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Abstract: The goal of this note is to present elementary proofs of statements

related to the Liouville theorem.

1. Introduction

We denote by A(x) = (aij(x)) a (k × k)-matrix where the functions aij ,
i, j = 1, . . . , k are bounded measurable functions defined on Rk and which
satisfy, for some λ, Λ > 0, the usual uniform ellipticity condition:

λ|ξ|2 ≤ (A(x)ξ · ξ) ≤ Λ|ξ|2 a.e. x ∈ Rk, ∀ ξ ∈ Rk. (1.1)

We address here the issue of existence of solutions to the equation:

−∇ · (A(x)∇u(x)) + a(x)u(x) = 0 in D′(Rk), (1.2)

where a ∈ L∞loc(Rk) and a ≥ 0. When a 6= 0 and ∇ · (A∇) = ∆, the usual
Laplace operator, the above equation is the so called stationary Schrödinger
equation for which a vast literature is available (see [16], [20]). When a = 0
it is well known that every bounded solution to (1.2) has to be constant
(see e.g. [5], [11], [12] and also [4], [19] for some nonlinear versions). The
case where a 6= 0, and k ≥ 3 is very different and in this case non trivial
bounded solutions might exist.

Many of the results in this paper are known in one form or another
(see for instance [1], [2], [3], [10], [9], [14], [16], [17]) but we have tried to
develop here simple self-contained pde techniques which do not make use of
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probabilities, semigroups or potential theory as is sometimes the case (see
e.g. [2], [3], [8], [17], [18]). One should note that some of our proofs extend
also to elliptic systems.

This note is divided as follows. In the next section we introduce an
elementary estimate which is used later. In Section 3 we present some
Liouville type results, i.e., we show that under some conditions on a, (1.2)
does not admit nontrivial bounded solutions. Finally in the last section we
give an almost sharp criterion for the existence of nontrivial solutions.

2. A preliminary estimate

Let us denote by Ω a bounded open subset of Rk with Lipschitz boundary
and starshaped with respect to the origin. For any r ∈ R we set

Ωr = rΩ. (2.1)

Let us denote by % a smooth function such that

0 ≤ % ≤ 1, % = 1 on Ω1/2, % = 0 outside Ω, (2.2)

|∇%| ≤ c%, (2.3)

where c% denotes some positive constant.

Lemma 2.1. Suppose that u ∈ H1
loc(Rk) satisfies (1.2) with A(x) satisfying

(1.1). Then there exists a constant C independent of r such that∫
Ωr

{|∇u|2 + au2}%2
(x

r

)
dx

≤ C

r

{∫
Ωr\Ωr/2

|∇u|2%2
(x

r

)
dx

} 1
2
{∫

Ωr\Ωr/2

u2 dx

} 1
2

,

(2.4)

where | · | denotes the usual euclidean norm in Rk.

Proof. By (1.2) we have for every v ∈ H1
0 (Ωr)∫

Ωr

A∇u · ∇v + auv dx = 0. (2.5)

Taking

v = u%2
(x

r

)
= u%2 (2.6)

yields ∫
Ωr

A∇u · ∇{u%2}+ au2%2 dx = 0. (2.7)
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Since

∇%2 =
2%

r
∇%

(x

r

)
we obtain∫

Ωr

{A∇u · ∇u}%2 + au2%2 dx = −1
r

∫
Ωr\Ωr/2

A∇u · ∇% · 2%u dx

≤ C1

r

∫
Ωr\Ωr/2

|∇u||u|% dx,

where C1 is a constant depending on aij and cρ only. Using the ellipticity
condition (1.1) it follows easily that

min(1, λ)
∫

Ωr

{|∇u|2 + au2}%2 dx ≤ C1

r

∫
Ωr\Ωr/2

|∇u||u|% dx.

By the Cauchy–Schwarz inequality we have∫
Ωr

{|∇u|2 + au2}%2 dx

≤ C1

r min(1, λ)

{∫
Ωr\Ωr/2

|∇u|2%2 dx

}1/2{∫
Ωr\Ωr/2

u2 dx

}1/2

.

This completes the proof of the lemma.

3. Some Liouville type results

3.1. The case where the growth of u is controled

In this case we have

Theorem 3.1. Under the asumptions of Lemma 2.1, let u be solution to
(1.2) such that for r large,

1
r2

∫
Ωr\Ωr/2

u2 dx ≤ C ′ (3.1)

where C ′ is a constant independent of r, then u = constant and if a 6≡ 0 or
k ≥ 3 one has u = 0.

Proof. From (2.4) we derive that∫
Ωr

|∇u|2%2 dx ≤ C

r

{∫
Ωr

|∇u|2%2 dx

}1/2{∫
Ωr\Ωr/2

u2 dx

}1/2



46

and thus∫
Ωr/2

|∇u|2 dx ≤
∫

Ωr

|∇u|2%2 dx ≤ C

r2

∫
Ωr\Ωr/2

u2 dx ≤ CC ′.

It follows that the nondecreasing function

r 7→
∫

Ωr

|∇u|2 dx

is bounded and has a limit when r → +∞. Going back to (2.4) we have∫
Ωr/2

|∇u|2 dx ≤ c

r

{∫
Ωr\Ωr/2

|∇u|2 dx

} 1
2

· r

for some constant c. This implies∫
Ωr/2

|∇u|2 dx ≤ c

{∫
Ωr

|∇u|2 dx−
∫

Ωr/2

|∇u|2 dx

} 1
2

→ 0

as r → +∞ and the result follows.

Remark 3.1. When k ≤ 2 condition (3.1) is satisfied if u is bounded, and
in this case the only bounded solution of (1.2) is u = 0. Therefore we
will assume throughout the rest of this paper that k ≥ 3.

We denote by λr the first eigenvalue of the Neumann problem associated
to the operator – ∇ ·A∇+ a in Ωr \ Ωr/2, i.e., we set

λr = Inf
{ ∫

Ωr\Ωr/2

A∇u · ∇u + au2 dx : u ∈ H1(Ωr \ Ωr/2),∫
Ωr\Ωr/2

u2 dx = 1
}

.

(3.2)

One remarks easily that if u is a minimizer of (3.2) so is |u|. One can show
then that the first eigenvalue is simple. Moreover we have

Theorem 3.2. Under the assumptions of Lemma 2.1, suppose that for
some constants C0 > 0, β < 2, one has

λr ≥ C0/rβ (3.3)

for r sufficiently large, then the only bounded solution of (1.2) is u = 0.



47

Proof. From the definition of λr we have∫
Ωr\Ωr/2

u2 dx

≤ 1
λr

{∫
Ωr\Ωr/2

A∇u · ∇u + au2 dx

}
∀u ∈ H1(Ωr \ Ωr/2).

(3.4)

Going back to (2.4) we find∫
Ωr

(|∇u|2 + au2)%2
(x

r

)
dx

≤ C

r

{∫
Ωr

(|∇u|2 + au2)%2
(x

r

)
dx

}1/2{∫
Ωr\Ωr/2

u2 dx

}1/2

,

which leads to∫
Ωr

(|∇u|2 + au2)%2
(x

r

)
dx ≤ C

r2

∫
Ωr\Ωr/2

u2 dx

for some constant C independent of r. Using in particular (2.2) we obtain∫
Ωr/2

|∇u|2 + au2 dx ≤ C

r2

∫
Ωr\Ωr/2

u2 dx, ∀ r > 0. (3.5)

From (3.3) and (3.4) we derive that, for some constant C,∫
Ωr/2

|∇u|2 + au2 dx ≤ C

r2−β

∫
Ωr\Ωr/2

|∇u|2 + au2 dx

≤ C

r2−β

∫
Ωr

|∇u|2 + au2 dx ∀ r > 0. (3.6)

Iterating p-times this formula leads to∫
Ωr/2

|∇u|2 + au2 dx ≤ Cp

r(2−β)p

∫
Ω2p−1r

|∇u|2 + au2 dx.

By (3.5) it follows that it holds∫
Ωr/2

|∇u|2 + au2 dx ≤ Cp

r(2−β)p+2

∫
Ω2pr

u2 dx,

for some constant Cp independent of r. If now u is supposed to be bounded
by M we get∫

Ωr/2

|∇u|2 + au2 dx ≤ Cp

r(2−β)p+2
M2|Ω2pr| =

Cp|Ω|M2(2pr)k

r(2−β)p+2
.

(|Ω2pr| denotes the Lebesgue measure of the set Ω2pr). Choosing (2−β)p+
2 > k the result follows by letting r → +∞.



48

Remark 3.2. Under the assumption of Theorem 3.2 we have obtained in
fact that (1.2) can not admit a nontrivial solution with polynomial growth.
Of course this result is optimal since Re(ez) = ex1 cos x2 is harmonic in Rk

for any k ≥ 2. One should note that Theorem 3.2 applies also to systems
satisfying the Legendre condition when auv is replaced by a nonnegative
bilinear form a(u, v) (see [6], [7]).

We now discuss some conditions on a which imply (3.3). We have

Theorem 3.3. Suppose that for |x| large enough

a(x) ≥ c

|x|β
, β < 2, (3.7)

then (3.3) holds.

Proof. We denote by πr the first eigenfunction corresponding to λr, i.e.,
a minimizer of (3.2). We can assume without loss of generality that

πr > 0.

We have∫
Ωr\Ωr/2

A∇πr · ∇v + aπrv dx = λr

∫
Ωr\Ωr/2

πrv dx ∀ v ∈ H1(Ωr \ Ωr/2).

Taking v = 1 yields∫
Ωr\Ωr/2

a(x)πr dx = λr

∫
Ωr\Ωr/2

πr dx.

Using (3.7) we derive, for some constant C ′,

C ′

rβ

∫
Ωr\Ωr/2

πr dx ≤ λr

∫
Ωr\Ωr/2

πr dx

and the result follows.

We now consider other cases where (3.3) holds, in particular when no
decay is imposed to a. We are interested for instance in the case where at
infinity a has enough mass locally. We start with the following lemma:

Lemma 3.1. Let (for instance) Q = (0, 1)k be the unit cube in Rk. For
any ε > 0 and µ > 0 there exists δ = δ(ε, µ) such that if the function a

satisfies

0 ≤ a ≤ µ a.e. x ∈ Q,

∫
Q

adx ≥ ε, (3.8)
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then

δ

∫
Q

v2 dx ≤
∫

Q

|∇v|2 + av2 dx ∀ v ∈ H1(Q). (3.9)

Proof. If not, there exists ε, µ and a sequence of functions an, vn such
that an satisfies (3.8) and vn ∈ H1(Q) is such that

1
n

∫
Q

v2
n dx ≥

∫
Q

|∇vn|2 + anv2
n dx. (3.10)

Dividing by |vn|2 the L2-norm of vn we can assume without loss of generality
that ∫

Q

v2
n dx = 1. (3.11)

By (3.10), (3.11) we have then∫
Q

|∇vn|2 dx ≤ 1
n

,

∫
Q

v2
n dx = 1 (3.12)

and vn is uniformly bounded in H1(Q). Therefore

vn → 1 in H1(Q). (3.13)

From (3.10) we have ∫
Q

anv2
n dx ≤ 1

n
. (3.14)

Thus

ε ≤
∫

Q

andx =
∫

Q

anv2
n dx +

∫
Q

an(1− v2
n) dx

≤ 1
n

+ µ|1− vn|2|1 + vn|2 → 0

when n → +∞. Impossible. This completes the proof of the lemma.

With the notation of Section 2 we set

Ω = (−1, 1)k. (3.15)

We consider the lattice generated by Q = (0, 1)k – i.e., the cubes

Qi = Qzi = zi + Q ∀ zi ∈ Zk.

Then we have
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Theorem 3.4. Suppose that for n large enough,∫
Qi

a(x) dx ≥ ε ∀Qi ⊂ Rk \ Ωn, (3.16)

then

λ2n ≥ δ
/( 1

λ
∨ 1

)
∀n (3.17)

where δ is defined in Lemma 3.1 and ∨ denotes the maximum of two num-
bers.

Proof. Indeed by Lemma 3.1 after a simple translation from Qi into Q we
have

δ

∫
Qi

u2 dx ≤
∫

Qi

|∇u|2 + au2 dx ∀Qi ⊂ Rk \ Ωn ∀u in H1(Qi).

This leads clearly to

δ

∫
Ω2n\Ωn

u2 dx

≤
∫

Ω2n\Ωn

|∇u|2 + au2 dx

≤
∫

Ω2n\Ωn

1
λ

A∇u · ∇u + au2 dx

≤
(

1
λ
∨ 1

) ∫
Ω2n\Ωn

A∇u · ∇u + au2 dx ∀u ∈ H1(Ω2n \ Ωn).

The result follows then from (3.2).

Remark 3.3. Combining Theorems 3.2 and 3.4 it follows that (1.2) cannot
have a nontrivial bounded solution (or of polynomial growth) when (3.16)
holds. This is the case when at infinity

a ≥ a0 > 0

or more generally

a ≥ ap (3.18)

where ap is a periodic function with period Q.

In the case when (3.3) holds with β = 2 the technique of Theorem 3.2
cannot be applied. However, we will show that the non existence of nontriv-
ial solutions can be established in this case too – i.e., condition (3.3) is not
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sharp if we impose certain growth condition on {aij(x)}. Before turning
to this let us prove some general comparison result. For simplicity we will
denote also by Ã the operator ∇ ·A∇u = ∂xi

(aij∂xj
).

Proposition 3.1. Suppose that O is a bounded open subset of Rk. Let a1,
a2 be two bounded functions satisfying

a1 ≥ a2 ≥ 0 a.e. in O. (3.19)

Let u1, u2 ∈ H1(O) be such that{
−Ãu2 + a2u2 ≥ −Ãu1 + a1u1 ≥ 0 in O,

u2 ≥ (u1 ∨ 0) on ∂O,
(3.20)

then

u2 ≥ (u1 ∨ 0) in O. (3.21)

Proof. The inequality

−Ãu + au ≥ 0 in O

means ∫
O

aij∂xj
u∂xi

v + auv dx ≥ 0 ∀ v ∈ H1
0 (O), v ≥ 0.

Considering v = u−2 and −Ãu2+a1u2 ≥ 0 leads to u2 ≥ 0. Next considering
v = (u1 − u2)+ ∈ H1

0 (O) and (3.20) we obtain∫
O

aij∂xj
u1∂xi

(u1 − u2)+ + a1u1(u1 − u2)+ dx

≤
∫

O

aij∂xj u2∂xi(u1 − u2)+ + a2u2(u1 − u2)+ dx.

Hence∫
O

aij∂xj
(u1 − u2)∂xi

(u1 − u2)+ + (a1u1 − a2u2)(u1 − u2)+ dx ≤ 0.

Now on u1 ≥ u2 one has a1u1 ≥ a1u2 ≥ a2u2 and it follows that (u1 −
u2)+ = 0.

Next we prove

Theorem 3.5. Assume that there exists R, large enough, such that

a(x) ≥ c0

r2
∀|x| ≥ R > 0
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where c0 is a positive constant. In addition to (1.1), suppose that aij(x) ∈
C1(Rk\B(0, R)) satisfies for some positive D:

∂xi
(aij(x))xj ≤ D ∀|x| > R.

(In the above inequality we make the summation convention of repeated
indices). Then the equation

−∂xi
(aij(x)∂xj

u) + a(x)u = 0 (3.22)

cannot have nontrivial bounded solution.

Proof. Let un be the solution to{
−∂xi

(aij(x)∂xj
un) + a(x)un = 0 in B(0, n),

un = 1 on ∂B(0, n),
(3.23)

where B(0, n) denotes the ball of center 0 and radius n. From Proposition
3.1 we obtain that u, solution to (3.23), is such that:

−|u|∞un ≤ u ≤ |u|∞un, (3.24)

(|u|∞ denotes the L∞-norm of u). Denote by vn the function defined as

vn =

{
c1 in B(0, R)

c2r
β1 + c3r

β2 in B(0, n)\B(0, R),
(3.25)

where

β1 = −1
2
{(k − 2) +

√
(k − 2)2 + 4c′} < 0,

β2 = −1
2
{(k − 2)−

√
(k − 2)2 + 4c′} > 0

and

c1 = c2R
β1 + c3R

β2

c2 =
−β2R

β2−1

nβ2β1Rβ1−1 − nβ1β2Rβ2−1

c3 =
β1R

β1−1

nβ2β1Rβ1−1 − nβ1β2Rβ2−1
.

In the above setting, c′ is a positive constant small enough that we will
determine later.

We remark that c2 and c3 are both positive and that β1, β2 are the two
roots to the second order equation

β2 + (k − 2)β − c′ = 0. (3.26)
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The choice of ci, i = 1, 2, 3 is such that vn is a C1 function and vn = 1 on
∂B(0, n).

Now we want to show that vn, in fact, is a supersolution to (3.23).
It is easy to see that

−∂xi
(aij(x)∂xj

vn) + a(x)vn ≥ 0 in B(0, R).

For any constant β one derives also that

∂xi
(aij(x)∂xj

(rβ))

= ∂xi
(aij(x)βrβ−2xj)

= ∂xi
(aij(x))βrβ−2xj + aij(x)β(β − 2)rβ−4xixj

+aij(x)βrβ−2δij .

Therefore in B(0, n)\B(0, R) this leads to

−∂xi
(aij(x)∂xj

vn) + a(x)vn

≥ −∂xi
(aij(x))xj{c2β1r

β1−2 + c3β2r
β2−2}

−aij(x)xixj{c2β1(β1 − 2)rβ1−4 + c3β2(β2 − 2)rβ2−4}

−aij(x)δij{c2β1r
β1−2 + c3β2r

β2−2}+
c0

r2
{c2r

β1 + c3r
β2}

=
{
−∂xi

(aij(x))xj{c2β1r
β1−2 + c3β2r

β2−2}
}

+c2

{
−aij(x)xixjβ1(β1 − 2)rβ1−4 − aij(x)δijβ1r

β1−2 + c0r
β1−2

}
+c3

{
−aij(x)xixjβ2(β2 − 2)rβ2−4 − aij(x)δijβ2r

β2−2 + c0r
β2−2

}
.

We notice that

c2β1r
β1−2 + c3β2r

β2−2 =
β1β2r

β2−2Rβ2−1{Rβ1−β2 − rβ1−β2}
nβ2β1Rβ1−1 − nβ1β2Rβ2−1

> 0,

and thus

−∂xi
(aij(x)∂xj

vn) + a(x)vn

≥
{
−D{c2β1r

β1−2 + c3β2r
β2−2}

}
+c2

{
−aij(x)xixjβ1(β1 − 2)rβ1−4 − aij(x)δijβ1r

β1−2 + c0r
β1−2

}
+c3

{
−aij(x)xixjβ2(β2 − 2)rβ2−4 − aij(x)δijβ2r

β2−2 + c0r
β2−2

}
.
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Taking into account (3.26) –i.e., replacing βi(βi − 2) by c′ − kβi, yields

−∂xi
(aij(x)∂xj

vn) + a(x)vn

≥ c2r
β1−2

{
[kaij(x)

xixj

r2
− aii(x)−D]β1 − c′aij(x)

xixj

r2
+ c0

}
+c3r

β2−2
{

[kaij(x)
xixj

r2
− aii(x)−D]β2 − c′aij(x)

xixj

r2
+ c0

}
≥ c2r

β1−2
{

[kaij(x)
xixj

r2
− aii(x)−D]β1 − c′Λ + c0

}
+c3r

β2−2
{

[kaij(x)
xixj

r2
− aii(x)−D]β2 − c′Λ + c0

}
.

We can select a D large enough such that the term

kaij(x)
xixj

r2
− aii(x)−D

is negative (and bounded). By noticing that β2 → 0+ when c′ → 0 we can
then always choose c′ small enough such that

[kaij(x)
xixj

r2
− aii(x)−D]βi − c′Λ + c0 > 0.

Hence we derive that

−∂xi(aij(x)∂xj vn) + a(x)vn ≥ 0,

and by Proposition 3.1,

un ≤ vn.

For any bounded subset Ω ⊂ B(0, d) in Rk, one has clearly

0 ≤ vn ≤ Max{c1, c2d
β1 + c3d

β2} → 0 on Ω

when n → +∞ since

nβ2β1R
β1−1 − nβ1β2R

β2−1 → −∞

as n → +∞. From (3.24) we have also on B(0, n)

−|u|∞vn ≤ u ≤ |u|∞vn

for any n. Letting n →∞ leads to that

u = 0.

Remark 3.4. The above result holds true for an operator in non-
divergence form, i.e., under the assumption of Theorem 3.5 the equation

−aij(x)∂2
xixj

u− bi(x)∂xi
u + a(x)u = 0
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with

(b, x) ≤ D ∀|x| > R

cannot have a nontrivial bounded solution.

4. The case of the Laplace operator

In this section we analyze the existence or nonexistence of nontrivial
bounded solutions to (1.2) in the case of the Laplacian. Due to the re-
sults of the previous section it is clear that existence of nontrivial solutions
will impose some kind of decay a. So, let us assume

a(x) ∈ L∞loc(Rk), a ≥ 0, a 6≡ 0

and ∫
|x|>1

a(x)|x|−k+2 dx < ∞ (4.1)

with

k ≥ 3.

Under the above assumptions we can show

Theorem 4.1. (Grigor’yan [8], see also [2], [3], [15]) Assume ( (4.1)).
Then there exists a function u such that

0 < u < 1 in Rk (4.2)

satisfying

−∆u + au = 0 in D′(Rk). (4.3)

Proof. Let un be the solution of{
−∆un + aun = 0 in B(0, n),

un = 1 on ∂B(0, n).
(4.4)

By the maximum principle

0 ≤ un ≤ 1 (4.5)

and

un+1 ≤ un in B(0, n). (4.6)

Thus un → u which satisfies (4.3). Moreover

0 ≤ u ≤ 1.
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By the strong maximum principle (and since a 6≡ 0) we have

u < 1 in Rk.

Once more, by the strong maximum principle, it suffices to prove that

u 6≡ 0.

Assume, by contradiction, that

u ≡ 0. (4.7)

Fix a function ζ ∈ C∞(Rk), 0 ≤ ζ ≤ 1 such that

ζ(x) =

{
0 |x| < R

1 |x| ≥ R + 1

and R will be determined later. Multiplying (4.4) by ζ(x)
|x|k−2 yields for n >

R + 1, ν = being the outward unit normal vector:

−
∫
|x|=n

∂un

∂ν
· 1
nk−2

dσ −
∫

B(0,n)

un∆(
ζ

|x|k−2
) dx

+
∫
|x|=n

∂

∂ν
(

ζ

|x|k−2
) dσ +

∫
B(0,n)

aun
ζ

|x|k−2
dx = 0. (4.8)

By (4.5)

∂un

∂ν
≥ 0 on ∂B(0, n) (4.9)

and
∂

∂ν
(

ζ

|x|k−2
) =

2− k

nk−1
on ∂B(0, n)

so that ∫
|x|=n

∂

∂ν
(

ζ

|x|k−2
) dσ = (2− k)σk (4.10)

where σk denotes the area of Sk−1. From (4.8), (4.9) and (4.10) we have

−
∫

B(0,n)

un∆(
ζ

|x|k−2
) dx +

∫
B(0,n)

aun
ζ

|x|k−2
dx ≥ (k − 2)σk. (4.11)

Notice that ∆( ζ
|x|k−2 ) has compact support (in R < |x| < R + 1) since

∆( 1
|x|k−2 ) = cδ0 where δ0 denotes the Dirac measure at 0. Therefore one

has

lim
n→∞

∫
B(0,n)

un∆(
ζ

|x|k−2
) dx = 0 (4.12)
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by assumption (4.7). On the other hand∫
B(0,n)

aun
ζ

|x|k−2
dx ≤

∫
R<|x|

a(x)
|x|k−2

dx. (4.13)

By (4.11), (4.12) and (4.13) we have∫
R<|x|

a(x)
|x|k−2

dx ≥ (k − 2)σk.

Choosing R sufficiently large and using assumption (4.1) yields a contra-
diction. This completes the proof of u 6≡ 0.

Remark 4.1. With the same proof and under the assumption (4.1) one
can show that (1.2) admits a non trivial solution provided

lim
R→∞

∫
|x|≥R

∂xi(aij(x)∂xj |x|2−k) < λ(k − 2)σk.

This is in particular the case when aij(x) = δij for |x| large.

In the radially symmetric case we can say more.

Theorem 4.2. Suppose that the solutions to (1.2) are radially symmetric,
then they do not change sign and are multiple of each other.

Proof. Let u be a radially symmetric solution to (1.2). Let us first prove
that u does not change sign. Changing u into −u we can suppose

u(0) ≥ 0.

We argue by contradiction and assume that u changes sign. If u(0) > 0,
there exists a r0 such that

u(r0) = 0.

Then ∫
B(0,r0)

∇u · ∇v + auv dx = 0 ∀v ∈ H1
0 (B(0, r0)). (4.14)

Taking v = u we obtain that u ≡ 0 in B(0, r0) and a contradiction. If
u(0) = 0 then changing u in −u there is a component of the set

{x
∣∣u(x) > 0}

which is an annulus A. But then we get (4.14) with B(0, r0) replaced by A

and a contradiction as above.
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Consider now u, v two solutions to (1.2). If u ≡ 0, u = 0 ·v, or else we have
by the first part of the theorem (after changing u into −u if needed):

u(0) > 0.

Then w = v − v(0)
u(0)u is a solution to (1.2) such that w(0) = 0. Since it

does not change sign, 0 is a minimum or a maximum and by the maximum
principle w ≡ 0. This completes the proof of the theorem.

In the case of radially symmetric solutions we also have:

Proposition 4.1. Suppose that a = a(r), r = |x| and let u be a bounded
positive radially symmetric solution to

−∆u + au = 0 in D′(Rk).

We have

u(0) > 0, u = u(r) is nondecreasing on (0,+∞), lim
r→∞

u(r) = u(∞) < +∞.

Proof. u(0) > 0 results from the previous theorem. In addition we have

−u′′ − k − 1
r

u′ + au = 0

=⇒ rau = ru′′ + (k − 1)u′ =
(rk−1u′)′

rk−2
≥ 0. (4.15)

Thus rk−1u′ is nondecreasing. Since it vanishes at 0 we have u′ ≥ 0 and u

is nondecreasing. Hence u has a limit at ∞ since u is bounded.

As a consequence we have the following property for the solution u that
we constructed in the Theorem 4.1.

Theorem 4.3. Suppose that for |x| ≥ R0

a(x) ≤ a0(|x|) with
∫ +∞

ra(r) dr < +∞. (4.16)

Then the solution u constructed in Theorem 4.1 verifies

lim
|x|→∞

u(x) = 1.
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Proof. We introduce

ã =

{
|a|∞ for |x| < R0,

a0(r) for |x| ≥ R0.

Let ũn be the solution to{
−∆ũn + ãũn = 0 in B(0, n),

ũn = 1 on ∂B(0, n).

By Proposition 3.1 we have

0 ≤ ũn+1 ≤ ũn ≤ un ≤ 1. (4.17)

Of course since ã is radially symmetric, so is ũn and it converges to a radially
symmetric function ũ which is a nontrivial solution to (see Theorem 4.1)

−∆ũ + ãũ = 0 in D′(Rk).

From Proposition 4.1 we have

0 < lim
|x|→∞

ũ = ũ(∞) ≤ 1.

Suppose that ũ(∞) < 1. Consider ṽn the solution of{
−∆ṽn + ãṽn = 0 in B(0, n)

ṽn = 1− ũ(∞) on ∂B(0, n).

One has {
−∆(ṽn + ũ) + ã(ṽn + ũ) = 0 in B(0, n),

ṽn + ũ = 1 + ũ− ũ(∞) ≤ 1 on ∂B(0, n).

Thus, by the maximum principle,

ṽn + ũ ≤ ũn in B(0, n).

Now clearly ṽn = (1− ũ(∞))ũn and thus

(1− ũ(∞))ũn + ũ ≤ ũn.

Passing to the limit in n we obtain

(1− ũ(∞))ũ + ũ ≤ ũ

which contradicts ũ(∞) < 1. Thus we have ũ(∞) = 1.
Now from (4.17) we derive, passing to the limit,

ũ ≤ u ≤ 1.
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Since, we already know that lim|x|→∞ ũ(x) = 1 the result follows. This
completes the proof of the theorem.

We prove now that condition (4.16) is sharp within the class of radial
functions. This was observed in [3] with a different technique (see also [10],
[9]). More recently (R. Pinsky [18]) established the sharpness of condition
(4.16) in the class of functions a satisfying the additional assumption

a(x) ≤ C

(1 + |x|)2
. (4.18)

So, let a(r) be a function such that∫ +∞
ra(r) dr = +∞. (4.19)

Lemma 4.1. Under the assumption (4.19) there does not exist a bounded
nontrivial radially symmetric solution to

−∆u + a(r)u = 0 in D′(Rk). (4.20)

Proof. Suppose that (4.20) admits a nontrivial bounded positive solution
u(r) (see Theorem 4.3). Integrating the first equality of (4.15) we find∫ r

0

sa(s)u(s) ds =
∫ r

0

su′′(s) ds + (k − 1)
∫ r

0

u′(s) ds

= ru′(r) + (k − 2){u(r)− u(0)} = (ru)′ + (k − 3)u(r)− (k − 2)u(0).

Integrating again in r yields

ru(r) =
∫ r

0

(
∫ s

0

ξa(ξ)u(ξ) dξ)ds− (k− 3)
∫ r

0

u(s) ds+(k− 2)u(0)r (4.21)

For s ≥ r
2 we have ∫ s

0

ξa(ξ)u(ξ) dξ ≥ u(0)
∫ r

2

0

ξa(ξ) dξ.

Thus from (4.21) we easily obtain

u(r) ≥ 1
r

∫ r

r
2

(
∫ s

0

ξa(ξ)u(ξ) dξ)ds− (k − 3)u(∞) + (k − 2)u(0)

≥ 1
2

∫ r
2

0

ξa(ξ) dξ · u(0)− (k − 3)u(∞) + (k − 2)u(0).

By (4.19) the left-hand side of this inequality goes to +∞ with r. This
contradicts the boundedness of u and completes the proof of the lemma.
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As a consequence we can now show:

Theorem 4.4. Suppose that for |x| large

a(x) ≥ ā(r) = ā(|x|) (4.22)

where ā satisfies (4.19) then the problem

−∆u + au = 0 in D′(Rk) (4.23)

cannot admit nontrivial bounded solutions.

Proof. Suppose that (4.22) holds for |x| ≥ R. Then define

ã =

{
0 when |x| ≤ R,

ā(r) when |x| > R.

ã is a radially symmetric function satisfying (4.19). Let u be a bounded
solution to (4.23). Let un, vn be the solution of

−∆un + ãun = 0 in B(0, n), un = |u|∞ on ∂B(0, n), (4.24)

−∆vn + avn = 0 in B(0, n), vn = |u|∞ on ∂B(0, n), (4.25)

where |u|∞ denotes the L∞-norm of u. It follows from Proposition 3.1 and
the maximum principle that

u < vn ≤ un, 0 ≤ un+1 ≤ un ≤ |u|∞. (4.26)

Changing u into −u one if needed, can assume that the set

{u > 0} = {x ∈ Rk | u(x) > 0}

has a positive measure. Now, clearly, by the uniqueness of the solution to
(4.24), un is radially symmetric. By (4.26) un converges to u∞ solution of

−∆u∞ + ãu∞ = 0 in Rk

and u∞ is radially symmetric. By Lemma 4.1 this implies that u∞ = 0.
Hence from (4.26) we get

u ≤ 0

which contradicts the fact that {u > 0} is of positive measure.

Remark 4.2. Theorem 4.4 applies for instance when

a(x) =
C0

|x|2
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for a constant C0 and |x| large enough. Let λr be given by (3.2). Then for
r large enough we have

c

r2
≤ λr ≤

C

r2
(4.27)

for some constants c, C. In other words the technique of Theorem 3.2
cannot work in this case. To show (4.27), recall the definition (3.2) and use
the constant function

u = 1/|Ωr \ Ωr/2|1/2 ∈ H1(Ωr \ Ωr/2)

(| · | is the Lebesgue measure); we obtain

λr ≤
1

|Ωr \ Ωr/2|

∫
Ωr\Ωr/2

a(x) dx =
C0

|Ωr \ Ωr/2|

∫
Ωr\Ωr/2

dx

|x|2
≤ C

r2

for r large enough. To obtain the left-hand side inequality of (4.27) we
remark (see Theorem 3.3) that for r large enough

λr =
∫

Ωr\Ωr/2

aπr dx
/∫

Ωr\Ωr/2

πr dx

=
∫

Ωr\Ωr/2

C0πr/|x|2 dx
/∫

Ωr\Ωr/2

πr dx

≥ c

r2

∫
Ωr\Ωr/2

πr dx
/∫

Ωr\Ωr/2

πr dx =
c

r2
,

with c = C0 for Ωr = B(0, r). This completes the proof of (4.27).

We conclude this note with the following result.

Theorem 4.5.
Suppose that (4.3) admits a bounded solution, then it admits a positive

solution.
If ∫

|x|>1

a(x)|x|−k+2 dx = ∞ (4.28)

then (4.3) cannot admit nontrivial bounded solution such that

0 < c ≤ u. (4.29)

Proof. We first prove the existence of a positive solution. If u < 0, −u is
a positive solution. So, we can assume that u changes sign. Then introduce
un solution of

−∆un + aun = 0 in B(0, n), un = |u|∞ on ∂B(0, n). (4.30)
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One has

0 < un+1 ≤ un ≤ |u|∞ (4.31)

and un converges to some fonction u∞ for instance in L1
loc(Rk). Then u∞ is

a solution of (4.3). Moreover by the maximum principle one has u ≤ un on
B(0, n) and thus u ≤ u∞. u∞ cannot vanish identically and is the positive
solution we are looking for.

Suppose now that u is a nonnegative bounded solution to

−∆u = −au.

Set U(r) =
∫

∂B1
u(rσ) dσ where B1 denotes the unit ball of Rk. Then

−(rk−1U ′)′ = −rk−1

∫
∂B1

a(rσ)u(rσ) dσ (4.32)

hence

−rk−1U ′ = −
∫ r

0

sk−1

∫
∂B1

a(rσ)u(sσ) dσds (4.33)

and U(r) =
∫

∂B1
u(rσ) dσ is nondecreasing. Moreover U is a solution of

the second order differential equation (4.32). A particular solution is given
(see (4.33)) by

U =
∫ r

0

1
sk−1

∫ s

0

tk−1

∫
∂B1

a(tσ)u(tσ) dσdtds.

The solution of the homogeneous equation is given by

A

rk−2
+ B.

Thus we have

U(r) =
A

rk−2
+ B +

∫ r

0

1
sk−1

∫ s

0

tk−1

∫
∂B1

a(tσ)u(tσ) dσdtds. (4.34)

Since u is bounded, so is U and necessarily A = 0, B ≥ 0. From (4.34) we
derive

U(r) = B +
∫ r

0

1
sk−1

∫ s

0

tk−1

∫
∂B1

a(tσ)u(tσ) dσdtds. (4.35)
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Integrating by parts we get

U(r) = B − 1
(k − 2)rk−2

∫ r

0

tk−1

∫
∂B1

a(tσ)u(tσ) dσdt

+
∫ r

0

1
(k − 2)tk−2

tk−1

∫
∂B1

a(tσ)u(tσ) dσdt

= B +
1

k − 2

∫ r

0

∫
∂B1

ta(tσ)(1− tk−2

rk−2
)u(tσ) dσdt. (4.36)

When ∫
|x|>1

a(x)
|x|k−2

dx =
∫ +∞

1

∫
∂B1

ta(tσ) dσdt = +∞,

then the equation (4.3) cannot have a solution such that

0 < c ≤ u ≤ C.

Indeed from (4.36) we would get

U(r) ≥ B +
1

k − 2

∫ r
2

1

∫
∂B1

ta(tσ) dσdt(1− 1
2k−2

)c → +∞

which contradicts the fact that u and U are bounded.

Remark 4.3. Using this result one recovers easily the Lemma 4.1.
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