
NOTES ON THE SELF-LINKING NUMBER

ALBERTO S. CATTANEO

The aim of this note is to review the results of [4, 8, 9] in view of
integrals over configuration spaces and also to discuss a generalization
to other 3-manifolds.

Recall that the linking number of two non-intersecting curves in R3

can be expressed as the integral (Gauss formula) of a 2-form on the
Cartesian product of the curves. It also makes sense to integrate over
the product of an embedded curve with itself and define its self-linking
number this way. This is not an invariant as it changes continuously
with deformations of the embedding; in addition, it has a jump when-
ever a crossing is switched.

There exists another function, the integrated torsion, which has op-
posite variation under continuous deformations but is defined on the
whole space of immersions (and consequently has no discontinuities at
a crossing change), but depends on a choice of framing.

The sum of the self-linking number and the integrated torsion is
therefore an invariant of embedded curves with framings and turns out
simply to be the linking number between the given embedding and its
small displacement by the framing. This also allows one to compute
the jump at a crossing change.

The main application is that the self-linking number or the integrated
torsion may be added to the integral expressions of [3] to make them
into knot invariants.

We also discuss on the geometrical meaning of the integrated torsion.

1. The trivial case

Let us start recalling the case of embeddings and immersions in R3.
This will help us fixing the notations and preparing for the more com-
plicated case of a rational homology sphere. As in [3], we denote by
C2(R3)

.
= {(x, y) ∈ R3 : x 6= y} the configuration space1 of two points

Date: First Version 1999; revised with minor changes in July 2010.
1In [3], this and the similar notations appearing in this Section are actually used

for the compactifications of the corresponding spaces, but in this Section it makes
no difference using a compactification or the space itself.
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in R3 and by Φ: C2(R3)→ S2 the map

(1.1) Φ: (x, y) 7→ y − x
||y − x||

that associates to each pair of distinct points the unit vector (in the
Euclidean norm) joining them. If ω is the SO(3)-invariant volume form

ω = x dy dz + cyclic permutations

on S2, then one defines ϑ = Φ∗ω/4π. The Gauss formula then states
that the linking number can be written as

(1.2) lk(γ1, γ2) =

∫
S1×S1

(γ1 × γ2)∗ϑ,

where γ1 and γ2 are any two mutually non-intersecting closed curves.
One defines the self-linking number

(1.3) slk(K)
.
=

∫
CK

2,0

ϑ =

∫
C2(S1)

K∗ϑ,

where K : S1 → R3 is an embedding, C2(S1)
.
= {(x, y) ∈ S1 : x 6= y}

is the configuration space of two points on S1 and CK
2,0

.
= K(C2(S1)),

using the notations of [3]. It is an easy exercise to verify that the last
integral converges (the high-brow way would be to consider compacti-
fication and to show that the form extends there).

A framing w of an immersion K : S1 → R3 is a nowhere vanishing
vector field normal to K. For ε > 0 small enough, K+εw (i.e., the map
x 7→ K(x)+εw(x)) will be another closed curve that does not intersect
K and that can be deformed to K without meeting any intersection
point. This way, the linking number between K and K + εw is well
defined and independent of ε.

The choice of a framing w is also equivalent to the choice of a section
σw of the normal bundle NK. More precisely, denoting by t(x) the unit
tangent vector at x ∈ K, the choice of the vector field w determines
the oriented frame (t(x),w(x)×t(x),w(x)) at x, and consequently the
section

(1.4) σw : x 7→ (x,w(x)× t(x),w(x))

of NK.
Using this section, we can pull back to K any connection on this

SO(2)-bundle. In particular, we will denote by τw the pullback of the
connection on NK induced by the immersion K from the Levi-Civita
connection on R3 with Euclidean metric. Then we have the following
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Theorem 1.1. With the above notations,

(1.5) lk(K,K + εw) = slk(K) + Tw(K),

where

(1.6) Tw(K) =
1

2π

∫
K

τw.

Remark 1.2. Since the linking number is an invariant, we have

(1.7) dslk = −dTw,

where d is the exterior derivative on the space of embeddings.
In [3], the exterior derivative of the self-linking number is computed

as

dslk(K) = − 1

2π

∫
K

Ψ∗ω,

where Ψ is the map K → S2 that associates to each point its unit
tangent vector t, and the integration is assumed to act from the left.
Thus, the previous result yields

(1.8) dτw = −Ψ∗ω.

In view of our geometric interpretation, it should be clear why the
right-hand side does not depend on the framing w: it is just the well-
known fact that the curvature of an abelian connection is basic.

Remark 1.3. Tw is defined on immersions and not only on embeddings,
and in particular it behaves smoothly under crossing changes; the price
to pay with respect to the self-linking number is the introduction of a
framing.

Remark 1.4. By our definition of τw it is clear that

exp[2πiTw(K)] = Hol(K),

where Hol denotes the holonomy in NK, viewed as a U(1)-bundle. This
immediately shows that Tw must jump by an integer under a change
of framing.

1.1. Proof of Theorem 1.1. We split the proof into two Lemmata.
The first is

Lemma 1.5 (Călugareanu, Pohl). Equations (1.5) and (1.6) hold with

(1.9) τw = t×w · dw,

where t is the unit vector field tangent to K.
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The original result of Călugareanu [4] covered the case when the
curvature of K never vanishes so that there is a well-defined Frenet
frame. In this case, denoting the binormal vector field by b, one gets

τb = τ ds,

where s is the arc length parameter and τ is the torsion (this also
explains the name integrated torsion for T ). Pohl [8] then found the
generalization for any framing.

The second Lemma of our proof contains the geometric interpretation
of τw:

Lemma 1.6. The one-form τw defined in (1.9) is the pullback via σw,
see (1.4), of the connection on NK induced by the immersion K from
the Levi-Civita connection on R3 with Euclidean metric.

Proof of Lemma 1.5. We closely follow the proof given by White in [9].
We repeat it to fix the notations and to prepare for the proof of the
analogous Lemma in the case when M is a rational homology sphere.

Let C1,1(S1, S1 × [0, ε]) be the compactification of the configuration
space C0

1,1(S1, S1× [0, ε]) of two points on (S1× [0, ε])×(S1× [0, ε]) with

the first constrained to lie on S1 × {0} and with orientation induced
from that of S1 × (S1 × [0, ε]). This is a manifold with corners defined
by blowing up the diagonal in the spirit of [6, 1, 3]; explicitly, we can
construct it as follows.

Let q denote the projection from C0
1,1(S1, S1 × [0, ε]) = S1 × (S1 ×

[0, ε]) \ {(x, x, 0), x ∈ S1} to the first factor S1. For every x ∈ S1,
we regard the preimage q−1(x) as the rectangle R

.
= [−π, π] × [0, ε] \

{(0, 0)} with identified vertical sides (the removed point (x, 0) cor-
responds in this description to (0, 0)). In other words, for a point
(x, y, t) ∈ C0

1,1(S1, S1 × [0, ε]) we use the parametrization y = x + z
with (z, t) ∈ R. We can use polar coordinates on R; i.e., we write
(z, t) ∈ R as z = −r cosφ, t = r sinφ with

0 < r ≤ ε

sinφ
for | tanφ| ≥ ε

π
,

0 < r ≤ π

cosφ
for | tanφ| < ε

π
,

and φ ∈ [0, π]. The compactification C1,1(S1, S1×[0, ε]) of C0
1,1(S1, S1×

[0, ε]) is defined by allowing r = 0 in each fiber.
Let Kw be the map C0

1,1(S1, S1 × [0, ε])→ C2(R3) defined by

Kw(x, y, t)
.
= (K(x), K(y) + tw(y)).
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Since ϑ is closed, we have

0 =

∫
C1,1(S1,S1×[0,ε])

dK∗wϑ =

∫
∂C1,1(S1,S1×[0,ε])

K∗wϑ,

where ∂C1,1(S1, S1×[0, ε]) denotes the codimension-one boundary stra-
tum of C1,1(S1, S1 × [0, ε]). It is not too difficult to see that K∗wϑ
smoothly extends to this boundary, as we will see in a moment.

Observe that ∂C1,1(S1, S1× [0, ε]) actually has three disjoint compo-
nents: The first corresponds to the second point approaching the upper
boundary and is given by S1 × (S1 × {ε}). The second, to be taken
with reversed orientation, corresponds to the second point approaching
the lower boundary away form the first point and is given by C2(S1).
The third, also to be taken with reversed orientation, corresponds to
the blow up of the diagonal; we will denote this face by Bl. Therefore,
we get

0 = lk(K,K + εw)− slk(K)− Tw(K),

with

Tw(K) =

∫
Bl

K∗wϑ.

To finish the proof, we thus only have to simplify the expression for
Tw.

Remark that in a neighborhood of Bl we can choose coordinates
x ∈ S1 and (rξ, rη) ∈ R with ξ2 + η2 = 1, η ≥ 0 and r small. The
boundary component Bl is a bundle over S1 with fiber the upper half
circle S1

+ obtained as r → 0+. In this neighborhood we have

Kw(x, x+ rξ, rη) = (K(x), K(x) + r(ξt(x) + ηw(x))) +O(r2),

where, to simplify the computation, we have assumed that x is the arc
length parameter. It follows that

Φ ◦Kw(x, x+ rξ, rη) = ξt(x) + ηw(x) +O(r).

We let Φ̃w denote the restriction of Φ ◦ Kw to Bl: i.e., Φ̃w(x, ξ, η) =
limr→0+ Φ ◦Kw(x, x+ rξ, rη). Hence we get the map

(1.10) Φ̃w : Bl→ S2

(x, ξ, η) 7→ x := (ξt(x) + ηw(x))

The restriction of K∗wϑ to Bl then reads

4πK∗wϑ = Φ̃∗wω =
1

2
(x× dx) · dx =

= −(t×w) · (ξt′ + ηw′) dx (ξdη − ηdξ),
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where the prime denotes derivation with respect to x. If we write

ξ = − cosφ, η = sinφ, φ ∈ [0, π],

then the orientation of Bl is given by the top form dx dφ. Moreover,
we can simplify ϑ to

4π ϑ = dx (t×w) · (t′ cosφ+ w′ sinφ) dφ.

Integrating over φ finally yields Tw as in (1.6) with τw as in (1.9). �

Remark 1.7. If we had used the compactification C2(R3) of [3], then
we could have defined C(K,Σw) as the image of C1,1(S1, S1 × [0, ε])
under Kw (here Σw denotes the strip K + tw, t ∈ [0, ε], i.e., the image
of S1× [0, ε] under Kw). Then we could have directly used the formula

0 =

∫
C(K,Σw)

dϑ =

∫
∂ C(K,Σw)

ϑ.

The study of the boundary components of C(K,Σw) is however the
same as before, even though we could understand the blow-up bound-
ary more geometrically as the points of the form (v, v + r(ξt + ηw)),
with v in the image of K.

Proof of Lemma 1.6. If K is an immersion (and not necessarily an em-
bedding), its unit tangent vector t is defined everywhere. By OR3|K we
denote the pullback of the frame bundle OR3 of R3. An oriented frame
(b1,b2) in NKx consists of unit vectors b1 and b2 orthogonal to t(x)
with b2 = t×b1. It yields the adapted frame (x, t(x),b1,b2) ∈ OR3|K .

Given a connection ψ on OR3, which we view as an so(3)-valued
one-form on OR3, the induced connection on NK is obtained (see, e.g.,
[7]) by first restricting ψ to the adapted frame and then selecting the
so(2)-component corresponding to normal vectors. In other words, let
j denote the map OR3|K → OR3 determined by our immersion and let
i be the injection NK → OR3|K defined by

i : (x,b1,b2) 7→ (x, t(x),b1,b2).

Then the induced connection is $(i∗j∗ψ), where $ is the projection to
the lower right 2× 2 block.

The Levi-Civita connection on R3 with Euclidean metric is trivial;
i.e., ψ(x, g) = g−1dg, x ∈ R3, g ∈ SO(3). By writing g = (a1, a2, a3),
where (a1, a2, a3) is an orthonormal oriented frame, we get

(1.11) ψ =

 0 a1 · da2 a1 · da3

−a1 · da2 0 a2 · da3

−a1 · da3 −a2 · da3 0

 .
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Thus, the induced connection on NK is

i∗j∗ψ = −(b1 · db2)R = τ̂ R

where R = ( 0 −1
1 0 ) is the generator of the Lie algebra so(2) ' R, and

τ̂ = −(b1 ·db2) is the corresponding real-valued connection. Therefore,

σ∗wτ̂(x) = −w(x)× t(x) · dw(x) = τw(x),

where σw is the section defined in (1.4). �

Theorem 1.1 is finally an immediate consequence of the two Lem-
mata.

2. The case of rational homology spheres

In [2], a generalization of the two-form ϑ described in the previous
Section was considered. From now on we assume familiarity with [3].
In particular, C2(M) will denote the compactified configuration space
of two points in a compact manifold M .

Let M be a rational homology sphere in this Section. Then it is pos-
sible to construct a form η̂ ∈ Ω2(C2(M)) with the following properties:2

dη̂ = v1 − v2,(2.1a)

ι∗∂ η̂ = η,(2.1b)

T ∗η̂ = −η̂,(2.1c)

where v1 and v2 are the pullbacks to C2(M) of an arbitrary unit genera-
tor of H3(M); T is the involution that exchanges the factors in C2(M);
ι∂ is the inclusion map of the boundary of C2(M), and η is an odd
global angular form for the sphere bundle ∂ C2(M) → M (odd with
respect to the antipodal map).

Next an odd global angular form η[θ] is constructed for a given choice
of a Riemannian metric and of a metric connection θ. More precisely,
a Riemannian metric allows us to write ∂C2(M) ' OM ×SO(3) S

2. We
will let θi denote the components of θ in the basis {ξi, i = 1, 2, 3} of
so(3) given by (ξi)jk = εijk. To simplify the notation, we will also let θ
denote the vector whose components are (θ1, θ2, θ3). Then (see [2] for
the details) the two-form3

η̄[θ] =
ω + d(θ · x)

4π

2We choose here the opposite sign convention of [2].
3By abuse of notation, we will write θ and ω also for their pullbacks to OM×S2.



8 A. S. CATTANEO

is an odd global angular form for the trivial bundle OM × S2 → OM
and is basic on the principal bundle

p : OM × S2 → OM ×SO(3) S
2.

Finally, the odd global angular form η[θ] is implicitly defined by the
equation

η̄[θ] = p∗η[θ].

In the rest of the Section, we will let η̂[θ] denote the two-form η̂
defined in (2.1) for the given odd global angular form η[θ].

Using this two-form, it is possible to write down a formula for the
linking number of two curves in a rational homology sphere as

(2.2) lk(γ1, γ2) =

∫
S1×S1

(γ1 × γ2)∗η̂,

where we drop the argument θ since the left-hand side turns out to
be independent of it (as well as of all the other choices involved in
the construction of η̂). Moreover, lk defines a link invariant which, in
general, is not integer valued, as in R3, but rational valued (one still
has an integer-valued linking number on integral homology spheres).

To show this, first observe that switching any crossing between γ1

and γ2 changes lk by one. In the case when γ1 is homologically trivial,
it is possible, after switching a certain number of crossings, to reduce γ1

to a circle that can be contracted without intersecting γ2. So lk turns
out to be an integer. In the general case, one has just to observe that
lk is additive on γ1 and γ2, so lk(γ1, γ2) = (1/n1)lk(n1 γ1, γ2). Choosing
n1 so that n1[γ1] is homologically trivial yields the previous case.4

The self-linking number, which is not an invariant and depends on
θ, is then defined by

(2.3) slk(K)[θ]
.
=

∫
C2(S1)

K∗η̂[θ],

where K : S1 →M is an embedding.
By choosing a framing w for K, we can generalize Theorem 1.1 as

follows:

4With a little more effort, one can also show that lk coincides with the geomet-
rical linking number

lkgeom(γ1, γ2) =
1

n1
#(C1, γ2) =

1

n2
#(γ1, C2),

where Ci is any surface that intersects γj (i 6= j) transversally and such that
∂[Ci] = ni[γi] for a suitable integer ni.
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Theorem 2.1. With the above notations (and recalling the considera-
tions preceding Theorem 1.1), we have

(2.4) lk(K,K + εw) = slk(K)[θ] + Tw(K)[θ],

with

(2.5) Tw(K)[θ] =
1

2π

∫
K

τw[θ],

where τw[θ] is the pullback to K via the framing w of the connection
induced from θ by the immersion K.

Remark 2.2. All the remarks following Theorem 1.1 obviously gener-
alize to this case. In particular, (1.7) still holds and (1.8) is replaced
by

(2.6) dτw[θ] = −4πΨ∗η[θ],

where Ψ is now the map K → ∂ C2(M) that sends a point x ∈ K to
(x, x+ rt(x)), r → 0+.

Notice that (2.6) is in complete agreement with the interpretation
given in [2] of η as half the Euler class of TS2 ∂ C2(M), where TS2

denotes the tangent bundle along the fiber S2.

Again the proof of the Theorem is an immediate consequence of two
Lemmata that generalize 1.5 and 1.6.

Lemma 2.3. Equations (2.4) and (2.5) hold with

(2.7) τw[θ] = t×w · dw − Φ̂∗wθ · t,
where t is the unit vector field tangent to K, and

Φ̂w : K → OM

x 7→ (x, t(x),w(x)× t(x),w(x))

Proof. The first part of the proof is exactly as in the proof of Lemma 1.6
with ϑ replaced by η̂[θ]. We only have to remark that, though η̂ is not
closed, by (2.1a) the integral of the pullback of its differential over
C1,1(S1, S1 × [0, ε]) still vanishes by dimensional reasons. In this way
we prove (2.4) with

Tw(K)[θ] =

∫
Bl

Ψ∗wη[θ],

where Ψw : Bl → ∂ C2(M) ' OM ×SO(3) S
2 is the restriction to the

indicated boundary of the embedding C1,1(S1, S1 × [0, ε]) ↪→ C2(M)
induced from K ↪→M . The map

Ψ̂w = (Φ̂w, Φ̃w) : Bl→ OM × S2,
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with Φ̃w defined in (1.10), is a lift of Ψw, as can be easily checked.
Therefore,

Tw(K)[θ] =

∫
Bl

Ψ̂∗wη̄[θ],

and

4π Ψ̂∗wη̄[θ] = Φ̃∗wω + d(Φ̂∗wθ · (ξt + ηw)) =

= Φ̃∗wω − Φ̂∗wθ · (t sinφ+ w cosφ)dφ+ · · · ,
where the dots denote forms that integrate to zero along the fiber of
Bl. Finally, (2.5) is obtained by performing this integration. �

Lemma 2.4. The one-form τw[θ] defined in (2.7) is the pullback via
σw, see (1.4), of the connection on NK induced from θ by the immer-
sion K.

Proof. We proceed as in the proof of Lemma 1.6. First of all we have to
write the connection θ in the adapted frame (x, t(x),b1,b2) ∈ OM |K .
Denoting by g ∈ SO(3) the matrix whose columns are the vectors
a1 = t, a2 = b1, a3 = b2, we get

j∗θ = g−1dg + g−1 θ g = j∗ψ +

 0 θ · a3 −θ · a2

−θ · a3 0 θ · a1

θ · a2 −θ · a1 0

 ,

with ψ defined in (1.11). Restricting then to the SO(2)-subbundle NK
yields the connection

$(i∗j∗θ) = $(i∗j∗ψ)− i∗θ · tR = τ̂ [θ]R,

with

τ̂ [θ] = −b1 · db2 − i∗θ · t.
Finally, observe that Φ̂w = i ◦ σw; so

σ∗wτ̂ [θ] = τw[θ].

�

3. The general case

In this Section, we consider the generalizations of Theorems 1.1 and
2.1 to the case of a compact, oriented manifold M .

First of all observe that the construction of [2] leading to (2.1) can
be easily generalized to any connected, compact, closed, oriented 3-
manifold (for details, see [5]) by replacing (2.1a) by

(2.1a’) dη̂ = −π∗χ∆.
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Here χ∆ is an odd (with respect to the involution T ) representative of
the Poincaré dual of the diagonal ∆ in M ×M , and π is the projection
C2(M)→M ×M .

If {[ωi]} is a basis of H1(M) and {[τ i]} its dual basis (that is, the τ is
are closed two forms on M , and

∫
M
ωi τ j = δij), then an odd represen-

tative of the Poincaré dual of ∆ is

χ∆ = v2 −
∑

i
ωi1 τ

i
2 +

∑
i
τ i1 ω

i
2 − v1.

Here the indices 1 and 2 denote the pullbacks of the forms to M ×M
using the left and the right projection respectively.

We can then define an analogue of the linking number by using for-
mula (2.2). This, however, is in general not an invariant. Let us then
introduce

P (γ,Σ)
.
=
∑

i

∫
K

ωi
∫

Σ

τ i,

where γ is a curve and Σ is a surface. It is not difficult to show that,
if γ1 and γ2 are homologous, then

l̃k(γ1, γ2)
.
= lk(γ1, γ2)− P (γ1,Σ)

is a link invariant for any surface Σ such that ∂[Σ] = [γ1]− [γ2].
Next we consider an embedded loop K and define its self-linking

number as in (2.3). We finally have the following

Theorem 3.1. Theorem 2.1 holds for any connected, compact, closed,

oriented 3-manifold if lk is replaced by l̃k.

Proof. In the proof of (the analogue of) Lemma 2.3 one only has to
notice that now∫
C1,1(S1,S1×[0,ε])

K∗wdη̂[θ] =

∫
K×Σw

(∑
i
ωi1 τ

i
2 −

∑
i
τ i1 ω

i
2

)
= P (K,Σw),

where Σw denotes the strip K+tw, t ∈ [0, ε], i.e., the image of S1×[0, ε]
under Kw). The rest of this proof as well as the proof of Lemma 2.4
are unchanged. �
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