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1. Introduction

Differentiable manifolds are sets that locally look like some Rn so
that we can do calculus on them. Examples of manifolds are open sub-
sets of Rn or subsets defined by constraints satisfying the assumptions
of the implicit function theorem (example: the n-sphere Sn). Also
in the latter case, it is however more practical to think of manifolds
intrinsically in terms of charts.

The example to bear in mind are charts of Earth collected in an
atlas, with the indications on how to pass from one chart to another.
Another example that may be familiar is that of regular surfaces.

2. Manifolds

Definition 2.1. A chart on a set M is a pair (U, φ) where U is a subset
of M and φ is an injective map from U to Rn for some n.

The map φ is called a chart map or a coordinate map. One often
refers to φ itself as a chart, for the subset U is part of φ as its definition
domain.

If (U, φU) and (V, φV ) are charts on M , we may compose the bijec-
tions (φU)|U∩V : U ∩V → φU(U ∩V ) and (φV )|U∩V : U ∩V → φV (U ∩V )
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and get the bijection

φU,V := (φV )|U∩V ◦ (φU |U∩V )−1 : φU(U ∩ V )→ φV (U ∩ V )

called the transition map from (U, φU) to (V, φV ) (or simply from U to
V ).

Definition 2.2. An atlas on a setM is a collection of charts {(Uα, φα)}α∈I ,
where I is an index set, such that ∪α∈IUα = M .

Remark 2.3. We usually denote the transition maps between charts
in an atlas (Uα, φα)α∈I simply by φαβ (instead of φUα,Uβ).

One can easily check that, if φα(Uα) is open ∀α ∈ I (in the standard
topology of the target), then the atlas A = {(Uα, φα)}α∈I defines a
topology1 on M :

OA(M) := {V ⊂M | φα(V ∩ Uα) is open ∀α ∈ I}.
We may additionally require that all Uα be open in this topology or,
equivalently, that φα(Uα ∩Uβ) is open ∀α, β ∈ I. In this case we speak
of an open atlas. All transition maps in an open atlas have open domain
and codomain, so we can require them to belong to a class C ⊂ C0 of
maps (e.g., Ck for k = 0, 1, . . . ,∞, or analytic, or complex analytic, or
Lipschitz).

Definition 2.4. A C-atlas is an open2 atlas such that all transition
maps are C-maps.

Notice that, by definition, a C-atlas is also in particular a C0-atlas.

Example 2.5. Let M = Rn. Then A = {(Rn, φ)} is a C-atlas for any
structure C if φ is an injective map with open image. Notice that M
has the standard topology iff φ is a homeomorphism with its image. If
φ is the identity map Id, this is called the standard atlas for Rn.

Example 2.6. Let M be an open subset of Rn with its standard topol-
ogy. Then A = {(U, ι)}, with ι the inclusion map, is a C-atlas for any
structure C.

Example 2.7. Let M = Rn. Let A = {(Rn, Id), (Rn, φ)}. Then A is
a C-atlas iff φ and its inverse are C-maps.

Example 2.8. Let M be the set of lines (i.e., one-dimensional affine
subspaces) of R2. Let U1 be the subset of nonvertical lines and U2

the subset of nonhorizontal lines. Notice that every line in U1 can be

1For more on topology, see Appendix A.
2Notice that to define a C0-atlas we would not need the condition that the atlas be

open, but we will need this condition for the proof of several important properties.
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uniquely parametrized as y = m1x + q1 and every line in U2 can be
uniquely parametrized as x = m2y + q2. Define φi : Ui → R2 as the
map that assigns to a line the corresponding pair (mi, qi), for i = 1, 2.
Then A = {(U1, φ1), (U2, φ2)} is a Ck-atlas for k = 0, 1, 2, . . . ,∞.

Example 2.9. Define S1 in terms of the angle that parametrizes it (i.e.,
by setting x = cos θ, y = sin θ). The angle θ is defined modulo 2π. The
usual choice of thinking of S1 as the closed interval [0, 2π] with 0 and 2π
identified does not give an atlas. Instead, we think of S1 as the quotient

of R by the equivalence relation θ ∼ θ̃ if θ − θ̃ = 2πk, k ∈ Z. We then
define charts by taking open subsets of R and using shifts by multiple
of 2π as transition functions. A concrete choice is the following. Let
E denote the class of 0 (equivalently, for S1 in R2, E is the eastward
point (1, 0)). We set UE = S1 \ {E} and denote by φE : UE → R the
map that assigns the angle in (0, 2π). Analogously, we let W denote
the westward point (−1, 0) (i.e., the equivalence class of π) and set
UW = S1 \{W}. We denote by φW : UW → R the map that assigns the
angle in (−π, π). We have S1 = UE∪UW , φE(UE∩UW ) = (0, π)∪(π, 2π)
and φW (UE ∩ UW ) = (−π, 0) ∪ (0, π). Finally, we have

φEW (θ) =

{
θ if θ ∈ (0, π),

θ − 2π if θ ∈ (π, 2π).

Hence A = {(UE, φE), (UW , φW )} is a Ck-atlas for k = 0, 1, 2, . . . ,∞.

Example 2.10 (Regular surfaces). Recall that a regular surface is a
subset S of R3 such that for every p ∈ S there is an open subset U of
R2 and a map x : U → R3 with p ∈ x(U) ⊂ S satisfying the following
properties:

(1) x : U → x(U) is a homeomorphism (i.e., x is injective, continu-
ous and open),

(2) x is C∞, and
(3) the differential dux : R2 → R3 is injective for all u ∈ U .

A map x satisfying these properties is called a regular parametrization.3

The first property allows one to define a chart (x(U),x−1) and all
charts arising this way form an open atlas. The second and third
properties make this into a C∞-atlas, so a regular surface is an example
of C∞-manifold.

Example 2.11. Let M = Sn := {x ∈ Rn+1 |
∑n+1

i=1 (xi)2 = 1} be the
n-sphere. Let N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) denote its north
and south poles, respectively. Let UN := Sn \{N} and US := Sn \{S}.

3In the terminology of Definition 6.2, x is an embedding of U into R3.
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Let φN : UN → Rn and φS : US → Rn be the stereographic projections
with respect to N and S, respectively: φN maps a point y in Sn to the
intersection of the plane {xn+1 = 0} with the line passing through N
and y; similarly for φS. A computation shows that φSN(x) = φNS(x) =

x
||x||2 , x ∈ Rn \ {0}. Then A = {(UN , φN), (US, φS)} is a Ck-atlas for

k = 0, 1, 2, . . . ,∞.

Example 2.12 (Constraints). Let M be a subset of Rn defined by
Ck-constraints satisfying the assumptions of the implicit function the-
orem. Then locally M can be regarded as the graph of a Ck-map. Any
open cover of M with this property yields a Ck-atlas. We will give more
details on this in subsection 2.3.

As we have seen in the examples above, the same set may occur
with different atlases. The main point, however, is to consider different
atlases just as different description of the same object, at least as long
as the atlases are compatible. By this we mean that we can decide to
consider a chart from either atlas. This leads to the following

Definition 2.13. Two C-atlases on the same set are C-equivalent if
their union is also a C-atlas.

Notice that the union of two atlases has in general more transition
maps and in checking equivalence one has to check that also the new
transition maps are C-maps. In particular, this first requires checking
that the union of the two atlases is open.

Example 2.14. Let M = Rn, A1 = {(Rn, Id)} and A2 = {(Rn, φ)} for
an injective map φ with open image. These two atlases are C-equivalent
iff φ and its inverse are C-maps.

We finally arrive at the

Definition 2.15. A C-manifold is an equivalence class of C-atlases.

Remark 2.16. Usually in defining a C-manifold we explicitly intro-
duce one atlas and tacitly consider the corresponding C-manifold as
the equivalence class containing this atlas. Also notice that the union
of all atlases in a given class is also an atlas, called the maximal atlas, in
the same equivalence class. Thus, we may equivalently define a man-
ifold as a set with a maximal atlas. This is not very practical as the
maximal atlas is huge.

Working with an equivalence class of atlases instead of a single one
also has the advantage that whatever definition we want to give requires
choosing just a particular atlas in the class and we may choose the most
convenient one.
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Example 2.17. The standard C-manifold structure on Rn is the C-equiv-
alence class of the atlas {(Rn, Id)}.

Remark 2.18. Notice that the same set can be given different manifold
structures. For example, let M = Rn. On it we have the the standard
C-structure of the previous example. For any injective map φ with open
image we also have the C-structure given by the equivalent class of the
the C-atlas {(Rn, φ)}. The two structures define the same C-manifold
iff φ and its inverse are C-maps. Notice that if φ is not a homeorphism,
the two manifolds are different also as topological spaces. Suppose
that φ is a homeomorphism but not a Ck-diffeomorphism; then the two
structures define the same topological space and the same C0-manifold,
but not the same Ck-manifold.4

Example 2.19. Let A = {(Uα, φα)}α∈I be a C-atlas on M . Let V be
an open subset of Uα for some α. Define ψV := φα|V . Then A′ := A∪
{(V, ψV )} is also a C-atlas and moreover A and A′ are C-equivalent, so
they define the same manifold. This example shows that in a manifold
we can always shrink a chart to a smaller one.

Example 2.20 (Open subsets). Let U be an open subset of a C-mani-
fold M . If {(Uα, φα)}α∈I is an atlas for M , then {(Uα∩U, φα|Uα∩U)}α∈I
is a C-atlas for U . This makes U into a C-manifold with the relative
topology.

Example 2.21 (Cartesian product). Let M and N be C-manifolds.
We can make M × N into a C-manifold as follows. Let {(Uα, φα)}α∈I
be a C-atlas for M and {(Vj, ψj)}j∈J a C-atlas for N . Then (Uα ×
Vj, φα × ψj)(α,j)∈I×J is a C-atlas for M × N , called the product atlas.
Note that the topology it induces is the product topology.

2.1. Coordinates. Recall that an element of an open subset V of Rn is
an n-tuple (x1, . . . , xn) of real numbers called coordinates. We also have
maps πi : V → R, (x1, . . . , xn) 7→ xi called coordinate functions. One
often writes xi instead of πi to denote a coordinate function. Notice
that xi has then both the meaning of a coordinate (a real number) and
of a coordinate function (a function on V ), but this ambiguity causes
no problems in practice.

If (U, φU) is a chart with codomain Rn, the maps πi ◦ φU : U →
R are also called coordinate functions and are often denoted by xi.
One usually calls U together with its coordinate functions a coordinate
neighborhood.

4We will see in Example 3.10, that these two Ck-manifolds are anyway
Ck-diffeomorphic.
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2.2. Dimension. Recall that the existence of a Ck-diffeomorphism be-
tween an open subset of Rm and an open subset of Rn implies m = n
since the differential at any point is a linear isomorphism of Rm and Rn

as vector spaces (the result is also true for homeomorphisms, though
the proof is more difficult). So we have the

Definition 2.22. A connected manifold has dimension n if for any (and
hence for all) of its charts the target of the chart map is Rn. In general,
we say that a manifold has dimension n if all its connected components
have dimension n. We write dimM = n.

2.3. The implicit function theorem. As mentioned in Example 2.12,
a typical way of defining manifolds is by the implicit function theorem
which we recall here.

Theorem 2.23 (Implicit function theorem). Let W be an open subset
of Rm+n, F : W → Rm a Ck-map (k > 0) and c ∈ Rn. We define
M := F−1(c). If for every q ∈M the linear map dqF is surjective, then
M has the structure of an m-dimensional Ck-manifold with topology
induced from Rm+n.

The proof of this theorem relies on another important theorem in
analysis:

Theorem 2.24 (Inverse function theorem). Let W be an open subset
of Rs and G : W → Rs a Ck-map (k > 0). If dqG is an isomorphism
at q ∈ W , then there is an open neighborhood V of q in W , such that
G|V is a Ck-diffeomorphism V → G(V ).

The inverse function theorem is a nice application of Banach’s fixed
point theorem. We do not prove it here (see e.g. [3, Appendix 10.1]).

Sketch of a proof of the implicit function theorem. Let q ∈ M . The
matrix with entries ∂F i

∂xj
(q), i = 1, . . . ,m, j = 1, . . . , n + m has by

assumption rank m. This implies that we can rearrange its rows so
that its left m × m block is invertible. More precisely, we can find a

permutation σ of {1, . . . ,m+n} such that (∂F̃
i

∂xj
(q))i,j=1,...,m+n is invert-

ible, where F̃ = F ◦ Φσ and Φσ is the diffeomorphism of Rm+n that
sends (x1, . . . , xm+n) to (xσ(1), . . . xσ(m+n)). We then define a new map

G : W → Rm+n, (x1, . . . , xm+n) 7→ (F̃ 1, . . . , F̃m, xm+1, . . . xm+n). Now
dqG is invertible, so we can apply the inverse function theorem to it.
This means that there is a neighborhood V of q in W such that G|V
is a Ck-diffeomorphism V → G(V ). We then define Uq := V ∩M and
φUq := π ◦G|Uq as a chart around q, where π : Rm+n → Rn is the pro-
jection to the last n coordinates. Repeating this for all q ∈M , or just
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enough of them for the Uqs to cover M , we get an atlas for M . One
can finally check that this atlas is Ck. Since the maps G are, in partic-
ular, homeomorphisms, the atlas topology is the same as the induced
topology. �

3. Maps

Let F : M → N be a map of sets. Let (U, φU) be a chart on M and
(V, ψV ) be a chart on N with V ∩ F (U) 6= ∅. The map

FU,V := ψV |V ∩F (U)
◦ F|U ◦ φ−1

U : φU(U)→ ψV (V )

is called the representation of F in the charts (U, φU) and (V, ψV ).
Notice that a map is completely determined by all its representations
in a given atlas.

Definition 3.1. A map F : M → N between C-manifolds is called a
C-map or C-morphism if all its representations are C-maps.

In Proposition 5.3 we will give a handier characterization of C-maps
in the case when the target N has a Hausdorff topology.

Remark 3.2. If we pick another chart (U ′, φU ′) on M and another
chart (V ′, ψV ′) on N , we get

(3.1) FU ′,V ′ |φU′ (U∩U ′) = ψV,V ′ ◦ FU,V |φU (U∩U ′) ◦ φ−1
U,U ′ .

This has two consequences. The first is that it is enough to choose
one atlas in the equivalence class of the source and one atlas in the
equivalence class of the target and to check that all representations
are C-maps for charts of these two atlases: the condition will then
automatically hold for any other atlases in the same class. The second
is that a collection of maps between chart images determines a map
between manifolds only if equation (3.1) is satisfied for all transition
maps. More precisely, fix an atlas {(Uα, φα)}α∈I of M and an atlas
{(Vj, ψj)}j∈J of N . Then a collection of C-maps Fα,j : φα(Uα)→ ψj(Vj)
determines a C-map F : M → N only if

Fα′j′|φα′ (Uα∩Uα′ ) = ψjj′ ◦ Fαj|φα(Uα∩Uα′ ) ◦ φ
−1
αα′ , ∀α, α′ ∈ I ∀j, j′ ∈ J.

Definition 3.3. A C-map from a C-manifold M to R with its standard
manifold structure is called a C-function. We denote by C(M) the vector
space of C-functions on M .

Remark 3.4. In the case of a function, we always choose the standard
atlas for the target R. Therefore, we may simplify the notation: we
simply write

fU := f |U ◦ φ−1
U : φU(U)→ R.
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If {(Uα, φα)}α∈I is an atlas on M , a collection of C-functions fα on
φα(Uα) determines a C-function f on M with fUα = fα ∀α ∈ I if and
only if

(3.2) fβ(φαβ(x)) = fα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ).

Remark 3.5. Notice that a Ck-map between open subsets of Cartesian
powers of R is also automatically Cl ∀l ≤ k, so a Ck-manifold can be
regarded also as a Cl-manifold ∀l ≤ k. As a consequence, ∀l ≤ k, we
have the notion of Cl-maps between Ck-manifolds and of Cl-functions
on a Ck-manifold.

Definition 3.6. An invertible C-map between C-manifolds whose in-
verse is also a C-map is called a C-isomorphism. A Ck-isomorphism,
k ≥ 1, is usually called a Ck-diffeomorphism (or just a diffeomorphism).

Example 3.7. Let M and N be open subsets of Cartesian powers of
R with the standard C-manifold structure. Then a map is a C-map of
C-manifolds iff it is a C-map in the standard sense.

Example 3.8. Let M be a C-manifold and U an open subset thereof.
We consider U as a C-manifold as in Example 2.20. Then the inclusion
map ι : U →M is a C-map.

Example 3.9. Let M and N be C-manifolds and M ×N their Carte-
sian product as in Example 2.21. Then the two canonical projections
πM : M ×N →M and πN : M ×N → N are C-maps.

Example 3.10. Let M be Rn with the equivalence class of the atlas
{(Rn, φ)}, where φ is an injective map with open image. Let N be Rn

with its standard structure. Then φ : M → N is a C-map for any C
(since its representation is the identity map on open subset of Rn). If
in addition φ is also surjective, then φ : M → N is a C-isomorphism.5

Remark 3.11. Let M and N be as in the previous example with φ
a bijection. Assume that φ : R → R is a homeomorphism but not a
Ck-diffeomorphism. Then the given atlases are C0-equivalent but not
Ck-equivalent. As a consequence, M and N are the same C0-manifold
but different Ck-manifolds. On the other hand, φ : M → N is always a
Ck-diffeomorphism of Ck-manifolds. More difficult is to find examples
of two Ck-manifolds that are the same C0-manifold (or C0-isomorphic
to each other), but are different, non Ck-diffeomorphic Ck-manifolds.
Milnor constructed a C∞-manifold structure on the 7-sphere that is not

5In general, φ is a C-isomorphism from M to the open subset φ(M) of Rn.
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diffeomorphic to the standard 7-sphere. From the work of Donaldson
and Freedman one can derive uncountably many different C∞-manifold
structures on R4 (called the exotic R4s) that are not diffeomorphic to
each other nor to the standard R4. In dimension 3 and less, one can
show that any two C0-isomorphic manifolds are also diffeomorphic.

3.1. The pullback. If M and N are C-manifold and F : M → N is a
C-map, the R-linear map

F ∗ : C(N) → C(M)
f 7→ f ◦ F

is called pullback by F . If f, g ∈ C(N), then clearly

F ∗(fg) = F ∗(f)F ∗(g).

Moreover, if G : N → Z is also a C-map, then

(G ◦ F )∗ = F ∗G∗.

Remark 3.12. We can rephrase Remark 3.4 by using pullbacks. Namely,
if f is a function on M , then its representation in the chart (U, φU) is
fU = (φ−1

U )∗f |U . Moreover, if {(Uα, φα)}α∈I is an atlas on M , a collec-
tion of C-functions fα on φα(Uα) determines a C-function f on M with
fUα = fα ∀α ∈ I if and only if

(3.3) fα = φ∗αβfβ

for all α, β ∈ I, where, by abuse of notation, fα denotes here the
restriction of fα to φα(Uα ∩Uβ) and fβ denotes the restriction of fβ to
φβ(Uα ∩ Uβ).

Remark 3.13 (The push-forward). If F : M → N is a C-isomorphism,
it is customary to denote the inverse of F ∗ by F∗ and to call it the
push-forward. Explicitly,

F∗ : C(M) → C(N)
f 7→ f ◦ F−1

By this notation equation (3.3) reads

(3.4) fβ = (φαβ)∗fα

Also note that

F∗(fg) = F∗(f)F∗(g)

and that, if G : N → Z is also a C-map, then

(G ◦ F )∗ = G∗F∗.
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3.2. Submanifolds. A submanifold is a subset of a manifold that is
locally given by fixing some coordinates. More precisely:

Definition 3.14. Let N be an n-dimensional C-manifold. A k-di-
mensional C-submanifold, k ≤ n, is a subset M of N such that there
is a C-atlas {(Uα, φα)}α∈I of N with the property that ∀α such that
Uα∩M 6= ∅ we have φα(Uα∩M) = Wα×{x} with Wα open in Rk and
x in Rn−k. Any chart with this property is called an adapted chart and
an atlas consisting of adapted charts is called an adapted atlas. Notice
that by a diffeomorphism of Rn we can always assume that x = 0.

Remark 3.15. Let {(Uα, φα)}α∈I be an adapted atlas for M ⊂ N .
Then {(Vα, ψα)}α∈I , with Vα := Uα∩M and ψα := π ◦φα|Vα : Vα → Rk,
where π : Rn → Rk is the projection to the first k coordinates, is a
C-atlas for M . Moreover, the inclusion map ι : M → N is clearly a
C-map.

Remark 3.16. In an adapted chart (Uα, φα) the k-coordinates of Wα

parametrize the submanifold and are called tangential coordinates, while
the remaining n − k coordinates are called transversal coordinates and
parametrize a transversal neighborhood of a point of the submanifold.

Example 3.17. Any open subset M of a manifold N is a submanifold
as any atlas of N is automatically adapted. In this case, there are no
transversal coordinates.

Remark 3.18. Notice that a chart (U, ψU) such that ψU(U ∩M) is the
graph of a map immediately leads to an adapted chart. To be precise,
assume ψU(U ∩M) = {(x, y) ∈ V × Rn−k | y = F (x)} with V open in
Rk and F a C-map from V to Rn−k. Then let Φ: V ×Rn−k → V ×Rn−k

be defined by Φ(x, y) = (x, y − F (x)). It is clearly a C-isomorphism.
Moreover, (U, φU), with φU := Φ ◦ψU is clearly an adapted chart (with
φU(U ∩M) = V × {0}).

As a consequence, we may relax the definition by allowing adapted
charts (Uα, φα) such that φα(Uα ∩M) is the graph of a map. In par-
ticulat, we have the

Example 3.19 (Graphs). Let F be a C-map from open subset V of Rk

to Rn−k and consider its graph M = {(x, y) ∈ V × Rn−k | y = F (x)}.
Then M is a C-submanifold of N = V ×Rn−k. As an adapted atlas we
may take the one consisting of the single chart (N, ι), where ι : N → Rn

is the inclusion map.

A further consequence is that a subset of the standard Rn defined
in terms of Ck-constraints satisfying the assumptions of the implicit
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function theorem is a Ck-submanifold. There is a more general version
of this, the implicit function theorem for manifolds, which we will see
later as Theorem 6.13 on page 25.

4. Topological manifolds

In this Section we concentrate on C0-manifolds. Notice however that
every C-manifold is by definition also a C0-manifold.

As we have seen, an atlas whose chart maps have open images defines
a topology. In this topology the chart maps are clearly open maps. We
also have the

Lemma 4.1. All the chart maps of a C0-atlas are continuous, so they
are homeomorphisms with their images.

Proof. Consider a chart (Uα, φα), φα : Uα → Rn. Let V be an open
subset of Rn and W := φ−1

α (V ). For any chart (Uβ, φβ) we have φβ(W ∩
Uβ) = φαβ(V ). In a C0-atlas, all transition maps are homeomorphisms,
so φαβ(V ) is open for all β, which shows that W is open. We have
thus proved that φα is continuous. Since we already know that it is
injective and open, we conclude that it is a homeomorphism with its
image.6 �

Different atlases in general define different topologies. However,

Lemma 4.2. Two C0-equivalent C0-atlases define the same topology.

Proof. Let A1 = {(Uα, φα)}α∈I and A2 = {(Uj, φj)}j∈J be C0-equiva-
lent. First observe that by the equivalence condition φα(Uα ∩ Uj) is
open for all α ∈ I and for all j ∈ J .

Let W be open in the A1-topology. We have φj(W ∩ Uα ∩ Uj) =
φαj(φα(W ∩ Uα ∩ Uj)). Moreover, φα(W ∩ Uα ∩ Uj) = φα(W ∩ Uα) ∩
φα(Uα ∩ Uj), which is open since W is A1-open. Since the atlases
are equivalent, we also know that φαj is a homeomorphism. Hence
φj(W ∩ Uα ∩ Uj) is open. Since this holds for all j ∈ J , we get that
W ∩Uα is open in the A2-topology. Finally, we write W = ∪α∈IW ∩Uα,
i.e., as a union of A2-open set. This shows that W is open in the
A2-topology for all α ∈ I. �

As a consequence a C0-manifold has a canonically associated topology
in which all charts are homeomorphism. This suggests the following

6Notice that the proof of ths Lemma does not require the condition that the
atlas be open. We only need the conditions that the chart maps be open and that
the transition functions be continuous.
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Definition 4.3. A topological manifold is a topological space endowed
with an atlas {(Uα, φα)}α∈I in which all Uα are open and all φα are
homeomorphisms to their images.

Theorem 4.4. A topological manifold is the same as a C0-manifold.

Proof. We have seen above that a C0-manifold structure defines a topol-
ogy in which every atlas in the equivalence class has the properties in
the definition of a topological manifold; so a C0-manifold is a topologi-
cal manifold. On the other hand, the atlas of a topological manifold is
open and all transition maps are homeomorphism since they are now
compositions of homeomorphisms. The C0-equivalence class of this at-
las then defines a C0-manifold. �

Also notice the following

Lemma 4.5. Let M and N be C0-manifolds and so, consequently, topo-
logical manifolds. A map F : M → N is a C0-map iff it is continuous.
In particular, a C0-isomorphism is the same as a homeomorphism.

Proof. Suppose that F is a C0-map. Let {(Uα, φα)}α∈I be an atlas on
M and {(Vβ, ψβ)}β∈J be an atlas on N . For every W ⊂ N , ∀α ∈ I and
∀β ∈ J , we have φα(F−1(W ∩ Vβ) ∩ Uα) = F−1

α,β(ψβ(W ∩ Vβ)). If W is
open, then ψβ(W ∩ Vβ) is open for all β. Since all Fα,β are continuos,
we conclude that φα(F−1(W ∩ Vβ) ∩ Uα) is open for all α and all β.
Hence, F−1(W ∩Vβ) is open for all β, so F−1(W ) = ∪β∈JF−1(W ∩Vβ)
is open. This shows that F is continuous.

On the other hand, if F is continous, then all its representations are
also continuous since all chart maps are homeomorphisms. Thus, F is
a C0-map. �

Remark 4.6. In the following we will no longer distinguish between
C0-manifolds and topological manifolds.7 Both descriptions are useful.
Sometimes we are given a set with charts (like in the example of the
manifold of lines in the plane). In other cases, we are given a topological
space directly (like in all examples when our manifold arises as a subset
of another manifold, e.g., Rn).

Remark 4.7. Notice that a C-manifold may equivalently be defined
as a topological manifold where all transition functions are of class C.

In the definition of a manifold, several textbooks assume the topology
to be Hausdorff and second countable. These properties have important

7What we have proved above is that the category of C0-manifolds and the cate-
gory of topological manifolds are isomorphic, if you know what categories are.
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consequences (like the existence of a partition of unity which is funda-
mental in several contexts, e.g., in showing the existence of Riemannian
metrics, in defining integrals and in proving Stokes theorem), but are
not strictly necessary otherwise, so we will not assume them here unless
explicitly stated. Also notice that non-Hausdorff manifolds often arise
out of important, natural constructions.

Example 4.8 (The line with two origins). Let M := R ∪ {∗} where
{∗} is a one-element set (and ∗ 6∈ R). Let U1 = R, φ1 = Id, and
U2 = (R\{0})∪{∗} with φ2 : U2 → R defined by φ2(x) = x if x ∈ R\{0}
and φ2(∗) = 0. One can easily see that this is a C0-atlas (actually a
C∞-atlas, for the transition functions are just identity maps). On the
other hand, the induced topology is not Hausdorff, for 0 and ∗ do not
have disjoint open neighborhoods.

Remark 4.9. Every manifold that is defined as a subset of Rn by
the implicit function theorem inherits from Rn the property of being
Hausdorff.

4.1. Manifolds by local data. The transition maps φαβ are actually
all what is needed to define a manifold (with a specific atlas). Namely,
assume that we have an index set I and

(1) for each α ∈ I a nonempty open subset Vα of Rn, and
(2) for each β different from α an open subset Vαβ of Vα and a
C-map φαβ : Vαβ → Vβα,

such that, for all α, β, γ,

(i) φαβ ◦ φβα = Id, and
(ii) φβγ(φαβ(x)) = φαγ(x) for all x ∈ Vαβ ∩ Vαγ.
On the topological space M̃ , defined as the disjoint union of all the

Vαs, we introduce the relation x ∼ y to hold if either x = y or, for some
α and β, x ∈ Vαβ and y = φαβ(x). By the conditions above this is an

equivalence relation. We then define M as the quotient space M̃/ ∼
with the quotient topology. We denote by π : M̃ → M the canonical
projection and set

Uα := π(Vα).

Note that, since π−1(Uα) = Vαt
⊔
β 6=α φαβ(Vαβ) and the φαβs are home-

omorphisms, each Uα is open. Also note that for each q ∈ Uα there is
a unique xq ∈ Vα with π(xq) = q; we use this to define a map

φα : Uα → Rn

which sends q to xq. It is clear that this map is continuous and open
and that its image is Vα. Moreover, if x ∈ Uα ∩Uβ, the unique xq ∈ Vα
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with π(xq) = q and the unique yq ∈ Vβ with π(yq) = q are related by
yq = φαβ(xq). It then follows that φαβ(x) = φβ(φ−1

α (x)) for all x ∈ Vαβ.
Hence, {(Uα, φα)}α∈I is a C-atlas on M . We say that the local data
(Vα, Vαβ, φαβ) define the manifold M by the C-equivalence class of this
atlas.

Remark 4.10. This definition of a manifold is equivalent to the pre-
vious one. Above we have seen how to define M and assign it an atlas.
Conversely, if we start with a manifold M and a C-atlas {(Uα, φα)}α∈I
on it, we define Vα := φα(Uα), Vαβ := φα(Uα ∩ Uβ) and φαβ as the
usual transition maps. One can easily see that the two constructions
are inverse to each other.

Example 4.11. Let I = {1, 2}, V1 = V2 = R, V12 = V21 = R \ {0} and
φ12 = φ21 = Id. Then M is the line with two origins of Example 4.8.
This example shows that manifolds constructed by local data may be
non Hausdorff.

Example 4.12. Let I = {1, 2}, V1 = V2 = Rn, V12 = V21 = Rn \ {0}
and φ12(x) = φ21(x) = x

||x||2 . As this actually defines the atlas one gets

using the stereographic projections, we see that M is the n-sphere Sn.

5. Bump functions and partitions of unity

A bump function is a nonnegative function that is identically equal
to 1 in some neighborhood and zero outside of a larger compact neigh-
borhood.8 Bump functions are used to extend locally defined objects
to global ones. A notion that will be useful is that of support of a
function, defined as the closure of the set on which the function does
not vanish:

supp f := {x ∈M | f(x) 6= 0}, f ∈ C(M).

An important fact is that bump functions exist. We start with the case
of R. Following [5], we first define

f(t) :=

{
e−

1
t , t > 0,

0 t ≤ 0,

which is C∞ and hence Ck for every k. Next we set

g(t) :=
f(t)

f(t) + f(1− t)
and finally

h(t) = g(t+ 2)g(2− t).
8Definitions of bump functions vary in the literature.



16 A. S. CATTANEO

Notice that h is C∞, and hence Ck for every k, nonnegative, is identically
equal to 1 in [−1, 1] and has support equal to [−2, 2]. More generally,
for every y ∈ Rn and every R > 0, we define

ψy,R(x) := h

(
2||x− y||

R

)
.

This is a C∞-function on Rn which is nonnegative, equal to 1 in the
closed ball with center y and radius R/2 and with support the closed
ball with center y and radius R.

Lemma 5.1. Let M be a Hausdorff Ck-manifold, k ≥ 0 Then for every
q ∈ M and for every open U with U 3 q, there is a bump function
ψ ∈ Ck(M) with suppψ ⊂ U which is identically equal to 1 in an open
subset V of U that contains q.

Proof. Pick an atlas {(Uα, φα)}α∈I , and let α be an index such that
Uα 3 q. Let U ′ = φα(U ∩ Uα) and y = φα(q). Let R > 0 and ε > 0 be
such that the open ball with center y and radius R+ ε is contained in
U ′ (this is possible, by definition, since U ′ is open). Let Vα denote the
open ball with center y and radius R/2, Wα the open ball with center
y and radius R and Kα the closure of Wα, i.e., the closed ball with
center y and radius R. Notice that by the Heine–Borel theorem Kα is
compact. Then set V = φ−1

α (Vα), W = φ−1
α (Wα) and K = φ−1

α (Kα).
Finally, set ψ(x) = ψy,R(φα(x)) for x ∈ Uα and ψ(x) = 0 for x ∈M\Uα.
We claim that ψ has the desired properties.

First, observe that ψ is identically equal to 1 in V and that V is open
in Uα and hence in M . Next observe that by Lemma A.8 K is compact
in Uα and hence in M . By the Hausdorff condition, Lemma A.11
implies that K is also closed in M . Hence suppψ = K ⊂ Uα.

Finally, observe that W is also open in Uα and hence in M ; hence
W ∩Uβ is open for all β. We also clearly have that K ∩Uβ is closed for
all β as we have already proved that K is closed. Let Wβ := φβ(W∩Uβ)
and Kβ := φβ(K ∩ Uβ). We have that Wβ is open, Kβ is closed, and
Kβ is the closure of Wβ. Now the representation ψβ of ψ in φβ(Uβ) has
support equal to Kβ, so it is zero in the complement of Kβ and hence
smooth for every x in there. For x ∈ Kβ, we have ψβ(x) = ψy,R(φβα(x)).
Hence ψβ is of class Ck in the open subset Wβ. Finally, let χ denote
ψβ or one of its derivatives up to order k, and χy,R the corresponding
derivative of ψy,R. Then χ(x) = χy,R(φβα(x)) for every x ∈ Kβ. By the
continuity of χy,R and of φβα, we then have that χ is continuous on the
whole of Kβ. Hence ψβ is of class Ck. �
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Remark 5.2. In the Example 4.8 of the line with two roigins, we see
that a bump function around 0 in φ1(U1) has a support K1, but the
corresponding K is not closed as K2 is K1 \ {0}.

As a first application, we can give the following nice characterization
of C-maps.

Proposition 5.3. Let F : M → N be a set theoretic map between
C-manifolds with N Hausdorff. Then F is a C-map iff F ∗(C(N)) ⊂
C(M).

Proof. If F is a C-map and f a C-function, we immediately see, choosing
representations in charts, that F ∗f is also a C-function.

If, on the other hand, F ∗(C(N)) ⊂ C(M), we see that F is a C-map
by the following consideration. Let FWU be a representation. Pick any
point p ∈ W and let ψ be a bump function as in Lemma 5.1 with
q = F (p). Define f i(x) := φiU(x)ψ(x) for x ∈ U and 0 otherwise. Then
f i ∈ C(N) and hence F ∗f i ∈ C(M); i.e., (F ∗f i)◦φ−1

W is a C-function on
φW (W ). Denoting by V the neighborhood of q where ψ is identically
equal to 1, for u ∈ φW (F−1(V )∩W ) we have (F ∗f i)◦φ−1

W (u) = F i
WV (u),

which shows that the ith component of FWV is a C-map in a neighbor-
hood of φW (p). Since both p and i are arbitrary, FWU is a C-map. �

Remark 5.4. The condition that the target be Hausdorff is essential.
Take for example N to be the line with two origins of Example 4.8 and
M = R. Consider the map F : M → N defined by

F (x) =

{
0 x ≤ 0

∗ x > 0

This map is not continuous: in fact, the preimage of the open set
R = U1 ⊂ N is the interval (−∞, 0] which is not open in M . On
the other hand, the pullback of every continuous function f on N is
the constant function on M , which is continuos (even C∞). To see
this, simply observe that if x0 := f(0) and x∗ := f(∗) where distinct
points in R, then we could find disjoint open neighborhoods U0 and
U∗ of them. But then f−1(U0) and f−1(U∗) would be disjoint open
neighborhoods of 0 and ∗, respectively, which is impossible, since N is
not Hausdorff.

The next important concept is that of partition of unity, roughly
speaking the choice of bump functions that decompose the function
1. This is needed for special constructions (e.g., of integration or of
Riemannian metrics) and is not guaranteed unless extra topological
assumptions are made. Even with assumptions, one in general needs
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infinitely many bump functions. To make sense of their sum, one as-
sumes that in a neighborhood of each point only finitey many of them
are different from zero. To make this more precise, we say that a col-
lection {Ti}i∈I of subsets of a topological space is locally finite if every
point in the space possesses an open neighborhood that intersects non-
trivially only finitely many Tis.

Definition 5.5. Let M be a C-manifold. A partition of unity on M is
a collection {ρj}j∈J of of C-bump functions on M such that:

(1) {supp ρj}j∈J is locally finite, and
(2)

∑
j∈J ρJ(x) = 1 for all x ∈M .

One often starts with a cover {Uα}α∈I of M—e.g., by charts—and
looks for a partition of unity {ρj}j∈J such that for every j ∈ J there
is an αj ∈ I such that supp ρj ⊂ Uαj . In this case, one says that the
partition of unity is subordinate to the given cover.

Theorem 5.6. Let M be a compact Hausdorff Ck-manifold, k ≥ 0.
Then for every cover by charts there is a finite partition of unity sub-
ordinate to it.

Proof. Let {(Uα, φα)}α∈I be an atlas. For x ∈ Uα, let ψx,α be a bump
function with support inside Uα and equal to 1 on an open subset Vx,α
of Uα containing x, see Lemma 5.1. Since {Vx,α}x∈M,α∈I is clearly a
cover of M and M is compact, we have a finite subcover {Vxj ,αj}j∈J .
Since each x is contained in some Vxk,αk , we have ψxk,αk(x) = 1 and
hence

∑
j∈J ψxj ,αj(x) > 0. Thus,

ρj :=
ψxj ,αj∑
k∈J ψxk,αk

, j ∈ J

is a partition of unity subordinate to the cover {Uα}α∈I . �

A more general theorem, for whose proof we refer to the literature,
e.g., [3, 5], is the following:

Theorem 5.7. Let M be a Hausdorff, second countable Ck-manifold,
k ≥ 0. Then for every open cover there is a partition of unity subordi-
nate to it.

Recall that a topological space S is second countable if there is a
countable collection B of open sets such that every open set of S can
be written as a union of some elements of B. Note that Rn is second
countable with B given, e.g., by the open balls with rational radius and
rational center coordinates. As a subset of a second countable space is
automatically second countable in the relative topology, we have that
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manifolds defined via the implicit function theorem in Rn are second
countable. Hence we have

Remark 5.8. Every manifold that is defined as a subset of Rn by
the implicit function theorem inherits from Rn the property of being
Hausdorff and second countable.

6. Differentiable manifolds

A Ck-manifold with k ≥ 1 is also called a differentiable manifold. If
k = ∞, one also speaks of a smooth manifold. The Ck-morphisms are
also called differentiable maps, and also smooth maps in case k = ∞.
Recall the following

Definition 6.1. Let F : U → V be a differentiable map between open
subsets of Cartesian powers of R. The map F is called an immersion if
dxF is injective ∀x ∈ U and a submersion if dxF is surjective ∀x ∈ U .

Then we have the

Definition 6.2. A differentiable map between differentiable manifolds
is called an immersion if all its representations are immersions and a
submersion if all its representations are submersions. An embedding of
differentiable manifolds is an embedding in the topological sense, see
Definition A.12, which is also an immersion.

Observe that to check whether a map is an immersion or a submer-
sion one just has to consider all representations for a given choice of
atlases.

One can prove that the image of an embedding is a submanifold (and
this is one very common way in which submanifolds arise in examples).

Remark 6.3. Some authors call submanifolds the images of (injective)
immersions and embedded submanifolds (or regular submanifolds) the
images of embeddings. Images of immersions are often called immersed
submanifolds. This terminology unfortunately is different in different
textbooks. Notice that only the image of an embedding is a submani-
fold if we stick to Definition 3.14.

Locally, we have the following characterization.

Proposition 6.4. Let F : N →M be an injective immersion. If M is
Hausdorff, then every point p in N has an open neighborhood U such
that F |U is an embedding.

Proof. Let (V, ψ) be a chart neighborhood of p. Since ψ(V ) is open, we
can find an open ball, say of radius R, centered at ψ(p) and contained
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in ψ(V ). The closed ball with radius R/2 centered at ψ(p) is then also
contained in ψ(V ) and is compact. Its preimage K under ψ is then also
compact, as ψ is a homeomorphism. By Lemma A.13, the restriction
of F to K is an embedding in the topological sense. It follows that
the restriction of F to an open neighborhood U of p contained in K
(e.g., the preimage under ψ of the open ball with radius R/4 centered
at ψ(p)) is also an embedding in the topolological sense, but it is also
an injective immersion. �

6.1. The tangent space. Recall that to an open subset of Rn we
associate another copy of Rn, called its tangent space. Elements of
this space, the tangent vectors, also have the geometric interpretation
of velocities of curves passing through a point or of directions along
which we can differentiate functions. We will use all these viewpoints
to give different caracterizations of tangent vectors to a manifold, even
though we relegate the last one, directional derivatives, to Section 7.
In the following M is an n-dimensional Ck-manifold, k ≥ 1.

Let us consider first the case when M is defined in terms of con-
straints, i.e., as Φ−1(c) with Φ: Rn → Rl satisfying the condition of
the implicit function theorem that dqΦ is surjective for all q ∈M . We
can then naturally define the tangent vectors at q ∈M as those vectors
in Rn that do not lead us outside of M , i.e., as the directions along
which Φ does not change. More precisely, a vector v ∈ Rn is tangent
to M at q if

∑n
j=1 v

j ∂Φi

∂xj
(q) = 0 for all i = 1, . . . , l (or, equivalently,

dqΦ v = 0). This viewpoint has several problems. The first is that it
requires M to be presented in terms of constraints. The second is that
it is not immediately obvious that this definition is independent of the
choice of constraints. The third is that this definition is not necessarily
the most practical way of defining the tangent vectors when one needs
to make computations. It is on the other hand useful to remark that
tangent vectors at q ∈ M , according to this definition, are also the
same as the possible velocities of curves through q in M . Namely, let
γ : I → Rn be a differentiable map, with I an open interval, such that
γ(I) ⊂ M . This means that Φ(γ(t)) = c ∀t ∈ I. Let q = γ(u) for

some u ∈ I. Then, by the chain rule, we get
∑n

j=1
dγj

dt
∂Φi

∂xj
(q) = 0 for all

i = 1, . . . , l, which shows that dγ
dt

is tangent to M at q.
Notice that the last viewpoint, that of tangent vectors as possible

velocities of curves, can now be generalized also to manifolds not given
in terms of constraints. Namely, let γ : I →M be a differentiable map,
where I is an open interval with the standard manifold structure. For
a fixed u in I, we set q := γ(u). We wish to think of the velocity of γ
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at u as a tangent vector at q.9 The problem is that we do not know
how to compute derivatives of maps between manifolds. The solution
is to pick a chart (U, φU) on M with U 3 q. We now know how yet to
differentiate φU ◦ γ : I → Rn and define

vU =
d

dt
φU(γ(t))|t=u.

Notice that vU is an element of Rn and we wish to think of it as the
tangent vector we were looking for. We now have another problem,
however; namely, the value of vU depends on the choice of chart. On
the other hand, we know exactly how to relate values corresponding to
different chart. Let in fact (V, φV ) be another chart with V 3 q. We
define

vV =
d

dt
φV (γ(t))|t=u.

For t in a neighborhood of u, we have φV (γ(t)) = φU,V (φU(γ(t))); hence,
by the chain rule,

vV = dφU (q)φU,V vU .

All this motivates the following

Definition 6.5. A coordinatized tangent vector at q ∈ M is a triple
(U, φU , v) where (U, φU) is a chart with U 3 q and v is an element of
Rn. Two coordinatized tangent vectors (U, φU , v) and (V, φV , w) at q
are defined to be equivalent if w = dφU (q)φU,V v. A tangent vector at
q ∈ M is an equivalence class of coordinatized tangent vectors at q.
We denote by TqM , the tangent space of M at q, the set of tangent
vectors at q.

A chart (U, φU) at q defines a bijection of sets

(6.1) Φq,U : TqM → Rn

[(U, φU , v)] 7→ v

We will also simply write ΦU when the point q is understood. Using
this bijection, we can transfer the vector space structure from Rn to
TqM making ΦU into a linear isomorphism. A crucial result is that this
linear structure does not depend on the choice of the chart:

Lemma 6.6. TqM has a canonical structure of vector space for which
Φq,U is an isomorphism for every chart (U, φU) containing q.

9For this not to be ambiguous, we should assume that u is the only preimage of
q; otherwise, we can think that γ defines a family of tangent vectors at u.
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Proof. Given a chart (U, φU), the bijection ΦU defines the linear struc-
ture

λ ·U [(U, φU , v)] = [(U, φU , λv)],

[(U, φU , v)] +U [(U, φU , v
′)] = [(U, φU , v + v′)],

∀λ ∈ R and ∀v, v′ ∈ Rn. If (V, φV ) is another chart, we have

λ ·U [(U, φU , v)] = [(U, φU , λv)] =

= [(V, φV , dφU (q)φU,V λv)] = [(V, φV , λdφU (q)φU,V v)] =

= λ ·V [(V, φV , dφU (q)φU,V v)] = λ ·V [(U, φU , v)],

so ·U = ·V . Similarly,

[(U, φU , v)] +U [(U, φU , v
′)] = [(U, φU , v + v′)] =

= [(V, φV , dφU (q)φU,V (v+ v′))] = [(V, φV , dφU (q)φU,V v+ dφU (q)φU,V v
′)] =

= [(V, φV , dφU (q)φU,V v)] +V [(V, φV , dφU (q)φU,V v
′)] =

= [(U, φU , v)] +V [(U, φU , v
′)],

so +U = +V . �

From now on we will simply write λ[(U, φU , v)] and [(U, φU , v)] +
[(U, φU , v

′)] without the U label.
Notice that in particular we have

dimTqM = dimM

where dim denotes on the left-hand-side the dimension of a vector space
and on the right-hand-side the dimension of a manifold.

Let now F : M → N be a differentiable map. Given a chart (U, φU)
of M containing q and a chart (V, ψV ) of N containing F (q), we have
the linear map

dU,Vq F := Φ−1
F (q),V dφU (q)FU,V Φq,U : TqM → TF (q)N.

Lemma 6.7. The linear map dU,Vq F does not depend on the choice of
charts, so we have a canonically defined linear map

dqF : TqM → TF (q)N

called the differential of F at q.
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Proof. Let (U ′, φU ′) be also a chart containing q and (V ′, ψV ′) be also
a chart containing F (q). Then

dU,Vq F [(U, φU , v)] = [(V, ψV , dφU (q)FU,V v)] =

= [(V ′, ψV ′ , dψ(F (q))ψV,V ′ dφU (q)FU,V v)] =

= [(V ′, ψV ′ , dφ′U (q)FU ′,V ′ (dφU (q)φU,U ′)
−1v)] =

= dU
′,V ′

q F [(U ′, φU ′ , (dφU (q)φU,U ′)
−1v)] = dU

′,V ′

q F [(U, φU , v)],

so dU,Vq F = dU
′,V ′

q . �

We also immediately have the following

Lemma 6.8. Let F : M → N and G : N → Z be differentiable maps.
Then

dq(G ◦ F ) = dF (q)G dqF

for all q ∈M .

Remark 6.9. Notice that we can now characterize immersions and
submersions, introduced in Definition 6.2, as follows: A differentiable
map F : M → N is an immersion iff dqF is injective ∀q ∈ M and is a
submersion iff dqF is surjective ∀q ∈M .

We now return to our original motivation:

Remark 6.10 (Tangent space by constraints). Suppose M is a sub-
manifold of Rn defined by l constraints satisfying the conditions of
the implicit function theorem. We may reorganize the constraints as
a map Φ: Rn → Rl and obtain M = Φ−1(c) for some c ∈ Rl. The
conditions of the implicit function theorem are that dqΦ is surjective
for all q ∈ M . If we denote by ι : M → Rn the inclusion map, we
have that Φ(ι(q)) = c ∀q ∈ M , i.e., Φ ◦ ι is constant. This implies
dq(Φ ◦ ι) = 0 and hence, by Lemma 6.8, dι(q)Φ dqι = 0, which in turns
implies dqι(TqM) ⊂ ker dι(q)Φ. Since dι(q)Φ is surjective, dqι is injective
and dimTqM = dimM = n− l, we actually get dqι(TqM) = ker dι(q)Φ,
which can be rewritten as

TqM = ker dqΦ

if we abandon the pedantic distinction between q and ι(q) and regard
TqM as a subspace of Rn. This is a common way of computing the
tangent space. To be more explicit, let Φ1, . . . ,Φl be the components
of Φ. Then TqM = {v ∈ Rn |

∑n
j=1

∂Φi

∂xj
vj = 0 ∀i = 1, . . . , l}. This

can also be rephrased as saying that v is tangent to M at q if “q + εv
belongs to M or an infinitesimal ε.” Another interpretation is that, if
M is defined by constraints, then TqM is defined by the linearization
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of the constraints at q. One often writes this also using gradients and
scalar products on Rn, TqM = {v ∈ Rn | ∇Φi ·v = 0 ∀i = 1, . . . , l}, and
interprets this by saying that v is tangent to M at q if it is orthogonal
to the gradients of all contraints. This last viewpoint, however, makes
an unnecessary use of the Euclidean structure of Rn.

Example 6.11. The n-dimensional unit sphere Sn is the preimage of
1 of the function φ(x) =

∑n+1
i=1 (xi)2. By differentiating φ we then get

that the tangent space at x ∈ Sn is the space of vectors v in Rn+1

satisfying
∑n+1

i=1 v
ixi = 0. Making use of the Euclidean structure, we

can also say that the tangent vectors at x ∈ Sn are the vectors v in
Rn+1 orthogonal to x.

We finally come back to the other initial viewpoint in this subsection.
A differentiable curve in M is a differentiable map γ : I → M , where I
is an open subset of R with its standard manifold structure. For t ∈ I,
we define the velocity of γ at t as

γ̇(t) := dtγ1 ∈ Tγ(t)M

where 1 is the vector 1 in R. Notice that for M an open subset of Rn

this coincides with the usual definition of velocity.
For q ∈M , define Pq as the space of differentiable curves γ : I →M

such that I 3 0 and γ(0) = q. It is easy to verify that the map
Pq → TqM , γ 7→ γ̇(0) is surjective, so we can think of TqM as the
space of all possible velocities at q.

This observation together with Remark 6.10 yields a practical way
of computing the tangent spaces of a submanifold of Rn.

Example 6.12. Consider the group O(n) of orthogonal n×n matrices.
Since a matrix is specified by its entries, we may identify the space of
n × n matrices with Rn2

. A matrix A is orthogonal if AtA = Id.
We can then consider the map φ(A) = AtA − Id and regard O(n) as
the preimage of the zero matrix. We have however to be careful with
the target space: since the image of φ consists of symmetric matrices,
taking the whole space of n×n matrices would make some constraints
redundant. Instead we consider φ as a map from all n× n matrices to

the symmetric ones, hence as a map Rn2 → R
n(n+1)

2 . This shows that

dimO(n) = n(n−1)
2

. Alternatively, we may compute the dimension of
O(n) by computing that of its tangent space at some point, e.g., at
the identity matrix. Namely, consider a path A(t) with A(0) = Id.
Differentianting the defining relation and denoting Ȧ(0) by B, we get
Bt + B = 0. This shows that tangent vectors at the identity matrix

are the antisymmetric matrices and hence that dimTIdO(n) = n(n−1)
2

.
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More examples of this sort can be analyzed by considering the general
version of the implicit function theorem.

Theorem 6.13 (Implicit function theorem). Let F : Z → N be a
Ck-map (k > 0) of Ck-manifolds of dimensions m + n and n, respec-
tively. Given c ∈ N , we define M := F−1(c). If for every q ∈ M the
linear map dqF is surjective, then M has a unique structure of m-di-
mensional Ck-manifold such that the inclusion map ι : M → Z is an
embedding.

The proof is similar to the one in Cartesian powers of R by con-
sidering local charts. See, e.g., [5] for details. The considerations of
Remark 6.10 generalize to this case. Namely, the tangent space at
q ∈M can be realized as the kernel of dqF .

6.2. The tangent bundle. We can glue all the tangent spaces of an
n-dimensional Ck-manifold M , k ≥ 1, together:

TM := ∪q∈MTqM

An element of TM is usually denoted as a pair (q, v) with q ∈ M and
v ∈ TqM .10 We introduce the surjective map π : TM →M , (q, v) 7→ q.
Notice that the fiber TqM can also be obtained as π−1(q).
TM has the following structure of Ck−1-manifold. Let {(Uα, φα)}α∈I

be an atlas in the equivalence class defining M . We set Ûα := π−1(Uα)
and

φ̂α : Ûα → Rn × Rn

(q, v) 7→ (φα(q),Φq,Uαv)

where Φq,Uα is the isomorphism defined in (6.1). Notice that the chart
maps are linear in the fibers. The transition maps are then readily
computed as

(6.2) φ̂αβ(x,w) = (φαβ(x), dxφαβw)

Namely, they are the tangent lifts of the transition maps for M and
are clearly Ck−1.

Definition 6.14. The tangent bundle of the Ck-manifold M , k ≥ 1, is
the Ck−1-manifold defined by the equivalence class of the above atlas.

Remark 6.15. Observe that another atlas on M in the same Ck-equiv-
alence class yields an atlas on TM that is Ck−1-equivalent to previous
one.

10Notice that we now denote by v a tangent vector at q, i.e., an equivalence class
of coordinatized tangent vectors at q, and no longer an element of Rn.
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Remark 6.16. Notice that π : TM →M is a Ck−1-surjective map and,
if k > 1, a submersion.

Definition 6.17. If M and N are Ck-manifolds and F : M → N is a
Ck-map, then the tangent lift

F̂ : TM → TN

is the Ck−1-map
(q, v) 7→ (F (q), dqFv).

6.3. Vector fields. A vector field is the attachment of a vector to each
point; i.e., a vector field X on M is the choice of a vector Xq ∈ TqM
for all q ∈M . We also want this attachment to vary in the appropriate
differentiability degree. More precisely:

Definition 6.18. A vector field on a Ck-manifold M is a Ck−1-map
X : M → TM such that π ◦X = IdM .

Remark 6.19. In an atlas {(Uα, φα)}α∈I , M and the corresponding

atlas {(Ûα, φ̂α)}α∈I , a vector field X is represented by a collection of
Ck−1-maps Xα : φα(Uα)→ Rn. All these maps are related by

(6.3) Xβ(φαβ(x)) = dxφαβXα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩Uβ). Notice that a collection of
maps Xα satisfying all these relations defines a vector field and this is
how often vector fields are introduced (cf. equation (3.2) on page 9 for
functions).

Remark 6.20. The vector at q defined by the vector field X is usually
denoted by Xq as well as by X(q). The latter notation is often avoided
as one may apply a vector field X to a function f , see below, and in
this case the standard notation is X(f). We also use Xα to denote
the representation of X in the chart with index α, but this should not
create confusion with the notation Xq for X at the point q.

Note that vector fields may be added and multiplied by scalars and
by functions: if X and Y are vector fields, λ a real number and f a
function, we set

(X + Y )q := Xq + Yq,

(λX)q := λXq,

(fX)q := f(q)Xq.

This way the set Xk−1(M) of vector fields on M acquires the structure
of vector space over R and of module over Ck−1(M).
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The explicit representation of a vector field over an open subset U
of Rn depends on a choice of coordinates. If we change coordinates
by a diffeomorphism φ, the expression of a vector field changes by the
differential of φ. We have already made use of this in equation (6.3).
We now want to generalize this to manifolds.

Remark 6.21 (The push-forward of vector fields). Let F : M → N be
a Ck-map of Ck-manifolds. If X is a vector field on M , then dqF Xq is
a vector in TF (q)N for each q ∈ M . If F is a Ck-diffeomorphism, we
can perform this construction for each y ∈ N , by setting q = F−1(y),
and define a vector field, denoted by F∗X, on N :

(6.4) (F∗X)F (q) := dqF Xq, ∀q ∈M,

or, equivalently,

(F∗X)y = dF−1(y)F XF−1(y), ∀y ∈ N.

The R-linear map F∗ : X
k−1(M) → Xk−1(N) is called the push-forward

of vector fields. Note the if G : N → Z is also a diffeomorphism we
immediately have

(G ◦ F )∗ = G∗F∗.

We also obviously have (F∗)
−1 = (F−1)∗.

In case of a change of coordinates φ on an open subset of Rn, the
change of representation of a vector field is precisely described by the
push-forward by φ. In particular, we have Xα = (φα)∗X for the chart
labeled by α,11 and equation (6.3) can be written in the more trans-
parent form

(6.5) Xβ = (φαβ)∗Xα

Remark 6.22. The push-forward is also natural from the point of view
of our motivation of vectors as possible velocities of curves. If γ is a
curve in M tangent to X (i.e., d

dt
γ(t) = Xγ(t) for all t), then F ◦ γ is

tangent to F∗X (i.e., d
dt
F (γ(t)) = (F∗X)F (γ(t)) for all t), as is easily

verified.

Remark 6.23. The push-forward of vector fields is compatible with
the push-forward of functions defined in Remark 3.13. Namely, a simple

11We resort here to a very common and very convenient abuse of notation. The
precise, but pedantic expression should be Xα = (φα)∗X|Uα as φα is a diffeomor-
phism from Uα to φα(Uα). Similarly, (6.5) pedantically reads

(Xβ)|φβ(Uα∩Uβ)
= (φαβ)∗(Xα)|φα(Uα∩Uβ)

.
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calculation shows that, if X and f are a vector field and a function on
M and F : M → N is a diffeomorphism, then

F∗(fX) = F∗f F∗X.

Remark 6.24. If M and N are open subsets of Rn and we write
X̄ := F∗X, then, regarding X and X̄ as maps from M or N to Rn,
(6.4) explicitly reads

(6.6) X̄ ̄(x̄) =
n∑
j=1

∂F ̄

∂xj
(x)Xj(x), ∀x ∈M,

where x̄ := F (x).

We finally come to a last interpretation of vector fields. If U is an
open subset of Rn, X a Ck−1-vector field and f a Ck-function (k > 0),
then we can define

X(f) =
n∑
i=1

X i ∂f

∂xi
,

where on the right hand side we regard X as a map U → Rn. Notice
that the map Ck(U) → Ck−1(U), f 7→ X(f), is R-linear and satisfies
the Leibniz rule

X(fg) = X(f)g + fX(g).

This is a derivation in the terminology of subsection 7.1. If we now
have a Ck-manifold M and a vector field X on it, we can still define
a derivation Ck(M) → Ck−1(M) as follows. First we pick an atlas
{(Uα, φα)}α∈I . We then have the representation Xα of X in the chart
(Uα, φα) as in Remark 6.19. If f is a function on M , we assign to it
its representation fα as in Remark 3.4. We can then compute gα :=
Xα(fα) ∈ Ck−1(φα(Uα)) for all α ∈ I. From (3.4) and (6.5), we get,
using Remark 6.23, that

gβ = Xβ(fβ) = ((φαβ)∗Xα)((φαβ)∗fα) = (φαβ)∗(Xα(fα)) = (φαβ)∗gα,

which shows, again by (3.4), that the gαs are the representation of a
Ck−1-function g. We then set X(f) := g. In the k = ∞ case, one can
define vector fields as in Section 7.1. In this case, the interpretation of
the derivation f 7→ X(f) is immediate.

6.4. Integral curves. To a vector field X we associate the ODE

q̇ = X(q).

A solution, a.k.a. an integral curve, is a path q : I → M such that
q̇(t) = X(q(t)) ∈ Tq(t)M for all t ∈ I.
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Note that, by Remark 6.22, a diffeomorphism F sends a solution γ
of the ODE associated to X to a solution γ ◦F of the ODE associated
to F∗X.

Assume k > 1, so the vector field is continuously differentiable. The
local existence and uniqueness theorem as well as the theorem on de-
pendence on the initial values extend immediately to the case of Haus-
dorff Ck-manifolds, as it enough to have them in charts. The solution
is computed by solving the equation in a chart and, when we are about
to leave the chart, by taking the end point of the solution as a new
initial condition.

More precisely, if we want to solve the equation with initial value at
some point q ∈ M , we pick a chart (Uα, φα) around q and solve the
ODE for Xα in Rn with initial condition at φα(q). Composing with φ−1

α

then yields a solution in Uα that we denote by γα. If (Uβ, φβ) is another
chart around q, we get in principle another solution γβ. However, by
Remark 6.22, we immediately see that γα = γβ in Uα ∩ Uβ. When the
solutions leave the intersection, by uniqueness of limits on a Hausdorff
space, we get a unique value that shows that the solutions keep staying
equal.12 The resulting solution is simply denoted by γ with no reference
to the charts.

Remark 6.25. On a non-Hausdorff manifold the above construction
fails. Take the example of the line with two origins of Remark 4.8. Let
X be the vector field which in each of the two charts is the constant
vector 1. If we start with initial value q 6∈ {0, ∗}, then we may construct
two distinct solutions: one passing through 0 but not through ∗ and
another passing through ∗ but not through 0.

If the vector field vanishes at a point, then the integral curve passing
through that point is constant. If the vector field does not vanish at a
point, then it does not vanish on a whole neighborhood, so that through
each point in that neighborhood we have a true (i.e., nonconstant)
curve. The neighborhood can then be described as the collection of
all these curves. By a diffeomorphism one can actually stretch these
curves to straight lines, so that the neighborhood looks like an open
subset of Rn with the integral curves being parallel to the first axis.
More precisely, we have the

Proposition 6.26. Let X be a vector field on a Hausdorff manifold M .
Let m ∈M be a point such that Xm 6= 0. Then there is a chart (U, φU)

12Set T := sup{t : γα(t) ∈ Uα ∩ Uβ} = sup{t : γβ(t) ∈ Uα ∩ Uβ}. By uniqueness
of limits we have q1 := limt→T γα(t) = limt→T γβ(t). We now start again solving
the equation with initial condition at q1.
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with U 3 m such that (φU)∗X|U is the constant vector field (1, 0, . . . , 0).
As a consequence, if γ is an integral curve of X passing through U , then
φU ◦ γ is of the form {x ∈ φU(U) | x1(t) = x1

0 + t;xj(t) = xj0, j > 1}
where the xi0s are constants.

Proof. Let (V, φV ) be a chart with V 3 m. We can assume that
φV (m) = 0 (otherwise we compose φV with the diffeomorphism of
Rn, n = dimM , x 7→ x − φV (m)). Let XV := (φV )∗X|V . We have
XV (0) 6= 0, so we can find a linear isomorphism A of Rn such that

AXV (0) = (1, 0, . . . , 0).

Define φ′V := A ◦ φV and X ′V := (φ′V )∗X|V . Let Ṽ be an open subset
of φ′V (V ), W an open subset of the intersection of φ′V (V ) with x1 = 0,
and ε > 0, such that the map

σ : (−ε, ε)×W → Ṽ

(t, a2, . . . , an) 7→ Φ
X′V
t (0, a2, . . . , an)

is defined. The differential of σ at 0 is readily computed to be the
identity map. In particular, it is invertible; hence, by the inverse func-

tion theorem, Theorem 2.24, we can find open neighborhoods Ŵ of

(−ε, ε) ×W and V̂ of Ṽ such that the restriction of σ : Ŵ → V̂ is a

diffeomorphism. We then define φ̂V ′ := σ−1 ◦ φ′V and X̂ := (φ̂V ′)∗X =

σ−1
∗ X ′V . We claim that X̂ = (1, 0, . . . , 0). In fact, using (6.6),

(σ∗(1, 0, . . . , 0))i =
∂σi

∂t
=
∂(Φ

X′V
t )i

∂t
= (X ′V )i.

�

6.5. Flows. An integral curve is called maximal if it cannot be further
extended (i.e., it is not the restriction of a solution to a proper subset
of its domain). On a Hausdorff manifold, through every point passes
a unique maximal integral curve and to a vector field X we may then
associate its flow ΦX

t (see [5, paragraph 1.48] for more details): For
x ∈ M and t in a neighborhood of 0, ΦX

t (x) is the unique solution at
time t to the Cauchy problem with initial condition at x. Explicitly,

∂

∂t
ΦX
t (x) = X(ΦX

t (x))

and ΦX
0 (x) = x. We can rewrite this last condition more compactly as

ΦX
0 = IdM

and use the existence and uniqueness theorem to show that

(6.7) ΦX
t+s(x) = ΦX

t (ΦX
s (x))
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for all x and for all s and t such that the flow is defined.
By the existence and uniqueness theorem and by the theorem on

dependency on the initial conditions, for each point x ∈M there is an
open neighborhood U 3 x and an ε > 0 such that for all t ∈ (−ε, ε) the
map ΦX

t : U → ΦX
t (U) is defined and is a diffeomorphism.

A vector field X with the property that all its integral curves exist
for all t ∈ R is called complete. If X is a complete vector field, then its
flow is a diffeomorphism

ΦX
t : M →M

for all t ∈ R. It is often called a global flow. Equation (6.7) can then
be rewritten more compactly as

ΦX
t+s = ΦX

t ◦ ΦX
s .

To see whether a vector field is complete, it is enough to check that all
its integral curves exist for some global time interval. In fact, we have
the

Lemma 6.27. If there is an ε > 0 such that all the integral curves of
a vector field X exist for all t ∈ (−ε, ε), then they exist for all t ∈ R
and hence X is complete.

Proof. Fix t > 0 (we leave the analogous proof for t < 0 to the reader).
Then there is an integer n such t/n < ε. For each initial condition x, we
can then compute the integral curve up to time t/n and call x1 its end
point. Next we can compute the integral curve with initial condition x1

up to time t/n and call x2 its end point, and so on. The concatenation
of all these integral curves is then an integral curve extending up to
time t. �

We then have the fundamental

Theorem 6.28. Every compactly supported vector field is complete. In
particular, on a compact manifold every vector field is complete.

The support of a vector field is defined, like in the case of functions,
as the closure of the set on which it does not vanish:

suppX := {q ∈M | Xq 6= 0}.
A vector field X is called compactly supported if suppX is compact.

Proof. For every q ∈ suppX there is a neighborhood Uq 3 q and an
εq > 0 such that all integral curves with initial condition in Uq exist
for all t ∈ (−εq, εq). Since {Uq}q∈suppX is a covering of suppX, and
suppX is compact, we may find a finite collection of points q1, . . . , qn
in suppX such that {Uq1 , . . . , Uqn} is also a covering. Hence all integral
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curves with initial condition in suppX exist for all t ∈ (−ε, ε) with
ε = min{εq1 , . . . , εqn}.

Outside of suppX, the vector field vanishes, so the integral curves
are constant and exist for all t in R. As a consequence, all integral
curves on the whole manifold exists for all t ∈ (−ε, ε). We finally apply
Lemma 6.27 �

Remark 6.29. For several local construction (e.g., the Lie derivative),
we will pretend that the flow of a given vector field X is complete. The
reason is that in these local constructions, we will always consider the
neighborhood of some point q and we will tacitly replace X by ψX,
where ψ is a bump function supported in a compact neighborhood of
q.

7. Derivations

In this section we discuss the interpretation of tangent vectors as
directions along which one can differentiate functions. To be more
explicit, let γ : I →M be a differentiable curve and let f be a differen-
tiable function on M . Then f ◦γ is a differentiable function on I which
we can differentiate. If u ∈ I and (U, φU) is a chart with γ(u) ∈ U , we
have

d

dt
f(γ(t))|t=u =

d

dt
fU(φU(γ(t)))|t=u =

∑
i

viU
∂fU
∂xi

,

where fU and vU are the representations of f and of the tangent vector
in the chart (U, φU), respectively. Notice that in this formula it is
enough for f to be defined in a neighborhood of γ(u).

This idea leads, in the case of smooth manifolds, to a definition
of the tangent space where the linear structure is intrinsic and does
not require choosing charts (not even at an intermediate stage). The
construction is also more algebraic in nature.

The characterizing algebraic property of a derivative is the Leib-
niz rule for differentiating products. From the topological viewpoint,
derivatives are characterized by the fact that, being defined as limits,
they only see an arbitrarily small neighborhood of the point where we
differentiate. The latter remark then suggests considering functions
“up to a change of the definition domain,” a viewpoint that turns out
to be quite useful.

Let M be a Ck-manifold, k ≥ 0. For q ∈M we denote by Ckq (M) the

set of Ck-functions defined in a neighborhood of q in M . Notice that by
pointwise addition and multiplication of functions (on the intersection
of their definition domains), Ckq (M) is a commutative algebra.
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Definition 7.1. We define two functions in Ckq (M) to be equivalent if

they coincide in a neighborhood of q.13 An equivalence class is called
a germ of Ck-functions at q. We denote by CkqM the set of germs at q
with the inherited algebra structure.

Notice that two equivalent functions have the same value at q. This
defines an algebra morphism, called the evaluation at q:

evq : CkqM → R
[f ] 7→ f(q)

where on the right hand side f denotes a locally defined function in
the class of [f ]. We are now ready for the

Definition 7.2. A derivation at q in M is a linear map D : CkqM → R
satisfying the Leibniz rule

D(fg) = Df evq g + evqfDg,

for all f, g ∈ CkqM . Notice that a linear combination of derivations at

q is also a derivation at q. We denote by DerkqM the vector space of
derivations at q in M . We wish to consider this vector space, which
we have defined without using charts, as the intrinsic definition of the
tangent space: we will see in Theorem 7.8 that this interpretation
agrees with our previous definition but only in the case of smooth
manifolds.

Remark 7.3. Notice that if U is an open neighborhood of q, regarded
as a Ck-manifold, a germ at q ∈ U is the same as a germ at q ∈M . So
we have CkqU = CkqM . As a consequence we have

DerkqU = DerkqM

for every open neighborhood U of q in M .

The first algebraic remark is the following

Lemma 7.4. A derivation vanishes on germs of constant functions
(the germ of a constant function at q is an equivalence class containing
a function that is constant in a neighborhood of q).

Proof. Let D be a derivation at q. First consider the germ 1 (the equiv-
alence class containing a function that is equal to 1 in a neighborhood
of q). From 1 · 1 = 1, it follows that

D1 = D1 1 + 1D1 = 2D1,

13More pedantically, f ∼ q if there is a neighborhood U of q in M contained in
the definition domains of f and g such that f|U = g|U .
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so D1 = 0. Then observe that, if f is the germ of a constant function,
then f = k1, where k is the evaluation of f at q. Hence, by linearity,
we have Df = k D1 = 0. �

Remark 7.5. Notice that all the above extends to a more geneal con-
text: one may define derivations an any algebra with a character (an
algebra morphism to the ground field). The above Lemma holds in the
case of algebras with one.

Let now F : M → N be a Ck-morphism. Then we have an algebra
morphism F ∗ : CkF (q)(N) → Ckq (M), f 7→ f ◦ F|F−1(V )

, where V is the

definition domain of f . This clearly descends to germs, so we have an
algebra morphism

F ∗ : CkF (q)N → CkqM,

which in turn induces a linear map of derivations

derkqF : DerkqM → DerkF (q)N
D 7→ D ◦ F ∗

It then follows immediately that, if G : N → Z is also a Ck-morphism,
then

derkq(G ◦ F ) = derkF (q)G derkqF.

This in particular implies that, if F is a Ck-isomorphism, then derkqF
is a linear isomorphism.

Let (U, φU) be a chart containing q. We then have an isomor-
phism derkqφU : DerkqU → DerkφU (q)φU(U). As in Remark 7.3, we have

DerkqU = DerkqM and DerkφU (q)φU(U) = DerkφU (q)Rn.14 Hence we have
an isomorphism

derkqφU : DerkqM
∼−→ DerkφU (q)Rn

for each chart (U, φU) containing q. It remains for us to understand
derivations at a point of Rn:

Lemma 7.6. For every y ∈ Rn, the linear map

Ay : DerkyRn → Rn

D 7→

Dx1

...
Dxn


is surjective for k ≥ 1 and an isomorphism for k =∞ (here x1, . . . , xn

denote the germs of the coordinate functions on Rn).

14To be more precise, we regard U as a submanifold of M and φU : U → φU (U)
as a diffeomorphism.
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Proof. For k ≥ 1 we may also define the linear map

By : Rn → DerkyRn

v =

v1

...
vn

 7→ Dv

with

Dv[f ] =
n∑
i=1

vi
∂f

∂xi
(y),

where f is a representative of [f ]. Notice that AyBy = Id, which implies
that Ay is surjective.

It remains to show that, for k = ∞, we also have ByAy = Id. Let
f be a representative of [f ] ∈ C∞y Rn. As a function of x, f may be
Taylor-expanded around y as

f(x) = f(y) +
n∑
i=1

(xi − yi) ∂f
∂xi

(y) +R2(x),

where the rest can be written as

R2(x) =
n∑

i,j=1

(xi − yi)(xj − yj)
∫ 1

0

(1− t) ∂2f

∂xi∂xj
(y + t(x− y)) dt.

(To prove this formula just integrate by parts.15) Define

σi(x) :=
∂f

∂xi
(y) +

n∑
j=1

(xj − yj)
∫ 1

0

(1− t) ∂2f

∂xi∂xj
(y + t(x− y)) dt,

so we can write

f(x) = f(y) +
n∑
i=1

(xi − yi)σi(x).

Observe that, for all i, both xi − yi and σi are C∞-functions;16 the
first vanishes at x = y, whereas for the second we have

σi(y) =
∂f

∂xi
(y).

15Observe that we may write

R2(x) =

∫ 1

0

(1− t) ∂
2

∂t2
f(y + t(x− y)) dt.

16Here it is crucial to work with k = ∞. For k ≥ 2 finite, in general σi is only
Ck−2, and for k = 1 it is not even defined.
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For a derivation D ∈ Der∞y Rn, we then have, also using Lemma 7.4,

D[f ] =
n∑
i=1

Dxi
∂f

∂xi
(y) = ByAy(D)[f ],

which completes the proof. �

From now on, we simply write Derq and derq instead of Der∞q and
der∞q .

Corollary 7.7. For every q in a smooth manifold, we have

dim DerqM = dimM

We finally want to compare the construction in terms of derivations
with the one in terms of equivalence classes of coordinatized tangent
vectors.

Theorem 7.8. Let M be a smooth manifold, q ∈ M , and (U, φU) a
chart containing q. Then the isomorphism

τq,U := (derqφU)−1A−1
φ(q)Φq,U : TqM

∼−→ DerqM

does not depend on the choice of chart. We will denote this canonical
isomorphism simply by τq.

If F : M → N is a smooth map, we have dqF = τ−1
F (q) derqF τq.

Proof. Explicitly we have,

(τq,U [(U, φU , v)])[f ] =
n∑
i=1

vi
∂(f ◦ φ−1

U )

∂xi
(φU(q)),

for every representative f of [f ] ∈ C∞q M . We then have, by the chain
rule,

(τq,V [(U, φU , v)])[f ] = (τq,V [(V, φV , dφU (q)φU,V v)])[f ] =

=
n∑

i,j=1

∂φiU,V
∂xj

(φU(q)) vj
∂(f ◦ φ−1

V )

∂xi
(φV (q)) =

=
n∑
i=1

vi
∂(f ◦ φ−1

U )

∂xi
(φU(q)) = (τq,U [(U, φU , v)])[f ].

The last statement of the Theorem also easily follows from the chain
rule in differentiating f ◦ F , f ∈ [f ] ∈ C∞F (q)N . �
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7.1. Vector fields as derivations. We now want to show that vector
fields on a smooth Hausdorff manifold are the same as derivations on
its algebra of functions.

Definition 7.9. A derivation on the algebra of functions C∞(M) of a
smooth manifold M is an R-linear map D : C∞(M) → C∞(M) that
satisfies the Leibniz rule

D(fg) = Df g + f Dg.

Notice that a linear combination of derivations is also a derivation. We
denote by Der(M) the C∞(M)-module of derivations on C∞(M).

Remark 7.10. This construction can be generalized to any algebra A.
By Der(A) one then denotes the algebra of derivations on A. In the
case A = C∞(M), Der(M) may be used as a shorthand notation for
Der(C∞(M)).

Remark 7.11. On a Ck-manifold M , k ≥ 1, one can define derivations
as linear maps Ck(M)→ Ck−1(M) that satisfy the Leibniz rule.

The first remark is that derivations, like derivatives, are insensitive
to changing functions outside of a neighborhood:

Lemma 7.12. Let M be a Hausdorff Ck-manifold, k ≥ 1. Let D be
a derivation and f a function that vanishes on some open subset U .
Then Df(q) = 0 for all q ∈ U .

Proof. Let ψ be a bump function as in Lemma 5.1. Then f = (1−ψ)f .
In fact, ψ vanishes outside of U , whereas f vanishes inside U . We then
have Df = D(1 − ψ) f + (1 − ψ)Df . Since f(q) = 0 = 1 − ψ(q), we
get Df(q) = 0. �

We then want to connect derivations with derivations at a point q.
Notice that, for every Ck-manifold, k ≥ 0, we have a linear map

γq : Ck(M)→ CkqM
that associates to a function its germ at q.

Lemma 7.13. Let M be a Hausdorff Ck-manifold. Then, for every
q ∈M , γq is surjective.

Proof. Let [f ] ∈ CkqM . Let g ∈ Ck(W ) be a representative of [f ] in some
open neighborhood W of q. Then pick an atlas {(Uα, φα)}α∈I , and let
α be an index such that Uα 3 q. Let U be an open neighborhood of
q strictly contained in W ∩ Uα (simply take the preimage by φα of an
open ball centered at φα(q) strictly contained in φα(W ∩ Uα)) and let
ψ be a bump function as in Lemma 5.1. Let h := gψ ∈ Ck(U). Then
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[h] = [f ]. Since g is identically equal to zero in the complement of U
inside Uα, we can extend it by zero to get a Ck-function on the whole
of M . �

Theorem 7.14. If M is a Hausdorff smooth manifold, we have a
canonical C∞(M)-linear isomorphism

τ : X(M)→ Der(M),

where X(M) is the C∞(M)-module of vector fields on M .

Proof. IfX is a vector field and f is a function, we define ((τ(X))f)(q) :=
(τqX(q))γqf . It is readily verified that τ(X) is a derivation. It is also
clear that τ is C∞(M)-linear and injective. We only have to show that
it is surjective.

If D is a derivation and [f ] ∈ C∞q , we define Dq[f ] := (Df)(q) for

any f ∈ γ−1
q ([f ]). (By Lemma 7.13 we know that γq is surjective.) By

Lemma 7.12 this is readily seen to be independent of the choice of f
and to be a derivation at q. We then define Xq := τ−1

q (Dq), which is
readily seen to depend smoothly on q. Hence we have found an inverse
map to τ . �

Remark 7.15. Because of the canonical identification proved above,
from now on we will use interchangeably TqM and DerqM , dqF and
derqF , X(M) and Der(C∞(M)). (We will also always assume M to be
Hausdorff.)

Let us now concentrate on the case where M = U is an open subset
of Rn (this is also the case of the representation in a chart). A vector
field X on U may be regarded as a map q 7→ (X1(q), . . . , Xn(q)) or as
a derivation that we write as

X =
n∑
i=1

X i ∂

∂xi
.

This useful notation also has a deeper meaning:
(

∂
∂x1 , . . . ,

∂
∂xn

)
is a

C∞(U)-linearly independent system of generators of X(U) = Der(U)
as a module over C∞(U).

Remark 7.16. A useful, quite common notation consists in defining

∂i :=
∂

∂xi
.

With this notation, a vector field on U reads X =
∑n

i=1X
i∂i. This

notation is neater and creates no ambiguity when a single set of coor-
dinates is used. Notice that, if f is a function, we may also write ∂if
instead of the more cumbersome ∂f

∂xi
.
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7.2. The Lie bracket. Derivations are in particular endomorphisms
and endomorphisms may be composed. However, in general, the com-
position of two derivations is not a derivation. In fact,

XY (fg) = X(Y (f)g + fY (g)) =

= XY (f)g + Y (f)X(g) +X(f)Y (g) + fXY (g).

On the other hand, we can get rid of the unwanted terms Y (f)X(g)
and X(f)Y (g) by skew-symmetrizing. This shows that

(7.1) [X, Y ] := XY − Y X
is again a derivation. The operation [ , ] is called the Lie bracket. Note
that

[X, [Y, Z]] = XY Z −XZY − Y ZX + ZY X.

This shows that

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

for all vector fields X, Y, Z.
This is just an example of a more general setting:

Definition 7.17. A Lie algebra is a vector space V endowed with a
bilinear map [ , ] : V × V → V , which is skew symmetric, i.e.,

[a, b] = −[b, a] ∀a, b ∈ V,
and satifies the Jacobi identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]], ∀a, b, c ∈ V.
The operation is usually called a Lie bracket.

Remark 7.18. Using skew-symmetry, the Jacobi identity may equiv-
alently be written

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0, ∀a, b, c ∈ V.

Example 7.19. V := Mat(n × n,R) with [A,B] := AB − BA is a
Lie algebra, where AB denotes matrix multiplication. More generally,
V := End(W ), W some vector space, [A,B] := AB − BA is a Lie
algebra, where AB denotes composition of endomorphism.

Definition 7.20. A subspace W of a Lie algebra (V, [ , ]) is called a
Lie subalgebra if [a, b] ∈ W ∀a, b ∈ W . Notice that W is a Lie algebra
itself with the restriction of the Lie bracket of V .

Example 7.21. Der(M) is a Lie subalgebra of EndR(C∞(M)).17

17More generally, if A is an algebra, i.e., a vector space with a bilinear operation,
we may still define derivations and Der(A) is a Lie subalgebra of End(A).
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Remark 7.22. Notice that X(M) is also a module over C∞(M); how-
ever, the Lie bracket is not C∞(M)-bilinear. Instead, as follows imme-
diately from (7.1), if f is a function and X, Y are vector fields, one
has

(7.2) [X, fY ] = f [X, Y ] +X(f)Y, [fX, Y ] = f [X, Y ]− Y (f)X.

If we work locally, i.e., for M = U an open subset of Rn, we can
write the Lie bracket of vector fields explicitly as follows (we use the
notation of Remark 7.16): let X =

∑n
i=1X

i∂i and Y =
∑n

i=1 Y
i∂i.

Then [X, Y ] =
∑n

i=1[X, Y ]i∂i with

(7.3) [X, Y ]i =
n∑
j=1

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
.

If X and Y are Ck-vector fields with 1 ≤ k < ∞ we can still define
their Lie bracket by this formula, but the results will be a Ck−1-vector
field.

Remark 7.23. If X and Y are vector fields on a smooth manifold M ,
their representations Xα and Yα are vector fields on the open subset
φα(Uα) of Rn. The representation [X, Y ]α of [X, Y ] is then given by

[X, Y ]iα =
n∑
j=1

(
Xj
α

∂Y i
α

∂xj
− Y j

α

∂X i
α

∂xj

)
.

This is in particular shows that the [X, Y ]αs transform according to

(6.2). Notice that
∑n

i,j=1 X
j
α
∂Y iα
∂xj

∂
∂xi

is also a vector field on φα(Uα) for
each α, but in general these vector fields do not transform according
to (6.2), so they do not define a vector field on M .

Remark 7.24. On a Ck-manifold, 1 ≤ k < ∞, we can define the
Lie bracket of vector fields by the local formula. The result will be a
globally defined Ck−1-vector field on M . This can be checked by an
explicit computation.

The Lie bracket of vector fields has several important applications.
It also has a geometric meaning, to which we will return in Section 7.4.

7.3. The push-forward of derivations. We will now define the push-
forward F∗ of derivations under a diffeomorphism F . We use the
same notation as for the push-forward of vector fields introduced in
Remark 6.21, as we will show that the two notions coincide.

Let M and N be smooth manifolds and F : M → N a diffeomor-
phism. Recall from subsection 3.1 that by F ∗ : C∞(N) → C∞(M),
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g 7→ F ∗g := g◦F we denote the pullback of functions.18 Also recall that
F ∗ is an R-linear map and that F ∗(fg) = F ∗f F ∗g, ∀f, g ∈ C∞(N).
If X is a vector field on M , regarded as a derivation, we define its
push-forward F∗X as a composition of endomorphisms of C∞(M):

F∗X := (F ∗)−1XF ∗.

Namely, if g is a function we have

F∗X(g) := (F ∗)−1(X(F ∗g)),

If G : N → Z is also a diffeomorphism, then we clearly have (G◦F )∗ =
G∗F∗.

Lemma 7.25. The push-forward maps vector fields to vector fields.

Proof. We just compute

F∗X(fg) = (F ∗)−1X(F ∗(fg)) = (F ∗)−1X(F ∗fF ∗g) =

= (F ∗)−1(X(F ∗f)F ∗g + F ∗fX(F ∗g)) =

= (F ∗)−1(X(F ∗f)) g + f (F ∗)−1(X(F ∗g)) = F∗X(f)g + fF∗X(g).

�

It is also clear that

F∗ : X(M)→ X(N)

is an R-linear map. By (7.1) we also see that

F∗[X, Y ] = [F∗X,F∗Y ]

for all X, Y ∈ X(M); one says that F∗ is a morphism of Lie algebras.
Moreover, for f ∈ C∞(M), we have

F∗(fX)(g) = (F ∗)−1(fX(F ∗g)) = (F ∗)−1f F∗X(g).

Using the push-forward F∗ of functions, defined in Remark 3.13 as
(F ∗)−1, we then have the nicer looking formula

F∗(fX) = F∗f F∗X.

We can summarize:

18The pullback is defined for any smooth map F , but for the following consder-
ations we need a diffeomorphism.
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Theorem 7.26. Let F : M → N be a diffeomorphism. Then the push-
forward F∗ is an R-linear map from C∞(M) to C∞(N) and from X(M)
to X(N) such that

F∗(fg) = F∗(f)F∗(g),

F∗(fX) = F∗(f)F∗(X),

F∗[X, Y ] = [F∗X,F∗Y ],

∀f, g ∈ C∞(M) and ∀X, Y ∈ X(M). If G : N → Z is also a diffeomor-
phism, then

(G ◦ F )∗ = G∗F∗.

The push-forward of vector fields regarded as derivations agrees with
the definition we gave in Remark 6.21:

Proposition 7.27. Let F : M → N be a diffeomorphism and X a
vector field on M . Then

(F∗X)y = dF−1(y)F XF−1(y), ∀y ∈ N.
Equivalently,

(7.4) (F∗X)F (q) = dqF Xq, ∀q ∈M.

Proof. We use the notations of subsection 7.1. Let [f ] ∈ CF (q)N and
f ∈ γ−1

F (q)[f ] ⊂ C∞(N). Since γq(f ◦ F ) = F ∗[f ], we get

(F∗X)F (q)[f ] = (F∗X(f))(F (q)) = (X(f ◦ F ))(q) =

= Xq(F
∗[f ]) = (derqFXq)[f ].

Finally, we recall from Theorem 7.8 on page 36 that, up to the isomor-
phism τq : TqM

∼−→ DerqM , derqF and dqF are the same thing. �

We finish with the following important

Proposition 7.28. Let ΦX
t denote the flow of a vector field X. Then,

for every diffeomorphism F : M → N and for every vector field X on
M , we have

F ◦ ΦX
t ◦ F−1 = ΦF∗X

t .

Proof. Let Ψt := F ◦ ΦX
t ◦ F−1. For every y ∈ N we have Ψ0(y) = y

and

d

dt
Ψt(y) = dΦXt (F−1(y))F

d

dt
ΦX
t (F−1(y)) = dΦXt (F−1(y))FXΦXt (F−1(y)) =

= (F∗X)F (ΦXt (F−1(y))) = (F∗X)Ψt(y),

which shows that Ψt is the flow of F∗X. �
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7.4. The Lie derivative. Vector fields may be regarded as directions
along which we can differentiate functions. The expression X(f) cor-
responds precisely to this. If we regard Xq as an element of TqM , then
we also have

X(f)(q) = dqfXq.

More geometrically, we can define this differentiation as the change of
the function along the flow of the vector field. This viewpoint allows
extending differentiation to vector fields as well (and also more gener-
ally to other objects, like densities or tensor fields, that we will consider
in the following).

Let X be a vector field on M and let ΦX
t denote its flow (we assume

here that M is Hausdorff). The Lie derivative of a function f along the
vector field X is defined as

LXf :=
∂

∂t

∣∣∣
t=0
f ◦ ΦX

t

or, equivalently,

LXf =
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗f = lim

h→0

(ΦX
−h)∗f − f
h

= lim
h→0

f − (ΦX
h )∗f

h
.

A simple computation shows that

(7.5) LXf = X(f).

Namely,

LXf(q) = (
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗f)(q) =

∂

∂t

∣∣∣
t=0
f(ΦX

t (q)) = dqfXq.

We now extend this definition to vector fields. Namely, the Lie derivative
of a vector field Y along the vector field X is defined as

LXY :=
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗Y = lim

h→0

(ΦX
−h)∗Y − Y

h
= lim

h→0

Y − (ΦX
h )∗Y

h
.

Lemma 7.29. For all X, Y ∈ X(M) we have

(7.6) LXY = [X, Y ].

This yields a geometric interpretation of the Lie bracket.

Proof. By definition of the push-forward of a vector field, using push-
forward of functions instead of pullback, we have

((ΦX
−t)∗Y )(g) = (ΦX

−t)∗(Y ((ΦX
−t)
−1
∗ g)).

Differentiation at t = 0 then yields

(LXY )(g) = LX(Y (g))− Y (LXg) = X(Y (g))− Y (X(g)),
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where we have also used (7.5). As this holds for all g ∈ C∞(M), the
Lemma is proved. �

Notice that by its definition, or by the explicit formulae (7.5) and
(7.6), the Lie derivative LX is R-linear. Morever, if f is a function and
Ξ is a function or a vector field, we have

LX(fΞ) = LXf Ξ + f LXΞ.

Remark 7.30. The Lie derivative is a beautiful construction that gives
a geometrical (or dynamical) meaning to algebraic concepts like the
application of a vector field to a function or the Lie bracket of two
vector fields. To make full sense of it, it seems however that we should
have assumed the flow of the vector field X to be global. The reason
why we do not need it is that in order to compute LXΞ at some point
q ∈M we can replace X by the compactly supported vector field ψX,
where ψ is a bump function supported around q. Note that a different

bump function ψ̃ will yield the same result. In fact,

Lψ̃XΞ− LψXΞ = lim
h→0

(Φψ̃X
−h )∗Y − (ΦψX

−h )∗Y

h

which vanishes on the neighborhood V of q where ψ and ψ̃ coincide.
In the rest of this section, we will always assume that the flow of X is
global or it has been made global by this construction.

The composition property of flows (ΦX
t+s = ΦX

t ◦ ΦX
s ) implies the

following useful

Lemma 7.31. Let Ξ be a function or a vector field. Then

∂

∂t

∣∣∣
t=s

(ΦX
−t)∗Ξ = (ΦX

−s)∗LXΞ = LX(ΦX
−s)∗Ξ

for all s for which the flow is defined.

Proof.

∂

∂t

∣∣∣
t=s

(ΦX
−t)∗Ξ = lim

h→0

(ΦX
−s−h)∗Ξ− (ΦX

−s)∗Ξ

h
= (ΦX

−s)∗ lim
h→0

(ΦX
−h)∗Ξ− Ξ

h
.

The second equality follows similarly from

lim
h→0

(ΦX
−s−h)∗Ξ− (ΦX

−s)∗Ξ

h
= lim

h→0

(ΦX
−h)∗(Φ

X
−s)∗Ξ− (ΦX

−s)∗Ξ

h
.

�

Corollary 7.32. Let X a be vector field. A function f is preserved
by the flow of X, i.e., (ΦX

t )∗f = f ∀t, if and only if X(f) = 0. A
vector field Y is preserved by the flow of X, i.e., (ΦX

t )∗Y = Y ∀t, if
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and only if [X, Y ] = 0. In particular, X is preserved by its own flow:
(ΦX

t )∗X = X ∀t.

Notice that as the Lie bracket is skew-symmetric, the condition for
vector fields is symmetric: namely, Y is preserved by the flow of X if
and only if X is preserved by the flow of Y . An even more symmetric
statement is provided by the next

Proposition 7.33. The flows of two vector fields commute if and only
if the two vector fields Lie commute. In formulae:

ΦY
s ◦ΦX

t = ΦX
t ◦ΦY

s ∀s, t for which the flows are defined⇔ [X, Y ] = 0.

Proof. By Proposition 7.28, we have

(ΦY
s )−1 ◦ ΦX

t ◦ ΦY
s = Φ

(ΦY−s)∗X
t

If [X, Y ] = 0, then (ΦY
−s)∗X = X and the flows commute. If on the

other hand the flows commute, then we get that Φ
(ΦY−s)∗X
t = ΦX

t ∀t, s;
by deriving at t = 0, we then get (ΦY

−s)∗X = X ∀s, which implies
[X, Y ] = 0. �

There is one more way of characterizing and computing the Lie
bracket:

Lemma 7.34. On an open subset of Rn we have

∂2

∂s∂t

∣∣∣
s=t=0

(ΦX
t )−1 ◦ (ΦY

s )−1 ◦ ΦX
t ◦ ΦY

s = [Y,X].

Proof. Let Φs,t := (ΦX
t )−1 ◦ (ΦY

s )−1 ◦ΦX
t ◦ΦY

s . By Proposition 7.28, we
have

Φs,t = (ΦX
t )−1 ◦ Φ

(ΦY−s)∗X
t .

Hence
∂

∂t

∣∣∣
t=0

Φs,t = −X + (ΦY
−s)∗X.

Thus,
∂2

∂s∂t

∣∣∣
s=t=0

Φs,t = LYX.

�

Finally, we have the following important property:

Lemma 7.35. Let Ξ be a function or a vector field and let X and Y
be vector fields. Then

LX+Y Ξ = LXΞ + LY Ξ,

LXLY Ξ− LY LXΞ = L[X,Y ]Ξ.
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These formulae say that the map X 7→ LX from vector fields to linear
operators (on the vector space of functions or on that of vector fields)
is R-linear and that

[LX , Ly] = L[X,Y ],

where [ , ] on the left hand side denotes the commutator of linear
operators.

One easy way to prove them is by the the explicit formulae (7.5) and
(7.6). The first identity is then obvious, whereas the second is just the
definition of the Lie bracket if Ξ is a function and the Jacobi identity
if Ξ is a vector field. If we are in the image of a chart (i.e., if we work
on an open subset of Rn), we also have a proof based directly on the
definition of Lie derivative; this is interesting, for this proof will apply
to other cases as well.

Proof. Let Ψt := ΦX+Y
t ◦ΦY

−t ◦ΦX
−t. We have Ψ0 = Id and ∂Ψt

∂t
|t=0 = 0.

Hence

0 =
∂

∂t

∣∣∣
t=0

(Ψt)∗Ξ = −LX+Y Ξ + LXΞ + LY Ξ.

For the second identity consider again Φs,t := (ΦX
t )−1◦(ΦY

s )−1◦ΦX
t ◦ΦY

s .
We have

∂

∂t

∣∣∣
t=0

(Φs,t)∗Ξ = LXΞ− (ΦY
−s)∗LX(ΦY

s )∗Ξ,

so

∂2

∂s∂t

∣∣∣
s=t=0

(Φs,t)∗Ξ = −LY LXΞ + LXLY Ξ.

Again, by Proposition 7.28, we have Φs,t = (ΦX
t )−1 ◦ Φ

(ΦY−s)∗X
t , so

∂

∂t

∣∣∣
t=0

(Φs,t)∗Ξ = LXΞ− L(ΦY−s)∗X
Ξ.

By definition of Lie derivative, (ΦY
−s)∗X = X + s LYX +O(s2). By the

just proved first identity, we then have

L(ΦY−s)∗X
Ξ = LXΞ + s LLYXΞ +O(s2).

Finally,

∂2

∂s∂t

∣∣∣
s=t=0

(Φs,t)∗Ξ = −LLYXΞ = L[X,Y ]Ξ.

�
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7.5. Plane distributions. In this section we want to generalize the
results of Section 6.4 to the case when we want to integrate several
ODEs simultaneously. For simplicity we focus on the smooth case
only. The main goal will be to prove the Frobenius theorem, which
has several applications. (We will see some in Sections 9.8.2, 10.3 and
10.4.)

Definition 7.36. A k-plane distribution D, or simply a k-distribution
or just a distribution,19 on a smooth n-dimensional manifold M is a
collection {Dq}q∈M of linear k-dimensional subspaces Dq ∈ TqM for all
q ∈M . (Of course we assume k ≤ n.) The number k is also called the
rank of the distribution.

We are interested in distributions that vary smoothly over M . We
present here a preliminary definition that is enough for the applications
in this section; we will return to a nicer, equivalent characterization
later (see Corollary 8.15).

Definition 7.37. A k-distribution D on M is called smooth if every
q in M possesses an open neighborhood U and smooth vector fields
X1, . . . , Xk defined on U such that

Dx = span{(X1)x, . . . , (Xk)x}
for all x ∈ U . The vector fields X1, . . . , Xk are also called (local)
generators for D on U .

Remark 7.38. If one can take U to be the whole of M , one speaks
of global generators. In the definition we require the existence of local
generators only, as several interesting distributions do not admit global
generators. See the examples below.

A vector field X on M is said to be tangent to a distribution D if
Xq ∈ Dq for all q ∈ M . Linear combinations of vector fields tangent
to a given distribution are also tangent to it. We denote by Γ(D) the
R-vector space and C∞(M)-module of vector fields tangent to D. Note
that Γ(D) is a subspace of X(M).

Definition 7.39. A smooth distribution D on M is called involutive if
Γ(D) is a Lie subalgebra of X(M); i.e., when [X, Y ] ∈ Γ(D) for all X
and Y in Γ(D).

Remark 7.40. Note that a distribution generated by the vector fields
X1, . . . , Xk is involutive if and only if, for all i and j, [Xi, Xj] is a linear

19Distributions in this sense have nothing to do with distributions introduced in
analysis as continuous linear functionals on spaces of test functions.
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combination, over the ring of functions, of the generators. The only-
if side follows directly from the the definition. For the if-implication,
observe that a vector field tangent to the distribution is necessarily a
linear combination of the generators. Moreover, by (7.2), we have[∑

i

fiXi,
∑
j

gjXj

]
=
∑
ij

((fiXi(gj)− giXi(fj))Xj + figj[Xi, Xj]) .

The first term in the sum is explicitly tangent to the distribution; the
second is so by the assumption.

Remark 7.41. The previous remark implies that a smooth distribu-
tion of rank 1 is always involutive. In fact, locally it is generated by a
single vector field, say X, and by skew-symmetry of the Lie bracket we
have [X,X] = 0.

Example 7.42. Let X be a nowhere vanishing vector field on M . Let
Dq := spanXq = {λXq, λ ∈ R}. Then D is a smooth 1-distribution.
It is also involutive by Remark 7.41. Note that different vector fields
may generate the same a 1-distribution.

Example 7.43. D = 0 (i.e., Dq = {0} for all q) is an involutive
0-distribution, and D = TM (i.e., Dq = TqM for all q) is an involutive
n-distribution, n = dimM . Note that D = TM may not admit global
generators. In the terminology to be introduced in Section 8.1, the
distribution TM has global generators if and only if M is parallelizable.
In Lemma 8.32 we will see that, e.g., M = S2 is not parallelizable.

Example 7.44. Let M = R3 \ {0} and D the distribution of planes
othogonal to the radial direction; i.e., Dx = {v ∈ R3 | v · x = 0}. In
other words, Dx consists of the vectors tangent at x to the sphere of
radius ||x||. This shows that this distribution has rank 2, is smooth
and is involutive. (Another way to see that it is involutive consists in
observing that X is tangent to D if and only if X(r) = 0, where r
is the function ||x||. If X and Y are both tangent, then [X, Y ](r) =
X(Y (r)) − Y (X(r)) = 0 as well.) This distribution has no global
generators, as TS2 does not have them either.

Example 7.45. On U = {(x, y, z) ∈ R3 | z 6= 0} consider

X = y
∂

∂z
− z ∂

∂y
,

Y = z
∂

∂x
− x ∂

∂z
.
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Let Dp := span{Xp, Yp}. Then D is a smooth 2-distribution. It is
involutive by Remark 7.40. In fact,

Z := [Y,X] = x
∂

∂y
− y ∂

∂x

can be written as Z = −x
z
X − y

z
Y . (Geometrically observe that the

flows of X, Y , and Z are rotations around the x-, y- and z-axes, re-
spectively.)

Example 7.46. On R3 consider

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
.

The distribution defined by span{X, Y } is smooth and of rank 2. It
is however not involutive since [X, Y ] = ∂

∂z
cannot be written as a

C∞(R3)-linear combination of X and Y .

We can generalize the notion of push-forward to distributions mim-
icking the definition in Remark 6.21.

Definition 7.47. Let D be a distribution on M and let F : M → N
be a diffeomorphism. We define the push-forward F∗D of D by

(F∗D)y := dF−1(y)DF−1(y)

for all y ∈ N .

Note that the push-forward of a smooth distribution is also smooth,
and the push-forward of an involutive distribution is also involutive.
We now come to the generalization of the notion of integral curve.

Definition 7.48. An immersion ψ : N → M with N connected is
called an integral manifold for a distribution D on M if

dnψ(TnN) = Dψ(n) for all n ∈ N.
An integral manifold that is not a proper restriction of an integral
manifold is called maximal.

If ψ is an embedding (which is not much of a restriction in view of
Proposition 6.4), restricting ψ : N → ψ(N) to its image allows rewriting
the above condition as

ψ∗(TN) = D|ψ(N),

where the fact that D may be restricted to ψ(N) (i.e., Dq ∈ Tqψ(N)
for all q ∈ ψ(N)) is part of the condition.

Definition 7.49. A smooth distribution D on M is called integrable if
for every q in M there is an integral manifold for D passing through q.
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Example 7.50. Example 7.43 yields an integrable distribution with
(M, Id) as maximal integral manifold. Another example of integrable
distribution is given by Example 7.42, where the (maximal) integral
manifolds are the (maximal) integral curves of the vector field. Ex-
ample 7.45 also yields an integrable distribution where (the images of)
the maximal integral manifolds are the connected components of the
intersections of U with the spheres centered at the origin.

The fact that these examples of integrable distributions are also in-
volutive is not by chance. In fact, we have the

Lemma 7.51. If D is integrable, then D is involutive.

Proof. For each q ∈ M , we can find an integral manifold ψ : N → M
with q ∈ ψ(N). If X and Y are tangent to D, in a neighborhood of q in

ψ(N) we can write them as push-forwards of vector fields X̃ and Ỹ on
N . Since the push-forward preserves Lie bracket and TN is involutive,
we see that in this neighborhood Z := [X, Y ] is the push-forward of

[X̃, Ỹ ] and hence tangent to D (note that this is indeed the Lie bracket
of X and Y , as they do not have components transverse to ψ(N) by
definition). We can compute Z by this procedure at each point of M ,
which shows that D is involutive. �

We now come to the, far less trivial, converse of the Lemma:

Theorem 7.52 (Frobenius’ Theorem). Let D be an involutive k-dis-
tribution on a smooth, Hausdorff n-dimensional manifold M . Then
each point q ∈ M has a chart neighborhood (U, φ) such that φ∗D =
span{ ∂

∂x1 , . . . ,
∂
∂xk
}, where x1, . . . , xn are coordinates on φ(U).

Note that, as a consequence, through each q ∈M passes an integral
manifold ψ : N → M with N = {x ∈ φ(U) : xj = φj(q), j > k} and
ψ = φ−1|N . This yields the immediate

Corollary 7.53. On a smooth, Hausdorff manifold a smooth distribu-
tion is involutive if and only if it is integrable.

Another consequence is that, in a chart like the above, the images
of integral manifolds are parallel k-planes. A collection of maximal
submanifolds with this property is also called a foliation and the sub-
manifolds are called the leaves of the foliation. One can introduce an
equivalence relation ∼ on the manifold by saying that two points are
equivalent if they belong to the same leaf. The quotient by this rela-
tion, denoted by M/∼ or better by M/D, is called the leaf space of the
distribution D. Typically it is not a manifold and not even a Hausdorff
space.
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Example 7.54. In Example 7.42, we already have all possibilities for
the leaf space: e.g., take M to be a torus realized as the square [0, 1]×
[0, 1] in R2 with opposite sides identified and X = ∂

∂x
+ α ∂

∂y
; one can

show that for α rational the maximal curves are embeddings of S1

and the leaf space is diffeomorphic to S1, whereas for α irrational (the
Kronecker foliation) the maximal curves are dense immersions of R
and the leaf space is not Hausdorff. In Example 7.43, D = 0 induces
the trivial equivalence relation, so M/D = M ; on the other hand, in
the case D = TM all points are equivalent, so M/D is a point. In
Example 7.44, every leaf is a sphere, identified by its radius, so the leaf
space if R>0. In Example 7.45 in each half space z > 0 and z < 0 the
leaves are characterized by the radius of the sphere, so the leaf space
is the disjoint union of two copies of R>0.

Proof of Frobenius’ Theorem. We prove the theorem by induction on
the rank k of the distribution. For k = 1, this is Proposition 6.26.

We then assume we have proved the theorem for rank k − 1. Let
(X1, . . . , Xk) be generators of the distribution in a neighborhood of q.
Note that in particular they are all not vanishing at q. By Propo-
sition 6.26 we can then find a chart neighborhood (V, χ) of q with
χ(q) = 0 and χ∗X1 = ∂

∂y1 , where y1, . . . , yn are coordinates on χ(V ).

We define new generators of χ∗D by

Y1 := χ∗X1 =
∂

∂y1

and, for i > 1,
Yi := χ∗Xi − (χ∗Xi(y

1))χ∗X1.

For i > 1 we then have Yi(y
1) = 0 and hence, for i, j > 1, we have

[Yi, Yj](y
1) = 0; this means that the expansion of [Yi, Yj] in the Yls does

not contain Y1.
As a consequence the distributionD′ defined on S := {y ∈ χ(V ) | y1 =

0} as the span of Y2, . . . , Yk is involutive. By the induction assump-
tion, we can find a neighborhood U of 0 in S and a diffeomorphism τ
such that τ∗Yi = ∂

∂wi
, i = 2, . . . , k, where w2, . . . , wn are coordinates on

τ(U).

Let Ũ be U× (−ε, ε) for an ε > 0 such that Ũ ⊂ χ(V ). We then have

the projection map π : Ũ → U . We finally consider the diffeomorphism

τ̃ : Ũ → τ(U)× (−ε, ε)
(u, y1) 7→ (τ(u), y1)

and write x1 = y1, xi = τ i(y2, . . . , yn) = wi for i > 1. We denote by

Zi := τ̃∗Yi, i = 1, . . . , k the generators of the distribution D̃ := τ̃∗χ∗D.
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Since ∂xi

∂y1 is equal to 1 for i = 1 and to 0 otherwise, by (6.6) we get

Z1 = ∂
∂x1 . Finally, we have, for i = 2, . . . , k and j > 1,

∂

∂x1
(Zi(x

j)) = Z1(Zi(x
j)) = [Z1, Zi](x

j) =
k∑
l=2

cliZl(x
j),

where the cli are functions that are guaranteed to exist by the involu-
tivity of the distribution (note that in the sum we do not have the term
for l = 1 since Z1(xj) = 0). For fixed j and fixed x2, . . . xn, we regard
these identities as ODEs in the variable x1. Note that, for i = 2, . . . , k
and j > k, we have Zi(x

j) = 0 at x1 = 0 (since at x1 = 0 we have
Zi = Yi). This means that Zi(x

j) = 0, i = 2, . . . , k and j > k, is the
unique solution with this initial condition. These identities mean that

D̃ is the distribution spanned by vector fields ∂
∂x1 , . . . ,

∂
∂xk

. �

7.5.1. Quotients. Let π : M → N be a surjective submersion. Then
{ker dqπ}q∈M is an integrable distribution on M of rank m − n, with
m = dimM and n = dimN (we assume M to be connected with
connected fibers), with leaves the fibers π−1(z), z ∈ N .

If the leaf space N of an involutive distribution D on M can be
given a manifold structure such that the canonical projection π is
smooth (and hence a submersion by Frobenius theorem), then we have
ker dπ = D. This also implies that this manifold structure is unique
up to diffeomorphism. In fact, by Frobenius theorem, locally the pro-
jection is like U × V → V for V ⊂ RdimN and U ⊂ RdimM−dimN .

The vector fields tangent to ker dπ are called vertical (we imagine
M projecting down to N). We denote by V(M) := Γ(ker dπ) the Lie
algebra of vertical vector fields. We next consider its Lie idealizer

N(V(M)) = {X ∈ X(M) | [X, Y ] ∈ V(M) for all Y ∈ V(M)},

i.e., the largest Lie subalgebra of X(M) in which V(M) sits as an ideal.
Elements of N(V(M)) are called projectable vector fields. The reason
is that there is a well defined map

φ : N(V(M))→ X(N)

defined by the assignment

Xp 7→ dpπXp.

Note that by definition the flows of vertical vector fields change X only
vertically, so its projection does not depend on the point in the fiber
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over π(p).20 Also note that φ is surjective and that its kernel is exactly
V(M). We leave to the reader to verify that φ is also a Lie algebra
morphism (this is easy to see in local coordinates), so we have that
X(N) and N(V(M))/V(M) are isomorphic Lie algebras.

It is often convenient to work with generators.

Definition 7.55. A family Y of vertical vector fields generates V(M)
if every Y ∈ V(M) can be written as a finite linear combination of
elements of Y , which are hence called generators (i.e., Y generates
V(M) as a C∞(M)-module).

One can then easily see that X is projectable if and only if [X, Y ] is
vertical for every Y ∈ Y .

8. Vector bundles

The tangent bundle introduced in the previous sections is an example
of a more general structure known as a vector bundle. Many important
objects defined on manifolds (e.g., densities, tensor fields, differential
forms) are sections of vector bundles.

8.1. General definitions.

Definition 8.1. A Ck-vector bundle of rank r over a Ck-manifold of
dimension n is a Ck-manifold E together with a surjection π : E → M
such that:

(1) Eq := π−1(q) is an r-dimensional vector space for all q ∈M .

(2) E possesses a Ck-atlas of the form {(Ũα, φ̃α)}α∈I with Ũα =
π−1(Uα) for a Ck-atlas {(Uα, φα)}α∈I of M and

φ̃α : Ũα → Rn × Rr

(q, v ∈ Eq) 7→ (φα(q), Aα(q)v)

where Aα(q) is a linear isomorphism for all q ∈ Uα.

An atlas for E like {(Ũα, φ̃α)}α∈I in this definition is called an adapted
atlas for the vector bundle. The corresponding atlas {(Uα, φα)}α∈I for
M is called a trivializing atlas.

20If LYX = Ỹ , with Y and Ỹ vertical, we get

∂

∂s
(ΦY−s)∗X = (ΦY−s)∗Ỹ

by Lemma 7.31. Alternatively, we can observe that, in local coordinates
{x1, . . . , xn, y1, . . . , ym−n}, where the ys are the vertical coordinates, a vector

field X(x, y) =
∑n
i=1X

i(x, y) ∂
∂xi +

∑m−n
i=1 X̃i(x, y) ∂

∂yi is projectable if and only

if ∂Xi

∂yj = 0 for all i, j, as follows from (7.3). In this local picture, the projection

φ(X) is the vector field on N represented by
∑n
i=1X

i(x) ∂
∂xi .
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Notice that π is a Ck-map with respect to this manifold structure
and that for k > 0 it is a submersion.

The maps

Aαβ(q) := Aβ(q)Aα(q)−1 : Rr → Rr

are Ck in q (i.e., Aαβ : Uα ∩ Uβ → End(Rr) is a Ck-map, where we

identify End(Rr) with Rr2
with its standard manifold structure) for all

α, β ∈ I. The transition maps

φ̃αβ(x, u) = (φαβ(x), Aαβ(φ−1
α (x))u)

are linear in the second factor Rr. The point dependent linear maps
Aαβ are usually called the transition functions of the vector bundle.

Example 8.2. It is readily verified that the tangent bundle TM of a
Ck-manifold M with k ≥ 1 is a Ck−1-vector bundle where we regard the
base manifold M as a Ck−1-manifold.

Example 8.3. Let E := M × V where V is an r-dimensional vector
space. Then E is a vector bundle of rank r over M with π the projection
to M . A choice of basis for V determines an isomorphism τ : V → Rr.

Given an atlas {(Uα, φα)}α∈I for M , we set φ̃α(q, v) = (φα(q), τv). Note
that then Aαβ(q) = Id for all α, β, q.

Example 8.4 (The dual bundle). If E is a vector bundle over M ,
as in Definition 8.1, then the union of the dual spaces E∗q is also a
vector bundle, called the dual bundle of E. Namely, let E∗ := ∪q∈ME∗q .
We denote an element of E∗ as a pair (q, ω) with ω ∈ E∗q . We let

πE∗(q, ω) = q. To an atlas {(Ũα, φ̃α)}α∈I of E we associate the atlas

{(Ûα, φ̂α)}α∈I of E∗ with Ûα = π−1
E∗(Uα) = ∪q∈UαE∗q and

φ̂α : Ûα → Rn × (Rr)∗

(q, ω ∈ E∗q ) 7→ (φα(q), (Aα(q)∗)−1 ω)

where we regard (Rr)∗ as the manifold Rr with its standard structure.
It follows that we have transitions maps

φ̂αβ(x, u) = (φαβ(x), (Aαβ(φ−1
α (x))∗)−1 u).

Note that actually any linear construction on vector spaces can be
carried over to vector bundles. For example, starting from a vector
bundle E →M we may define its endomorphism bundle End(E) with
End(E)p := End(Ep). If F →M is a second vector bundle over M , we
may define the direct sum E ⊕ F and the tensor product E ⊗ F with
(E ⊕ F )p := Ep ⊕ Fp and (E ⊗ F )p := Ep ⊗ Fp. We leave it to the
reader to construct the corresponding trivializing atlases.
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Example 8.5 (Pullback bundle). Let F : N → M be a Ck-map and

E
π−→ M a Ck-vector bundle. One defines F ∗E := {(q, e) ∈ N ×

E | F (q) = π(e)}. One can readily see that F ∗E is a Ck-vector bundle
over M with projection map πF ∗E(q, e) = q. In practice, the fiber of
F ∗E at q is given by the fiber of E∗ at F (q) and the fiber transition
maps of F ∗E at q are given by the fiber transition maps of E at F (q).
More precisely, we pick an atlas {(Vj, ψj)}j∈J of N . To the atlas in
Definition 8.1, we then associate a new atlas {(Vαj, ψαj)}(α,j)∈I×J of N
with Vαj := F−1(Uα) ∩ Vj and ψαj := ψj |Vαj

. The atlas of F ∗E is then

given by V̂αj = π−1
F ∗E(Vαj) = ∪q∈VαjEF (q) and

ψ̂αj : V̂αj → Rs × Rr

(q, v ∈ EF (q)) 7→ (ψαj(q), Aα(F (q)) v)

where s is the dimension of N . It follows that we have transitions maps

ψ̂(αj)(βj′)(x, u) = (ψ(αj)(βj′)(x), Aαβ(F (φ−1
αj (x)))u).

8.1.1. Sections. We now come to the generalization of the notion of
vector fields to other vector bundles.

Definition 8.6. A section (also called a global section) of a Ck-vector

bundle E
π−→ M is a Ck-map σ : M → E with π ◦ σ = IdM . We denote

by Γ(E) the space of sections of E. A section of the restriction of E to
an open subset U is also called a local section on U .

Remark 8.7. If σ is a section of E →M , then σ(q) is of the form (q, σq)
where σq ∈ Eq for all q ∈M . We will use this notation throughout.

Remark 8.8. Notice that Γ(E) is a vector space. Moreover, if σ is a
section of E and f a function on M , we can define a new section fσ
by letting (fσ)q be the product of f(q) ∈ R and σq ∈ Eq. Hence Γ(E)
is also a module over Ck(M).

Example 8.9. A section of the tangent bundle TM is then the same
as a vector field on M .

Example 8.10. A section of the vector bundle M × V → M of Ex-
ample 8.3 is a map q 7→ (q, f(q)) where f is a map M → V . Thus,
the module of sections of M × V → V is canonically isomorphic to the
module of maps from M to V .

Example 8.11. A section of the dual bundle E∗ of Example 8.4 as-
sociates to a point q ∈ M a vector in E∗q . Hence, if ω is a section of
E∗ and σ a section of E, we can evaluate ωq on σq for each q. This
produces a function ω(σ) by ω(σ)(q) := ωq(σq). Notice that the map
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Γ(E∗)× Γ(E)→ Ck(M), (ω, σ) 7→ ω(σ) is Ck(M)-bilinear. This is also
called the pairing of Γ(E∗) with Γ(E). For this reason ω(σ) is also often
denoted as (ω, σ) or 〈ω, σ〉.
Example 8.12. A section of the pullback bundle F ∗E of Example 8.5
associates to a point q ∈M a vector in EF (q).

If one picks a trivializing atlas {(Uα, φα)}α∈I as in Definition 8.1, then
a section of E is the same as a collection of Ck-maps21 σα : φα(Uα)→ Rr

such that

(8.1) σβ(φαβ(x)) = Aαβ(φ−1
α (x))σα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ).

8.1.2. Vector subbundles. We now come to the generalization of the
notion of plane distributions to general vector bundles.

Definition 8.13. A vector subbundle of a vector bundle E → M is a
collection {Fp}p∈M of subspaces Fp ⊂ Ep such that F := ∪p∈MFp is
also a vector bundle.

Lemma 8.14. A collection {Fp}p∈M of k-dimensional subspaces is a
vector subbundle of E →M if and only if every point p in M possesses
an open neighborhhood U and sections σ1, . . . , σk of the restriction of
E to U such that

Fx = span{(σ1)x, . . . , (σk)x}
for all x ∈ U . These sections are called (local) generators of F on U .

Proof. If F is a vector bundle, around each point p of M we may
take a chart (Uα, φα) as in Definition 8.1. In φα(Uα) we may take k
linearly indipendent maps τ1, . . . , τk from φα(Uα) to Rk. The sections
(σi)x := A−1

α (x)τi(φα(x)) are then generators of F on Uα.
For the other implication the assumption is that for each p we have

an open neighborhood Up with generators σp1, . . . , σpk. We may also
assume that each Up is a chart domain, with a chart map denoted by φp.
We then consider the atlas {(Up, φp)}p∈M . We consider G := ∪p∈MF ∗p .

On Ũp := ∪x∈UpF ∗x we may define the chart map

φ̃p(x, ω) = (φp(x), Ap(x)ω)

with
Ap(x)ω = ((ω, (σp1)x), . . . , (ω, (σpk)x)).

This shows that G is a vector bundle and hence that its dual F is a
vector subbundle of E. �

21These maps are also called local sections.
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Corollary 8.15. A plane distribution D on M is smooth if and only
∪p∈MDp is a vector subbundle of TM .

8.1.3. Morphisms. We now come to the definition of maps compatible
with vector bundle structures.

Definition 8.16. Let E
πE−→M and F

πF−→ N be Ck-vector bundles. A
pair of Ck-maps Ψ: E → F and ψ : M → N is said to be compatible
with the bundle structure if πF ◦Ψ = ψ ◦ πE.

E F

M N

Ψ

ψ

πE πF

This means that Ψ maps Eq to Fψ(q) for all q ∈ M . We denote by Ψq

this map. The compatible pair (Ψ, ψ) is called a morphism of vector
bundles (or a vector bundle map) if Ψq is linear for all q ∈ M . Usually
one simply writes Ψ: E → F to denote the morphism. One says that
Ψ is a morphism over ψ.

Example 8.17. If F is a vector subbubndle of E, the inclusion map
is a morphism.

Example 8.18. If ψ is map from M to M , then we have a morphism
Ψ: M × V →M × V , (q, v) 7→ (ψ(q), v).

Notice that a composition of morphisms is also a morphism. A mor-
phism is called an isomorphism if it possesses an inverse. Note if Ψ is
an isomorphism, so is also ψ.

Definition 8.19. If (Ψ, ψ) is an isomorphism, we can push forward
sections of E to sections of F : for σ ∈ Γ(E), we define

(Ψ∗σ)y := Ψψ−1(y)σψ−1(y)

for y ∈ N .

Remark 8.20. If ψ : M → N is a Ck+1-map, then we have a morphism,
called the tangent lift, Ψ: TM → TN by setting Ψq = dqψ. Notice that
Ψ is an isomorphism if and only ψ is a diffeomorphism and that in this
case the push-forward Ψ∗ is what we have denoted by ψ∗ so far.

Remark 8.21. If {(Ũα, φ̃α)}α∈I is an adapted atlas of a vector bundle

E → M over the trivializing atlas {(Uα, φα)}α∈I of M , then φ̃α is an
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isomorphism from π−1(Uα) to φα(Uα) × Rr for all α and φ̃αβ is an
isomorphism from φα(Uα∩Uβ)×Rr to φβ(Uα∩Uβ)×Rr for all distinct
α and β.

π−1
E (Uα) φα(Uα)× Rr φα(Uα ∩ Uβ)× Rr φβ(Uα ∩ Uβ)× Rr

Uα φα(Uα) φα(Uα ∩ Uβ) φβ(Uα ∩ Uβ)

φ̃α

φα

φ̃αβ

φαβ

If σ is a section of E, then the representation σα of σ can be written

as σα = (φ̃α)∗σ|Uα . The compatibility relations (8.1) now read

σβ = (φ̃αβ)∗σα

where again, by abuse of notation, σα actually denotes the restriction
of σα to φα(Uα ∩ Uβ).

Example 8.22. Let F ∗E be the pullback bundle of Example 8.5. Then
we have a morphism Ψ: F ∗E → E by setting Ψq to be the identity map
for all q.

Definition 8.23. A vector bundle E → M is called trivial (or trivial-
izable) if it is isomorphic to a vector bundle of the form M × V → M
(see Example 8.3).

Note that the base map ψ of the isomorphism Ψ: E → M × V is
also an isomorphism. So we may compose Ψ with the inverse of the
morphism defined in Example 8.18. This means that we can always
assume the trivializing isomorphism to be over the identity map.

Proposition 8.24. A rank r vector bundle is trivial if and only if it
has r R-linearly independent sections.

Proof. Choose a basis of V to identify it with Rn. The vector bundle
M × Rr → M has the r linearly independent sections σ1, . . . , σr given
by the maps from M to each of the r components of Rr. If Ψ is an
isomorphism from E to M × Rr, then Ψ−1

∗ σ1, . . . ,Ψ
−1
∗ σr are r linearly

independent sections of E.
Conversely, if τ1, . . . , τr are r sections of E, we have a map Ψ: M ×

Rr → E, with ψ(q) = q and Ψq(ei) = (τi)q, where (e1, . . . , er) is the
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canonical basis of Rr. It the sections are linearly independent, this is
an isomorphism. Hence, E is trivial by the isomorphism Ψ−1. �

A manifold whose tangent bundle is trivial is called parallelizable.
Each open subset of Rn is clearly parallelizable.

Lemma 8.25. The circle S1 is parallelizable.

Proof. The easiest way to see this is by viewing S1 as a submanifold
of R2. A point q in S1 is then a unit vector in R2 and there is a
unique rotation Rq that maps q to the point (1, 0). We then define
Ψ: TS1 → S1 × R by (q, v) 7→ (q, Rqv). �

In Remark 8.30 we will give another proof. We will see, Lemma 8.31,
that also the 3-sphere is parallelizable. In Section 10.1, we will recover
these statements as special cases of the fact that Lie groups are paral-
lelizable, see Lemma 10.6. On the other hand, e.g., the sphere S2 is not
parallelizable: actually, one can show that S2 does not even possess a
single nowhere vanishing vector field, see Lemma 8.32.

8.1.4. Vector bundles from local data. The linear maps Aαβ are actually
enough to specify a vector bundle. Namely, let M be a Ck-manifold.
Assume we have an atlas {(Uα, φα)}α∈I for M and, for some fixed vector
space V , Ck-maps Aαβ : Uα ∩ Uβ → End(V ) for all α, β ∈ I, α 6= β,
such that for all distinct α, β, γ ∈ I:

(1) Aαβ(q)Aβα(q) = IdV for all q ∈ Uα ∩ Uβ;
(2) Aβγ(q)Aαβ(q) = Aαγ(q) for all q ∈ Uα ∩ Uβ ∩ Uγ.

Then we can repeat the construction of subsection 6.1 verbatim. Namely,
we define a coordinatized vector at q ∈M as a triple (Uα, φα, v) where
(Uα, φα) is a chart containing q and v is a vector in V . We define two
coordinatized vectors (Uα, φα, v) and (Uβ, φβ, w) at q to be equivalent if
w = Aαβ(q)v; notice that properties (1) and (2) above ensure that this
is an equivalence relation. Finally, we define Eq as the set of equiv-
alence classes of coordinatized vectors at q. A choice of basis on V
yields an isomorphism B : V → Rr, r = dimV , and we can define the
bijection

Aα(q) : Eq → Rr

[(Uα, φα, v)] 7→ Bv

and use it to define the vector space structure on Eq that makes Aα(q)
into a linear isomorphism. Exactly as in the proof of Lemma 6.6, we
show that this vector space structure is canonical (i.e., independent of
α). Finally, we see that E := ∪q∈MEq is a vector bundle over M with

Ũα = ∪q∈UαEq.
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Remark 8.26. We can define the dual bundle, see Example 8.4, also
by local data. Namely, we start from the transition functions Aαβ for
E and define AE

∗

αβ(q) := ((Aαβ(q))∗)−1 for all q ∈ Uα ∩ Uβ. Conditions
(1) and (2) of Section 8.1.4 are automatically satisfied.

Remark 8.27. Note the difference in the conventions in the construc-
tion of a vector bundles from local data on a given manifold and the
construction of a manifold from local data of Section 4.1. Namely,
here we consider the transition functions Aαβs as depending on a point
on Uα ∩ Uβ, whereas there we considered the transition maps φαβ as
functions on Vαβ which, later on, turns out to be φα(Vαβ). The rea-
son is that conditions (1) and (2) above read much better with this

convention. Equivalently, we may define Ãαβ(x) := Aαβ(φ−1
α (x)) for

x ∈ φα(Uα ∩ Uβ). With these new notations the condition take the
uglier form

(1) Ãαβ(x)Ãβα(φαβ(x)) = IdRr for all x ∈ φα(Uα ∩ Uβ);

(2) Ãβγ(φαβ(x))Ãαβ(x) = Ãαγ(x) for all x ∈ φα(Uα ∩ Uβ ∩ Uγ).

We can express the triviality of a vector bundle in terms of local
data.

Proposition 8.28. Let E be a vector bundle defined by local data Aαβ
as above. Then E is trivial if and only if for each α there is a map
Aα : Uα → Aut(Rn) such that, on Uα ∩ Uβ,

Aαβ = A−1
β Aα

for all distinct α and β.

Proof. Let Ψ: E → M × Rr be an isomorphism over the identity. If

{(Ũα, φ̃α)}α∈I is an adapted atlas of E, we set Ψα := Ψ ◦ φ̃−1
α . This

is an isomorphism from φα(Uα) × Rr to Uα × Rr. We then have, on

Uα ∩ Uβ, Ψ−1
β ◦ Ψα = φ̃β ◦ φ̃−1

α = φ̃αβ. If we define Aα(q) := (Ψα)φα(q),

q ∈ Uα, we then get Aαβ = A−1
β Aα.

Conversely, we can use the given Aαs to define the isomorphisms Ψα

from φα(Uα)× Rr to Uα × Rr. The relations Aαβ = A−1
β Aα show that

they patch together to an isomorphism E →M × Rr. �

Remark 8.29. If we define Ãα(x) := Aα(φ−1
α (x)), the triviality rela-

tions reads

Ãαβ(x) = Ã−1
β (φαβ(x))Ãα(x), ∀x ∈ φα(Uα ∩ Uβ).

Example 8.30. We may use this to give another proof of Lemma 8.25
on the triviality of TS1. Define S1 as in Example 4.12. Note the in
this case we can simply write φ12(x) = φ21(x) = 1/x. We then have
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Ã12(x) = dxφ12(x) = −1/x2. By setting Ã1(x) = 1/x and Ã2(y) =
−1/y, we see that TS1 is trivial.

We may similarly prove the triviality of TS3:

Lemma 8.31. The 3-sphere S3 is parallelizable.

Proof. Here we use the the diffeomorphism ψ between R3 and the space
V of self-adjoint 2× 2 complex matrices:

ψ(x) =

(
z x+ iy

x− iy −z

)
=: X,

with x = (x, y, z). One can easily see that detX = −||x||2 and that
X2 = − detX Id. The first consequence is that V12 = V21 = R3 \{0} is
identified with V \{0}. The second is that the maps φ12(x) = φ21(x) =

x
||x||2 get identified with the maps ψ̂ij := ψ ◦φij ◦ψ−1, ψ̂ij(X) = − X

detX
.

By the second identity above we get

ψ̂12(X) = ψ̂21(X) = X−1.

An easy way to compute the differential of ψ̂12 is to consider the path
γ(t) := X + tB, for fixed X ∈ V \ {0} and B ∈ V . We then have

ψ̂12(γ(t)) = (X + tB)−1 = (X(id + tX−1B))−1 = (id + tX−1B)−1X−1.

Using the geometric series
∑∞

n=0 t
nAn = (id− tA)−1, we get

ψ̂12(γ(t)) = (id− tX−1B +O(t2))X−1.

It follows that

d

dt |t=0

ψ̂12(γ(t)) = −X−1γ̇(0)X−1.

In other words, Ã12(X) = dXψ̂12 is the automorphism of V defined

by Ã12(X)B = −X−1BX−1. For X ∈ V \ {0} we now consider the
automorphism LX and RX of V defined by

LXB := XB, RXB := BX.

Note that (LX)−1 = LX−1 and (RX)−1 = RX−1 . Finally define

Ã1(X) := LX−1 and Ã2(Y ) := −RY −1

and check that Ã12(X) = Ã−1
2 (φ12(X))Ã1(X) for all X ∈ V \ {0}. �

On the other hand, we have the following

Lemma 8.32. There is no nowhere vanishing vector field on S2.
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The following simple proof, adapted from [2], is based on the notion
of the winding number and its invariance under homotopy. (We will
introduce this in Section 9.5.3 in the case of differentiable curves, but
the result holds also for continous curves and homotopies. In particular,
the Lemma above holds also in the case of continuous vector fields.)

Proof. We use again the description of Example 4.12, which corre-
sponds to the stereographic projections. Let X be a vector a field
and assume it has no zeros apart possibly at the north pole: i.e., its
lower emisphere representation X2 in V2 = R2 has no zeros.

Next consider the upper hemisphere representation X1 of X in V1 =
R. Outside of the origins of V1 and V2, we have X1 = (φ21)∗X2, i.e.,
X1(φ21(x)) = dxφ21X2(x). We may compute

dxφ21 =
1

||x||4

(
y2 − x2 −2xy
−2xy x2 − y2

)
,

with x = (x, y). We now restrict to u = (cos θ, sin θ) ∈ S1 and get

X1(u) =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)(
−1 0
0 1

)
X2(u).

We may regard this as a curve γ1 : S1 → R2 \ {0}, γ1(u) := X1(u). We
also define Γ: [0, 1]× S1 → R2 \ {0} by

Γ(s, u) :=

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)(
−1 0
0 1

)
X2(su),

where we use the fact that X2 has no zeros. Note that Γ is a homotopy
from γ1 to

γ0(u) =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
v

with v = ( −1 0
0 1 )X2(0). As γ0 is a circle winding twice in the anticlock-

wise direction around the origin, we get that its winding number is 2.
By homotopy invariance we then get that also the winding number of
γ1 is 2. This shows that X1 must have a zero inside the disk of radius

1 centered at the origin, since otherwise Γ̃(s, u) := X1(su) would be
a homotopy to a constant loop, which would imply that the winding
number of γ1 is zero. �

8.2. Densities and integration. We consider a simple, but very im-
portant class of examples of line bundles (i.e., rank 1 vector bundles)
associated to every manifold: the bundles of s-densities, where s is a
real number. We will show that 1-densities, usually called just densities,
are the natural objects to integrate and that nonnegative 1-densities
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define a measure. Densities with other weights s = 1/p are needed to
define the notion of Lp-spaces associated to manifolds.

Let M be a Ck+1-manifold, k ≥ 0. Fix an atlas {(Uα, φα)}α∈I . The
differential dxφαβ of a transition map is a linear map Txφα(Uα∩Uβ)→
Tφαβ(x)φβ(Uα∩Uβ). However, since the chart images are open subsets of
Rn, we can canonically identify their tangent spaces with Rn itself. It
follows that dxφαβ is canonically given as an n×n matrix (the Jacobian
matrix of the map φαβ with respect to the given coordinates), so we
can compute its determinant. Next we fix a real number s and take
V := R and Aαβ(q) := | det dφα(q)φαβ|−s. The requirements (1) and (2)
of Section 8.1.4 are satisfied, so we get a Ck-vector bundle of rank 1
denoted by |ΛM |s over M .

Sections of |ΛM |s are called s-densities. The representation σα of an
s-density σ in the chart (Uα, φα) is just a Ck-function on φα(Uα). What
distinguishes it from the representation of a function are the transition
rules:

(8.2) σβ(φαβ(x)) = | det dxφαβ|−s σα(x),

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ).

Remark 8.33. Notice that the transition functions are positive, so
it makes sense to define nonnegative densities as densities that are
nonnegative in each representation (i.e., σα ≥ 0 for all α) and positive
densities as densities that are positive in each representation (i.e., σα >
0 for all α).

Remark 8.34. There are several immediate consequences of (8.2).
The first is that 0-densities are just functions. The second is that
the product of an s1-density σ1 and an s2-density σ2 yields an (s1 +
s2)-density σ1σ2. If σ is a nonnegative s-density and r > 0, then σr is a
nonnegative rs-density. Finally, if σ is a positive s-density and r ∈ R,
then σr is a positive rs-density.

Remark 8.35. By looking directly into the definition of |ΛM |s, by the
discussion in Section 8.1.4, one immediately sees that |ΛM |0 = M ×R
and |ΛM |−s = (|ΛM |s)∗.

8.2.1. Integration. For s = 1, one simply speaks of densities. Densities
are the natural objects one can integrate on a manifold (which possesses
a partition of unity).

Let us consider first the case of a compact Hausdorff manifold M .
Let σ be a density on M and {(Uα, φα)}α∈I an atlas on M . By Theo-
rem 5.6 we can find a finite partition of unity {ρj}j∈J subordinate to
{Uα}α∈I (i.e., for each j we have an αj with supp ρj ⊂ Uαj). Notice
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that supp ρj is compact by Lemma A.9. Since φαj is a homeomor-
phism, by Lemma A.8 we see that also φαj(supp ρj) is compact (in Rn,
n = dimM). Finally, observe that the representation (ρjσ)αj of the

density ρjσ in the chart (Uα, φα) is a Ck-function, so at least continuous,
in φαj(Uαj), so it is integrable on φαj(supp ρj). One then defines∫

M ;{(Uα,φα)},{ρj}
σ =

∑
j∈J

∫
φαj (supp ρj)

(ρjσ)αj d
nx.

(Here dnx stands for the Lebesgue measure on Rn, also otherwise de-
noted by dx1 · · · dxn.)

Lemma 8.36. This integral does not depend on the choice of atlas and
of partition of unity.

Proof. Consider an atlas {(Ūᾱ, φ̄ᾱ)}ᾱ∈Ī and a finite partition of unity
{ρ̄̄}̄∈J̄ subordinate to it. From

∑
̄∈J̄ ρ̄̄ = 1, it follows that σ =∑

̄∈J̄ ρ̄̄ σ, so we have∫
M ;{(Uα,φα)},{ρj}

σ =
∑
j∈J

∫
φαj (supp ρj)

(ρjσ)αj d
nx =

=
∑
̄∈J̄

∑
j∈J

∫
φαj (supp ρj)

(ρj ρ̄̄ σ)αj d
nx,

where we have taken out the finite sum
∑

̄∈J̄ . Next observe that

Sj̄ :=

∫
φαj (supp ρj)

(ρj ρ̄̄ σ)αj d
nx =

=

∫
φαj (supp ρj∩supp ρ̄̄)

(ρj ρ̄̄ σ)αj d
nx =

=

∫
φ−1
ᾱ̄αj

(φ̄ᾱ̄ (supp ρj∩supp ρ̄̄))

(ρj ρ̄̄ σ)αj d
nx,

where φᾱ̄αj denotes the transition map φαj(Uαj) → φ̄ᾱ̄(Ūᾱ̄). Since
ρj ρ̄̄ σ is a density, we have

(ρj ρ̄̄ σ)αj(x) = | det dxφᾱ̄αj |(ρj ρ̄̄ σ)ᾱ̄(x̄),

with x̄ = φᾱ̄αj(x) and x ∈ φαj(supp ρj ∩ supp ρ̄̄). By the change-of-
variables formula, we then have

Sj̄ =

∫
φ̄ᾱ̄ (supp ρj∩supp ρ̄̄)

(ρj ρ̄̄ σ)ᾱ̄ d
nx̄ =

∫
φ̄ᾱ̄ (supp ρ̄̄)

(ρj ρ̄̄ σ)ᾱ̄ d
nx̄.
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Hence ∑
j∈J

Sj̄ =

∫
φ̄ᾱ̄ (supp ρ̄̄)

(ρ̄̄ σ)ᾱ̄ d
nx̄

and∫
M ;{(Uα,φα)},{ρj}

σ =
∑
̄∈J̄

∑
j∈J

Sj̄ =

=
∑
̄∈J̄

∫
φ̄ᾱ̄ (supp ρ̄̄)

(ρ̄̄ σ)ᾱ̄ d
nx̄ =

∫
M ;{(Ūᾱ,φ̄ᾱ)},{ρ̄̄}

σ.

�

We can hence drop the choice of atlas and partition of unity from
the notation and simply write:

(8.3)

∫
M

σ =
∑
j∈J

∫
φαj (supp ρj)

(ρjσ)αj d
nx

This formula is also well defined in the case when M is a Hausdorff,
second-countable manifold and σ is a density with compact support.
The main point is Theorem 5.7 that ensures the existence of a partition
of unity subordinate to the given trivialing atlas. The sum over j is
well defined as in a neighborhood of each point only finitely many ρj
are different from zero. The integrals on the right hand side converge as
they are actually defined on φαj(supp ρj∩suppσ) and supp ρj∩suppσ is
compact.22 The proof of the independence on the choice of trivializing
atlas and partition of unity is exactly as above.

Remark 8.37. In many a situation a density σ on M is chosen once
and for all. In this case, one can define the integral of a function f
(compactly supported if σ is not compactly supported) as the integral
of the density fσ.

The integral on manifolds is additive not only with respect to the
integrating densities but also with respect to the union of integration
domains. We present a simple case that is useful for explicit compu-
tations. First, we say that a subset N of M has measure zero if, for
some atlas {(Uα, φα)}α∈I , we have that φα(N ∩ Uα) is a Lebesgue null

22This is true since the supports are, by definition, closed. Hence their inter-
section is also closed. As this is a subset of suppσ, which is compact, it is also
compact.
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set for all α ∈ I. Let M1 and M2 be disjoint open subsets of M such
that M \ (M1 ∪M2) has measure zero. Then we have∫

M

σ =

∫
M1

σ +

∫
M2

σ,

where M1 and M2 are now regarded as manifolds.
This property is very useful for actual computations. Suppose that

we can find finitely many mutually disjoint open subsets Mk, k ∈ K,
such that their union differs from M by a set of measure zero and
such that each Mk is entirely contained in a chart Uαk . Then we can
choose an atlas for Mk consisting of the single chart (Mk, (φαk)|Mk ). As
a partition of unity subordinate to it we take the function 1 on Mk.
We then have

∫
Mk
σ =

∫
φαk (Mk)

σαk d
nx for all k ∈ K. Hence∫

M

σ =
∑
k∈K

∫
φαk (Mk)

σαk d
nx.

Remark 8.38. A nonnegative density σ (i.e., σα ≥ 0 for all α in
some atlas) defines a measure on M , which we assume to be Haus-
dorff and second countable. Namely, let B(M) be the Borel algebra
of M (i.e., the σ-algebra generated by the open subsets of M). Pick
an atlas {(Uα, φα)}α∈I and a partition of unity {ρj}j∈J subordinate to
it. If A ∈ B(M), then A ∩ supp ρj is also Borel. Since φαj is a home-
omorphism, also φαj(A ∩ supp ρj) is Borel. Since (ρjσ)αj is continu-
ous, it is Lebesgue-measurable; since it is nonnegative, we can define∫
φαj (A∩supp ρj)

(ρjσ)αjd
nx, which is allowed to be infinity. We then define

µσ(A) :=
∑
j∈J

∫
φαj (A∩supp ρj)

(ρjσ)αjd
nx.

As in the proof to Lemma 8.36, one can see that µσ does not depend
on the choice of atlas and of partition of unity. One can also verify
that µσ is a measure on B(M). Finally, if f ∈ Ck(M) is such that fσ
has compact support, we have∫

M

fσ =

∫
M

fdµσ.

We can now use the right hand side to extend the integral to all µσ-in-
tegrable functions. Another advantage is that in the right hand side we
can use all measure theoretic techniques; for example, we can write M
as a countable union of mutually disjoint Borel subsets Mk and write∫
M
fσ =

∑
k

∫
Mk
fdµσ. Notice that we no longer have to require that

the Mks be open.
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Remark 8.39. Densities appear naturally in several instances, as we
will see. For example, a Riemannian metric naturally defines a positive
density, see Remark 8.78. On the other hand, every top differential
form on a connected orientable manifold naturally defines two densities
(one for each orientation), see Section 9.4.

Remark 8.40. Using Remark 8.34, one can define the Lp-space asso-
ciated to a Hausdorff, second-countable manifold as the completion of
the space of the (1/p)-densities σ such

∫
M
|σ|p < ∞. If p and and q

are conjugate, i.e. 1/p + 1/q = 1, we have a pairing of σ1 ∈ Lp with
σ2 ∈ Lq by integrating σ1σ2. In particular, L2(M), the completion of
the space of half-densities on M , is a Hilbert space.

8.2.2. Densities on vector spaces. We now give a more conceptual de-
scription of densities. The idea is to define s-densities directly on vector
spaces and then to apply this to the case of the tangent space.

Definition 8.41. For s 6= 0, an s-density on a real vector space V of
dimension n is a function µ on V n satisfying

(8.4) µ(Av1, . . . , Avn) = | detA|sµ(v1, . . . , vn)

for all v1, . . . , vn ∈ V and all automorphisms A of V . A 0-density is
defined to be a constant function on V n.

Note that a linear combination of s-densitites is also an s-density.
We denote by |ΛV |s the vector space of s-densities on V . We want to
show that this space is one-dimensional. First we show that it is not
zero-dimensional.

Example 8.42. Let F = (e1, . . . , en) be a frame, i.e., an ordered basis,
of V . To an n-tuple (v1, . . . , vn) of vectors we associate the endomor-
phism Tv1,...,vn that maps ei to vi for all i. Then we define

µF ,s(v1, . . . , vn) := | detTv1,...,vn|s,

which is clearly an s-density. Note that the expansions vi =
∑n

j=1 v
j
i ej

imply that the representing matrix of Tv1,...,vn in the frame F is (vji ).
We can then write

µF ,s(v1, . . . , vn) =
∣∣det

(
vji
)∣∣s .

We also need the following observation.

Lemma 8.43. Let µ be an an s-density on V , s 6= 0. If the vectors
v1, . . . , vn are linearly dependent, then µ(v1, . . . , vn) = 0.
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Proof. Let W be the span of v1, . . . , vn. Let W ′ be a complement, which
by assumption is not zero-dimensional. For some λ ∈ R\{0, 1,−1}, let
A be the automorphism defined by Aw = w if w ∈ W and Aw′ =
λw′ if w′ ∈ W ′. Then we get µ(v1, . . . , vn) = µ(Av1, . . . , Avn) =
|λ|ksµ(v1, . . . , vn), k = dimW ′ > 0. This yields µ(v1, . . . , vn) = 0,
since |λ| 6= 1. �

From the example and the Lemma we get the

Proposition 8.44. Let µ be an s-density on V . Then, for any frame
F = (e1, . . . , en) of V , we have

µ(v1, . . . , vn) = λµF ,s(v1, . . . , vn)

with λ = µ(e1, . . . , en).

Proof. If s = 0, both sides of the equations are constant functions and
they are equal since µF ,0 = 1. If s 6= 0 and the vectors are linearly
dependent, then both sides vanish. If they are linearly independent,
we have

µ(v1, . . . , vn) = µ(Tv1,...,vne1, . . . , Tv1,...,vnen) = | detTv1,...,vn|sµ(e1, . . . , en),

which concludes the proof. �

As a consequence, a frame F of V induces a basis (µF ,s) of |ΛV |s.
Thus,

dim |ΛV |s = 1

for all s.
Let now φ : V → W be a linear map between n-dimensional vector

spaces. If µ is an s-density on W we define, on V n,

φ∗µ(v1, . . . , vn) := µ(φv1, . . . , φvn).

Lemma 8.45. φ∗µ is an s-density on V .

Proof. For s = 0 this is obvious. Consider s 6= 0. If φ not an isomor-
phism, then the vectors φv1, . . . , φvn are linearly dependent, so φ∗µ is
identically equal to zero. If φ is an isomorphism, we have

φ∗µ(Av1, . . . , Avn) = µ(φAv1, . . . , φAvn) =

= µ(φAφ−1φv1, . . . , φAφ
−1φvn) = | detφAφ−1|sµ(φv1, . . . , φvn) =

= | detA|sφ∗µ(v1, . . . , vn).

�
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We then have a linear map φ∗ : |ΛW |s → |ΛV |s, called the pullback of
densities. Note that the product of an s1-density µ1 with an s2-density
µ2 is an (s1 + s2)-density µ1µ2 and we have

φ∗(µ1µ2) = φ∗µ1φ
∗µ2.

Moreover, if ψ : W → Z is also a linear map, and dimZ = n, we have

(ψ ◦ φ)∗ = φ∗ψ∗.

Remark 8.46. As an s-density vanishes on linearly dependent vectors,
some textbooks prefer to define it only on linearly independent ones.
Namely, they define an s-density, for any s, as a function µ on the space
F (V ) of frames of V satisfying (8.4) for all (v1, . . . , vn) ∈ F (V ) and all
automorphisms A of V . Note that with this definition the pullback φ∗

is only defined when φ is an isomorphism.

Suppose now that we have chosen a frame F = (e1, . . . , en) of V and

a frame F̃ = (ẽ1, . . . , ẽn) of W . Then we can compute

φ∗µF̃ ,s(e1, . . . , en) = | det Aφ,F ,F̃ |
s,

where Aφ,F ,F̃ is the matrix representing φ in the given frames. As a
consequence, by Proposition 8.44, we have

(8.5) φ∗µF̃ ,s = | det Aφ,F ,F̃ |
sµF ,s.

Finally, if φ : V → W is an isomorphism, we define the push-forward
by φ as

φ∗ := (φ∗)−1.

8.2.3. Back to densities on manifolds. We may apply the above con-
struction to give an abstract definition of the density bundles. Let M
be a manifold. We now define |ΛM |s as ∪q∈M |ΛTqM |s. Given an atlas
{(Uα, φα)}α∈I , we have, for all q ∈ Uα, the linear map

(dqφα)∗ : |ΛTqM |s → |ΛRn|s.

We also have an isomorphism |ΛRn|s → R given by the frame (µF ,s) of
|ΛRn|s induced by the canonical frame F of Rn. The fiber component
Aα(q) of the resulting adapted chart map is the composition of (dqφα)∗
with this isomorphism.

To check that this construction defines the same line bundle as we
have used before, we just have to compute the transition functions.
For q ∈ Uα∩Uβ we have that Aαβ(q) is the composition of (dφα(q)φαβ)∗
with the isomorphisms to R given by the canonical frame. By (8.5),
we get that Aαβ(q) = | det dφα(q)φαβ|−s, as expected.
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Remark 8.47. Note that we can avoid identifying |ΛRn|s with R and

think of the chart map on Ũα as taking values in φα(Uα)× |ΛRn|s. In
this case the transition functions are directly given by the (dφα(q)φαβ)∗s.

Remark 8.48 (Standard density). The s-density on Rn determined by
the canonical basis as in Example 8.42 is called the standard s-density
and is denoted by the symbol |dnx|s. The standard s-density on an
open subset U of Rn, also denoted by |dnx|s, is the positive s-density
that takes the value |dnx|s at each point. If s = 1, we can integrate it
and we clearly have

∫
U
|dnx| =

∫
U
dnx, where dnx denotes the Lebesgue

measure. Note that the standard 1-density and the Lebesgue measure
are conceptually two different objects that are identified in integration
just because of the definition of the integral of a density. We will
keep different notations for the sake of clarity, but there is no risk of
confusion in using the same notation.

8.2.4. Pullback and push-forward. Let M and N be manifolds of the
same dimension. Let F be a map from M to N and let σ be an s-density
on N . We define the pullback F ∗σ of σ as the s-density on M given by

(F ∗σ)q = (dqF )∗σF (q), q ∈M.

In coordinates, the pullback is then described as follows. We first pick
an atlas {(Uα, φα)}α∈I of M and an atlas {(Vj, ψj)}j∈J of N . If {σj}
denotes the representation of σ in the atlas for N and {Fαj} denotes
the representation of F with respect to the two atlases, we have

(F ∗σ)α(x) = | det dxFαj|s σj(Fαj(x)),

for x ∈ φα(Uα).
Also notice that, by construction F ∗ is linear and that

F ∗(σ1σ2) = F ∗σ1 F
∗σ2.

Finally, if M,N,Z are manifolds of the same dimension and we have
maps F : M → N and G : N → Z, then

(G ◦ F )∗ = F ∗G∗.

Remark 8.49. In the particular case of a map F of open subsets of
Rn, we have the following useful formula for the standard densities:

(8.6) F ∗|dnx|s = | det dF |s |dnx|s

In this formula dF stands for dxF where x is the point where we want
to evaluate the formula.
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In case F : M → N is a diffeomorphism, we can also push forward
densities from M to N , just by setting

F∗ := (F−1)∗.

Of course we have that

F∗(σ1σ2) = F∗σ1F∗σ2,

and, given diffeomorphisms F : M → N and G : N → Z, that

(G ◦ F )∗ = G∗F∗.

Remark 8.50. Using push-forwards, we can write the representation
of an s-density σ in a chart (U, φU) as

(φU)∗σ|U = σU |dnx|s.
To understand this formula just notice that the left and right hand side
of this equation are both s-densities on φU(U) that are represented in
the standard chart of φU(U) by the same function σU . If we pick an
atlas {(Uα, φα)}α∈I , we then have

(8.7) (φα)∗σ|Uα = σα|dnx|s,
for all α, and we can rewrite the compatibility equation (8.2) as

σβ|dnx|s = (φαβ)∗(σα|dnx|s)

for all α, β ∈ I, where, by abuse of notation, σα denotes here the
restriction of σα to φα(Uα ∩Uβ) and σβ denotes the restriction of σβ to
φβ(Uα ∩ Uβ). Since the push-forward is an algebra morphism, we have
that (φαβ)∗(σα|dnx|s) = (φαβ)∗σα(φαβ)∗|dnx|s. By (8.6), we have that
(φαβ)∗|dnx|s = | det dφ|−s|dnx|s, which then yields the transformation
rule (8.2) for the coefficients σα.

Remark 8.51. If F : M → N is a diffeomorphism and σ a density on
M , then the change-of-variables formula immediately implies

(8.8)

∫
M

σ =

∫
N

F∗σ

assuming that the integrals converge. If f is a function on M , we also
have ∫

M

fσ =

∫
N

F∗f F∗σ =

∫
N

f ◦ F−1 F∗σ.

Remark 8.52. Recall that, if M and N are measurable spaces and
F : M → N is a measurable map, then we can define the push-forward
of a measure µ on M to a measure F∗µ on N by

(F∗µ)(A) := µ(F−1(A))
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for any measurable subset A of N . If M and N are manifolds, F a dif-
feomorphism and σ a nonnegative density on M , then we immediately
get

F∗µσ = µF∗σ.

8.2.5. The Lie derivative. If M is Hausdorff, we may define the Lie
derivative of an s-density in complete analogy with what we did for
functions and vector fields (see also Remark 7.30). For simplicity we
are now going to consider only smooth manifolds. Namely, we set

LXσ :=
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗ σ =

∂

∂t

∣∣∣
t=0

(ΦX
t )∗σ,

for X ∈ X(M) and σ an s-density. The Lie derivative is again R-linear.
Moreover, we have

(8.9)
∂

∂t

∣∣∣
t=s

(ΦX
−t)∗σ = (ΦX

−s)∗LXσ = LX(ΦX
−s)∗σ

for all s for which the flow is defined. The proof is exactly the same as
in Lemma 7.31. This also implies that σ is preserved by the flow of X
if and only if the Lie derivative vanishes:

(ΦX
t )∗σ = σ ∀t if and only if LXσ = 0.

Moreover, the Lie derivative satisfies the Leibniz rule

LX(σ1σ2) = LXσ1 σ2 + σ1 LXσ2.

Finally if F : M → N is a diffeomorphism, by the properties of the
push-forward and by Proposition 7.28, we get

(8.10) F∗LXσ = LF∗XF∗σ,

for all X ∈ X(M) and all σ ∈ Γ(|ΛM |s). Finally, exactly as in the
proof of Lemma 7.35, we get

LX+Y σ = LXσ + LY σ,

LXLY σ − LY LXσ = L[X,Y ]σ,

for any two vector fields X and Y .
A useful interpretation of the Lie derivative of densities is given by

an application of the change-of-variables formula (8.8).

Lemma 8.53. Let U be an open subset of M , which we regard as a
submanifold. We consider ΦX

t as a diffeomorphism from U to ΦX
t (U).

Then

(8.11)
∂

∂t

∫
ΦXt (U)

σ =

∫
ΦXt (U)

LXσ.
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In particular, this shows that
∫

ΦXt (U)
σ is constant for all Us, for

which the integral converges, if and only if LXσ = 0.

Proof. By the change-of-variables formula (say, for t1 close to t and t2
close to 0), we have ∫

ΦXt1
(U)

(ΦX
t2

)∗σ =

∫
ΦXt1−t2

(U)

σ.

From the right hand side we see that this depends only on the difference
between t1 and t2, so the derivative with respect to t1 must be equal
to the derivative with respect to t2. Hence, also using (8.9), we get

∂

∂t1

∫
ΦXt1

(U)

(ΦX
t2

)∗σ = − ∂

∂t2

∫
ΦXt1

(U)

(ΦX
t2

)∗σ =

∫
ΦXt1

(U)

(ΦX
t2

)∗LXσ.

By applying the change-of-variables formula again, we then get

∂

∂t1

∫
ΦXt1−t2

(U)

σ =

∫
ΦXt1−t2

(U)

LXσ,

which is the equation we wanted to prove by setting t = t1− t2. (More
precisely, you can make the change of variables t = t1 − t2, s = t1 + t2,
and observe that ∂

∂t1
= ∂

∂t
+ ∂

∂s
and that the expression does not depend

on s.) �

This result has an even better formulation if σ is nonnegative, for,
as explained in Remark 8.38, it defines a measure µσ. We define

Vol(U) = µσ(U)

where U is a Borel subset of M . If we also have a vector field X, we
define the volume at time t by

Volt(U) := µσ(ΦX
t (U)).

Here the intuition comes from fluid dynamics where X is interpreted
as a velocity field that prescribes the fluid motion; under this motion
the fluid region U is transformed into ΦX

t (U), and we are interested
in measuring the volume as the region changes with time. With these
new notations equation (8.11) becomes

∂

∂t
Volt(U) =

∫
ΦXt (U)

LXσ

for all open subsets U . The vector field X is called volume preserving if
∂
∂t

∣∣∣
t=0

Volt(U) = 0 for every open subset U . By the above formula one

sees that

X is volume preserving if and only LXσ = 0.
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In fluid mechanics where X is the velocity field of a fluid, one speaks
instead of an incompressible flow when this condition holds; typically,
liquids are incompressible as a good approximation.

We finally come to the computation of the Lie derivative of a density.
We start with the

Lemma 8.54. Let U be an open subset of Rn and X =
∑n

i=1X
i∂i a

vector field on U . Then, for every s,

LX |dnx|s = s
n∑
i=1

∂iX
i|dnx|s.

Proof. By (8.6), we have

LX |dnx|s =
∂

∂t

∣∣∣
t=0

(ΦX
t )∗|dnx|s =

∂

∂t

∣∣∣
t=0
| det dΦX

t |s|dnx|s.

Since

(ΦX
t (x))i = xi + tX i(x) +O(t2),

we have

∂j(Φ
X
t )i = δij + t∂jX

i +O(t2).

Hence, by the Leibniz formula for determinants,

det dΦX
t = 1 + t

n∑
i=1

∂iX
i +O(t2).

Finally,

| det dΦX
t |s = (det dΦX

t )s = 1 + st
n∑
i=1

∂iX
i +O(t2),

so
∂

∂t

∣∣∣
t=0
| det dΦX

t |s = s

n∑
i=1

∂iX
i.

�

Proposition 8.55. Let σ be an s-density and X a vector field on M ,
dimM = n. In an atlas {(Uα, φα)}α∈I of M , we have

(LXσ)α =
n∑
i=1

(X i
α∂iσα + sσα∂iX

i
α).

In particular, if s = 1 we have

(8.12) (LXσ)α =
n∑
i=1

∂i(σαX
i
α).
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Proof. By (8.7) and (8.10), we have (LXσ)α|dnx|s = LXα(σα|dnx|s). But
by the Leibniz rule we have

LXα(σα|dnx|s) = Xα(σα) |dnx|s + σαLXα|dnx|s.
Finally, we use Lemma 8.54. �

Remark 8.56. The local formula may be used to define the Lie de-
rivative of a density also when the manifold is not Hausdorff or not
smooth.

Notice that (8.12) immediately implies that, if σ is a density, X a
vector field and f a function, we then have

(8.13) LfXσ = LX(fσ).

8.2.6. Positive densities and the divergence of vector fields. We now
concentrate on positive densities, for which the above results can be
refined. The crucial point is that, if σ is a positive density on M , then
for every density τ on M there is a uniquely defined function f such
that τ = fσ (this is easily shown using the chart representations). As
a consequence, for every vector field X, there is a uniquely defined
function divσX, called the divergence23 of X with respect to σ, such
that

LXσ = divσX σ

Remark 8.57. Notice that a vector field X is then volume preserving
if and only its divergence vanishes.

Remark 8.58. Notice that positive densities are rather general. An
example is the standard density |dnx| on an open subset of Rn. More
generally, every Hausdorff, second-countable manifold admits a positive
density. This is easily proved. Let {ρj}j∈J be a partition of unity
subordinate to an atlas {(Uα, φα)}α∈I of M , with dimM = n. Then we
define σ =

∑
j∈J ρj (φ−1

αj
)∗|dnx|. By Proposition 8.24, |ΛM |, and hence

|ΛM |s for all s, is then a trivializable line bundle for every manifold M
that admits partitions of unity (so, e.g., compact Hausdorff of Hausdorff
second-countable manifolds).

Remark 8.59. From the Leibniz rule LX(fσ) = X(f)σ+fLXσ, where
f is a function, we get

divfσX =
1

f
X(f) + divσX

23This term also comes from fluid dynamics: if divσX 6= 0, the volume of open
subsets changes. This means that the fluid has to move in or out of U and hence
that the flow lines of X, for an appropriate time direction, move apart, i.e., diverge.



76 A. S. CATTANEO

for every positive function f . From the Leibniz rule and from (8.13),
we also have

divσ(fX) = X(f) + fdivσX.

for every function f . For f positive, we then have

divfσX =
1

f
divσ(fX)

Remark 8.60. A nice application of these formulae occurs in fluid
dynamics where X is the velocity field. Let ρ be a physical density (of
matter, of charge,. . . ). Despite the name ρ is a function, which is in
general also allowed to be time dependent. In addition one has a given
1-density σ (in examples, often the standard density on Rn).24 The
integral Mt(U) =

∫
ΦXt (U)

ρσ then represents the total quantity (of mass,

charge,. . . ) in the region U at time t. If the quantity is conserved, then
∂
∂t
Mt(U) must be zero for every open subset U . Again by the change-

of-variable formula (8.8) and by (8.9), as in the proof to Lemma 8.53,
we see that this happens if and only if ∂ρ

∂t
σ + LX(ρσ) = 0. By the

formulae above, LX(ρσ) = LρXσ = divσ(ρX)σ. Writing J := ρX,
which represents the current of the transported quantity, we see that
the quantity is conserved if and only if

∂ρ

∂t
+ divσJ = 0.

This is called the continuity equation.

We finally come to the computation of the divergence of a vector
field. Pick an atlas {(Uα, φα)}α∈I on M . Then by (8.7) and (8.12), we
have

(8.14) (divσX)α =
n∑
i=1

1

σα
∂i(σαX

i
α)

Remark 8.61. If U is an open subset of Rn and X =
∑n

i=1X
i∂i is a

vector field on U , then the divergence of X with respect to the standard
density |dnx|, which we denote simply by div, has the usual form from
calculus:

divX =
n∑
i=1

∂iX
i.

24A physical density, like e.g. mass per unit volume, is a ratio of 1-denstities
(in this example mass density over volume density), and hence a 0-density, i.e., a
function.
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Remark 8.62. The local formula (8.14) may be used to define the
divergence of a vector field also when the manifold is not Hausdorff.

8.3. The cotangent bundle and 1-forms. The dual bundle (see
Example 8.4) of the tangent bundle TM is denoted by T ∗M and is
called the cotangent bundle of M . Its fiber at q is denoted by T ∗qM . Its
sections are called 1-forms. The space of 1-forms on M is denoted by

Ω1(M) := Γ(T ∗M).

If one picks a trivializing atlas {(Uα, φα)}α∈I , then a 1-form is the
same as a collection of Ck-maps ωα : φα(Uα)→ Rn such that

(8.15) (dxφαβ)∗ωβ(φαβ(x)) = ωα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ).
If F : M → N is a Ck-map and ω ∈ Ω1(N), we may define a 1-form

F ∗ω on M by

(F ∗ω)q := (dqF )∗ωF (q).

This is called the pullback of 1-forms and extends the pullback of func-
tions defined in subsection 3.1. The pullback of 1-forms is clearly R-lin-
ear. Moreover, if f ∈ Ck(N) and ω ∈ Ω1(N), then

F ∗(fω) = F ∗fF ∗ω.

Finally, again, if G : N → Z is also a Ck-map, then

(G ◦ F )∗ = F ∗G∗.

Using pullbacks, we can write the representation of ω in a chart
(U, φU) as ωU = (φ−1

U )∗ω|U . Moreover, we can rewrite the compatibility
equation (8.15) as

ωα = φ∗αβωβ

for all α, β ∈ I, where, by abuse of notation, ωα denotes here the
restriction of ωα to φα(Uα∩Uβ) and ωβ denotes the restriction of ωβ to
φβ(Uα∩Uβ). This just extends Remark 3.12 from functions to 1-forms.

The pairing (ω,X) of a 1-form ω and a vector field X (see Exam-
ple 8.11) is often denoted by ιXω and called the contraction of X with
ω. If F : M → N is a diffeomorphism, then we clearly have

(F ∗ω,X) = F ∗(ω, F∗X)

for all X ∈ X(M) and ω ∈ Ω1(N). This may be put in a more sym-
metric way if we introduce the push-forward F∗ of a 1-form by a diffeo-
morphism F . Namely, for ω ∈ Ω1(M) one defines

F∗ω := (F−1)∗ω = (F ∗)−1ω.
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One then has

(8.16) F∗(ω,X) = (F∗ω, F∗X)

for all X ∈ X(M) and ω ∈ Ω1(M). Using the notation with contraction
we have

F∗(ιXω) = ιF∗XF∗ω.

A large class of 1-forms arise by differentiating functions. Namely, if
f is a Ck-function on M , then dqf : TqM → R can also be read as an
element of T ∗qM and hence defines a 1-form of class Ck−1 denoted by
df . We prefer not to bother with the shift in k, so for simplicity we
only consider smooth manifolds now. The map

d: C∞(M) → Ω1(M)
f 7→ df

(a.k.a. the de Rham differential) is R-linear and satisfies the Leibniz
rule25

d(fg) = df g + f dg

for all f, g ∈ C∞(M). Elements in the image of d are called exact
1-forms. If X is a vector field, we also clearly have

ιXdf = (df,X) = X(f) = LXf.

By the chain rule, the de Rham differential commutes with pullbacks:

Lemma 8.63. If F : M → N is a smooth map, then

F ∗df = dF ∗f

for all f ∈ C∞(N).

Proof. We have

dq(F
∗f) = dq(f ◦ F ) = dF (q)fdqF = (dqF )∗dF (q)f = (F ∗df)q.

�

If F is a diffeomorphism, then we also have

F∗df = dF∗f

for all f ∈ C∞(M).

25This innocent looking formula requires some explanation. One way to get it is
to observe that for every vector field X and every function f we have X(f)(q) =
(dqf,Xq). From X(fg) = X(f)g + fX(g) evaluated at q, noticing that we have
enough vector fields to span all directions, we get dq(fg) = dqfg(q) + f(q)dqg.
Another way of proving the Leibniz rule consists in observing that on open subsets
of Rn it is just the rule for deriving a product. Then one uses Lemma 8.63 to
transfer it from the images of the charts to the manifold.
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If M is Hausdorff, we may define the Lie derivative of a 1-form in
complete analogy with what we did for functions and vector fields in
subsection 7.4 (see also Remark 7.30). Namely, we set

LXω :=
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗ω =

∂

∂t

∣∣∣
t=0

(ΦX
t )∗ω,

for X ∈ X(M) and ω ∈ Ω1(M). The Lie derivative is again R-linear.
Moreover, we have

∂

∂t

∣∣∣
t=s

(ΦX
−t)∗ω = (ΦX

−s)∗LXω = LX(ΦX
−s)∗ω

for all s for which the flow is defined. The proof is exactly the same
as in Lemma 7.31. As a corollary, we then have that ω is preserved by
the flow of X, i.e.,

(ΦX
t )∗ω = ω ∀t if and only if LXω = 0.

If f is a function, the properties of pullback imply

(8.17) LX(fω) = LXf ω + f LXω.

Moreover, Lemma 8.63 implies that

(8.18) LXdf = dLXf

for every vector field X and every function f . From (8.16) with F the
flow of a vector field Y , we also get

(8.19) LY (ω,X) = (LY ω,X) + (ω, LYX),

or all X ∈ X(M) and ω ∈ Ω1(M). Using the notation with contraction
and Lemma 7.29, we can rewrite this as

(8.20) ιXLY ω − LY ιXω = ι[X,Y ]ω

Finally if F is a diffeomorphism, by the properties of the push-forward
and by Proposition 7.28, we get

(8.21) LXF
∗ω = F ∗LF∗Xω,

for all X ∈ X(M) and all ω ∈ Ω1(N). Equivalently,

F∗LXω = LF∗XF∗ω,

for all X ∈ X(M) and all ω ∈ Ω1(M). Finally, we have

LX+Y ω = LXω + LY ω,

LXLY ω − LY LXω = L[X,Y ]ω,

for any two vector fields X and Y . If we work in the image of a
chart, the proof is exactly as in the local chart proof of Lemma 7.35.
Alternatively, we may observe that since L commutes with d, in the
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case of exact 1-forms these identities immediately follow from those for
functions. The next remark is that in a local chart every 1-form is a
linear combination of products of a function and an exact 1-form, so the
result for general 1-forms in a chart image follows from linearity and
from the Leibniz rule. The global result follows from the commutativity
of L with pullbacks. (If a partition of unity subordinate to an atlas is
available, one can easily see that also globally a 1-form is a linear
combination of a product of a function and an exact 1-form.)

If V is an open subset of Rn, then we can consider the differentials
dxi of the coordinate functions xi. Notice that we have (using the
notation of Remark 7.16 on page 38, which comes in very handy here)

ι∂jdx
i =

∂xi

∂xj
= δij.

Since (∂i)i=1,...,n is a basis of X(V ) as a module over C∞(V ), we see
that (dxi)i=1,...,n is the dual basis of Ω1(V ). It follows that for every
ω ∈ Ω1(V ), we have

ω =
n∑
i=1

ωidx
i,

where ω1, . . . , ωn are uniquely determined functions. If f is a function
on U , we also clearly have

df =
n∑
i=1

∂if dxi.

The Lie derivative is easy to compute in local coordinates:

Lemma 8.64. Let U be an open subset of Rn. If ω =
∑n

i=1 ωidx
i is a

1-form and X =
∑n

i=1X
i∂i is a vector field, then LXω =

∑n
i=1(LXω)idx

i

with

(LXω)i =
n∑
j=1

(Xj∂jωi + ωj∂iX
j).

Proof. By (8.17) and (8.18), we have

LX

n∑
i=1

ωidx
i =

n∑
i=1

(LXωidx
i + ωidLXx

i).

From LXωi =
∑n

j=1 X
j∂jωi, LXx

i = X i and dX i =
∑n

j=1 ∂jX
idxj we

get the result. �

Remark 8.65. One can define the Lie derivative of a 1-form also on
a non-Hausdorff manifold simply using the above formula on the rep-
resentations in each chart. Namely, let ω and X be a 1-form and a
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vector field on M . Let ωα and Xα be their representations in the at-
las {(Uα, φα)}α∈I . Since the intersection chart images φα(Uα ∩ Uβ) are
Hausdorff, as subsets of Rn, we can use (8.21) to conclude that the
collection LXαωα represents a 1-form that we call the Lie derivative of
ω by X and denote by LXω.

If F : M → U is a smooth map to an open subset of Rn, by using all
the properties above we have

F ∗ω =
n∑
i=1

F ∗ωi dF
∗xi =

n∑
i=1

ωi ◦ F dF i

with F i := xi ◦ F the ith component of the map F .

8.4. The tensor bundle. If E is a vector bundle over M , we define
T ks (E) as the vector bundle whose fiber at q is T ks (Eq). (We use the

notations of Appendix B.1.) Namely, to an adapted atlas {(Ũα, φ̃α)}α∈I
of E over the trivializing atlas {(Uα, φα)}α∈I of M , we associate the

atlas {(Ûα, φ̂α)}α∈I of T ks (E) with Ûα = π−1
Tks (E)

(Uα) = ∪q∈UαT ks (Eq)

and
φ̂α : Ûα → Rn × T ks (Rr)

(q, ω ∈ T ks (Eq)) 7→ (φα(q), (Aα(q))ks ω)

where we identify T ks (Rr) with Rr(k+s). It follows that we have transi-
tions maps

φ̂αβ(x, u) = (φαβ(x), (Aαβ(φ−1
α (x)))ks u).

We specialize this construction to the case when the vector bundle E
is the tangent bundle TM . In this case, the transition maps are

φ̂αβ(x, u) = (φαβ(x), (dxφαβ)ks u).

A section of T ksM := T ks (TM) is called a tensor field of type (k, s). If
{(Uα, φα)}α∈I is an atlas on M , a (k, s)-tensor field Ξ is represented by
a collection of maps Ξα : φα(Uα)→ T ks (Rn) = Rn(k+s) such that

(8.22) Ξβ(φαβ(x)) = (dxφαβ)ks Ξα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ).
Tensor fields of type (0, s) are also called covariant tensor fields of

order s, whereas tensor fields of type (k, 0) are also known as con-
travariant tensor fields of order k. Notice that (0, 0)-tensor fields are
the same as functions, (1, 0)-tensor fields are the same as vector fields
and (0, 1)-tensor fields are the same as 1-forms. The tensor product
of tensors induces, by pointwise multiplication, the tensor product of
tensor fields

Γ(T k1
s1
M)× Γ(T k2

s2
M)→ Γ(T k1+k2

s1+s2
M),
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which is bilinear over the ring of functions. If Ξ1 and Ξ2 are tensor
fields, their tensor product is denoted by Ξ1 ⊗ Ξ2.

Remark 8.66. The notion of tensor product, which we have recalled
in Appendix B for vector spaces, holds more general for modules. If M1

and M2 are modules over a ring R, one uses the notation M1⊗RM2 for
their tensor product (as M1 and M2 may often be regarded as modules
for some subring). The tensor product of tensor fields, being bilinear
over C∞(M), induces a C∞(M)-linear map

Γ(T k1
s1
M)⊗C∞(M) Γ(T k2

s2
M)→ Γ(T k1+k2

s1+s2
M).

In particular, we have the canonical C∞(M)-isomorphism

T ks X(M) ' Γ(T ksM),

where T ks denotes on the left hand side the C∞(M)-tensor power and
on the right hand side the fiberwise R-tensor power. As tensor fields
are tensors for the C∞(M)-module X(M), they are often simply called
tensors.

If F : M → N is a diffeomorphism, then we can define the push-
forward F∗ of tensor fields by pointwise application of (B.4): namely, if
Ξ is a tensor field of type (k, s), we define

(F∗Ξ)y := (dF−1(y)F )ks ΞF−1(y),

for y ∈ N . Notice that in the case of functions, vector fields and 1-forms
the push-forward coincides with the one that we have already defined.
Moreover, for any two tensor fields Ξ1 and Ξ2 we have

(8.23) F∗(Ξ1 ⊗ Ξ2) = F∗Ξ1 ⊗ F∗Ξ2.

Also notice that if G is a diffeomorphism from N to Z, then (G◦F )∗ =
G∗ ◦ F∗.

Using push-forwards, we can write the representation of a tensor field
Ξ in a chart (U, φU) as ΞU = (φU)∗Ξ|U . Moreover, we can rewrite the
compatibility equation (8.22) as

Ξβ = (φαβ)∗Ξα

for all α, β ∈ I, where, by abuse of notation, Ξα denotes here the
restriction of Ξα to φα(Uα ∩ Uβ) and Ξβ denotes the restriction of Ξβ

to φβ(Uα ∩ Uβ).
If M is Hausdorff, we may define the Lie derivative of a tensor field in

complete analogy with what we did for functions, vector fields, densities
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and 1-forms (see also Remark 7.30). For simplicity we are now going
to consider only smooth manifolds. Namely, we set

LXΞ :=
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗ Ξ,

for X ∈ X(M) and Ξ a tensor field. The Lie derivative is again R-linear.
Moreover, we have

∂

∂t

∣∣∣
t=s

(ΦX
−t)∗Ξ = (ΦX

−s)∗LXΞ = LX(ΦX
−s)∗Ξ

for all s for which the flow is defined. The proof is exactly the same as
in Lemma 7.31. This implies the important

Corollary 8.67. A tensor field Ξ is preserved by the flow of a vector
field X, i.e.,

(ΦX
t )∗Ξ = Ξ ∀t if and only if LXΞ = 0.

If Ξ1 and Ξ2 are tensor fields, then (8.23) implies the Leibniz rule

(8.24) LX(Ξ1 ⊗ Ξ2) = LXΞ1 ⊗ Ξ2 + Ξ1 ⊗ LXΞ2.

Finally if F : M → N is a diffeomorphism, by the properties of the
push-forward and by Proposition 7.28, we get

(8.25) F∗LXΞ = LF∗XF∗Ξ,

for all X ∈ X(M) and all tensor fields Ξ. Finally, we have

LX+Y Ξ = LXΞ + LY Ξ,

LXLY Ξ− LY LXΞ = L[X,Y ]Ξ.

for any two vector fields X and Y . Again, in a chart image this may
be proved either as in the local chart proof of Lemma 7.35 or observ-
ing that a tensor field is a linear combination of tensor products of
functions, vector fields and exact 1-forms, as explained in the following
remark.

Remark 8.68. On an open subset U of Rn we have a basis of the
C∞(U)-module of (k, s)-tensor fields given by

∂i1 ⊗ · · · ⊗ ∂ik ⊗ dxj1 ⊗ · · · ⊗ dxjs .

As a consequence, a tensor field on U is a finite linear combination of
tensor products of functions, vector fields (∂i) and exact 1-forms (dxi).
This is also true globally for tensor fields on a manifold with partitions
of unity (such as a Hausdorff second-countable manifold), for we can
write a tensor field Ξ as

Ξ =
∑
i∈J

ρi Ξ|Uαi =
∑
i∈J

ρi (φ
−1
αi

)∗Ξαi ,
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where {ρi}i∈J is a partition of unity subordinate to the atlas {(Uα, φα)}α∈I .
Hence by (8.24) it is enough to know the action of the Lie derivative
on functions and on vector fields as the action on exact 1-forms can be
deduced from equation (8.18).

Remark 8.69 (Pullback of covariant tensors fields). The push-forward
of tensor fields requires having a diffeomorphism. If Ξ is a (0, s)-tensor
field on N , however, we can pull it back by any map F : M → N by

(F ∗Ξ)q := ((dqF )∗)⊗s ΞF (q),

for q ∈ M . Notice that in the case of functions and 1-forms this
coincides with the already defined pullback. Also notice that, in case
F is a diffeomorphism, then F ∗ = (F−1)∗.

8.5. Digression: Riemannian metrics. A very important example
of tensor field is the so-called Riemannian tensor, which is used to
introduce geometric properties on a manifold (this specialized part of
the theory of manifolds goes under the name of differential geometry).

Let us start recalling the notion of (Euclidean) length in Rn. Let
γ : I → Rn be a piecewise differentiable curve.26 Then one sets

`(γ) =

∫
I

√
η(γ̇(t), γ̇(t)) dt,

where η denotes the Euclidean scalar product: η(v, w) =
∑n

i=1 v
iwi.

This definition extends the notion of Euclidean length of segments by
Pythagoras’ theorem. Actually, if one approximates γ by a piecewise
linear curve, whose length is defined as the sum of the lengths of its
composing segments, then one gets `(γ) in the limit. The main idea of
Riemannian geometry consists in replacing the fixed bilinear form η by
a point-depending one.

Definition 8.70. A Riemannian metric on a differentiable manifold is
a positive definite, symmetric (0, 2)-tensor field. If g is a Riemannian
metric on M , the pair (M, g) is called a Riemannian manifold.

More explictly, a Riemannian metric g on M is a section of T 0
2M =

T ∗M ⊗ T ∗M such that, for each q ∈M ,

gq(v, w) = gq(w, v) for all v, w ∈ TqM
and

gq(v, v) > 0 for all v ∈ TqM \ {0}.
26This means that γ is continuous and that I can be written as a disjoint finite

union of intervals Ik such that γ is continuously differentiable in the interior of each
Ik and the limits of its derivatives to the endpoints of each Ik are finite.
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Remark 8.71. In an open subset of Rn a metric g can be expanded
as g =

∑n
i=1 gij dxi ⊗ dxj, where for each x the matrix with entries

gij(x) is symmetric and positive definite. Typically one omits writing
the tensor product symbol, so a metric is simply written as

(8.26) g =
n∑
i=1

gij dxidxj.

The Euclidean metric η then reads η =
∑n

i=1(dxi)2. If one uses coor-
dinate functions without indices, e.g., x, y, z, . . . , then one customarily
writes dx2 instead of (dx)2, and so on, so the Euclidean metric reads
η = dx2 + dy2 + dz2 + · · · .

Remark 8.72. Another notation for a metric g is by the “infinitesimal
line length” ds2. Namely, instead of (8.26) one writes

ds2 =
n∑
i=1

gij dxidxj.

In the case of the Euclidean metric,

ds2 = dx2 + dy2 + dz2 + · · · ,

this takes the form of an “infinitesimal Pythagorean theorem.” This
notation also fits well with the general notion of product Riemannian
metric, of which this was an example. More generally, if gM and gN
are Riemannian metrics on M and N , respectively, then one defines

gM×N := π∗MgM + π∗NgN ,

where πM and πN are the projections from M × N to M and N . It
is readily verified that gM×N is also a Riemannian metric. If we write
ds2 instead of g and let the pullbacks be understood, then we have

ds2
M×N = ds2

M + ds2
N ,

another instance of the “infinitesimal Pythagorean theorem.”

Notice that Riemannian metrics are a very general concepts:

Lemma 8.73. Every manifold with partitions of unity (e.g., a Haus-
dorff, second-countable one) admits a Riemannian metric.

Proof. Let {ρj}j∈J be a partition of unity subordinate to an atlas
{(Uα, φα)}α∈I of M . Then define g =

∑
j∈J ρj (φ−1

αj
)∗η, where η is

the Euclidean metric and ρj (φ−1
αj

)∗η is extended by zero outside of Uαj .
Since a convex linear combination of positive definite bilinear forms is
positive definite, it is readily checked that g is a Riemannian metric. �
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Definition 8.74. The Riemannian length of a piecewise differentiable
curve γ : I → Rn is

`g(γ) :=

∫
I

√
gγ(t)(γ̇(t), γ̇(t)) dt.

Lemma 8.75. The length of a curve does not depend on its parametriza-
tion.

Proof. Let φ : I → J be a diffeomorphism and let γ̃ := γ ◦φ−1 : J →M
be a different parametrization of γ. Then

`g(γ) =

∫
I

√
gγ̃(φ(t))(φ̇(t) ˙̃γ(φ(t)), φ̇(t) ˙̃γ(φ(t))) dt =

=

∫
I

√
gγ̃(φ(t))( ˙̃γ(φ(t)), ˙̃γ(φ(t))) |φ̇(t)| dt =

=

∫
J

√
gγ̃(s)( ˙̃γ(s), ˙̃γ(s)) ds = `g(γ̃),

with s = φ(t). �

For those who know calculus of variations, we can introduce the

Definition 8.76. A geodesic on (M, g) from q1 to q2 is an extremal
path for `g on the space of immersed curves joining q1 to q2.

One can use the calculus of variations to show that a geodesic is
a solution of a second-order differential equation. If M is Hausdorff
and the endpoints q1 and q2 are close enough, there is then a unique
geodesic joining them that minimizes length; also notice that the length
of an immersed curve is necessarily strictly positive. This result is
fundamental to prove the

Theorem 8.77. Let (M, g) be a connected Hausdorff Riemannian man-
ifold. Let

dg(q1, q2) := inf
γ
`g(γ),

where the infimum is taken over the set of all piecewise differentiable
curves joining q1 to q2. Then dg is a distance on M which induces the
same topology as the atlas topology.

Sketch of the proof. The function dg is clearly symmetric and nonneg-
ative. We also have dg(q, q) = 0 as we can take the constant path to
join q to q. The triangle inequality also follows immediately from the
definition: if we have three points q1, q2 and q3, then any curve γ1

that joins q1 to q2 may be joined to any curve γ2 that joins q2 to q3

to produce a curve γ that joins q1 to q3. By additivity of the integral
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we have `g(γ) = `g(γ1) + `g(γ2). On the other hand, by definition we
have dg(q1, q3) ≤ `g(γ). Taking the infimum over γ1 and over γ2, we
finally get dg(q1, q3) ≤ dg(q1, q2) + dg(q2, q3). What is left to prove is
that if q1 6= q2, then dg(q1, q2) > 0. The idea is to take the preimage
under a chart map of a ball around q1 not containing q2 such that there
is a unique length-minimizing geodesic joining q1 to any point inside
this ball. Since every path joining q1 to q2 must go through this ball,
the infimum of the lengths is not smaller than the length of a geodesic
inside the ball, which is strictly positive. We leave to the reader to
check that the topology induced by this metric is the same as the orig-
inal topology. For more details, we refer to any book on differential
geometry, e.g., [4, Prop. 8.19]. �

Remark 8.78 (The Riemannian density). Riemannian metrics can be
used not only to define lengths, but also volumes. First, observe that if
g is a (0, 2)-tensor field then its determinant det g is a 2-density. More
precisely, pick an atlas {(Uα, φα)}α∈I and let gα be the representation
of g in the chart α. Then

((dxφαβ)∗)⊗2gβ(φαβ(x)) = gα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ). As gα(x) is an element
of ((Rn)∗)⊗2, i.e., a bilinear form on Rn or, more concretely, an n × n
matrix, we can take its determinant. We then have

(det dxφαβ)2 det gβ(φαβ(x)) = det gα(x)

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ). This shows that the col-
lection {det gα}α∈I represents a 2-density. If g is a Riemannian metric,
then det gα > 0 for all α, so we can take its square root, which defines
a density since

| det dxφαβ|
√

det gβ(φαβ(x)) =
√

det gα(x)

for all α, β ∈ I and for all x ∈ φα(Uα∩Uβ). We denote by vg the positive
density that in the chart (Uα, φα) is represented by

√
det gα. This is

called the Riemannian density. Finally, we can define the Riemannian
volume of M as

Volg(M) :=

∫
M

vg ∈ R>0 ∪ {+∞}.

Remark 8.79. If U is an open subset of Rn and we take the restriction
to U of the Euclidean metric η as a Riemannian metric, then Volη(U) =∫
U
dnx, the usual Lebesgue volume.
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Remark 8.80. Let F : M → N be a diffeomorphism and let g be
a Riemannian metric on M . Then we have F∗vg = vF∗g, where on
the left hand side we use the push-forward of densities introduced in
subsubsection 8.2.4.

Remark 8.81 (The divergence). Since the Riemannian density vg is
positive definite, it defines a divergence operator as explained in sub-
subsection 8.2.6. For simplicity of notation, we write divg instead of
divvg . Notice that by (8.14), in an atlas {(Uα, φα)}α∈I we have

(8.27) (divgX)α =
n∑
i=1

1√
det gα

∂i

(√
det gαX

i
α

)
.

The Riemannian divergence operator will play a central role in the
theorem of Gauss.

Remark 8.82 (Gradient and Laplacian). A (0, 2)-tensor g establishes
a linear map TqM → T ∗qM at each q ∈M by v 7→ gq(v, ). These maps
may be assembled into a morphism

Φg : TM → T ∗M

as in Definition 8.16. This morphism can be used to push forward
vector fields to 1-forms. If g is a Riemannian metric, this is actually
an isomorphism. In particular, to every function f we can associate a
uniquely determined vector field

gradgf := Φ−1
g df,

called the gradient of f . The gradient of f is uniquely characterized by
the property that

g
(
gradgf, Y

)
= Y (f)

for every vector field Y . The divergence of gradgf is called the Laplacian
of f and is denoted by ∆gf , so

∆gf := divggradgf.

In an atlas {(Uα, φα)}α∈I , we have(
gradgf

)
α

=
∑
ij

gijα ∂ifα ∂j,

where (gijα ) denotes the inverse of the matrix ((gα)ij). The Laplacian
then reads

(∆gf)α =
∑
ij

1√
det gα

∂j

(√
det gα g

ij
α ∂ifα

)
.
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Notice that on an open subset of Rn with Euclidean metric we recover
the usual formulae from calculus:

gradf =
∑
i

∂if ∂i and ∆f =
∑
i

∂2
i f.

Finally, recall that, as in Remark 8.69, covariant tensor fields can
be pulled back. The pullback of a Riemannian metric is in general
degenerate, so not a Riemannian metric. However, if ι : S → M is an
immersion, then dqι(TqS) is a subspace of Tι(q)M . The restriction of a
positive definite, symmetric bilinear form to a subspace is still positive
definite. Hence, if g is a Riemannian metric on M , then gS := ι∗g is
a Riemannian metric on S. In particular, this is the case when S is
a submanifold and ι the inclusion map. The Riemannian metric gS is
called the restriction of g to S. The volume of S is then defined as

Volg(S) :=

∫
S

vgS .

Remark 8.83. The Riemannian density vg is positive, so it defines a
positive measure µvg on M , see Remark 8.38. If U is an open subset
of M , then Volg(U) = µvg(U). If on the other hand S is a submanifold
of strictly lower dimension, we have µvg(S) = 0, but Volg(S) > 0. The
volume defined by the induced metric generalizes, e.g., the notion of
areas of surfaces in three-dimensional Euclidean space.

Example 8.84 (Length). Let γ : I → M be an immersed curve. If g
is a Riemannian metric on M , the induced metric gγ is given by

gγ(t) = gγ(t)(γ̇(t), γ̇(t)) dt2.

Hence

Volg(γ) =

∫
I

√
gγ = `g(γ).

Example 8.85 (Area). Let S be an open subset of R2, M an open
subset of Rn and σ : S → M an immersion. We denote by xi the
coordinates on S and by zµ the coordinates on M . We then have
σ∗zµ = σµ(x), where the σµs are components of the map σ. It follows
that

σ∗dzµ = dσ∗zµ =
2∑
i=1

∂iσ
µ dxi.

Thus,

(gS)x =
2∑

i,j=1

(∂iσ, ∂jσ)x dxidxj,
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with (∂iσ, ∂jσ)x :=
∑n

µ,ν=1 gµν(σ(x)) ∂iσ
µ(x) ∂jσ

ν(x). Hence

Volg(S) =

∫
S

√
(∂1σ, ∂1σ)x(∂2σ, ∂2σ)x − ((∂1σ, ∂2σ)x)2 d2x.

Example 8.86. Pullback (or push-forward) by a diffeomorphism can
also be understood as a change of variables. Suppose for example that
we want to use polar coordinates in R2. We actually have a map

R>0 × (0, 2π)→ R2 \D, (r, θ) 7→ (r cos θ, r sin θ),

where D = {(x, y) ∈ R2 | y = 0, x > 0}. This map can be extended
to a diffeomorphism

F : R>0 × S1 → R2 \ {0}.
Denoting by x and y the coordinates on R2 \ {0}, we have

F ∗dx = dF ∗x = cos θ dr − r sin θ dθ,

F ∗dy = dF ∗y = sin θ dr + r cos θ dθ.

With the notations of Remark 8.71, we write the Euclidean metric as
η = dx2 + dy2. Since F ∗ is an algebra morphism, we have

F ∗dx2 = cos2 θ dr2 − r sin θ cos θ (drdθ + dθdr) + r2 sin2 θ dθ2,

F ∗dy2 = sin2 θ dr2 + r sin θ cos θ (drdθ + dθdr) + r2 cos2 θ dθ2.

Thus, the Euclidean metric in polar coordinates reads

F ∗η = dr2 + r2dθ2.

This means that in these coordinates the metric is diagonal with diago-
nal entries 1 and r2, so detF ∗η = r2 and by (8.27) the polar coordinate
expression for the divergence of a vector field X = Xr

∂
∂r

+Xθ
∂
∂θ

is

divF ∗ηX =
1

r

(
∂

∂r
(rXr) +

∂

∂θ
(rXθ)

)
=

1

r

∂

∂r
(rXr) +

∂

∂θ
Xθ.

If f is a function, and df = ∂rfdr + ∂θfdθ its differential, by Re-
mark 8.82 we compute its gradient as gradF ∗ηf = ∂rf∂r + 1

r2∂θf∂θ. It
then follows that its Laplacian is

∆F ∗ηf =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
.

Remark 8.87 (Pseudo-Riemannian metrics). Notice that for most of
the constructions in this subsection what was really needed was just
that g be nondegenerate; namely, that gq establish an isomorphism
between TqM and T ∗qM at each q or, equivalently, that det gα 6= 0 in
every representation. A symmetric (0, 2)-tensor field with this property
is called a pseudo-Riemannian metric. A pseudo-Riemannian metric g
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defines a positive density vg by
√
| det gα| in each chart. By this, one

may define the notions of volume of regions and of divergence of vector
fields. Since we have an isomorphism TM → T ∗M , we may also define
the gradient and the “Laplacian” of functions (in the case when g
has exactly one positive eigenvalue, or exactly one negative eigenvalue,
this operator is usually called d’Alembertian). One can also define a
“length” functional `g(γ) :=

∫
I

√
|gγ(t)(γ̇(t), γ̇(t))| dt, which may now

however vanish on curves joining distinct points and does no longer
induce a distance function. One can also define geodesics as extremal
immersions for this functional, and they still turn out to be solutions
of a second-order differential equation. Notice on the other hand that,
unlike in Lemma 8.73, the existence of a pseudo-Riemannian metric,
with a prescribed signature, is in general not guaranteed. A particular
case, of great importance in physics (general relativity), is that of a
Lorentzian metric, i.e., a pseudo-Riemannian metric g such that gq has
exactly one positive eigenvalue (or, according to another convention,
exactly one negative eigenvalue) at each q. The standard example on an
open subset of Rn is that of the Minkowski metric (dx1)2−

∑n
i=2(dxi)2.

9. Differential forms, integration and Stokes theorem

In subsection 8.3 we have seen that some 1-forms arise as the dif-
ferential of a function and we called such 1-forms exact. A natural
question is how one can characterize 1-forms. A simple answer occurs
on an open subset U of Rn. Let ω =

∑n
i=1 ωidx

i be an exact 1-form:
i.e., ω = df for some function f . This means that the components
satisfy ωi = ∂if . Now, even without knowing f , we can affirm that
∂iωj = ∂jωi for all i, j. This is a necessary condition for a 1-form to be
exact (we will see that it is not sufficient in general though). This sug-
gests defining the skew-symmetric tensor field

∑
ij(∂iωj−∂jωi)dxi⊗dxj

which vanishes if ω is exact. It turns out that this construction makes
sense also for manifolds and that it can be futher extended. This leads
to the concept of differential forms (i.e., sections of the exterior algebra
of the cotangent bundle) and of the de Rham differential (a.k.a. the
exterior derivative).

A further reason for studying the de Rham differential is its intimate
connection with Stokes theorem, the higher dimensional version of the

fundamental theorem of analysis
∫ b
a
f ′(x) dx = f(b) − f(a). Just to

give a glimpse of it, consider the integration of 1-forms. If ω ∈ Ω1(M)



92 A. S. CATTANEO

and γ : [a, b]→M is a piecewise differentiable curve, one defines∫
γ

ω =

∫ b

a

ωγ(t)(γ̇(t)) dt.

If M is an open subset of Rn and ω =
∑n

i=1 ωi dx
i, we just have∫

γ

ω =

∫ b

a

n∑
i=1

ωi(γ(t)) γ̇i(t) dt.

If ω = df , we then get∫
γ

ω = f(γ(b))− f(γ(a)).

On a manifold this is also true: simply split γ into portions each lying
in a single chart and apply the result in charts. Finally, if γ is closed
(i.e., γ(a) = γ(b)) we get

∫
γ
ω = 0 if ω is exact.

For simplicity in this section we will only consider smooth manifolds
an smooth differential forms on them.27

9.1. Differential forms. If E is a vector bundle over M (see Defini-
tion 8.1 on page 53), we define ΛkE as the vector bundle whose fiber
at q is ΛkEq. (We use the notations of Appendix B.2.) Namely, to an

adapted atlas {(Ũα, φ̃α)}α∈I of E over the atlas {(Uα, φα)}α∈I of M ,

we associate the atlas {(Ûα, φ̂α)}α∈I of ∧mE with Ûα = π−1
∧mE(Uα) =

∪q∈Uα ∧m Eq and

φ̂α : Ûα → Rn × ∧mRr

(q, ω ∈ ∧mEq) 7→ (φα(q),∧mAα(q)ω)

where we regard ∧mRr as the manifold R( rm ) with its standard struc-
ture. It follows that we have transitions maps

φ̂αβ(x, u) = (φαβ(x),∧mAαβ(φ−1
α (x))u).

Definition 9.1. An m-form on a smooth manifold M is a section of
∧mT ∗M . We denote by Ωm(M) the C∞(M)-module of m-forms and by
Ω•(M) = ⊕mΩm(M). An element of Ω•(M) is called a differential form
on M .

Notice that if σ is an m-form, then (8.1) now reads

(∧mdxφαβ)∗σβ(φαβ(x)) = σα(x).

27By inspection one may see how certain definitions may be changed otherwise
and that certain results only require continuity or continuous differentiability in
low degree.
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The exterior product of the exterior algebra induces, by pointwise
multiplication, the exterior product of differential forms: (α ∧ β)q :=
αq ∧ βq. It follows that, if α is a k-form and β an l-form, we have

β ∧ α = (−1)klα ∧ β.
Since we regard the exterior algebra as a subspace of the tensor

algebra, we have that differential forms are a special case of covariant
tensor fields. In particular, we may restrict the pullback and the Lie
derivative to differential forms. More explicitly, if F is a map M → N
and ω ∈ Ωk(N), we have

(F ∗ω)q = (ΛkdqF )∗ωF (q).

We also have F ∗(α ∧ β) = F ∗α ∧ F ∗β.
Using pull-backs, we can write the representation of a differential

form σ in a chart (U, φU) as σU = (φ−1
U )∗ω|U . Moreover, we can rewrite

the compatibility equation as

(9.1) σα = φ∗αβσβ

for all α, β ∈ I, where, by abuse of notation, σα denotes here the
restriction of σα to φα(Uα ∩Uβ) and σβ denotes the restriction of σβ to
φβ(Uα ∩ Uβ).

If M is Hausdorff, the Lie derivative is defined as usual:

LXω :=
∂

∂t

∣∣∣
t=0

(ΦX
−t)∗ω =

∂

∂t

∣∣∣
t=0

(ΦX
t )∗ω,

for X ∈ X(M) and ω ∈ Ω•(M). This immediately implies

(9.2)
∂

∂t

∣∣∣
t=s

(ΦX
−t)∗ω = (ΦX

−s)∗LXω = LX(ΦX
−s)∗ω

The Lie derivative has all the properties so far discussed for tensor
fields. We list them here:

LX+Y ω = LXω + LY ω,(9.3a)

LXLY ω − LY LXω = L[X,Y ]ω,(9.3b)

for every two vector fields X, Y and every differential form ω. In
addition, it satisfies the Leibniz rule

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ

for every vector field X and every two differential forms α and β. Fi-
nally, if F : M → N is a diffeomorphism, then

(9.4) F∗LXω = LF∗XF∗ω,

for all X ∈ X(M) and all ω ∈ Ω(M).
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Another useful operation is that of contraction. This is also defined
pointwise using the contraction of vectors with forms explained in Ap-
pendix B.2.1. Namely, if X is a vector field and ω a differential form,
one defines

(ιXω)q = ιXqωq,

for all q ∈M . From Lemma B.14 we immediately get

ιX(α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιXβ,
for all X ∈ X(M), α ∈ Ωk(M) and β ∈ Ω(M), as well as

(9.5) ιXιY α = −ιY ιXα
for all X, Y ∈ X(M) and α ∈ Ω(M). Finally, if F : M → N is a
diffeomorphism, by (B.9) we get

(9.6) F∗ιXω = ιF∗XF∗ω,

for all X ∈ X(M) and all ω ∈ Ω(M).

9.2. The de Rham differential. We now return to the problem of
extending the differential to higher forms.

We start with the case when U is an open subset of Rn. Then
dxi1 ∧ · · · ∧ dxik , i1, . . . , ik ∈ {1, . . . , n}, is a system of generators of
Ωk(U) over C∞(U) (a basis if we take only i1 < · · · < ik). We can
then expand α ∈ Ωk(U) as α =

∑n
i1,...,ik=1 αi1···ik dxi1 ∧ · · · ∧ dxik . The

de Rham differential of α is then defined as the (k + 1)-form

dα =
n∑
j=1

n∑
i1,...,ik=1

∂jαi1···ik dxj ∧ dxi1 ∧ · · · ∧ dxik .

Notice that if α is a top form, i.e., k = n, then automatically dα = 0.

Lemma 9.2. The de Rham differential on an open subset U of Rn is
a collection of linear maps d: Ωk(U)→ Ωk+1(U) for all k and satisfies
the following three properties:

(1) d: Ω0(U)→ Ω1(U) is the usual differential of functions;
(2) d2 = 0;
(3) d(α∧β) = dα∧β+ (−1)kα∧dβ for α ∈ Ωk(U) and β ∈ Ω(U).

Proof. Linearity and property (1) are clear from the definition. For
property (2) we compute

d2α =
n∑
l=1

n∑
j=1

n∑
i1,...,ik=1

∂l∂jαi1···ik dxl ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik .

This vanishes since ∂l∂jαi1···ik is symmetric in the exchange of l and j
whereas dxl ∧ dxj is skew-symmetric.
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Property (3) also follows from a direct computation. For simplicity
we assume α = f dxi1∧. . . dxik and β = g dxr1∧. . . dxrl , the general case
following by linearity. We have α∧β = fg dxi1∧. . . dxik∧dxr1∧. . . dxrl .
Hence

d(α ∧ β) =
n∑
j=1

∂j(fg) dxj ∧ dxi1 ∧ . . . dxik ∧ dxr1 ∧ . . . dxrl =

=
n∑
j=1

∂jfg dxj ∧ dxi1 ∧ . . . dxik ∧ dxr1 ∧ . . . dxrl+

+ (−1)k
n∑
j=1

f∂jg dxi1 ∧ . . . dxik ∧ dxj ∧ dxr1 ∧ . . . dxrl =

= dα ∧ β + (−1)kα ∧ dβ.

�

Lemma 9.3. If U is an open subset of Rn, the de Rham differential
is uniquely determined by properties (1), (2) and (3).

Proof. Since every differential form on U is a linear combination of
wedge products of functions and exact 1-forms, (3) implies that d is
completely determined by its action on functions and exact 1-forms.
On the other hand, (1) defines d on functions and (2) says that d
vanishes on exact 1-forms. �

Corollary 9.4. Let F be a smooth map U → V where U and V are
open subsets of Rn and Rm, respectively. Then

dF ∗ = F ∗d.

Proof. We have already proved, Lemma 8.63, that dF ∗f = F ∗df for f
a function. Applying d and using d2 = 0, we get 0 = dF ∗df . On the
other hand, we also have F ∗ddf = 0. This shows that dF ∗α = F ∗dα
if α is a function or an exact 1-form.

Next notice that dF ∗(α∧ β) = dF ∗α∧F ∗β + (−1)kF ∗α∧ dF ∗β, for
α ∈ Ωk(U) and β ∈ Ω(U), so it is enough to compute dF ∗ on functions
and on exact 1-forms. �

We now turn to the general case. Let M be a smooth manifold and
ω a k-form. Pick an atlas {(Uα, φα)}α∈I and denote by ωα the represen-
tation of ω in the chart α. By Corollary 9.4, the collection dωα defines
a (k+1)-form on M that we denote by dω. It then immediately follows
that d is a collection of linear maps Ωk(M)→ Ωk+1(M) satisfying the
conditions
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(1) d: Ω0(M)→ Ω1(M) is the usual differential of functions;
(2) d2 = 0;
(3) d(α∧β) = dα∧β+(−1)kα∧dβ for α ∈ Ωk(M) and β ∈ Ω(M).

If M is Hausdorff and second countable, then d is uniquely determined
by these properties. The proof is as for Corollary 9.3 after noticing, by
using a partition of unity, that every differential form on M is a linear
combination of wedge products of functions and exact 1-forms.

Finally, if F : M → N is a smooth map, we have

(9.7) dF ∗ = F ∗d.

This follows imediately from Corollary 9.4 using the chart representa-
tions of F .

Definition 9.5. The collection Ωk(M) together with the de Rham
differential d is called the de Rham complex of M .

Remark 9.6. To simplify notations it makes sense to extend the defi-
nitions to negative degrees. Namely, one defines Ωk(M) := {0} for k a
negative integer. Then d: Ωk(M)→ Ωk+1(M) is the zero map if k < 0.
Notice that we still have d2 = 0.

Remark 9.7 (Vector calculus). If U is an open subset of R3 the
de Rham differential corresponds, in the various degrees, to gradient,
curl and divergence. Divergence and gradient are defined in terms of
the Euclidean metric as a special case of Remarks 8.81 and 8.82. They
simply read

gradf =
3∑
i=1

∂if ∂i, divX =
3∑
i=1

∂iX
i,

where we use the expansion X =
∑3

i=1X
i∂i. In addition one defines

curlX =
3∑

i,j,k=1

εijk ∂iX
j ∂k.

One can easily verify that curl ◦ grad = 0 and div ◦ curl = 0. All
this is actually equivalent to de Rham. The point is that dim Λ2R3 =
3 = dim Λ1R3. This allows us to define an isomorphism from the
C∞(U)-module of 2-forms to that of 1-forms and to that of vector
fields. More generally, we define isomorphisms φ1 : Ω1(U) → X(U),
φ2 : Ω2(U) → X(U), φ3 : Ω3(U) → C∞(U) by specifying them on pure
forms:

φ1(dxi) := ∂i, φ2(dxi∧dxj) :=
3∑

k=1

εijk∂k, φ3(dxi∧dxj∧dxk) := εijk.
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One can easily see that grad = φ1d, curl = φ2dφ−1
1 , div = φ3dφ−1

2 and
one sees that the identities of vector calculus are equivalent to d2 = 0.

9.2.1. The de Rham cohomology. The equation d2 = 0 implies that
the image of d : Ωk−1(M) → Ωk(M) lies in the kernel of d : Ωk(M) →
Ωk+1(M). Differential forms in the image of d are called exact, those
in the kernel of d are called closed. Thus, every exact form is closed.
To measure the failure of the converse statement, one introduces the
de Rham cohomology groups:

Hk(M) := ker(d: Ωk(M)→ Ωk+1(M))/ im(d: Ωk−1(M)→ Ωk(M)).

These groups have a lot of interesting properties. One can e.g. show
(even though we will not do it here) that, under mild assumptions,
they are finite dimensional, which makes them very managable.

Since the pullback F ∗: Ω(N) → Ω(M) by a map F : M → N com-
mutes with d, it descends to the quotient: i.e., we can define F ∗[ω] :=
[F ∗ω] where ω is any closed form representing the class [ω].

If F is a diffeomorphism, then F ∗ is an isomorphism. This implies
that if dimHk(M) 6= dimHk(N) for some k, then M and N cannot
be diffeomorphic. One can actually prove that it is enough to have a
homeomorphism for the cohomology groups to be isomorphic.

There are several techniques to compute cohomology groups. We
refer to texts on algebraic topology for this. In particular, in the context
of differential forms we recommend [1]. We present just a fundamental
result known as the Poincaré Lemma.

Definition 9.8. A subset U of Rn is called star shaped if it possesses
a distinguished point x0 such that for every x ∈ U the segment joining
x0 to x is entirely contained in U .

Lemma 9.9 (Poincaré Lemma). Let U be an open star-shaped subset
of Rn (e.g. Rn itself). Then

H0(U) = R, Hk(U) = {0} for k 6= 0.

Proof. For simplicity we assume q0 = 0 (otherwise just observe that a
translation that moves q0 to 0 is a diffeomorphism). The star shape
condition means that for every x ∈ U also tx ∈ U for all t ∈ [0, 1].

If f ∈ Ω0(U) is closed, then ∂if(x) = 0 for all i and all x. Then

f(x)− f(0) =

∫ 1

0

d

dt
f(tx)dt =

∫ 1

0

∑
i

∂if(tx)xidt = 0.

This means that a closed zero form is completely specified by its value
at 0. Hence the linear map H0(U)→ R, f 7→ f(0), is an isomorphism.
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To explain the general method we consider first the case of a 1-form
ω =

∑
i ωidx

i as the general case will be just a generalization of this.
First observe that

ωi(x) =

∫ 1

0

d

dt
(tωi(tx)) dt =

∫ 1

0

(
ωi(tx) + t

∑
j

∂jωi(tx)xj

)
dt.

If ω is closed, then we have ∂jωi = ∂iωj. Hence

ωi(x) =

∫ 1

0

(
ωi(tx) + t

∑
j

∂iωj(tx)xj

)
dt.

The idea now is to define K : Ω1(U)→ Ω0(U) by

Kω(x) =

∫ 1

0

∑
j

ωj(tx)xj dt.

We then have ∂iKω = ωi, which shows that ω is exact.
The extension to the general case is similar but requires more compu-

tations and some guesswork. This will become more clear with the Car-
tan calculus. We present it here anyway for completeness, but will re-
turn to it in subsubsection 9.3.3. Let ω =

∑
i1,...,ik

ωi1···ikdx
i1∧· · ·∧dxik

be a k-form with k > 0. We have

ωi1···ik(x) =

∫ 1

0

d

dt

(
tkωi1···ik(tx)

)
dt =

=

∫ 1

0

(
ktk−1ωi1···ik(tx) + tk

∑
j

∂jωi1···ik(tx)xj

)
dt.

If ω is closed, assuming we already took its components to be skew-
symmetric in the indices, we have

∂jωi1···ik =
k∑
r=1

∂irωi1···ir−1jir+1···ik

This suggests defining K : Ωk(U)→ Ωk−1(U) by
(9.8)

Kω =
∑
i1,...,ik

k∑
r=1

(−1)r−1

(∫ 1

0

tk−1ωi1···ik(tx)xirdt

)
dxi1∧· · ·∧d̂xir∧dxik .

One can then easily check that dKω = ω, which shows that ω is exact.
�
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Example 9.10. As a simple application we may show that R2 is not
diffeomorphic to R2 \ {0} (actually, they are not even homeomorphic).
By the Poincaré Lemma H1(R2) = {0}. On other hand, the 1-form
ω = (xdy − ydx)/(x2 + y2) on R2 \ {0} is closed but

∫
γ
ω = 2π, where

γ is a circle around the origin. This shows that ω is not exact, so
dimH1(R2 \ {0}) > 0.

9.3. Graded linear algebra and the Cartan calculus. We have
seen several relations satified by the Lie derivative, the contractions
and the de Rham differential. Even more hold and they make working
with differential forms much handier than with general tensor fields.
One can summarize these relations nicely by using the language of
graded Lie algebras. We thus make a short digression on graded linear
algebra.

9.3.1. Graded linear algebra. In graded linear algebra one generalizes
the usual concepts of linear algebras to collections of vector spaces.

Definition 9.11. A graded vector space V • is a collection {V k}k∈Z of
vector spaces. A morphism φ : V • → W • is a collection of linear maps
φk : V k → W k for all k. A graded morphism φ : V • → W • of degree r is
a collection of linear maps φk : V k → W k+r for all k. If W • = V •, we
call φ a graded endomorphism.

Example 9.12. The vector spaces V ⊗k, ΛkV and Ωk(M) define graded
vector spaces T •(V ), Λ•V and Ω•(M). The de Rham differential is
an example of graded morphism of degree +1, the contraction by a
vector (field) is an example of graded morphism of degree −1, the Lie
derivative by a vector field is an example of graded morphism of degree
0.

Example 9.13. Notice that the set Homr(V •,W •) of graded mor-
phisms of degree r is a vector space for each r ∈ Z. Hence we have a
new graded vector space Hom•(V •,W •). In case V • = W •, we write
End•(V •).

Remark 9.14. Sometimes one also uses the realization V :=
⊕

k∈Z V
k

of a graded vector space V •. We have used this notation, e.g., for
Ω(M). Notice that, if infinitely many V k are not zero dimensional, a
graded morphism in general does not define a linear map between the
realizations.

Definition 9.15. A graded endomorphism of degree −1 that squares
to zero is called a boundary operator. A graded endomorphism of degree
+1 that squares to zero is called a coboundary operator. A graded vector
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space endowed with a boundary or a coboundary operator is called a
complex.

We have already seen the example of the de Rham complex (Ω•(M), d).

Definition 9.16. A graded algebra is a graded vector space A• together
with a collection of bilinear maps Ak × Al → Ak+l, (a, b) 7→ ab, for all
k, l. The graded algebra is called associative if (ab)c = a(bc) for all
a, b, c. It is called graded commutative if

ab = (−1)klba, for a ∈ Ak, b ∈ Al.
It is called graded skew-commutative if

ab = −(−1)klba, for a ∈ Ak, b ∈ Al.

Example 9.17. (Λ•V,∧) and (Ω•(M),∧) are examples of associative
graded commutative algebras.

Example 9.18. The composition φψ of two graded endomorphisms φ
and ψ of V • of degree r and s, respectively, is defined as the collection of
linear maps φk+sψk : V k → V k+r+s. It is then a graded endomorphism
of degree r+s. This makes End•(V •) into an associative graded algebra.

Definition 9.19. A graded derivation D of degree r on a graded algebra
A• is a graded morphism of degree r satisfying the graded Leibniz rule

D(ab) = Da b+ (−1)kraDb, for a ∈ Ak, b ∈ Al.
Notice that r enters both as the degree of D and in the sign factor.

Example 9.20. The de Rham differential is a graded derivation of
degree +1 on Ω•(M), the contraction by a vector (field) is a graded
derivation of degree −1, and the Lie derivative by a vector field is a
graded derivation of degree 0.

Definition 9.21. A coboundary operator that is also a derivation is
called a differential.

The standard example for us is the de Rham differential.

Remark 9.22. Notice that the set Derr(A•) of graded derivations of
degree r on a graded algebra A• is a vector space, actually a subspace
of Endr(A•), for all r, so we have a new graded vector space Der•(A•).

Definition 9.23. A graded Lie algebra is a graded algebra g• whose
product, usually denoted by [ , ], is graded skew-commutative and
satisfies the graded Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)kl[b, [a, c]], for a ∈ gk, b ∈ gl, c ∈ gm.
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Example 9.24. The graded commutator of a ∈ Ak and b ∈ Al, where
A• is an associative graded algebra, is defined by

[a, b] := ab− (−1)klba.

One can easily verify that (A•, [ , ]) is a graded Lie algebra. In partic-
ular, (End•(V •), [ , ]), where V • is a graded vector space, is a graded
Lie algebra.

Remark 9.25. An element of even/odd degree of a graded vector space
is called even/odd. Notice then that, in the above example, if both a
and b are odd, then we have

[a, b] = ab+ ba,

the so-called anti-commutator; otherwise [a, b] = ab − ba, the usual
commutator.

Definition 9.26. A graded subspace W • of a graded vector space V •

is a collection W k ⊂ V k of subspaces for all k. A graded subalgebra B•

of a graded algebra A• is a graded subspace that is closed under the
product. Usually a graded subalgebra of a graded Lie algebra is called
a graded Lie subalgebra.

Example 9.27. One can verify, exactly as in the non graded case, that
(Der•(A•), [ , ]) is a graded Lie subalgebra of (End•(A•), [ , ]), where
A• is a graded algebra.

Remark 9.28. The choice of Z for the grading and the sign conven-
tions we have used are those needed for differential forms. More gen-
erally, one may define a G-graded vector space as a collection {V k}k∈G
of vector spaces, where G is a set. In order to define graded morphisms
we have to assume that a composition law G×G→ G is given. If we
want to view morphisms as a special case of graded morphisms we have
to assume that G possesses a special element. In order to define the no-
tion of associative graded algebra (and also to give the space of graded
endomorphisms the structure of a graded algebra), we need G to be
a group. In order to define graded commutivity, for whatever choice
of signs, we have to assume that G is abelian. The choice of signs in
the definition of graded commutativity is a map s : G×G→ {−1, 1}.
Compatibility between associativity and graded commutativity give
conditions on this map s. Typical examples for G and s are G = Z
and s(k, l) = (−1)kl (which is what we have done here), G = Z and
s(k, l) = 1, G = Z/2Z and s(k, l) = (−1)kl, G = Z/2Z and s(k, l) = 1,
G = Z/2Z× Z and s((k, k′), (l, l′)) = (−1)kl.
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9.3.2. Cartan calculus. We now come to the fundamental

Theorem 9.29. The span over R of the set {d, ιX , LX : X ∈ X(M)}
is a graded Lie subalgebra of Der•(Ω•(M)). More precisely,

[d, d] = 0,

[d, ιX ] = LX ,

[d, LX ] = 0,

[ιX , ιY ] = 0,

[ιX , LY ] = ι[X,Y ],

[LX , LY ] = L[X,Y ],

for all X, Y ∈ X(M).

The second relation is known as Cartan’s formula and is very useful
to compute the Lie derivative of a differential form.

Proof. The proof is very simple since these are all identities between
derivations, so it is enough to check them on functions and exact
1-forms.28 Some identities are actually already known for all differ-
ential forms or follow easily from the other identities.

The first identity is just d2 = 0. The second identity for functions is
just the fact that LXf = X(f) = ιXdf = [d, ιX ]f . On exact 1-forms
we have

[d, ιX ]df = dιXdf = dLXf

which is the same as LXdf by (8.18) on page 79. The third identity
follows from the second and the graded Jacobi identity

[d, LX ] = [d, [d, ιX ]] = [[d, d], ιX ]− [d, [d, ιX ]] = −[d, LX ].

One can also directly prove it using Corollary 9.4 with F the flow of
X.

The fourth identity is equation (9.5). The fifth identity is obvious on
functions (as the contraction kills functions) and for 1-forms is equation
(8.20) on page 79.29 Finally, the last identity is just (9.3b), but it can

28Even if M does not have a partition of unity subordinate to an atlas, this is
still ok, as we can actually first prove this theorem on open subsets of Rn, where it is
true that a differential form is a linear combination of wedge products of functions
and exact 1-forms, and then use the transformation properties (9.4), (9.6) and (9.7)
under push-forward by the chart maps.

29We can also obtain it on exact 1-forms using the third and fifth equations:

[ιX , LY ]df = ιXLY df − LY ιXdf = ιXdLY f − LY LXf =

= LXLY f − LY LXf = [LX , LY ]f = L[X,Y ]f = ι[X,Y ]df.
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also be obtained from the second, the third and the fifth by using the
graded Jacobi identity:

L[X,Y ] = [d, ι[X,Y ]] = [d, [ιX , LY ]] = [[d, ιX ], LY ]− [ιX , [d, LY ]] = [LX , LY ].

�

We will see several application of the Cartan calculus in general and
of Cartan’s formula in particular.

Remark 9.30. A simple consequence is that the Lie derivative of a
closed differential form ω is simply

LXω = dιXω.

In particular this is true when ω is a top form.

Another application is a very explicit formula for computing the
de Rham differential. We start with an iteration of the fifth identity of
the Cartan calculus.

Lemma 9.31. Given k + 1 vector fields X0, X1, . . . Xk, k ≥ 1,

[ιXk · · · ιX1 , LX0 ] =
k∑
i=1

(−1)i+1ιXk · ι̂Xi · · · ιX1ι[Xi,X0].

Proof. The proof is by induction on the number of vector fields. For
k = 1 this is the fifth identity in the Cartan calculus. Now suppose it
has been proved for k − 1. Since the graded Lie bracket is a graded
commutator, we have

[ιXk · · · ιX1 , LX0 ] = ιXk · · · ιX2 [ιX1 , LX0 ] + [ιXk · · · ιX2 , LX0 ]ιX1 .

Inserting the formulae for two vector fields and for k vector fields yields
then the identity for k + 1 vector fields. �

If ω is a k-form, we use the notation

ω(X1, . . . , Xk) = ιXk · · · ιX1ω,

where on the left hand side ω is regarded as an alternating multilinear
form on vector fields. Notice that ω(X1, . . . , Xk) is a function.

Proposition 9.32. Given k+1 vector fields X0, X1, . . . Xk, k ≥ 0, and
a k-form ω, we have

dω(X0, · · · , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . X̂i, . . . , Xk))+

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . X̂j, . . . , Xk).
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Proof. This is also proved by induction on k. For k = 0 it is just the
formula ιX0dω = X0(ω). By induction we can apply the formula to the
(k − 1)-form ιX0ω:

dιX0ω(X1, · · · , Xk) =
k∑
i=1

(−1)i+1Xi(ιX0ω(X1, . . . X̂i, . . . , Xk))+

+
∑

1≤i<j≤k

(−1)i+jιX0ω([Xi, Xj], X1, . . . , X̂i, . . . X̂j, . . . , Xk) =

= −
k∑
i=1

(−1)iXi(ω(X0, . . . X̂i, . . . , Xk))+

−
∑

1≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . X̂j, . . . , Xk).

On the other hand, by Cartan’s formula,

dιX0ω(X1, · · · , Xk) = ιXk · · · ιX1dιX0ω =

= −ιXk · · · ιX0dω + ιXk · · · ιX1LX0ω

Finally, observe that ιXk · · · ιX0dω is the quantity dω(X0, . . . , Xk) that
we want to compute. By Lemma 9.31 the last term finally yields the
remaining terms of the formula. �

9.3.3. The Poincaré Lemma. As promised, we return to the proof of
Lemma 9.9. Its proof reduces to proving the following

Lemma 9.33. Let U be an open star-shaped subset of Rn. Then there
is a graded endomorphism K of degree −1 on Ω•(U) such that

dKω +Kdω = ω

for all ω of positive degree.

Notice that, if ω is closed, then we get ω = dKω, which shows that
it is also exact, thus proving the Poincaré Lemma.

To get a clue at the construction of K in the Lemma, we first consider
polynomial forms. A k-form ω =

∑
i1,...,ik

ωi1···ikdx
i1∧· · ·∧dxik on Rn is

called polynomial of degree r if all its coefficients ωi1···ik are polynomials
of degree r. We let Ωk,r(Rn) denote the vector space of k-forms of
degree r on Rn and set Ω(l)(Rn) := ⊕k+r=lΩ

k,r(Rn). The de Rham
differential and the contraction ιE by the Euler vector field E =

∑
i x

i∂i
are endomorphism of Ω(l) for every l, and, consequently, so is LE. Since
LEx

i = xi for each coordinate xi and since it is a derivation commuting
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with d, we have that LEω = lω for ω ∈ Ω(l)(Rn). By the Cartan formula
we then have

dιE + ιEd = l Id

on Ω(l)(Rn). We then define K := 1
l
ιE for l 6= 0. It follows that

dK +Kd = Id,

which in particular shows that the polynomial cohomology is trivial
unless l = 0, i.e., for constant zero-forms.

We now want to extend K to nonhomogeneous polynomial forms.
The trick is to observe that, for ω ∈ Ω(l)(Rn), we have (φEs )∗ω = elsω.
This is easily follows from observing that φEs (x) = esx. Using 1

l
=∫ 0

−∞ els ds, we see that

(9.9) Kω =

∫ 0

−∞
(φEs )∗ιEω ds

for every polynomial form. (Note that this extends the definition of
K to the case l = 0 where K must be the zero operator for degree
reasons.) The proof of Lemma 9.33 essentially follows from extending
such a K to all forms.

Proof of Lemma 9.33. Let U be an open star-shaped subset of Rn. For
simplicity assume that we have already translated the distinguished
point to 0. Notice that φEs is defined for all s ≤ 0 since U is star
shaped, so the integrand in (9.9) is defined. We claim that the integral
converges. In fact,

ιEω =
∑
i1,...,ik

k∑
r=1

(−1)r−1ωi1···ikx
irdxi1 ∧ · · · ∧ d̂xir ∧ dxik .

Hence

((φEs )∗ιEω)(x) =
∑
i1,...,ik

k∑
r=1

(−1)r−1ωi1···ik(e
sx) eks xirdxi1∧· · ·∧d̂xir∧dxik .

By the change of variable t = es, assuming k > 0, we get (9.8) which
shows that Kω is the integral of a smooth function on a compact
interval; thus, the integral converges, the result is smooth and one
can differentiate through the integral.

We now have to check that this K satsifes the identity stated in the
Lemma. Since we can differentiate through the integral, by the Cartan
formula we have

dKω +Kdω =

∫ 0

−∞
(φEs )∗LEω ds.
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By (9.2), writing (φEs )∗ instead of (φE−s)∗, we then have

dKω +Kdω =

∫ 0

−∞

∂

∂s
(φEs )∗ω ds = (φE0 )∗ω − lim

s→−∞
(φEs )∗ω.

Since φE0 = Id, the first term is ω, so we just have to prove that the
second term vanishes. If we expand ω =

∑
i1,...,ik

ωi1···ikdx
i1 ∧· · ·∧dxik ,

we get

((φEs )∗ω)(x) =
∑
i1,...,ik

ωi1···ik(e
sx) eks dxi1 ∧ · · · ∧ dxik ,

which implies

lim
s→−∞

(φEs )∗ω = 0

if k > 0.
�

9.3.4. Quotients. We return to the setting of Section 7.5.1 to give an
algebraic characteration of forms on a quotient. Let π : M → N be a
surjective submersion with connected fibers. The pullback by π,

π∗ : Ω•(N)→ Ω•(M),

is injective. To show this, assume α is a k-form with π∗α = 0. Then,
for all q ∈M and all v1, . . . , vk ∈ TqM , we have

0 = ((π∗α)q, v1 ∧ · · · ∧ vk) = (απ(q),Λ
kdqπ v1 ∧ · · · ∧ vk).

Since dqπ is surjective, απ(q) = 0. Since π is surjective, we conclude
that α = 0.

A differential form in the image of π∗ is called basic. We wish to
characterize basic forms.

Definition 9.34. A differential form α on M is called horizontal if
ιY α = 0 for every vertical vector field Y and invariant if LY α = 0 for
every vertical vector field Y .

Proposition 9.35. A differential form on M is basic if and only it is
horizontal and invariant.

Proof. If α = π∗β, then α is clearly horizontal. Moreover, since the flow
of a vertical vector field Y preserves the fibers (i.e., π ◦ ΦY

t = π), we
have (ΦY

t )∗α = α, which implies LY α = 0. Hence, α is also invariant.
Conversely, assume that α is a horizontal and invariant k-form.

Given vector fields X1, . . . , Xk on N , let X̃1, . . . , X̃k be projectable

vector fields on M with φ(X̃i) = Xi for all i (see Section 7.5.1 for nota-
tions). Since α is horizontal, the function ιX̃k . . . ιX̃1

α does not depend
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on the choice of the X̃is. Let Y be now a vertical vector field. Since α
is invariant, by Lemma 9.31 we get

LY ιX̃k . . . ιX̃1
α =

k∑
i=1

(−1)iιX̃k · ι̂X̃i · · · ιX̃1
ι[X̃i,Y ]α.

Since X̃i is projectable and α is horizontal, we conclude that the func-
tion ιX̃k . . . ιX̃1

α is invariant. We may then define a k-form β on N by

setting ιXk · · · ιX1β(z) := ιX̃k . . . ιX̃1
α(q) for any q ∈ π−1(z). It then

also follows that α = π∗β. �

By Cartan’s formula we then get the following

Corollary 9.36. A closed form on M is basic if and only it is hori-
zontal.

On a Hausdorff manifold, invariance under all vertical vector fields
actually implies horizontality. In fact, if Y is vertical, then so is fY
for every function f . Since LfY ω = fLY ω + df ∧ ιY ω, the invariance
conditions imply that df ∧ ιY ω = 0 for every function f . In particular,
for every p ∈ M we have dpf ∧ (ιY ω)p = 0. By Lemma 7.13, we can
get all germs of functions at p and, in particular, dpf spans the whole
cotangent space, so (ιY ω)p = 0. The two conditions must however be
imposed separately if we restrict ourselves to generators.

Definition 9.37. Let Y be a family of generators of the vertical vector
fields. A differential form α on M is called Y-horizontal if ιY α = 0 for
every Y ∈ Y and Y-invariant if LY α = 0 for every Y ∈ Y . (One often
simply says horizontal and invariant when it is clear that a certain
family Y is understood.)

Lemma 9.38. Let Y be a family of generators of the vertical vector
fields. A differential form is Y-horizontal and Y-invariant if and only
if it is horizontal and invariant, and hence if and only if it is basic.

Proof. If ω is horizontal and invariant, then it is obviously Y-horizontal
and Y-invariant.

Conversely, if ω is Y-horizontal, then for every vertical vector field
Y with expansion

∑
i fiYi, Yi ∈ Y , we get ιY ω =

∑
i fiιYiω = 0; so ω

is horizontal. It follows that LY ω =
∑

i fiLYiω, which vanishes if ω is
also Y-invariant.

�

9.4. Orientation and the integration of differential forms. In
subsection 8.2 we defined the integration of densities. We now turn to
the problem of extending integration to differential forms. An n-form
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on an n-dimensional manifold is called a top form. Let v be a top
form and vα its representations in an atlas {(Uα, φα)}α∈I . If we write
vα = vαdx1 ∧ · · · ∧ dxn, by (B.8) the functions vα transform as

vα(x) = det dxφαβ vβ(φαβ(x)).

for all α, β ∈ I and for all x ∈ φα(Uα ∩Uβ). This is almost the same as
the transformation rule for a density, see (8.2), apart from the missing
absolute value of the determinant.

One way out is to consider, if possible, a special atlas where the
determinants of the differentials of all transition maps are positive: in
such an atlas a top form is the same as a density. We will return to
this approach in Section 9.4.1, where we will also show that, in positive
dimension, it is equivalent to the second approach.

The main idea of the second approach consists in taking the absolute
value of the representations vα. More precisely, we define the absolute
value |v| as the density with representations |vα|. Notice that there
are in general two problems if vα changes sign somewhere. The first
problem is that then the absolute value does not produce a smooth
density in general. This is not a problem as long as only integration
is concerned, but without differentiation we lose the power of Stokes
theorem. The second problem is that in general we want to keep track
of the values with signs as this may be some very relevant information.

To avoid this problems we restrict first to top forms that do not
change sign (at least locally).

Definition 9.39. A volume form on a manifold M is a nowhere vanish-
ing top form. A manifold admitting a volume form is called orientable.30

If v is a smooth volume form, then |v| is a smooth density. A volume
form v establishes a C∞(M)-linear isomorphism

φv : Ωtop(M)→ Dens(M)

between the module of top forms and the module of densities as follows:
since v is nowhere vanishing, for every top form ω there is a uniquely
defined function f such that ω = fv; the corresponding density is then
defined to be f |v|. Formally we may write

φvω = ω
|v|
v
.

Notice that two volume forms v and ṽ yield the same isomorphism (i.e.,
φv = φṽ) if and only if there is a positive function g such that ṽ = gv.
This establishes an equivalence relation on the set of volume forms.

30We will see below that there are manifolds on which volume forms do not exist.
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Definition 9.40. An equivalence class of volume forms on an ori-
entable manifold M is called an orientation. An orientable manifold
with a choice of orientation is called oriented.

We denote by [v] an orientation, by (M, [v]) the corresponding ori-
ented manifold and by φ[v] the isomorphism given by φv for any v ∈ [v].
If M admits a partition of unity, we can finally define the integral of a
top form ω by ∫

(M,[v])

ω :=

∫
M

φ[v]ω,

where we use the already defined integration of densities. (We assume
the integral on the right hand side to make sense. Typically we work
with compactly supported top forms.)

Remark 9.41. Notice that unlike the integration of densities, the inte-
gration of top forms requires an orientation. This allows integrating top
forms only on orientable manifolds. Moreover, the result of integration
in general depends on the choice of orientation.

Lemma 9.42. A connected orientable manifold admits two orienta-
tions

Proof. Let [v] be an orientation. Then −[v] = [−v] is a different orien-
tation, so every orientable manifold has at least two orientations. Now
let M be connected. Let [v] and [ṽ] be orientations. Choose represen-
tatives v ∈ [v] and ṽ ∈ [ṽ]. Since v is a volume form, there is a uniquely
defined function g such that ṽ = gv. Since ṽ is a volume form, then
g is also nowhere vanishing. Since M is connected, we then have only
two possibilities: (i) g > 0, and in this case [ṽ] = [v], or (ii) g < 0, and
in this case [ṽ] = [−v]. �

Remark 9.43. Notice that φ[−v] = −φ[v], hence∫
(M,−[v])

ω = −
∫

(M,[v])

ω

for every ω.

Suppose F : M → N is a diffeomorphism. If [vN ] is an orientation
on N , then F ∗vn is a volume form on M for any vN ∈ [vN ]. Its class
does not depend on the choice of representative, so we write

F ∗[vN ] := [F ∗vN ].

If M is oriented, we can compare its orientation with F ∗[vN ]:
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Definition 9.44. A diffeomorphism F of connected oriented manifolds
(M, [vM ]) and (N, [vN ]) is called orientation preserving if F ∗[vN ] = [vM ]
and orientation reversing if F ∗[vN ] = −[vM ].

Proposition 9.45 (Change of variables). Let (M, [vM ]) and (N, [vN ])
be connected oriented manifolds, F : M → N a diffeomorphism and ω
a top form on N . Then∫

(M,[vM ])

F ∗ω = ±
∫

(N,[vN ])

ω,

with the plus sign if F is orientation preserving and the minus sign if
F is orientation reversing.

Proof. This follows immediately from the definitions and from the change
of variables for densities, see equation (8.8) on page 71. �

Remark 9.46. An interesting application is a technique for proving
that the integral of some ω on an oriented manifold M vanishes. The
trick consists in finding an orientation-reversing diffeomorphism F of
M such that F ∗ω = ω or an orientation-preserving diffeomorphism F
of M such that F ∗ω = −ω. (Of course one has to verify first that the
integral converges.)

Example 9.47. Let M = {pt} be the connected 0-dimensional mani-
fold. Top forms are in this case the same as functions, i.e., real numbers.
There are two orientations: the class of +1 and the class of −1. If f a
top form, then we have φ[+1]f = f and φ[−1]f = −f , so∫

({pt},[+1])

f = f,

∫
({pt},[−1])

f = −f

Notice that orientation in this case corresponds just to evaluation up
to sign. This sign, as we will see studying Stokes theorem, is the same

that appears in the fundamental theorem of analysis:
∫ b
a
f(x)dx =

f(b)− f(a). Here f(b) and f(a) are both functions on a point, but we
should think of {b} as having the positive orientation and of {a} as
having the negative orientation. These orientations, as we will see, are
induced from the orientation of the interval (a, b).

Example 9.48. Let U = (a, b) be a connected open subset of R, with
coordinate x1. We have two orientations: the class of dx1 and that of
−dx1. We might think of the first as the geometric orientation given
by moving along U from left to right (in the usual graphical description
of the real line), the second as moving from right to left. You may see
that with the first orientation we move away from the boundary point
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{a} and approach the boundary point {b}. This is the origin of the
two orientations of the two boundary points.

Example 9.49. Let U be a connected open subset of R2, with coor-
dinates x1, x2. Here the two orientations are the classes of dx1 ∧ dx2

and of −dx1 ∧ dx2. As −dx1 ∧ dx2 = dx2 ∧ dx1, we might think of the
orientations as giving the moving directions along the axes but also the
ordering of the axes.

As on Rn we have distinguished coordinates, with a given ordering,
we also have a distinguished volume form:

dnx := dx1 ∧ · · · ∧ dxn,

called the standard volume form. Its class is called the standard orien-
tation. The integral of the top form f dnx on an open subset U of Rn

with the standard orientation is∫
U

f dnx =

∫
U

f |dnx| =
∫
U

f dnx.

It is worth recalling that in this funny looking formula dnx denotes the
standard volume form, |dnx| the standard density and dnx the Lebesgue
measure. The open subset U of Rn here plays three different roles: in
the first integral it is understood as an oriented manifold, in the second
as a manifold and in the third as a measure space. In each case its
structure is induced from the corresponding standard structure on Rn.

As the pullback of the standard volume form is the standard volume
form multiplied by the Jacobian of the transformation, we immediately
get the

Lemma 9.50. Let F : U → V be a diffeomorphism of open subsets
of Rn. Then F is orientation preserving (orientation reversing), with
respect to the standard orientation, if and only if det dF > 0 (det dF <
0).

Remark 9.51. For n = 0 the statement has to be interpreted. On
R0 = {0}, the standard volume form is +1. There is a unique map
R0 → R0. This map is linear and orientation preserving with respect
to the standard orientation. Its determinant is by definition +1. What
sets this case apart is that there is no orientation-reversing diffeomor-
phism of R0 with the standard orientation. On the other hand, Rn,
n > 0, has orientation reversing diffeomorphisms, e.g.,

T : (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn)).
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9.4.1. Orientation by atlases. The last Lemma naturally leads to a sec-
ond notion of orientation.

Definition 9.52. An atlas of a manifold is called oriented if all its
transition maps are orientation preserving.

Lemma 9.53. An orientable manifold possesses an oriented atlas.

Proof. Let M be an n-dimensional orientable manifold, v a volume
form and {(Uα, φα)}α∈I an atlas with connected charts. If n = 0 there
is nothing to prove, so assume n > 0. For every α there is a uniquely
defined nowhere vanishing function vα ∈ C∞(φα(Uα)) such that vα =
vα dnx. Since φα(Uα) is connected, then necessarily either vα > 0 or
vα < 0. In the second case we change the chart (Uα, φα) to the chart
(Uα, T ◦ φα) where T is an orientation-reversing diffeomorphism of Rn

(e.g., the one defined in Remark 9.51). Notice that the atlas obtained
by changing charts this way is C∞-equivalent to the previous one.

Thus, we have an atlas, which we still denote by {(Uα, φα)}α∈I , such
that vα = vα dnx with vα > 0 for all α. The transition rules for the vαs
imply

vα(x) = det dxφαβ vβ(φαβ(x)).

for all α, β ∈ I and for all x ∈ φα(Uα ∩ Uβ). It then follows that
det dxφαβ > 0 for all α, β, x. �

Using partition of unity, which is necessary anyway if we want to
integrate, we also get the converse statement:

Lemma 9.54. A Hausdorff, second-countable manifold with an ori-
ented atlas is orientable.

Proof. As pointed out in Remark 8.58 on page 75, under these assump-
tions we can construct a positive density σ starting from any atlas
{(Uα, φα)}α∈I . If the atlas is oriented, the transition rules for the rep-
resentations σα are the same as for a top form. Hence, the σαs define
a volume form. �

There is a natural equivalence relation of oriented atlases which turns
out to correspond to the previously introduced equivalence relation of
volume forms.

Definition 9.55. Two oriented atlases are equivalent if their union is
an oriented atlas.

Lemma 9.56. Let M be a Hausdorff, second-countable, orientable
manifold of positive dimension. Then there is a one-to-one correspon-
dence between orientations of M and equivalence classes of oriented
atlases of M .
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Proof. The proof of Lemma 9.53 for n > 0 produces a map from ori-
entations to equivalence classes of oriented atlases. In fact any two
atlases produced by the construction in the proof starting from the
same v are equivalent to each other. On the other hand, if we rescale v
by a positive function, we produce an oriented atlas in the same class.

The proof of Lemma 9.54 yields a map in the other direction. Notice
that an equivalent oriented atlas produces an equivalent volume form.

Finally observe that the two maps are inverse to each other. �

Remark 9.57. In zero dimensions this Lemma fails. We have seen
that {pt} has two orientations, like every orientable connected mani-
fold, but has only one atlas (which is obviously oriented). What does
not work in the proof is that we do not have an orientation-reversing
diffeomorphism of R0, so we cannot make the map from orientations
to atlases injective.

Remark 9.58. If one only works with Hausdorff, second-countable
manifolds of positive dimension, because of this equivalence of the two
notions one may define a manifold to be orientable if it possesses an
oriented atlas and one may define an orientation as an equivalence class
of oriented atlases. This is done in several textbooks.

Lemma 9.59. Let F : M → N be a diffeomorphism of oriented man-
ifolds of positive dimension. Then F is orientation preserving (orien-
tation reversing) if and only if det dF > 0 (det dF < 0), where these
determinants are computed using representations in any oriented at-
lases defining the orientation.

Proof. Let vM and vN be representatives of the given orientations. Pick
oriented atlases {(Uα, φα)}α∈I of M and (Vj, ψj)j∈J of N corresponding
to the orientations: i.e., (vM)α = vα dnx and (vN)j = gj dnx with vα > 0
and gj > 0. Let Fαjs denote the representations of F . We have

(F ∗(vN))α(x) = det dxFαj gj(Fαj(x)) dnx

for all α, j, x, and we see that F is orientation preserving (reversing) if
and only if all the det dxFαj are positive (negative). �

Remark 9.60. Notice that in an oriented atlas the representations of
a top form transform like the representations of a density. One can also
easily see that the density defined by a top form ω in the oriented atlas
corresponding to an orientation [v] is exactly φ[v]ω. More explicitly,
in an atlas {(Uα, φα)}α∈I we have the representations ωα = ωαdnx, for
uniquely defined functions ωα, and we get (φ[v]ω)α = ωα|dnx|. It then
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follows that the integral of ω on an oriented manifold M is given by∫
(M,[v])

ω =
∑
j∈J

∫
φαj (supp ρj)

(ρj)αj ωαj d
nx,

where {(Uα, φα)}α∈I is an oriented atlas corresponding to [v] (i.e., in
which any v ∈ [v] is represented by a positive volume form) and {ρj}j∈J
is a partition of unity {ρj}j∈J subordinate to {Uα}α∈I . If the identi-
fcation between differential forms and densitites on φαj(Uαj) is under-
stood, then we can also write∫

(M,[v])

ω =
∑
j∈J

∫
φαj (supp ρj)

(ρj ω)αj .

Remark 9.61. Typically the chosen orientation is understood, so one
simply writes

∫
M
ω.

In the following we will need the following useful remark:

Lemma 9.62 (Localization). Let {(Uα, φα)}α∈I be an oriented atlas of
(M, [v]) and {ρj}j∈J a partition of unity subordinate to it. Let ω be a
top form with support contained in Uαk for some k ∈ J . Then∫

(M,[v])

ω =

∫
φαk (Uαk )

ωαk .

Proof. We have∫
(M,[v])

ω =
∑
j∈J

∫
φαj (supp ρj)

(ρj ω)αj =

=
∑
j∈J

∫
φαj (supp ρj∩suppω)

(ρj ω)αj =

∫
φαj (Uαj∩Uαk )

(ρj ω)αj =

=
∑
j∈J

∫
φαk (Uαj∩Uαk )

(ρj ω)αk =
∑
j∈J

∫
φαk (Uαk )

(ρj ω)αk =

=

∫
φαk (Uαk )

∑
j∈J

(ρj ω)αk =

∫
φαk (Uαk )

ωαk .

�

9.4.2. Examples. Open subsets of Rn are clearly examples of orientable
manifolds. More generally, every parallelizable manifold is orientable.
In fact, an isomorphism of TM with M × Rn induces, after a choice
of basis, an isomorphism φ : ΛnT ∗M → M × R. If f is any nowhere
vanishing function (e.g., f constant and different from zero), then φ∗f
is a volume form.
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Sn is also orientable. For n = 1, we easily see it as the top form dθ,
where θ is the angle parametrizing S1, is a volume form. For higher
dimensional spheres, we may for example observe that there is an atlas
with two charts whose intersection is connected (take, e.g., the atlas
defined by the stereographic projection). If this atlas is not oriented,
i.e., if the determinant of the Jacobian of the transition map is nega-
tive,31 then we change one of the two chart maps by composing it with
an orientation-reversing diffeomorphism of Rn (e.g., the one defined in
Remark 9.51). Another way to see that Sn is oriented is by construct-
ing a volume form explicitly. We may start from the standard volume
form on Rn+1, write it in polar coordinates and contract it with the
vector field ∂

∂r
, obtaining a volume form v. Equivalently, we may ob-

serve that the Euler vector field, whose flow in polar coordinates clearly
just rescales the radius, is r ∂

∂r
. Therefore, we have v = 1

r
ιEdn+1x. We

may also get rid completely of the radius dependence if we rescale v by
rn. Namely, we have the volume form
(9.10)

ω :=
1

rn+1
ιEdn+1x =

∑n+1
i=1 (−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1

||x||n+1
,

where the restriction to Sn is understood.
Another example is the tangent bundle TM of any manifold, also a

non orientable one. If {(Uα, φα)}α∈I is any atlas of M , then the atlas

(Ûα, φ̂α)α∈I introduced in subsection 6.2 is oriented. In fact, by (6.2),

we have det dxφ̂αβ = (det dxφαβ)2. Similarly, one shows that T ∗M is
also orientable.

An example of non orientable manifold is the Möbius band. This is
obtained by quotienting [0, 1]× R by the equivalence relation (0, y) ∼
(1,−y). There is an atlas with two charts: one having domain (0, 1)×R,
the other having domain ([0, 1/4) ∪ (3/4, 1]) × R. On (0, 1) × R and
on [0, 1/4) × R the chart maps are defined to be the inclusions into
R × R. The chart map on (3/4, 1] × R is defined by (x, y) 7→ (x,−y).
The intersection of the two chart domains is ((0, 1/4) ∪ (3/4, 1)) × R
and one easily sees that this atlas is not oriented. More precisely, one
sees that the transition map corresponding to (0, 1/4) × R is orien-
tation preserving (actually, the identity), whereas the transition map
corresponding to (3/4, 1) × R is orientation reversing. To prove that
the Möbius strip is not orientable, we show that it does not possess
a volume form. Assume on the contrary that we had a volume form

31This is actually the case of the stereographic projection with atlas as in Ex-
ample 4.12.
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v. On the first chart it would be represented by fdx ∧ dy and on the
second by gdx∧dy where f and g are nowhere vanishing functions. As
the charts are connected (notice that ([0, 1/4) ∪ (3/4, 1]) × R is con-
nected in the atlas topology), they have a definite sign. Suppose e.g.
that f > 0. Using the transition map corresponding to (0, 1/4) × R
we would conclude that also g > 0. However, using the transition map
corresponding to (3/4, 1) × R we would conclude that g < 0, which is
a contradiction.

A typical way to generate nonorientable manifolds is by a suitable
quotient. An involution on a manifold M is a map ψ : M → M sat-
isfying ψ ◦ ψ = Id. An involution ψ defines an equivalence relation
by x ∼ψ y if x = y or x = ψ(y). If M is Hausdorff and ψ has no
fixed points (i.e., ψ(x) 6= x for all x), then the quotient M/ ∼ψ has a
smooth structure for which the canonical projection π : M →M/ ∼ψ is
a smooth submersion. (Note that this structure is unique up to diffeo-
morphisms since π is then a surjective submersion.) In fact, we can pick
an atlas {(Uα, φα)}α∈I on M with the property that Uα∩ψ(Uα) = ∅ for
all α.32 Observe then that π restricted to Uα defines a diffeomorphism

with its image Ũα = π(Uα). We then define an atlas {(Ũα, φ̃α)}α∈I on

M/ ∼ψ by setting φ̃α = φα ◦ π−1.33 Note that the transition map φ̃αβ
is equal to φ−1

β ◦ φα if Uα ∩Uβ 6= ∅ and to φ−1
β ◦ ψ ◦ φα otherwise. Also

notice that the quotient manifold is also Hausdorff.

Lemma 9.63. Let M be a connected orientable manifold and ψ an
involution with no fixed points. Then M/ ∼ψ is orientable if and only
ψ is orientation preserving.

Proof. If v is a volume form on M/ ∼ψ, then π∗v is a volume form
on M . If ψ were orientation reversing, then we would have −[π∗v] =
ψ∗[π∗v] = [ψ∗π∗v] = [π∗v], which is a contradiction.

For the other implication, assume that ψ is orientation preserving.
Then, using an oriented atlas on M for the construction of the atlas

of M/ ∼ψ, we get that the transition maps φ̃αβ are also orientation
preserving. Hence, M is orientable. �

32For example, observe that for each x ∈ M we can find disjoint open neigh-
borhoods Nx and Oψ(x) of x and ψ(x), respectively. It follows that Wx := Nx ∩
ψ−1(Oψ(x)) is an open neighborhood of x with the property that Wx ∩ ψ(Wx) = ∅
(in fact Wx is contained in Nx and ψ(Wx) is contained in Oψ(x)). As a consequence,
if we start with any atlas {(Vj , ψj)}j∈J , we may define an equivalent atlas with the
desired property by setting I = J ×M and U(j,x) := Vj ∩Wx.

33This construction is a particular instance of a general construction to define a
smooth structure on a quotient by a properly discontinuous, free action of a discrete
group.
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As an application of this construction we consider the real projective
space RPn, i.e., the space of lines through the origin in Rn+1. We may
realize RPn as the quotient of Rn+1 by the equivalence relation x ∼ λx
for all λ 6= 0. Alternatively, we may first quotient just by using positive
λs, thus getting the sphere Sn, and then quotienting by λ = ±1. That
is, we get RPn = Sn/ ∼ψ, where ψ : Sn → Sn is the antipodal map
sending x to −x. By the above construction this shows that RPn is
a smooth manifold. Using the volume form of equation (9.10), we see
that ψ is orientation preserving if and only if n is odd. Therefore, RPn
is orientable if and only if n is odd.

9.4.3. Restriction and integration. Recall that differential forms may
be pulled back. If F : M → N is a smooth map and ω is an n-form
on N , with n = dimM , then F ∗ω is a top form on M which can be
integrated, provided we have an orientation and a partition of unity on
M .

A particular case is the inclusion of an oriented submanifold ι : S ↪→
M . If ω is an s-form on M , s = dimS, one then simply writes

∫
S
ω

to denote the integral of the pullback of ω by ι over S with its given
orientation.

One usually also defines
∫
S
ω = 0 when the degree of ω is different

form the dimension of S.

Remark 9.64 (Integration of 1-forms). If ω =
∑n

i=1 ωidx
i is a 1-form

on an open subset U of Rn and γ : I → U is a differentiable curve, then
γ∗ω(t) =

∑n
i=1 ωi(γ(t))γ̇idt. Using the standard orientation of I ⊂ R,

we identify dt with the Lebesgue meaure dt. Hence we get the familiar
formula ∫

γ

ω =

∫
I

γ∗ω =

∫
I

n∑
i=1

ωi(γ(t))γ̇idt.

9.4.4. Computing the divergence. We now show how Cartan’s formula
may be used to simplify the derivations in subsubsection 8.2.6 on an
oriented manifold and to recover the local formula (8.14) for the diver-
gence of a vector field.

First observe that using an orientation [v] we can easily compute the
divergence of a vector field by Cartan’s formula.

Lemma 9.65. Let [v] be an orientation. Then

LXφ[v] = φ[v]LX

for all vector fields X.

Proof. Let v ∈ [v] and ω = fv a top form. Then LXω = X(f)v+fLXv.
Since v is a volume form, there is a uniquely defined function g such
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that LXv = gv. Hence φ[v]LXω = (X(f) + fg)|v|. On the other hand,
φ[v]ω = f |v|. Hence LXφ[v]ω = X(f)|v| + fLX |v|. Thus, we have just
to show that LX |v| = g|v|. This is clear if we go in a chart where we
have |vα| = ±vα. �

Once an orientation [v] is fixed, we identify top forms and densities
by φ[v]. If σ is a density, by abuse of notation we denote by σ also the
corresponding top form (i.e., (φ[v])

−1σ). Then by the above Lemma
and by Remark 9.30 on page 103, we have

LXσ = dιXσ.

This immediately implies

LfXσ = LX(fσ) = X(f)σ + fLXσ.

Remark 9.66 (The divergence in a chart). If U is an open subset of
Rn, we can write every top form ω as ω = fdnx for a uniquely defined
function f . Then

ιXω =
n∑
i=1

(−1)i+1fX idx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Hence

LXω =
n∑
i=1

∂i(fX
i) dnx.

Notice that on U we can identify top forms and densities, using the
atlas with one chart. If ω is a positive density, we then have

divωX =
1

f

n∑
i=1

∂i(fX
i).

In particular, we can apply this to a density σ on a (possibly non
orientable) manifold M . In a chart (Uα, φα), the representation σα of
σ defines a top form σαdnx. From this we recover equation (8.14).

9.4.5. Integration of vector fields. Using a Riemannian metric g on a
manifold M , one can define the integral of a vector field X on a curve
γ : I →M by ∫

γ

X · dx :=

∫
I

gγ(t)(Xγ(t), γ̇(t)) dt.

This integral is usually called the work of X along γ (this term comes
from the application in mechanics when X is a force field). By Re-
mark 8.82 we can reduce this to the integral of 1-forms. Let ωX :=
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Φg(X) with Φg the isomorphism between TM and T ∗M defined in
Remark 8.82. Then we have

(9.11)

∫
γ

X · dx =

∫
γ

ωX .

Given orientations one can also integrate vector fields on hypersur-
faces (i.e., embedded submanifolds of codimension one) in Riemannian
manifolds. This is called the flux of the vector field through the hyper-
surface.

To do this, we have to introduce some notations. Let (M, g) be a Rie-
mannian manifolds and S a hypersurface. Using gp we can define the
orthogonal complement (TpS)⊥ of TpS in TpM for all p ∈ S. A normal-
ized vector np in (TpS)⊥ is called a normal vector at p. Explicitly, np
satisfies the equations gp(np, u) = 0 ∀u ∈ TpS and gp(np, np) = 1. No-
tice that, since dim(TpS)⊥ = dimTpM−dimTpS = 1, there are exactly
two normal vectors at each p (related to each other by multiplication
by −1). Using orientations we can select one of them. Namely, let [v]
be an orientation on M and [w] an orientation on S. If we denote by
ιS the inclusion of S into M , we say that np is compatible with orien-
tations if ι∗Sιnpvp = cwp with v ∈ [v], w ∈ [w] and c a positive constant
(notice that this does not depend on the choices of v and w).34 The
map p 7→ np is called the normal vector field to S (notice that it is not
a vector field on S nor on M , but a section of the pullback of TM to
S). If X is a vector field on M , then we denote by X · n the function
on S defined by

(X · n)(p) := gp(Xp, np).

Finally, the integral
∫
S
X · n vgS , where vgS denotes the Riemannian

density of the restriction of gS of g to S, is called the flux of X through
S.

We now want to relate the flux to the integral of a differential form.
Notice that using the orientation of M we may identify the Riemannian
density vg with a top form on M . Using the orientation of S we can
then integrate the top form ιXvg on S.

Proposition 9.67. Let S be an oriented hypersurface of an oriented
Riemannian manifold (M, g). Then, for every X ∈ X(M), we have∫

S

X · n vgS =

∫
S

ιXvg.

34Conversely, if S is orientable, then a continuous choice of nps induces an orien-
tation [w] of S by wp := ι∗Sιnpvp for all p ∈ S. This also shows that S is orientable

if and only it possesses a continuous choice of normal vectors.
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It is worth noticing that on the left hand side we have the integra-
tion of a density on the manifold S (and the orientations are used to
determine n) whereas on the right hand side we have the integration
of a top form on the oriented manifold S (and the orientation of M is
used to identify the Riemannian density with a top form).

Proof. To prove this result we just show that the integrands are equal
in every chart images, where we used an adapted atlas.

Let (U, φ) be an adapted chart of M around a point p ∈ S. Recall
that this means that we have a chart (V, ψ) of S around p with V =
φ−1({(x1, . . . , xn) ∈ φ(U) | xn = 0}) and ψ = φ|V . We expand

gU =
n−1∑
i=1

hij dxidxj +
n−1∑
i=1

bi (dx
idxn + dxndxi) + α (dxn)2.

That is, we write the components of gU as a block matrix

g =

(
h b
bt α

)
.

The first remark is that (gS)V =
∑n−1

i=1 hij dxidxj. In particular, h is

positive definite. Moreover, (vgS)V =
√

det h. Next we compute n. In
the chart image we write it as a block vector

(
k
µ

)
. We have(

h b
bt α

)(
k
µ

)
=

(
hk + µb
btk + µα

)
.

Requiring n to be orthogonal to vectors tangent to S then yields hk +
µb = 0 which can be solved to give k = −µh−1b and hence(

h b
bt α

)(
k
µ

)
=

(
0

µ(α− bth−1b)

)
.

The normalizing condition finally gives µ2(α − bth−1b) = 1, which in
particular shows that α − bth−1b > 0. Finally, we write XU also as a
block vector ( v

ξ ) and hence we have

(X · n)V = ξµ(α− bth−1b) =
ξ

µ
.

Finally,

(X · n vgS)V =
ξ

µ

√
det h.

Notice that µ is a function of the components of gU . To make this
explicit we have to extract a square root whose sign choice is determined
by the orientations. Namely, let v be a representative of [v] such that
vU = ε dx1 ∧ · · · ∧ dxn with ε = ±1 and let w be a representative of [w]
such that wV = ε̃ dx1 ∧ · · · ∧ dxn−1 with ε̃ = ±1. Since (ι∗Sιnpvp)V =
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(−1)n−1µε dx1 ∧ · · · ∧ dxn−1, we get that the sign of µ is (−1)n−1εε̃.
Hence

µ =
(−1)n−1εε̃√
α− bth−1b

,

so
(X · n vgS)V = (−1)n−1ε ε̃ ξ

√
det h

√
α− bth−1b.

We now consider the right hand side of the equation in the Proposi-
tion. Using the orientation of M we may identify the Riemannian den-
sity vg with a volume form and we have (vg)U = ε

√
det g dx1∧· · ·∧dxn.

Hence (ι∗SιXvg)V = (−1)n−1ε ξ
√

det g dx1 ∧ · · · ∧ dxn−1. We finally
have to use the orientation on S to regard it as a density and get
(−1)n−1εε̃ ξ

√
det g. The proposition is now proved since35

det g = (α− bth−1b) det h.

Notice that from the positivity of g and the consequent positivity of h
we conclude again that α− bth−1b > 0. �

9.5. Manifolds with boundary and Stokes theorem. We finally
return to Stokes theorem, the higher dimensional generalization of the
fundamential theorem of analysis. Our goal is to show that if ω is a
smooth (n − 1)-form with compact support on an oriented n-dimen-
sional manifold with boundary M , then∫

M

dω =

∫
∂M

ω

To do this we will have to introduce the notion of manifolds with bound-
ary, define the boundary and show that it is a manifold, discuss ori-
entation and finally prove the formula. As for the formula itself, it is
actually enough to understand the local case.

As a warm up we start with the two-dimensional case, which basically
presents all the features of the general case. Let H2 := {(x, y) ∈
R2 | y ≥ 0} be the upper half plane. Let ω = ωxdx+ωydy be a smooth
1-form on H2: by this we mean that ω is the restriction to H2 of a
smooth form defined on an open neighborhood of H2 in R2. We want

35This follows from the general rule

det

(
A B
C D

)
= det(D− CA−1B) detA,

where
(
A B
C D

)
is a block matrix with A invertible. This formula follows immediately

from the decomposition(
A B
C D

)
=

(
1 0

CA−1 1

)(
1 B
0 D− CA−1B

)(
A 0
0 1

)
.
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to consider the integral of dω on H2. To be sure of convergence we
assume that ω, and hence dω, has compact support. First observe that
dω = (∂xωy − ∂yωx) dx ∧ dy. Thus,∫

H2

dω =

∫
H2

(∂xωy − ∂yωx) dx dy.

By Fubini’s theorem we have∫
H2

∂xωy dx dy =

∫ +∞

0

(∫ +∞

−∞
∂xωy dx

)
dy.

By the fundamental theorem of analysis we have
∫ +∞
−∞ ∂xωy dx = 0 since

ω has compact support. Again by Fubini’s theorem we have∫
H2

∂yωx dx dy =

∫ +∞

−∞

(∫ +∞

0

∂yωx dy

)
dx.

The fundamental theorem of analysis and the fact that ω has compact
support now imply that

∫ +∞
0

∂yωx dy = −ωx|y=0. If we denote by
∂H2 = {(x, y) ∈ R2 | y = 0} the boundary of H2 (i.e., the x-axis), we
finally get ∫

H2

dω =

∫
∂H2

ω.

This result can easily be generalized to the upper half spaces

Hn := {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

Again by a smooth differential form on Hn we mean the restriction
to Hn of a smooth differential form defined on an open neighborhood
of Hn in Rn. To integrate dω on Hn (or, if you prefer to work with
manifolds and use the theory developed so far, on the interior of Hn)
we pick the standard orientation dnx. In order to avoid signs in the
Stokes theorem, on the boundary

∂Hn = {(x1, . . . , xn) ∈ Rn | xn = 0}

we take the orientation induced by the outward pointing vector field
−∂n, i.e.,

[i∗ι−∂ndnx] = (−1)n[dx1 ∧ · · · ∧ dxn−1],

where i denotes the inclusion map of ∂Hn into Hn.36 We then have a
first version of Stokes theorem:

36If we had been working with lower half spaces, defined by the condition xn ≤ 0,
we would have chosen the boundary orientation also by the outward pointing vector
field, which in this case would have been ∂n, without an extra sign.
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Lemma 9.68. Let ω be a smooth (n − 1)-form on Hn with compact
support. Then, using the orientations defined above, we have∫

Hn
dω =

∫
∂Hn

ω.

Proof. We write ω =
∑n

j=1(−1)j−1 ωj dx1∧· · ·∧ d̂xj∧· · ·∧dxn. (Notice

that the components ωj are related by a sign to the components ωi1...in−1

of the usual notation.) Then dω =
∑n

j=1 ∂jω
j dnx. Hence, using the

standard orientation, ∫
Hn

dω =
n∑
j=1

∫
Hn
∂jω

j dnx.

By Fubini’s theorem we can integrate the jth term first along the jth
axis. Since ω has compact support, for j < n we get∫ +∞

−∞
∂jω

j dxj = 0,

whereas for j = n we get∫ +∞

0

∂nω
n dxn = −ωn|xn=0.

Thus, ∫
Hn

dω = −
∫
∂Hn

ωn dn−1x.

On the other hand i∗ω = (−1)n−1 ωn|xn=0 dx1 ∧ · · · ∧ dxn−1. Using the
orientation of ∂Hn defined above, we finally see that also∫

∂Hn
ω = −

∫
∂Hn

ωn dn−1x,

which concludes the proof. �

By the same argument one proves the following

Lemma 9.69. If ω is a smooth (n − 1)-form on Rn with compact
support, then ∫

Rn
dω = 0.
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9.5.1. Manifolds with boundary. To extend this result to manifolds we
first have to extend the notion of manifolds allowing charts to take
values in Hn (with the topology induced from Rn). This results in
the notion of manifold with boundary. This is the standard, though
very unfortunate, terminology, since a manifold with boundary is not
a manifold with extra structure (a boundary), but a generalization: it is
a manifold instead that is a special case of a manifold with boundary.
As we will see below a manifold is a manifold with boundary whose
boundary is empty.

Since we want to consider charts with image in Hn, we also have to
understand the properties of the corresponding transition maps. We
focus only on the smooth case for simplicity. On Hn we always use the
topology induced from the standard topology on Rn.

Definition 9.70. A map U → Hm, where U is an open subset of Hn,
is called smooth if it is the restriction to U of a smooth map defined on
an open neighborhood of U in Rn. A diffeomorphism U → V , where
U and V are open subsets of Hn, is a smooth invertible map whose
inverse is smooth.

We call ∂Hn := {(x1, . . . , xn) ∈ Rn | xn = 0} the boundary of Hn

and

H̊n = {(x1, . . . , xn) ∈ Rn | xn > 0}
the interior of Hn. If U is a subset of Hn we define its interior and
boundary as

Ů := U ∩ H̊n and ∂U := U ∩ ∂Hn.

Elements of these sets are called interior and boundary points of U ,
respectively.

Lemma 9.71. Let F : U → V be a diffeomorphism of open subsets
of Hn. Then F maps interior points to interior points and boundary
points to boundary points. Moreover,

F |Ů : Ů → V̊ and F |∂U : ∂U → ∂V

are diffeomorphisms. If v is a vector in Rn and p ∈ ∂U , then the sign
of the last component of v is equal to the sign of the last component of
dpFv. Finally, if F is orientation preserving, then also the restrictions
F |Ů and F |∂U are so.

Proof. Recall that, by definition, F is the restriction of a diffeomor-

phism F̃ : Ũ → Rn with Ũ an open neighborhood of U in Rn.
Fix a point q in U . Let W be an open neighborhood of q in Rn. Since

F̃−1 is in particular continuous, F̃ (W ) is open in Rn. Now assume that
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F (q) ∈ ∂V . Then every open neighborhood of F (q) in Rn contains

points not belonging to V . In particular, this is true for F̃ (W ), so W
does also contain points not belonging to U . Since this is true for every
open neighborhood W of q in Rn, this implies that also q is a boundary
point.

Next observe that the restriction of a diffeomorphism to an open
subset is still a diffeomorphism, so F |Ů : Ů → V̊ is a diffeomorphism.
This restriction is of course orientation preserving if F is.

Let us now write F in components F 1, . . . , F n. Since F maps the
boundary to the boundary, we have that F n(x1, . . . , xn−1, 0) = 0. This
implies that ∂iF

n|xn=0 = 0, i = 1, . . . , n− 1. The Jacobian of F on the
boundary can then be written as a block matrix(

(∂iF
j)i,j=1,...,n−1 (∂nF

j)j=1,...,n−1

0t ∂nF
n

)
.

Moreover, since F maps interior points to interior points we have
that ∂nF

n|xn=0 > 0. Since dF is invertible, it then follows that also
(∂iF

j)i,j=1,...,n−1|xn=0 is invertible. But this is the Jacobian of the re-
striction of F to ∂U .

If v = (v1, . . . , vn) is a vector and p ∈ ∂U , then we have (dpFv)n =
∂nF

n(p) vn. Since ∂nF
n(p) > 0, the signs of the last components agree.

Finally, notice that, if F is orientation preserving, then det dF > 0.
From the above block form and from the remark that ∂nF

n|xn=0 > 0 it
follows that also det((∂iF

j)i,j=1,...,n−1|xn=0) is positive, so F restricted
to the boundary is also orientation preserving. �

We now extend the notion of a chart on a set M as a pair (U, φ)
where U is a subset of M and φ is an injective map from U to Hn for
some n. We extend the notion of transition map, atlas, open atlas.
We say that an atlas is smooth if all transition maps are smooth as
in Definition 9.70. Two smooth atlases are defined to be equivalent if
their union is a smooth atlas.

Definition 9.72. An n-dimensional smooth manifold with boundary is
an equivalence class of smooth atlases whose charts take values in Hn.

Let M be a manifold with boundary and q a point in M . If q is
sent by a chart map to an interior point of Hn, then by Lemma 9.71
it will be sent to an interior point by every chart map; on the other
hand, if q is sent to a boundary point by a chart map, then it will
be sent to a boundary point by every chart map. This means that
we have the notion of interior and boundary points of a manifold with
boundary: interior points are mapped to interior points of Hn by chart
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maps and boundary points to boundary points. We denote by M̊ the
set of interior points of M and by ∂M the set of boundary points of M .
Lemma 9.71 implies that M̊ and ∂M get a manifold structure, with
dim M̊ = dimM = dim ∂M + 1, just by restricting atlases of M . The
manifold ∂M is called the boundary of M . A compact manifold with
boundary M with ∂M = ∅ is also called a closed manifold. Notice that
this terminology is a bit confusing: closed here has a different meaning
than in point-set topology.

Example 9.73. Any open subset U of Hn is a smooth manifold with
boundary with the equivalence class of the atlas consisting of a single
chart and the inclusion map to Hn as the chart map. We have Ů =
U ∩ H̊n and ∂U = U ∩ ∂Hn.

Example 9.74. Every smooth manifold M is also a smooth manifold
with boundary. Namely, to any atlas {(Uα, φα)}α∈I of M we associate

an atlas (Uα, φ̃α) with φ̃α := F ◦ φα and F a diffeomorphism Rn → H̊n

(e.g., F : (x1, . . . , xn) 7→ (x1, . . . , xn−1, ex
n
)). We have M̊ = M and

∂M = ∅, so we have a one-to-one correspondence between manifolds
and manifolds with boundary whose boundary is empty.

Example 9.75. An interval I in R is an example of a one-dimensional
manifold with boundary. If I = [a, b], then ∂I = {a}∪{b}; if I = [a, b),
then ∂I = {a}; if I = (a, b], then ∂I = {b}; if I = (a, b), then ∂I = ∅.
In all cases, I̊ = (a, b).

Example 9.76. If M is a manifold and N is a manifold with boundary,
then M×N is a manifold with boundary by using a product atlas. The
interior of M ×N is M × N̊ , and ∂(M ×N) = M × ∂N .

Example 9.77. Let M be an oriented manifold and S an oriented
hypersurface in M . Pick a Riemannian structure on M (recall that this
is always possible if M is Hausdorff and second countable) and let n
denote the normal vector field to S (see subsection 9.4.5 for notations).
An adapted oriented atlas {(Uα, φα)}α∈I for M yields an oriented atlas
(Vα, ψα)α∈I with Vα := φ−1

α ({(x1, . . . , xn) ∈ φα(Uα) | xn = 0}) and
ψα := Tα ◦ φα|Vα with Tα : (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1,−xn) if
the nth component of the normal vector field in this chart is negative
and the identity map otherwise (we assume for simplicity that the Vαs
are connected). (Notice that some Vα may be empty). Pick a collection
εα ∈ R>0∪{+∞} and let Wα := φ−1

α ({(x1, . . . , xn) ∈ φα(Uα) | 0 ≤ xn <
εα}). Then Sε :=

⋃
αWα is a manifold with boundary whose interior is

an open subset of M and whose boundary is S.
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Example 9.78. Let W be an open subset of Rn+1 and F : W → R
a smooth map. Assume that for all c ∈ M := F−1(0) the map dcF
is surjective. Then, for all ε ∈ R>0 ∪ {+∞}, Mε := F−1([0, ε)) is a
smooth manifold with boundary with ∂Mε = M and interior the open
subset F−1((0, ε)) of Rn+1.

As a particular case we have the

Example 9.79. The closed n-dimensional ball

Bn :=

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

(xi)2 ≤ 1

}

is a smooth manifold with boundary. Its interior is the open n-dimen-
sional ball and its boundary is the (n − 1)-dimensional sphere Sn−1.
(Notice that the closed ball is not a closed manifold.)

What we have defined for manifolds can be extended to manifolds
with boundary. We start with maps. If M and N are manifolds with
boundary and F : M → N a set-theoretic map, we can represent it in
charts by composing with chart maps. We say that F is smooth if all its
representations are smooth according to Definition 9.70. Lemma 9.71
imediately implies

Lemma 9.80. Let F : M → N be a diffeomorphism of manifolds with
boundary. Then F maps interior points to interior points and boundary
points to boundary points. Moreover, F |M̊ : M̊ → N̊ and F |∂M : ∂M →
∂N are diffeomorphisms.

Vector bundles are defined exactly as in Section 8. A smooth sec-
tion of a vector bundle π : E → M is defined again as a smooth map
σ : M → E such that π ◦ σ = IdM .

In particular we are interested in the tangent bundle TM of a smooth
manifold with boundary M . It is defined again as the union of the
tangent spaces TpM , p ∈M , the tangent space TpM at p being defined
exactly as in subsection 6.1. Notice that for p ∈ ∂M the tangent
space Tp∂M is a subspace of codimension one of TpM . A vector field
is defined as a section of TM and a k-form as a section of ΛkT ∗M .
Notice that in an atlas {(Uα, φα)}α∈I a vector field X and k-form ω
are represented by collections Xα and ωα of smooth vector fields and
smooth k-forms on open subsets φα(Uα) of Hn, n = dimM . This means
that the components of Xα and ωα are restrictions to φα(Uα) of smooth
functions defined on open neighborhoods of φα(Uα) in Rn.
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9.5.2. Stokes theorem. We are now ready to prove Stokes theorem.
What we still have to discuss is only orientations. An orientation of a
manifold with boundary is again defined as the choice of an equivalence
class of volume forms.

If M is a manifold with boundary, a vector np ∈ TpM , p ∈ ∂M ,
is called outward pointing if the last component of its representation in
any chart is negative (by Lemma 9.71 this notion is chart independent).
An orientation [v] of M then induces an orientation [w] of ∂M with
the property that for any p ∈ ∂M we have that ι∗ιnpvp = cwp with
v ∈ [v], w ∈ [w] and c a positive constant, where ι denotes the inclusion
of ∂M into M (notice that it is enough to check this condition for a
single p in each connected component of ∂M). This is called the in-
duced orientation of ∂M . In a chart the induced orientation is obtained
by contracting the representation of [v] with the outward pointing vec-
tor field. That this procedure is consistent is again a consequence of
Lemma 9.71.

Theorem 9.81 (Stokes Theorem). Let M be an oriented, Hausdorff,
second-countable, n-dimensional manifold with boundary, n > 0, and
ω a smooth (n− 1)-form on M with compact support. Then∫

M

dω =

∫
∂M

ω,

where on ∂M we use the induced orientation.

Remark 9.82. In particular, if M has no boundary, then
∫
M

dω = 0.

Proof. Let {(Uα, φα)}α∈I be an oriented atlas of M corresponding to
the given orientation and let {ρj}j∈J be a partition of unity subordinate
to it. First observe that

dω = d

(∑
j∈J

ρjω

)
=
∑
j∈J

d(ρjω).

Next notice that supp(ρjω) ⊂ Uαj . Thus, by the localization Lemma 9.62
we have ∫

M

d(ρjω) =

∫
φαj (Uαj )

d(ρjω)αj .

If φαj(Uαj) is contained in the interior of Hn, then we regard d(ρjω)αj
as a compactly supported top form on Rn (extending it by zero outside
ot its support); hence, by Lemma 9.69, we get

∫
φαj (Uαj )

d(ρjω)αj =

0. Otherwise, we regard d(ρjω)αj as a compactly supported top form
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on Hn (again extending it by zero outside of its support); hence, by
Lemma 9.68, we get∫

φαj (Uαj )

d(ρjω)αj =

∫
∂(φαj (Uαj ))

(ρjω)αj .

Noticing that ∂(φαj(Uαj)) = φαj(∂Uαj) by definition and that both are
oriented by outward pointing vectors, we get, again by the localization
Lemma, that ∫

M

d(ρjω) =

∫
∂M

ρjω.

Summing over j yields the result. �

Remark 9.83. Using equation (9.11), Remark 9.7 and the the def-
inition of the flux right before Proposition 9.67, we can recover the
original version of Stokes theorem: If U is an open subset of R3, X a
vector field on U and Σ ⊂ U an orientable surface with boundary ∂Σ,
then ∫

∂Σ

X · dx =

∫
Σ

curlX · n v,

where v denotes the Riemannian density associated to the restriction
to Σ of the Euclidean metric on R3 and n is the normal vector field
to Σ that ∂Σ encircles with the anticlockwise orientation (equivalently,
the vector product of the tangent vector at p ∈ ∂Σ with np is outward
pointing).

Using Proposition 9.67, Remark 9.30 and the definition of the diver-
gence of a vector field, we immediately37 get a further consequence:

Theorem 9.84 (Gauss Theorem). Let M be a smooth manifold with
boundary, g a Riemannian metric on M and X a vector field with
compact support. Then∫

∂M

X · n vg∂M =

∫
M

divgX vg,

where n is the outward pointing normal vector field.

Example 9.85. Consider the m-dimensional ball of radius R,

Bm
R =

{
(x1, . . . , xm) ∈ Rm

∣∣∣ m∑
i=1

(xi)2 ≤ R2

}
,

37The immediate proof following these steps actually requires orientability of M ,
but the theorem is true in general, as we will explain in Section 9.7 (see also, e.g.,
[4, Sect. 14]).
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and its boundary, the (m− 1)-dimensional sphere of radius R,

Sm−1
R =

{
(x1, . . . , xm) ∈ Rm

∣∣∣ m∑
i=1

(xi)2 = R2

}
,

We regard them both as endowed with the restriction of the Euclidean
metric on Rm. Let E =

∑m
i=1 x

i∂i denote the Euler vector field. We
have divE = m. The outward pointing vector field on Sm−1

R is x
R

.
Hence E · n = R. The Gauss theorem then yields

mVol(Bm
R ) = RVol(Sm−1

R ).

By a simple change of variables, we also have Vol(Bm
λR) = λm Vol(Bm

R )
for all λ > 0. Hence, R ∂

∂R
Vol(Bm

R ) = mVol(Bm
R ). Thus, we get

Vol(Sm−1
R ) =

∂

∂R
Vol(Bm

R ).

If we regard again the sphere as the boundary of the ball and write ∂
for ∂

∂R
, we get the more suggestive equation

Vol(∂Bm
R ) = ∂ Vol(Bm

R ).

9.5.3. The winding number. We consider a simple application of Stokes
theorem. Consider on R2 \ {0} the 1-form

ω :=
x dy − y dx

x2 + y2
.

One can easily see, by an explicit computation, that ω is closed. One
can also go to polar coordinates, F : R>0 × S1 → R2 \ {0}, and easily
compute F ∗ω = dθ. Given a differentiable loop γ : S1 → R2 \ {0} we
define its winding number around 0 as

w(γ) :=
1

2π

∫
γ

ω :=
1

2π

∫
S1

γ∗ω.

Note that this definition has the following immediate generalizations.
First, it is enough to assume that γ be piecewise deifferentiable as the
integral along γ can be defined as the sum of the integrals over the
pieces where γ is differentiable. Second, we can define the winding
number around any point p ∈ R2 for loops that miss that point just by
translating the above expression.

Remark 9.86. Note that working in polar coordinates shows that
w(γ) is an integer that measures how many times the curve γ winds
around 0 in the counterclockwise direction. In fact, fix a point t0 ∈ S1

and remove from R2 \{0} the half line that passes through 0 and γ(t0).
In this complement the angle θ ∈ [0, 2π] is a coordinate. We split the
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image of γ into the portions that start and end on the removed line but
do not cross it. The integral of ω along γ is the sum of the integrals
on each of these portions, and each of these integrals is equal to 0, 2π
or −2π. Note that one may take this as the definition of the winding
number, show that it does not depend on the choice of the initial point
t0, and extend it to continuous loops γ.

We now want to show that the winding number is a “homotopy
invariant.” Namely, given two loops γ0 and γ1 as above, we say that a
differentiable map Γ: [0, 1]×S1 → R2 \ {0} is a homotopy from γ0 and
γ1 if, for all t ∈ S1, Γ(0, t) = γ0(t) and Γ(1, t) = γ1(t). We also say, in
this case, that γ0 and γ1 are homotopic.

Lemma 9.87. If γ0 and γ1 are homotopic, then w(γ0) = w(γ1).

Proof. By Stokes theorem we have 0 =
∫

[0,1]×S1 dΓ∗ω =
∫
γ1
ω −

∫
γ0
ω.

�

One may show that this result extends to the setting of continuous
curves and continuous homotopies. For more details, see, e.g., [2].

9.6. Singular homology. Stokes theorem may be formulated on much
more general objects than manifolds with boundary. A far reaching
generalization are manifolds with corners, i.e., spaces locally modeled
on open subsets of Rk × Rl

≥0. We do not present the general theory,
but focus on the very important example of simplices. The standard
p-simplex is the closed subset38

∆p :=

{
(x1, . . . , xp) ∈ Rp

∣∣∣ p∑
i=1

xi ≤ 1, xi ≥ 0 ∀i

}
of Rp. Notice that the interior of ∆p is a p-dimensional manifold. The
0-simplex is just a point, the 1-simplex is an interval, the 2-simplex is
a triangle, and the 3-simplex is a tetrahedron.

A smooth differential form on ∆p is by definition the restriction to
∆p of a smooth differential form defined on an open neighborhood of
∆p in Rp. We can integrate top forms on ∆p just identifying them with
densities by the standard orientation of Rp.

Let now ω be a smooth (p−1)-form on ∆p. The integral of dω on ∆p

can then be computed, by Fubini’s theorem and by the fundamental

38The p-simplex is also defined by some authors as

∆p :=

{
(x0, . . . , xp) ∈ Rp+1

∣∣∣ p∑
i=0

xi = 1, xi ≥ 0 ∀i

}
.
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theorem of analysis, as a sum of integrals of ω on the faces of ∆p. Notice
that each of these faces is a (p − 1)-simplex (related to the standard
one by a diffeomorphism; see below).

Explictly, we write ω =
∑p

j=1 ω
j dx1 ∧ . . . d̂xj ∧ · · · ∧ dxp. Then

dω =
∑p

j=1(−1)j+1 ∂jω
j dpx and∫

∆p

dω =

p∑
j=1

(−1)j+1

∫
∆p

∂jω
j dpx.

By Fubini’s theorem, we can integrate the jth term first in the jth
coordinate; by the fundamental theorem of analysis we then get∫

∆p

∂jω
j dxj = ωj|xj=1−

∑p

i=1
i 6=j

xi − ωj|xj=0.

Hence

(9.12)

∫
∆p

dω =

p∑
j=1

(−1)j+1

∫
∆p∩{∑p

i=1 x
i=1}

ωj dx1 · · · d̂xj · · · dxp+

+

p∑
j=1

(−1)j
∫

∆p∩{xj=0}
ωj dx1 · · · d̂xj · · · dxp.

We may rewrite this formula in a more readable way if we regard the
faces on which we integrate as images of (p− 1)-simplices; namely, for
i = 0, . . . , p, we define smooth39 maps

kp−1
i : ∆p−1 → ∆p,

by

kp−1
0 (a1, . . . , ap−1) =

(
1−

p−1∑
i=1

ai, a1, . . . , ap−1

)
and

kp−1
j (a1, . . . , ap−1) = (a1, . . . , aj−1, 0, aj, . . . , ap−1),

for j > 0.
The jth integral in the second line of (9.12) is just the integral on

∆p−1 of the pullback of ω by kp−1
j . In fact,

(kp−1
j )∗ω = (kp−1

j )∗
p∑
i=1

ωi dx1 ∧ . . . d̂xi ∧ · · · ∧ dxp =

= ωj(a1, . . . , aj−1, 0, aj, . . . , ap−1) dp−1a.

39Again, smooth means that these maps are restrictions of smooth maps defined
on open neighborhoods.
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We then integrate by the standard orientation on ∆p−1 and rename
variables: xi = ai for i < j and xi = ai+1 for i > j.

The jth integral in the first line is on the other hand the integral on

∆p−1 of the pullback of (−1)j+1ωj dx1 ∧ . . . d̂xj ∧ · · · ∧ dxp by kp−1
0 . In

fact,

(kp−1
0 )∗ωj dx1 ∧ . . . d̂xj ∧ · · · ∧ dxp =

= −ωj(1−
∑

i
ai, a1, . . . , ap−1)

∑
i
dai∧da1∧· · ·∧d̂aj−1∧· · ·∧dap−1 =

= (−1)j+1ωj(1−
∑

i
ai, a1, . . . , ap−1) dp−1a.

We then integrate by the standard orientation on ∆p−1 and rename
variables: xi = ai for i < j and xi = ai+1 for i > j.

Summing up all contributions, we finally get the Stokes theorem for
a simplex:

(9.13)

∫
∆p

dω =

p∑
j=0

(−1)j
∫

∆p−1

(kp−1
j )∗ω

where the term with j = 0 corresponds to the whole sum in the first
line of (9.12) and each other term corresponds to a term in the second
line.

Things become more interesting if we consider a smooth map

σ : ∆p →M,

where M is a smooth manifold (again, we mean that σ is the restriction
of a smooth map defined on an open neighborhood of ∆p). If α is a
smooth p-form on M , one defines∫

σ

α :=

∫
∆p

σ∗α.

If we define σj := σ ◦ kp−1
j : ∆p−1 →M , then (9.13) implies∫
σ

dω =

p∑
j=0

(−1)j
∫
σj
ω.

This equation gets an even better form if we introduce the notion of
chains.

Definition 9.88. A p-chain with real coefficients in a smooth manifold
M is a finite linear combination

∑
k akσk, ak ∈ R for all k, of smooth

maps σk : ∆p →M . If α is a smooth p-form on M , one defines

(9.14)

∫
∑
k akσk

ω :=
∑
k

ak

∫
σk

ω.
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We then have the Stokes theorem for chains∫
σ

dω =

∫
∂σ

ω

where

(9.15) ∂σ :=

p∑
j=0

(−1)jσj.

We let Ωp(M,R) denote the vector space of p-chains in M with real
coefficients and extend ∂ to it by linearity. We then have, with the
terminology of subsection 9.3, that ∂ is an endomorphism of degree −1
of the graded vector space Ω•(M,R). By a simple calculation, one can
actually verify that ∂ is a boundary operator, see Definition 9.15; i.e.,

∂ ◦ ∂ = 0.

For σ ∈ Ωp(M,R) and ω ∈ Ωp(M) we define

(σ, ω) :=

∫
σ

ω.

This is a bilinear map Ωp(M,R) × Ωp(M) → R. Stokes theorem for
chains now reads

(σ, dω) = (∂σ, ω).

A chain in the kernel of ∂ is called a cycle, a chain in the image of ∂ is
called a boundary. One defines Hp(M,R) as the quotient of p-cycles by
p-boundaries. The graded vector space H•(M,R) is called the singular
homology with real coefficients of M .

Notice that a smooth map F : M → N induces a graded linear map
F∗ : Ω•(M,R) → Ω•(N,R), σ 7→ F ◦ σ. We clearly have ∂F∗ = F∗∂,
which implies that F∗ descends to a graded linear map

F∗ : H•(M,R)→ H•(N,R).

If F is a diffeomorphism, then F∗ is an isomorphism in singular ho-
mology. This shows that the singular homology is also an invariant of
manifolds.40 Another important remark is that

(F∗σ, ω) = (σ, F ∗ω)

for all σ ∈ Ω•(M,R) and all ω ∈ Ω•(N).

40Notice that one can also define Cl-chains, for any l, just by requiring the maps
to be Cl. One can prove that the Cl-singular homologies are all isomorphic to
each other. In particular, one can work with continuos maps. This shows that
homeomorphic manifolds have the same singular homology. Also observe that to
define continuous maps we just have to assume that M is a topological space. This
means that one can define singular homology for topological spaces as well.
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Finally, the Stokes theorem for chains implies that the above bilinear
map pairing chains to differential forms descends to a bilinear map

Hp(M,R)×Hp(M)→ R.

The most important result in this context is the de Rham theorem
that asserts that this induced pairing is nondegenerate. Notice that
this implies that Hp(M) is isomorphic to Hp(M,R)∗ for all p.

Remark 9.89. One can define chains with coefficients in any unital
ring R: A p-chain σ with coefficients in R is a finite linear combination∑

k akσk, ak ∈ R for all k, of maps σk : ∆p → M . One denotes by
Ωp(M,R) the R-module of p-chains in M with coefficients in R and
defines ∂ by formula (9.15). One still has that ∂ is a boundary operator
on the graded R-module Ω•(M,R) and one can define the singular
homology H•(M,R) of M with coefficients in R. Again a map F : M →
N induces an R-linear map in homology and a homeomorphism induces
an isomorphism. Notice that the pairing (9.14) with differential forms is
not defined if we do not specify a homomorphism R→ R to make sense
of the right hand side. In the special case R = Z, one simply writes
Ωp(M) and Hp(M) instead of Ωp(M,Z) and Hp(M,Z). The latter is
usually called that pth homology group of M . Using the inclusion
homomorphism Z → R one can pair chains with integral coefficients
with differential forms. Notice however that, in general, the induced
pairing Hp(M)×Hp(M)→ R is degenerate.

9.7. The nonorientable case. Differential forms, unlike densities, re-
quire an orientation to be integrated; they are, however, more flexible
as they can be restricted and integrated on (oriented) submanifolds
and form a complex. This in particular leads to Stokes theorem. In
this section we want to see what can be saved of the theory of differ-
ential forms without orientation. We will see that there is a variant of
Stokes theorem and that, in particular, Gauss theorem holds also on
nonorientable manifolds.

Recall that a top form, in local coordinates, transforms with the
determinant of the Jacobian of the transformation maps, whereas a
density transforms with its absolute value. To keep track of this twist
we introduce the orientation bundle or(M) of a manifold M : this is the
line bundle whose transition functions are given by the signs of the
Jacobians. Namely, if we fix an atlas {(Uα, φα)}α∈I , we set Aαβ(q) =
sgn det dφα(q)φαβ, in the notations of Section 8.1.4. Note that the tran-
sition functions of the orientation bundle are locally constant. We now
come to the central
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Definition 9.90. A twisted differential form onM is a section of Λ•T ∗M⊗
or(M).

Note that a twisted top form is the same as a density (they both
transform with the absolute value of the determinant of the Jacobian).

Lemma 9.91. Let M be Hausdorff and second countable. Then or(M)
is trivial if and only if M is orientable.

Proof. If M is orientable, then or(M) is trivial by Proposition 8.28.
Vice versa, if or(M) is trivial, we have global sections. A choice

of global section allows identifying top forms and twisted top forms,
i.e., densities. If M is Hausdorff and second countable, we may pick a
positive density which in turns defines a volume form. �

Notice that choosing a global section of or(M), in the orientable
case, yields an identification between differential forms and twisted
differential forms.

On twisted differential forms we may define the twisted de Rham
differential just by letting it operate on the differential form factor.
This makes sense, since the transition functions of the orientation bun-
dle are locally constant. More explictly, a twisted differential form ω
is represented in the atlas {(Uα, φα)}α∈I by differential forms ωα on
φα(Uα) transforming as

ωα = sgn dφαβ φ
∗
αβωβ.

Since sgn dφαβ is locally constant, we have

dωα = sgn dφαβ φ
∗
αβdωβ,

which shows that the collection of the dωαs defines a twisted differential
form. One can define the twisted de Rham cohomology, which coincides
with the usual one if M orientable. Also note that we can analogously
define contractions and Lie derivatives by vector fields and the whole
Cartan’s calculus extends to the twisted setting. In particular, if we
regard a density σ as a twisted top form, we have LXσ = dιXσ, a
crucial fact for the proof of Gauss theorem.

Twisted top forms, being the same as densities, can be integrated on
the whole manifold (if the integral converges). To define integration
on (appropriate) submanifolds, we have to understand how to restrict
twisted forms. Note that, if ι : S →M is a submanifold and u a section
of or(M), the restriction of u to S is a section of the pullback bundle
ι∗or(M).
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Definition 9.92. A submanifold ι : S → M is called co-orientable if
ι∗or(M) is isomorphic to or(S). A choice of isomorphism is called a
co-orientation and S with this choice is called co-oriented.

Note then that, if ω is a twisted differential form onM , the restriction
of ω to S, ι∗ω, is a twisted differential form on S. In particular, if the
form degree of ω is equal to the dimension of S, then ι∗ω is a density
on S and can be integrated. We have thus defined a pairing between
twisted k-form and k-dimensional co-oriented submanifolds.

In a local adapted atlas, we have tangential coordinates x1, . . . , xk

and transversal coordinates y1, . . . , yr, with k = dimS and r = dimM−
k. We assume that S is determined by setting the ys to zero. When
we pass to a different adapted chart, we write φαβ = (ψαβ, χαβ), where
ψαβ consists of the first k components and χαβ of the last r compo-
nents. On S we have χαβ = 0. As a consequence, for each point
(x, y) on φα(S ∩ Uα ∩ Uβ), the differential of φαβ is the block ma-

trix
(

dxψ dyψ
0 dyχ

)
. It follows that the transition functions of ι∗or(M) are

sgn dxψαβ sgn dyχαβ. Since the ψαβs are the transition maps for S in
the induced atlas, we see that S is co-orientable if and only if the line
bundle on S with transition functions sgn dyχαβ, at y = 0, called the
co-orientation bundle, is trivial.

This immediately implies that a submanifold of an orientable mani-
fold is co-orientable if and only if it is orientable.

It also shows that in the definition of the flow of a vector field through
a hypersurface S, see Section 9.4.5, what is needed is actually just a
co-orientation of S: this is equivalent to choosing one normal vector
field. The proof of Proposition 9.67 can easily be adapted to prove its
following more general version:

Proposition 9.93. Let S be a co-oriented hypersurface of a Riemann-
ian manifold (M, g). Then, for every X ∈ X(M), we have∫

S

X · n vgS =

∫
S

ιXvg,

where the co-orientation of S is used on the left hand side to define n
and on the right hand side to define the restriction of the twisted form
to S.

Let us now come to the case of a manifold with boundary M . By
inspection in the proof of Lemma 9.71, we see that ∂M is always co-
orientable. We will always assume its standard co-orientation, the one
given by taking the last component of an outward pointing vector as
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a section of the co-orientation bundle. Repeating the same steps as in
the proof of the non-twisted Stokes theorem, we get its twisted version:

Theorem 9.94. Let M be a Hausdorff, second-countable, n-dimen-
sional manifold with boundary, n > 0, and ω a smooth twisted (n −
1)-form on M with compact support. Then∫

M

dω =

∫
∂M

ω.

From Proposition 9.93, Theorem 9.94 and the Cartan formula for
the Lie derivative of a twisted top form, we get the proof to Gauss
theorem, see page 129, without having to assume orinetability of the
manifold.

Example 9.95. Consider the Möbius band M again, presented as
[0, 1] × R with (0, y) identified with (1,−y) for all y ∈ R. The curve
γ0 : [0, 1] → M , t 7→ (t, 0) is not co-orientable. On the other hand, for
each h 6= 0, we have the co-orientable curve γh : [0, 1]→M given by

γ(t) =

{
(2t, h) t ∈ [0, 1/2]

(2t− 1,−h) t ∈ [1/2, 1]

Take h > 0 and consider the region Mh enclosed by the curve (the
one containing γ0). This is a nonorientable manifold with boundary.
As an example for the Gauss theorem, consider the Euclidean metric
dx2 + dy2 and the vector field X = y ∂

∂y
. The flow of X through ∂Mh

is 2h. On the other hand, the divergence of y is 1, and the Euclidean
area of Mh is also 2h.

9.8. Digression: Symplectic manifolds. A symplectic form ω on a
manifold M is by definition a closed, nondegenerate 2-form. Nonde-
generate means that for all p ∈M we have

ωp(v, w) = 0∀v ∈ TpM ⇐⇒ w = 0.

Equivalently, the determinant of the matrix representing ω in a chart is
nonzero at every point. A pair (M,ω), where M is a smooth manifold
and ω a symplectic form on M , is called a symplectic manifold.

Remark 9.96. Notice that a 2-form ω on M establishes a morphism
ω] : TM → T ∗M of vector bundles by sending v ∈ TpM to the linear
form w 7→ ωp(v, w). This morphism is an isomorphism if and only if
ω is nondegenerate. Hence, if ω is symplectic, to every function H we
can associated a unique vector field XH such that

ιXHω = −dH.
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The vector field XH is called the Hamiltonian vector field of H (the
minus sign on the r.h.s. is purely conventional and not used by all
authors). On the other hand, a vector field X is called Hamiltonian
if it is the Hamiltonian vector field of a function (which is uniquely
defined up to the addition of a locally constant function); any of these
function is called a Hamiltonian function for X. Since ω is closed, by
Cartan’s formula we get

LXHω = 0.

Equivalently, ω is invariant under the flow of XH , which is called the
Hamiltonian flow of H.

Example 9.97. Symplectic geometry arises in mechanics. Consider,
e.g., Newton’s equation for one particle in R3,

mẍi = F i(x, ẋ, t),

where F , the force, is a given function and m, the mass, is a given pos-
itive number. As usual, one replaces this system of three second-order
ODEs by an equivalent system of six first-order ODEs by introducing
the momentum pi = mẋi:

ṗi = F i(x, p/m, t)

ẋi = pi/m.

A system is called conservative if F does not depend on time and
velocities and is minus the gradient of a function U , the potential, of the
coordinates: F i = −∂iU . In a conservative system, Newton’s equations
in the p, x variables turn out to be the ODE of the Hamiltonian vector

field of the function H =
∑

i
(pi)

2

2m
+ U with respect to the symplectic

form ω =
∑

i dpidq
i.

More generally,

Example 9.98. Let N be an open subset of R2n with coordinates
q1, . . . , qn, p1, . . . , pn. Then

(9.16) ω =
n∑
i=1

dpi ∧ dqi

is a symplectic form on N .

Example 9.99. The cotangent bundle T ∗M of any manifold possesses
a natural symplectic form defined as follows. First one defines the
Liouville 1-form θ (a.k.a. the Poincaré 1-form or the tautological 1-form).
The easiest way to define it is by choosing an atlas {(Uα, φα)}α∈I for M
and the corresponding trivializing atlas for TM . We denote by qiα the
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coordinates in the charts Uα and by pαi the coordinates on the fibers.
They satisfy the transition rules

qiβ = φiαβ(qα),

pαi =
n∑
j=1

∂φjαβ
∂qiα

(qα) pβj .

This implies that the collection of 1-forms θα,

θα :=
n∑
i=1

pαi dqiα,

defines a 1-form θ on M since θα = φ̃∗αβθβ for all α, β. Its differen-

tial ω = dθ is nondegenerate, since in charts it reads
∑n

i=1 dpαi dqiα,
and hence is a symplectic form on T ∗M . There is also a coordinate-
independent definition of θ. Namely, denote by (q, p), q ∈ M and
p ∈ (TqM)∗, the points in T ∗M and let π : T ∗M → M , π(q, p) = q be
the projection map. For v ∈ T(q,p)T

∗M , define θ(q,p)v := p(d(q,p)π v).

Remark 9.100. Darboux’s Theorem, which we will prove later (The-
orem 9.107), asserts that every symplectic manifold possesses an atlas
such that the symplectic form in each chart is as in (9.16).

From now on, let (N,ω) be a symplectic manifold. We want to
draw a few consequences. The first remark follows from linear algebra:
a vector space admits a skew-symmetric nondegenerate bilinear form
only if it has even dimension. This implies that dimN = 2m, for
some integer m. The nondegeneracy of ω implies that the top form
ρ = ωm/(m!), called the Liouville volume form, is nowhere vanishing.
This in turn implies that a symplectic manifold is always orientable
(and actually oriented by ρ). The integral

∫
M
ρ is called the symplectic

volume (we put on M the orientation [ρ], so this number is strictly
positive, possibly infinite.) This has an interesting corollary: If N is
compact, then ω is not exact. To prove this assume on the contrary
that ω is exact. This implies that ρ is also exact and by Stokes theorem
that

∫
M
ρ = 0; but this is impossible.

Observe that, since ω is invariant under the flow of a Hamiltonian
vector field, then so is ρ. This means that the ρ-divergence of a Hamil-
tonian vector field is always zero.

If H and F are two functions on N , then one can easily see that

(9.17) XH(F ) = −XF (H)

as both are equal to −ιXH ιXFω. This has two important consequences.
The first is Noether’s theorem. We need first the
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Definition 9.101. A Hamiltonian system is a pair ((N,ω), H) where
(N,ω) is a symplectic manifold and H is a function on N . A constant
of motion for the Hamiltonian system ((N,ω), H) is a function that
is constant on the orbits of XH . An infinitesimal symmetry for the
Hamiltonian system ((N,ω), H) is a Hamiltonian vector field X on N
such that X(H) = 0.

Theorem 9.102 (Noether’s Theorem). A Hamiltonian vector field is
a symmetry for the Hamiltonian system ((N,ω), H) if and only if any
of its Hamiltonian functions is a constant of motion.

Proof. Let F be a Hamiltonian function for the vector field at hand,
which we denote by XF . Being a symmetry means XF (H) = 0. On
the other hand, F is a constant of motion if and only if XH(F ) = 0.
The Theorem then follows from (9.17). �

The second consequence of (9.17) is that the bracket

{H,F} := XH(F ),

called the Poisson bracket on (N,ω), is skew-symmetric.

Lemma 9.103. The Poisson bracket { , } is a Lie bracket on C∞(M)
that in addition satisfies the Leibniz rule {f, gh} = {f, g}h + g{f, h}
for all f, g, h,∈ C∞(M). Moreover, the map f 7→ Xf is a Lie algebra
morphism from C∞(M) to X(M).

Proof. The Leibniz rule follows immediately from the Leibniz rule for
vector fields and from the definition of the Poisson bracket. Differ-
entiating the defining relation {f, g} = ιXfdg and using Cartan cal-
culus, we get, d{f, g} = LXfdg. From the definition of the Hamil-
tonian vector field for g, and again using Cartan calculus, we get
d{f, g} = −LXf ιXgω = [ιXg , LXf ]ω = ι[Xg ,Xf ]ω, where we have also
used that ω is Xf -invariant. This shows that the Hamiltonian vector
field of {f, g} is [Xf , Xg]:

X{f,g} = [Xf , Xg].

We then have

{f, {g, h}} = −{{g, h}, f} = −[Xg, Xh](f) =

= Xh(Xgf)−Xg(Xhf) = {h, {g, f}} − {g, {h, f}},

which is the Jacobi identity. The previous identity also shows that
f 7→ Xf is a Lie morphism. �
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We can use the Poisson bracket to rephrase Noether’s theorem: A
function F is a constant of motion for H if and only {F,H} = 0. Skew-
symmetry immediately implies that F is a constant of motion for H if
and only if H is a constant of motion for F . In addition we have the

Proposition 9.104. If F and G are constants of motion for H, then
so are FG and {F,G}. Hence the constants of motion for a given
Hamiltonian system form a Poisson subalgebra.

Proof. By Noether’s theorem we have {H,F} = {H,G} = 0. The
Leibniz and the Jacobi identities imply {H,FG} = 0 = {H, {F,G}}.

�

Remark 9.105. Note that, more generally, any Lie bracket on a com-
mutative algebra that also satisfies the Leibniz rule is called a Poisson
bracket.

9.8.1. Normal form. Symplectic manifold locally look all alike. This is
the content of Darboux’s theorem. We start with a very useful technical
Lemma.

Lemma 9.106 (Moser’s trick). Let ω0 and ω1 be symplectic forms on
an open subset U of Rn that coincide at some point q. Then there are
open neighborhoods V0 and V1 of q and a diffeomorphism φ : V0 → V1

such that φ(q) = q and

ω0|V0 = φ∗ω1|V1 .

Proof. Consider the convex combination ωt := (1−t)ω0 +tω1, t ∈ [0, 1].
Observe that ∂

∂t
ωt = ω1 − ω0. Let U ′ be an open ball around q inside

U . Since ω0 and ω1 are closed, by the Poincaré Lemma we then have a
1-form θ on U ′ such that there ∂

∂t
ωt = dθ. Note that θ is defined up to

the differential of a function, and we may always choose it such that θ
vanishes at q.41

Next we choose a neighborhood U ′′ of q in U ′ where ωt is nonde-
generate for all t ∈ [0, 1]. To see that this is possible, consider the
map [0, 1] × U ′ → R that assigns to (t, x) the determinant of ωt at x.
Let C be the preimage of 0, which is closed since this map is continu-
ous. Its complement contains [0, 1]× {q} (since at q we have, for all t,
ωt = ω0 = ω1 which is nondegenerate), so in particular it contains an
open subset of the form [0, 1]× U ′′.

On U ′′ then we have, for each t, a unique vector field Xt such that
ιXtωt = dθ, which implies LXtωt = 0. Note that by the assumption on θ
also Xt vanishes at q. Finally we denote by Φt(y) ∈ U ′′ the solution to

41Write θ =
∑
i θidx

i. Set f(x) = −
∑
i θi(q)x

i. Then θ + df vanishes at q.
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the ODE ẋ = Xt(x) with initial condition y. As Φt(q) = q for all q, we
may find a neighborhood U ′′′ of q in U ′′ such that Φt(y) is defined for
all y ∈ U ′′′ and for all t ∈ [0, 1]. One can then show that ωt = (Φ∗t )

−1ω0

for all t. In fact, define ω̃(t) := Φ∗tωt. We have

∂

∂t
ω̃(t) = lim

ε→0

Φ∗t+εωt+ε − Φ∗tωt
ε

.

The main remark is now that Φt+ε(y) = ΦXt
ε (Φt(y)) +O(ε2). Hence

∂

∂t
ω̃(t) = Φ∗t lim

ε→0

(ΦXt
ε )∗ωt − ωt

ε
= Φ∗tLXtωt = 0.

Since ω̃(0) = ω0, we get that ω̃(t) = ω0 for all t. To complete the proof
we set V0 = U ′′′, V1 = Φ1(U ′′′) and φ = Φ1. �

One application of Moser’s trick is

Theorem 9.107 (Darboux’s Theorem). Let (M,ω) be a 2n-dimen-
sional symplectic manifold. Then every point m of M is contained in
a chart (V, τ) such that τ∗ω has the form of equation (9.16).

Proof. Let (W,ψ) be a chart containing m. The representation of ω in
this chart at the point ψ(m) is a nondegenerate skew-symmetric matrix
which can hence be put in the form

(
0 Id
− Id 0

)
by a linear transformation

A. We set ψ′ := A ◦ψ, U = ψ′(W ), ω1 = ψ′∗ω|W and ω0 the restriction
to U of the 2-form of equation (9.16). By Moser’s trick, with the
same notations, we conclude the proof by setting V = (ψ′)−1(V1) and
τ = φ−1 ◦ ψ′. �

9.8.2. The degenerate case. In the study of Hamiltonian systems, the
nondegeneracy of the symplectic form is used to guarantee existence
and uniqueness of Hamiltonian vector fields. Most of the other proper-
ties, however, only rely on the fact that the symplectic form is closed.
We highlight in this section what survives if we drop the nondegen-
eracy condition. This is relevant to study “subsystems” defined by
submanifolds of a symplectic manifold, as nondegeneracy is in general
not preserved by restriction.

Definition 9.108. Let ω be a closed 2-form on a manifold M . We
say that a vector field X is vertical if ιXω = 0. A function f is called
invariant if X(f) = 0 for every vertical vector field X. A function f is
called Hamiltonian if there is a vector field Xf such that ιXfω = −df ;
such a vector field is called a Hamiltonian vector field for f .

Note that any two Hamiltonian vector fields for the same Hamilton-
ian function differ by a vertical vector field. Thus, if f is Hamiltonian
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and g invariant, we may define the action of f on g by

f{g} := Xf (g).

Notice that we have the Leibniz rule f{gh} = f{g}h+gf{h} for every
Hamiltonian function f and all invariant functions g and h.

Also note that a Hamiltonian function is automatically invariant, so
in particular we have an action of Hamiltonian functions on Hamilton-
ian functions that we denote by a bracket: If f and g are Hamiltonian,
we set

{f, g} := f{g}.
Note that the product fg of two Hamiltonian functions is also Hamil-
tonian (e.g., with Xfg = fXg + gXf ). By inspecting the proof of
Lemma 9.103, we see that also {f, g} is Hamiltonian and that { , } is
a Poisson bracket on the algebra of Hamiltonian functions.

Note that the Lie bracket of two vertical vector fields X and Y is
also vertical: in fact,

ι[X,Y ]ω = [ιX , LY ]ω = ιXdιY ω − LY ιXω = 0.

(More generally, this computation shows that the Lie bracket of a ver-
tical vector field X with a vector field Y that preserves the symplectic
form, e.g., a Hamiltonian vector field, is vertical.)

This points at some form of involutivity. To make this more pre-
cise, let us introduce the kernel ∆ of the bundle map ω] introduced
in Remark 9.96. In other words, the kernel ∆q at q ∈ M consists of
all tangent vectors v at q such that ωq(v, w) = 0 for all w ∈ TqM . A
vector field X is then vertical if and only if Xq ∈ ∆q ∀q ∈ M . If ∆ is
a regular distribution, it is then involutive by the above formula.

Definition 9.109. A 2-form ω on M is called presymplectic if it has
constant rank, i.e., if dimω](TqM) is the same for all q ∈ M . A
manifold endowed with a presymplectic form is called a presymplectic
manifold.

Lemma 9.110. The kernel of a presymplectic form is an involutive
distribution.

Proof. By the previous discussion, what is left to show is just the
smoothness of ∆ or, equivalently, that ∆ is a subbundle of TM . This
follows from the implicit function theorem if we regard ∆ as the preim-
age of M under ω]. We may see this in charts. There ω]α yields a map
uα : φα(Uα) × Rn → Rn, (x, v) 7→ (ω]α)x(v), and we have ∆α = u−1

α (0)
which is a submanifold, as uα has constant rank by assumption. �
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By Frobenius’ theorem ∆ is then also integrable. If the leaf space N
admits a smooth structure for which the canonical projection π : M →
N is smooth, we then see that the vertical vector fields for the presym-
plectic form ω are the same as the vertical vector fields for the projec-
tion π. Since ω is closed and invariant, by Corollary 9.36 it is basic.
Let ω be the uniquely defined 2-form on N with ω = π∗ω. Since π∗ is
injective, ω is closed. It is also nondegenerate, since we have modded
out precisely by the kernel. The symplectic manifold (N,ω) is called
the symplectic reduction of (M,ω).

Next let X be a symplectic vector field, i.e., LXω = 0. Then, for
every vertical vector field Y and by Cartan’s calculus we get ι[X,Y ]ω =
−[LX , ιY ]ω = 0. This means that X is projectable. It also follows that
φ(X) is symplectic. If X is Hamiltonian, i.e., ιXω = −df , then f is
invariant. If we write f = π∗f , then we also get ιφ(X)ω = −df .

Finally, suppose we have an invariant function f = π∗f . We then
have df = π∗df = −π∗(ιXfω), where Xf is the uniquely defined Hamil-

tonian vector field of f . Let now X be a projectable vector field with
φ(X) = Xf . We then have df = −ιXω, so f is Hamiltonian.

This is the lucky situation. However, even if the leaf space is not
smooth, a presymplectic manifold still has nice features:

Proposition 9.111. On a presymplectic manifold every invariant func-
tion is Hamiltonian.

Proof. By Frobenius theorem, in a chart image the kernel distribu-
tion is spanned by the vector fields ∂

∂x1 , . . . ,
∂
∂xk

. This implies that the

presymplectic form reads 1
2

∑
i,j>k ωijdx

i ∧ dxj, where at each point
the coefficients ωij are the entries of a nondegenerate skew-symmetric
(n−k)× (n−k)-matrix. A function g is on the other hand invariant if
it does not depend of the first k coordinates. As a Hamiltonian vector
field X for g we may take a solution to the equation

∑
i>kX

iωij = ∂g
∂xj

,
j > k, which exists since (ωij)i,j>k is nondegenerate. �

10. Lie groups

Definition 10.1. A Lie group is a smooth Hausdorff manifold G with
a group structure such that the multiplication

G×G → G
(g, h) 7→ gh

and the inversion
G → G
g 7→ g−1
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are smooth maps.42

Example 10.2 (The general linear group). Consider the group

GL(n) := {A ∈ Mat(n× n,R) | detA 6= 0}

of invertible n × n-matrices with real coefficients. The vector space
Mat(n×n,R) can be identified with Rn2

with each entry being a coordi-
nate and gets as such a standard manifold structure. The group GL(n)
inherits a manifold structure being an open subset of Mat(n × n,R).
Since each entry in the product of two matrices is a polynomial in
the entry of its factors, matrix multiplication is a smooth map. By
Cramer’s rule, each entry of the inverse of a matrix is the ratio of
the corresponding adjugate matrix over the determinant of the given
matrix; as such it is a rational function and, therefore, a smooth func-
tion on the complement of matrices with determinant zero. Hence,
GL(n) is a Lie group. Similarly, the group GL(n,C) is an open sub-

set of Mat(n× n,C), which can be identified with R2n2
with standard

manifold structure, and as such it is a Lie group.

Example 10.3 (Matrix Lie Groups). The classical matrix groups SL(n),
O(n), SO(n), SL(n,C), U(n) and SU(n) arise as subsets of Mat(n ×
n,R) or Mat(n× n,C) defined by constraints satisfying the conditions
of the implicit function theorem:

SL(n) = {A ∈ Mat(n× n,R) | detA = 1},
O(n) = {A ∈ Mat(n× n,R) | AtA− Id = 0},

SO(n) = {A ∈ Mat(n× n,R) | AtA− Id = 0 and detA = 1},
SL(n,C) = {A ∈ Mat(n× n,C) | detA = 1},

U(n) = {A ∈ Mat(n× n,C) | A†A− Id = 0},
SU(n) = {A ∈ Mat(n× n,C) | A†A− Id = 0 and detA = 1}.

Multipication and inversion are smooth as in Example 10.2. Hence
they are Lie groups.

10.1. The Lie algebra of a Lie group. Lie groups have an “infinites-
imal version” which is a Lie algebra (recall Definition 7.17 on page 39

42In several textbooks, Lie groups are equivalently defined by requiring that the
combined map

G×G → G
(g, h) 7→ gh−1

be smooth.



NOTES ON MANIFOLDS 147

and the subsequent examples). Indeed we will show that the tangent
space at the identity e of a Lie group G,

g := TeG,

has a natural Lie algebra structure.

Remark 10.4. It is customary to denote a Lie group by a capital ro-
man leter and its tangent space at the identity, viewed as a Lie algebra,
by the corresponding letter in lowercase gothic.

First notice that, if G is a Lie group, then left multiplication by g

lg : G → G
h 7→ gh

is a smooth map (actually, a diffeomorphism) for each g ∈ G. Notice
that the differential of lg at h yields a linear map

dhlg : ThG→ TghG.

A vector field X on G is called left invariant if

(10.1) X(gh) = dhlgX(h)

for all h, g ∈ G. Equivalently,

(lg)∗X = X

for all g ∈ G. If X and Y are left-invariant vector fields, then

(lg)∗[X, Y ] = [(lg)∗X, (lg)∗Y ] = [X, Y ],

so also [X, Y ] is left invariant. Hence, the R-vector space X(G)G of
left-invariant vector fields is a Lie algebra.

Notice that by specializing (10.1) at h = e, where e is the identity
element, we get

X(g) = delgX(e).

This shows that a left-invariant vector field is completely determined
by its value at the identity. More precisely, we have an isomorphism of
R-vector spaces

g → X(G)G

ξ 7→ Xξ

with Xξ(g) = delgξ, with inverse

X(G)G → g
X 7→ X(e)
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Definition 10.5. The Lie algebra of a Lie group is its tangent space
at the identity with the Lie bracket induced by its identification with
the vector space of left-invariant vector fields. Namely,

(10.2) X[ξ,η] = [Xξ, Xη]

for all ξ, η ∈ g.

We end this section by the following observation.

Lemma 10.6. Every Lie group is parallelizable (and hence orientable).

Proof. The map
G× g → TG
(g, ξ) 7→ (g, delgξ)

is an isomorphism of vector bundles. �

This yields a new proof of the fact that S1 and S3 are parallelizable,
see Lemmata 8.25 and 8.31. In fact, S1 is diffeomorphic to SO(2) by
the map

S1 → SO(2)

θ 7→
(

cos θ − sin θ
sin θ cos θ

)
On the other hand:

Lemma 10.7. S3 is diffeomorphic to SU(2).

Proof. Consider a complex 2×2 matrix A =
(
α β
γ δ

)
with determinant 1.

Its inverse is then
(

δ −β
−γ α

)
. Equating it to its adjoint

(
ᾱ γ̄
β̄ δ̄

)
, to make

sure that A is in SU(2), yields δ̄ = α and γ = −β̄. As a consequence,

our matrix A has the form
(

α β
−β̄ ᾱ

)
with |α|2 + |β|2 = 1. We have hence

proved that

SU(2) =

{(
α β
−β̄ ᾱ

)
∈ Mat(2× 2,C) | |α|2 + |β|2 = 1

}
.

If we identify C2 with R4, we see that the equation |α|2 + |β|2 = 1, for
(α, β) ∈ C2, defines S3. �

10.1.1. The Lie algebra of matrix Lie groups. Consider first the case
G = GL(n). First observe that, since GL(n) is an open subset of
Mat(n× n,R) with its standard manifold structure, we have

gl(n) := TeGL(n) = Mat(n× n,R),

where e now denotes the identity matrix. Since the group multiplica-
tion is a linear map, its differential is exactly the same linear map; so
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the left-invariant vector field Xξ, as a map from GL(n) to Mat(n×n,R),
corresponding to a matrix ξ ∈ gl(n) is simply given by

(10.3) Xξ(A) = Aξ, A ∈ GL(n),

where on the left hand side we just use matrix multiplication. Left-
invariance is just given by Xξ(AB) = AXξ(B) ∀A,B ∈ GL(n). As a
derivation, Xξ can be written as

Xξ(A) =
n∑

j,k=1

Aijξjk
∂

∂Aik
,

so [Xξ, Xη] = X[ξ,η] with [ξ, η] = ξη − ηξ the usual commutator in
Mat(n × n,R). Hence we have proved that the Lie algebra of GL(n)
is the vector space of n × n-matrices with Lie bracket given by the
commutator.

Similarly, the Lie algebra of GL(n,C) is Mat(n× n,C), regarded as
an R-vector space, with Lie bracket given by the commutator.

If G is a submanifold of GL(n) (or GL(n,C)) given by constraints
satisfying the conditions of the implicit function theorem, then its tan-
gent space as the identity may be computed as in Remark 6.10. In
particular, it is a subspace of Mat(n×n,R) (or Mat(n×n,C)) and the
Lie bracket is still given by the commutator.

For the matrix Lie groups introduced in Example 10.3 we have to
linearize the determinant and the quadratic functions AtA and A†A at
the identity. Notice that

det(e+ tξ +O(t2)) = 1 + tTr ξ +O(t2),

(e+ tξ +O(t2))t(e+ tξ +O(t2)) = e+ t(ξt + ξ) +O(t2),

(e+ tξ +O(t2))†(e+ tξ +O(t2)) = e+ t(ξ† + ξ) +O(t2).

Hence,

sl(n) = {ξ ∈ Mat(n× n,R) | Tr ξ = 0},
o(n) = {ξ ∈ Mat(n× n,R) |ξt + ξ = 0},
so(n) = {A ∈ Mat(n× n,R) |ξt + ξ = 0 and Tr ξ = 0},

sl(n,C) = {ξ ∈ Mat(n× n,C) | Tr ξ = 0},
u(n) = {ξ ∈ Mat(n× n,C) | ξ† + ξ = 0},
su(n) = {ξ ∈ Mat(n× n,C) |ξ† + ξ = 0 and Tr ξ = 0}.

Notice that, since the trace of a skew-symmetric matrix vanishes auto-
matically, we have

so(n) = o(n)
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for all n.

10.2. The exponential map. A map φ : G→ G is called left invari-
ant if φ(gh) = gφ(h) ∀g, h ∈ G.

Proposition 10.8. The flow ΦX
t of a left-invariant vector field X is

left invariant.

Proof. Fix g ∈ G and define ψt(h) := g−1ΦX
t (gh). We have ψ0 = Id

and

∂

∂t
ψt(h) = dΦXt (gh)lg−1

∂

∂t
ΦX
t (gh) = dΦXt (gh)lg−1X(ΦX

t (gh)) =

= dgψt(h)lg−1X(gψt(h)) = dgψt(h)lg−1dψt(h)lgX(ψt(h)) = X(ψt(h)).

By the uniqueness of solutions to ODEs, we get ψt = ΦX
t , which com-

pletes the proof. �

As a consequence we have

(10.4) ΦX
t (g) = gΦX

t (e),

so it is enough to understand the flow starting at e.

Lemma 10.9. A left-invariant vector field is complete: i.e., its flow is
defined for all time.

Proof. By the existence and uniqueness theorem, there is an ε > 0 such
that ΦX

t (e) is defined for all t ∈ (−ε, ε). By (10.4) we conclude that
ΦX
t (g) is defined for all t ∈ (−ε, ε) and for all g ∈ G. Next observe

that for every t ∈ R we can always find an n ∈ N such that |t|
n
< ε.

As a consequence, φX, t
n
(g) is defined for all g ∈ G. By left invariance

of the flow, we get that ΦX
t (e) = ΦX

t
n

◦ · · · ◦ ΦX
t
n

(e) =
(

ΦX
t
n

(e)
)n

, which

shows that ΦX
t (e) is defined for all t ∈ R. Finally, by (10.4) again, we

conclude that ΦX
t (g) is defined for all t ∈ R and for all g ∈ G. �

Definition 10.10. For ξ ∈ G we define

exp ξ := φ
Xξ
1 (e).

The smooth map exp: g→ G is called the exponential map.

Notice that the exponential map is in general neither injective nor
surjective.

Lemma 10.11.

exp(tξ) := Φ
Xξ
t (e), ∀t ∈ R, ∀ξ ∈ g.
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Proof. This follows from a general property of flows. Namely, let X
be a vector field on some manifold M and let x(t) be a solution of the
ODE ẋ = X(x). Then xλ(t) := x(λt) solves the ODE ẋλ = λX(x) and
has the same initial value at t = 0. It follows that ΦλX

t = ΦX
λt for all λ

and t for which the flow is defined. In our case, Φ
tXξ
1 (e) = Φ

Xξ
t (e) for

all t. The thesis now follows from linearity: tXξ = Xtξ. �

Proposition 10.12.

exp((t+ s)ξ) = exp(tξ) exp(sξ), ∀t, s ∈ R, ∀ξ ∈ g.

This explains the name of exponential map. Notice however that in
general exp(ξ + η) 6= exp ξ exp η.

Proof. We have

exp((t+ s)ξ) = Φ
Xξ
t+s(e) = Φ

Xξ
t (Φ

Xξ
s (e)) =

= Φ
Xξ
t (e)Φ

Xξ
s (e) = exp(tξ) exp(sξ).

�

We can also recover the Lie bracket in g from the exponential map:

Lemma 10.13. For all ξ, η ∈ g we have

(10.5) exp(sη) exp(tξ) exp(−sη) exp(−tξ) = exp(st[η, ξ] +O(t2, s2)).

In particular,

∂2

∂s∂t

∣∣∣
s=t=0

exp(sη) exp(tξ) exp(−sη) exp(−tξ) = [η, ξ].

Proof. Let Φs,t := exp(sη) exp(tξ) exp(−sη) exp(−tξ).
Since Φs,0 = e for all s, we have ∂

∂s

∣∣∣
s=t=0

Φs,t = 0. Similarly, we see

that ∂
∂t

∣∣∣
s=t=0

Φs,t = 0

By Lemma 10.11, we have

Φs,t = ΦXη
s (e)Φ

Xξ
t (e)Φ

Xη
−s (e)Φ

Xξ
−t (e)

By iterating (10.4), we then have

ΦXη
s (e)Φ

Xξ
t (e)Φ

Xη
−s (e)Φ

Xξ
−t (e) = Φ

Xξ
−t (Φ

Xη
−s (Φ

Xξ
t (ΦXη

s (e)))).

By Lemma 7.34, we finally get

∂2

∂s∂t

∣∣∣
s=t=0

Φ
Xξ
−t (Φ

Xη
−s (Φ

Xξ
t (ΦXη

s (e)))) = [Xη, Xξ](e) = [X[η,ξ]](e) = [η, ξ].

�
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Remark 10.14. There are several equivalent ways to rewrite (10.5).
For example,

exp(sη) exp(tξ) = exp

(
sη + tξ +

1

2
st[η, ξ] +O(t2, s2)

)
.

or

exp(sη) exp(tξ) exp(−sη) = exp(tξ + st[η, ξ] +O(t2, s2)),

Remark 10.15 (The BCH formula). Since the differential of the ex-
ponential map at 0 is the identity map (this follows immediately from
Lemma 10.11), the exponential map is a diffeomorphism from a neigh-
borhood of 0 in g to a neighborhood of e in G. This means that for
ε small enough, the will be a unique ζ with exp(εη) exp(εξ) = exp(ζ).
the Baker–Campbell–Hausdorff (BCH) formula is the Taylor expansion
BCH(η, ξ) of ζ with respect to ε. By the above Remark it starts with

BCH(η, ξ) = εη + εξ +
ε2

2
[η, ξ] + · · · .

Another useful formula is the following:

Lemma 10.16. For every ξ ∈ g and for every t, we have

(10.6)
∂

∂t
exp(tξ) = delexp(tξ)ξ.

Proof.

∂

∂t
exp(tξ) =

∂

∂t
Φ
Xξ
t (e) = Xξ(Φ

Xξ
t (e)) = Xξ(exp(tξ)) = delexp(tξ)ξ.

�

10.2.1. The exponential map of matrices. Consider the group GL(n).
By (10.3), the ODE associated to Xξ is Ȧ = Aξ, whose solution with
initial condition A(0) = A0 is A(t) = A0etξ with

eξ =
∞∑
n=0

ξn

n!
.

The flow is then Φ
Xξ
t (A) = Aetξ. We clearly have Φ

Xξ
t (AB) = ABetξ =

AΦ
Xξ
t (B), which shows left invariance. Moreover, we have exp ξ = eξ

for all ξ ∈ Mat(n×n,R). Similarly, for G = GL(n,C) we get exp ξ = eξ

for all ξ ∈ Mat(n× n,C)
If G is subgroup of GL(n) or GL(n,C) given by the implicit function

theorem as in subsection 10.1.1, we then have exp ξ = eξ for all ξ ∈ g.
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Finally note that Lemma 10.13 has a very simple interpretation in
this case. Namely, interpreting η and ξ as matrices,

exp(sη) exp(tξ) = (1 + sη +O(s2))(1 + tξ +O(t2)) =

= 1 + sη + tξ + stηξ +O(t2, s2),

exp(−sη) exp(−tξ) = (1− sη +O(s2))(1− tξ +O(t2)) =

= 1− sη − tξ + stηξ +O(t2, s2).

Hence,

exp(sη) exp(tξ) exp(−sη) exp(−tξ) = 1 + st[η, ξ] +O(t2, s2).

10.3. Morphisms. Let G1 and G2 be Lie groups. A Lie group mor-
phism Ψ: G1 → G2 is a group morphism that is also a smooth map.
Let ψ := deΨ: g1 → g2.

Lemma 10.17. For every ξ ∈ g1 and for every t, we have

Ψ(exp(tξ)) = exp(tψ(ξ)).

Proof. For fixed ξ, define

Ut := Ψ(exp(tξ)) and Vt(g) := exp(tψ(ξ)).

We have U0 = e = V0. We want to show that U and V satisfy the
same differential equation, so they must be equal by uniqueness of
solutions. To compute their time derivatives, we use (10.6) and the
identity Ψ ◦ lh = lΨ(h) ◦ ψ for all h ∈ G1, which yields

dhΨdelh = delΨ(h)deΨ.

Then both U and V solve the equation

∂

∂t
Xt = delXtψ(ξ).

�

Proposition 10.18. ψ is a morphism of Lie algebras.

Proof. Apply Ψ to (10.5) and use Lemma 10.17. �

In the language of categories, this shows that there is a functor Lie
from the category of Lie groups to the category of Lie algebra. With
the previous notations, Lie(G) = g and Lie(Ψ) = ψ.

The interesting question is whether we have some sort of inverse to
this. The passage from Lie groups to Lie algebras is sometimes called
differentiation and the inverse process integration. We start with the
special case when we have an injective morphism h→ g; i.e., h is a Lie
subalgebra of g. We may expect this to be integrable to a Lie subgroup.
This is indeed the case if we define this in an appropriate way.
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Definition 10.19. A Lie subgroup of a Lie group G is a Lie group H
together with a Lie group morphism I : H → G which is an immersion.

Note that a Lie subgroup is not necessarily closed.

Theorem 10.20 (Lie I). Let ι : h → g be a Lie subalgebra. Then
there is a unique connected Lie subgroup H of G with Lie(H) = h and
Lie(I) = ι.

Proof. Let ∆g := delgh. This is clearly an involutive distribution
spanned by the left invariant vector fields corresponding to elements of
h. By the Frobenius theorem, there is then a unique maximal integral
submanifold I : H → G passing through e. Also note that, by defini-
tion, the differential of I at the identity is precisely ι. It remains to
show that H is a subgroup.

By left invariance, the maximal integral submanifold passing through
g is lg ◦ I. This means that, for each h in H, gh belongs to the leaf
through g. If g is also in H, this leaf is H itself. Thus, H is closed
under multplication. If g = h−1, then e = h−1h belongs to the leaf
through h−1, which shows that h−1 ∈ H. �

Example 10.21. Let G = SO(2) = S1 ⊂ C. Then g = R. Let h be
also R and ι be the identity map. Then H = R and I(t) = eit.

If ι is also surjective, then I is also a submersion. If G is connected,
this means that I is a local diffeomorphism. If G is simply connected,
then I is a diffeomorphism. This will be important in the proof of the
next theorem.

Theorem 10.22 (Lie II). Let G1 and G2 be Lie groups with G1 simply
connected. Let ψ : g1 → g2 be a Lie algebra morphism. Then there is a
unique Lie group morphism Ψ: G1 → G2 with ψ = Lie(Ψ).

Proof. The product G1 × G2 is also a Lie group and the projections
Πi : G1×G2 → Gi are Lie group morphisms. The Lie algebra of G1×G2

is g1 ⊕ g2 and the projections are πi = Lie(Πi).
The graph Γ of ψ is a Lie subalgebra of g1 ⊕ g2. Denoting by ι the

inclusion of Γ, we have that ψ1 := π1ι is an isomorphism and that
π2ψ

−1
1 = ψ.

Bye Lie I there is a Lie subgroup I : H → G1 × G2 corresponding
to Γ. Since Lie(Π1 ◦ I) = ψ1 and G1 is simply connected, we have
that Ψ1 := Π1 ◦ I is an isomorphism. We then get a group morphism
Ψ: G1 → G2 by Ψ := Π2 ◦Ψ−1

1 , and we clearly have Lie(Ψ) = ψ. �

To complete the picture we add the following theorem (without
proof).
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Theorem 10.23 (Lie III). Let g be a finite dimensional Lie algebra
over R. Then there is a Lie group G with Lie(G) = g. One can choose
G to be simply connected and under this assumption it is unique up to
isomorphisms (by Lie II).

The complete proof of this last theorem is due to E. Cartan.

Remark 10.24 (Representations). Let V be a finite dimensional vec-
tor space. Then Aut(V ) is a Lie group (isomorphic to GL(n) with
n = dimV ). A representation of G on V is a Lie group morphism
R : G → Aut(V ). The Lie algebra of Aut(V ) is End(V ), so the above
construction associates to R a Lie algebra morphism r : g → End(V ),
i.e., a Lie algebra representation. Lie II implies that Lie algebra rep-
resentations can be lifted to Lie group representations if the Lie group
is simply connected.

Example 10.25. Let G be an (n×n)-matrix Lie group. The defining
representation of G is the inclusion of G into GL(n); i.e., one regards
each element of G as a matrix acting on Rn (or Cn in the complex
case). The corresponding Lie algebra representation is the inclusion of
g into gl(n).

Example 10.26 (The adjoint representation). Consider the conjuga-
tion Cg : G → G, h → ghg−1. Let Adg := deCg. Since Cg(e) = e, Adg
is an automorphism of g. Differentiating Cg1g2 = Cg1 ◦ Cg2 shows that
Ad is a representation, called the adjoint representation. The induced
Lie algebra representation, denoted by ad, turns out to be given by

adη ξ = [η, ξ].

In fact, let Ψs,t := Cexp(sη) exp(tξ). Then ∂
∂t

∣∣∣
t=0

Ψs,t = Adexp(sη) ξ, so

adη ξ = ∂2

∂s∂t

∣∣∣
s=t=0

Ψs,t. On the other hand, Ψs,t = exp(sη) exp(tξ) exp(−sη).

The statement now follows essentially from Lemma 10.13, see Re-
mark 10.14.

10.4. Actions of Lie groups. Recall that the action of a group G on
a set M is a group homorphism

G → Iso(M)
g 7→ Ψg

where Iso(M) is the group of invertible maps M → M . Explicitly, Ψg

is a map M → M for all g ∈ G satisfying Ψe = Id and Ψgh = Ψg ◦Ψh

for all g, h ∈ G. There is also an associated map

Ψ: G×M → M
(g,m) 7→ Ψg(m)
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Definition 10.27. An action of a Lie group G on a smooth manifold
M is an action as above where Ψ is smooth.

Notice that it follows that Ψg is a diffeomorphism of M for all g ∈ G.
An example of action is a representation (where the restriction is that
the manifold acted upon is a vector space and the maps are linear).

Lemma 10.28. For all ξ ∈ g, the map Ψ̃ξ
t := Ψexp(tξ) is a flow on M .

Proof. We have Ψ̃ξ
0 = Ψexp 0 = Ψe = Id and Ψ̃ξ

t+s = Ψexp((t+s)ξ) =

Ψexp(tξ) exp(sξ) = Ψexp(tξ) ◦Ψexp(sξ) = Ψ̃ξ
t ◦ Ψ̃ξ

s. �

Let ψξ denote the vector field on M that generates the flow Ψ̃ξ
t .

Namely, ψξ = ∂
∂t |t=0

Ψ̃ξ
t and Ψ̃ξ

t = Φ
ψξ
t .

Proposition 10.29. The map ψ : g → X(M) is a Lie algebra mor-
phism; i.e., ψ is linear and satisfies

[ψξ, ψη] = ψ[ξ,η], ∀ξ, η ∈ g.

A Lie algebra morphism g → X(M) is called an infinitesimal action
of g on M .

Proof. Apply Ψ to (10.13) and use Lemma 7.34. �

If G acts freely on M (i.e. Ψg(m) = m ⇒ g = e), then for each
m ∈ M we have an injective immersion Om : G → M , g 7→ Ψgm
(the orbit through m). The corresponding integrable distribution is
∆m := spanξ∈g ψξ(m). In this case, as a set of generators for the
vertical vector fields one may choose ψ(g). Also note that the leaf
space for this distribution is the same as the quotient M/G (i.e., the
quotient by the equivalent relation: m ∼ m′ if and only if ∃g ∈ G
m = Ψgm

′). Distributions that come from Lie group actions are under
better control.

Definition 10.30. An action Ψ of a Lie group G on a manifold M is
called proper if the map

G×M →M ×M
(g,m) 7→ (Ψg(m),m)

is proper.43

Theorem 10.31. If the action of G on M is free and proper, then
G/M has a manifold structure for which the canonical projection map
is a submersion.

43A map is called proper if the preimages of compact sets are compact.
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Not that the action of a compact Lie group is automatically proper.
Another class of examples is the action of a closed Lie subgroup H of a
Lie group G on G itself: Ψh(g) = gh−1 (conventionally one chooses the
action from the right). In this case, the quotient manifold G/H still has
a transitive G-action (if we let H act from the right, we may let G act
from the left; transitive means that any two points can be related by
the action of some element of G) and is called a homogeneous space. If
H is normal, then G/H inherits a Lie group structure. The Lie algebra
h of H is a Lie ideal in g, and the Lie algebra of G/H is g/h.

10.5. Left invariant forms. A differential form ω on G is called left
invariant if l∗gω = ω for all g ∈ G. We denote by Ωk(G)G the space of
left invariant k-forms. A left invariant form is completely determined
by its value at e. Thus, the map

φ : Ω•(G)G → Λ•g∗

is an isomorphism.
A nonzero element of Λtopg∗ then defines a left invariant volume form

ω. If we choose the element to be positive, then we have a left invariant
measure µ(A) :=

∫
A
ω. If G is compact we may produce a biinvariant

measure ω̃ by averaging:

ω̃ =

∫
G

r∗gω dµ(g).

We clearly see that ω̃ is positive and left invariant. Moreover,

r∗hω̃ =

∫
G

r∗hr
∗
gω dµ(g) =

∫
G

r∗hgω dµ(g) = ω̃,

so it is also right invariant. By rescaling we may also assume
∫
G
ω̃ = 1.

The corresponding probability measure is known as Haar measure.
The wedge product of two left invariant differential forms is left in-

variant. Moreover, by the Cartan calculus, the de Rham differential
maps Ω(G)G to itself. This induces a differential δ = φdφ−1 on Λ•g∗.
Applying the formula in Proposition 9.32 to left invariant vector fields,
we get

δω(v0, . . . , vk) =
∑

0≤i<j≤k

(−1)i+jω([vi, vj], v0, . . . , v̂i, . . . v̂j, . . . , vk),

for every ω ∈ Λkg∗ and every v0, . . . , vk ∈ g.44 Note, in particular, that
δω = 0 if ω ∈ Λ0g = R and that for ω ∈ Λ1g = g we have

δω(v0, v1) = −ω([v0, v1]).

44The first term in the formula is not there, for Lemma 9.31 implies that the
contraction of a left invariant form with left invariant vector fields is left invariant.
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That is, δ : g∗ → Λ2g∗ is minus the transposition of the Lie bracket (as
a linear map Λ2g → g). As δ is a derivation, it is enough to know its
action in degree zero and one.

Appendix A. Topology

We recall a few facts about topology.

Definition A.1. A topology on a set S is a collection O(S) of subsets
of S such that

(1) ∅, S ∈ O(S);
(2) ∀U, V ∈ O(S) we have U ∩ V ∈ O(S);
(3) if (Uα)α∈I is a family indexed by I with Uα ∈ O(S) ∀α ∈ I, we

have ∪α∈IUα ∈ O(S).

A set with a topology is called a topological space.

Example A.2. The collection of the usual open subsets45 of Rn forms
a topology on Rn, called its standard topology.

In general, elements of a topology are called open sets and elements
of a topological space are called points. A neighborhood of a point is
a set containing an open set that contains the given point. An open
cover of a topological space S is a collection {Uα}α∈I of open sets in S
such ∪α∈IUα = S.

Definition A.3. A map F : S → T between topological spaces (S,O(S))
and (T,O(T )) is called continuous if F−1(U) ∈ O(S) ∀U ∈ O(T ). A
continous invertible map whose inverse is also continuous is called a
homeomorphism. A map that maps open sets to open sets (i.e., in the
abve notation, F (U) ∈ O(T ) ∀U ∈ O(S)) is called open.

Topologies may often be derived from other topologies.

Example A.4. Let (S,O(S)) be a topological space and let T be a
subset. Then

OS(T ) := {U ⊂ T | ∃V ∈ O(S) : U = V ∩ T}
is a topology on T . With this topology, called the induced topology or
the relative topology, the inclusion map ι : T ↪→ S is continuous.

This is in particular the topology one usually considers on subsets of
Rn with its standard topology.

45Recall that a subset U of Rn is defined to be open if for each x0 ∈ U there is
an R > 0 such that the open ball

{x ∈ Rn | ||x− x0|| < R}
is contained in U .
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Example A.5. Let (S,O(S)) be a topological space and π : S → T be
a surjective map. Then

OS,π(T ) := {U ⊂ T | π−1(U) ∈ O(S)}
is a topology on T . With this topology, called the quotient topology, π
is continuous.

Notice in particular that π arises when we have a quotient relation
on S and define T as the set of equivalence classes.

Remark A.6. Unless stated otherwise, when we speak of Rn, we tac-
itly assume the standard topology; when speaking of a subset of a
topological space or a quotient of a topological space, we tacitly as-
sume the induced topology.

For some consideration on manifolds, we also need the notion of
compactness, which we briefly recall. First, recall that a subcover of
an open cover {Uα}α∈I of S is a subcollection {Uα}α∈J , J ⊂ I, that is
still a cover (i.e., ∪α∈JUα = S). If J is finite, then the subcover is also
called finite.

Definition A.7. A topological space K is called compact if every open
cover ofK possesses a finite subcover. A subsetK of a topological space
T is called compact if it is compact in the induced topology.

Recall that by the Heine–Borel theorem a subset of Rn is compact if
and only if it is closed and bounded (i.e., contained in a ball of finite
radius). Compact sets have a lot of important properties, for which we
refer to textbooks in topology (or analysis). We only recall those that
we are using in these notes.

Lemma A.8. Let F : S → T be a continuous map of topological spaces.
If K is compact in S, then F (K) is compact in T . In particular, if a
set is compact in a subset S of a topological space T (with respect to
the induced topology), then it is compact also in T .

Proof. Let {Uα}α∈I be an open cover of F (K). Then {F−1(Uα)}α∈I
is an open cover of K. Since K is compact, there is a finite subcover
{Uα}α∈J , J a finite subset of I. But then {Uα}α∈J is a finite subcover
of F (K).

For the second stament, just recall that the inclusion map of a subset
is continuous with respect to the induced topology. �

Lemma A.9. A closed subset of a compact set is compact.

Proof. Let K be compact and C ⊂ K closed. Then K \ C is by
definition open. Let {Uα}α∈I be an open cover of C. Then {Uα}α∈I ∪
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K \ C is an open cover of K and hence possesses a finite subcover.
Removing K \C from it (if contained) yields a finite subcover of C. �

Notice that in Rn a compact set is automatically closed, but this
may not be true for a general topology. It is true if we assume the
Hausdorff separability condition:

Definition A.10. A topological space S is called Hausdorff if for any
two distinct points x and y of S one has an open neighborhood U of x
and an open neighborhood V of y with U ∩ V = ∅.

Notice that Rn is Hausdorff. Also notice that a subset of a Haus-
dorff space is automatically Hausdorff (with respect to the induced
topology).

Lemma A.11. A compact subset of a Hausdorff space is closed.

Proof. Let S be a Hausdorff topological space and let K ⊂ S be closed.
We want to prove that A := S\K is open. For this it is enough to prove
that for every a ∈ A there is an open neighborhood Ua of a entirely
contained in A.

Given a ∈ A, for every x ∈ K we have, by the Hausdorff condition,
an open neighborhood Ux of x and and open neighborhood Vx of a with
Ux ∩ Vx = ∅. Since {Ux ∩K}x∈K is an open cover of K in the induced
topology and K is compact, we have a finite subcover {Uxi∩K}i∈I . We
then define Ua = ∩i∈IVxi , which is open since it is a finite intersection
of open sets. It also clearly contains a as a is contained in each Vxi .
Finally, let a′ ∈ Ua. Then by definition a′ ∈ Vxi for all i and hence
a′ 6∈ Uxi for all i, which implies a′ 6∈ K; so Ua ⊆ A.

�

An important notion, also for manifolds, is that of embedding:

Definition A.12. A continuous map between topological spaces is
called an embedding if it is a homeomorphism to its image.

Note that equivalently a map is an embedding if it is continuous,
open and injective. A useful criterion, which often applies, is the fol-
lowing.

Lemma A.13. An injective continuous map from a compact space to
a Hausdorff space is an embedding.

Proof. We have to prove that the map is open or, equivalently passing
to complements, that it maps closed subsets to closed subsets. Let
F : S → T be the given map with S compact and T Hausdorff. if
K is closed in S, then by Lemma A.9 it is also compact. Since F is
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continuous, by Lemma A.8 F (K) is compact, and by Lemma A.11 it
is also closed. Hence, F maps closed sets to closed sets. �

Appendix B. Multilinear algebra

We recall a few basic notions from linear algebra. We consider vector
spaces over a ground field K. For the applications in these notes the
ground field will be R and the vector spaces will be finite dimensional.46

We begin by recalling that a map V ×W → Z, where V , W and
Z are vector spaces, is called bilinear if it is linear with respect to
each argument when the other argument is kept fixed. Notice that the
set Bil(V,W ;Z) of bilinear maps V ×W → Z inherits a vector space
structure from Z. If (ei)i∈I is a basis of V and (fj)j∈J is a basis of W , a
blinear map ξ is completely determined by its values ξ(ei, fj). This also
shows that dim Bil(V,W ;Z) = dimV dimW dimZ. The main idea of
the tensor product consists in replacing bilinear maps by linear maps:

Definition B.1. The47 tensor product of two vector spaces V and W is
a pair (V ⊗W, η), where V ⊗W is a vector space and η : V ×W → V ⊗W
is a bilinear map, such that for every vector space Z and every bilinear
map ξ : V ×W → Z there is a unique linear map ξ⊗ : V ⊗W → Z
such that ξ = ξ⊗ ◦ η. This property is called the universal property of
the tensor product.

V ×W V ⊗W

Z

η

ξ ∃!ξ⊗

Before we show the existence of the tensor product, let us draw
some consequences of this definition. First, observe that the association
ξ 7→ ξ⊗ is linear and has an inverse: to any linear map φ : V ⊗W → Z
we associate the bilinear map φ ◦ η : V ×W → Z. This shows that we
have an isomorphism Bil(V,W ;Z) ' Hom(V ⊗W,Z). In particular,

46Unless explicitly stated otherwise, the results in this appendix also hold for
infinite dimensional spaces. The proofs are exactly the same if we assume the
existence of a basis (which is guaranteed by the axiom of choice). In this case, a
sum over an index set is understood to have only finitely many nonvanishing terms.

47We are actually defining “a” tensor product, but we will see in Lemma B.2
that all definitions are canonically equivalent.
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for Z = K we have Bil(V,W ;K) ' (V ⊗W )∗. If V and W are finite
dimensional, we finally have

(B.1) V ⊗W ' Bil(V,W ;K)∗.

This is one possible way of constructing the tensor product. The im-
portant point is that it does not really matter which construction we
use as they are all equivalent:

Lemma B.2. Suppose ((V ⊗ W )1, η1) and ((V ⊗ W )2, η2) both sat-
isfy the universal property. Then there is a canonical48 isomorphism
F12 : (V ⊗W )1 → (V ⊗W )2 such that η2 = F12η1.

Proof. Since η2 is a bilinear map, there is a uniquely defined linear map
that we denote by F12 with the property stated in the Lemma.

V ×W (V ⊗W )1

(V ⊗W )2

η1

η2 F12
F21

We have to prove that it is an isorphism. To do this, we reverse the
role of 1 and 2, and get a linear map F21 : (V ⊗W )2 → (V ⊗W )2 such
that η1 = F21η2. Hence, η1 = F21F12η1. This shows that F21F12 is the
linear map (V ⊗W )1 → (V ⊗W )1 corresponding to η1. By uniqueness
we have F21F12 = Id1. Analogously, we prove F12F21 = Id2. �

We now turn to the existence of the tensor product, also for infinite-
dimensional vector spaces. As the actual construction does not matter,
we may pick one in particular; e.g., using bases.

Lemma B.3. The tensor product of any two vector spaces V and W
exists.

Proof. Let (ei)i∈I be a basis of V and (fj)j∈J a basis of W . Recall that a
basis allows identifying vectors with their coefficients. More precisely,
let Map(I,K) denote the vector space of maps49 I → K. To a map
i 7→ vi we associate the vector

∑
i∈I v

iei. Vice versa to a vector v ∈ V
that we expand as

∑
i∈I v

iei we associate the map i 7→ vi. Hence, the
choice of a basis establishes an isomorphism Map(I,K) ' V . Also

48Canonical means that no choice is required to define it.
49In the infinite dimensional case we only consider maps that do not vanish at

finitely many points.
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notice that to the basis element er corresponds the map i 7→ δir. By
abuse of notation, this map is also denoted by er and the maps (ei)i∈I
are clearly a basis of Map(I,K). This suggests defining

V ⊗W = Map(I × J,K).

To show that this is the correct choice, we only have to define η and
prove the universal property. First observe that the maps

ei ⊗ fj : (r, s) 7→ δri δ
s
j ,

for i ∈ I and j ∈ J , form a basis of Map(I × J,K).
As η is bilinear, it is enough to define it on basis elements. Following

the analogy of a single vector space, we set η(ei, fj) = ei ⊗ fj. Finally,
if ξ is a bilinear map V ×W → Z, we define ξ⊗(ei⊗fj) := ξ(ei, fj) and
we immediately see that ξ = ξ⊗ ◦ η, as it enough to check this identity
on basis vectors. On the other hand, ξ⊗ is uniquely determined. In
fact, the difference φ of any two maps ξ⊗ and ξ′⊗ corresponding to the
same ξ, satisfies φ ◦ η = 0. Applying this to basis vectors, we get
φ(ei ⊗ fj) = 0 for all i, j, and hence φ is the zero map. �

Remark B.4. Since (ei⊗ fj)i∈I,j∈J is a basis, every vector z of V ⊗W
can be written as

z =
∑
i∈I

∑
j∈J

zij ei ⊗ fj

for uniquely determined scalars zij. Notice that in this representation
the components of the vector z have two indices.

It is customary to denote with v ⊗ w the value of η on (v, w):

v ⊗ w := η(v, w).

Vectors in V ⊗ W are usually called tensors.50 Tensors of the form
v⊗w (i.e., tensors in the image of η) are called pure tensors. With this
notation, the universal property reads more clearly as

ξ⊗(v ⊗ w) = ξ(v, w)

50Vectors owe their name to the fact that they were originally introduced to
define actual displacements: vector in Latin means carrier. Tensors owe their name
to the fact that they were originally introduced to describe tensions in an elastic
material as linear relations, i.e. matrices, between the vectors that describe internal
forces and deformations.



164 A. S. CATTANEO

for all v ∈ V and all w ∈ W . The fact that η is a bilinear map is
encoded in this new notation by the formulae

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,(B.2a)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,(B.2b)

(λv)⊗ w = v ⊗ (λw) = λ v ⊗ w,(B.2c)

for all v, v1, v2 ∈ V , w,w1, w2 ∈ W and λ ∈ K.

Remark B.5. These formulae lead to yet another construction of the
tensor product. Namely, one considers the free vector space generated
by the elements of V ×W , writing v ⊗ w instead of (v, w) ∈ V ×W ,
and imposes the formulae (B.2) (i.e., one quotients by the subspace
generated by them).51 The advantage of this construction is that it
does not require introducing bases (so it does not need the axiom of
choice). See, e.g., [5, paragraph 2.1] for more details.

Notice that any linear map on V ⊗W is completely determined by its
values on all pure tensors v⊗w as this in particular entails evaluation on
the basis vectors (ei⊗fj)i∈I,j∈J (or, more abstractly, since pure tensors
are the image of η and a linear map ξ⊗ is completely determined by
the bilinear map ξ = ξ⊗ ◦ η). This also means that to define a map on
V ⊗W we can specify it on all pure tensors v ⊗w and check that it is
compatible with (B.2). For example, we have a canonical isomorphism

V ⊗W ∼−→ W ⊗ V
v ⊗ w 7→ w ⊗ v

and a canonical isomorphism

V ⊗K ∼−→ V
v ⊗ λ 7→ λv

with inverse V → V ⊗ K, v 7→ v ⊗ 1. (Notice that λv is mapped to
(λv)⊗ 1 which is however the same as v⊗λ.) If we have a third vector
space Z, then we have a canonical isomorphism

(V ⊗W )⊗ Z ∼−→ V ⊗ (W ⊗ Z)
(v ⊗ w)⊗ z 7→ v ⊗ (w ⊗ z)

51More neatly, one quotients span(V ×W ) by the relations

((v1 + v2), w) = (v1, w) + (v2, w),

(v, (w1 + w2)) = (v, w1) + (v, w2),

(λv,w) = (v, λw) = λ (v, w),

and denotes the equivalence class of (v, w) by v ⊗ w.
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For this reason one usually writes V ⊗ W ⊗ Z without bracketing.
One also says that the tensor product of vector spaces is associative.
Another useful map is the canonical inclusion

V ∗ ⊗W ↪→ Hom(V,W )
α⊗ w 7→ (v 7→ α(v)w)

To see that it is injective observe that, if α(v)w = 0 for all v ∈ V , then
w = 0 or α = 0, and in either case α ⊗ w = 0. If V and W are finite
dimensional, then this is also an isomorphism since

dim(V ∗ ⊗W ) = dimV dimW = dim Hom(V,W ).

If we choose a basis (ei)i∈I of V , a basis (fj)J∈J of W , and denote by
(ei)i∈I the dual basis of V ∗, then a vector A in V ∗⊗W can be expanded
as

A =
∑
i∈I

∑
j∈J

Aji e
i ⊗ fj.

The coefficients Aji are also the components of the matrix that repre-
sents the corresponding linear map on right hand side:

ei 7→
∑
j∈J

Ajifj.

Similarly, we have a canonical inclusion

V ∗ ⊗W ∗ ↪→ (V ⊗W )∗

α⊗ β 7→ (v ⊗ w 7→ α(v)β(w))

which is an isomorphism if V and W are finite dimensional. Moreover,
(B.1) shows that, if V is finite dimensional, then V ∗⊗V ∗ is canonicaly
isomorphic to the space Bil(V, V ;K) of bilinear forms on V .

If we have linear maps φ : V → V ′ and ψ : W → W ′, then we canon-
ically have a linear map

φ⊗ ψ : V ⊗W → V ′ ⊗W ′

v ⊗ w 7→ φ(v)⊗ ψ(w)

If we have bases (ei)i∈I of V , (fj)j∈J of W , (e′i′)i′∈I′ of V ′ and (f ′j′)j′∈J ′

of W ′, we may represent the maps φ and ψ by matrices: φ(ei) =∑
i′∈I′ φ

i′
i e
′
i′ and ψ(fj) =

∑
j′∈J ′ ψ

j′

j f
′
j′ . It follows that

φ⊗ ψ(ei ⊗ fj) =
∑
i′∈I′

∑
j′∈J ′

φi
′

i ψ
j′

j e
′
i′ ⊗ f ′j′ .
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B.1. Tensor powers. Let V be a vector space. Its kth tensor power
is by definition

V ⊗k = V ⊗ · · · ⊗ V

where we have k copies of V on the right hand side. The definition is
actually by induction:

V ⊗1 := V and V ⊗(k+1) := V ⊗k ⊗ V.

As the tensor product of tensor spaces is associative the bracketing is
not important. By convention one then also sets

V ⊗0 := K.

Observe that

dimV ⊗k = (dimV )k.

An element of V ⊗k is called a tensor of order k. If we pick a basis (ei)i∈I
on V , then (ei1⊗ · · · ⊗ eik)i1,...,ik∈I is a basis of V ⊗k and a tensor T of
order k may be uniquely written as

T =
∑

i1,...,ik∈I

T i1···ik ei1⊗ · · · ⊗ eik .

Moreover, we have V ⊗k1 ⊗ V ⊗k2 = V ⊗(k1+k2) for all k1, k2. (We write
equal instead of isomorphic, as the isomorphism is canonical.) This
corresponds to a bilinear map

⊗ : V ⊗k1 × V ⊗k2 → V ⊗(k1+k2)

(v1 ⊗ · · · ⊗ vk1 , w1 ⊗ · · · ⊗ wk2) 7→ v1 ⊗ · · · ⊗ vk1 ⊗ w1 ⊗ · · · ⊗ wk2

called the tensor product of tensors. It is clearly associative: namely,

(T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3)

for all Ti ∈ V ⊗ki and any choice of ki. Usually one then omits brack-
eting. One also extends the tensors product to scalars. Namely, if
a ∈ V ⊗0 = K and α ∈ V ⊗k, one defines a ⊗ α := aα =: α ⊗ a. Notice
that 1 ∈ K is then a unit: 1⊗ α = α⊗ 1 = α for all α.

If we pick a basis, then the components of a tensor product of tensors
are just the products of the components of the two factors. The tensor
product of tensors then makes

T (V ) :=
∞⊕
k=0

V ⊗k
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into an associative algebra called the tensor algebra of V .52 An element
of T (V ) is sometimes called a nonhomogenous tensor, but often just a
tensor. Elements of a single V ⊗k are also called homogenous tensors.

A linear map φ : V → W canonically induces linear maps

(B.3) φ⊗k : V ⊗k → W⊗k

v1 ⊗ · · · ⊗ vk 7→ φ(v1)⊗ · · · ⊗ φ(vk)

for all k. Notice that if T1 and T2 are in V ⊗k1 and V ⊗k2 , then

φ⊗(k1+k2)(T1 ⊗ T2) = φ⊗k1(T1)⊗ φ⊗k2(T2).

This construction may be repeated with the dual space V ∗ of V .
More generally, one considers the tensor product

T ks (V ) := V ⊗k ⊗ (V ∗)⊗s

An element of T ks (V ) is called a tensor of type (k, s). Tensors of type
(0, s) are also called covariant tensors of order s, whereas tensors of
type (k, 0) are also known as contravariant tensors of order k.53 As the
notation suggests, by convention we put the linear forms to the right.
Hence, if we pick a basis (ei)i∈I on V , then

(ei1⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejs)i1,...,ik,j1,...js∈I
is a basis of T ks (V ), where (ej)j∈I denotes the dual basis. A tensor T
of type (k, s) can then be uniquely written as

T =
∑

i1,...,ik,j1,...js∈I

T i1···ikj1···js ei1⊗ · · · ⊗ eik ⊗ e
j1 ⊗ · · · ⊗ ejs .

Remark B.6. Particularly important are the tensor spaces T 1
1 (V ) and

T 0
2 (V ) for V finite dimensional. In this case, T 1

1 (V ) is canonically
identified with the space of endomorphisms of V . In a basis we write
F ∈ T 1

1 (V ) as

F =
∑
i,j∈I

F i
j ei ⊗ ej.

The coefficients F i
j are also the entries of the matrix representing the

corresponding endomorphism, which we keep denoting by F :

F (ej) =
∑
i∈I

F i
j ei.

52The T in T (V ) stands for “tensor” and should not be confused with the T
denoting the tangent bundle of a manifold.

53This terminology refers to the fact that, if we change basis by some matrix, the
components of a vector change by application of the inverse matrix (hence the name
contravariant), whereas the components of a linear form change by the application
of the matrix itself (hence the name covariant).
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The tensor space T 0
2 (V ) is instead canonically identified with the space

of bilinear forms on V . In a basis we write B ∈ T 0
2 (V ) as

B =
∑
i,j∈I

Bij e
i ⊗ ej.

The coefficients Bij are also the entries of the matrix representing the
corresponding bilinear form, which we keep denoting by B:

B(ei, ej) = Bij.

Remark B.7 (Einstein’s convention). A useful habit, which we implic-
itly used above, consists in taking care of the position of the indices.
We use lower indices to denote basis vectors (ei) and upper indices to
denote the components vi in the expansion of a vector

v =
∑
i

viei.

For the dual basis we use the same letters as for the basis but with
upper indices: (ei). For the components of a linear form we then use
lower indices:

ω =
∑
i

ωie
i.

Consequently a vector in T ks will have k upper and s lower indices.
This notation allows recognizing at a glance the type of a tensor. A
further convention, due to Einstein, tacitly assumes a summation over
every repeated index, once in the upper and once in the lower position.
For example, with this convention the expansion of a vector v and of a
linear form ω read v = viei and ω = ωie

i. This very useful convention
requires some training. As in these notes we only occasionally work
with coordinates, we prefer not to make use of it.

A tensor of type (k, s) may be written, by definition, as a linear
combination of tensors of the form T ⊗S where T is of type (k, 0) and
S is of type (0, s). The tensor product of tensors extends to the general
case by

T k1
s1

(V )⊗ T k2
s2

(V ) → T k1+k2
s1+s2 (V )

(T1 ⊗ S1)⊗ (T2 ⊗ S2) 7→ T1 ⊗ T2 ⊗ S1 ⊗ S2

Similarly, an isomorphism φ : V → W induces canonically isomor-
phisms54

(B.4) φks : T ks (V ) → T ks (W )
T ⊗ S 7→ φ⊗k(T )⊗ ((φ∗)−1)⊗s(S)

54In this case, φ must be an isomorphism because we have to define an associated
map V ∗ →W ∗.
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for all k, s. Again, if U1 ∈ T k1
s1

(V ) and U2 ∈ T k2
s2

(V ), we have

φk1+k2
s1+s2

(U1 ⊗ U2) = φk1
s1

(U1)⊗ φk2
s2

(U2).

Finally, observe that the pairing V ⊗ V ∗ → K, (v, α) 7→ α(v) canon-
ically induces linear maps

Imn : T ks (V )→ T k−1
s−1 (W ),

for all 1 ≤ m ≤ k and 1 ≤ n ≤ s, obtained by pairing the mth vector
with the nth linear form in the tensor. These linear maps are called
contractions.

B.2. Exterior algebra. For applications in the theory of manifolds
(viz., differential forms), we also need the concept of exterior algebra.
For simplicity, we develop it in the case when the ground field K has
characteristic zero (e.g., K = R).55 The objects of interest are then
the skew-symmetric tensors. In terms of a basis, these are the tensors
whose components are skew-symmetric with respect to the exchange of
indices.

More invariantly, we proceed as follows. First observe that a permu-
tation σ on k elements defines an endomorphism of V ⊗k given by

v1 ⊗ · · · ⊗ vk 7→ vσ(1) ⊗ · · · ⊗ vσ(k).

on pure tensors. We denote the so defined endomorphism also by σ.
In particular, if (ei) is a basis and α =

∑
i1,...,ik

αi1...ikei1 ⊗ · · · ⊗ eik is a
k-tensor, then

(B.5) σα =
∑
i1,...,ik

αi1...ikeiσ(1)
⊗ · · · ⊗ eiσ(k)

=

=
∑
i1,...,ik

αiσ−1(1)...iσ−1(k)ei1 ⊗ · · · ⊗ eik .

Notice that this defines a representation of the symmetric group Sk
(i.e., the group of permutations over k elements) on V ⊗k: namely,

(σ1σ2)α = σ1(σ2α) and Idα = α

for all σ1, σ2 ∈ Sk and α ∈ V ⊗k (we denote by Id the identity permu-
tation).

Since we are interested in skew-symmetric tensors, we twist this rep-
resentation by the sign:56 a k-tensor is called skew-symmetric if

σα = sgnσ α

55Fot the general case, see subsection B.2.2.
56A parallel discussion, without this twist, leads to the symmetric algebra.
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for all σ ∈ Sk. Since the symmetric group is generated by transposi-
tions, we also have that α is skew-symmetric if and only if τα = −α
for every transposition τ . We denote by ΛkV the vector space of skew-
symmetric k-tensors.

If we expand α in a basis, we see that α is skew-symmetric if and
only if its components change sign by the exchange of any two indices.
More generally, by (B.5), we see that α is skew-symmetric if and only
if

(B.6) αiσ(1)...iσ(k) = sgnσ αi1...ik

for all σ and all i1, . . . , ik.
Notice that the map φ⊗k defined in equation (B.3) commutes with

the action of the permutation group:

φ⊗kσ = σφ⊗k

for all σ ∈ Sk. This implies that φ⊗k maps skew-symmetric tensors
to skew-symmetric tensors. The restriction of φ⊗k to ΛkV is usually
denoted by Λkφ. In summary, a linear map φ : V → W canonically
induces linear maps

Λkφ : ΛkV → ΛkW

for all k.
The tensor product of two skew-symmetric tensors is in general no

longer skew-symmetric. However, one can always skew-symmetrize it
and define the wedge product of α1 ∈ Λk1V and α2 ∈ Λk2V by

(B.7) α1 ∧ α2 := Altk(α1 ⊗ α2),

with k = k1 + k2, where

Altkα :=
1

k!

∑
σ∈Sk

sgnσ σα.

Lemma B.8. The alternating map Altk has image equal to ΛkV . More-
over, if α ∈ ΛkV , then Altkα = α.

Proof. For τ ∈ Sk, let us compute

τ Altkα =
1

k!

∑
σ∈Sk

sgnσ τσα = sgnτ
1

k!

∑
σ∈Sk

sgn(τσ) τσα.

By the change of variable σ̂ = τσ we then get

τ Altk α = sgnτ
1

k!

∑
σ̂∈Sk

sgnσ̂ σ̂α = sgnτ Altk α,

for all τ ∈ Sk, which proves that the image of Altk is in ΛkV .
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We then move to the second statement. From σα = sgnσ α we get
Altk(α) := 1

k!

∑
σ∈Sk α = α. This also proves that the image of Altk is

the whole of ΛkV . �

If φ is a linear map as above, then we clearly have

Λkφ(α1 ∧ α2) = (Λk1α1) ∧ (Λk2α2).

We extend the wedge product to the direct sum ΛV :=
⊕∞

k=0 ΛkV .

Lemma B.9. (ΛV,∧) is an associative algebra with unit 1 ∈ Λ0V = K.

This algebra is called the exterior algebra of V .

Proof. We compute

(α1 ∧ α2) ∧ α3 =

 1

(k1 + k2)!

∑
σ∈Sk1+k2

sgnσ σ(α1 ⊗ α2)

 ∧ α3 =

=
1

(k1 + k2 + k3)!(k1 + k2)!

∑
σ̃∈Sk1+k2+k3
σ∈Sk1+k2

sgnσ̃ sgnσ σ̃(σ(α1 ⊗ α2)⊗ α3).

Let σ × Idk3 be the permutation over k1 + k2 + k3 elements that is the
identity on the last k3 element and σ on the first k1 + k2 elements.
Then σ(α1 ⊗ α2)⊗ α3 = (σ × Idk3)(α1 ⊗ α2 ⊗ α3). Notice that sgnσ =
sgn(σ×Idk3). We then make the change of variable σ̃ 7→ σ̂ = σ̃(σ×Idk3)
and get

(α1∧α2)∧α3 =
1

(k1 + k2 + k3)!(k1 + k2)!

∑
σ̂∈Sk1+k2+k3
σ∈Sk1+k2

sgnσ̂ σ̂(α1⊗α2⊗α3).

If we perform the sum over σ, we finally obtain

(α1 ∧ α2) ∧ α3 =
1

(k1 + k2 + k3)!

∑
σ̂∈Sk1+k2+k3

sgnσ̂ σ̂(α1 ⊗ α2 ⊗ α3).

By an analogous computation, one sees that this is also the expression
for α1 ∧ (α2 ∧ α3).

We next check that 1 ∈ K is the unit. Since 1⊗α = α and α ∈ ΛkV
is skew-symmetric, we have

1 ∧ α =
1

k!

∑
σ∈Sk

sgnσ σ(1⊗ α) =
1

k!

∑
σ∈Sk

sgnσ σα =
1

k!

∑
σ∈Sk

α = α.

Similarly, one sees that α ∧ 1 = α.
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Notice that dividing by the order of the group of permutations in
the definition of the wedge product is fundamental for this Lemma to
hold. �

Remark B.10. By induction, using the first part of this proof, one
can also prove that for αi ∈ ΛkiV , i = 1, . . . , r, we have

α1 ∧ · · · ∧ αr =
1

k!

∑
σ∈Sk

sgnσ σ(α1 ⊗ · · · ⊗ αr).

with k =
∑r

i=1 ki.

Lemma B.11. The wedge product is graded commutative, i.e.,

α2 ∧ α1 = (−1)k1k2α1 ∧ α2

for all α1 ∈ Λk1V and α2 ∈ Λk2V . In particular, α∧ α = 0 if α ∈ ΛkV
with k odd.

Proof. Let τ ∈ Sk, k = k1 +k2, denote the permutation that exchanges
the first k1 elements with the last k2 elements. We have α2 ⊗ α1 =
τ(α1 ⊗ α2). Then, by (B.7), we have

α2 ∧ α1 =
1

k!

∑
σ∈Sk

sgnσ στ(α1 ⊗ α2).

By the change of variables σ 7→ σ̂ = στ , we get

α2 ∧ α1 = sgnτ
1

k!

∑
σ̂∈Sk

sgnσ̂ σ̂(α1 ⊗ α2).

This completes the proof since sgnτ = (−1)k1k2 . �

Lemma B.12. If (ei)i∈I is a basis of V , then (ej1 ∧ · · · ∧ ejk)j1<···<jk∈I
is a basis of ΛkV .

Proof. We expand α ∈ ΛkV ⊂ V ⊗k as α =
∑

i1,...,ik
αi1...ikei1 ⊗· · ·⊗ eik .

Since α = sgnσ σα for all σ, we can also write α = 1
k!

∑
σ∈Sk sgnσ σα.

We then get, by Remark B.10,

α =
∑

i1,...,ik∈I

αi1...ik ei1 ∧ · · · ∧ eik ,

which shows that (ei1 ∧ · · · ∧ eik)i1,...,ik∈I is a system of generators for
ΛkV .

These generators are however linearly dependent. By the graded
commutativity we have ei ∧ ei = 0 for all i. This implies that, if an
index is repeated, then ei1 ∧ · · · ∧ eik = 0, since we can use the graded
commutativity to move the two ei’s with the same index next to each
other. If all the indices are different from each other, then there is a
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unique permutation σ such that iσ(1) < iσ(2) < · · · < iσ(k). We can then
write

αi1...ikei1 ∧ · · · ∧ eik = αi1...iksgnσ eiσ(1)
∧ · · · ∧ eiσ(k)

=

= αiσ(1)...iσ(k)eiσ(1)
∧ · · · ∧ eiσ(k)

= αj1...jkej1 ∧ · · · ∧ ejk
where we have used (B.6) and have set jr = iσ(r), r = 1, . . . , k. By
construction we have j1 < j2 < · · · < jk. Notice that if we fix the
ordered jr’s there are k! corresponding unordered ir’s. Hence

α =
∑

j1<···<jk∈I

k!αj1...jk ej1 ∧ · · · ∧ ejk ,

which shows that (ej1 ∧ · · · ∧ ejk)j1<···<jk∈I is also a system of gen-
erators for ΛkV . We want to prove that they are linearly indepen-
dent. Let λj1...jk be a collection of scalars for j1 < · · · < jk such that∑

j1<···<jk∈I λ
j1...jk ej1 ∧ · · · ∧ ejk = 0. For i1, . . . , ik pairwise distinct,

define αi1...ik = sgnσλiσ(1)...iσ(k) where σ is the unique permutation such
that iσ(1) < · · · < iσ(k); if an index is repeated, we define αi1...ik = 0.
We then have

∑
i1,...,ik∈I α

i1...ik ei1 ∧ · · ·∧ eik = 0. By Remark B.10, this

implies
∑

i1,...,ik∈I α
i1...ik ei1 ⊗ · · · ⊗ eik = 0. Hence αi1...ik = 0 for all

i1, . . . , ik, which implies λj1...jk = 0 for all j1 < · · · < jk. �

This implies that to define a linear map on ΛkV it is enough to define
it on pure elements, i.e., elements of the form v1 ∧ · · · ∧ vk, checking
that it is multilinear and alternating in the vectors v1, . . . , vn.

Corollary B.13. If dimV = n, then dim ΛkV = ( nk ). In particular,
ΛkV = {0} if k > n.

Observe that ΛnV is one-dimensional if n = dimV . This means,
that if φ is an endomorphism of V , then Λnφ is the multiplication by
a scalar. It turns out that this scalar is the determinant of φ:

(B.8) Λnφα = detφα

for all α ∈ ΛnV .

Proof. Let (e1, . . . , en) be a basis of V . We have

Λnφ e1 ∧ · · · ∧ en = φ(e1) ∧ · · · ∧ φ(en) =
∑
i1,...,in

φi11 · · ·φinn ei1 ∧ · · · ∧ ein ,

where (φji ) is the matrix representing φ in this basis. If any index is
repeated, the contribution vanishes. If all indices are pairwise different,
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we let σ be the permutation with σ(j) = ij. Then

Λnφ e1 ∧ · · · ∧ en =
∑
σ∈Sn

sgnσ φ
σ(1)
1 · · ·φσ(n)

n e1 ∧ · · · ∧ en,

which completes the proof by the Leibniz formula for the determinant.
�

B.2.1. Contractions. The pairing between a vector space and its dual
extends to the exterior algebra. We describe its most important ap-
pearance. To fit with the application to differential forms we use the
exterior algebra of the dual here.

An element of ΛV ∗ is called a form and an element of ΛkV ∗ a k-form.
A k-form a1 ∧ · · · ∧ ak with ai ∈ V ∗ for all i is called pure. A linear
map defined on ΛkV ∗ is completely determined by its values on the
pure forms (as in particular basis elements are pure forms). On the
other hand, a map defined on pure forms extends to a linear map if it
is multinear and alternating on the pure forms.

A vector v in V defines a linear map ιv : ΛkV ∗ → Λk−1V ∗ called
contraction, for all k, defined on pure forms by

ιv(a1 ∧ · · · ∧ ak) = a1(v) a2 ∧ · · · ∧ ak − a2(v) a1 ∧ a3 ∧ · · · ∧ ak + · · · =

=
k∑
r=1

(−1)r−1ar(v) a1 ∧ · · · ∧ âr ∧ · · · ∧ ak,

where the caret ̂ indicates that the factor ar is omitted. On Λ0V ∗ the
contraction ιv is defined as the zero map.

Lemma B.14. The contraction has the following important properties.
First, for all α ∈ ΛkV ∗, β ∈ ΛlV ∗ and v ∈ V , one has

ιv(α ∧ β) = ιvα ∧ β + (−1)kα ∧ ιvβ.
Second, for all v, w ∈ V and α ∈ ΛV ∗, one has

ιvιwα = −ιwιvα

Proof. It is enough to check the first identity when α and β are pure,
and this follows immediately from the definition.

The second identity can also be easily checked on pure forms. In fact,
one can use the first identity to show that Iv,w := ιvιw + ιwιv satisfies

Iv,w(α ∧ β) = Iv,wα ∧ β + α ∧ Iv,wβ
for all α and β. By induction one then sees that Iv,w is determined by
its actions on 1-forms. Since Iv,w is clearly zero on Λ1V ∗, it is then zero
on the whole ΛV ∗. �
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Let finally φ be a linear map V → W . Since the the transpose of a
linear map is defined exactly so as to preserve the pairing of a vector
with a linear form, (φ∗a)(v) = a(φv) for all a ∈ W ∗ and v ∈ V , we
have

(B.9) ιvΛ
kφ∗α = Λk−1φ∗ιΦvα,

for all v in V and all α ∈ ΛkV ∗.

B.2.2. The exterior algebra as a quotient. In the above description of
the exterior algebra, we had several denominators, which is ok if the
ground field K has characteristic zero. For a general ground field, one
can use another definition of the exterior algebra (which is canonically
isomorphic to the previous one if the field has characteristic zero).

To start with, we recall a basic construction. An algebra A is a
vector space endowed with a bilinear map A×A→ A, usually denoted
by (a, b) 7→ ab. The algebra is called associative if (ab)c = a(bc) for
all a, b, c ∈ A. A two-sided ideal of an algebra A is a subspace I with
the property that ax ∈ I and xa ∈ I for all a ∈ A and ∀x ∈ I. The
quotient space A/I then inherits an associative algebra structure by

[a][b] := [ab], a ∈ [a], b ∈ [b].

Notice that the class [ab] does not depend on the choice of representa-
tives a and b since I is a two-sided ideal.

We now apply this construction to the algebra T (V ) :=
⊕∞

k=0 V
⊗k,

where V is a vector space on some ground field K, of any characteristic,
and the associative algebra structure is defined by the tensor product
of tensors. We let I be the two-sided ideal generated by elements of
the form v⊗ v with v ∈ V . More explictly I is the span of elements of
the form a⊗ v⊗ v⊗ b with a, b ∈ T (V ) and v ∈ V . The exterior algebra
ΛV of V is then defined as the quotient algebra T (V )/I. The induced
associative product is denoted by ∧ and is called the exterior product:

[a] ∧ [b] := [a⊗ b], a ∈ [a], b ∈ [b].

Notice that I is a graded ideal, i.e., I =
⊕∞

k=2 Ik with

Ik = I ∩ V ⊗k =

= span{a⊗ v⊗ v⊗ b : v ∈ V, a ∈ V ⊗k1 , b ∈ V ⊗k2 , k1 + k2 = k− 2}.

One then defines ΛkV = V ⊗k/Ik and one gets ΛV =
⊕∞

k=0 ΛkV . Ob-
serve that Λ0V = K and Λ1V = V .

The kth tensor power φ⊗k of a linear map φ : V → W clearly sends
the kth component of the ideal of T (V ) to the kth component of
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the ideal of T (W ), so it descends to the quotients. We denote it by
Λkφ : ΛkV → ΛkW .

One can prove that the so defined exterior algebra has the same prop-
erties as the one we have defined above in terms of skew-symmetric
tensors. In the case of characteristic zero the two constructions are
equivalent. Namely, let Ak : V ⊗k → V ⊗k be the map defined by
Akα = 1

k!

∑
σ∈Sk sgnσ σα. One can see that Ik = kerAk and that the

image of Ak is the space of skew-symmetric k-tensors. The canonical
isomorphism between T (V )/I and

⊕
k Ak(V

⊗k) is also compatible with
the wegde products.

Finally observe that in the general construction the exterior algebra
is a quotient of the tensor algebra, whereas in the special construction
with skew-symmetric tensors it is a subspace.
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