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A little background

X is a strong Markov process taking values in (l , r), where
≠Œ Æ l < r < Œ.
X cannot be killed inside (l , r) and is continuous on [0, ’[,
where

’ := {t Ø 0 : X

t

= l or r}
is its lifetime.
Define

T

y

:= inf{t > 0 : X

t

= y}
for y œ [l , r ]. We assume that X is regular, i.e.

P

x (T
y

< Œ) > 0

for all x , y œ (l , r), where P

x corresponds to the law of X

with X

0

= x .
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Scale function and the speed measure

X is uniquely characterised by its scale function, s, and speed
measure, m. In particular its infinitesimal generator can be
defined by

A = d

dm

d

ds

The scale function is continuous and strictly increasing and
satisfies for l < x < y < z < r

P

y (T
x

< T

z

) = s(z) ≠ s(y)
s(z) ≠ s(x) .

Consequently its left derivative, s

Õ, exists.
The behaviour of X near the endpoints l and r are to a large
extent determined by s and m.
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Classification of boundaries

Regular It is possible to start the di�usion from a regular boundary
and it can be reached in finite time.

Exit It is not possible to start the di�usion from an exit boundary
but it can be reached in finite time.

Entrance A di�usion can be started at an entrance boundary but it is
inaccessible from the interior of the state space.

Natural This is an inaccessible boundary like an entrance one. The
di�erence is that one cannot start from a natural boundary.

There exist conditions on s and m that determine whether an
endpoint is regular, exit, entrance, or natural. A regular boundary
can be absorbing or reflecting, depending on extra assumptions
that cannot be determined by s and m alone.
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Examples

Standard Brownian motion on R: Œ and -Œ are natural
boundaries.

A population growth model on [0, Œ): 0 is exit while Œ is
natural. Here, X is defined by

dX

t

=


aX

t

dB

t

+ —X

t

dt

for — Ø 0.
Reflected Brownian motion on (0, Œ): 0 is regular and Œ is
natural.
3-dimensional Bessel process on (0, Œ): 0 is entrance and Œ
is natural.
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Further assumptions

X is transient so that at least one of s(l) and s(r) is finite.
Without loss of generality we will assume that s(l) = 0 and
s(r) = 1 when finite.

The Engelbert-Schmidt conditions hold. That is, for any
x œ (l , r)

‡(x) > 0 and ÷Á > 0 s.t.
⁄

x+Á

x≠Á

1 + |b(y)|
‡2(y) dy < Œ. (1)

Thus, for any x œ (l , r), P

x is the law of the unique weak
solution to

X

t

= x +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

b(X
s

)ds.

The above implies we may choose

s(x) =
⁄

x

C

exp
3

≠2
⁄

z

c

b(u)
‡2(u)du

4
dz and m(dx) = 2

s

Õ(x)‡2(x)dx ,

(2)
for some (c , C) œ (l , r)2.
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Further consequences of transience

There exists a finite symmetric potential density, u, with
respect to m. That is, for any test function, f , vanishing at
accessible boundaries

Uf (x) :=
⁄ Œ

0

E

x [f (X
t

)]dt =
⁄

r

l

f (y)u(x , y)m(dy).

If L

y is the semimartingale local time at y ,

P

y (Ly

Œ > t) = exp
3

≠ s

Õ(y)t
2u(y , y)

4
. (3)

Thus, the strong Markov property implies
P

x (Ly

Œ œ E |F
t

) = 1

[L

y

t

œE ]

(1 ≠ Â(X
t

, y))

+s

Õ(y)Â(X
t

, y)
2u(y , y)

⁄

E

1

[a>L

y

t

]

exp
A

≠s

Õ(y)(a ≠ L

y

t

)
2u(y , y)

B

da,

where
Â(x , y) := P

x (T
y

< Œ).
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Limiting values of X

XŒ exists and equals l or r depending on the values of s(l)
and s(r).

When only one of s(l) and s(r) is finite, XŒ equals either l or
r , in which case XŒ and L

y

Œ are trivially independent no
matter where the di�usion has started. If both s(l) and s(r)
are finite, the situation is more delicate. The following result
that illustrates this must be well-known.

Proposition 1

Suppose that X is a regular transient di�usion on (l , r) with

s(l) = 0 = 1 ≠ s(r). Then, XŒ and L

y

Œ are independent under P

x

if and only if x = y.
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What are we after?

We are interested in finding the SDE representation for the
dynamics of X when conditioned on the set [Ly = a] for a
given a Ø 0.

The classical recipe consists of 1) finding an appropriate
excessive function, h, 2) defining the transition probabilities of
the conditioned process via h, and 3) constructing on the
canonical space a Markov process, X

h, with these new
transition probabilities using standard techniques. This
procedure is called an h-transform and its origins go back to
Doob and his study of boundary limits of Brownian motion.
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Some sample h-transforms

Suppose that 1 = s(r) = 1 ≠ s(l) and let h(x) := s(x). h is
harmonic and it can be used to condition X to converge to r

with probability 1. If P

h,x denote the law of the conditioned
process, the following absolute continuity relationship holds:

dP

h,x

dP

x

= h(XŒ)
h(x) =

1

[XŒ=r ]

P

x (XŒ = r) .

Fix y œ (l , r) and consider h(x) := u(x , y). Then, h is
excessive (≥ h(X ) is a supermartingale) and is minimal with a
pole at y . This h-transform conditions that X converges to y

and is killed at its last hitting time of y .
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A di�erent approach

If we would like to apply an h-transform to achieve our
conditioning, we need to find a minimal excessive function of
the pair (X , L

y ) with a suitable pole so that the local time of
the X

h equals a Ø 0 at its lifetime. The problem with this
approach is that it requires the knowledge of the potential
density of the Markov pair (X , L

y ), which is in general not
easily obtained or characterised. Moreover, as in every
h-transform, it requires a killing procedure.
We shall follow a di�erent approach and construct the
conditioned process as a weak solution to a stochastic
di�erential equation (SDE) with a suitably chosen drift.
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A recipe of conditioning

As any conditioning with a > 0 will make sure that X first
hits y , we will assume X

0

= y to ease the exposition.

The construction of the conditioned process should be
achieved in two steps: 1) make sure that X keeps hitting y

before L

y reaches a and 2) as soon as L

y becomes a never let
X hit y again.
In order to achieve the first step we need to change the
behaviour of X in such a way that the process is recurrent

since, otherwise, there will be a positive probably that it will
drift towards one of its endpoints before L

y becomes a.To this
end we will introduce the concept of a recurrent

transformation and consider a particular example which allows
us to complete the first step of our conditioning.
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The second step

The next step is to prevent X from hitting y after
· y

a≠ := inf{t Ø 0 : L

y

t

Ø a}. Since X· y

a≠
= y , on [· y

a≠ < Œ],
this means that we need to keep X above or below y after
· y

a≠.

Recall that we are not merely interested in creating a process
with the property that L

y

Œ = a, but a conditioned version of
X whose law coincides with the regular conditional probability
P

y (·|Ly

Œ = a).
This necessitates, in particular, that the conditioned process
should also have the same set of possible limiting values for its
limiting value. If s(l) = 0 and s(r) = Œ (resp. s(l) = ≠Œ
and s(r) = 1), our task is relatively simple: keep X below
(resp. above) y at all times after · y

a≠.
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On the other hand, if s(l) = 0 = 1 ≠ s(r), the original process
could drift towards r as well as l . As we are only conditioning
on L

y

Œ and not on XŒ, we will have to appropriately
randomise the coe�cients of the SDE for the bridge process
to allow our solution have l and r as possible limit points.
We shall see that the drift term that will correspond to the
second step of the conditioning will be of Bessel-type and
provide a connection with the excursions of X .
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Step 1 and recurrent transformations

Definition 1
Let h : (l , r) ‘æ (0, Œ) be an absolutely continuous function such
that the limits h(l+) := lim

xæl

h(x) and h(r≠) := lim
xær

h(x)
exists. Then, (h, M) is said to be a recurrent transform (of X ) if
the following are satisfied:

1 M is an adapted process of finite variation.
2 h(X )M is a nonnegative local martingale.
3 There exists a unique weak solution to

X

t

= y +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

;
b(X

s

) + ‡2(X
s

)h

Õ(X
s

)
h(X

s

)

<
ds. (4)

4 r

s

is finite for all x œ (l , r) with ≠r

s

(l+) = r

s

(r≠) = Œ, where

r

s

(x) :=
⁄

x

c

s

Õ(y)
h

2(y)dy , x œ (l , r) (5)
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Suppose that h is absolutely continuous and h

Õ is of finite
variation such that r

s

is finite for all x œ (l , r) with
≠r

s

(l+) = r

s

(r≠) = Œ.

First note that dh

Õ(x) = h

ÕÕ(x)dx + n(dx), where n is a locally
finite signed measure on (l , r) that is singular with respect to
the Lebesgue measure.
Therefore, the integral

1

[t<’]

3⁄
t

0

|Ah(X
s

)| ds +
⁄

r

l

L

x

t

2 |n(dx)|
4

< Œ, P

y -a.s.,

for every y œ (l , r), where Ah = ‡2

(x)

2

h

ÕÕ(x) + b(x)hÕ(x) with
an abuse of notation.
Let us also define on [t < ’]

M

t

:= exp
3

≠
⁄

t

0

Ah(X
s

)
h(X

s

) ds ≠
⁄

t

0

1
h(X

s

)d�
s

(h)
4

and

�
t

(h) :=
⁄

r

l

L

x

t

2 n(dx).
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Theorem 2

Let h and M be as above. Then, the following statements are

valid.

1 (h, M) is a recurrent transform.

2 Let R

h,y
be the law of the solution of (4) and F œ F

T

for

some (F
t

)-stopping time, T , such that h(XT )MT

is a

uniformly integrable P

y

-martingale. Then,

R

h,y (F ) = 1
h(y)E

y [1
F

h(X
T

)M
T

] . (6)
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An example

Suppose ” > 2 and consider a ”-dimensional Bessel process on
(0, Œ), i.e. a one-dimensional di�usion with the dynamics

dX

t

= 2


X

t

dB

t

+ ”dt.

Then (h, M) is a recurrent transform if h(x) := x

2≠”
4 and

M

t

:= exp
A

(” ≠ 2)2

8

⁄
t

0

1
X

s

ds

B

, t Ø 0.

The transformation yields the following SDE for the resulting
process

dX

t

= 2


X

t

dB

t

+ 2dt,

which is the SDE for a 2-dimensional squared Bessel process.
Recall that 0 is polar for a 2-dimensional squared Bessel process.
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A special case

Proposition 2

(h, M) is a recurrent transform if

h(x) := u(x , y), x œ (l , r), and M

t

= exp
A

s

Õ(y)Ly

t

2u(y , y)

B

.

Consequently, there exists a unique weak solution to

X

t

= y +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

;
b(X

s

) + ‡2(X
s

)u

x

(X
s

, y)
u(X

s

, y)

<
ds, (7)

where u

x

denotes the first partial left derivative of u(x , y) with

respect to x. Moreover, if R

h,y
denotes the law of the solution,

then, for all a > 0, we have R

h,y (Ly

Œ Ø a) = R

h,y (· y

a≠ < Œ) = 1
and

dR

h,y

dP

y

--
F·

y

a≠

= exp
3

as

Õ(y)
2u(y , y)

4
1

[· y

a≠<’]

. (8)
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Bessel-type motions and Step 2

Proposition 2 tells us what to do in our first step: We run the
(h, M)-recurrent transformation given in the proposition until
· y

a≠, which is finite with probability 1.

In the second step we will keep X away from y after · y

a≠ using
an h-transform.
Such an h-transform makes the point-y an entrance boundary

for the transformed di�usion.
This is a problem if one wants to use the Engelbert-Schmidt
theory for the existence and uniqueness of the solutions for
the associated SDE starting at the entrance boundary.
Indeed, Engelbert and Schmidt constructs the weak solution
by applying a change of time and scale to a standard
Brownian motion.
As the scale function is infinite at the entrance boundary, this
no longer works.
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An extension of Engelbert-Schmidt theory

To check the aforementioned impossibility try constructing the
3-dimensional Bessel process starting from 0 by applying a
change of time and scale to a Brownian motion.
Note that such a construction were possible if the Bessel
process had started at x > 0.

We nevertheless can extend the theory to entrance boundaries
in the following theorem by applying a change of time and
scale to a 3-dimensional Bessel process.
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Theorem 3

Suppose that X is a regular transient di�usion on (l , r) such that

its scale function and speed measure are defined by (2), where

‡ : (l , r) ‘æ R and b : (l , r) ‘æ R are measurable functions

satisfiying (1). Assume further that X has an entrance boundary.

Then there exists a unique weak solution to

X

t

= x +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

b(X
s

)ds, t < ’, (9)

where ’ = inf{t Ø 0 : X

t≠ œ {l , r}} and x is the entrance

boundary.

N.B. The fact that X is transient implies there exists at most one
entrance boundary.
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Candidate drifts for Step 2

Suppose s(l) = 0. There exists a regular di�usion on (l , y) with
the scale function s

l

and the speed measure, m

l

, defined by

s

l

(x) := 1
s(y) ≠ s(x) , m

l

(dx) := (s(y) ≠ s(x))2

m(dx).

y is an entrance boundary for this di�usion, which is also the
unique weak solution to

R

t

= x+
⁄

t

0

‡(R
s

)dB

s

+
⁄

t

0

I

b(R
s

) ≠ s

Õ(R
s

)‡2(R
s

)
s(y) ≠ s(R

s

)

J

ds, t < ’,

(10)
where x œ (l , y ] and ’ = inf{t Ø 0 : R

t≠ = l}. Moreover,
lim

tæŒ R

t

= l , Q

x ,0-a.s., where Q

x ,0 is the law of the weak
solution to the SDE above.
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Suppose s(r) = 1. There exists a regular di�usion on (y , r) with
the scale function s

r

and the speed measure, m

r

, defined by

s

r

(x) := 1
s(y) ≠ s(x) , m

r

(dx) := (s(y) ≠ s(x))2

m(dx).

y is an entrance boundary for this di�usion, which is also the
unique weak solution to

R

t

= x+
⁄

t

0

‡(R
s

)dB

s

+
⁄

t

0

I

b(R
s

) + s

Õ(R
s

)‡2(R
s

)
s(R

s

) ≠ s(y)

J

ds, t < ’,

(11)
where x œ [y , r) and ’ = inf{t Ø 0 : R

t≠ = r}. Moreover,
lim

tæŒ R

t

= r , Q

x ,1-a.s., where Q

x ,1 is the law of the weak
solution to the SDE above.
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Bessel connection

Proposition 3
Denote by X

0

(resp. X

1

) the killed di�usion process on (l , y)
(resp. (y , r)) with the scale function s and the speed measure m.

Suppose s(l) = 0 (resp. (s(r) = 1). Then, for any bounded and

measurable f and x ”= y

Q

0

t

f (x) = P

0

t

f (s(y) ≠ s)(x)
s(y) ≠ s(x)

A

resp. Q

1

t

f (x) = P

1

t

f (s ≠ s(y))(x)
s(x) ≠ s(y)

B

,

where (Q0

t

)
tØ0

(resp. (Q1

t

)
tØ0

) is the semigroup associated to the

solutions of (10) (resp. (11)) while (P0

t

)
tØ0

(resp.(P1

t

)
tØ0

) is the

transition semigroup of X

0

(resp. X

1

).

Note that when X is a Brownian motion and y = 0, the above
defines the transition density of 3-dimensional Bessel process.
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Time reversal

Proposition 4
Let R be the solution of (10) (resp. (11)) with x = y. Pick a

z œ (l , y) (resp. z œ (y , r)) and define the last passage time

G

z

:= sup{t : R

t

= z}.

Next, let Y be the di�usion on (l , y) (resp. (y , r)) obtained by

conditioning X

0

(resp. X

1

) converge to y with Y

0

= z. Then, the

processes

{R

G

z

≠t

, 0 < t < G

z

} and {Y

t

, 0 < t < S

y

}

have the same law, where

S

y

= inf{t : Y

t

= y}.

In particular, G

z

and S

y

are finite and have the same distribution.
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Main result

Theorem 4

There exists a filtered probability space, (�, G, (G
t

)
tØ0

, P

L,a),
which contains a Bernoulli random variable, ◊, with

fl(y) := P

y (XŒ = r) = P

L,a(◊ = 1) = 1 ≠ P

L,a(◊ = 0) and the

adapted pair (X , B) such that (G
t

)
tØ0

is right-continuous, B is a

standard Brownian motion independent of ◊, and X satisfies

X

t

= y +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

b(X
s

)ds +
⁄

t·· y

a≠

0

‡2(X
s

)u

x

(X
s

, y)
u(X

s

, y) ds (12)

+
⁄

t

t·· y

a≠

‡2(X
s

)
;

◊1

[X

s

>y ]

s

Õ(X
s

)
s(X

s

) ≠ s(y) ≠ (1 ≠ ◊)1
[X

s

<y ]

s

Õ(X
s

)
s(y) ≠ s(X

s

)

<
ds, t < ’.

Moreover, weak uniqueness holds for the solutions of the above

SDE.

We shall, with a slight abuse of notation, denote the law induced
by the above solution on C(R

+

, I) by P

L,a.
Umut Çetin Path transformations for local times



We can also condition L

y

Œ equal a random variable. Indeed, there
exists a filtered probability space, (�̃, G̃, (G̃

t

)
tØ0

, P

L,g), which
contains a Bernoulli random variable, ◊, with
fl(y) = P

L,g(◊ = 1) = 1 ≠ P

L,g(◊ = 0), another R
++

-valued
random variable � with distribution g , and the adapted pair (X , B)
such that i) (G̃

t

)
tØ0

is right-continuous; ii) B is a standard
Brownian motion; iii) B, ◊ and � are mutually independent; and iv)
X solves

X

t

= y +
⁄

t

0

‡(X
s

)dB

s

+
⁄

t

0

b(X
s

)ds +
⁄

t·· y

�≠

0

‡2(X
s

)u

x

(X
s

, y)
u(X

s

, y) ds (13)

+
⁄

t

t·· y

�≠

‡2(X
s

)
;

◊1

[X

s

>y ]

s

Õ(X
s

)
s(X

s

) ≠ s(y) ≠ (1 ≠ ◊)1
[X

s

<y ]

s

Õ(X
s

)
s(y) ≠ s(X

s

)

<
ds, t < ’.
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A disintegration formula

Similarly, the uniqueness in law holds for the solutions of the
above SDE with properties i)-iv).
Furthermore, denoting the law of its solutions by P

L,g , we
have the following disintegration formula:

P

L,g =
⁄ Œ

0

g(da)PL,a. (14)

P

L,a(Ly

Œ = a) = P

L,g(Ly

Œ = �) = 1.
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Enlargement of filtrations and (13)

Corollary 5

Suppose X lives in the filteres probability space (�, G, (G
t

)
tØ0

, P)
and X

0

= y. Consider the filtration (H
t

)
tØ0

, where

H
t

= G
t

‚ ‡(Ly

Œ). Then,

X

t

= y +
⁄

t

0

‡(X
s

)d—
s

+
⁄

t

0

b(X
s

)ds +
⁄

t·· y

�≠

0

‡2(X
s

)u

x

(X
s

, y)
u(X

s

, y) ds

+
⁄

t

t·· y

�≠

‡2(X
s

) s

Õ(X
s

)
s(X

s

) ≠ s(y)ds, t < ’, (15)

where � := L

y

Œ and — is an (H
t

)
tØ0

-Brownian motion stopped at

’.

In particular, X is a weak solution of (13), where � = L

y

Œ,

g(da) = s

Õ
(y)

2u(y ,y)

exp
1
≠ as

Õ
(y)

2u(y ,y)

2
da, and ◊ = 1

[RŒ=r ]

.
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Final touch

Corollary 6

Let P

L,a
be the law on C(R

+

, I) induced by solutions of (12) and

F be a test function. Then

E

y [F (X
s

; s Æ t)h(Ly

Œ)] (16)

=
⁄ Œ

0

E

L,a [F (X
s

; s Æ t)] h(a) 1
u(y , y) exp

3
≠ a

u(y , y)

4
da.

That is, P

L,a
is a regular conditional probability of B given

L

y

Œ = a, where B is the Borel ‡-algebra on C(R
+

, I).
Consequently, if X is a solution of (13) with

g(da) = s

Õ
(y)

2u(y ,y)

exp
1
≠ as

Õ
(y)

2u(y ,y)

2
da, then, in its own filtration, it’s a

regular di�usion on (l , r) with scale function s and speed measure

m.
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A new path decomposition result a la Williams

Theorem 7

Pick a y œ (l , r) and on a suitable probability space set up the

following four independent elements:

1 An exponential random variable, �, with mean

2u(y ,y)

s

Õ
(y)

.

2 A Bernoulli random variable, ◊, with P(◊ = 1) = fl(y).
3 A process Y , which is a (u(·, y), M) recurrent transform of X

run upto · y

�≠, where M

t

= exp
1

L

t

u(y ,y)

2
.

4 A pair of Bessel-type motions, (R0, R

1) with laws (Qy ,0, Q

y ,1)
and lifetimes (’0, ’1).

Then, the process defined by

X̃

t

:=
I

Y

t

, t Æ · y

�≠
R

◊
t≠· y

�≠
, 0 < t ≠ · y

�≠ Æ ’◊,

has the same law as X.
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The killed Brownian motion

Suppose X is a Brownian motion on (≠Œ, b) killed at b > 0.
Taking y = 0 the equation (12) reads as

X

t

= B

t

≠
⁄

t··0

a≠

0

1
b ≠ X

s

1

[X

s

>0]

ds +
⁄

t

t··0

a≠

1
X

s

ds, t < ’,

(17)
where ’ is the first hitting time of b, which occurs in finite
time.
The first integral represents the recurrent transform, Y ,
stopped at ·0

a≠, where

Y

t

= B

t

≠
⁄

t

0

1
b ≠ Y

s

1

[Y

s

>0]

ds.

If we let U := b ≠ Y , then

U

t

= b + —
t

+
⁄

t

0

1
U

s

1

[U

s

<b]

ds, (18)

where — = ≠B.
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A path decomposition for the killed Brownian motion

On a suitable probability space set up the following three
independent elements:

1 An exponential random variable, �, with mean 2b.
2 A weak solution, U, of (18).
3 A 3-dimensional Bessel process, R, with R

0

= 0.
Consider

X̃

t

:=
I

b ≠ U

t

, t Æ ·b

�≠
R

t≠·b

�≠
, 0 < t ≠ · y

�≠ Æ S

b

,

where (·b

t

)
tØ0

is the right-continuous inverse of the local time of
U at level b and S

b

:= inf{t Ø 0 : R

t

= b}. Then, X̃ has the same
law as the Brownian motion starting at 0 and killed at b.
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Conclusion

We have characterised the SDE that corresponds to the
conditioning of a transient di�usion on the terminal value of
its local time at a fixed level.

In the course of this construction the concept of recurrent

transformations is introduced.
The results of Engelbert and Schmidt have been extended to
the case of entrance boundaries as initial condition.
The SDE representations for Bessel-type motions associated
to the transient di�usions are given.
A new path decomposition for transient di�usions is proven.
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