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Abstract

We prove that for any given homotopic C1-maps u, v : G→M in a
nontrivial homotopy class from a metric graph into a closed manifold
of negative sectional curvature, the distance between u and v can be
bounded by 3 (length(u) + length(v)) + C(κ, %/20) where % > 0 is a
lower bound of the injectivity radius and −κ < 0 an upper bound for
the sectional curvature of M . The constant C(κ, ε) is given by

C(κ, ε) = 8sh−1
κ (1) + 8sh−1

κ (1/shκ(ε))

with shκ(t) = sinh (
√
κ t). Various applications are given.
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0 Introduction

Let G be a finite graph and M = X/Γ a complete Riemannian manifold
with universal cover X and Γ as group of deck transformations. Assume
that M has negative sectional curvature bounded from above by −κ < 0
and injectivity radius bounded from below by % > 0. A map u : G → M
is called C1 if the restriction of u to every edge is a C1-map. In an obvious
way one defines the length L(u) of a C1-map u : G→M by summing up the
lengths of the restriction of u to any of the edges of G. Denote by N(u, v)
the distance between two homotopic C1-maps u, v : G→M ,

N(u, v) = inf
H
{sup
z∈G

`H(z)}

where the infimum is taken over all C1-homotopies H : G × [0, 1] → M
between u and v and `H(x) is the length of the curve s 7→ H(x, s).

Theorem 0.1 Let κ > 0 and % > 0 be given. Then for any Riemannian
manifold M with sectional curvature bounded from above by −κ < 0 and
injectivity radius bounded from below by % > 0, for any finite graph G and
for any homotopic C1-maps u, v : G → M , which are not in the trivial
homotopy class

N(u, v) ≤ 3 (L(u) + L(v)) + C(κ, %/20) (0.1)

where C(κ, ε) := 8sh−1
κ (1) + 8sh−1

κ (1/sh−1
κ (ε)) and shκ(t) = sinh(κt).

Remark: For C1-maps u, v : G→M in the trivial homotopy class inequality
(0.1) is not true. Assuming that M is closed, one obtains in this case an
estimate of the form N(u, v) ≤ 1

2
(L(u) + L(v)) + diam(M) where diam(M)

denotes the diameter of M .

As an application of Theorem 0.1 we obtain a Poincaré inequality for homo-
topic C1-maps u, v : M ′ → M where M ′ is a closed Riemannian manifold.
To state it we need to introduce some further notation. For any 1 ≤ p <∞
and arbitrary homotopic C1-maps u, v : M ′ → M introduce the distance
function

Np(u, v) := inf
{
Np(H) |H : M ′ × [0, 1]→M

C1 − homotopy between u and v
}
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where

Np(H) :=

(∫
M

`H(x)pdvol(x)

)1/p

,

and `H(x) =
∫ 1

0
‖ d
ds
H(x, s)‖ds as above. Finally we introduce the energy

E(u) of a C1-map u : M ′ →M ,

E(u) :=

∫
M

‖dxu‖2dvol(x)

where ‖dxu‖ denotes the Hilbert-Schmidt norm of the differential dxu :
TxM

′ → Tu(x)M .

Theorem 0.2 Let M and M ′ be closed Riemannian manifolds and assume
that M has negative sectional curvature. Then there exists C2 > 0 depending
only on the geometry of M and M ′ so that for any homotopic C1-maps u, v :
M ′ →M

N2(u, v) ≤ C2

(
E(u)1/2 + E(v)1/2 + 1

)
. (0.2)

Related work: In [KKS1], by different methods, inequality (0.2) is proved
for target manifolds M with nonpositive sectional curvature with a constant
C2 which depends on the geometry of M and M ′ and, in addition, on the
homotopy class of the maps u, v considered.

Theorem 0.2 can be applied to improve Theorem 0.2 in [KKS1] on perturba-
tions of the harmonic map equation for maps u : M ′ →M ,

τ(u) + F (x, u) + L(x, u)u∗G(x, u) = 0. (0.3)

For the compactness result of Theorem 0.2 in [KKS1] to hold, the bound C∗
on the size of the perturbation L(x, u)u∗G(x, u),

max
x∈M ′
y∈M

‖L(x, y)‖ ‖G(x, y)‖ ≤ C∗

can now be chosen independently of the homotopy class of maps considered
if M has negative sectional curvature. Here τ(u) denotes the tension field,
F (x, y) is an x-dependent vector field on M , L(x, y) an x-dependent linear
operator on the tangent space TyM and G(x, y) an y-dependent vector field
on M ′.
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It is planned to extend Theorem 0.1 and Theorem 0.2 to other classes of
target manifolds and to investigate how the corresponding constants depend
on the geometric data of M in these cases.

The paper is organized as follows: Theorem 0.1 is proved in section 2 and the
applications mentioned above, including Theorem 0.2, are treated in section
3. In section 1 we show estimates on the displacement functions needed in
the proof of Theorem 0.1. To make the paper selfcontained we have included
two appendices.

Acknowledgments: The authors thank A. Katok for helpful discussions.

1 Estimates of the displacement function

Assume that (M, g) is a complete Riemannian manifold of negative sectional
curvature with

K ≤ −κ < 0 (1.1)

for some constant κ > 0 and of injectivity radius inj(M) bounded from below,

inj(M) ≥ % > 0. (1.2)

Then M ∼= X/Γ where X is the universal covering of M and Γ is the group of
deck transformations of M . The main result of this section is Proposition 1.5
which states an estimate for displacement functions used in the proof of
Theorem 0.1 - see section 3.

First we need to introduce some more notation and establish three lemmas.
For any γ ∈ Γ denote by dγ : X → R the displacement function, dγ(x) :=
d(x, γx), where d denotes the distance function on X and by MIN(γ) the
closed subset

MIN(γ) := {x ∈ X | dγ(x) = inf
X
dγ}.

Assumptions (1.1) - (1.2) imply that for any nontrivial γ ∈ Γ, MIN(γ) con-
sists of one geodesic curve - see Appendix B where we collect results needed
about such manifolds. As dγ is convex MIN(γ) is a convex set. This allows
to define the metric projection πγ : X → MIN(γ) with πγx the unique point
in MIN(γ) satisfying

sγ(x) := d(x, πγx) = min{d(x, y) | y ∈ MIN(γ)}.
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Given a complete geodesic A ⊆ X, considered as a closed subset of X, and
a unit speed geodesic c : R → X, consider the distance function r(t) :=
d (c(t), A). As t 7→ r(t) is a convex function, the set r−1([0, ε]), consisting of
all t ∈ R with c(t) in or on the tube of given radius ε > 0 around A, is either
empty or an interval [a, b] ∩ R where a := inf r−1([0, ε]) ∈ R ∪ {−∞}, b :=
sup r−1([0, ε]) ∈ R∪{+∞}. The following result says that r(t) grows at least
linearly outside [a, b] ∩ R. Recall that

shκ(t) := sinh
(√

κ t
)
.

Lemma 1.1 Assume (1.1) - (1.2) and let C1(κ, ε) := sh−1
κ (1/shκ(ε)). For

ε > 0 with [a, b] ∩ R 6= ∅ the following statements hold:

(i) If a > −∞, then r(a− t) ≥ t− C1(κ, ε) ∀t ≥ 0.

(ii) If b < +∞, then r(b+ t) ≥ t− C1(κ, ε) ∀t ≥ 0.

Remark: C1(κ, ε) is strictly decreasing in both κ and ε.

Proof: (i) and (ii) are proved in the same fashion so we consider (ii) only.
Denote by x and y = y(t) the orthogonal projections of c(b) and c(b+ t) onto
the geodesic A and consider the geodesic quadrilateral x, c(b), c(b + t), y(t).
As r(t) is convex, r |[b,b+t] is monotone increasing and hence the angles at the
points x, c(b) and y(t) are ≥ π/2. By Lemma A.1,

shκ (d(x, y)) ≤ 1/shκ(ε). (1.3)

On the other hand, as the angle at c(b) is ≥ π/2, t = d (c(b), c(b+ t)) satisfies
t ≤ d (x, c(b+ t)) and by the triangle inequality,

d (x, c(b+ t)) ≤ r(b+ t) + d(x, y).

Combining these inequalities with (1.3), one obtains

t ≤ r(b+ t) + sh−1
κ (1/shκ(ε))

as claimed. �

Recall that for γ ∈ Γ, sγ(x) denotes the distance of x to MIN(γ), sγ(x) =
d(x, πγx).
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Lemma 1.2 Assume (1.1) - (1.2) holds. Then for any γ ∈ Γ\id, x ∈ X

dγ(x) ≥ inf
X
dγ + 2sγ(x)− C2(κ, %)

where C2(κ, ε) := 4sh−1
κ (1) + 2sh−1

κ (1/shκ(ε)).

Proof: Let c : [0, dγ(x)]→ X be an arclength parametrization of the unique
geodesic [x, γx] from x to γx and t ∈ [0, dγ(x)] the parameter so that for
z := c(t)

d (z,MIN(γ)) = inf
0≤s≤dγ(x)

d (c(s),MIN(γ)) .

Let us treat first the case where z 6= x and z 6= γx. Denote by x′, y′, z′ the
projections of x, γx, and z respectively onto MIN(γ). Then the geodesic from
z to z′ intersects MIN(γ) and [x, γx] orthogonally. Further note that, by the
definition of %,

max (d(z′, y′), d(z′, x′)) ≥ 1

2
inf
X
dγ ≥ %.

As shκ(t) is increasing in t, Lemma A.1 leads to the following upper bound
for d(z, z′),

shκ (d(z, z′)) ≤ 1/shκ(%). (1.4)

Let x′′ be the projection of x′ onto the geodesic [x, z′] connecting x and z′

and y′′ the projection of y′ onto the geodesic [γx, z′]. As the geodesic [x′, x′′]
intersects [x, z′] orthogonally and [x, x′] intersects MIN(γ) orthogonally one
can apply Lemma A.2 either to the geodesic triangle (x, x′, x′′) or (x′, x′′, z′)
to conclude that

shκ (d(x′, x′′)) ≤ 1. (1.5)

Arguing in the same way one gets

shκ (d(y′, y′′)) ≤ 1. (1.6)

Inequalities (1.4) - (1.6) are now used to obtain the claimed statement: First
note that

dγ(x) = d(x, γx) = d(x, z) + d(z, γx).

By the triangle inequality

d(x, z) ≥ d(x, z′)− d(z, z′); d(z, γx) ≥ d(γx, z′)− d(z, z′).
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As d(x, z′) = d(x, x′′) + d(x′′, z′) and d(γx, z′) = d(γx, y′′) + d(y′′, z′) it then
follows again by the triangle inequality

d(x, z′) ≥ d(x, x′) + d(x′, z′)− 2d(x′, x′′)

and
d(γx, z′) ≥ d(γx, y′) + d(y′, z′)− 2d(y′, y′′).

Combining these inequalities with (1.4) - (1.6) and using that d(x′, z′) +
d(z′, y′) = d(x′, y′) = infX dγ as well as d(γx, y′) = d(x, x′) = sγ(x) it then
follows that

dγ(x) ≥ inf
X
dγ + 2sγ(x)− C2(κ, %)

where
C2(κ, ε) := 4sh−1

κ (1) + 2sh−1
κ (1/shκ(ε)) .

The cases where z = x or z = γx are treated in a similar way - in fact they
are easier. �

Given γ1, γ2 ∈ Γ\id with MIN(γ1) 6= MIN(γ2) and a unit speed geodesic
c : R→ X, consider the distance function

ri(t) := d (c(t),MIN(γi)) (1 ≤ i ≤ 2)

and denote by Iε the set of all t ∈ R with c(t) in the ε-tube around MIN(γ1)
and MIN(γ2),

Iε := r−1
1 ([0, ε]) ∩ r−1

2 ([0, ε]).

As r1 and r2 are both convex and the intersection of convex sets is again
convex, Iε is convex. The following result gives an estimate of the length of
Iε.

Lemma 1.3 Assume that (1.1) - (1.2) hold and γ1, γ2 ∈ Γ\id satisfy MIN(γ1) 6=
MIN(γ2). Then for any 0 < ε < inj(M)/10,

length(Iε) ≤ inf
X
dγ1 + inf

X
dγ2 .

Proof: Assume that the contrary holds. As Iε is connected we may assume
without loss of generality that c is parametrized in such a fashion that [0, a] ⊆
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Iε where a := a1 + a2 and ai := infX dγi . Denote by πi ≡ πγi : X → MIN(γi)
the metric projection onto MIN(γi) and let

xi := πic(0), yi := πi (c(a)) .

Let ci = cγi : R → X be unit speed parametrizations of MIN(γi) such that
ci(0) = xi and ci (d(xi, yi)) = yi and choose γi ∈ {γi, γ−1

i } so that

γi (ci(t)) = ci(t+ ai) ∀t ∈ R.

By the triangle inequality

d (x1, x2) ≤ d (x1, c(0)) + d (c(0), x2) ≤ 2ε (1.7)

and similarly d(y1, y2) ≤ 2ε. Further for i = 1, 2,

d (c(0), c(a))− 2ε ≤ d(xi, yi) ≤ d (c(0), c(a)) + 2ε.

As d (c(0), c(a)) = a, this means that |d(xj, yj) − a| < 2ε. Together with
the fact that d(xj, yj) = d (xj, cj(a)) ± d (cj(a), yj) one then concludes that
d (cj(a), yj) ≤ 2ε. Hence

d (c1(a), c2(a)) ≤ d (c1(a), y1) + d(y1, y2) + d (y2, c2(a)) ≤ 6ε. (1.8)

As d (c1(t), c2(t)) is convex in t (cf [BGS, Theorem 1.3]) it then follows from
(1.7) - (1.8) that

d (c1(t), c2(t)) ≤ 6ε ∀t ∈ [0, a].

We claim that for x := c(0),

d(γ2γ1x, γ1γ2x) ≤ 20ε. (1.9)

Hence the projection of the geodesic [x, (γ2γ1)−1γ1γ2x] ⊆ X leads to a closed
geodesic loop in M of length 20ε < 2inj(M). This implies that γ1γ2 = γ2γ1

and, by Lemma B.2, MIN(γ1) = MIN(γ2). As γi ∈ {γi, γ−1
i },MIN(γi) =

MIN(γi) and hence MIN(γ1) = MIN(γ2), contradicting our assumption.

It remains to prove (1.9). As γ1c1(0) = c1(a1),

d (γ1x, c1(a1)) = d (x, c1(0)) ≤ ε

and therefore

d (γ1x, c2(a1)) ≤ d (γ1x, c1(a1)) + d (c1(a1), c2(a1)) ≤ 7ε.
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As γ2c2(a1) = c2(a1 + a2) = c2(a) this leads to

d (γ2γ1x, c2(a)) ≤ 7ε.

Similarly one gets
d (γ1γ2x, c1(a)) ≤ 7ε

and thus, by the triangle inequality

d (γ2γ1x, γ1γ2x)

≤ d (γ2γ1x, c1(a)) + d (c1(a), c2(a)) + d (c2(a), γ1γ2x)

≤ 20ε. �

The following estimate of the displacement function is the main ingredient
into our proof of Proposition 1.5 stated below.

Proposition 1.4 Assume (1.1) - (1.2) holds. Then for any γ1, γ2 ∈ Γ\id
with γ1γ2 6= γ2γ1 and any x, y ∈ X,

max
1≤j≤2

(
dγj(x) + dγj(y)

)
≥ d(x, y)− C4(κ, %/20)

where
C4(κ, ε) := 4C1(κ, ε) + 2C2(κ, ε).

Proof: Let ε := %/20 and for any given x, y ∈ X, denote by c : [0, d(x, y)]→
X the unit speed parametrization of the geodesic [x, y]. First consider the
case where there exists γ ∈ {γ1, γ2} with d (c(t),MIN(γ)) > ε for any
0 ≤ t ≤ d(x, y). Denote by t0 ∈ [0, d(x, y)] the parameter so that ε1 :=
d (c(t0),MIN(γ)) is the minimal value of r(t) := d (c(t),MIN(γ)). By Lemma 1.1,
applied with (a := t0, b := t0) if 0 < t0 < d(x, y), with (a < 0, b := 0) if 0 = t0,
and with (a := t0, b > t0) if t0 = d(x, y) one gets

r(0) ≥ t0 − C1(κ, ε1)

and
r (d(x, y)) ≥ (d(x, y)− t0)− C1(κ, ε1)

As ε ≤ ε1, one has C1(κ, ε) > C1(κ, ε1) and thus, adding the two inequalities
above,

r(0) + r (d(x, y)) ≥ d(x, y)− 2C1(κ, ε).
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As sγ(x) = r(0) and sγ(y) = r (d(x, y)), it then follows from Lemma 1.2,

dγ(x) + dγ(y) ≥ 2 inf
X
dγ + 2r(0) + 2r (d(x, y))− 2C2(κ, %)

≥ 2 inf
X
dγ + 2d(x, y)− C4(κ, ε)

and the claimed estimate is proved in this case. In the case where no such γ
exists it follows that for the convex functions (i = 1, 2)

ri(t) := d (c(t),MIN(γi)) 0 ≤ t ≤ d(x, y),

Ji := r−1
i ([0, ε]) 6= ∅ is an interval, Ji = [ai, bi] with 0 ≤ ai ≤ bi ≤ d(x, y).

By Lemma 1.1 one obtains in the case 0 < ai

ri(0) ≥ ai − C1(κ, ε) (1.10)

and, similarly, if bi < d(x, y)

ri (d(x, y)) ≥ (d(x, y)− bi)− C1(κ, ε). (1.11)

As −C1(κ, ε) ≤ 0, (1.10) and (1.11) trivially hold in the case ai = 0 and
bi = d(x, y) respectively. Hence

ri(0) + ri (d(x, y)) ≥ d(x, y)− length(Ji)− 2C1(κ, ε).

As sγi(x) = ri(0) and sγi(y) = ri (d(x, y)) it then follows from Lemma 1.2,

dγi(x) + dγi(y) ≥ 2 inf
X
dγi + 2ri(0) + 2ri (d(x, y))− 2C2(κ, %)

≥ 2 inf
X
dγi + 2d(x, y)− 2 length(Ji)− C4(κ, ε)

(1.12)

where for the last inequality we used that as ε < %

C4(κ, ε) :=4C1(κ, ε) + 2C2(κ, ε)

≤ 4C1(κ, ε) + 2C2(κ, %).

Now add the inequalities (1.12) for i = 1 and 2. As γ1γ2 6= γ2γ1 one has by
Lemma B.2 MIN(γ1) 6= MIN(γ2) and hence Lemma 1.3 leads to

inf
X
dγ1 + inf

X
dγ2 ≥ length(J1 ∩ J2)
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and

2 max
1≤i≤2

(dγi(x) + dγi(y)) ≥
2∑
i=1

(dγi(x) + dγi(y))

to obtain

2 max
1≤i≤2

(dγi(x) + dγi(y)) ≥

≥ 4d(x, y) + 2 (length(J1 ∩ J2)− lengthJ1 − lengthJ2)− 2C4(κ, ε)

≥ 2 (d(x, y)− C4(κ, ε))

leading to the claimed inequality. �

Given elements γ1, . . . , γn in Γ\id, recall that Z(γ1, . . . , γn) denotes the cen-
tralizer of {γ1, . . . , γn}.

Proposition 1.5 Assume that (1.1) - (1.2) hold. Let x, y be arbitrary points
in X and γ1, . . . , γn ∈ Γ\id with n ≥ 1. Then there exist γ ∈ {γ1, . . . , γn}
and α ∈ Z(γ1, . . . , γn) such that

dγ(x) + dγ(y) ≥ d(x, αy)− C4(κ, %/20).

Proof: Consider first the case where Z(γ1, . . . , γn) = {id}. This implies in
particular that n ≥ 2 and that there are two elements γi, γj ∈ {γ1, . . . , γn}
with γiγj 6= γjγi. Hence by Proposition 1.4, there exists γ ∈ {γi, γj} so that

dγ(x) + dγ(y) ≥ d(x, y)− C4(κ, %/20).

Thus in this case the conclusion holds with α = id. In the case Z(γ1, . . . , γn) 6=
{id}, we have {γ1, . . . , γn} ⊂ Z(γ1, . . . , γn) and this group is cyclic by Lemma B.2,
i.e. there exists β ∈ Z(γ1, . . . , γn) with

Z(γ1, . . . , γn) = {βn | n ∈ Z}.

Let πβ : X → MIN(β) be the metric projection, set x′ := πβ(x), y′ := πβ(y)
and choose γ ∈ {γ1, . . . , γn} arbitrary. Recall that sγ(x) = d (x, πγ(x)). Then
sγ = sβ as MIN(γ) = MIN(β) - see Lemma B.2 - and infX dβ ≤ infX dγ as γ
is an element of Z(γ1, . . . , γn) and hence of the form γ = βi for some i ∈ Z.
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Further there exists m ∈ Z so that d(βmy′, x′) ≤ infX dβ. Combining these
inequalities one obtains

d(x, βmy) ≤ d(x, x′) + d(x′, βmy′) + d(βmy′, βmy)

≤ sβ(x) + inf
X
dβ + sβ(y)

≤ sγ(x) + inf
X
dγ + sγ(y)

≤ dγ(x) + dγ(y) + 2C2(κ, %)

where for the last inequality we used Lemma 1.2. As 2C2(κ, %) ≤ 2C2(κ, %/20) ≤
C4(κ, %/20), the claimed statement holds in this case with α := βm. �

2 Short homotopies between graphs

In this section we prove Theorem 0.1 as stated in the introduction. Let G
be a finite graph. For simplicity of exposition only, we assume that G is a
connected metric graph (i.e. every edge has some positive length) and has
no terminals (i.e. that every edge is incident to at least two edges).

As above, let (M, g) denote a complete Riemannian manifold with

K ≤ −κ < 0 (2.1)

and
inj(M) ≥ % > 0 (2.2)

for some given constants % > 0, κ > 0. A map u : G→M is called C1 if the
restriction of u to every edge is C1. In an obvious way one defines the length
L(u) of a C1-map u : G→M by summing the lengths of the restriction of u
to any of the edges of G.

Theorem 2.1 Assume that (M, g) satisfies (2.1) - (2.2). Then for any ho-
motopic C1-maps u, v : G → M which are not in the trivial homotopy class
there exists a C1-homotopy H : G × [0, 1] → M so that supz∈G `H(z) ≤
3 (L(u) + L(v)) + C(κ, %/20) where C(κ, ε) := 8sh−1

κ (1) + 8sh−1
κ (1/shκ(ε))

with shκ(ε) := sinh(
√
κ ε) and `H(t) is the length of [0, 1]→M, s 7→ H(t, s).
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Remark 1 Note that the constant C(κ, %/20) is independent of G.

Remark 2 In the case where u, v : G→M are homotopic C1-maps which are
in the trivial homotopy class it is necessary to assume that M is compact.
By lifting u and v to the universal cover X one verifies easily that for any
closed Riemannian manifold (M, g) of nonpositive sectional curvature there
exists a C1-homotopy H : G× [0, 1]→M so that

sup
z∈G

`H(z) ≤ 1

2
(L(u) + L(v)) + diam(M)

where diam(M) denotes the diameter of M .

In the remainder of this section we prove Theorem 2.1. We begin arguing as
in the proof of Theorem 5.1 in [KKS1]. Recall that the Euler characteristic
χ(G) of G is defined by

χ(G) := ] vertices− ] edges .

By a straightforward inductive argument one sees that χ(G) ≤ 1 as G is
connected. Further, G is said to be a tree if it does not contain any loop.
Again by a straight forward inductive argument one verifies that a connected
graph G is a tree iff χ(G) = 1. Let T1 ⊆ G be a maximal connected subgraph
of G such that T1 is in addition a tree. T1 is obtained from G by removing m
edges, denoted by e1, . . . , em. It then follows from the above characterization
of trees that m = 1−χ(G). Let p1, . . . , pm be the midpoints of e1, . . . , em and
consider the abstract metric tree T which is obtained from G by removing
the points pj and then completing the metric tree. A point pi then gives rise
to two points, p+

i and p−i , in T . Thus T is a metric tree whose terminals are
the vertices p+

i , p
−
i , i = 1, . . . ,m, and G is obtained from T by identifying p+

i

with p−i for any 1 ≤ i ≤ m. Let us denote by ϕ : T → G this identification
map. We choose a base point t0 in the interior of the tree T . For every
terminal p+

i , p
−
i of T there is a unique path σ+

i , σ
−
i : [0, 1]→ T parametrized

proportionally to arclength from t0 to p+
i , p

−
i . By our assumption there exists

a homotopy HG : G × [0, 1] → M with HG
0 = v and HG

1 = u. Let HT :
T × [0, 1]→M be the map

HT (t, s) = HG (ϕ(t), s) .

Since T is contractible, we can lift HT to a map

H
T

: T × [0, 1]→ X
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where π : X → M is the universal covering of M . Since HT (p+
i , s) =

HT (p−i , s) for any i = 1, . . . ,m and s ∈ [0, 1], the points H
T

(p+
i , s) and

H
T

(p−i , s) are identified by deck transformations. Hence there are isometries
γ1, . . . , γm in the deck transformation group Γ so that for any 0 ≤ s ≤ 1,

γi

(
H
T

(p+
i , s)

)
= H

T
(p−i , s).

Introduce
L(σ±i , s) := length

(
τ 7→ H

T
(σ±i (τ), s)

)
and note that

L(σ±i , 0) ≤ L(v)

as well as
L(σ±i , 1) ≤ L(u).

Since we assume that u, v are not in the trivial homotopy class, {γ1, . . . , γm}∩
Γ\id 6= ∅. W.l.o.g. assume that {γ1, . . . , γk} = {γj | 1 ≤ j ≤ m, γj 6= id}
where k ≥ 1 and let

x := H
T

(t0, 0) ∈ X; y := H
T

(t0, 1) ∈ X. (2.3)

By Proposition 1.5 there exists γ ∈ {γ1, . . . , γk} and α ∈ Z(γ1, . . . , γk) so
that

dγ(x) + dγ(y) ≥ d(x, αy)− C4(κ, %/20). (2.4)

W.l.o.g. we may assume that γ = γ1. Consider the pathes τ 7→ H
T (
σ−1 (τ), 0

)
from x = H

T
(t0, 0) to H

T
(p−1 , 0) and τ 7→ γ1H

T (
σ+

1 (τ), 0
)

from γ1x to

γ1H
T

(p+
1 , 0) = H

T
(p−1 , 0). By the triangle inequality and the estimate above

dγ1(x) ≤ length
(
τ 7→ H

T
(σ−1 (τ), 0)

)
+ length

(
τ 7→ γ1H

T
(σ+

1 (τ), 0)
)

≤ 2L(v)

(2.5)

and similarly
dγ1(y) ≤ 2L(u). (2.6)

Define the homotopy ĤT : T × [0, 1]→ X given for any t ∈ T by the geodesic

s 7→ ct(s) from H
T

(t, 0) to αH
T

(t, 1), parametrized proportional to arclength
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with α ∈ Z(γ1, . . . , γk) given as above. Then ĤT is a C1-homotopy. We claim
that for any 1 ≤ i ≤ m and any 0 ≤ s ≤ 1

γiĤ
T (p+

i , s) = ĤT (p−i , s). (2.7)

To see it, let cp±i be the geodesic from H
T

(p±i , 0) to αH
T

(p±i , 1). Then γicp+
i

is the geodesic from γiH
T

(p+
i , 0) = H

T
(p−i , 0) to

γiαH
T

(p+
i , 1) = αγiH

T
(p+
i , 1) = αH

T
(p−i , 1)

as α is an element in the centralizer Z(γ1, . . . , γm). Thus γicp+
i

is the geodesic

cp−i and hence (2.7) established. By (2.7), ĤT induces a homotopy H :

G × [0, 1] → M . For z0 := ϕ(t0) ∈ G (with ϕ : T → G the identification
map) we have

`H(z0) = d
(
H
T

(t0, 0), αH
T

(t0, 1)
)

= d(x, αy).

Hence by (2.4) - (2.6)

`H(z0) ≤ 2 (L(v) + L(u)) + C4(κ, %/20)

where (cf Lemma 1.4, Lemma 1.1 and Lemma 1.2)

C4(κ, ε) = 4C1(κ, ε) + 2C2(κ, ε)

= 4sh−1
κ (1/shκ(ε)) + 8sh−1

κ (1) + 4sh−1
κ (1/shκ(ε))

= 8sh−1
κ (1/shκ(ε)) + 8sh−1

κ (1)

which by definition equals C(κ, ε). By the triangle inequality we then obtain
for any z ∈ G,

`H(z) ≤ 3 (L(u) + L(v)) + C(κ, %/20)

as claimed. �

3 Proof of Theorem 0.2

First we need to prove the following
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Proposition 3.1 Assume that M ′ has negative sectional curvature. Denote
by 2r the convexity radius of M and let x0 ∈M and 0 < µ < 1 be arbitrary.
Then there exists a constant C3 > 0 so that for any homotopic C1-maps
u, v : M ′ →M there is an open subset Auv ⊆ Br(x0) with

vol(Auv) > µvol (Br(x0))

and the property that for any z ∈ Auv there exists a geodesic homotopy 1

H : M ′ × [0, 1]→M from u to v satisfying

length (s 7→ H(z, s)) ≤ C3

(
E(u)1/2 + E(v)1/2 + 1

)
.

The constant C3 depends only on the geometry of M and M ′.

Proof: (of Proposition 3.1) Following the proof of Theorem 6.1 in [KKS1]
word by word the claimed statement follows from Proposition 6.2 and Propo-
sition 6.3 in [KKS1] together with Theorem 0.1. �

Proof: (of Theorem 0.2) Following the proof of Proposition 3.2 in [KKS1]
word for word the claimed statement follows from Proposition 3.1 in [KKS1]
together with Theorem 0.1. �

A Appendix: Hyperbolic trigonometry

In this appendix we collect elementary facts on hyperbolic geometry. Assume
that (X, g) is a Hadamard manifold with bounded sectional curvature,

K(x) ≤ −κ ∀x ∈ X

where κ > 0 and denote by d : X ×X → X the distance function. Further
let H2

κ be the upper half plane with constant curvature −κ and denote the
corresponding distance function by dκ

1i.e. a homotopy so that for any x ∈ M, s 7→ H(x, s) is a geodesic parametrized
proportional to arclength
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Lemma A.1 Let (xj)0≤j≤3 be the four distinct corners of a geodesic quadri-
lateral in X so that for 1 ≤ j ≤ 3, the angle αj at xj satisfies αj ≥ π/2.
Then a := d(x1, x2) and b := d(x2, x3) satisfy

shκ(a) · shκ(b) ≤ 1

where shκ(t) := sinh(
√
κ t).

Proof: Let x2 and x0 be points in the hyperbolic plane H2
κ with dκ(x2, x0) =

d(x2, x0) and choose x1 and x3 in H2
κ so that the geodesic triangles (x1, x2, x0)

and (x2, x3, x0) in H2
κ have the same sidelengths as the triangles (x1, x2, x0)

and (x2, x3, x0) respectively. The angles of these comparison triangles are not
smaller than the corresponding ones of the original triangles. It then follows
that the angles αj at xj of the geodesic quadrilateral (x0, x1, x2, x3) in H2

κ

satisfy αj ≥ π/2 for 1 ≤ j ≤ 3. Elementary considerations in the hyperbolic
plane show that the points x0, x1 and x3 can be moved to points x̃0, x̃1, x̃3 ∈
H

2 so that a = dκ(x̃1, x2), b = dκ(x2, x̃3) and α̃j = π/2 for 1 ≤ j ≤ 3 where α̃j
is the angle at x̃j of the geodesic quadrilateral (x̃0, x̃1, x2, x̃3). By hyperbolic
trigonometry we conclude shκ(a) · shκ(b) ≤ 1 (cf [Bu, 2.3.1 (i)]). �

Lemma A.2 Let (xj)1≤j≤3 be the corners of a geodesic triangle in X with
α2 ≥ π/2 and α1 ≥ π/4 where αj denotes the angle at xj (1 ≤ j ≤ 3). Then
a := d(x1, x2) satisfies shκ(a) ≤ 1.

Proof: Let (x1, x2, x3) be a geodesic triangle in H2
κ with the same sidelengths

as (x1, x2, x3). It then follows that the angles of (x1, x2, x3) are not smaller
than the corresponding angles of (x1, x2, x3). By elementary considerations
in H2

κ one sees that the points x1 and x3 can be moved to points x̃1, x̃3 ∈ H2

so that the angles α̃j at x̃j of the geodesic triangle (x̃1, x2, x̃3) satisfy

α̃2 = π/2, α̃1 ≥ π/4

and d(x̃1, x2) = a. Using elementary hyperbolic trigonometry one concludes
that

shκ(a) ≤ 1

(cf [Bu, 2.2.2 (iv)]). �
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B Appendix: Manifolds of negative sectional

curvature

Assume that (M, g) is a complete Riemannian manifold of negative sectional
curvature with

K ≤ −κ < 0 (B.1)

for some constant κ > 0. ThenM ∼= X/Γ whereX is the universal covering of
M and Γ is the group of deck transformations of M . In particular any γ ∈ Γ
is an isometry of X. The universal covering is a Hadamard manifold, i.e.
a complete and contractible Riemannian manifold of nonpositive - actually
negative in the case at hand - sectional curvature (cf [BGS, §2]) and Γ ∼=
π1(M) acts on X freely (i.e. γ ∈ Γ\{id} has no fixed points) and discretely
(i.e. for any K ⊆ X compact, there are finitely many γ ∈ Γ with γK ∩K 6=
∅).

To a deck transformation γ ∈ Γ we associate its displacement function
dγ : X → [0,∞), dγ(x) := d(x, γx) where d is the distance function on
X. The function dγ is convex, i.e. dγ (x(t)) is convex in t for any geodesic,
parametrized proportional to arclength and, by the triangle inequality, 2-
Lipschitz continuous

|dγ(x)− dγ(z)| ≤ 2d(x, z) (∀x, z ∈ X).

Thus the set
MIN(γ) := {x ∈ X | dγ(x) = inf

x∈X
dγ(x)}

is a closed, convex subset of X. The injectivity radius inj(M) of M is given
by

inj(M) =
1

2
inf{dγ(x) | γ ∈ Γ\id, x ∈ X}.

We assume that for some given constant % > 0,

inj(M) ≥ % > 0. (B.2)

By standard arguments, conditions (B.1) and (B.2) imply the following

Lemma B.1 Assume (B.1) - (B.2) hold. Then any deck transformation
γ ∈ Γ\id is hyperbolic, i.e. inf{dγ(x) | x ∈ X} > 0 and MIN(γ) 6= ∅.
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Proof: Assume MIN(γ) = ∅. Then there exists a point η in the ideal
boundary ofX such that γ leaves η and all horospheres centered at η invariant
- see [BGS]. Choose x ∈ X and c : [0,∞) → X a ray from x = c(0) to
η = limt→∞ c(t). Note that X is a CAT(-κ ) space - see [BH], Theorem 1A.6.
Thus by standard comparison arguments d (c(t), γ · c(t)) → 0 for t → ∞ in
contradiction to inf{dγ(x) | x ∈ X} ≥ 2% > 0. �

As X admits no parallel geodesic in view of (B.1) (cf [BGS, Lemma 2.3]) one
concludes that for any γ ∈ Γ\id (cf [BGS, Lemma 6.5])

MIN(γ) = {cγ(t) | t ∈ R} (B.3)

where cγ : R → X is a geodesic, parametrized by arclength. For any
γ1, . . . , γn ∈ Γ\id, denote by Z(γ1, . . . , γn) the centralizer of {γ1, . . . , γn},
i.e.

Z(γ1, . . . , γn) = {α ∈ Γ | αγi = γiα ∀1 ≤ i ≤ n}.

Lemma B.2 Assume (B.1) - (B.2) hold.

(i) For any γ1, γ2 ∈ Γ\id,

γ1γ2 = γ2γ1 iff MIN (γ1) = MIN (γ2).

(ii) For any γ1, . . . , γn ∈ Γ\id with n ≥ 1 either Z(γ1, . . . , γn) = {id}
or Z(γ1, . . . , γn) ∼= Z. In the latter case {γ1, . . . , γn} ⊆ Z(γ1, . . . , γn) and
MIN(α) = MIN(β) ∀α, β ∈ Z(γ1, . . . , γn)\id.

Proof: (i) Assume that γ1 and γ2 commute. Then MIN(γ1) is left invariant
by γ2. As γ2 is an isometry it then translates MIN(γ1) and thus, by (B.3) and
[BGS, Lemma 6.5], MIN(γ1) = MIN(γ2). Conversely assume that MIN(γ1) =
MIN(γ2). Then γ1 translates cγ2 and it follows that

γ1γ2 · x = γ2γ1 · x ∀x ∈ MIN(γ2)

hence (γ2γ1)−1γ1γ2 has fixed points. As Γ acts freely on X, (γ2γ1)−1γ1γ2 = id
or γ1γ2 = γ2γ1.

(ii) Assume that Z(γ1, . . . , γn) 6= {id} and choose α ∈ Z(γ1, . . . , γn)\id
arbitrary. Then, for any 1 ≤ i ≤ n, αγi = γiα, hence by statement (i),
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MIN(γi) = Min(α) and, γi being an isometry, translates MIN(α). In par-
ticular MIN(γi) = MIN(γj) ∀i, j, hence γi ∈ Z(γ1, . . . , γn) for any 1 ≤
i ≤ n and as α ∈ Z(γ1, . . . , γn)\id is arbitrary it follows that for any
β ∈ Z(γ1, . . . , γn)\id

MIN(β) = MIN(γi) = MIN(α).

Thus, again by (i), αβ = βα and therefore Z(γ1, . . . , γn) is Abelian. Recall
that Z(γ1, . . . , γn) acts by translations on MIN(α), hence it has no torsion
elements, and Z(γ1, . . . , γn) acts discretely on Min(α) so that Z(γ1, . . . , γn)
cannot have more than one generator: Given any β, γ ∈ Z(γ1, . . . , γn)\id
there exist tβ, tγ ∈ R so that for any t ∈ R

β · cα(t) = cα(t+ tβ); γ · cα(t) = cα(t+ tγ).

As Γ acts freely, one has tβ 6= 0, tγ 6= 0 and as Γ acts discretely, tβ and tγ
must be rationally dependent, tβ/tγ = m/n with m,n ∈ Z\{0} relatively
prime. Hence the linear congruence mx = 1modn has a solution x ∈ Z,
i.e. there exist i, j ∈ Z with mi + nj = 1. Let s := tβ/m and note that
tβ = ms, tγ = ns, as well as

itβ + jtγ = ims + jns = s.

Thus for α0 := βiγj one has α0cα(t) = cα(t+ s) for any t ∈ R or s = tα0 . As
Γ acts freely on X one concludes β = αm0 , γ = αn0 . �
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