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Abstract

We consider perturbations of the harmonic map equation in the
case where the target manifold is a closed Riemannian manifold of
nonpositive sectional curvature. For any semilinear and, under some
extra conditions, quasilinear perturbation, the space of classical solu-
tions within a homotopy class is proved to be compact. An important
ingredient for our analysis is a new inequality for maps in a given
homotopy class which can be viewed as a version of the Poincaré in-
equality for such maps.
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0 Introduction

In this paper we study semilinear and quasilinear perturbations of the har-
monic map equation τ(u) = 0. This is an equation for maps u : M → M ′

between closed Riemannian manifolds, defined as the Euler-Lagrange equa-
tion for the energy functional

E(u) :=

∫
M

e(u)(x) d vol(x)

where e(u)(x) denotes the energy density,

e(u)(x) :=
1

2
gij(x)〈 ∂u

∂xi
,
∂u

∂xj
〉.

Here gij(x) is the (smooth) metric tensor on M , d vol(x) the corresponding
volume element, and 〈·, ·〉 the scalar product in TM ′. In local coordinates for
M and M ′, the operator τ can be written as the Laplace-Beltrami operator,
perturbed by terms which are quadratic in the derivatives of u (cf section 1).
Our aim is to consider perturbations of the equation τ(u) = 0 by a semilinear
term F (x, u(x)) with F being a x-dependent vector field on M ′, and by terms
linear in the derivatives of u (and of sufficiently small size) of the form

L(x, u(x)) u∗ (G(x, u(x)))

where L(x, u(x)) is a linear operator on Tu(x)M
′, u∗ the differential of u, and

G a vector field on M, G(x, u(x)) ∈ TxM . More precisely we want to study
the set of solutions u : M →M ′ of

τ(u)(x) + F (x, u(x)) + L(x, u(x))u∗ (G(x, u(x))) = 0 (0.1)

in a given homotopy class ζ of C1-maps u : M →M ′,

u ∈ ζ. (0.2)

Note that (0.1) is not necessarily of variational form. The main assumption
we impose is that

M ′ has nonpositive sectional curvature . (0.3)

Unless otherwise stated this assumption will be made throughout the paper.
Given F,G and L of class Ck with k ≥ 2, denote by SF,G,L ≡ S

(k)
F,G,L the
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set of all Ck+1 solutions of (0.1). In the case L = 0 and G = 0 we simply
write SF instead of SF,0,0. We note that by the regularity theory of elliptic

equations (cf Proposition 8.1), given F of class Ck, any C3-solution v ∈ S(2)
F

is Ck+1-smooth, i.e.
S

(2)
F = S

(k)
F .

Similarly, if dimM ≤ 3 and F,G and L are of class Ck, one has S
(2)
F,G,L =

S
(k)
F,G,L (cf proof of Proposition 8.2). Our aim is to prove that for any F,G, L

of class Ck with k ≥ 2, SF ∩ ζ is compact in the Ck+1 topology and, if
dimM ≤ 3, SF,G,L ∩ ζ is compact in the Ck+1 topology for G and L of
sufficiently small size,

max
x∈M
y∈M ′

(
‖L(x, y)‖ · ‖G(x, y)‖

)
≤ c∗

where c∗ > 0 is a constant which only depends on ζ and the manifolds M and
M ′. Here ‖L(x, y)‖ denotes the operator norm of L(x, y) : TyM

′ → TyM
′

and ‖G(x, y)‖ is the norm of G(x, y) in TxM .
In fact we prove slightly stronger results. To state them we first need to
introduce some more notation. Let us denote by Ck the space of Ck-maps
from M to M ′, by F (k) the vector space of x-dependent vector fields F (x, y)
on M ′ of class Ck in x and y, by G(k) the vector space of y-dependent vector
fields G(x, y) on M of class Ck in x and y and by L(k) the vector space of
linear operators L(x, y) on TyM

′ of class Ck in x and y. Let

M(k)
ζ := {(u, F ) | F ∈ F (k) ; u ∈ SF ∩ ζ}

considered as a subset of Ck+1 ×F (k) and, for any c∗ > 0

N (k)
ζ,c∗

:=
{

(u, F,G, L) | (F,G, L) ∈ F (k) × G(k) × L(k) ; u ∈ SF,G,L ∩ ζ ;

max
x,y
‖L(x, y)‖ · ‖G(x, y)‖ < c∗

}
considered as a subset of Ck+1×F (k)×G(k)×L(k). By π we denote the natural
projections

π :M(k)
ζ → F

(k) or π : N (k)
ζ → F (k) × G(k) × L(k).

Recall that a continuous map between topological spaces is called proper if
the preimage of any compact set is compact.
The main results of this paper are the following ones:
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Theorem 0.1 Let M and M ′ be closed Riemannian manifolds with M ′ hav-
ing nonpositive sectional curvature and ζ be a homotopy class of C1-maps
from M to M ′. Then for any k ≥ 2, the projection π : M(k)

ζ → F (k) is
proper.

Theorem 0.2 Let M and M ′ be closed Riemannian manifolds with M ′ hav-
ing nonpositive sectional curvature and ζ be a homotopy class of C1-maps
from M to M ′. Assume that k ≥ 2 and dimM ≤ 3. Then there exists c∗ > 0
such that π : N (k)

ζ,c∗
→ F (k) × G(k) × L(k) is proper.

In particular, Theorem 0.1 contains the following generalization to solutions
of perturbations of the harmonic map equation of a result due to Schoen-Yau
for harmonic maps [SY] (cf also Hartmann [Ha]) concerning the compactness
of the space of harmonic maps within a homotopy class.

Corollary 0.3 Let F ∈ F (k) with k ≥ 2. Then SF ∩ ζ is compact in the
Ck+1-topology.

We note that a corollary of Theorem 0.2 similar to Corollary 0.3 holds.
Simple examples show that the stated result of Corollary 0.3 no longer holds if
M ′ is not of nonpositive sectional curvature and the statement of Theorem 0.2
is no longer true if the perturbation is not affine in the differential u∗ or the
part which is linear in u∗ is not sufficiently small.
We remark that no efforts have been made to see if Theorem 0.1 and The-
orem 0.2 hold for k smaller than two. Moreover, most likely Theorem 0.2
holds for manifolds M of arbitrary dimension.
Our results are similar in flavour to the compacity results due to Kuksin [Ku]
for double periodic solutions of quasilinear Cauchy-Riemann equations which
originated in a compacity result of Gromov [Gr] for J-holomorphic curves. In
future work we plan to establish similar results for other important nonlinear
elliptic equations.
Theorem 0.1 and Theorem 0.2 are proven below in sections 1 to 8. To simplify
our exposition we have assumed that in (0.1), L(x, y) is the identity map on
TyM

′ for any x ∈M, y ∈M ′. The main ingredient of the proof is an apriori
estimate for the energy E(u) for a solution u of (0.1) in a given homotopy
class ζ: As a first step (cf section 1) we introduce canonical distance functions
Np(u, v)(p ≥ 1) between two C3-maps u, v : M → M ′ in ζ and prove that
the energy E(u) can be bounded by

E(u) ≤ ‖F‖C0N1(u, v) +
√

2‖G‖C0E(u)1/2N2(u, v) + E(v).
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Here Np(u, v) is defined by

Np(u, v) := inf{Np(H) | H is a C1-homotopy between u and v}

with

Np(H) :=

(∫
M

(∫ 1

0

∥∥ d
ds
Hs(x)

∥∥ds)p d vol(x)

)1/p

where we consider throughout this paper only continuous homotopies H :
M × [0, 1]→M ′ so that for any x ∈M, the path s 7→ H(x, s) is C1-smooth.
In a second step (cf section 3 - section 6) we show that N2(v, u) can be
bounded in terms of E(u) and E(v):

Theorem 0.4 Let M and M ′ be closed Riemannian manifolds with M ′ hav-
ing nonpositive sectional curvature and ζ be a homotopy class of C1-maps
from M to M ′. Then there exists a constant C > 0 such that for any u, v ∈ ζ

N2(u, v) ≤ C
(
E(u)1/2 + E(v)1/2 + 1

)
. (0.4)

Our proof of Theorem 0.4 uses in an essential way that M ′ has nonpositive
sectional curvature.
Estimate (0.4) is a new inequality which can be viewed as a version of the
Poincaré inequality for maps between manifolds and is of independent in-
terest. It has also the flavour of a quadratic isoperimetric inequality. We
illustrate this by considering the case when M = S1. Viewing E(u)1/2 as
a measure for the length of u, inequality (0.4) says that there exists a ho-
motopy such that the area of the cylinder induced by the homotopy can be
bounded in terms of the square of the length of its boundary. Here the area
of the cylinder is measured in terms of its L2-averaged ”length” N2(u, v)
and the length of its boundary by E(u)1/2 + E(v)1/2. We recall that for a
Hadamard space X the following isoperimetric inequality holds: given any
simple, closed curve γ in X of length L, there exists a disc D with ∂D = γ
so that area (D) ≤ πL2.
Theorem 0.1 and 0.2 form the basis for a more detailed study of the set of
solutions of (0.1) in a given homotopy class ζ which will be presented in a
subsequent paper using arguments similar to the ones in [Ku], [KV]. In the
remainder of this introduction we state conjectural results of this study in
the case G = 0, i.e. for

Φ(u) := τ(u) + F (x, u(x)) = 0 (0.5)
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u ∈ ζ (0.6)

and relate them to the corresponding results for the harmonic map equation.
One verifies in a straight forward way that M(k)

ζ is a C1-manifold modeled

by F (k), hence the projection π :M(k)
ζ 7→ F (k) is C1-smooth. Let us denote

by F (k)
reg the set of regular values of π. As π is proper, F (k)

reg is an open subset
of F (k). By the Sard-Smale theorem [Sm], it is dense in F (k) and, for any

F ∈ F (k)
reg, the inverse image π−1(F ) is a submanifold ofM(k)

ζ . One can show
that this submanifold is of dimension 0, i.e. that π−1(F ) is a discrete set.
By associating appropriate signs to each element of π−1(F ), one can define
an ”algebraic” number Dζ ,

Dζ := ]algebraic(SF ∩ ζ),

which is constant on F (k)
reg.

If M ′ has negative sectional curvature we can compute Dζ and obtain

Dζ = ±χ(S0 ∩ ζ)

where S0 is the set of harmonic maps u : M → M ′, S0 ∩ ζ turns out to be
a manifold, and χ(S0 ∩ ζ) denotes its Euler characteristic. Note that in the
case where M ′ has negative sectional curvature, the energy functional E(u)
is Morse-Bott and , according to [Ha], the set of harmonic maps S0 ∩ [u] in
the homotopy class [u] of a harmonic map u has the property that either
S0 ∩ [u] = {u} or S0 ∩ [u] consists of all constant maps, or u(M) is a closed
geodesic γ and any other element in S0 ∩ [u] is obtained by composing u
with a translation along γ. The integer Dζ is then computed in each of the
three cases by considering special regular vector fields, leading to the claimed
identity Dζ = ±χ(S0∩ ζ). In particular, it follows from this identity that for

any F ∈ F (k)
reg,

] (SF ∩ ζ) ≥
∣∣χ (S0 ∩ ζ)

∣∣.
Counter examples show that this inequality is sharp.
Notation: Throughout this paper, M ≡ Mn and M ′ ≡ M ′n′ denote closed
manifolds with fixed smooth Riemannian metrics g resp. g′. Moreover,
(M ′, g′) is supposed to have nonpositive sectional curvature.
Points in M will (often) be denoted by x, z, . . . whereas points in M ′ will
(often) be denoted by y. For the inner product g′(y) of TyM

′, we will use
the notation 〈·, ·〉g′(y) or simply 〈·, ·〉.
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We follow mostly the notation established in [GKM]. For ease of notation
we write ∇ ≡ ∇M ′ for the Levi-Cività connection on M ′ and ∇M for the one
on M .

Acknowledgements: TK and SK express their gratitude to ETH, IHES, Uni-
versité Paris-Sud and the Steklov Institute, where part of this work has been
accomplished, for hospitality and support. The authors thank M. Gromov for
suggesting ways how to prove Theorem 0.4 as well as M. Struwe for various
suggestions leading to improvements of an earlier version of this paper.

1 Apriori estimate for the energy

Let u : M → M ′ be a given C1-map. 1 Recall that the energy E(u) of u is
defined by

E(u) =

∫
M

e(u)(x) d vol(x)

where e(u)(x) is the energy density,

e(u)(x) =
1

2
gij(x)〈 ∂u

∂xi
,
∂u

∂xj
〉.

Let ζ be a homotopy class of C1-maps from M to M ′. By embedding M ′

isometrically into some Euclidean space RN and using a mollifier argument
one verifies that for C3-smooth maps u, v ∈ ζ, there exists a C3-homotopy
H : M × [0, 1]→M ′, (x, s) 7→ Hs(x) between v = H0(·) and u = H1(·).
A homotopy H is said to be geodesic if

(GH1) s 7→ Hs(x) is a geodesic in M ′ ∀x ∈M ;

(GH2) the parameter s ∈ [0, 1] is proportional to arc length.

As M ′ is assumed to have nonpositive sectional curvature, a C1-homotopy
determines a geodesic homotopy, obtained by replacing, for any x ∈ M , the
curve s 7→ Hs(x) by the unique geodesic in its homotopy class. If the homo-
topy is chosen to be C3-smooth, then the corresponding geodesic homotopy
H is again C3.

1No efforts have been made to obtain minimal regularity assumptions for our results.
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For arbitrary maps u, v ∈ ζ and any 1 ≤ p < ∞, introduce the distance
function

Np(v, u) := inf{Np(H) | H is a homotopy between v and u}

where

Np(H) :=

(∫
M

(∫ 1

0

‖ d
ds
Hs(x)‖ds

)p
d vol(x)

)1/p

.

By Hölder’s inequality we have for any 1 ≤ p1 ≤ p2 <∞

Np1(H) ≤ Np2(H) (vol M)(p2−p1)/p1p2 . (1.1)

For an x-dependent C2-vector field F on M ′, F (x, y) ∈ TyM
′, denote by

‖F‖C0 the sup-norm,
‖F‖C0 := sup

x∈M
y∈M ′

‖F (x, y)‖.

Below we study equation (0.1). To simplify our exposition we restrict our-
selves to the case when the operator L is the identity,

τ(u) + F (x, u(x)) + u∗ (G(x, u(x))) = 0.

Denote by ζ an arbitrary homotopy class of C1-maps from M to M ′ and by
SF,G the set of all C3-solutions of the above equation. In case G ≡ 0, we
write SF instead of SF,0.

Proposition 1.1 For any u ∈ SF ∩ ζ,

E(u) ≤ ‖F‖C0 N1(v, u) + E(v).

Remark By the same proof, one can obtain similar estimates for the energy
density e(u)(x) of u ∈ SF ∩ ζ.

To prove Proposition 1.1 we need to establish several auxilary results and
some more notation.
Given a C1-map u : M →M ′, a C0-map Y : M → TM ′ with Y (x) ∈ Tu(x)M

′

is said to be a vector field along u. The covariant derivative defined by the
Levi-Civitá connection ∇ ≡ ∇M ′ on M ′ can be extended to such vectorfields:
∇XY denotes a vector field along u defined for a C0-vector field X on M
and a C1-vector field Y along u (cf [GKM, section 2.5]). Let x1, . . . , xn be
coordinates on an open set U of M , H : M × [0, 1] → M ′ a C3-homotopy
and Xi := ∂

∂xi
.
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Lemma 1.2 (i) For x ∈ U and 0 ≤ s ≤ 1,

∂

∂s
e(Hs)(x) = gij(x)〈∇Xi

∂H

∂s
,
∂H

∂xj
〉.

(ii) If the homotopy H is geodesic, then

∂2

∂s2
e(Hs)(x) = gij(x)〈∇Xi

∂H

∂s
,∇Xj

∂H

∂s
〉 − gij(x)〈R′(∂H

∂xi
,
∂H

∂s
)
∂H

∂s
,
∂H

∂xj
〉

where R′ denotes the Riemannian curvature tensor on M ′.

Proof (i) Since the Levi-Cività connection ∇ is Riemannian, one has

∂

∂s
e(Hs)(x) = gij(x) 〈∇ ∂

∂s

∂H

∂xi
,
∂H

∂xj
〉. (1.2)

where ∇ ∂
∂s

∂H
∂xi

is a vectorfield along H. As the torsion of the Levi-Cività

connection vanishes and

[
∂

∂s
,Xi] = 0, (1.3)

we conclude that

∇ ∂
∂s

∂H

∂xi
= ∇Xi

∂H

∂s
, (1.4)

and hence (1.2) leads to (i). To show (ii), use (i) to obtain

∂2

∂s2
e(Hs)(x) = gij(x)

(
〈∇ ∂

∂s
∇Xi

∂H

∂s
,
∂H

∂xj
〉+ 〈∇Xi

∂H

∂s
,∇ ∂

∂s

∂H

∂xj
〉
)
. (1.5)

Applying again (1.4) one sees that

〈∇Xi

∂H

∂s
,∇ ∂

∂s

∂H

∂xj
〉 = 〈∇Xi

∂H

∂s
,∇Xj

∂H

∂s
〉 (1.6)

and, by the definition of the Riemannian curvature and (1.3), one has

〈∇ ∂
∂s
∇Xi

∂H

∂s
,
∂H

∂xj
〉 = 〈∇Xi∇ ∂

∂s

∂H

∂s
,
∂H

∂xj
〉

− 〈R′
(
∂H

∂xi
,
∂H

∂s

)
∂H

∂s
,
∂H

∂xj
〉.

(1.7)

9



Further, as s 7→ Hs(x) is a geodesic in M ′, one has ∇ ∂
∂s

∂H
∂s

(x) = 0 and the

first term on the right side of (1.7) vanishes. Substituting (1.6) - (1.7) into
(1.5) leads to (ii). �

Given any map u : M → M ′, −τ(u) denotes the variational derivative of
the energy functional. It is a vector field along u and for any C3-homotopy
H : M × [0, 1]→M we have for any 0 ≤ s ≤ 1,

∂

∂s
E(Hs) = −

∫
M

〈τ(Hs)(x) ,
∂H

∂s
(x)〉 d vol(x). (1.8)

In local coordinates, τ(u) is given by

τ(u)α(x) = ∆Mu
α(x) + gij(x)Γ

′α
βγ(u(x))

∂uβ

∂xi
∂uγ

∂xj

where ∆M denotes the Laplace Beltrami operator on M .

Corollary 1.3 For any x ∈M , the function s 7→ e(Hs)(x) is convex

∂2

∂s2
e(Hs)(x) ≥ 0 ∀ 0 ≤ s ≤ 1. (1.9)

Proof M ′ having nonpositive sectional curvature, one has

gij(x)〈R′
(
∂H

∂xi
,
∂H

∂s

)
∂H

∂s
,
∂H

∂xj
〉 ≤ 0

and (1.9) follows from Lemma 1.2 (ii). �

Proof (of Proposition 1.1) Let H be a geodesic C3-homotopy between H0 = v
and H1 = u. By Corollary 1.3, the function E(Hs) is convex

∂2E

∂s2
(Hs) =

∫
M

∂2e

∂s2
(Hs)(x) d vol(x) ≥ 0,

hence

E(u) = E(v) +

∫ 1

0

∂E

∂s
(Hs)ds ≤ E(v) +

∂E

∂s
(Hs) |s=1 . (1.10)

As u ∈ SF ∩ ζ, one has τ(u)(x) = −F (x, u(x)) and, in view of (1.8)

∂E

∂s
(Hs) |s=1 =

∫
M

〈F, ∂H
∂s
|s=1〉 d vol(x). (1.11)
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Recall that, for any x ∈M , the geodesic s 7→ Hs(x) is parametrized propor-
tional to arclength, and thus, for any x ∈M ,

‖∂H(x)

∂s
‖ = `H(x)

where `H(x) is the length of the curve s 7→ Hs(x) with 0 ≤ s ≤ 1. It follows
that

|
∫
M

〈F, ∂H
∂s
|s=1〉 d vol(x) | ≤ ‖F‖C0 N1(H). (1.12)

Combining (1.10) - (1.12) leads to

E(u) ≤ E(v) + ‖F‖C0N1(H).

As H is an arbitrary geodesic C3-homotopy with H0 = v and H1 = u, the
claimed statement follows. �

Proposition 1.1 can be generalized to hold for solutions u ∈ SF,G ∩ ζ where
G is a y-dependent C2-vector field on M , G(x, y) ∈ TxM . Denote by ‖G‖C0

the sup-norm
‖G‖C0 := sup

x∈M
y∈M ′

‖G(x, y)‖.

Proposition 1.4 For any u ∈ SF,G ∩ ζ

E(u) ≤ ‖F‖C0N1(v, u) +
√

2‖G‖C0E(u)1/2N2(v, u) + E(v).

Proof For u ∈ SF,G ∩ ζ we have τ(u) = −F − u∗G. Therefore

|
∫
M

〈F + u∗G,
∂H

∂s
|s=1〉 d vol(x) |

≤ ‖F‖C0N1(H) +

∫
M

√
2e(u) ‖G‖C0 `H(x) d vol(x)

≤ ‖F‖C0N1(H) +
√

2‖G‖C0E(u)1/2N2(H),

hence the assertion follows in view of (1.8) and (1.10). �
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2 Apriori estimate for the energy density

In this section we obtain a C0-bound of the energy density in terms of the
energy of a solution u in SF . In the case F = 0, these estimates are due to
Eells-Sampson ([ES, p. 142]) and it turns out that they can be extended to
the case F 6= 0. At the end of this section we prove an apriori estimate for
‖∇du‖L2 for u ∈ SF,G in the case where dimM ≤ 3.
First we recall a Bochner type formula due to [ES] (cf [Bo]). Throughout this
section it is convenient to work with Riemannian normal coordinates in M .
Choose x0 ∈ M . Then, at x0, Riemannian normal coordinates x1, . . . , xn,
defined in a chart U ⊆M containing x0, have the following properties

gij(x0) = δij ;
∂gij
∂xk

(x0) = 0 (∀i, j, k). (2.1)

In particular, the Christoffel symbols Γkij of the Levi-Cività connection vanish
at x0. The following result is well known (cf [Jo]).

Lemma 2.1 Let u : M → M ′ be a C3-map. Then, ∆Me(u)(x) at x = x0

takes the form

∆Me(u)(x0) =
∑
i

〈∇Xiτ(u),
∂u

∂xi
〉

+
∑
i,k

〈∇Xk

∂u

∂xi
,∇Xk

∂u

∂xi
〉

+
∑
i,j

RicM(Xi, Xj)〈
∂u

∂xi
,
∂u

∂xj
〉

−
∑
i,k

〈R′
(
∂u

∂xi
,
∂u

∂xk

)
∂u

∂xk
,
∂u

∂xi
〉

(2.2)

where RicM denotes the Ricci curvature on M , R′ ≡ RM ′ the Riemannian
curvature on M ′, and Xi = ∂

∂xi
(1 ≤ i ≤ n).

Given two Hilbert spaces V, V ′ and a linear map S : V → V ′, denote by
‖S‖HS the Hilbert-Schmidt norm of S. With respect to an orthonormal
basis (fi) of V , the norm ‖S‖HS can be computed as

‖S‖HS =

(∑
i

〈Sfi, Sfi〉V ′
)1/2

.
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Given a C3-map u, let ∇·τ(u)(x) be the linear map obtained from the vector
field τ(u) along u

∇·τ(u)(x) : TxM → Tu(x)M
′, X 7→ ∇Xτ(u)

and denote its Hilbert-Schmidt norm by ‖∇·τ(u)(x)‖HS. If (ei)1≤i≤n is any
orthonormal basis of TxM , then

‖∇·τ(u)(x)‖HS =

(∑
i

‖∇eiτ(u)(x)‖2

)1/2

. (2.3)

Identifying the space of linear operators from TxM to Tu(x)M
′ with the

Hilbert space T ∗xM⊗Tu(x)M
′ (with norm given by the Hilbert Schmidt norm),

the differential u∗(x) ≡ dxu : TxM → Tu(x)M
′ can be viewed as a map

du : x 7→ dxu ∈ T ∗xM ⊗ Tu(x)M
′.

The covariant derivative of du then defines a map

∇·dxu : TxM → T ∗xM ⊗ Tu(x)M
′ , X 7→ ∇Xdxu.

Given any orthonormal basis (ei)1≤i≤n of TxM , the Hilbert Schmidt norm
‖∇·dxu‖HS can be computed as

‖∇·dxu‖HS =

(∑
i,j

‖∇eidxuXj‖2

)1/2

. (2.4)

Further, ‖RicM(x)‖HS denotes the Hilbert Schmidt norm of the Ricci curva-
ture RicM(x) viewed as a linear map RicM(x) : TxM → T ∗xM .

Corollary 2.2 For any C3-map u : M →M ′ and any x ∈M ,

−∆Me(u)(x)+‖∇·dxu‖2
HS ≤√

2‖∇·τ(u)(x)‖HS
√
e(u)(x) + 2‖RicM(x)‖HS · e(u)(x).

(2.5)

Proof To verify this inequality at an arbitrary point x0 ∈ M , choose Rie-
mannian normal coordinates at x0. Using that M ′ has nonpositive sectional
curvature, one obtains from Lemma 2.1 and (2.4)

−∆Me(u)(x0) + ‖∇·dx0u‖2
HS ≤

−
∑
i

〈∇Xiτ(u),
∂u

∂xi
〉 −

∑
i,j

RicM(Xi, Xj)〈
∂u

∂xi
,
∂u

∂xj
〉. (2.6)
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Further, as Xi = ∂
∂xi

(1 ≤ i ≤ n) is an orthonormal base of TxoM , one has

2e(u)(x0) =
∑
i

∥∥ ∂u
∂xi
∥∥2
,

hence in view of (2.3)∑
i

〈∇Xiτ(u),
∂u

∂xi
〉


≤

(∑
i

‖∇Xiτ(u)‖2

)1/2(∑
i

‖ ∂u
∂xi
‖2

)1/2

(2.7)

≤ ‖∇·τ(u)(x0)‖HS
√

2e(u)(x0)

and ∑
i,j

RicM(Xi, Xj)〈
∂u

∂xi
,
∂u

∂xj
〉


≤

(∑
i,j

| RicM(Xi, Xj) |2
)1/2(∑

i,j

‖ ∂u
∂xi
‖2‖ ∂u

∂xj
‖2

)1/2

(2.8)

≤ ‖RicM(x0)‖HS · 2e(u)(x0).

Substituting (2.7) and (2.8) into (2.6) leads to the claimed estimate at x = x0.
�

Given finite atlases (Uj)j∈I of M and (U ′i)i∈I′ of M ′, define the norm ‖F‖C1

of the x-dependent vectorfield F on M ′ as follows:

‖F‖C1 := sup
j∈I
i∈I′

sup
x∈Uj
y∈U ′i

sup
1≤k≤n
1≤α≤n′

(
‖F‖, ‖ ∂F

∂xk
‖, ‖ ∂F

∂yα
‖
)
.

Proposition 2.3 There exists a constant C1 ≥ 1 so that for any u ∈ SF
and any x ∈M ,

−∆Me(u)(x) ≤ C1(1 + ‖F‖C1) (1 + e(u)(x)) .
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Proof We apply the inequality (2.5). To estimate ‖∇·τ(u)(x)‖HS in (2.5)
notice that for u ∈ SF , we have τ(u)(x) = −F (x, u(x)). In local coordinates
of M and M ′ introduced above,

∇XiF
α =

∂Fα

∂xi
+
∂Fα

∂uβ
∂uβ

∂xi
+ Γ

′α
βγF

β ∂u
γ

∂xi

and thus

‖∇XiF (x, u(x))‖u(x) ≤ C‖F‖C1(1 + ‖ ∂u
∂xi

(x)‖)

where C > 0 depends on M and M ′ and the atlases (Uj)j∈I , (U
′
i)i∈I′ . Hence

we obtain for C > 0 sufficiently large

‖∇·F (x, u(x))‖HS ≤ C‖F‖C1

(
1 +

√
e(u)(x)

)
which in turn leads to

‖∇·F (x, u(x))‖HS
√
e(u)(x) ≤ C‖F‖C1 (1 + e(u)(x)) . (2.9)

As M is compact, ‖RicM(x)‖HS is bounded and the claimed estimate follows.
�

Theorem 2.4 There exists a constant C2 > 0 so that for any u ∈ SF ,

e(u)(x) ≤ C2(1 + ‖F‖C1)n(E(u) + 1) ∀x ∈M.

In the case F = 0 (i.e. in the case of harmonic maps), this theorem is due to
Eells-Sampson ([ES, p. 142]). Their proof can be generalized to the situation
at hand.
Let us first make a few preliminary considerations. Following Eells-Sampson
([ES, p. 141]) denote by P (x, z) the kernel of a parametrix of the Laplacian
−∆M , defined as

P (x, z) :=


κn (ϕ(d2(x, z)))−n/2+1 n ≥ 3

− 1
2π

log
√
ϕ(d2(x, z)) n = 2

1
2

(ϕ(d2(x, z))
1/2

+ 1 n = 1

where 1/κn = (n − 2)vol(Sn−1), d(x, z) denotes the distance between x and
z and for λ ≥ 0, ϕ(λ) is a non decreasing C∞ function satisfying

ϕ(λ) =

{
λ 0 ≤ λ ≤ a

2a0 λ ≥ 2a

15



with 0 < a < a0 < 1/2 chosen in such a way that d2(x, z) is C∞-smooth for
d2(x, z) < 3a.
Then, for any x ∈M,P (x, ·) is C∞ on M\{x} and

P (x, z) ≥ C0 ∀z ∈M\{x} (2.10)

where C0 > 0 can be chosen independently of x ∈ M . Denoting by B the
parametrix of −∆M given by the kernel P (x, z), one has

B(−∆M) = Id+ S

where S is a smoothing operator with kernel Q(x, y). Therefore

Id = B(−∆M)− S.

Applied to a function f in L2(M), this identity reads

f(x) =

∫
M

(P (x, z)(−∆M)f(z)−Q(x, z)f(z)) d vol(z). (2.11)

As the kernel Q(x, z) is smooth and thus bounded and since P (x, z) ≥ C0 > 0
(cf (2.10)), there exists a constant C3 > 0 such that for any x ∈M ,

| Q(x, z) |≤ C3P (x, z) ∀z ∈M\{x}.

Thus (2.11) leads to the inequality

f(x) ≤
∫
M

(P (x, z)(−∆M)f(z) + C3P (x, z) | f(z) |) d vol(z).

(2.12)

Proof (of Theorem 2.4) The inequality (2.12) is applied to f(x) = e(u)(x)+1
with u ∈ SF . By Proposition 2.3, as P (x, z) ≥ 0,

P (x, z)(−∆M)f(z) ≤ P (x, z)C1(1 + ‖F‖C1)f(z). (2.13)

As f(x) ≥ 1 we then obtain from (2.12) the inequality

f(x) ≤ C

∫
M

P (x, z)f(z) d vol(z) (2.14)

with C := C1(1 + ‖F‖C1) + C3.
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Estimate (2.14) can be iterated to get

f(x) ≤ Ck

∫
M

Pk(x, z)f(z) d vol(z) (2.15)

where Pk is defined inductively by P1 := P and, for k ≥ 2,

Pk(x, z) =

∫
M

Pk−1(x, z′)P (z′, z) d vol(z′).

Pk(x, z) is the kernel of a parametrix for (−∆M)k and thus continuous for
k > n/2. Hence, as M is compact, Pk(x, z) is bounded on M for k = n,

Pn(x, z) ≤ C ′

and (2.15) leads to

e(u)(x) + 1 ≤ C ′Cn

∫
M

(e(u)(z) + 1) d vol(z)

≤ C ′Cn(E(u) + vol(M)).

This establishes the claimed estimate. �

The Bochner type formula stated in Lemma 2.1 can also be used to obtain
an apriori estimate for a solution u in SF,G when G 6= 0. For this purpose
define the norm ‖G‖C1 , similarly as ‖F‖C1 , as follows: Given finite atlases
(Uj)j∈I (of M) and (U ′i)i∈I′ (of M ′), define the norm ‖G‖C1 as follows

‖G‖C1 := sup
k,α
x,y

{
‖G‖, ‖ ∂G

∂xk
‖, ‖ ∂G

∂yα
‖
}

where the supremum is taken over any k, α and any (x, y) ∈ Uj × U ′i with
(j, i) ∈ I × I ′.

Proposition 2.5 There exists a constant C ′1 ≥ 1 so that for any u ∈ SF,G
and any x ∈M ,

−∆Me(u)(x) +
1

2
‖∇·dxu‖2

HS ≤

≤ C ′1(1 + ‖F‖C1 + ‖G‖2
C1)
(

1 + (e(u)(x))3/2
)
.

(2.16)
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Proof By (2.5)

−∆Me(u)(x) + ‖∇·dxu‖2
HS ≤

≤ ‖∇·τ(u)(x)‖HS
√
e(u)(x) + ‖RicM(x)‖HSe(u)(x).

(2.17)

For u ∈ SF,G,

‖∇·τ(u)(x)‖HS ≤ ‖∇·F (x, u(x))‖HS + ‖∇·u∗G(x, u(x))‖HS. (2.18)

By (2.9)

‖∇·F (x, u(x))‖HS
√
e(u)(x) ≤ C‖F‖C1 (1 + e(u)(x)) . (2.19)

To estimate ‖∇·u∗G(x, u(x))‖HS, write in local coordinates of a chart Uj of
the atlas chosen above

∇Xiu∗G(x, u(x)) = ∇Xi

(
∂u

∂x`
G`(x, u(x))

)
= G`(x, u(x))

(
∇Xi

∂u

∂x`

)
+
∂u

∂x`
∂G`

∂xi
+
∂u

∂x`
∂G`

∂uβ
∂uβ

∂xi
.

Thus

‖∇·u∗G(x, u(x))‖HS ≤ C‖G‖C1

(∑
`

‖∇·
∂u(x)

∂x`
‖2
HS

)1/2

+ C‖G‖C1

(∑
`

‖∂u(x)

∂x`
‖2

)1/2

+ C‖G‖C1

(∑
`

‖∂u(x)

∂x`
‖2

)
.

Hence, using ab ≤ 1
2
a2 + 1

2
b2, one gets

‖∇·u∗G(x, u(x))‖HS
√
e(u)(x) ≤

1

2
‖∇·dxu‖2

HS +
1

2
C2‖G‖2

C1e(u)(x) (2.20)

+C‖G‖C1e(u)(x) + C‖G‖C1

(
e(u)(x)

)3/2
.
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Combining (2.17) - (2.20) leads to the claimed estimate. �

If dimM ≤ 3, estimate (2.16) can be used as follows: integrate (2.16) to get

1

2

∫
M

‖∇·du‖2
HS d vol(x) ≤

≤ C ′1(1 + ‖F‖C1 + ‖G‖2
C1)

∫
M

(1 + e(u)(x)3/2) d vol(x).

(2.21)

By the Gagliardo-Nirenberg inequality and dimM ≤ 3,

‖du‖L3 ≤ C‖du‖1/2

L2

(∫
M

‖∇·du‖2
HS d vol(x)

)1/4

+ C‖du‖L2 .

Thus, using (a+ b)3 ≤ 23(a3 + b3), one gets for C > 0 sufficiently large

∫
M

e(u)(x)3/2 d vol(x) ≤ CE(u)3/4

(∫
M

‖∇·du‖2
HS d vol(x)

)3/4

+ CE(u)3/2.

Hence, there exists C > 0 so that for any ε > 0∫
M

e(u)(x)3/2d vol(x) ≤ CE(u)3/2

ε2
+ ε2

(∫
M

‖∇·du‖2
HS d vol(x)

)3/2

and we deduce from (2.21) the following

Theorem 2.6 Assume that dimM ≤ 3. Then there exists a constant C4 > 0
so that for any u ∈ SF,G∫

M

‖∇·du‖2
HS d vol(x) ≤ C4(1 + ‖F‖C1 + ‖G‖2

C1)(E(u)3/2 + 1). (2.22)

3 Estimates for the diameter of a homotopy

class

In this section we start with the proof of the estimate of the distance N2(v, u)
between maps v, u : M →M ′ in a given homotopy class of C1-maps from M
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to M ′ stated in Theorem 0.4. In this section, we do not assume that M ′ has
nonpositive sectional curvature but only require that M ′ has no conjugate
points. In that case, there is a unique geodesic in any homotopy class of
curves on M ′ connecting two given points. Note that a geodesic homotopy
H from v to u is completely determined by the geodesic c : [0, 1]→M ′, s 7→
Hs(z) from v(z) to u(z) for an arbitrary given point z ∈ M . For any other
point x ∈ M , the curve s 7→ Hs(x) is the unique geodesic in the homotopy
class of the curve obtained by composing the three curves vγ−1

z,x, c, and uγz,x
where γz,x is some C1-curve in M from z to x and γ−1

z,x denotes its inverse. In
order to estimate the length of the geodesic curve s 7→ Hs(x) it is therefore
sufficient to estimate L(uγz,x), L(vγz,x), and L(c) where L denotes the length
functional.
In this section we make a choice of C1-paths γz,x for an open, nonempty set
of pairs of points (z, x) of the form Br(x0) ×M,Br(x0) being the open ball
with center x0 and radius r = r/2 where r is the convexity radius of M (cf
Appendix A) and give for any z in an open set of Br(x0) and any u ∈ ζ an
L2-estimate for L(uγz,x) in terms of the energy of u. This leads naturally
to a hypothesis (Z) defined below which implies an estimate of N2(v, u) in
terms of the energies of v and u as claimed in Theorem 0.4. In section 6 we
show that (Z) holds in our situation.
Choose an arbitrary base point x0 ∈ M . Given any unit vector v ∈ Tx0M ,
let t 7→ cv(t) be the geodesic with cv(0) = x0 and ċv(0) := d

dt

∣∣
t=0
cv(t) = v,

defined for 0 ≤ t ≤ mv where [0,mv] is the interval of maximal length so
that cv is a minimal geodesic. Denote by ϕcv : (−r,mv + r) × Br(0) → M
the corresponding Fermi coordinates (cf Appendix A) and by Vv ⊆ M the
image of ϕcv . Here Br(0) denotes the open ball in Rn−1 with center 0 and
radius r. As any two points in M can be joined by a geodesic of minimal
length and M is compact, there are finitely many vectors v1, . . . , vk so that
Vj := Vvj (1 ≤ j ≤ k) is an open cover of M . Note that Br(x0) ⊆ Vj for any
j. For z ∈ Br(x0) and x ∈ Vj, let γjz,x : [0, 1]→M be the path, parametrized
proportionally to arclength, such that γjz,x corresponds to a straight line in
the Fermi coordinates defined by ϕj := ϕvj and for any z ∈ Br(x0) and
x ∈M define γz,x := γjz,x where j := min{i | x ∈ Vi}. Note that γz,x depends

continuously on (z, x) in Br(x0)×
(
Vj\

⋃j−1
i=1 Vi

)
.

Proposition 3.1 Let 0 < λ < 1 and x0 ∈ M be given. Then there exists a
constant C5 > 0 with the following property: for any C1-map u : M → M ′
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into an arbitrary Riemannian manifold M ′, there exists an open subset Au ⊆
Br(x0) with vol(Au) ≥ λ vol(Br(x0)) such that for any z ∈ Au,(∫

M

L2 (uγz,x) d vol(x)

)1/2

≤ C5E(u)1/2.

Remark We point out that Proposition 3.1 is valid for any target manifold
M ′.

Before proving the proposition above we introduce hypothesis (Z) and show
(cf Proposition 3.2) that our desired estimate of N2(v, u) is an immediate
consequence of (Z) and Proposition 3.1.
Let ζ be a homotopy class of C1-maps v : M →M ′ where M ′ is an arbitrary
closed Riemannian manifold and x0 ∈M a given base point.
We say that (ζ, x0) satisfies hypothesis (Z) if the following holds:

(Z) There exist constants C6 > 0 and 0 < µ < 1, so that for any C1-maps
v, u ∈ ζ, there exists an open subset Avu ⊆ Br(x0) with vol(Avu) >
µ vol(Br(x0)) so that for any z ∈ Avu there exists a geodesic homotopy
H ≡ Hz from v to u satisfying

`H(z) ≤ C6

(
E(u)1/2 + E(v)1/2 + 1

)
.

We will show that hypothesis (Z) holds for any (ζ, x0) if M ′ has nonposi-
tive sectional curvature (cf section 6). First we want to prove the following
application of Proposition 3.1:

Proposition 3.2 Assume (ζ, x0) satisfies (Z). Then there exists C7 > 0, so
that for any C1-maps u, v ∈ ζ,

N2(v, u) ≤ C7

(
E(u)1/2 + E(v)1/2 + 1

)
.

Proof (Proposition 3.2) Let 0 < µ < 1 and Avu ⊆ Br(x0) be the open set
with vol(Avu) > µ · volBr(x0) given by (Z). Choose λ with

1 > λ > 1− µ

2
≥ 1

2
. (3.1)

By Proposition 3.1 there exists C5 > 0 so that there are open subsets Av, Au
of Br(x0) with

vol(Av), vol(Au) > λ vol(Br(x0))
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with the property that for any z ∈ Av,(∫
M

L2 (vγz,x) d vol(x)

)1/2

≤ C5E(v)1/2 (3.2)

and for any z ∈ Au,(∫
M

L2 (uγz,x) d vol(x)

)1/2

≤ C5E(u)1/2. (3.3)

By a simple volume computation one has

vol (Au ∩ Av) ≥ vol(Au)− vol (Br(x0)\Av)
≥ (2λ− 1)vol (Br(x0))

and hence

vol (Au ∩ Av ∩ Avu) ≥ vol(Au ∩ Av)− vol (Br(x0)\Avu)
≥ (2λ+ µ− 2)vol (Br(x0))

> 0

by the choice of (3.1) of λ. Therefore Avu∩Au∩Av is an open nonempty set.
In view of hypothesis (Z) there exists for any z ∈ Avu ∩ Au ∩ Av a geodesic
homotopy H ≡ Hz from v to u so that

`H(z) ≤ C6

(
E(u)1/2 + E(v)1/2 + 1

)
.

As H is a geodesic homotopy one has for any x ∈M ,

L (s 7→ Hs(x)) ≤ L (vγz,v) + `H(z) + L (uγz,x) ,

we then conclude from (3.2) - (3.3) that∫
M

L2 (s 7→ Hs(x)) d vol(x) ≤

≤
∫
M

(
3L2 (vγz,x) + 3`2

H(z) + 3L2 (uγz,x)
)
d vol(x)

≤ 3C2
5 (E(v) + E(u))

+ 3C2
6

(
E(u)1/2 + E(v)1/2 + 1

)2 · vol(M)

≤ C2
7

(
E(u)1/2 + E(v)1/2 + 1

)2
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where
C7 :=

(
3
(
C2

5 + C2
6 · vol(M)

))1/2
.

�

The remainder of this section is devoted to the proof of Proposition 3.1. First
we need to establish an auxilary result. Let U ⊆ Rn be open and convex and
ϕ : U → M a coordinate chart with ‖ϕ∗‖C0 < ∞ where ‖ϕ∗‖C0 denotes the
C0-norm of the differential ϕ∗ of ϕ for ϕ in the space of C1-maps from U
into M . For a, b ∈ U , the straight line t 7→ (1− t)a+ tb (0 ≤ t ≤ 1) between
a and b is in U and hence the following curve γa,b well defined,

[0, 1]→M, t 7→ γa,b(t) := ϕ ((1− t)a+ tb) .

Lemma 3.3 For any C1-map u : M →M ′,∫
U×U

L2 (uγa,b) d vol(a)d vol(b) ≤ C8E(u)

where C8 := (2C)n‖ϕ∗‖2
C0 (diam(U))2 vol(M), d vol(a) and d vol(b) denote the

volume elements of U with respect to the pull back gϕ of the metric g on M
by ϕ and C ≥ 1 is a bound for the metric tensor gϕ and its inverse on U .

Proof (of Lemma 3.3) For any C1-map u : M → M ′ one has by Cauchy’s
inequality∫

U×U
L2 (uγa,b) d vol(a)d vol(b)

=

∫
U×U

(∫ 1

0

∥∥u∗ (γa,b(t)) · ϕ∗ ((1− t)a+ tb) · (b− a)
∥∥dt)2

d vol(a)d vol(b)

≤ (diam(U))2 ‖ϕ∗‖2
C0

∫
U×U

∫ 1

0

2e (u(γa,b(t))) dt d vol(a)d vol(b)

Since γa,b(t) = γb,a(1− t) we have∫
U×U

∫ 1

0

e (u(γa,b(t))) dt d vol(a)d vol(b)

= 2

∫
U×U

(∫ 1

1/2

e (u(γa,b(t))) dt

)
d vol(a)d vol(b).
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For a and 1
2
≤ t ≤ 1 fixed, consider the transformation

ψa,t : U → Ua,t, b 7→ b := (1− t)a+ tb

where Ua,t := {(1− t)a+ tb | b ∈ U}. As U is convex, Ua,t ⊆ U and∫
U

e (u (ϕ ((1− t)a+ tb))) d vol(b)

=

∫
Ua,t

e
(
u(ϕ(b))

) (
ψ−1
a,t

)∗
(d vol)(b)

≤ (C/t)nE(u) ≤ (2C)nE(u)

where (ψ−1
a,t )
∗(d vol)(b) denotes the pull back of the volume element d vol(b)

by ψ−1
a,t and C ≥ 1 is a bound for the metric tensor gϕ (the pullback of g by

ϕ) and its inverse on the coordinate chart U ,

‖gϕ‖C0 , ‖g−1
ϕ ‖C0 ≤ C.

Thus ∫
U×U

∫ 1

0

e (u (γa,b(t))) dtd vol(a)d vol(b)

≤ 2 · (2C)nE(u)

∫
U

∫ 1

1/2

dtd vol(a)

≤ (2C)nE(u)vol(M)

and the claimed inequality follows. �

Proof (Proposition 3.1) For any 1 ≤ j ≤ k let

ϕj : (−r,mj + r)×Br(0)→ Vj ⊆M

be the Fermi coordinate chart ϕj ≡ ϕcvj with mj ≡ mvj as introduced above.

Since Br(x0) ⊆ Vj ∀1 ≤ j ≤ k, Lemma 3.3 implies that there exists a constant
C > 0 independent of u such that ∀1 ≤ j ≤ k∫

Br(x0)×Vj
L2
(
uγjz,x

)
d vol(z)d vol(x) ≤ CE(u).
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For any 1 ≤ j ≤ k and n ∈ N let

Ajn := {z ∈ Br(x0) |
∫
Vj\

⋃j−1
1 Vi

L2
(
uγjz,x

)
d vol(x) ≥ nE(u)}.

Notice that Ajn is closed and

CE(u) ≥
∫
Ajn×Vj

L2
(
uγjz,x

)
d vol(z)d vol(x) ≥ n vol(Ajn)E(u).

Hence for any given 0 < λ < 1, there exists m ∈ N so that

vol(Ajm) <
1− λ
k

vol (Br(x0)) ∀1 ≤ j ≤ k.

Then A := Br(x0)\
(⋃k

j=1 A
j
m

)
is open and satisfies

vol(A) ≥ vol (Br(x0))− (1− λ)vol (Br(x0))

≥ λvol (Br(x0))

and ∫
Vj\

⋃j−1
1 Vi

L2
(
uγjz,x

)
d vol(x) ≤ mE(u) ∀z ∈ A.

As a consequence one gets for any z ∈ A∫
M

L2 (uγz,x) d vol(x)

≤
k∑
j=1

∫
Vj\

⋃j−1
1 Vi

L2
(
uγjz,x

)
d vol(x)

≤ kmE(u)

which implies Proposition 3.1 with Au := A and C5 :=
√
km. �

4 Closed manifolds of nonpositive curvature

In this section we collect some material about closed Riemannian manifolds
M ′ of nonpositive sectional curvature (cf [BGS]) which we need to prove
property (Z).
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The manifold M ′ can be represented as X ′/Γ, where X ′ → M ′ is the uni-
versal covering of M ′ and Γ ∼= π1(M ′) is the discrete and cocompact group
of isometries on X ′. The universal covering is a Hadamard manifold, i.e. a
complete and contractible Riemannian manifold of nonpositive sectional cur-
vature. In particular, πk(M

′) = {1} for any k ≥ 2. Any isometry γ ∈ Γ\{id}
acts freely on X ′, i.e. has no fixed points.
To an isometry γ ∈ Γ we associate the displacement function dγ : X ′ →
[0,∞), dγ(x) := d(x, γx) where here d is the distance function on X ′. The
function dγ is convex, i.e. dγ(x(t)) is convex in t for any geodesic, parametrized
proportional to arclength, and 2-Lipschitz continuous, i.e.

|dγ(x)− dγ(z)| ≤ 2d(x, z) (x, z ∈ X ′).

Thus the set
MIN(γ) := {x ∈ X ′ | dγ(x) = inf dγ}

is a closed, convex subset of X ′. If α ∈ Γ commutes with γ, then dγ is α
invariant since

dγ(αx) = d(αx, γαx) = d(αx, αγx) = d(x, γx) = dγ(x).

Hence the centralizer Z(γ) leaves MIN(γ) invariant. Corollary 4.2 below
shows that MIN(γ) is not empty and Z(γ) operates with compact quotient
on MIN(γ).
More generally, consider finitely many elements γ1, . . . , γm in Γ and introduce
the function f : X ′ → [0,∞), f :=

∑m
i=1 dγi . As each dγi is convex as

well and 2-Lipschitz continuous it follows that f is convex and 2m-Lipschitz
continuous. Let

Z(γ1, . . . , γm) := {α ∈ Γ | αγi = γiα for all i = 1, . . . ,m}

be the centralizer of γ1, . . . , γm. Then f is Z(γ1, . . . γm) invariant and hence
induces a convex 2m-Lipschitz continuous function f on X ′/Z(γ1,...,γm).

Lemma 4.1 f is a proper function on X ′/Z(γ1,...,γm).

Proof (cf [CS]) Let a > inf(f) be given. We have to show that the sublevel
{f ≤ a} is compact. Let (xi)i≥1 be a sequence of points in {f ≤ a} and let
xi ∈ X ′ be such that π(xi) = xi where π : X ′ → X ′/Z(γ1,...,γm) is the canonical
projection. Since Γ operates cocompactly on X ′, there are elements αi ∈ Γ
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such that αi · xi ∈ D where D ⊂ X ′ is a fixed compact fundamental domain
for Γ. Hence there is a subsequence of αi · xi converging to x0 ∈ D. For any
j ∈ {1, . . . ,m} and any i ∈ N we have

dαiγjα−1
i

(αi · xi) = dγj(xi) ≤ f(xi) = f(xi) ≤ a

and thus, using the 2-Lipschitz continuity of dγ, one obtains that for any
1 ≤ j ≤ m

dαiγjα−1
i

(x0) ≤
∣∣dαiγjα−1

i
(x0)− dαiγjα−1

i
(αi · xi)

∣∣+ dαiγjα−1
i

(αi · xi)
≤ 2d(x0, αi · xi) + a ≤ 1 + a

for i large enough. It then follows from the discreteness of the group Γ, that
there are only finitely many elements in the set {αiγjα−1

i x0 | i ∈ N} and thus,
as Γ acts freely on X ′, the set {αiγjα−1

i | i ∈ N} is finite. Hence passing to
a subsequence of (xi)i≥1 if necessary, we can assume that there are elements
δ1, . . . , δm ∈ Γ such that

αiγjα
−1
i = δj for all i ∈ N

and hence αiγjα
−1
i = αkγjα

−1
k for all i, k ∈ N, j ∈ {1, . . . ,m} which im-

plies α−1
k αi ∈ Z(γ1, . . . , γk). Thus, with d denoting the distance function on

X ′/Z(γ1, . . . , γm) we have

d(xi, xk) ≤ d(α−1
k αi · xi, xk)

= d(αi · xi, αk · xk) ≤ diam(D)

and hence there exists a subsequence of (xi)i≥1 which converges. �

As f is continuous, the above lemma implies that f and hence f assumes its
infimum. Therefore MIN(f) := {x ∈ X ′ | f(x) = inf(f)} has the following
properties:

Corollary 4.2 MIN(f) is nonempty and closed. Further it is convex and
MIN(f)/Z(γ1, . . . , γm) is compact.

The fact that MIN(f) is closed and convex allows to introduce the metric
projection πMIN(f) : X ′ →MIN(f) defined by

d(x, πMIN(f)(x)) = min{d(x, y) | y ∈MIN(f)}
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Lemma 4.3 There is a constant % > 0 such that for any x ∈ X ′ with
d(x,MIN(f)) ≥ 1

f(x) ≥ % d(x, πMIN(f)(x)).

Hence for any x ∈ X ′,

d
(
x, πMIN(f)(x)

)
≤ 1

%
f(x) + 1.

Proof Let a0 := inf(f). If a0 = 0, then every x ∈ MIN(f) is a common
fixed point of the isometries γj (1 ≤ j ≤ m). As γ = id is the only element
in Γ with a fixed point m = 1 and γ1 = id, hence MIN(f) = X ′ and the
claimed statement clearly holds. Now consider the case a0 > 0. Given any
x ∈ X ′\MIN(f) denote by c : [0,∞) → X ′ the geodesic ray starting from
c(0) = πMIN(f)(x) and passing through x, parametrized by arclength. As c is
a geodesic we then have d(c(t),MIN(f)) = t. Modulo the operation of the
group Z(γ1, . . . , γm) the set of these rays is compact by Lemma 4.1. Thus
there exists a constant a1 > a0 with f(c(1)) ≥ a1 for all such rays. As f is
convex and c(t) is a geodesic, f ◦ c is convex and hence for any t ≥ 1

f(c(t)) ≥ a0 + t(a1 − a0) = a0 + (a1 − a0)d(c(t),MIN(f)).

�

5 Short homotopies between graphs

Let M ′ = X ′/Γ be a compact Riemannian manifold with nonpositive sec-
tional curvature. In this section we show that two homotopic maps from a
graph into M ′ can be joined by a short homotopy.
Let G be a finite metric graph, i.e. a finite graph, where every edge has
some positive length (cf [BH] I.1.9). We also assume for simplicity that G
has no terminals, i.e. that every edge is incident to at least two edges. A
map u : G → M ′ is called differentiable, if the restriction of u to every
edge is differentiable. In an obvious way one defines the length L(u) of a
differentiable map u : G→M ′ by summing up the lengths of the restriction
of u to any of the edges of G.
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Theorem 5.1 Let ζ be a homotopy class of C1-maps from G to M ′. Then
there is a constant C9 > 0 such that for any u, v ∈ ζ there exists a homotopy
H : G× [0, 1]→M ′ from v to u, such that for any point z ∈ G,

`H(z) ≤ C9 (L(u) + L(v) + 1) .

The constant C9 does not depend on the choice of the metric on G.

For the convenience of the reader we first outline the proof in the special case
where G is a circle with a given metric, the homotopy class ζ is nontrivial, and
the sectional curvature ofM ′ is strictly negative. Denote by T ⊂ R an interval
of the same length as G and by p+, p− its two endpoints. Let ϕ : T → G be
the canonical map identifying p+ and p−, choose t0 = p+ ∈ T as a basepoint
and let HG : G × [0, 1] → M ′ be a given homotopy from v to u. Consider
the map HT : T × [0, 1] → M ′ defined by HT (t, s) = HG(ϕ(t), s) which can

be lifted to a map H
T

: T × [0, 1] → X ′. Since HT (p+, s) = HT (p−, s) for
any 0 ≤ s ≤ 1 and Γ acts discretely, there is a deck transformation γ ∈ Γ

so that γH
T

(p+, s) = H
T

(p−, s) for any 0 ≤ s ≤ 1. Furthermore γ is not
the trivial element, since ζ is nontrivial. As, by assumption, the curvature
is strictly negative, γ translates a unique geodesic which coincides as a set
with MIN(γ) (cf section 6 in [BGS]). Note that by Lemma 4.3

d
(
H
T

(t0, 1),MIN(γ)
)
≤ 1

%
dγ(H

T
(t0, 1)) + 1 ≤ 1

%
L(u) + 1 (5.1)

and, similarly,

d
(
H
T

(t0, 0),MIN(γ)
)
≤ 1

%
L(v) + 1. (5.2)

As above let πMIN(γ) : X ′ →MIN(γ) be the metric projection ontoMIN(γ).
The cyclic group 〈γ〉 operates with compact quotient on the geodesicMIN(γ)
(cf Corollary 4.2). Thus there exists m ∈ Z such that for α = γm

d(απMIN(γ)H
T

(t0, 1), πMIN(γ)H
T

(t0, 0)) ≤ C (5.3)

where C is the minimum of dγ which depends only on the homotopy class of

ζ. With the help of α we define a new homotopy ĤT : T × [0, 1] → X ′ by
ĤT (t, s) = ct(s) where for any t ∈ T , ct : [0, 1] → X ′ is the geodesic from

H
T

(t, 0) to αH
T

(t, 1). Since α commutes with γ it is easily checked that for
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any 0 ≤ s ≤ 1, γĤT (p+, s) = ĤT (p−, s). Hence ĤT induces a homotopy H
from v to u. By (5.1),(5.2) and (5.3) we estimate

d(ĤT (t0, 1), ĤT (t0, 0))

≤ d(ĤT (t0, 1), απMIN(γ)H
T

(t0, 1)) + d(απMIN(γ)H
T

(t0, 1), πMIN(γ)H
T

(t0, 0))

+ d(πMIN(γ)H
T

(t0, 0), H
T

(t0, 0))

≤
(

1

%
L(v) + 1

)
+ C +

(
1

%
L(u) + 1

)
(5.4)

Let H : G × [0, 1] → M ′ be defined by composing ĤT with the projection
X ′ →M ′. Then the above inequality implies

`H(z0) ≤ C ′(L(u) + L(v) + 1)

for z0 = ϕ(t0) and C ′ is given by C ′ := C + 2 + 1/% which is independent of
the metric on G. Using the triangle inequality we obtain

`H(z) ≤ (C ′ + 1) (L (u) + L (v) + 1)

for an arbitrary point z ∈ G. The argument in the general case is essen-
tially the same. The interval T has to be replaced by a suitable metric tree,
MIN(γ) by MIN(f) for a suitable function f =

∑m
i=1 dγi and the group 〈γ〉

by the centralizer Z(γ1, . . . γm).
To be precise, let G be an arbitrary finite metric graph assumed to be con-
nected. Recall that the Euler characteristic χ(G) of a graph G is defined
by

χ(G) := ] vertices − ] edges .

By a straight forward inductive argument one sees that χ(G) ≤ 1 as G is
connected. Further we recall that a connected graph is said to be a tree if it
does not contain any loop. Again by a straight forward inductive argument
one verifies that a connected graph G is a tree iff χ(G) = 1. Let T1 ⊂ G be
a maximal connected subgraph of G such that T1 is in addition a tree. T1 is
obtained from G by removing m edges, denoted by e1, . . . , em. It then follows
from the above characterization of trees that m = 1− χ(G). Let p1, . . . , pm
be the midpoints of e1, . . . , em and consider the abstract metric tree T which
is obtained from G by removing the points pj and then completing the metric
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tree. A point pi then gives rise to two points, p+
i and p−i , in T . Thus T is

a metric tree whose terminals are the vertices p+
i , p

−
i , i = 1, . . . ,m, and G

is obtained from T by identifying p+
i with p−i for any 1 ≤ i ≤ m. Let us

denote by ϕ : T → G this identification map. We choose a base point t0 in
the interior of the tree T . For every terminal p+

i , p
−
i of T there is a unique

path σ+
i , σ

−
i : [0, 1]→ T parametrized proportionally to arclength from t0 to

p+
i , p

−
i . By our assumption there exists a homotopy HG : G × [0, 1] → M ′

with HG
0 = v and HG

1 = u. Let HT : T × [0, 1]→M ′ be the map

HT (t, s) = HG(ϕ(t), s).

Since T is contractible, we can lift HT to a map

H
T

: T × [0, 1]→ X ′

where π : X ′ → M ′ is the universal covering of M ′. Since HT (p+
i , s) =

HT (p−i , s) for any i = 1, . . . ,m and s ∈ [0, 1], the points H
T

(p+
i , s) and

H
T

(p−i , s) are identified by deck transformations. Hence there are isometries
γ1, . . . , γm in the deck transformation group Γ so that for any 0 ≤ s ≤ 1,

γi(H
T

(p+
i , s)) = H

T
(p−i , s).

Introduce
L(σ±i , s) := length

(
τ 7→ H

T
(σ±i (τ), s)

)
.

and note that
L(σ±i , 0) ≤ L(v)

and
L(σ±i , 1) ≤ L(u).

It then follows by the triangle inequality that

dγi(H
T

(p+
i , 0)) = d

(
H
T

(p+
i , 0), γiH

T
(p+
i , 0)

)
≤

≤ d
(
H
T

(p+
i , 0), H

T
(t0, 0)

)
+ d

(
H
T

(t0, 0), H
T

(p−i , 0)
)

≤ L(σ+
i , 0) + L(σ−i , 0) ≤ 2L(v)

31



and hence, for any 1 ≤ j ≤ m,

dγj

(
H
T

(p+
i , 0)

)
≤ d

(
H
T

(p+
i , 0), H

T
(p+
j , 0)

)
+ dγj

(
H
T

(p+
j , 0)

)
+

+ d
(
γjH

T
(p+
j , 0), γjH

T
(p+
i , 0)

)
≤ 2 · d

(
H
T

(p+
i , 0), H

T
(p+
j , 0)

)
+ 2L(v) ≤ 4L(v).

Summing up these inequalities then leads to

f(H
T

(p+
i , 0)) ≤ 4mL(v)

where

f =
m∑
j=1

dγj .

Since f is 2m-Lipschitz continuous we have

|f
(
H
T

(t0, 0)
)
− f

(
H
T

(p+
i , 0)

)
| ≤

≤ 2m · d
(
H
T

(t0), H
T

(p+
i , 0)

)
≤ 2m · L(σ+

i , 0)

and hence

f(H
T

(t0, 0)) ≤ 2m · L(σ+
i , 0) + f(H

T
(p+
i , 0)) ≤ 6m · L(v).

Similarly one obtains

f(H
T

(t0, 1)) ≤ 6m · L(u).

Together with Lemma 4.3 one then gets

d(H
T

(t0, 0), πMIN(f)H
T

(t0, 0))

≤ 1

%
f
(
H
T

(t0, 0)
)

+ 1

≤ C · (L(v) + 1)

(5.5)

where C := 1 + 6m/%. Similarly,

d(H
T

(t0, 1), πMIN(f)H
T

(t0, 1)) ≤ C · (L(u) + 1) . (5.6)
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By Corollary 4.2, Z(γ1, . . . , γm) operates with compact quotient on MIN(f)
and thus for some constant C > 0

diam (MIN(f)/Z(γ1, . . . , γm)) ≤ C.

Hence there is an element α ∈ Z(γ1, . . . , γm) with

d(απMIN(f)H
T

(t0, 1), πMIN(f)H
T

(t0, 0)) ≤ C. (5.7)

Combining the inequalities (5.5), (5.6), (5.7), we obtain for some constant
C > 0, independent of the metric on G,

d(H
T

(t0, 0), αH
T

(t0, 1)) ≤ C · (L(u) + L(v) + 1) . (5.8)

We now define a new map

ĤT : T × [0, 1]→ X ′, (t, s) 7→ ĤT (t, s) := ct(s)

where ct : [0, 1] → X ′ is the geodesic from H
T

(t, 0) to αH
T

(t, 1) with α ∈
Z(γ1, . . . , γm) given as above. We claim that

γiĤ
T (p+

i , s) = ĤT (p−i , s) (i ∈ {1, . . . ,m}, s ∈ [0, 1]). (5.9)

To see it, note that as cp+
i

is the geodesic from H
T

(p+
i , 0) to αH

T
(p+
i , 1), it

follows that γicp+
i

is the geodesic from γiH
T

(p+
i , 0) = H

T
(p−i , 0) to

γiαH
T

(p+
i , 1) = αγiH

T
(p+
i , 1) = αH

T
(p−i , 1)

as α is an element in the centralizer Z(γ1, . . . , γm). Thus γicp+
i

is the geodesic

cp−i and hence (5.9) established. By (5.9), ĤT induces a homotopy H :

G× [0, 1]→M ′. For z0 := ϕ(t0) we have by (5.8)

`H(z0) = d(H
T

(t0, 0), αH
T

(t0, 1)) ≤ C(L(u) + L(v) + 1).

By the triangle inequality we then obtain again that

`H(z) ≤ (C + 1) (L(u) + L(v) + 1)

for any z ∈ G with C9 := C + 1 independent of the metric on G. �
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6 Validity of (Z)

In this section we prove that condition (Z), introduced in section 3, always
holds in the case where M ′ has nonpositive sectional curvature. In fact, we
prove that a stronger version of (Z) holds.
Denote by r ≡ r(M) the convexity radius of M , let r := r/2 and denote by
Br(x0) ⊆M the ball of radius r centered at a point x0 in M .

Theorem 6.1 Let 0 < λ < 1, a homotopy class ζ of C1-maps v : M →M ′,
and x0 ∈M be given and assume that M ′ has nonpositive sectional curvature.
Then there exists a constant C10 > 0 so that for any C1-maps u, v : M →M ′

in ζ there is an open subset Auv ⊆ Br(x0) with vol(Auv) ≥ λBr(x0) so that
for any z ∈ Auv one can find a homotopy H from v to u satisfying

`H(z) ≤ C10

(
E(u)1/2 + E(v)1/2 + 1

)
.

The idea of the proof is to construct homotopies between maps v and u
by using short homotopies between graphs (cf section 5). Throughout this
section we assume that M ′ has nonpositive sectional curvature.
First we need to establish an auxilary result. Let G be a finite graph and
ψ : G → M a contiuous map such that ψ∗ is surjective where here ψ∗ :
π1(G, g)→ π1(M,ψ(g)) is the induced map on the fundamental groups with
g ∈ G an arbitrary base point. As above let v, u : M → M ′ be homotopic
C1-maps.

Lemma 6.2 Let H : ψ(G)× [0, 1]→M ′ be a continuous map such that for
every p ∈ ψ(G), s 7→ H(p, s) is a geodesic from v(p) to u(p). Then H can be
extended in a unique way to a geodesic homotopy, again denoted by H, on
all of M ,

H : M × [0, 1]→M ′.

Proof (of Lemma 6.2) Choose z := ψ(g) as base point of M and let c be
the geodesic s 7→ H(z, s) from v(z) to u(z). Introduce a map H̃ : M ×
[0, 1] → M ′ as follows: choose for any point x ∈ M a continuous path
γz,x in M from z to x. The path γz,x is arbitrary except in the case where
x ∈ ψ(G). For such a point, γz,x is chosen so that it lies entirely in ψ(G). Let
s 7→ H̃(x, s) ≡ H̃s(x) be the unique geodesic, parametrized proportional to
arclength, from v(x) to u(x) in the homotopy class of the curve obtained by
composing v(γ−1

z,x), c, and then u(γz,x). Clearly H̃ is an extension of H since
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for any point x ∈ ψ(G), s 7→ Hs(x) is a geodesic from v(x) to u(x) which is
homotopic to the composition v(γ−1

z,x), c, and u(γz,x). For simplicity, denote

the extension H̃ again by H. To show that H is a C1-map we first prove that
H does not depend on the choice of the family of pathes (γz,x)x∈M . Indeed,
assume that (γ̆z,x)x∈M is any other choice of such a family and denote by

H̆ : M × [0, 1] → M ′ the corresponding extension of H
∣∣
ψ(G)×[0,1]

. It is to

show that for any point x ∈ M, s 7→ Hs(x) and s 7→ H̆s(x) are homotopic.
As both are geodesics parametrized proportional to arclength it then folllows
that Hs(x) = H̆s(x) for any 0 ≤ s ≤ 1. To see that s 7→ Hs(x) and s 7→ H̆s(x)
are homotopic note that γ̆−1

z,x ◦ γz,x is a closed curve in M passing through
z. By assumption ψ∗ : π1(G, g) → π1(M, z) is onto, hence γ̆−1

z,x ◦ γz,x is
homotopic to a curve which is entirely contained in ψ(G). It follows that
there are continuous maps γ± : [0, 1]× [0, 1] → M, (t, τ) 7→ γ±τ (t) ≡ γ±(t, τ)
with the following properties

(i) γ+
1 = γz,x; γ

−
1 = γ̆z,x

(ii) γ+
τ (0) = γ−τ (0) = z ∀0 ≤ τ ≤ 1

(iii) x(τ) := γ+
τ (1) = γ−τ (1) ∀0 ≤ τ ≤ 1

(iv) γ+
0 and γ−0 are entirely contained in ψ(G).

Denote by s 7→ H±s (x(τ)) the geodesic from v(x(τ)) to u(x(τ)) in the ho-
motopy class of the composition v(γ±τ )−1 ◦ c ◦ uγ±τ . Hence for τ = 0, s 7→
H+
s (x(τ)) and s 7→ H−s (x(τ)) are in the same homotopy class, thus by con-

tinuity, they are homotopic for any 0 ≤ τ ≤ 1. In particular (τ = 1), the
pathes s 7→ H+

s (x(1)) = Hs(x) and s 7→ H−s (x(1)) = Hs(x) are homotopic
as claimed. The regularity of H : M × [0, 1]→M ′ is now easily established:
Given any x0 ∈ M , choose in a (sufficiently small) neighborhood U of x0 a
family of pathes (γzx)x∈U depending smoothly on x. By construction, H is a
C1-map on U × [0, 1] as both u and v are C1-maps. The uniqueness of the
extension follows from the observation made at the beginning of section 3
that the homotopy H is completely determined by the geodesic c. �

Proof (of Theorem 6.1) We want to apply Lemma 6.2. For the graph G and
the continuous map ψ : G → M we choose a parametrization of a graph in
M as follows: Let x0 ∈ M be our chosen base point and {x0, x1, . . . , xm} be
a maximal system of points in M such that d(xi, xj) ≥ r for all i 6= j where
r is the convexity radius of M . The graph G′ ⊆M is then defined as follows:
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The vertices of G′ are the points x0, . . . , xm. We join two different vertices xi
and xj by an edge iff d(xi, xj) < 2r where the edge, denoted by cij, is given
by the unique minimal geodesic between xi and xj. We first claim that the
canonical map π1(G′, x0) → π1(M,x0), induced by the inclusion G′ ↪→ M ,
is onto. In order to prove this we have to show that a continuous curve
η : [0, 1] → M with η(0) = η(1) = x0 is homotopic to a curve in G′. As the
set {x0, . . . , xm} is maximal with the property that d(xi, xj) ≥ r ∀i 6= j and
M is compact there exists ε > 0 so that

sup
z∈M

d(z, {x0, . . . , xm}) ≤ r − 2ε.

Subdivide the interval [0, 1] by 0 = t0 ≤ . . . ≤ tk = 1 such that for any
i ∈ {0, . . . , k}, η([ti, ti+1]) ⊂ Bε(η(ti)). Choose for any i ∈ {0, . . . , k − 1} a
point xν(i) with

d(η(ti), xν(i)) = d(η(ti), {x0, . . . , xm}).

As η(0) = η(1) = x0 one has xν(k) = xν(0) = x0. Then d(η(ti), xν(i)) ≤ r−ε by
the maximality of the set {x0, . . . , xm}. Let βi be the unique (in M) minimal
geodesic from η(ti) to xν(i) and define ηi := η

∣∣
[ti,ti+1]

for i = 0, . . . , k − 1.

Then η can be considered as the composition of curves, η = η0 · · · , ηk−1, the
latter being clearly homotopic to

η0β1β
−1
1 η1β2 · · · β−1

k−1ηk−1.

Note that the segments β−1
i ηiβi+1 are curves connecting xν(i) and xν(i+1)

which are contained in Br(η(ti)). Thus this segment is either homotopic (with
fixed boundary points) to the constant map xν(i) in the case xν(i) = xν(i+1)

or to the geodesic from xν(i) to xν(i+1) and the claim follows.
We use (i, j) as a mark for ci,j and introduce

J := {(i, j) | (i, j) is a mark for an edge of G′}

which is a subset of {(i, j) | 0 ≤ i, j ≤ m}. The graph G is now defined
as a graph on the standard simplex in Rm whose vertices v0, . . . , vm are the
vertices of the simplex and whose edges are the edges eij of the simplex with
(i, j) ∈ J . Clearly eij denotes the straight line joining vi with vj. The
metric is chosen to be the uniform metric normalized in such a way that
each edge has length 1. The map ψ : G → M is now defined by setting
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ψ(vj) := xj (0 ≤ j ≤ m) and by defining ψ
∣∣
eij

as the parametrization of the

minimal geodesic cij from xi to xj which is proportional to arclength. We
need to introduce variations of the map ψ of the following type: For a point
z := (z0, . . . , zm) ∈ Br(x0)× . . .×Br(xm) define a map

ψz : G→M

by setting ψz(vj) := zj for any 0 ≤ j ≤ m and defining ψz
∣∣
eij

as being

the curve γzizj . Let us recall from Appendix A how the curves γij ≡ γzizj
are defined. Denote by ϕij ≡ ϕcij the Fermi coordinates associated to the
minimal geodesic cij (cf Appendix A), ϕij : (−r,mij +r)×Br(0)→M where
mij is the length of cij and Br(0) is the ball in Rn−1 with center 0 and radius
r. Let ai and aj be the points

ai := ϕ−1
ij (zi), aj := ϕ−1

ij (zj).

Then γij is the image of the straight line (1 − t)ai + taj (0 ≤ t ≤ 1) by the
Fermi coordinates ϕij.
We can identify G via the map ψz with a metric graph Gz ⊆M , with metric
induced from M , for any z in B(x0, . . . , xm) = Br(x0) × . . . × Br(xm). For
any z ∈ B(x0, . . . , xm), the restrictions vz and uz of v and u to Gz are
homotopic maps from Gz into M ′. By Theorem 5.1, there is a constant
C9 > 0, independent of z, such that there is a geodesic homotopy

H : Gz × [0, 1]→M ′

from vz to uz with the property that

`H(z0) ≤ C9 (L(uz) + L(vz) + 1) . (6.1)

By Lemma 6.2, the homotopy H can be extended to a geodesic homotopy
H : M × [0, 1]→M ′. The claimed statement then follows immediately from
(6.1) and the proposition below. �

The following result is a version of Proposition 3.1 for graphs. For its state-
ment and proof we use the notation introduced in the proof of Theorem 6.1.

Proposition 6.3 Let 0 < λ < 1 and x0 ∈ M be given. Then there exists a
constant C11 ≥ 1, with the following property: for any homotopic C1-maps
u, v : M → M ′ into an arbitrary Riemannian manifold M ′, there exists an
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open subset Auv ⊆ Br(x0) with vol(Auv) ≥ λ vol(Br(x0)) so that for any
z0 ∈ Auv one can find (z1, . . . , zm) ∈ Br(x1)× . . .×Br(xm) with

L (uz) ≤ C11E(u)1/2; L (vz) ≤ C11E(v)1/2

where z = (z0, . . . , zm), uz denotes the restriction of u to Gz, and L(uz)
denotes the length of the graph uz,

L(uz) :=
∑

(i,j)∈J

L(uγzizj).

Proof Let Bj := Br(xj) for convenience. As Bi and Bj are in the image of
the Fermi coordinate map ϕij one concludes from Lemma 3.3, that for any
0 ≤ i, j ≤ m ∫

Bi×Bj
L2
(
uγzizj

)
d vol(zi)d vol(zj) ≤ CE(u)

and ∫
Bi×Bj

L2
(
vγzizj

)
d vol(zi)d vol(zj) ≤ CE(v)

where C := maxi,j Cij with Cij denoting the constant C8 = C8(ϕij) given by
Lemma 3.3 for the chart given by ϕij. Introduce the following open subset

W
(n)
ij ⊆ Bi ×Bj

W
(n)
ij := Bi ×Bj\U (n)

ij ∪ V
(n)
ij

where U
(n)
ij and V

(n)
ij are closed subsets of Bi ×Bj given by

U
(n)
ij := {(zi, zj) ∈ Bi ×Bj | L

(
uγzizj

)
≥ nE(u)1/2}

and
V

(n)
ij := {(zi, zj) ∈ Bi ×Bj | L

(
vγzizj

)
≥ nE(v)1/2}.

Then

n2E(u)vol(U
(n)
ij ) ≤

∫
Bi×Bj

L2
(
uγzizj

)
d vol(zi)d vol(zj) ≤ CE(u)

and it follows that

vol(U
(n)
ij ) ≤ C

n2
.

38



Similarly one has that

vol(V
(n)
ij ) ≤ C

n2
.

Hence there exists a sequence ν(n) with 0 ≤ ν(n) < 1, only depending on M
and the combinatorial structure of G so that for any 0 ≤ i, j ≤ m

ν(n) ≤ vol(W
(n)
ij )/ vol(Bi ×Bj); lim

n→∞
ν(n) = 1.

As a consequence,

W (n) := {z = (z0, . . . , zm) ∈ B(x0, . . . , xm) | (zi, zj) ∈ W (n)
ij ∀(i, j) ∈ J }

is an open subset of B0 × . . . × Bm with the property that there exists 0 ≤
λ(n) < 1, so that

λ(n) ≤ vol(W (n))/ vol(B0 × . . .×Bm); lim
n→∞

λ(n) = 1.

Finally let A(n) := Π0(W (n)) where Π0 : B0 × . . . × Bm → B0 denotes the
canonical projection on the first factor. Then A(n) is an open subset of B0

and there exists 0 ≤ λ
(n)
0 < 1 so that

λ
(n)
0 ≤ vol(A(n))/ vol(B0); lim

n→∞
λ

(n)
0 = 1.

For any given 0 < λ < 1 choose n0 ≥ 1 so large that λ
(n0)
0 > λ and set

Auv := An0 . Then Auv ⊆ Br(x0) is open with

λ < vol(Auv)/ vol (Br(x0))

and for any z0 ∈ Auv there exists (z1, . . . , zm) ∈ B1 × . . . × Bm so that for
z := (z0, z1, . . . , zm) and 0 ≤ i, j ≤ m,

L
(
uγzizj

)
≤ nE(u)1/2; L

(
vγzizj

)
≤ nE(v)1/2.

Hence by choosing C11 := n · |J |, the claimed statement follows. �

The proof of Theorem 0.4 stated in the introduction is an immediate conse-
quence of Proposition 3.2 and Theorem 6.1:

Proof (of Theorem 0.4) By Theorem 6.1, for any x0 ∈M and any homotopy
class ζ of C1-maps v : M → M ′, the pair (ζ, x0) satisfies hypothesis (Z).
Hence by Proposition 3.2, there exists C7 so that for any C1-maps u, v ∈ ζ

N2(v, u) ≤ C7

(
E(u)1/2 + E(v)1/2 + 1

)
.

�
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7 Summary of apriori estimates

Let us summarize the results of sections 1 - 6 as follows:

Theorem 7.1 Assume that ζ is a homotopy class of C1-maps from M to
M ′. Then for any K > 0 there exists a constant C > 0 so that for any
u ∈ SF ∩ ζ with F of class C2 and satisfying ‖F‖C1 ≤ K,

(i) E(u) ≤ C.

(ii) e(u)(x) ≤ C ∀x ∈M .

Proof (i) follows from Proposition 1.1, combined with Proposition 3.2 and
Theorem 6.1 and (ii) follows from Theorem 2.4 and (i). �

Theorem 7.2 Assume that ζ is a homotopy class of C1-maps from M to
M ′ and dimM ≤ 3. Then there exist c∗ > 0 and, given K > 0, a constant
C > 0 so that for any u ∈ SF,G ∩ ζ with F and G C2-smooth and satisfying

‖G‖C0 ≤ c∗, ‖F‖C1 + ‖G‖C1 ≤ K

one has

(i) E(u) ≤ C ;

(ii)
∫
M
‖∇·dxu‖2

HS d vol(x) ≤ C.

Remark No effort was made to extend Theorem 7.2 to manifolds M of
higher dimension. Most likely, Theorem 7.2 holds without any restriction on
the dimension of M .

Proof (i) follows from Proposition 1.4, combined with Proposition 3.2 and
Theorem 6.1 and (ii) follows from Theorem 2.6 and (i). �

8 On the compactness of the set of solutions

within a homotopy class

In this section we prove the two theorems stated in the introduction. Con-
cerning Theorem 0.1 it is an immediate consequence of the proposition below.
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To state it, let ζ be a homotopy class of C1-maps from M to M ′, k ≥ 2 and
(Fm)m≥1 an arbitrary sequence of x dependent Ck-vector fields on M ′ with

F := lim
m→∞

Fm in Ck.

Introduce the corresponding sequence of equations ΦFm(u) = 0 where

ΦFm(u)(x) := τ(u)(x) + Fm(x, u(x)). (8.1)

Proposition 8.1 Let k ≥ 2. Given any sequence (um)m≥1 of Ck+1-maps
with um ∈ SFm ∩ ζ, the solution um is C3-smooth for any m ≥ 1 and there
exists a subsequence (umj)j≥1 which converges to a Ck+1-map u : M → M ′

in Ck+1-topology so that u ∈ ζ is a solution of the limiting equation

ΦF (u) = 0.

Proof By Theorem 7.1 (i) and (ii) there exists C > 0 so that for any m ≥ 1

E(um) ≤ C (8.2)

e(um)(x) ≤ C ∀x ∈M. (8.3)

By the Arzelà-Ascoli theorem and the compactness of M , (8.3) implies that
there exists a subsequence (mj)j≥1 so that limj→∞ umj = u in C0(M,M ′).
Hence there exist an atlas Qr (1 ≤ r ≤ R) of M and coordinate charts
Q′r (1 ≤ r ≤ R) of M ′ so that

umj(Qr) ⊆ Q′r ∀1 ≤ r ≤ R, ∀j ≥ 1.

The restriction of umj to Qr can be viewed as a map with values in Rn
′
.

Choose an open, finite covering (Ur)1≤r≤R of M with U r ⊂ Qr and smooth
cutoff functions (ϕr)1≤r≤R with ϕr ∈ C∞0 (Qr) and 0 ≤ ϕr ≤ 1 so that
Ur ⊆ {ϕr = 1}. Then, for any 1 ≤ r ≤ R, vr,j := ϕrumj vanishes on ∂Qr and
satisfies, on Qr, an equation of the form

−∆Mvr,j = ξr,j (8.4)

with ξr,j = (ξαr,j)1≤α≤n′ given by

ξαr,j := ϕr(g
i`Γ
′α
βγ

∂uβmj
∂xi

∂uγmj
∂x`

+ Fα
mj

) + ηαr,j (8.5)
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where ηr,j := ϕr∆Mumj −∆M(ϕrumj) is linear in umj and its first derivatives
and does not contain higher order derivatives of umj . Hence by (8.3), for any
1 < p <∞, there exists a constant K0,p with

sup
j,r
‖ξr,j‖Lp ≤ K0,p

where Lp ≡ Lp(Qr;Q
′
r). Hence we conclude from (8.4) that K ′2,p > 0

sup
j,r
‖vr,j‖W 2,p ≤ K ′2,p (8.6)

where W 2,p ≡ W 2,p(Qr;Q
′
r) denote the usual Sobolev spaces. By the Sovolev

embedding theorem, W `,p = W `,p(Qr, Q
′
r) continuously embeds into C`−1 ≡

C`−1(Qr, Q
′
r) for any ` ≥ 1 and p > n. Thus by (8.6) and the definition (8.5),

it then follows that for any p > n

sup
j,r
‖ξr,j‖W 1,p ≤ K1,p

and, by (8.4),
sup
j,r
‖vr,j‖W 3,p ≤ K ′3,p.

This procedure can be iterated to conclude that for any p > n,

sup
j,r
‖ξr,j‖Wk,p ≤ Kk,p

sup
j,r
‖vr,j‖Wk+2,p ≤ Lk+2,p.

(8.7)

As the Sobolev embeddingW `,p ↪→ C`−1 is compact for any ` ≥ 1 and p > n it
follows from (8.7) that (vr,j)j≥1 is relatively compact in Ck+1(Qr;Q

′
r) for any

1 ≤ r ≤ R. It follows that for any m ≥ 1 um is Ck+1-smooth and that there
exists a subsequence, again denoted by (umj)j≥1, so that, for any 1 ≤ r ≤ R,
(ϕrumj)j≥1 converges in Ck+1-topology. As (Ur)1≤r≤R is a covering of M , we
can define a limiting map u ∈ Ck+1(M,M ′) by setting

u(x) := lim
j→∞

umj(x) (= lim
j→∞

vr,j(x) ∀x ∈ Ur).

Hence u is Ck+1-smooth and by the Ck+1-convergence of (umj)j≥1 and k ≥ 2,
u satisfies the limiting equation ΦF (u) = 0. �
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Similarly, Theorem 0.2 is an immediate consequence of the proposition stated
below. Let ζ, k, and (Fm)m≥1 be as above and assume that (Gm)m≥1 is a
sequence of y-dependent Ck-vector fields on M with

G := lim
m→∞

Gm in Ck.

The corresponding sequence of equations ΦFm,Gm(u) = 0 are now given by

ΦFm,Gm(u) := τ(u) + Fm(x, u(x)) + u∗Gm(x, u(x)).

Proposition 8.2 Assume that dimM ≤ 3, k ≥ 2, and

sup
m≥1
‖Gm‖C0 ≤ c∗ (c∗ given in Theorem 7.2).

Then, for any sequence (um)m≥1 of C3-maps satisfying um ∈ SFm,Gm ∩ ζ,
it follows that for any m ≥ 1, um is Ck+1-smooth and that there exists a
subsequence (umj)j≥1 which converges to a Ck+1-map u : M → M ′ in Ck+1-
topology so that u ∈ ζ is a solution of the limiting equation

ΦF,G(u) = 0.

Remark Most likely the hypothesis dimM ≤ 3 can be removed. However no
efforts were made to extend Theorem 0.2 in this way.

Proof By Theorem 7.2 there exists C > 0 so that for any m ≥ 1

E(um) ≤ C (8.8)∫
M

‖∇·dxum‖2
HS d vol(x) ≤ C. (8.9)

As dimM ≤ 3 the Sobolev space H2 = H2(M,M ′) is embedded compactly in
C0(M,M ′). It then follows from the Azelà-Ascoli theorem that there exists
a subsequence (mj)j≥1 so that limj→∞ umj = u in C0(M,M ′). Hence there
exist an atlas Qr (1 ≤ r ≤ R) of M and coordinate charts Q′r (1 ≤ r ≤ R)
of M ′ so that

umj(Qr) ⊆ Q′r ∀1 ≤ r ≤ R, ∀j ≥ 1.

The restriction of umj to Qr can be viewed as a map with values in Rn
′
.

Choose an open covering (Ur)1≤r≤R of M with U r ⊂ Qr and smooth cut-off
functions (ϕr)1≤r≤R with ϕr ∈ C∞0 (Qr) and 0 ≤ ϕr ≤ 1 so that Ur ⊂ {ϕr =
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1}. Then, for any 1 ≤ r ≤ R, vr,j := ϕrumj vanishes on ∂Qr and satisfies,
on Qr, an equation of the form

−∆Mvr,j = ξr,j (8.10)

with ξr,j = (ξαr,j)1≤α≤n′ given by

ξαr,j := ϕr

(
gi`Γ

′α
βγ

∂uβmj
∂xi

∂uγmj
∂x`

+ Fα
mj

+ (u∗mjGmj)
α

)
+ ηαr,j (8.11)

where ηr,j := ϕr∆Mumj −∆Mϕrumj is linear in umj and its first derivatives
and does not contain higher order derivatives of umj . By (8.10) and the
Sobolev embedding H2 ≡ W 2,2 ↪→ W 1,5 we conclude from (8.11) that

sup
j,r
‖ξr,j‖L5/2 ≤ K0. (8.12)

Hence by (8.10),
sup
j,r
‖vr,j‖W 2,5/2 ≤ K ′2. (8.13)

We need to improve estimate (8.12). To this aim, use (8.13) and the Sobolev
embedding W 2,5/2 ↪→ W 1,8 to conclude from (8.11) that

sup
j,r
‖ξr,j‖L4 ≤ K̂0 (8.14)

hence by (8.10),
sup
j,r
‖vr,j‖W 2,4 ≤ K̂ ′2. (8.15)

For dimM ≤ 3, the spaceW `,4(Qr, Q
′
r) is continuously embedded into C`−1(Qr;Q

′
r).

This is used to iterate the procedure above and prove the claimed statement
with arguments similar to the ones used in the proof of Theorem 8.1. �

A Appendix: Fermi coordinates

In this appendix we recall the notion of Fermi coordinates along geodesics
in a Riemannian manifold. For the convenience of the reader we provide
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proofs for those statements which are not completely standard. Let M be
a closed Riemannian manifold of dimension n with distance function d :
M × M → [0,∞) and denote by r its convexity radius (cf [GKM], §5.2),
i.e. r is the maximal number so that for any % ≤ r and p ∈ M the ball
B%(p) := {x ∈ M | d(p, x) < %} has the following convexity property: for
any two points x, z ∈ B%(p)

(i) there exists a unique geodesic c ≡ cx,z : [0, 1] → B%(p) from x to z,
parametrized proportional to arclength;

(ii) the geodesic cx,z is the unique minimal geodesic in M from x to z.

In particular, such a geodesic does not intersect itself and its length L(c) is
given by L(c) = d(x, z). Clearly cx,z depends smoothly on the endpoints x
and z. In fact, the restriction of the exponential map expp at p to the ball
Br(0) ⊆ TpM of radius r at 0 is a diffeomorphism onto the ball Br(p) and
satisfies

expp(ċp,x(0)) = cp,x(1)

where ċp,x(0) = d
ds

∣∣
s=0

cp,x(s).
First we need to establish some auxilary results. Given p ∈ M and a non-
constant geodesic c : [0, 1] → Br(p) parametrized proportional to arclength,
introduce

f : [0, 1]→ R, t 7→ d(p, c(t)).

Lemma A.1 There exists a point t0 ∈ [0, 1] so that f is strictly decreasing
on [0, t0] and strictly increasing on [t0, 1].

Proof As f is continuous one can choose t0 ∈ [0, 1] so that

f(t0) = inf{f(t) | 0 ≤ t ≤ 1}.

It remains to show that for any s ∈ R,

(i) ](f−1(s) ∩ [t0, 1]) ≤ 1

and
(ii) ](f−1(s) ∩ [0, t0]) ≤ 1.

Statement (i) and (ii) are proved in the same way, so let us concentrate on (i).
To prove (i), assume the contrary. Then there are two points t0 ≤ t1 < t2 ≤ 1
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so that f(t1) = f(t2) and f(t) ≥ f(t1) for any t1 ≤ t ≤ t2. Given any
0 ≤ t ≤ 1,

ct ≡ cc(t),p : [0, 1]→ Br(p)

denotes the unique geodesic from c(t) to p parametrized proportional to
arclength. Then t 7→ ċt(1) := d

ds

∣∣
s=1

ct(s) is a smooth curve in TpM with
‖ċt3(1)‖ ≥ a where t3 = t1+t2

2
and

a := ‖ċt1(1)‖ (= ‖ċt2(1)‖) .

As c is nonconstant (by assumption) and parametrized proportional to ar-
clength, the map t 7→ c(t) is injective. In view of the identity c(t) =
expp(−ċt(1)) this implies that t 7→ ċt(1) is injective as well. In particular,
ċt3(1) is distinct from ċt(1) for any t ∈ [0, 1]\{t3}. Define q := expp(τ ċt3(1))
with 0 < τ ≤ 1 chosen so small that c(t) lies in Br(q) for any 0 ≤ t ≤ 1.
Clearly,

d(q, c(t3)) = d(q, p) + d(p, c(t3))

≥ d(q, p) + a.

On the other hand, the curve obtained by composing the geodesic from q to
p with the one from p to c(t) is a broken geodesic for any t ∈ [0, 1]\{t3} as
ċt3(1) 6= ċt(1) for such t′s and hence for j = 1, 2

d(q, c(tj)) < d(q, p) + d(p, c(tj))

= d(q, p) + a.

As a consequence one can choose 0 < δ < d(q, c(t3)) so that c(t1) and c(t2)
are in Bδ(q) but c(t3) /∈ Bδ(q). But as δ < d(q, c(t3)) < r this contradicts
the convexity of Bδ(q), hence statement (i) holds. �

We will need a simple application of Lemma A.1 later. Let c : [0, 1]→ Br(p)
be again a nonconstant geodesic parametrized proportional to arclength and
set

ċ(0) :=
d

dt

∣∣
t=0
c(t); ċ0(0) :=

d

ds

∣∣
s=0

cc(0),p(s).

Corollary A.2 If ċ(0) and ċ0(0) are orthogonal, then t 7→ f(t) is strictly
increasing on [0, 1].
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Proof Approximate ċ0(0) by a smooth 1-parameter family of tangent vectors
wτ ∈ Tc(0)M, τ ≥ 0, with ‖wτ‖ = ‖ċ0(0)‖, limτ→0 wτ = ċ0(0), and

〈wτ , ċ(0)〉 < 0 for τ > 0.

Denote by cτ : [0, 1] → M the geodesic, parametrized proportional to ar-
clength so that cτ (0) = c(0) and ċτ (0) = wτ and let pτ := cτ (1). Then
limτ→0 pτ = p. Notice that for τ sufficiently small, cτ lies entirely in the ball
Br(p). Moreover, for any τ > 0, the function fτ (t) = d(pτ , c(t)) satisfies

d

dt

∣∣
t=0
fτ (t) =

〈 ∂
∂x

∣∣
x=c(0)

d(pτ , x), ċ(0)
〉

=
〈
− ċτ (0)

‖ċτ (0)‖
, ċ(0)

〉
> 0.

As c is nonconstant and contained in the ball Br(pτ ) for τ sufficiently small
it then follows from Lemma A.1 that fτ is strictly increasing on [0, 1] for
τ > 0 sufficiently small. By continuity it then follows that f is nondecreasing
on [0, 1]. Invoking once more Lemma A.1 it then follows that f is strictly
increasing on [0, 1] as well. �

Given a minimal geodesic c : [0, a] → M , parametrized by arclength, and
an orthonormal basis e in Tc(0)M , given by e1, . . . , en−1, en := ∂

∂t

∣∣
t=0
c(t), we

now construct Fermi coordinates as follows: Let Br(0) ≡ Bn−1
r (0) denote the

open ball in Rn−1, centered at the origin 0 with radius r := r/2. Then we
define

ϕc ≡ ϕc,e : (−r, a+ r)×Br(0)→M

as follows:

(i) the curve (−r, a+ r)→M , t 7→ ϕc(t, 0) is the arclength parametrization
of the geodesic coinciding with c on [0, a].

(ii) For any unit vector v =
∑n−1

1 vkek ∈ Rn−1, the curve s 7→ ϕc(0, sv) is
the arclength parametrization of the geodesic with

∂

∂s

∣∣
s=0

ϕc(0, sv) =
n−1∑

1

vkek.

(iii) For any unit vector v ∈ Rn−1 and any t ∈ (−r, a+r)\{0}, the curve s 7→
ϕc(t, sv) is the arclength parametrization of the geodesic with ∂

∂s

∣∣
s=0

ϕc(t, sv)
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obtained by parallel transport of ∂
∂t

∣∣
t=0
ϕc(0, tv) along c. Here the parallel

transport is the one induced by the Levi-Cività connection on M .

Clearly, ϕc is well defined and smooth. We claim that it is a coordinate map.

Proposition A.3 The map ϕc is injective and of maximal rank.

Remark 1 The coordinates (t, v) ∈ (−r, a + r) × Br(0) are referred to as
Fermi coordinates.

Remark 2 The construction above also works for the limit case where c
shrinks to a point p. In this case the coordinate map ϕ is parametrized by a
unit tangent vector w instead of the geodesic c. Given an orthonormal basis
e of TpM, e1, . . . , en−1, en := w, the map

ϕp ≡ ϕp,e : (−r, r)×Br(0)→M

is defined similarly as above except that t 7→ ϕp(t, 0) is chosen to be the
arclength parametrization of the minimal geodesic uniquely determined by
ϕp(0, 0) = p and ∂

∂t

∣∣
t=0
ϕp(t, c) = w.

Remark 3 For any 0 < a ≤ diam(M), denote by Fa the set of all Fermi
coordinate maps ϕc,e : (−r, a + r) × Br(0) → M where c is the arclength
parametrization of an arbitrary minimal geodesic of length a and e is an
arbitrary orthonormal basis of Tc(0)M of the type as above. Similarly, we
define Fa for a = 0. As M is compact, Fa is, in particular, relatively com-
pact in the space of C1-maps C1 ((−r, a+ r)×Br(0);M) for any 0 ≤ a ≤
diam(M). Hence it follows that ‖dϕc,e‖C0 is universally bounded for any ϕc,e
in
⋃

0<a≤diam(M)Fa.

Proof (of Proposition A.3). Let us first show that ϕc is 1− 1. Assume that
there exist t1, t2 ∈ (−r, a + r), unit vectors v1, v2 ∈ Rn−1 and 0 ≤ s1, s2 < r
so that

p := ϕc(t1, s1v1) = ϕc(t2, s2v2).

Without loss of generality, we assume that t1 ≤ t2. Notice that

d (p, ϕc(t1, 0)) = d (ϕc(t1, s1v1), ϕc(t1, 0)) < r

and
d (p, ϕc(t2, 0)) = d (ϕc(t2, s2v2), ϕc(t2, 0)) < r
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Thus ϕc(t1, 0) and ϕc(t2, 0) are elements in Br(p) and as Br(p) is convex it
follows that the (in M) minimal geodesic between ϕc(t1, 0) and ϕc(t2, 0) is
contained in Br(p). However, we do not know yet that this minimal geodesic
coincides with ϕc(t), t1 ≤ t ≤ t2, as ϕc might not be contained in Br(p). To
see that this cannot happen, introduce

p1 := ϕc(t
∗
1, 0); p2 := ϕc(t

∗
2, 0)

where
t∗1 := max(0, t1); t∗2 := min(a, t2).

In case t1 < 0 we have

d(p, p1) < d(p, ϕc (t1, 0)) + d (ϕc(t1, 0), ϕc(0, 0))

≤ 2r

whereas for t1 ≥ 0, p = p1 and thus d(p, p1) = 0. Hence in both cases

d(p, p1) < r.

Similarly, one sees that
d(p, p2) < r.

By the convexity of Br(p), it then follows that there is a unique geodesic in
Br(p) from p1 to p2 and that this geodesic is minimal in M . By definition,
ϕc(t) is the (in M) minimal geodesic from ϕc(t

∗
1) to ϕc(t

∗
2) and thus the two

geodesics coincide. Hence ϕc(t) ∈ Br(p) for t∗1 ≤ t ≤ t∗2. As ϕc(t) ∈ Br(p) ⊆
Br(p) for t1 ≤ t ≤ t∗1 and for t∗2 ≤ t ≤ t2 we conclude that ϕc(t) ∈ Br(p)
for any t with t1 ≤ t ≤ t2 and we have proved that ϕc(t) (t1 ≤ t ≤ t2)
is in M the minimal geodesic from ϕc(t1, 0) to ϕc(t2, 0). As ϕc(t1, 0) and
ϕc(t2, 0) are in Br(p), and Br(p) is convex we have that ϕc(t) ∈ Br(p) for
any t1 ≤ t ≤ t2. In particular, as t 7→ ϕc(t, 0) is parametrized proportional
to arclength, it follows that t 7→ ϕc(t, 0) is injective for t1 ≤ t ≤ t2. Hence
in case either of the two numbers s1 or s2 is 0, it follows that t1 = t2 and
hence s1 = s2 = 0. Now let us consider the case where s1 6= 0 and s2 6= 0.
By the definition of ϕc,

d
dt

∣∣
t=tj

ϕc(t, 0) and d
ds

∣∣
s=0

ϕc(tj, svj) are orthogonal

for j = 1, 2. Hence by Lemma A.1 and Corollary A.2, it follows from p =
ϕc(t1, s1v1) that d(p, ϕc(t, 0)) attains its unique minimum at t = t1 where
as from p = ϕc(t2, s2v2), one concludes that d(p, ϕc(t, 0)) attains its unique
minimum at t = t2. Thus we conclude that t1 = t2. As the exponential
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map is a diffeomorphism it then follows from ϕc(t1, s1v1) = ϕc(t1, s2v2) that
s1 = s2 and v1 = v2. It remains to prove that ϕc has maximal rank at any
point. Assume to the contrary that ϕc does not have maximal rank at a point
(t0, s0v0) ∈ (−r, a+ r)×Br(0) where v0 is assumed to be of unit length and
0 ≤ s0 < r. From the definition of ϕc it follows that s0 > 0. Since ϕc is the
normal exponential map of the geodesic c = ϕc((−r, a+r)×{0}) this implies
that the geodesic s 7→ ϕc(t0, sv0) has a focal point at s0 and it follows that
beyond s0, the geodesic s 7→ ϕc(t0, sv0) is no longer a minimizing geodesic to
c (cf [Sa]). This means that for a point p1 := ϕc(t0, s1v0) with s0 < s1 < r,
the distance function t 7→ d(p1, ϕc(t, 0)) does not assume the minimum in t0.
But this contradicts Lemma A.1 and Corollary A.2. �
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