]1 of P1 is injective on the conormal bundle to M1.

Proof. P1 is cosymplectic because ]N∗P1 is spanned by Xq1 and Xp1 , which are transverse
to P1. Hence it has an induced Poisson structure Π1. Recall from section 2 that if ξ1 ∈ T ∗xP1

then ]1ξ1 ∈ TP1 is given as follows: extend ξ1 to a covector ξ of P by asking that it annihilate
]N∗

xP1 and apply ] to it. Now in particular let x ∈M1 and ξ1 be an element of the conormal
bundle of M1 in P1. We have TxM = TxM1⊕RXp1(x) ⊂ TxM1 + ]N∗

xP1, so ξ ∈ N∗
xM , and

since M is coisotropic in P we have ]ξ ∈ TxM . Hence ]1ξ1 ∈ TxP1 ∩ TxM = TxM1, which
shows the claimed coisotropicity. The injectivity of ]1 on the conormal bundle follows by
the above together with the injectivity of ]|N∗M , which holds by Lemma 9.1. �

By the induction assumption there are coordinates on P1 so that

Π1 =
k∑

I=2

∂qI ∧ ∂pI +
m−k∑
i,j=1

ϕij(y)∂yi ∧ ∂yj

and M1 ⊂ P1 is given by the constraints p2 = 0, . . . , pk = 0. We extend the coordinates on
P1 to the whole of P so that they are constant along the surfaces tangent to span{Xq1 , Xp1}.
We denote collectively by xα the resulting functions on P , which together with q1 and p1

form a coordinate system on P . We have {xα, q1} = 0 and {xα, p1} = 0, and using the
Jacobi identity one sees that {xα, xβ} Poisson commutes with q1 and p1, and hence it is
a function of the xα's only. Further {xα, xβ}|P1 = {xα|P1 , xβ|P1}1 since xα, xβ annihilate
]N∗P1. Hence formula (10) for the Poisson bivector Π follows.

To show that M is given by the constraints p1 = · · · = pk = 0 we notice the following.
p1 was chosen to vanish on M . The functions p2, · · · , pk on P1 were chosen to to vanish
on M1, and since TM |M1 = TM1 ⊕ RXp1 |M1 it follows that their extensions vanish on the
whole of M . This concludes the proof of Prop. 9.6. �

Using the normal forms derived above we can prove local uniqueness:

Proposition 9.9. Suppose we are given a Dirac manifold (M,L) for which L ∩ TM has
constant rank k, and let (P,Π) be a Poisson manifold of dimension dimM + k in which
(M,L) embeds coisotropically. Then about each x ∈ M there is a neighborhood U ⊂ P
which is Poisson di�eomorphic to an open set in the canonical Poisson manifold associated
to (M,L) in Prop. 8.2.

Proof. By Prop. 9.6 there are coordinates {qI , pI , yi} on U such that locally M is given by
pI = 0 and

Π =
k∑

I=1

∂qI ∧ ∂pI +
m−k∑
i,j=1

ϕij(y)∂yi ∧ ∂yj .

We want to apply the construction of Thm. 8.1 to (M,L). To do so we need to make a choice
of complement to E := L ∩ TM = span{∂qI |M}; our choice is V := span{∂yi |M}. Since
by assumption L is the pullback of graph(Π) to M , L is spanned by sections (∂qI |M ⊕ 0)
and (

∑
j ϕij(y)∂yj |M ⊕ dyi|M ). Hence the pullback of L to the total space of the vector
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bundle π : E∗ → M is spanned by (∂qI ⊕ 0), (∂pI ⊕ 0), and (
∑

j ϕij(y)∂yj ⊕ dyi). Next
we consider the embedding E∗ → T ∗M induced by the splitting TM = E ⊕ V and pull
back the canonical 2-form on T ∗M . In the coordinates (qI , yi) on M the pullback 2-form is

simply
∑k

I=1 dpI ∧dqI (see eq. (6.7) in [18]), where with pI we denote the linear coordinates
on the �bers of E∗ dual to the qI . Transforming π∗L by this 2-form gives exactly graph(Π).
Hence we conclude that, nearby x ∈ M , the Poisson manifold (P,Π) is obtained by the
construction of Thm. 8.1 (with the above choice of distribution V ). �

References

[1] A. Alekseev and E. Meinrenken. Ginzburg-Weinstein via Gelfand-Zeitlin. J. Di�erential Geom., 76(1):1�
34, 2007.

[2] H. Bursztyn, M. Crainic, A. Weinstein, and C. Zhu. Integration of twisted Dirac brackets. Duke Math.
J., 123(3):549�607, 2004.

[3] H. Bursztyn and O. Radko. Gauge equivalence of Dirac structures and symplectic groupoids. Ann. Inst.
Fourier (Grenoble), 53(1):309�337, 2003.

[4] I. Calvo and F. Falceto. Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys.,
70(3):231�247, 2004.

[5] I. Calvo and F. Falceto. Star products and branes in Poisson-Sigma models. Commun. Math. Phys.,
268(3):607�620, 2006.

[6] A. Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2001.

[7] A. S. Cattaneo. On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds.
Lett. Math. Phys., 67(1):33�48, 2004.

[8] A. S. Cattaneo and G. Felder. A path integral approach to the Kontsevich quantization formula. Comm.
Math. Phys., 212(3):591�611, 2000.

[9] A. S. Cattaneo and G. Felder. Coisotropic submanifolds in Poisson geometry and branes in the Poisson
sigma model. Lett. Math. Phys., 69:157�175, 2004.

[10] A. S. Cattaneo and G. Felder. Relative formality theorem and quantisation of coisotropic submanifolds.
Adv. in Math., 208:521�548, 2007.

[11] A. S. Cattaneo and F. Schätz. Equivalences of higher derived brackets, 2007, ArXiv QA/0704.1403.
[12] A. S. Cattaneo and M. Zambon. Pre-poisson submanifolds, 2006, ArXiv math/0710.5772, to appear in

Travaux Mathématiques.
[13] T. J. Courant. Dirac manifolds. Trans. Amer. Math. Soc., 319(2):631�661, 1990.
[14] M. Crainic and R. L. Fernandes. Integrability of Poisson brackets. J. Di�erential Geom., 66(1):71�137,

2004.
[15] M. J. Gotay. On coisotropic imbeddings of presymplectic manifolds. Proc. Amer. Math. Soc., 84(1):111�

114, 1982.
[16] M. Kontsevich. Deformation quantization of Poisson manifolds. Lett. Math. Phys., 66(3):157�216, 2003.
[17] C.-M. Marle. Sous-variétés de rang constant d'une variété symplectique. In Third Schnepfenried ge-

ometry conference, Vol. 1 (Schnepfenried, 1982), volume 107 of Astérisque, pages 69�86. Soc. Math.
France, Paris, 1983.

[18] Y.-G. Oh and J.-S. Park. Deformations of coisotropic submanifolds and strong homotopy Lie algebroids.
Invent. Math., 161(2):287�360, 2005.

[19] I. Vaisman. Lectures on the geometry of Poisson manifolds, volume 118 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.

[20] A. Wade. Poisson thickenings of Dirac manifolds, in preparation.
[21] A. Weinstein. The local structure of Poisson manifolds. J. Di�erential Geom., 18(3):523�557, 1983.
[22] P. Xu. Dirac submanifolds and Poisson involutions. Ann. Sci. École Norm. Sup. (4), 36(3):403�430,

2003.

Institut für Mathematik, Universität Zürich-Irchel, Winterthurerstr. 190, CH-8057

Zürich, Switzerland

E-mail address: alberto.cattaneo@math.unizh.ch, zambon@math.unizh.ch


