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Introduction

� In the reliability system, we consider a system of multi-
components and study the dynamics of failure times based on
the history of failure process: Knight (1975) and Arjas &
Norros (1985, 1991).� In the credit risk analysis, we are also interested in failure
times – the defaults on the financial market. However the
environmental information is important.� Default modelling is based on the theory the enlargement of
filtrations developped by Jacod, Jeulin & Yor...in the 70s-80s.� Literature on multi-default modelling with two main
approaches: bottom-up and top-down models for respectively
non-ordered and ordered defaults.



Plan of our work

� Consider a multivariate system in a general setting of
enlargement of filtrations in presence of environmental
information.� Use a random variable � to describe all default risks and to
study the dependence between the multi-default system and
the environmental information.� This general setting can be applied flexibly to diverse
situations, including bottom-up and top-down models.� The dependence structure between the default system and the
market environment can be described in a dynamic manner
and represented by a change of probability.



The multi-default system

Basic setting

� (⌦,A,P): probability space for the market�
E : a Polish space� � ∶ ⌦→ E random variable describing all default uncertainties

Very flexible framework

� Permits to consider both bottom-up and top-down models:
�

E = R

n+, � = (⌧1,�, ⌧n) ∶ ⌦→ Rn+ models the default times of n

firms.

�
E = (R+ ×R)n, � = (⌧i ,Li)ni=1 ∶ ⌦→ E models the default times

with corresponding loss (or gain).

�
E = {(x1, . . . , xn) ∈ Rn+ � x1 ≤ � ≤ xn}, � = (�1,�,�n) ∶ ⌦→ E

models the successive default times.



The prediction process

� Complete information on � is not observable.� (N
t

)
t≥0: filtration of A representing the information related to

defaults observable on the market.

Definition (Norros)

Let ⌘
t

be the N
t

-conditional law of �, t ≥ 0. The measure-valued
process (⌘

t

)
t≥0 is called the prediction process of �.

� (⌘
t

)
t≥0 is an (N

t

)
t≥0-adapted process valued in the spaceP(E) of Borel probability measures on E .� Existence of a càdlàg version which is unique up to

indistinguishability.� Martingale with respect to the weak topology on P(E): for
any bounded Borel function h on E

��
E

h(x)⌘
t

(dx), t ≥ 0� is an (N
t

)
t≥0-martingale.



Example: one default

�
E = R+, � = ⌧ ∶ ⌦→ E .� (N

t

)
t≥0: filtration generated by (1{⌧≤t} = 1[0,t] ○ �)t≥0.� ⌘: probability law of ⌧ .

Prediction process

⌘
t

(dx) = 1]t,+∞[(x)⌘(dx)
⌘( ]t,+∞[ ) 1{⌧>t} + �⌧(dx)1{⌧≤t}.

Remark

Let ⌘E

t

be the random measure

1]t,+∞[(x)⌘(dx)
⌘( ]t,+∞[ ) 1]t,+∞[(⋅) + �(⋅)(dx)1[0,t](⋅) on E .

One has ∫
E

h(x)⌘
t

(dx) = � ∫
E

h(x)⌘E

t

(dx)� ○ ⌧ for any bounded
Borel function h on E .



Example: successive defaults

�
E = {(x

1

, . . . , x
n

) ∈ Rn+ � x1

≤ � ≤ x

n

}, � = (�
1

,�,�
n

) ∶ ⌦→ E .� (N
t

)
t≥0: filtration generated by ∑n

i=1 1{�i≤t}
Prediction process

⌘
t

(dx) = n�
i=01{�i≤t<�i+1} ⌘��(i)(1{t<ui+1(x)} ⋅ dx)

⌘��(i)(1{t<ui+1(⋅)})
or equivalently

⌘
t

(dx) = ⌘��(Nt)(1{t<uNt+1(x)} ⋅ dx)
⌘��(Nt)(1{t<uNt+1(⋅)}) .

� ⌘��(i) is the conditional law of � given �(i)� ⌘��(i)(1{t<ui+1(x)} ⋅ dx) denotes the random measure on E

sending a bounded Borel function h ∶ E → R to

�
E

h(x)⌘��(i)(1{t<ui+1(x)} ⋅ dx) ∶= E[h(�)1{t<�i+1} ��(i)].



Modelling of the default filtration

� The observable default information can be induced by a
filtration (N E

t

)
t≥0 of B(E).� The default filtration (N

t

)
t≥0 is given by N

t

= �−1(N E

t

).� If (N E

t

)
t≥0 is generated by some observation process (N

t

)
t≥0,

then (N
t

)
t≥0 is generated by (N

t

○ �)
t≥0.� Let ⌘E

t

be the N E

t

-conditional law of �, for bounded Borel
function h on E , one has

�
E

h(x)⌘
t

(dx) = ��
E

h(x)⌘E

t

(dx)� ○ �
Revisit on successive defaults

�
E = {(x

1

, . . . , x
n

) ∈ Rn+ � x1

≤ � ≤ x

n

}, � = (�
1

,�,�
n

) ∶ ⌦→ E� Observation process: N

t

= ∑n

i=1 1{xi≤t}, t ≥ 0.� The filtration (N
t

)
t≥0 is generated by the process ∑n

i=1 1{�i≤t}.



Interaction with environmental information

We distinguish two sources of risks� (⌦○, (F○
t

)
t≥0,P○): the market without default� � valued in (E ,B(E)): the default information

We model the global market by the product space(⌦,A) ∶= (⌦○ × E ,F○∞ ⊗B(E))� � ∶ ⌦ = ⌦○ × E → E given by projection to the 2nd coordinate.

Filtrations of A
� Default-free filtration: F = (F

t

)
t≥0 with F

t

= F○
t

⊗ {�,E}.� Default filtration: (N
t

)
t≥0 = (�−1(N E

t

))
t≥0, where (N E

t

)
t≥0 is

a filtration of B(E).� Market filtration: G = (G
t

)
t≥0 with G

t

= F
t

∨N
t

= F○
t

⊗N E

t

.
(progressive enlargement of filtrations)� Global filtration: H = (H

t

)
t≥0, Ht

= F
t

∨ �(�) = F○
t

⊗B(E).
(initial enlargement of filtrations)



The probability measures

� Let the law of � be a Borel probability measure ⌘ on E .� Let P = P○ ⊗ ⌘ be the product measure on ⌦.
� ⌘ and F are independent under P.

�
The probability law of � under P is ⌘.

Change of probability measure

Consider the probability P given by a change of probability measure

P(d!,dx) = �
t

(!, x)P(d!,dx) on F
t

∨ �(�)
where � is a positive (H,P)-martingale with EP○[�t

(x)] = 1 for
x ∈ E and t ≥ 0 (in particular, �

0

(x) = 1).

� The probability law of � under P is unchanged and remains ⌘.� The N
t

-conditional law ⌘
t

of � (the prediction process) is the
same under P and P.� The marginal law of P on ⌦○ equals P○ if and only if∫
E

�
t

(x)⌘(dx) = 1 for any t ≥ 0.



G-conditional law under P
� Under P, the G

t

-conditional law of � is still ⌘
t

by the
independence of � and F.� For any bounded H

t

-mesurable function Y

t

(⋅),
⌘
t

(Y
t

(⋅)) ∶= �
E

Y

t

(x)⌘
t

(dx) = EP[Yt

(�)�G
t

].
� More generally, for any bounded H∞-mesurable function Y∞(⋅)

Y∞(�)
F∞∨Nt

✏✏

Ht=Ft∨�(�) // EP[Y∞(�) �Ht

]
Gt
✏✏

EP[Y∞(�) �F∞ ∨Nt

] Gt
// EP[Y∞(�) �Gt

]
leading to

EP[Y∞(�)�Gt

] = ⌘
t

�EP○[Y∞(⋅) �F○
t

]�



G-conditional law under P

Proposition

� The G
t

-conditional law ⌘G
t

under P is given by

⌘G
t

(dx) = ⌘
t

(�
t

(x) ⋅ dx)
⌘
t

(�
t

(⋅)) .

� Let T ≥ t ≥ 0 and Y

T

(⋅) be a bounded H
T

-mesurable
function. One has

EP[YT

(�)�G
t

] = �
E

EP○�YT

(x)�
T

(x)
�

t

(x) �F○
t

�⌘G
t

(dx),
or equivalently,

EP[YT

(�)�G
t

] = ⌘
t

(EP○[YT

(⋅)�
T

(⋅)�F○
t

])
⌘
t

(�
t

(⋅)) .



Exemple: non-ordered defaults

�
E = Rn+, � = (⌧1,�, ⌧n)� For t ≥ 0 and J ⊂ {1,�,n}, define the set E

J

t

to be

{x
J

≤ t, x
J

c > t} ∶= {(x
1

,�, x
n

) ∈ E � x
i

≤ t for i ∈ J, x

j

> t for j ∈ J

c}.
� Default observations: N E

t

generated by (E J

s

, s ≤ t) on E , andN
t

= �−1(N E

t

) generated by (1
E

J
s
○ �, s ≤ t) on A� Prediction process :

⌘
t

(dx) = �
J⊂{1,...,n}1{⌧J≤t, ⌧Jc >t} ⌘J

(1{⌧Jc >t} ⋅ dx)
⌘
J

(1{⌧Jc >t}) ,

where ⌘
J

is the conditional law of � with respect to ⌧
J

.� G-conditional law of �

⌘G
t

= �
J⊂{1,...,n}1{⌧J≤t, ⌧Jc >t} ⌘J

(1{⌧Jc >t}�t

(x) ⋅ dx)
⌘
J

(1{⌧Jc >t}�t

(⋅)) .



Martingale characterization

The previous proposition allows to characterize G martingale
processes. Recall that ⌘

t

(�
t

(⋅)) = ∫
E

�
t

(x)⌘
t

(dx).
Theorem

Let (M
t

(⋅))
t≥0 be a G-adapted process. It is a (G,P)-martingale if

the process

M̃

t

(⋅) ∶=M

t

(⋅)�
E

�
t

(x)⌘
t

(dx), t ≥ 0

is a (G,P)-martingale, or equivalently if

∀T ≥ t ≥ 0, �
E

EP[M̃T

(x)�F
t

]⌘
t

(dx) = M̃

t

(⋅).



Change of probability vs Density

Change of probability ⇒ F-conditional density

The F-conditional law of � under P admit a density w.r.t. ⌘.

P(� ∈ dx �F
t

) = �
t

(x)⌘(dx)∫
E

�
t

(x)⌘(dx)
Proof. Under P, we have by independence of ⌘ and F

EP[�t

(�)�F
t

] = �
E

�
t

(x)⌘(dx).
For a non-negative Borel function f on E , by Bayes formula

EP[f (�)�Ft

] = EP[f (�)�t

(�)�F
t

]
EP[�t

(�)�F
t

] = ∫E f (x)�
t

(x)⌘(dx)∫
E

�
t

(x)⌘(dx) .



Density ⇒ change of probability

Jacod’s hypothesis

We suppose that the F
t

-conditional law of � has a density ↵
t

(�)
w.r.t. a �-finite Borel measure ⌫ on E , i.e.

P(� ∈ dx �F
t

) = ↵
t

(x)⌫(dx).
In multi-default modelling, adopted by El Karoui, Jeanblanc & J.
and Kchia, Larsson & Protter.
Consequences:� ⌘(dx) = ↵

0

(x)⌫(dx).� The density (↵
t

(⋅), t ≥ 0)
x∈E is an (F,P)-martingale.

Proposition

The probability measure P is absolutely continuous w.r.t. P, with
Radon-Nikodym derivative on H

t

is

�
t

(�) ∶= ↵
t

(�)
↵

0

(�) .



Example: ordered defaults

�
E = {(x

1

, . . . , x
n

) ∈ Rn+ � x1

≤ � ≤ x

n

}, � = (�
1

,�,�
n

) ∶ ⌦→ E� Assume that the probability measure ⌘ admits a density ↵
0

(x)
w.r.t. Lebesgue measure. For any t ≥ 0,

↵
t

(x) = ↵
0

(x)�
t

(x), x ∈ Rn+
is the (F,P)-conditional density of � = (�

1

,��
n

).
Proposition

The G-intensity of the counting process (∑n

i=1 1{�i≤t})t≥0 is

�
t

= n−1�
i=0 1{�i≤t<�i+1} ∫ ∞t � ∫ ∞t ↵

t

(�(i), t, xi+2,�, xn

)dx

i+2�dx

n∫ ∞
t

� ∫ ∞
t

↵
t

(�(i), xi+1,�, xn

)dx

i+1�dx

n

,

where �(i) = (�1

,�,�
i

).



Impact of the default events

Proposition

Let Y

T

(⋅) be a bounded H
T

-mesurable function. One has

E[Y
T

(�) �G
t

] = n�
i=01{�i≤t<�i+1} ∫ ∞t E[Y

T

(x)↵
T

(x) �F
t

]dx(i+1∶n)∫ ∞
t

↵
t

(x)dx(i+1∶n) �
x(i)=�(i) ,

where x(i+1∶n) = (xi+1,�, xn

).
� Regime switching on each scenario of default.� Jump of the firm value at the default time �

i

.



Back to the general setting

In practice, the market together with different types of information
is modelled by a probability space (⌦,A,P) which is not necessarily
a product space:� (⌦,A,P): probability space for the market� � ∶ ⌦→ E default uncertainty random variable� F = (F

t

)
t≥0 filtration of A with F

0

being the trivial �-algebra:
default free informations.� (N E

t

)
t≥0 filtration of B(E) and (N

t

)
t≥0 = (�−1(N E

t

))
t≥0

filtration of A: default informations.� G = (G
t

)
t≥0 the enlargement of F by (N

t

)
t≥0: global market

information.
However, the previous results with the product space can be useful
tools in the general setting.



Main tool to link the product space

Definition

Let �� ∶ ⌦→ ⌦ × E be the graph map sending ! ∈ ⌦ to (!,�(!)).
� ∀F ⊂ A, any F ∨ �(�)-measurable function can be written as

Y (�) ∶= Y (⋅) ○ ��, where Y (⋅) is an F ⊗B(E)-measurable
function on ⌦ × E .

⌦
�� //

Y (�)
99⌦ × E

Y (⋅)
// R .

Proposition

Let (Y
t

(⋅), t ≥ 0) be a process adapted to the filtration F⊗N E ,
then (Y

t

(�), t ≥ 0) is a G-adapted process.



Remarks on G-adapted processes

Recall that G
t

= F
t

∨N
t

, t ≥ 0 where N
t

= �−1(N E

t

).
� If N E

t

= B(E) for all t, then N
t

= �−1(E) = �(�). So G
coincides with the initial enlargement of filtration. The
previous lemma is similar as in Grorud & Pontier.� If � = ⌧ and N E

t

is generated by the functions of the form
1[0,s] with s ≤ t, then G is the progressive enlargement.

� In general, G can be different since (N E

t

)
t≥0 can be any

filtration on (E ,E). So the measurability of Y

t

(⋅) is possibly
different with the classic initial and progressive enlargements.



The induced probability of ��

� Let P′ be the probability related to �� ∶ ! → (!,�(!)), i.e.,
for non-negative A⊗ E-measurable function f on ⌦ × E ,

�
⌦×E f (!, x)P′(d!,dx) = EP[f (�)].

Density assumption

The F-conditional law of � has a positive density (↵
t

(⋅))
t≥0 with

respect to a �-finite Borel measure ⌫ on E .

� Recall that P denotes the product probability measure P⊗ ⌘,
then

dP′
dP
= ↵

t

(x)
↵

0

(x) =∶ �t

(x), on F
t

⊗B(E).



Evaluation formula in the general setting

Lemma

Let Y (⋅) be a bounded A⊗B(E)-measurable function on ⌦ × E .
One has

EP[Y (�)�Gt

] = EP′[Y (⋅)�Ft

⊗N E

t

](�).
Theorem

Let Y

T

(⋅) be a non-negative F
T

⊗ E-measurable function on ⌦ × E

and t ≤ T . Then

EP[YT

(�)�G
t

] = ∫E EP[YT

(x)�
T

(x)�F
t

]⌘
t

(dx)∫
E

�
t

(x)⌘
t

(dx) (�),



Example: non-ordered multi-defaults

We consider E = Rn+ and � = (⌧
1

,�, ⌧
n

) ∶ ⌦→ E , with ⌫ = dx .� progressive enlargement of filtration: G
t

= F
t

∨N
t

whereN
t

= �−1(N E

t

) is generated by (1
E

J
s
○ �, s ≤ t) with

E

J

t

= {x ∈ E � x
J

≤ t, x

J

c > t}
� prediction process:

⌘
t

(dx) = �
J⊂{1,�,n}

1{xJc >t}↵0

(⋅, x
J

c )�(⋅)(dx

J

)dx

J

c∫ ∞
t

↵
0

(⋅, x
J

c )dx

J

c
1

E

J
t
○ �,

� evaluation formula:

EP[YT

(�)�G
t

] = �
J⊂{1,�,n}1{⌧J≤t,⌧Jc >t} ∫ ∞t EP[YT

(x)↵
T

(x)�F
t

]dx

J

c∫ ∞
t

↵
t

(x)dx

J

c
�
xJ=⌧J .



Martingale characterization in the general setting

Theorem

Let (M
t

(⋅), t ≥ 0) be an (F
t

⊗N E

t

)
t≥0-adapted process. Then(M

t

(�), t ≥ 0) is a (G,P)-martingale if

M̃

t

(⋅) ∶=M

t

(⋅)�
E

↵
t

(x)
↵

0

(x)⌘t

(dx), t ≥ 0

is an ((F
t

⊗N E

t

)
t≥0,P)-martingale, or equivalently

∀T ≥ t ≥ 0, �
E

EP[M̃T

(x)�F
t

]⌘
t

(dx) = M̃

t

(⋅). (∗)



Example: non-ordered defaults

� We write M

t

(x) as �
J⊂{1,�,n}M

J

t

(x
J

)1
E

J
t
(x).

� One has �
E

↵
t

(x)
↵

0

(x)⌘t

(dx) = �
J⊂{1,�,n}

∫ ∞
t

↵
t

(⋅, x
J

c )dx

J

c∫ ∞
t

↵
0

(⋅, x
J

c )dx

J

c
1

E

J
t
(⋅).

� Get

M̃

t

(⋅) = �
J⊂{1,�,n}M

J

t

(⋅)∫ ∞t ↵
t

(⋅, x
J

c )dx

J

c∫ ∞
t

↵
0

(⋅, x
J

c )dx

J

c
1

E

J
t
(⋅)

� (∗) becomes

�
J⊂{1,�,n}�I⊃J ∫

T

t

EP[M I

T

(x
I

) ∫ ∞
T

↵
T

(x)dx

I

c �F
t

]dx

I�J∫ ∞
t

↵
0

(x)dx

J

c
1

E

J
t
(x)

= �
J⊂{1,�,n}M

J

t

(x
J

)∫ ∞t ↵
t

(x)dx

J

c∫ ∞
t

↵
0

(x)dx

J

c
1

E

J
t
(x).



Corollary

With the notation of the example of non-ordered defaults.
The G-adapted process (M

t

(�))
t≥0 is a (G,P)-martingale if for

any J ⊂ {0,�,n} and any x

J

∈ RJ+, the process

M

J

t

(x
J

)� ∞
t

↵
t

(x)dx

J

c−�
k∈Jc
� t

x

max

J

M

J∪{k}
xk (x

J∪{k})� ∞
xk

↵
xk (x)dx

J

c�{k}du

k

is an (F,P)-martingale on [xmax

J

,+∞[, where x

max

J

= max
j∈J x

j

.



Conclusion

� We consider a general multi-default system with environmental
information.� Two key elements are:

�
the prediction process (⌘t , t ≥ 0) conditional on the observable

default information;

�
the Radon-Nikodym derivative (�t(⋅), t ≥ 0) w.r.t. the product

measure.� We establish a link with the density approach modelling.� The technical tools by using the product space allows to
obtain general results in a unified setting.



Thanks for your attention !


