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Motivation

Historical Background

I Long after wavelets were introduced in imaging science, it was
realised that they can be used to solve PDEs as well.

I Similarly, the application of directional dictionaries to solve PDEs
has only begun long after their introduction in imaging.

Selling Point

I With wavelets, it was possible to prove optimal rates for both
convergence and complexity of the algorithm in the context of
elliptic PDEs, see e.g. [CDD].

I We want to translate this machinery to a different class of PDEs,
where wavelets and FE methods struggle.
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CDD-Schemes

Necessary Ingredients

(I) Variational formulation a(u, v) = ℓ(v) for all v ∈ H, with
H-bounded and coercive bilinear form a, i.e.

a(v , v) ∼ ∥v∥2
H and a(u, v) . ∥u∥H∥v∥H

for a Hilbert space H.

(II) Frame property of (scaled version of) Φ = (φλ)λ∈Λ for Hilbert
space H, i.e.

∥u∥H ∼
∥∥(wλ⟨ϕλ, u⟩H

)
λ∈Λ

∥∥
ℓ2

=:
∥∥(⟨ϕλ,u⟩H

)
λ∈Λ

∥∥
ℓ2

W

for some weight W = diag
(
(wλ)λ

)
.

(III) Compressibility of Galerkin matrix A
(IV) Typical solutions u can be optimally approximated by frame Φ
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Compressibility
Definition [CDD]
A matrix A is σ∗-compressible if for every σ < σ∗ and i ∈ N, there
exists a matrix A[i] such that

I A[i] has at most αi2i nonzero entries in each column
I the inequality

∥∥A − A[i]
∥∥ ≤ Ci holds

I the sequences (αi)i and (Ci2σi)i are both summable

Benefit
I Makes it possible to build routine

APPLY[ε,A,u] → vε

that calculates Au (up to accuracy ε) in linear complexity (in
terms of the number of non-zero entries in u, say N).

I Compare with normal case, which needs O(N2) operations.
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CDD-Schemes, cont.
SOLVE
Ingredients (I-III) allow us to directly use results from [Ste] to
construct an algorithm SOLVE[ε,A, f] → uε which computes an
approximate solution uε of the linear system Au = f up to an error ε in
optimal complexity.

Optimal Complexity
This means that if u ∈ H is a solution which has an N-term
approximation rate of order σ < σ∗, i.e. there exist vN such that

∥u − vN∥H . N−σ,

then the algorithm SOLVE produces approximands uN with the same
asymptotic rate in order N flops:

∥u − uN∥H . N−σ

[Ste] R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal., 2003
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Kinetic Transport Equations

Main Equation

s⃗ · ∇u + κu = f + Q(u), (x⃗ , s⃗) ∈ Ω× Sd−1,

I Ω ⊂ Rd I κ absorption coefficient I f source term
I Q scattering operator – e.g. Q(u)(x⃗ , s⃗) =

∫
Sd−1K (⃗s, s⃗′

)u(x⃗ , s⃗′
)ds⃗′

Describes
Stationary distribution of a phase-space density u whose evolution is
governed by:

I free transport I absorption I external sources
I interaction with the surrounding medium via a scattering operator
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Kinetic Transport Equations

Difficulties
I “Curse of dimensionality”: Problem is (2d − 1)-dimensional
I Line singularities along rays may appear
I The equation is not H1-elliptic – wavelet and FE discretisations

do not lead to well-conditioned linear systems
I Anisotropic meshes are impractical since they need to be

combined for different directions.

Wish List
I Multiscale system to alleviate curse of dimensionality
I “Blindness” of representation system to line singularities
I Well-conditioned linear system
I One dictionary for all directions
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Linear Transport Equations
Simplification – For Now
We fix the transport direction s and neglect scattering, which leads to

Au(x⃗) := s⃗ · ∇u(x⃗) + κ(x⃗)u(x⃗) = f (x⃗), x⃗ ∈ Ω

with BCs u|∂Ω+
= 0, where

∂Ω+ =
{

x⃗ ∈ ∂Ω : s⃗ · n(x⃗) > 0
}

and n(x⃗) is the inward pointing normal of ∂Ω.

Road Map to Full Problem
I Devise optimal discretisations for such equations – i.e. prove that

ingredients (I)-(IV) can be satisfied in this context.
I Solve full kinetic transport equation by collocation or tensor

product methods, i.e. solving equations of the above type for
many directions s⃗.
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Linear Transport Equations
Variational Formulation
We can recast the linear transport equation in variational form as
follows

a(u, v) = ℓ(v), for all v ∈ H s⃗(Ω),

where

a(u, v) :=
∫
Ω

Au(x⃗)Av(x⃗) dx⃗ , ℓ(v) :=
∫
Ω

Av(x⃗)f (x⃗)dx⃗

and
H s⃗(Ω) :=

{
v ∈ L2(Ω) : s⃗ · ∇v ∈ L2(Ω)

}
.

Theorem

=⇒ Ingredient (I)

Assume that f ∈ L2(Ω) and κ strictly positive. Then a(·, ·) is
H s⃗-bounded and coercive. In particular, by the Lax-Milgram lemma
the variational formulation is well-posed.
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Ridgelets
Intuition (for Ω = R2)

A ridgelet frame Φ ([Can,Gro])
roughly consists of functions (illus-
tration of one for j = 3) which:

I have width ∼ 1
I have height ∼ 2−j

I oscillate horizontally with
frequency ∼ 2j

I are rotated around ∼ 2j

uniformly spaced angles
−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Real value of ridgelet

Skip Construction

[Can] E. Candès, Ridgelets: Theory and applications, PhD thesis, Stanford University, 1998
[Gro] P. Grohs, Ridgelet-type frame decomp. for Sobolev spaces related to lin. transport, J. Fou. Anal. Appl., 2011
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Ridgelets

Construction [Gro]

We start with a partitioning

{ψ̂j,ℓ}j∈N0, ℓ∈{1,...,Lj},

where Lj ∼ 2j , such that∑
j,ℓ

ψ̂j,ℓ(ξ)
2 = 1,

according to the following decom-
position

2

of the frequency plane:
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Ridgelets
Definition
We define the ridgelet system Φ as consisting of the functions

φj,ℓ,⃗k := 2−j/2TUj,ℓk⃗ψj,ℓ, j ∈ N0, ℓ ∈ {1, . . . , Lj}, k⃗ ∈ Z2.

We collect all indices λ = (j , ℓ, k⃗) in the set Λ and write Φ = {φλ}λ∈Λ.

Notation
We let Ty f (·) := f (· − y), be the translation operator, and define

Uj,ℓ := R−1
s⃗j,ℓ

D2−j ,

where
I Da := diag(a, 1) dilates the first component
I Rs⃗ is the rotation which takes s⃗ ∈ S1 to (1, 0)⊤

I s⃗j,ℓ corresponds to the direction of the support of ψ̂j,ℓ
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Ridgelets

Other Domains

I The construction of ridgelets is not inherently limited to Ω = Rd

I However, it is not immediate how to preserve all their favourable
properties on a bounded domain

I Very recently ([GKMP]), progress has been made in constructing
shearlets frames (which are closely related) on domains

I In principle, we believe it will be possible to proceed in a similar
fashion for ridgelets (work in progress!)
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Frame Property
Theorem [Gro]

=⇒ Ingredient (II)

With weights wλ := 1 + 2j |⃗s · s⃗j,ℓ| and W := diag
(
(wλ)λ

)
, the

dictionary Φ forms a Gelfand frame for H s⃗, i.e.

∥W⟨Φ, u⟩∥ℓ2 . ∥u∥H s⃗ and ∥Φu∥H s⃗ . ∥Wu∥ℓ2 ,

Theorem (follows from [DFR])

Let A :=W−1⟨AΦ,AΦ⟩W−1 :=

{
1

wλwλ′

∫
Ω

Aφλ(x⃗)Aφλ′(x⃗) dx⃗
}
λ,λ′∈Λ

.

I A is bounded on ℓ2 and boundedly invertible on its range.
I With f := W−1⟨AΦ, f ⟩, Au = f is well-conditioned and can be
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Achieving Compressibility

Theorem [GO]

=⇒ Ingredient (III)

Let 0 < p < 1 and Au := s⃗ · ∇u + κu. If Φ̂ and κ are sufficiently
differentiable, A := W−1⟨AΦ,AΦ⟩W−1 is 1

2

( 1
p − 1

)
-compressible.

Projection (for the experts)
I To avoid that errors in ker A accumulate during the iteration, a

suitable projection P must be applied every few iterations.
I To maintain optimal computational complexity, P must be

compressible as well!

I So far, it has not been possible to prove that the most obvious
choice – an orthogonal projection – is compressible

I However, in our setting, it is possible to prove that
P := W⟨Φ,Φ⟩W−1 is compressible as well!

Skip Projection

[GO] P.Grohs, A.O., Optimal adapt. ridgelet schemes for linear advection eq., Appl. and Comp. Harm. Anal., 2015
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Weak ℓp-Spaces
Definition
For 0 < p < 2, we define the weak ℓp-spaces

ℓp
w :=

{
(cn)n∈N ∈ ℓ2 : |cN|ℓp

w
:= supn∈N c∗

n n
1
p <∞

}
where c∗

n is the decreasing rearrangement of (|cn|)n∈N.

Relation to N-term Approximation (e.g. [DeV])
An N-term approximation rate of order N−σ∗

is equivalent to
membership of the coefficient sequence in ℓp

w , with 1
p = σ∗ + 1

2 .

Sobolev Spaces & Approximation
With the technique of hypercube embeddings, one can show that the
best possible approximation rate for a generic f ∈ H t(Rd ) is σ∗ = t

d
[DDMGL]. Correspondingly, we set 1

p∗ := t
d + 1

2 .
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Approximation by Ridgelets
Definition
We say that a function f ∈ L2(Rd ) is in H t(Rd ) apart from
hyperplanes, if (with H being the Heaviside step function)

I there are N hyperplanes hi (with corresponding normalised
orthogonal vectors n⃗i and offsets ti ),

I as well as functions f0, f1, . . . , fN ∈ H t(Rd ),
I such that f can be represented as

f (x⃗) = f0(x⃗) +
N∑

i=1

fi(x⃗)H(x⃗ · n⃗i − ti),

Notation
I Let Phi denote the projection onto hyperplane hi

I Define ⟨x⟩ :=
√

1 + |x |2, the regularised absolute value
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Approximation by Ridgelets
Theorem (O.-Grohs)

=⇒ Ingredient (IV)

Assume that f ∈ H t(Rd ) apart from hyperplanes, and that along the
interfaces, f decays as follows∣∣fi(Phi x⃗)

∣∣ . ⟨
Phi x⃗

⟩−2n
, i ≥ 1,

for some n ∈ N. Then ⟨Φ, f ⟩ ∈ ℓp′

w , the weak ℓp-space with
p′ = p∗ + δ∗, where p∗ is the optimal p for f ∈ H t(Rd ) even without
singularities(!) and δ∗ ≤ d

n .

Similarly, if u is the solution to Au = f , satisfying the same decay
condition across the interfaces3 for u, then W⟨Φ,u⟩ ∈ ℓp′

w with the
same p′ as above.

In particular, if f has compact support or exponential decay, δ∗ > 0 is
arbitrarily small.
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Main Result
Theorem [GO]
Let f ∈ H t apart from hyperplanes with compact support or
exponential decay, and let u be the solution to Au = f . Then,
approximands uN with quasi-optimal approximation rate can be
computed in order N flops, i.e. for arbitrary δ > 0,

∥u − uN∥H s⃗ . N− t
d +δ.

Remarks
I Solving PDE as efficient (asymptotically) as if u were given

explicitly! The algorithm finds the relevant coefficients.

I First construction of adaptive PDE solver with non-standard
frames for problems of non-Laplacian-type (to our knowledge)

I It is possible to construct frames for the full kinetic transport
equation using tensor product construction (work in progress).
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Numerical Examples

Approximation of Smooth Solution

Figure: Solution of transport equation with smooth source (Gaussian)
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Numerical Experiments

Approximation of Smooth Solution
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Figure: N-Term approximations of (outer) iterands;
Solution computed by SOLVE converges exponentially!
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Numerical Experiments

Approximation of Smooth Solution
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Figure: Geometric convergence of Richardson iterations
(Outer iterations marked in plot)
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Numerical Experiments

Approximation of Singular Solution

Figure: Singular solution of transport equation
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Numerical Experiments

Approximation of Singular Solution
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Figure: Solution computed by SOLVE converges exponentially,
even if line discontinuities are present!
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Numerical Experiments

Lessons Learned

+ Exponential convergence of N-term approximation
+ Close to theory – APPLY and SOLVE implemented as described
+ Possible because matrix entries decay as expected

– Quadrature effort is substantial
– Domain Ω = R2 (construction on bounded domains is in

progress)
– Implementation is only “proof-of-concept”, not competitive
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FFT-based Implementation

Key Properties [EGO]

I No adaptiveness – uses FFT like a black box
I Does not need to build the matrix, but just apply transformations

to each vector (CG also works for abstract vectors and linear
operations on them)

I Fast, but not close to the theory anymore
I Quick enough to implement collocation scheme – solving a

transport equation for many directions in each step
I Possible to enforce inflow boundary conditions

[EGO] S.Etter, P.Grohs, A.O., FFRT – A fast finite ridgelet transf. for radiative transp., Multiscale Model. Simul., 2015
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Solution of Radiative Transport Equation

Including Scattering Q(u)

We demonstrate our solver with a
simple scattering kernel:

I Q(u)(x) =
∫
S1 σu(x , s) ds

I Solved via source iteration

I Quantity of interest: Incident
radiation G(x) =

∫
S1 u(x , s) ds

I Model problem: Scattering
around obstacle

I Using sparse collocation
scheme breaks curse of
dimensionality [GS]

Figure:
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dimensionality [GS]

Figure: Solution without scattering
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[GS] K. Grella, Ch. Schwab, Sparse discr. ordinates meth. in radiative transfer, Comp. Meth. Appl. Math., 2012
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Conclusion

Summary

I First numerical scheme for linear transport equations with
optimal convergence rates

I Bridge between computational harmonic analysis and numerical
analysis

I Better frame constructions needed (work in progress)!

Bottom Line
“Ridgelets are for linear transport equations what wavelets
are for elliptic equations.”
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The End

Thank you for your attention!

Questions?

A. Obermeier August 19th, 2015, Disentis Retreat 36 / 36


	Motivation
	Transport Equations
	Ridgelets
	Construction
	Previous Results
	Approximation

	Numerical Results

