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Abstract. We define algebraic structures on graph cohomology
and prove that they correspond to algebraic structures on the co-
homology of the spaces of imbeddings of S1 or R into R

n. As a
corollary, we deduce the existence of an infinite number of nontriv-
ial cohomology classes in Imb (S1, Rn) when n is even and greater
than 3. Finally, we give a new interpretation of the anomaly term
for the Vassiliev invariants in R

3.

1. Introduction

In this paper we consider the spaces Imb (S1,Rn) of imbeddings of
the circle into R

n and the spaces Imb (R,Rn) of imbeddings of the real
line into R

n with fixed behavior at infinity, namely, imbeddings that
coincide with a fixed imbedded line in R

n outside a compact subset.
When n > 3 one can define, using configuration space integrals,

chain maps from certain graph complexes (Dk,m
n , δ) or (Lk,m

n , δ) to the
de Rham complexes of the spaces of imbeddings:

I : (Dk,m
n , δ) → (Ω(n−3)k+m( Imb (S1,Rn)), d),(1.1)

I : (Lk,m
n , δ) → (Ω(n−3)k+m( Imb (R,Rn)), d).(1.2)

We will use the same symbol I also for the induced maps in cohomol-
ogy. Our main interest is to determine which algebraic structures are
preserved by the maps I.

On the one side, in fact, the de Rham complexes are differential
graded commutative algebras. Moreover, there exist a multiplication
Imb (R,Rn) × Imb (R,Rn) → Imb (R,Rn) given by attaching the end
of the first imbedding to the beginning of the second, and rescaling.
This operation is non-associative but gives rise, together with the cup
product, to a Hopf algebra structure on H( Imb (R,Rn)) for n > 3.
Indeed, as shown in [4], the multiplication is part of an action of the
operad of little 2-cubes on Imb (R,Rn).
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On the other side, we show in Section 3 that (Dk,m
n , δ) and (Lk,m

n , δ)
(whose definitions are recalled in Section 2) can be endowed, respec-
tively, with a differential algebra and a differential Hopf algebra struc-
ture. The existence of these algebraic structures implies in particular
the existence of infinitely many nontrivial classes of trivalent cocycles
of even type (see Section 4), and, as a consequence of the results of [5],
of infinitely many nontrivial elements of H( Imb (S1,Rn)), for every
even n ≥ 4.

The central result of the paper, contained in Section 6, is that, for
n > 3, the maps I in cohomology respect all the above algebraic struc-
tures.

Finally, in Section 7 we consider the case n = 3 and m = 0 (the
case of Vassiliev invariants) and we give a new interpretation of the
so-called “anomaly” term [3, 1] as the obstruction for the Bott–Taubes
map from trivalent cocycles to Vassiliev invariants to be a coalgebra
map.

As a final remark, we recall that there exist other approaches to study
the cohomology of spaces of imbeddings based on graph cohomology
[6, 7]. It would be interesting to understand our results in these other
contexts.

Acknowledgment. We thank Domenico Fiorenza, Dev Sinha, Jim Stash-
eff, Victor Tourtchine and the Referee for useful comments and sug-
gestions on a first version of this paper. A. S. C. acknowledges the
University of Roma “La Sapienza” (special trimester “Moduli, Lie the-
ory, interactions with physics”), R. L. and P. C.-R. acknowledge the
University of Zurich, R. L. acknowledges the University of Milano for
their kind hospitality during the preparation of the work.

2. Graph cohomology

We briefly recall the definition of the graph complexes given in [5],
Section 4. A graph consists of an oriented circle and many edges joining
vertices. The vertices lying on the circle are called external vertices,
those lying off the circle are called internal vertices and are required to
be at least trivalent. We define the order k ≥ 0 of a graph to be minus
its Euler characteristic, and the degree m ≥ 0 to be the deviation of
the graph from being trivalent, namely:

k = e− vi,

m = 2e− ve − 3vi,

where e is the number of edges, vi the number of internal vertices and
ve the number of external vertices of the graph.
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The graph complexes (Dk,m
n , δ) depend only on the parity of n, and

we will denote by Dk,m
o and Dk,m

e the real vector spaces generated by
decorated graphs of order k and degree m, of odd and even type, re-
spectively.

The type of a graph depends on the decoration which we put on
it. By definition, the decoration in Dk,m

o is given by numbering all
the vertices (with the convention that we first number the external
vertices and then the internal ones) and orienting the edges. Then one
takes the quotient by the following relations: a cyclic permutations of
the external vertices or a permutation of the internal vertices multiplies
the graph by the sign of the permutation, a reversal of an orientation of
an edge produces a minus sign. An extra decoration is needed on edges
connecting the same external vertex, namely an ordering of the two
half-edges forming them. The decoration in Dk,m

e is given by numbering
the external vertices and numbering the edges, while the relations are as
follows: a cyclic permutations of the external vertices or a permutation
of the edges multiplies the graph by the sign of the permutation.

Double lines and internal loops are not allowed, namely, in Dk,m
o

and Dk,m
e we quotient by the subspace generated by all the graphs

containing two edges joining the same pair of vertices and by all the
graphs containing edges whose end-points are the same internal vertex.

By an arc we mean a piece of the oriented circle between two con-
secutive vertices, and by a regular edge we mean an edge with at least
one internal end-point.

The coboundary operators δo : Dk,m
o → Dk,m+1

o and δe : Dk,m
e →

Dk,m+1
e are linear operators, whose action on a graph Γ is given by

the signed sum of all the graphs obtained from Γ by contracting, one
at a time, all the regular edges and arcs of the graphs. The signs are
as follows: if we contract an arc or edge connecting the vertex i with
the vertex j, and oriented from i to j, then the sign is (−1)j if j > i
or (−1)i+1 if j < i. If we contract an edge labeled by α, then the sign
is (−1)α+1+ve where ve is the number of external vertices of the graph.
The decoration on Γ induces a decoration on the contracted graphs as
follows: contraction of the edge between the vertex i and the vertex
j produces a new vertex labeled by min(i, j) while the vertex labels
greater than max(i, j) are rescaled by one. Similarly when the edge
labeled by α is collapsed, the edge labels greater than α are rescaled
by one.

The complexes (Lk,m
o , δo) and (Lk,m

e , δe) are defined in the same man-
ner, except that instead of graphs with an oriented circle we consider
graphs with an oriented line.
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The cohomology groups with respect to the above coboundary oper-
ators will be denoted by Hk,m(Do), H

k,m(De), H
k,m(Lo) and Hk,m(Le).

When we do not want to specify the parity of these complexes we simply
write Dk,m or Lk,m. Moreover we set D =

⊕
k,m Dk,m, L =

⊕
k,m Lk,m,

H(D) =
⊕

k,mH
k,m(D) and H(L) =

⊕
k,mH

k,m(L)

3. Algebraic structures on graphs

3.1. Operations on Dk,m. Suppose that Γ1 and Γ2 are two graphs
with ve(Γ1) and ve(Γ2) external vertices, respectively. The sets V 1

e and
V 2

e of external vertices of Γ1 and Γ2 respectively, are cyclically ordered.
A (V 1

e , V
2
e )-shuffle is a permutation of the set V 1

e ∪ V 2
e respecting the

cyclic order of V 1
e and V 2

e . If σ is a (V 1
e , V

2
e )-shuffle, then we can

combine Γ1 and Γ2 in a single graph Γ1 •σ Γ2 with ve(Γ1) + ve(Γ2)
external vertices by placing the legs of Γ1 and Γ2 into distinct external
vertices on an oriented circle, according to σ.

We put the labels in Γ1 •σ Γ2 as follows: the vertices and edges which
come from Γ1 are numbered in the same way as in Γ1. Next we number
the vertices coming from Γ2 by adding to the corresponding label of
Γ2 the number of labeled vertices of Γ1 and the edges by adding to the
corresponding label of Γ2 the number of edges of Γ1. If a vertex or
edge is not labeled in Γ1 or Γ2, it remains unlabeled in Γ1 •σ Γ2 The
multiplication Γ1 • Γ2 of two graphs Γ1 and Γ2 is then defined as

Γ1 • Γ2 = (−1)λ(Γ1,Γ2)
∑

σ

Γ1 •σ Γ2

where the sum is taken over all the (V 1
e , V

2
e )-shuffles and

(3.1) λ(Γ1,Γ2) =

{
ve(Γ2) e(Γ1) for Γi ∈ De

0 for Γi ∈ Do.

In the above formula, e(Γ1) denotes the number of edges of Γ1.
Extending this product to D by linearity, we obtain an associative

operation called the shuffle product:

• : Dk1,m1 ⊗Dk2,m2 → Dk1+k2,m1+m2 .

We define a new grading | · | of the graphs generating Dk,m
e and Dk,m

o ,
by considering the total number of labels of the graph:

|Γ| ≡

{
e(Γ) + ve(Γ) for Γi ∈ De

v(Γ) for Γi ∈ Do.

where v(Γ) is the total number of vertices of Γ. Modulo 2, the new
grading is equal to k + m in the even case and to m in the odd case.
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With respect to the new grading the integration maps I will be grading-
preserving modulo 2. The shuffle product is graded commutative with
respect to this new grading. In fact one can easily see that Γ1 • Γ2 =
(−1)|Γ1| |Γ2|Γ1 • Γ2. Leibnitz rule also holds between the coboundary
operator δ, which has degree −1 with respect to the new grading, and
the shuffle product, which has degree 0. More precisely

Proposition 3.1. δ(Γ1 •Γ2) = δ(Γ1) •Γ2 +(−1)|Γ1|Γ1 • δ(Γ2) for every

Γi ∈ D.

Proof. Let σ be a (V 1
e , V

2
e )-shuffle. When we apply the coboundary

operator δ to one of the graphs of Γ1 •σ Γ2 we can either collapse an
edge of Γ1, or collapse two external vertices of Γ1, or collapse an edge of
Γ2, or collapse two external vertices of Γ2, or collapse an external vertex
of Γ1 with an external vertex of Γ2. The first and second contribution
yield δ(Γ1) •σ Γ2, while the third and fourth yield Γ1 •σ δ(Γ2). Taking
into account the signs we obtain the formula

δ(Γ1 •σ Γ2) = δ(Γ1) •σ Γ2 + (−1)|Γ1|Γ1 •σ δ(Γ2) +Rσ(Γ1,Γ2)

where Rσ(Γ1,Γ2) is a linear combination of the graphs obtained from
Γ1•σ Γ2 by contracting an external vertex of Γ1 with an external vertex
of Γ2. Now, suppose that σ brings the ith external vertex of Γ1 next
to the jth external vertex of Γ2 in Γ1 •σ Γ2. Collapsing the arc be-
tween these two vertices yields a contribution, called Λ, to Rσ(Γ1,Γ2).
Then consider the (V 1

e , V
2
e )-shuffle στ obtained by composing σ with

a transposition of the two vertices considered above. Collapsing the
arc in Γ1 •στ Γ2 between these vertices yields the contribution −Λ to
Rσ(Γ1,Γ2). This fact in turn implies that

∑
σ Rσ(Γ1,Γ2) = 0, with the

sum taken over all (V 1
e , V

2
e )-shuffles. �

As a consequence, (D, δ, •) is a differential graded commutative al-
gebra. It also has a unit 1 consisting of the graph without edges. It
follows that its cohomology H(D) is a graded commutative algebra
with unit.

3.2. Operations on Lk,m. The product • on Lk,m is defined exactly as
in the previous case, i.e., as the shuffle product of two graphs. The unit
1 is the graph with no edges. In addition we have a comultiplication
∆ mapping a graph Γ to the signed sum of Γ′ ⊗ Γ′′ over all possible
ways to cut Γ into two disconnected parts Γ′ and Γ′′ by removing an
internal point of one of the arcs of Γ. By convention, if the oriented line
is oriented, say, from left to right, then Γ1 is the left-most component
of Γ \ {pt}. A graph Γ is primitive if it cannot be disconnected in a
nontrivial way by removing an internal point of an arc, and in this case
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∆Γ = 1⊗Γ + Γ⊗ 1. To fix the signs in the general case, first of all we
order the primitive subgraphs of Γ with respect to the oriented line,
and assume that the labels are compatible with this ordering (i.e., all
labels of a primitive subgraph are less than any label of a subsequent
one). The decoration induced by Γ on Γ′ and Γ′′ is determined by
rescaling the labels of Γ′′ and

∆Γ =
∑

(−1)λ(Γ′,Γ′′)Γ′ ⊗ Γ′′,

where λ(Γ′,Γ′′) is given in eq. (3.1).
We also define a counit ǫ by ǫ(Γ) = 0 if Γ 6= 1 and ǫ(1) = 1.

Theorem 3.2. With the above definitions, (L, •,∆, 1, ǫ, δ) is a differ-

ential graded commutative Hopf algebra with unit.

Proof. The Leibnitz rule and the graded commutativity of the shuffle
product hold just as for D, and one can easily verify the coassociativity
of the coproduct and the compatibility between product and coproduct.
The coboundary operator δ induces a coboundary operator on L ⊗ L
by setting δ(Γ′⊗Γ′′) = δ(Γ′)⊗Γ′′ +(−1)|Γ

′|Γ′⊗δ(Γ′′) on the generators
and extending this definition to L ⊗ L by linearity. Then one has the
following equation

∆ δ = δ∆.

In fact, it easy to check that, for any graph Γ, the explicit expression for
∆(δΓ) contains the same graphs (with the same signs) of the explicit
expression for δ∆(Γ). Finally, since this bialgebra is N-graded and the
only element in degree zero is the unit, the antipode is automatically
defined. �

Remark 3.3. If we pass to the dual, then our algebraic structures cor-
respond to the ones considered in [7] (see also [2] for the degree zero in
the odd case).

4. Trivalent cocycles of even type

A consequence of the algebra structure on Hk,0(De) is the following

Proposition 4.1. For every k ∈ N we have H2k,0(De) 6= 0

It is well known that the odd-case analogue of this Proposition holds,
thanks to the existence of Vassiliev knot invariants at any order [2].

Proof. Let us denote by the Ψ = 1
4
Φ− 1

3
Γ1 the graph cocycle of figure 1.

We want to show that, for every l ≥ 2, the lth power of Ψ is nontrivial.
First, we notice that δe(Ψ) = 0 and hence, thanks to Proposition 3.1,
we also have δe(Ψ

•l) = 0. Moreover Ψ•l cannot be δe-exact since it has
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Figure 1. Even cocycle of order 2

degree zero and there are no graphs of negative degree. Therefore, it
is enough to prove that, for every l ≥ 2, the cocycle Ψ•l is a linear
combination of graphs with at least one coefficient different from zero.

Let us denoted by Γl the graph represented in figure 2. This graph
has l triples of edges are attached on the external circle in such a way
that they do not overlap.
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We will prove by induction that the coefficient of Γl in Ψ•l is different
from zero for every l ≥ 2. The proof of this fact for l = 2 goes as follows:
in the shuffle product

Ψ • Ψ =
1

16
Φ • Φ −

1

6
Φ • Γ1 +

1

9
Γ1 • Γ1

there are exactly three contributions to Γ2, all coming from Γ1 • Γ1.
Since each of these three contributions has coefficient ±1, we have that
the coefficient of Γ2 in Ψ•2 is different from zero.

Next, we suppose that the coefficient of Γl−1 in Ψ•(l−1) is different
from zero, and we observe that all the contributions to the graph Γl in
Ψ•l arise from the shuffle product of Γl−1 with Γ1. An easy computation
shows that these contributions are all equal up to an even permutation
of labels, and hence they cannot cancel out. �

It is known from [5], Theorem 1.1, that the maps

I : Hk,0(D) → H(n−3)k( Imb (S1,Rn))
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are injective for every n > 3. This means that each of the graph
cocycles of the above Proposition produces a nontrivial cohomology
class of Imb (S1,Rn) for every even n ≥ 4. Hence we have:

Corollary 4.2. For any n > 3 and for any positive integer k0, there are

nontrivial cohomology classes on Imb (S1,Rn) of degree greater than k0.

5. Integration map

We now recall how the maps of eqs. (1.1) and (1.2) are constructed
(see [3, 5] for further details). We consider the fiber bundle p : Cq,t(R

n) →
Imb (S1,Rn) whose fiber over a given imbedding γ is the compactified
configuration space of q + t points in R

n, the first q of which are con-
strained on γ.

Let us fix a symmetric volume form ωn−1 on Sn−1, namely a normal-
ized top form satisfying the additional condition α∗ωn−1 = (−1)nωn−1,
where α is the antipodal map. A tautological form θij is by definition
the pull-back to Cq,t(R

n) of ωn−1 via the smooth map φij : Cq,t(R
n) →

Sn−1 which, on the interior of Cq,t(R
n), is defined as

φij(x1, . . . , xq+t) =
(xi − xj)

|xi − xj |
.

For i = j we use instead the map:

Cq,t(R
n)

π
−→ Cq,0(R

n) = Cq× Imb (S1,Rn)
pri×id
−→ S1× Imb (S1,Rn)

D
−→ Sn−1

where Cq is a component of the compactified configuration space of q
points on S1, π forgets the t points not lying on the imbedding, pri

is the projection on the ith point and D is the normalized derivative
D(t, ψ) = ψ̇(t)/|ψ̇(t)|.

For any given graph Γ ∈ Dk,m with q external vertices and t in-
ternal vertices, we construct a differential form ω(Γ) on Cq,t(R

n) by
associating the tautological form θij to the edge connecting the ver-
tices i and j, and taking the wedge product of these forms over all the
edges of Γ. Then I(Γ) is set to be the integral of ω(Γ) along the fibers
of p : Cq,t(R

n) → Imb (S1,Rn). The map I extended by linearity to
Dk,m takes value in Ω(n−3)k+m( Imb (S1,Rn)). Similarly, one can define
I : Lk,m → Ω(n−3)k+m( Imb (R,Rn)).

Let us now turn to the algebraic structures in the case of imbeddings
of S1 into R

n. We know from [5], Theorem 4.4, that the integration
map I : D → Ω( Imb (S1,Rn)) is a chain map for n > 3. An easy check
shows that the shuffle product correspond exactly to the wedge product
of configuration space integrals. Therefore we have:
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Proposition 5.1. The integration map I : D → Ω( Imb (S1,Rn)) is a

homomorphism of differential algebras with unit for n > 3.

Next we consider Imb (R,Rn).

Lemma 5.2. The integration map I : L → Ω( Imb (R,Rn)) is a chain

a map for n > 3.

Proof. The only difference with respect to the case of imbeddings of the
circle is that now one has to consider also faces describing points on
the imbedding escaping to infinity, possibly along with external points.
A main feature of the compactified configuration spaces is that they
split near the codimension-one faces in a product of the configurations
collapsing to a certain point (or escaping at the point “infinity”) and
the configurations which remain far from this collapsing point. Since
the imbeddings are fixed outside a compact set, the integration along
the faces at infinity yields zero unless the form degree of the integrand
is zero on the first component (i.e., the configurations escaping at in-
finity). This implies that an entire connected component of a graph
has to escape to infinity: in fact, whenever exactly one argument of a
tautological form goes to infinity, the form degree is entirely carried by
the point escaping at infinity as a consequence of

x− y

|x− y|
∼

x

|x|
for x→ ∞.

If however a connected subgraph Γ yields a zero form after integration
on the face at infinity, the relation (n − 1)e = ve + nvi − 1 should
hold (where again e is the number of edges, ve the number of external
vertices and vi the number of internal vertices of Γ). But in a graph
whose vertices are at least trivalent (n−1)e−ve−nvi is nonnegative. �

The proof of the next Proposition is exactly as for Imb (S1,Rn).

Proposition 5.3. The integration map I : L → Ω( Imb (R,Rn)) is a

homomorphism of differential algebras with unit for n > 3.

6. Hopf algebras

We now want to define a coproduct on Ω( Imb (R,Rn)). In the follow-
ing we will call long knots the elements of Imb (R,Rn). We first fix some
convention in the definition of Imb (R,Rn); namely, we choose a basis
{e1, . . . , en} of R

n such that all the elements of Imb (R,Rn) coincide,
outside a compact subset, with the reference imbedding ς(t) = e1 t.
Then we observe that two long knots γ1 and γ2 can be composed to a
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new long knot m(γ1, γ2) by

m(γ1, γ2)(t) =

{
Φ−(γ1(φ−(t))) t ≤ 0,

Φ+(γ2(φ+(t))) t ≥ 0.

where Φ±(x1, x2, . . . , xn) = (φ−1
± (x1), x2, . . . , xn) and φ± : R

± → R

are any pair of diffeomorphisms, e.g., φ±(t) = tan
(
2 arctan(t) ∓ π

2

)
.

Roughly speaking we are attaching γ1 and γ2 one after the other.
The product m has a unit e given by the linear imbedding ς used

to define Imb (R,Rn). The pullback of the product m : Imb (R,Rn) ×
Imb (R,Rn) → Imb (R,Rn) defines a non-coassociative coproduct

m∗ : Ω( Imb (R,Rn)) → Ω( Imb (R,Rn))⊗̂Ω( Imb (R,Rn)).

where ⊗̂ denotes the topological tensor product of Fréchet spaces. The
evaluation at e defines a counit η:

η(ω) =

{
ω(e) if degω = 0

0 if degω > 0.

We observe however that the non-coassociative coproduct m∗ gives
rise to an associative operation in cohomology (in fact the product m
is associative up to a homotopy given by composing the long knot with
a suitable diffeomorphism of R). More precisely, we have:

Proposition 6.1. (H( Imb (R,Rn)),∧, 1,∆, η) is a graded commuta-

tive and cocommutative Hopf algebra for n > 3.

Proof. As shown in [4], there exists an action of the little 2-cubes operad
LC2 on Imb (R,Rn). This means that there are operations on the space
Imb (R,Rn) corresponding to each element of LC2. In particular, it
turns out that one of these operations is the multiplication m described
above. Passing on the cochain level we obtain an action of operad
Ω(LC2) on Ω( Imb (R,Rn)), which give rise in cohomology to an action
of the operad H(LC2) on H( Imb (R,Rn)). Since the operad H(LC2) is
the linear dual of the Gerstenhaber operad, we have that the coproduct
is coassociative and cocommutative. The compatibility between the
wedge product and the coproduct is obvious. Finally, the existence of
the antipode follows from the fact that H( Imb (R,Rn)) is N-graded
with only one element in degree zero. �

Remark 6.2. A more explicitly proof of the cocommutativity of the
coproduct is based on the observation that the composition m of two
long knots is commutative up to homotopy. In fact, one can shrink one
of the two long knots in a very small region and slide it along the other
long knot (see [7, 8] for details).



ALGEBRAIC STRUCTURES ON GRAPH COHOMOLOGY 11

Our central result is then the following

Theorem 6.3. The map I : H(L) → H( Imb (R,Rn)) is a Hopf algebra

homomorphism for n > 3.

Proof. First, we notice that for n > 3, the degree of the differential form
I(Γ) is zero if and only if Γ = 1. Therefore we have η(I(Γ)) = ǫ(Γ).

We now have to show that the coproducts are compatible; viz.,

(6.1) ∆ ◦ I = (I ⊗ I) ◦ ∆.

To prove this, consider any two cycles Z1 and Z2 (of degree k and l)
of imbeddings. Let Z = m∗(Z1, Z2) be the (k + l)-cycle obtained by
attaching the two cycles:

Z(u1, . . . , uk, v1, . . . , vl)(t) =

{
Φ−(Z1(u1, . . . , uk)(φ−(t))) t ≤ 0,

Φ+(Z2(v1, . . . , vl)(φ+(t))) t ≥ 0.

Identity (6.1) is equivalent to

(6.2)

∫

Z

I(Γ) =
∑

(−1)λ(Γ′,Γ′′)

∫

Z1

I(Γ′)

∫

Z2

I(Γ′′),

for any Z1 and Z2 and for any Γ ∈ H(L), where we write ∆Γ =∑
(−1)λ(Γ′,Γ′′)Γ′ ⊗ Γ′′.
To prove (6.2), let us introduce the (k + l + 1)-chain Z by

(6.3) Z(R, u1, . . . , uk, v1, . . . , vl)(t) =

=






Φ−(Z1(u1, . . . , uk)(φ−(t+R))) − ς(R) t ≤ −R,

ς(t) −R < t < R,

Φ+(Z2(v1, . . . , vl)(φ+(t− R))) + ς(R) t ≥ R,

with R ∈ [0,+∞). In practice we are moving the support of the cycles
Z1 and Z2 far apart, and the parameter Rmeasure the distance between
the two cycles. Since δΓ = 0 and since I is a chain map (Lemma 5.2),
by Stokes’ Theorem we get

0 =

∫

∂Z

I(Γ) = −

∫

Z

I(Γ) + lim
R→+∞

JR

with

JR(Γ) =

∫

Z(R,·)

I(Γ).

Let us write our graph cocycle as Γ =
∑

i ciΓi. Each I(Γi) can be split
into two parts as follows. We fix R ∈ (0,+∞) and suppose Γi has q

external vertices and t internal vertices. Then we define C1,R
q,t (Rn) to

be the subbundle of Cq,t(R
n) where the points corresponding to the
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external vertices of every primitive subgraph of Γi lie either all to the
left of R or all to the right of −R. We also let C2,R

q,t (Rn) be the fiberwise

complement of C1,R
q,t (Rn) in Cq,t(R

n). Now we define Iα,R(Γi), α = 1, 2,
to be the integral of the differential form ω(Γi) performed along the

fibers of Cα,R
q,t (Rn). Finally we set Iα,R(Γ) =

∑
i ciIα,R(Γi) and we have

JR(Γ) =
∫

Z(R,·)
I1,R(Γ) +

∫
Z(R,·)

I2,R(Γ).

One immediately sees that limR→∞

∫
Z(R,·)

I1,R(Γ) is equal to the right-

hand side of eq. (6.2), and hence what we have to prove is that

(6.4) lim
R→∞

∫

Z(R,·)

I2,R(Γi) = 0.

We now need a generalization of Lemma 10 of [1]. Let Γ be a con-
nected graph with ve external vertices and vi internal vertices, and let
ω(Γ) be the product of tautological forms associated to the graph Γ. We
denote by gΓ the integral of ω(Γ) over the internal vertices of Γ, namely
the push-forward of ω(Γ) along the map p : Cve,vi

(Rn) → Cve,0(R
n)

that forgets the internal points. Let us write gΓ in coordinates as
gΓ = gΓI

(x1, . . . , xve
, γ) dxI , where I is a multi-index. Suppose more-

over that x(T ) = (x1(T ), . . . , xve
(T )) a sequence in the configuration

space with the property that there is a pair of points whose distance
diverges as T goes to infinity.

Lemma 6.4. With the above notations, we have

lim
T→∞

gΓ|x(T ) = 0.

Proof. Case 1. We consider first the case when Γ has no edges whose
end-points are both external. Then gΓ turns out to be bounded when-
ever its arguments x1, . . . , xve

run in a bounded subdomain of R
n

(namely, gΓ do not diverge if two or more points collapse). We can
always suppose that the pair of points whose distance diverges fastest
are x1(T ) and xve

(T ). Using the translation invariance of the integral,
we also suppose xve

(T ) = 0. Therefore we have that |x1(T )| → ∞ as
T → ∞.

We claim that if we rescale all the variables by 1/|x1| we get

gΓI
(x1, . . . , xve−1, 0) =

(
1

|x1|

)αΓ

gΓI
(x1/|x1|, . . . , xve−1/|x1|, 0).

where αΓ = (n−1)e−nvi. In fact, when performing the integral along
the fibers of p : Cve,vi

(Rn) → Cve,0(R
n), it is convenient to rescale the

integration variables by 1/|x1|. This yields the contribution −nvi. At
this point the tautological forms θij , whose degree is n− 1 and whose
number is the same as the number of edges e, are obtained by rescaling
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the arguments of the functions φij, and this yields the contribution
(n− 1)e. Moreover, using the fact that 2e− 3vi − ve ≥ 0 and ve > 0,
we have

αΓ = (n−1)e−nvi ≥ (n−1)
3

2
vi+

n− 1

2
ve−nvi =

n− 3

2
vi+

n− 1

2
ve > 0.

Now, xk/|x1| is bounded for every k = 2, . . . , ve − 1, and hence the
quantity gΓI

(x1/|x1|, . . . , xve−1/|x1|, 0) remains bounded when |x1| goes
to infinity. This proves the first case.

Case 2. When Γ has edges whose end-points are both external, we
denote by Γ̃ the same graph with these edges removed. We have then
gΓ = geΓhΓ where hΓ is the product of the functions associated to the

removed edges. If Γ̃ is the empty graph, then there is at least one edge
whose end-points go far apart. Since the imbeddings are fixed outside
a compact set, asymptotically hΓ is the pull-back of a volume form via

a constant function, i.e., hΓ vanishes in the limit T → ∞. If Γ̃ is non
empty but connected we are done by the argument in Case 1. The

last possibility is when Γ̃ is non empty and disconnected. If inside a
connected component there is a pair of points whose distance diverges,
we are also done by the argument in Case 1, otherwise there is at least
one edge whose end-points go far apart, and in this case hΓ goes to
zero. �

We now show that eq. (6.4) holds. Suppose Γi has q external vertices

and t internal vertices, and consider C2,R
q,t (Rn). For every element of

C2,R
q,t (Rn) consider a primitive subgraph Ξ of Γi such that the preimage

l of its left-most point on the imbedding is less than −R, while the
preimage r of its right-most point is greater than R. Let Ξ0, . . . ,Ξk be
the connected component of Ξ minus the oriented line, ordered follow-
ing the order of their left-most external vertices. With the symbols li
and ri we mean the preimages of the left-most and right-most among
the points corresponding to the external vertices of Ξi. In particular,
l0 = l. If r0 > 0 then the result follows from Lemma 6.4 applied to gΞ0

.
If r0 < 0 then l1 < 0. If l1 < −R then we repeat our considerations
for Ξ/Ξ0, otherwise we have two possibilities: r1 < R, and the integral

of ω(Γi) on this portion of C2,R
q,t (Rn) is zero for dimensional reasons, or

r1 > R and we can apply Lemma 6.4 to gΞ1
.

This concludes the proof of the Theorem. �

7. The “anomaly” term

Let us consider now the case of ordinary framed long knots, i.e.,
imbeddings of R into R

3 with a choice of a trivialization of their normal
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bundle. Following [3], we know that I is not a chain map because of an
anomaly term due to contributions from the most hidden faces of the
boundaries of the compactified configuration spaces. More precisely, if
we restrict to trivalent graphs, the following equation holds

dĨ = Iδ

where

Ĩ(Γ) = I(Γ) + cΓI(Θ).

Here cΓ are certain (unknown) coefficients while Θ is the graph with one
chord only, so

∫
K
I(Θ) is the self-linking number slk(K) of the framed

long knot K. As a consequence, the Bott–Taubes map Ĩ associates to
each cocycle of trivalent graphs an invariant of framed long knots.

Let Γ be a cocycle of trivalent graphs, Z1 and Z2 two framed long
knots, Z = m(Z1, Z2) their product and Z the 1-chain of eq. (6.3).

Then dI(Γ) + cΓdI(Θ) = dĨ(Γ) = I(δ(Γ)) = 0 and hence, applying
Stokes’ Theorem, we have

lim
R→∞

∫

Z(R)

I(Γ) −

∫

Z

I(Γ) =

∫

Z

dI(Γ) = −cΓ(slk(Z(R)) − slk(Z)) = 0,

since the self-linking number of Z(R) does not depend on R and it is
therefore equal to the self-linking number of Z. As a consequence, using
the same arguments of the proof of Theorem 6.3, we deduce that also
in three dimensions the map I, when restricted to trivalent graphs, is
compatible with the coproducts. On the other hand the Bott–Taubes
map Ĩ is a map of coalgebras if and only if

(7.1)

∫

Z

Ĩ(Γ) =
∑

(−1)λ(Γ′,Γ′′)

∫

Z1

Ĩ(Γ′)

∫

Z2

Ĩ(Γ′′).

The left-hand side of (7.1) is given by
∫

Z

I(Γ)+cΓ

∫

Z

I(Θ) =
∑∫

Z1

I(Γ′)

∫

Z2

I(Γ′′)+cΓ (slk(Z1) + slk(Z2)) ,

while the right-hand side is

∑ ∫

Z1

(I(Γ′) + cΓ′I(Θ))

∫

Z2

(I(Γ′′) + cΓ′′I(Θ)) =

=
∑∫

Z1

I(Γ′)

∫

Z2

I(Γ′′)+ cΓ′′slk(Z2)

∫

Z1

I(Γ′)+ cΓ′slk(Z1)

∫

Z2

I(Γ′′)+

+ cΓ′cΓ′′slk(Z1)slk(Z2)

In particular we can write eq. (7.1) in the case when Γ is obtained by
“attaching” the oriented lines of two graphs Γ1 and Γ2. By using the
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fact of [1] that cΓ = 0 if Γ is not primitive, then one easily sees that
(7.1) holds if and only if

cΓ2
slk(Z2)

∫

Z1

I(Γ1) + cΓ1
slk(Z1)

∫

Z2

I(Γ2) + cΓ1
cΓ2

slk(Z1)slk(Z2) = 0.

Hence, if cΓ1
is different from zero, Ĩ is not a coalgebra map (e.g. choose

Z1, Z2 and Γ2 such that slk(Z2) = 0, slk(Z1) 6= 0 and
∫

Z2
I(Γ2) 6= 0).

In other words, the anomaly term cΓI(Θ) is the obstruction for Ĩ to be
a coalgebra map.
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