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The Problem We Address

• We want to describe financial bubbles mathematically

• On a compact time interval [0,T ] we will see that this
tantamount to the price process being a strict local martingale
on [0,T ], instead of a martingale, under a given risk neutral
measure

• Given a fairly general framework, can we describe how bubbles
might form?

• That is, we want a reasonable framework where martingales
on [0,T ] become strict local martingales
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• We are given a filtered complete probability space:
(Ω,F ,P,F) where F = (Ft)t≥0 satisfies the usual conditions,
and contains at least one Brownian motion

• We let S denote our nonnegative stock price process, &
assume interest rates are zero

• Let Q denote all risk neutral measures Q

• The Fundamental Price of a stock, denoted
S∗ = (S∗t )0≤t≤T , is the conditional expectation

S∗t = EQ{ All cash flows after time t|Ft} (1)

• It is impossible really to know S∗t
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Mathematics to the Rescue

• NFLVR⇒ St ≥ S∗t a.s.

• βt = St − S∗t ≥ 0 is the bubble process

• Theorem[Jarrow, P2, Shimbo] 2010: On a compact time
interval [0,T ] a stock price is undergoing bubble pricing if and
only if the bubble process βt > 0 and βt = St − S∗t is a strict
local martingale under Q ∈ Q

• Since S∗ is a martingale, β a strict local martingale is
equivalent to S itself being a strict local martingale

• This theorem builds on work of Lowenstein & Willard, and
Cox & Hobson

• There is a lot of subsequent work by E. Bayraktar, F.
Biagini, H. Föllmer, C. Kardaras, A. Nikeghbali, A.
Roch, M. Schweitzer, and many others
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Strict Local Martingales

• A Strict Local Martingale is a local martingale which is not a
martingale

• In finance, the price process is a martingale or at least a local
martingale under a risk neutral measure
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Why do Bubbles Begin?

• There is a vast literature in the world of economics on the
causes of financial bubbles

• A simple way they can begin is via an infusion of news to the
market that investors find exciting, leading to “irrational
exuberance,” in the infamous words of Alan Greenspan

• Mathematically we can model this phenomenon as an
expansion of the filtration

• We use the idea of initial expansion; such an “initial”
expansion can also occur at a stopping time
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TheDelbaen-Shirakawa Framework

• Let X be a solution of a stochastic differential equation
(SDE) of the form

dXt = σ(Xt)dBt ; X0 = 1 (2)

where B is standard Brownian motion

• Delbaen & Shirakawa (2002) and Mijatovic & Urusov
(2012) give us deterministic necessary and sufficient criteria
that we can use to check whether X is a strict local
martingale:

• X is a positive Strict Local Martingale if for any ε > 0:∫ ε

0

x

σ(x)2
dx =∞ and

∫ ∞
ε

x

σ(x)2
dx <∞
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Remarks on TheDelbaen-Shirakawa Framework

• In the Delbaen-Shirakawa framework, one can be in an
incomplete market with an SDE of the form

dXt = σ(Xt)dBt + b(Xt ,Yt)dt; X0 = 1 (3)

dYt = f (Yt)dWt + c(Yt)dt

where Y is another source of randomness, but in the drift, not
the volatility

• The beauty of the form (3) is that under any of the infinite
choice of risk neutral measures Q the equation (3) reduced to
the form (2), which has a unique solution in law, and hence is
the same under all risk neutral measures

• This feature makes it especially easy to analyze

• One problems with the form (2) however is that it does not
lend itself to bubble birth via a change to an equivalent risk
neutral measure, at least not easily
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Do Bubbles Really Happen?
Are Strict Local Martingales Important?

• Y. Kchia and I developed a test to determine if a local
martingale is in fact a martingale, or is a strict local martingale

• We use the idea of Delbaen & Shriakawa

• This a fairly good model for short periods of time, but it is
not realistic for a long period of time.

• It should be replaced (at least) by adding some time
dependence, to obtain a model of the form

dXt = σ(t,Xt)dBt + b(t,Xt ,Yt)dt; X0 = 1 (4)

9 / 31



• Such a model, however, is a bit too general to lend itself to a
good analysis.

• We make a compromise by assuming the stock prices locally
evolve according to (3) and globally evolve according to (4).

• More precisely we make the assumption that for a compact
time interval [0,T ] we have a finite partition
0 = t1, . . . , tn = T , and the volatility coefficient σ has the
form:

σ(t, x) = σ1(x)1[t1,t2](t) +
n∑

i=2

σi (x)1(ti ,ti+1](t) (5)

• This is in effect a type of regime change model.

10 / 31



Work with Shihao Yang, Harvard

• We studied 3,500 stocks traded in the New York area, from
2000 to 2013, and we applied our test

• We computed the lifetimes of bubbles

• We got a lot of false readings, and instability of the test, so
we smoothed the results using a Hidden Markov Model
technique (HMM)

• We got a large number of fleeting bubble readings, so we
imposed a 5% filter: The stock price must rise more than 5%
to signify the birth of a bubble, and it must later fall at least
5% to signify the death of a bubble, given that the test reads
positive for a bubble

• The imposition of the 5% filter distorts a bit the results, and
they should be interpreted with that in mind

• Using this technique, we can compute the empirical
distribution of the lifetimes of financial bubbles
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The Results
We get a histogram of the results which is well fit by a
generalized gamma distribution

Figure: Histogram of bubble lifetimes
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Median and Mean of Bubble Lifetime

• Our computer search found a little over 13,000 bubbles

• The mean of the lifetimes is 367 days

• The median of the lifetimes is 241 days (calendar days)

• The disparity is due to the heavy tails of the generalized
gamma distribution

• Also the 5% filter makes bubble lifetimes artificially longer in
duration
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Examples

• We give here an example of a long-lived and an example of a
short-lived short-lived bubble.

• We do this via graphs.

• The green areas are the bubble birth periods, and the purple
areas are the bubble deaths.

• Yellow means that bubble is ongoing yet there is no signal
detected, and gray means there is indeed a bubble signal, but
it is suppressed by the 5% change requirement.

• Short-lived bubble Our example is for Airgas, Inc.(ticker
ARG) from May to October, 2008.

• Long-lived bubble Our example is for The Macerich
Company (ticker MAC) from late 2004 to mid 2008. Note
that this bubble has two deaths, a first tentative one, and
then a dramatic one.
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The PL Lions-M Musiela Framework

• P-L Lions and M. Musiela studied SDEs with stochastic
volatility (Heston type SDEs) to see when the solution S was
a local martingale, and when it was a strict local martingale
(2007)

• L. Andersen and V. Piterbarg simultaneously published a
similar result in 2007

• Lions-Musiela framework:

dSt = StvtdBt ; S0 = 1 (6)

dvt = σ(vt)dWt + b(vt)dt; v0 = 1 (7)

• B and W are correlated Brownian motions, with correlation
coefficient ρ and our time interval is compact, [0,T ].
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The PL Lions-M Musiela Framework, Continued

• If

lim sup
x→+∞

ρ xσ(x) + b(x)

x
<∞ (8)

holds, then S is an integrable non negative martingale.

• If
lim inf
x→+∞

(ρ xσ(x) + b(x))φ(x)−1>0 (9)

holds, then S is a strict local martingale.

• φ(x) is an increasing positive smooth function that satisfies∫ ∞
a

1

φ(x)
dx<∞
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• The Lions-Musiela paradigm extends to processes driven by
Lévy noise

• We assume that S and v follow SDEs of the form:

dSt = St−v
α
t dMt (10)

dvt = σ(vt)dBt + b(vt)dt (11)

• M is a Lévy martingale, with Lévy measure ν, such that
[M,M] is locally in L1

• A sufficient condition for S to be a martingale on [0,T ] is that

E [e
∫ T
0 ( 1

2
+
∫
R x2ν(dx))v2α

s ds ] <∞ (12)

• The condition

lim inf
x→+∞

(ρ xσ(x) + b(x))φ(x)−1>0

is sufficient for S to be a strict local martingale.
• A similar analysis applies for martingales M that are not

necessarily Lévy, but are such that d〈M,M〉t = λtdt.

19 / 31



The Basic Idea

• Recall the Delbaen-Shirakawa framework:

dXt = σ(Xt)dBt ; X0 = 1 (13)

• This becomes a strict local martingale (and not a martingale)
as soon as ∫ ∞

ε

x

σ(x)2
dx <∞

• This means that σ(x) has to go to ∞ with x , and do so
significantly faster than x

• In the Lions-Musiela framework, it is the process v that must
tend to ∞ at a fast enough rate

• The equation (13) has to blow up, and in a fairly precise way
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The Basic Idea, Continued

• For the Lions-Musiela paradigm we have:

dSt = StvtdBt ; S0 = 1 (14)

dvt = σ(vt)dWt + b(vt)dt; v0 = 1 (15)

• In equation (14) we have f (x) = x as our coefficient of S ; this
will not by itself make S a strict local martingale; the process
v has to play a key role

• By analogy with the Delbaen-Shirakawa paradigm we need to
have v grow quickly to ∞

• How v behaves depends on the equation (15), and it becomes
a question of using Feller’s test for explosions in one
dimensional SDEs
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• One way bubbles can form is that news come to the market
that causes “irrational exuberance”

• We can model this infusion of information as a filtration
expansion (Grossissement de la filtration)

• We use the idea of initial expansions: the underlying
filtration F is expanded by the addition of a random variable L

• Typically such an expansion takes place at time t = 0, but of
course it can happen at any stopping time

• The new, enlarged filtration, which we will call G can be
denoted (slightly informally) as

Gt =
⋂
ε>0

(Ft+ε ∨ σ(L))
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• We use the results of Jean Jacod (1985) on the initial
expansion of filtrations:

• Let η be the distribution of L and Qt(ω, dx) be the regular
conditional distribution of L given Ft .

• There exists an F martingale qx(t, ω)η(dx) which is a version
of Qt(ω, dx).

• If S is an F martingale, there exists an F predictable process
kx(t, ω), such that [qx ,S ] = (kxqx−) · [S , S ].

• Jacod’s theorem tells us the following process is a G local
martingale:

S̃t = St −
∫ t

0
kLs d [S ,S ]s
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• The filtration enlargement changes the semimartngale
decompositions of both S and v

• We lose the local martingale property of S , but via Girsanov’s
theorem we can regain it by changing to an equivalent
probability measure Q

• Zt = E [dQdP |Gt ].
• We write Zt = 1 + ZH · Bt + ZJ ·Wt for G predictable

processes J and H

• Under (Q,G), S possesses the following decomposition:

St =

∫ t

0
(Ssvs)dBs −

∫ t

0
kLs (Ssvs)2ds −∫ t

0
((Ssvs)Hs + ρJs)ds +∫ t

0
kLs (Ssvs)2ds +

∫ t

0
((Ssvs)Hs + ρJs)ds
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• To choose Q such that S is a local martingale we need

kLt (Stvt)
2 = −(Stvt)Ht − ρJt .

• We make two assumptions:

(A1) k ,H, and J have right continuous paths a.s.

(A2) Q(ω : kL0>0)>0

• Assumptions (A1) and (A2) are true in known examples, and
they are also true in some specially constructed examples that
are appropriate to the modeling of an information infusion to
the market

• In the specially constructed examples, it involves some work
to show that (A1) actually holds
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• The drift in the volatility equation changes too: The new drift
of v , which we will call b̂(vt), satisfies:

b̂(vt) = b(vt) + kLt µ
2(vt) + (ρHt + Jt)µ(vt).

• It is this change in the volatility that allows the change from a
martingale to a strict local martingale

• Notice that we can no longer represent the drift in
deterministic terms as simply functions of the real variable x
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• We cannot immediately invoke the results of Lions & Musiela.

• To address this, let us fix 0<ε(1)<kL0 and |ρH0 + J0|<ε(2) and
define the following random times:

τk = inf{t : |kLt |<ε(1)}
τH,J = inf{t : |ρHt + Jt |>ε(2)}

• Define the stopping time τ :

τ = (τk ∧ τH,J).

• Denote by m : min(ε(1), ε(2)) and by M : max(ε(1), ε(2))

• On the stochastic interval [0, τ ], we have the following
lower bound on our drift coefficients:

b̂(vt) ≥ b(vt) + mµ2(vt)−Mµ(vt)
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• Theorem: Assume the following conditions

lim sup
x→+∞

ρ xµ(x) + b(x)

x
<∞

lim inf
x→+∞

(ρ xµ(x) + b(x) + mµ2(x)−Mµ(x)φ(x)−1>0

on the functions µ,b are satisfied, and assume that B and W
are correlated Brownian motions with correlation ρ > 0. Let
the process S be the unique strong solution of the SDE

dSt = StvtdBt

dvt = µ(vt)dWt + b(vt)dt

on (P,F), and assume that S is strictly positive.
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• The solution S is also the solution of

dSt = StvtdBt

dvt = µ(vt)dWt + b(vt)dt + kLt µ
2(vt)dt + (ρHt + Jt)µ(vt)dt

on (Q,G).

• Then S is a (P,F) martingale and a (Q,G) strict local
martingale on the stochastic interval [0, τ ].

• Specifically, we have E [Sτt ]<S0.

• We have similar results in the Lévy driven case for S , as long
as v is still driven by a Brownian motion (so that we can still
use Feller’s test for explosions in the spirit of Lions & Musiela)
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• The idea of changing the drift of the stochastic volatility
equation v to create a strict local martingale for S originates
in a recent paper of F. Biagini, H. Föllmer, and S. Nedelcu

• The change in the risk neutral measure also has an impact on
the price structure of financial derivatives

• The absence of arbitrage in such a model can be assured in a
local sense, via the ideas developed in the PhD thesis of
Roseline Bilina Falafala (Columbia, 2014)
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The End
Thank you for your attention
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