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Robust pricing and informed investors

A central problem in robust finance is to prove
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Robust pricing and informed investors

A central problem in robust finance is to prove

. _ ® can be super-hedged starting
ng,l Eo[¢] = mf{c eR: from initial capital ¢, M-q.s.

in various settings, where M is a suitable set of martingale measures.

Observe: M = M(F) depends on the underlying filtration, as does the
set of available trading strategies.
Question:

» What can be said about the relation between the super-hedging
price and the choice of filtration?

> When passing from F to G D I, which measures Q € M(F) are still
relevant for pricing?
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Setup

> (Q,F, F): Filtered measurable space with F = (F;)o<t<T
right-continuous.

Later we will consider other filtrations.

v

‘P: Any collection of probability measures on Fr such that
Pe P, Q< PimpliesQ € P.

v

S = (St)o<t<T: cadlag F-adapted discounted price process of an
asset available for dynamic trading. We assume Sy = 0.

v

V= {41,...,¥,} a set of Fr-measurable payoffs available for
static (buy-and-hold) trading. Today's price of v; is zero for each i.

v

A risk-free asset with price = 1 is available for dynamic trading.
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S is an F-martingale, Eg[S2] < oo,
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Martingale measures and extreme points

Calibrated [2-martingale measures:

Eg[vi | Fo] = 0, Eg[t?] < oo for all i

S is an F-martingale, Eg[S2] < oo,
M(IF)—{QGP g o[S7] }

Extreme points: Q € M(TF) is called an extreme point if

Q=2Q'+(1-NQ?

1 _ N2 _
for Q' € M(F), X € (0,1) r=0=9

Denote
ext M(F) = {all extreme points of M(F)}

Note: Purely algebraic condition. Independent of any topology we may
put on the space of probability measures.
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Why do we care about extreme points?
» Consider an Fr-measurable payoff ®.

» Under suitable continuity and compactness assumptions,

sup Eg[®] =  sup Eg[P]
Qe M(F) Q € ext M(F)



Martingale measures and extreme points
Why do we care about extreme points?
» Consider an Fr-measurable payoff ®.

» Under suitable continuity and compactness assumptions,

sup Eg[®] =  sup  Eg[®]
Q€ M(F) Q € ext M(F)

Furthermore:

> In the classical case W = () (no static claims), there is a well-known
connection between extreme points and completeness.

> An analogous connection exists in the semi-static case.



Semi-static completeness and the
Jacod-Yor theorem



Semi-static completeness and the Jacod-Yor theorem

> Suppose W = () (no static claims).

> For Q € M(F), the classical Jacod-Yor (1977) theorem yields

Qeext M(F) <= [*(Fr,Q)={x+(H-S)r: He [*S)}.

> This result can be generalized to the semi-static case.



Semi-static completeness and the Jacod-Yor theorem
Fix Q € M(F)
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Fix Q € M(F)

Definition. We say that semi-static completeness (un-
der (Q,F)) holds if any X € L?(Fr) can be represented as

X=x+a+ - +ann+(H-S)r

for some x, ay,...,a, € R and H € L%(S).




Semi-static completeness and the Jacod-Yor theorem
Fix Q € M(F)

Definition. We say that semi-static completeness (un-
der (Q,F)) holds if any X € L?(Fr) can be represented as

X=x+apr+- - +awhn+(H-S)r

for some x, ay,...,a, € R and H € L%(S).

Theorem (semi-static Jacod-Yor theorem):

Q e ext M(F) <= semi-static completeness holds
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Semi-static completeness and the Jacod-Yor theorem
Remarks.
> No topological hypotheses on M(F), such as compactness, needed.

» The proof is easy: Define

W = {30+Zaj¢i+(H-5)T: a,eR, He L2(5)}

i=1

» Theorem of Douglas (1964) yields |/ dense in L'

» Hahn-Banach + theorem of Yor (1978) + induction yields

!
W nL2=w
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> Infinitely many %; would allow strategies like
F(St)+(H-S)r

where f € L?(u) for a fixed (by the market) marginal law St ~ p.
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Semi-static completeness and the Jacod-Yor theorem
Remarks.

> Infinitely many %; would allow strategies like
F(St)+(H-S)r

where f € L?(u) for a fixed (by the market) marginal law St ~ p.

» Qur inductive proof does not work for such a setup. In fact:

7~

Theorem (Acciaio-L.-Schachermayer, 2016). There exists
a stochastic basis (2, 7, F,P) with a Brownian motion B and
a stopping time T such that S := BT is bounded and

W ={f(Sr)+(H-S)7: f € L*(n), HeL}(S)}

is not closed in L2.




Semi-static completeness and the Jacod-Yor theorem
Can we say more?

> In the classical case (W = (}), completeness is a strong property —
but still allows for many “unstructured” models.

> For instance, completeness holds if I is generated by S, and S is a
strong solution to a possibly path-dependent SDE of the form

dS: =o(t; S, u < t)dW,

where W is a Brownian motion and o is never zero.
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Semi-static completeness and the Jacod-Yor theorem
Can we say more?

> In the classical case (W = (}), completeness is a strong property —
but still allows for many “unstructured” models.

> For instance, completeness holds if I is generated by S, and S is a
strong solution to a possibly path-dependent SDE of the form

dS: =o(t; S, u < t)dW,

where W is a Brownian motion and o is never zero.

Question: Should we expect additional structure in the semi-static case?
Notation: For any martingale NV, let
S(N)={H-N: H e [*(N)}.

This is a closed subspace of #2.
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A curious consequence of completeness

For the next three slides: ¥ = {¢}, Q € ext M(FF), S is continuous

> Let K-S be the orthogonal projection of Eg[¢ | F;] onto S(S) and
define the unhedgeable part of :

Mt:EQ[¢|]:t]_(K'S)t
» Then H- M L S(S) for any H € L?(M)
» By semi-static completeness,
H? = span{1} @ span{M} & S(S)

» Thus,
S(M) = span{ M},

which is one-dimensional!



A curious consequence of completeness
Consequence:

> for some t* € (0, T] and some Q-atom B of Fy_,

M = M71lpye 1
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A curious consequence of completeness
Consequence:

> for some t* € (0, T] and some Q-atom B of Fy_,
M = M71lpye 1
> By continuity of S,

S =5y0on Bfort<t"
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A curious consequence of completeness

Consequence: M = M11gy[e-, 1] S5;=5p on B for t < t*

By semi-static completeness,

15 ZEQ[Q(B)-‘FBMT—F(HS)T |]:t*7]
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Consequence: M = M11gy[e-, 1] S5 =5 on Bfort<t*
By semi-static completeness,
lg =Eqo[ Q(B)+aMr+(H-S)T | Fe--]
=Q(B)1g+ (H-S)+15
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A curious consequence of completeness
Consequence: M = M11gy[e-, 1] S5 =5 on Bfort<t*
By semi-static completeness,
1g =Eq| Q(B) +aMr+ (H-S)r | Fe-—]
— Q(B)1g + (H-S)e- 1z
=Q(B)1s
Hence Q(B) = 1.



A curious consequence of completeness
Consequence: M = M11gy[e-, 1] S5 =5 on Bfort<t*
By semi-static completeness,
1g =Eq[ Q(B)+ aMr+ (H-S)r | Fer_]
=Q(B)1g+ (H-S)+15
=Q(B)1s

Hence Q(B) = 1. From this we deduce:

St Mt
o—
——————0
o——
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Semi-static completeness for continuous price processes
Fix Q € M(F)

For A € Fr, let t(A) be the first time A is observed:
t(A)=inf{te [0, T]: Ac F:}
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Semi-static completeness for continuous price processes
Fix Q € M(F)
For A € Fr, let t(A) be the first time A is observed:
t(A)=inf{te [0, T]: Ac F:}

Definition (atomic tree). An atomic tree is finite collection T
of events in F1 such that:

> every A€ T is a non-null Q-atom of Fyay;

> for every A, A" € T with t(A) < t(A’), either AD A’ or
ANA =0

> for every A, A" € T with AD A, Q(A\ A’) > 0.




Semi-static completeness for continuous price processes
Fix Q € M(F)
For A € Fr, let t(A) be the first time A is observed:
t(A)=inf{te [0, T]: Ac F:}

Definition (atomic tree). An atomic tree is finite collection T
of events in F1 such that:

> every A€ T is a non-null Q-atom of Fyay;

> for every A, A" € T with t(A) < t(A’), either AD A’ or
ANA =0;

> for every A, A" € T with AD A, Q(A\ A’) > 0.

> leaf: A € T such that there is no A’ € T with A’ C A.
» dim T = number of leaves in T.

> T is full if its leaves form a partition of Q (up to nullsets), and if A
is an atom of Fya)— whenever A" is a child of A.



Semi-static completeness for continuous price processes

AP
A b

A3f
Q0O O
ab

As

0 t(As) t(As) t(A) T



Semi-static completeness for continuous price processes
Remarks.

» o(T) is well-defined. We have o(T) = F¢(t) where the stopping
time ((T) is the “end” of the tree:

(M= > tAla

AET is a leaf

» If T is full, then dim T = dim L2(o(T)).

20
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Semi-static completeness for continuous price processes
Remarks.

» o(T) is well-defined. We have o(T) = F¢(t) where the stopping
time ((T) is the “end” of the tree:

(M= > tAla

AET is a leaf

» If T is full, then dim T = dim L2(o(T)).

Definition. S is complete on A x [t, T] for given t € [0, T] and
A€ F, if any X € L?(F7) can be dynamically replicated there:

X=x+(H-S)7 on A

for some x € R and some H € L?(S) with H =0 on [0, t].




Semi-static completeness for continuous price processes
Recall: Q € M(F) is fixed.

Theorem. Assume S is continuous. Semi-static completeness
holds if and only if there exists a full atomic tree T such that

1. S is complete on A x [t(A), T] for each leaf A€ T,
£ span{u?:@[w, lo(M):i=1,..., n} is (dim T — 1)-dim.
In this case, S is constant on [0, ((T)] and

L2(]:T) = Span(lv Pipoo- ad}n) + S(S) = L2(U(T)) D S(S)

Remark: ¢; = Eq[t; | o(T)] + (H' - S)1 for some H'.



Semi-static completeness for continuous price processes

0 t (53 t3 T

The filtration F under Q € ext M(IF). Each set of lines emanating from

the leaves of T corresponds to a dynamically complete stock price model. /%
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Pricing by informed investors
Setup:
> S is continuous

> G = (Gt)o<t<T: Right-continuous filtration with

Fi € Gy, 0<t<T.

> Consider payoff ®. Robust super-hedging price of informed agent:

sup Eg[®]
QeM(G)

> As before, we wish to study ext M(G).

Question: How are ext M(G) and ext M(F) related?



Pricing by informed investors

Specification of G:
> Progressive enlargement of G with H:
Qt = m ]:u V H,_,.
u>t
Smallest right-continuous filtration that contains both F and H.

> H generated by a collection of single-jump processes X1, 17, where
X is a r.v. and T is a random time, i.e. [0, T] U {oo}-valued r.v.

> The classical progressive enlargement with random times as well as
initial enlargement with random variables are special cases.



Pricing by informed investors

Let o be the first time S starts moving:

o=inf{t €[0, T]: S # 0}.

Theorem. Let H be generated by finitely many Xi1(;, 77. Assume
Tk > o0 on {0 < 7 < oo} for all k. Then

ext M(G) = {Q: F and G coincide under Q, and Q € ext M(F)}.




Pricing by informed investors

Let o be the first time S starts moving:

o=inf{t €[0, T]: S # 0}.

Theorem. Let H be generated by finitely many Xi1(;, 77. Assume
Tk > o0 on {0 < 7 < oo} for all k. Then

ext M(G) = {Q: F and G coincide under Q, and Q € ext M(F)}.

This restricts Q rather severely
» Example: If 7 =sup{t € [0, T]: S; = 1}, then must have:

» Either Q(S < 1) =1;
» Or Q(S =S5”)=1with p=inf{t:S; =1}

> Q should also price the 1); correctly.
> It can of course happen that M(G) = 0.



Pricing by informed investors

Extensions to infinitely many X;1j,, . are possible:

Theorem. Let H be generated by countably many Xi1p, 17. As-
sume 7, > o on {0 < 7% < oo} Vk, and |[{k: (w) < T} < o0
for every w. Then

ext M(G) = {Q: F and G coincide under Q, and Q € ext M(F)}.




Pricing by informed investors

Extensions to infinitely many X;1j,, . are possible:

Theorem. Let H be generated by countably many Xi1p, 17. As-
sume 7, > o on {0 < 7% < oo} Vk, and |[{k: (w) < T} < o0
for every w. Then

ext M(G) = {Q: F and G coincide under Q, and Q € ext M(F)}.

Remark. Some condition on H is needed: Suppose
» G is generated by Brownian motion W
» [ is generated by S; = fot sgn(Ws)dW;

» Then completeness holds in both F and G, but they do not coincide.



Conclusions

» Motivated by robust super-hedging price computation, we study
extremal calibrated martingale measures

» We obtain:

» Semi-static version of the Jacod-Yor theorem.

» Description of semi-statically complete models in terms of
dynamically complete models glued together by means of an
atomic tree.

» Application to robust pricing by informed agents: under
structural assumptions, informed agents price using only those
models that render the additional information uninformative.



Thank you!



