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Problem description

We want to denoise and/or inpaint Images
{1, . . . ,m} × {1, . . . , n} → X , e. g.

Figure: Grayscale and RGB-image, X = R resp. R3.
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Figure: diffusion tensor magnetic resonance imaging (DT-MRI),
X = SPD(3), the space of 3× 3 symmetric positive definite matrices.
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Total variation regularization for real-valued functions

Consider a noisy image u0 : {1, . . . ,m} × {1, . . . , n} → R. We can
construct a restoration by minimizing the functional

J(u) :=
1

2

m∑
i=1

n∑
j=1

(ui ,j − u0i ,j)
2 + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

|ui+1,j − ui ,j |+
m∑
i=1

n−1∑
j=1

|ui ,j+1 − ui ,j |.

This functional was introduced by Rudin, Osher and Fatemi in
1992 [3].
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Properties of J:

Convex ⇒ unique minimizer.

Not differentiable (due to modulus)⇒ can not apply Newton

Idea: Replace |ui+1,j − ui ,j | by wi ,j(ui+1,j − ui ,j)
2 where

wi ,j ≈ |ui+1,j − ui ,j |−1.
Choose u(0) and define an iteration by

w
(k+1)
i ,j :=

(
(u

(k)
i+1,j − u

(k)
i ,j )2 + ε2

)− 1
2

and

u(k+1) := argmin
u∈Rm×n

m∑
i=1

n∑
j=1

(ui ,j − u0i ,j)
2

+λ
m−1∑
i=1

n∑
j=1

w
(k+1)
i ,j (ui+1,j − ui ,j)

2 + . . .
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In each step a quadratic functional has to be optimized. To do
that we only need to solve a sparse linear system.

Sketch of analysis of IRLS:
One proves that the iteration converges to the unique minimizer of

Jε(u) :=
1

2

m∑
i=1

n∑
j=1

(ui ,j−u0i ,j)2+λ
m−1∑
i=1

n∑
j=1

√
(ui+1,j − ui ,j)2 + ε2 . . .

The IRLS algorithm can be reinterpreted as alternating
minimization of

J̃ε(w , u) :=
1

2

m∑
i=1

n∑
j=1

(ui ,j − u0i ,j)
2

+
1

2
λ

m−1∑
i=1

n∑
j=1

wi ,j((ui+1,j − ui ,j)
2 + ε2) + (wi ,j)

−1 . . .
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Connections to Jε:

Jε(u) = J̃ε(w ε(u), u). Hence Jε(u(k)) is nonincreasing.

(w , u) is a critical point of J̃ε iff u is a critical point of Jε and
w = w ε(u). Hence J̃ε has a unique critical point.

Theorem

The sequence (u(k))k∈N generated by IRLS converges to the
unique minimizer of Jε.

Sketch of proof:

Jε(u(k)) convergences

(w (k), u(k)) bounded⇒ ∃ convergent subsequence

Show that the limit of this convergent subsequence is a
critical point of J̃ε.

Show that (u(k)) convergence to the critical point of Jε.
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

What if X 6= R?

If (X , d) is a metric space we can replace |u − v | by d(u, v), i.e.

J(u) :=
1

2

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j) + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

d(ui+1,j , ui ,j) +
m∑
i=1

n−1∑
j=1

d(ui ,j+1, ui ,j).

Is J convex?
If X is a geodesic space and d is convex, (i.e. if
t 7→ d(γ1(t), γ2(t)) is convex for geodesics γ1, γ2 : [0, 1]→ X )
then J is also convex.
However there are spaces where d is not convex, e.g. the sphere.

9 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

Algorithm when X is a Riemannian manifold
The case of X being a sphere

What if X 6= R?
If (X , d) is a metric space we can replace |u − v | by d(u, v), i.e.

J(u) :=
1

2

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j) + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

d(ui+1,j , ui ,j) +
m∑
i=1

n−1∑
j=1

d(ui ,j+1, ui ,j).

Is J convex?
If X is a geodesic space and d is convex, (i.e. if
t 7→ d(γ1(t), γ2(t)) is convex for geodesics γ1, γ2 : [0, 1]→ X )
then J is also convex.
However there are spaces where d is not convex, e.g. the sphere.

9 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

Algorithm when X is a Riemannian manifold
The case of X being a sphere

What if X 6= R?
If (X , d) is a metric space we can replace |u − v | by d(u, v), i.e.

J(u) :=
1

2

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j) + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

d(ui+1,j , ui ,j) +
m∑
i=1

n−1∑
j=1

d(ui ,j+1, ui ,j).

Is J convex?

If X is a geodesic space and d is convex, (i.e. if
t 7→ d(γ1(t), γ2(t)) is convex for geodesics γ1, γ2 : [0, 1]→ X )
then J is also convex.
However there are spaces where d is not convex, e.g. the sphere.

9 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

Algorithm when X is a Riemannian manifold
The case of X being a sphere

What if X 6= R?
If (X , d) is a metric space we can replace |u − v | by d(u, v), i.e.

J(u) :=
1

2

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j) + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

d(ui+1,j , ui ,j) +
m∑
i=1

n−1∑
j=1

d(ui ,j+1, ui ,j).

Is J convex?
If X is a geodesic space and d is convex, (i.e. if
t 7→ d(γ1(t), γ2(t)) is convex for geodesics γ1, γ2 : [0, 1]→ X )
then J is also convex.

However there are spaces where d is not convex, e.g. the sphere.

9 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

Algorithm when X is a Riemannian manifold
The case of X being a sphere

What if X 6= R?
If (X , d) is a metric space we can replace |u − v | by d(u, v), i.e.

J(u) :=
1

2

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j) + λTV (u)

where λ > 0 and

TV (u) :=
m−1∑
i=1

n∑
j=1

d(ui+1,j , ui ,j) +
m∑
i=1

n−1∑
j=1

d(ui ,j+1, ui ,j).

Is J convex?
If X is a geodesic space and d is convex, (i.e. if
t 7→ d(γ1(t), γ2(t)) is convex for geodesics γ1, γ2 : [0, 1]→ X )
then J is also convex.
However there are spaces where d is not convex, e.g. the sphere.

9 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

Algorithm when X is a Riemannian manifold
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Figure: Distance function on the sphere is not convex
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

Hadamard spaces

However, for Hadamard spaces, a.k.a. spaces of nonpositive
curvature the distance function is convex.

Definition

A complete metric space (X , d) is called a Hadamard space if for
all A,B ∈ X there exist M ∈ X such that for all C ∈ X we have

d2(C ,M) 6
1

2
d2(C ,A) +

1

2
d2(C ,B)− 1

4
d2(A,B). (1)

RHS in (1) is length of the median of the comparison triangle in
R2.

A

B

CM

A

B

CM

Figure: Geodesic and comparison triangle
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

The optimization problem for an arbitrary metric space X is

w
(k+1)
i ,j :=

(
d2(u

(k)
i+1,j , u

(k)
i ,j ) + ε2

)− 1
2

u(k+1) := argmin
u∈Xm×n

m∑
i=1

n∑
j=1

d2(ui ,j , u
0
i ,j)

+λ
m−1∑
i=1

n∑
j=1

w
(k+1)
i ,j d2(ui+1,j , ui ,j) + . . . .

Hence in every step we need to minimize a functional of the form

(ul)
N
l=1 7→

N∑
l=1

d2(ul , vl) +
N∑
l=1

N∑
l ′=1

Wl ,l ′d
2(ul , ul ′).

where (vl)
N
l=1 ⊂ X and Wl ,l ′ > 0.
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

Riemannian exponential map

A basic problem when trying to generalize concepts to manifolds is
that we can not ‘add’ two elements of the manifold. However we
can add to an element x ∈ M a tangent vector r ∈ TxM by the
Riemannian exponential map.

Figure: Exponential map
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

Riemannian Newton method

To solve an optimization problem argminu∈M f (u) where
f : M → R one can use the Riemannian Newton method. The
iteration is

φ(x) := expx

(
− (Hessf (x))−1 [gradf (x)]

)
,

where grad and Hess are the intrinsic gradient and Hessian, i.e. the
unique functions such that

f (expx(r)) = f (x) + 〈gradf (x), r〉+
1

2
〈r ,Hessf (x)[r ]〉+O(|r |3),

where r ∈ TxM.

The Riemannian Newton method has quadratic convergence (Absil
[1]).
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

Back to the sphere

Why is the sphere case important?

An RGB image (i , j) 7→ ui ,j ∈ R3 can be separated into its
brightness (i , j) 7→ |ui ,j | ∈ R and color part (i , j) 7→ ui ,j/|ui ,j | ∈ S2.

Figure: Separation of RGB image into brightness and color part.
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

As we have seen our functional is not convex when X is the
sphere. However in our example we can restrict to a half sphere.

Lemma

If X is an open half sphere, d the spherical distance and
(vl)

N
l=1 ⊂ X the functional

(ul)
N
l=1 7→

N∑
l=1

d2(ul , vl) +
N∑
l=1

N∑
l ′=1

Wl ,l ′d
2(ul , ul ′).

is locally convex at every critical point in XN .

Therefore any critical point is a local minimizer.
This can be used to prove that there is only one minimizer
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Algorithm when X is a Riemannian manifold
The case of X being a sphere

In 1d between any two local minimal point of a continuous
function there is a local maximum point.

Theorem (Poincaré-Hopf [2])

Let M be a compact manifold with boundary and U : M → TM a
vector field on M such that U is pointing outward on the boundary
of M. Assume that U has a continuous derivative DU, all zeros of
U are isolated and DU(z) is invertible for all zeros z ∈ M of U.
Then U has finitely many zeros z1, . . . , zn ∈ M and

n∑
i=1

sign(det(DU(zi ))) = χ(M),

where χ(M) is the Euler characteristic of M.
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Colorization

We assume that we know the brightness but the color part of every
pixel is only known with probability 1%.

Detect edges using Canny edge detector on the brightness
image.
Construct a first guess using scattered interpolation.
Minimize a weighted TV-functional (10−2 at edges and 1
everywhere else)

Figure: Colorization.
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SPD denoising: Riemannian vs. Euclidean

The Riemannian metric on SPD(n) is usually defined by
〈X ,Y 〉A := trace(A−1XA−1Y ) which induces the metric

d(A,B) = ‖log(A−
1
2BA−

1
2 )‖F . Why not just regard SPD(n) as a

subspace of the Euclidean space Rn2 and use the standard metric
deuc(A,B) = ‖A− B‖F ?

Figure: From left to right: Noisy image, recovered image with SPD
norm, recovered image with Euclidean norm.

19 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

SPD denoising: Riemannian vs. Euclidean

The Riemannian metric on SPD(n) is usually defined by
〈X ,Y 〉A := trace(A−1XA−1Y ) which induces the metric

d(A,B) = ‖log(A−
1
2BA−

1
2 )‖F . Why not just regard SPD(n) as a

subspace of the Euclidean space Rn2 and use the standard metric
deuc(A,B) = ‖A− B‖F ?

Figure: From left to right: Noisy image, recovered image with SPD
norm, recovered image with Euclidean norm.

19 / 23



Case X = R
General Case
Experiments

Comparison to proximal point method

TV-denoising is similar to averaging the data.

A =

(
1 0
0 ε

)
det(A) = ε

B =

(
ε 0
0 1

)
det(B) = ε

avEuc(A,B) =

(
1
2 + ε

2 0
0 1

2 + ε
2

)
det(avEuc(A,B)) ≈ 1

4

avSPD(A,B) =

(√
ε 0

0
√
ε

)
det(avSPD(A,B)) = ε
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Sketch of PPM (Weinmann et al. [4])

Idea: Solve the gradient flow u̇ = −∇J(u). u∞ := limt→∞ u(t) is
the minimizer of J. Use implicit Euler and timesteps (tk)k∈N with∑

k∈N tk =∞ and
∑

k∈N t2k <∞.

Problem: J not differentiable so

u(k+1) = u(k) + tk∇J(u(k+1))

does not make sense. However we can define

u(k+1) = proxtkJ(u(k)) := argmin
u∈XN

tkJ(u) +
1

2

N∑
l=1

d2(ul , u
(k)
l ). (2)

By splitting J one can solve (2) exactly for each subproblem using
Riemannian exponentials and its inverse.
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Comparison of IRLS and PPM:

In PPM we dont need a regularization parameter ε. However we need to
choose a sequence of stepsizes (tk)k∈N.

IRLS is more complicated to implement as we need to compute second
derivatives of the squared distance function and compute Hessian’s.

For IRLS we have linear convergence whereas for PPM we don’t. The
number of iteration needed is significantly less in IRLS.

The major part of the computational time goes into computing the linear
system of the Newton method for IRLS and into computing the
Riemannian exponential and its inverse for PPM. The more expensive it is
to compute the Riemannian exponential map and its inverse the faster
IRLS is compared to PPM.

IRLS can also deal with the isotropic TV

TViso(u) :=
m∑
i=1

n∑
j=1

√
d2(ui+1,j , ui,j) + d2(ui,j+1, ui,j).
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Thank you for your attention!
Questions?
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