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1. INTRODUCTION

Differentiable manifolds are sets that locally look like some R™ so
that we can do calculus on them. Examples of manifolds are open sub-
sets of R™ or subsets defined by constraints satisfying the assumptions
of the implicit function theorem (example: the n-sphere S™). Also
in the latter case, it is however more practical to think of manifolds
intrinsically in terms of charts.

The example to bear in mind are charts of Earth collected in an
atlas, with the indications on how to pass from one chart to another.
Another example that may be familiar is that of regular surfaces.

2. MANIFOLDS

Definition 2.1. A chart on a set M is a pair (U, ¢) where U is a subset
of M and ¢ is an injective map from U to R" for some n.

The map ¢ is called a chart map or a coordinate map. One often
refers to ¢ itself as a chart, for the subset U is part of ¢ as its definition
domain.

If (U, ¢y) and (V, ¢y ) are charts on M, we may compose the bijec-
tions (¢u)|yny : UNV = ¢p(UNV) and (¢v)),, : UNV = ¢y (UNV)

|UnV
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and get the bijection

oy = (V) |y © (Guluav) 't oo (UNV) = oy (UNV)

called the transition map from (U, ¢p) to (V, ¢y ) (or simply from U to
V).

Definition 2.2. An atlas on a set M is a collection of charts {(Uy, ¢u) }acrs
where [ is an index set, such that U, U, = M.

Remark 2.3. We usually denote the transition maps between charts
in an atlas (Uy, a)acr sSimply by ¢ap (instead of ¢y, v;)-

One can easily check that, if ¢,(U,) is open Va € I (in the standard
topology of the target), then the atlas A = {(U,, ¢a)}acs defines a
topologyf] on M:

OA(M) :={V C M| ¢o(VNU,) is open Va € I}.

We may additionally require that all U, be open in this topology or,
equivalently, that ¢, (U, NUps) is open Va, 5 € I. In this case we speak
of an open atlas. All transition maps in an open atlas have open domain
and codomain, so we can require them to belong to a class C C C° of
maps (e.g., C* for k =0,1,..., 00, or analytic, or complex analytic, or
Lipschitz).

Definition 2.4. A C-atlas is an openf] atlas such that all transition
maps are C-maps.

Notice that, by definition, a C-atlas is also in particular a C°-atlas.

Example 2.5. Let M = R". Then A = {(R", ¢)} is a C-atlas for any
structure C if ¢ is an injective map with open image. Notice that M
has the standard topology iff ¢ is a homeomorphism with its image. If
¢ is the identity map Id, this is called the standard atlas for R"™.

Example 2.6. Let M be an open subset of R” with its standard topol-
ogy. Then A = {(U, )}, with ¢ the inclusion map, is a C-atlas for any
structure C.

Example 2.7. Let M = R". Let A = {(R",1d), (R",¢)}. Then A is
a C-atlas iff ¢ and its inverse are C-maps.

Example 2.8. Let M be the set of lines (i.e., one-dimensional affine
subspaces) of R?. Let U; be the subset of nonvertical lines and U,
the subset of nonhorizontal lines. Notice that every line in U; can be

IFor more on topology, see Appendix
2Notice that to define a C%-atlas we would not need the condition that the atlas be
open, but we will need this condition for the proof of several important properties.
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uniquely parametrized as y = myx + ¢; and every line in U, can be
uniquely parametrized as x = maoy + ¢o. Define ¢;: U; — R? as the
map that assigns to a line the corresponding pair (m;, ¢;), for i = 1, 2.
Then A = {(Uy, ¢1), (U, o)} is a Ck-atlas for k =0,1,2,...,00

Example 2.9. Define S! in terms of the angle that parametrizes it (i.e.,
by setting x = cos 6, y = sinf). The angle 0 is defined modulo 27. The
usual choice of thinking of S as the closed interval [0, 27] with 0 and 27
identified does not give an atlas. Instead, we think of S* as the quotient
of R by the equivalence relation 6 ~ 0if0— 0 = 2k, k € Z. We then
define charts by taking open subsets of R and using Shlfts by multiple
of 27 as transition functions. A concrete choice is the following. Let
E denote the class of 0 (equivalently, for S' in R? E is the eastward
point (1,0)). We set Ug = S'\ {E} and denote by ¢g: Up — R the
map that assigns the angle in (0,27). Analogously, we let W denote
the westward point (—1,0) (i.e., the equivalence class of ) and set
Uw = ST\ {W}. We denote by ¢y : Uy — R the map that assigns the
angle in (—, 7). We have S = UgpUUy,, ¢p(UgNUy ) = (0, 7)U(T, 27)
and ¢w (Ug N Uy ) = (—7,0) U (0, 7). Finally, we have

0 if 6 € (0,7),
drw(0) = {@ 2 if 0 € (m,2m).

Hence A = {(Ug, ¢r), (Uw, ¢w)} is a CF-atlas for k = 0,1,2,...,00

Example 2.10 (Regular surfaces). Recall that a regular surface is a
subset S of R? such that for every p € S there is an open subset U of
R? and a map x: U — R? with p € x(U) C S satisfying the following
properties:

(1) x: U — x(U) is a homeomorphism (i.e., x is injective, continu-

ous and open),

(2) xis C*, and

(3) the differential d,x: R* — R? is injective for all u € U.
A map x satisfying these properties is called a regular parametrizationﬁ
The first property allows one to define a chart (x(U),x™ ') and all
charts arising this way form an open atlas. The second and third

properties make this into a C*-atlas, so a regular surface is an example
of C*°-manifold.

Example 2.11. Let M = §" := {z € R*™ | 77" (2%)? = 1} be the
n-sphere. Let N = (0,...,0,1) and S = (0,...,0,—1) denote its north
and south poles, respectively. Let Uy := S” \ {N} and Ug := S"\ {S}.

3In the terminology of Definition x is an embedding of U into R3.
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Let ¢n: Uy — R™ and ¢g: Us — R™ be the stereographic projections
with respect to N and S, respectively: ¢ maps a point y in S™ to the
intersection of the plane {z"™! = 0} with the line passing through N
and y; similarly for ¢g. A computation shows that ¢gy(x) = dns(x) =
mE X € R"\{0}. Then A = {(Uy,én), (Us, ¢s)} is a Ck-atlas for
kE=0,1,2,..., 0.

Example 2.12 (Constraints). Let M be a subset of R" defined by
CF-constraints satisfying the assumptions of the implicit function the-
orem. Then locally M can be regarded as the graph of a C¥-map. Any
open cover of M with this property yields a C*-atlas. We will give more
details on this in subsection 2.3]

As we have seen in the examples above, the same set may occur
with different atlases. The main point, however, is to consider different
atlases just as different description of the same object, at least as long
as the atlases are compatible. By this we mean that we can decide to
consider a chart from either atlas. This leads to the following

Definition 2.13. Two C-atlases on the same set are C-equivalent if
their union is also a C-atlas.

Notice that the union of two atlases has in general more transition
maps and in checking equivalence one has to check that also the new
transition maps are C-maps. In particular, this first requires checking
that the union of the two atlases is open.

Example 2.14. Let M =R", 4; = {(R",1d)} and A, = {(R", ¢)} for
an injective map ¢ with open image. These two atlases are C-equivalent
iff ¢ and its inverse are C-maps.

We finally arrive at the
Definition 2.15. A C-manifold is an equivalence class of C-atlases.

Remark 2.16. Usually in defining a C-manifold we explicitly intro-
duce one atlas and tacitly consider the corresponding C-manifold as
the equivalence class containing this atlas. Also notice that the union
of all atlases in a given class is also an atlas, called the maximal atlas, in
the same equivalence class. Thus, we may equivalently define a man-
ifold as a set with a maximal atlas. This is not very practical as the
maximal atlas is huge.

Working with an equivalence class of atlases instead of a single one
also has the advantage that whatever definition we want to give requires
choosing just a particular atlas in the class and we may choose the most
convenient one.
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Example 2.17. The standard C-manifold structure on R" is the C-equiv-
alence class of the atlas {(R",1d)}.

Remark 2.18. Notice that the same set can be given different manifold
structures. For example, let M = R™. On it we have the the standard
C-structure of the previous example. For any injective map ¢ with open
image we also have the C-structure given by the equivalent class of the
the C-atlas {(R™, ¢)}. The two structures define the same C-manifold
iff ¢ and its inverse are C-maps. Notice that if ¢ is not a homeorphism,
the two manifolds are different also as topological spaces. Suppose
that ¢ is a homeomorphism but not a C*-diffeomorphism; then the two
structures define the same topological space and the same C’-manifold,
but not the same C*-manifold[]

Example 2.19. Let A = {(Uy, ¢a)}acr be a C-atlas on M. Let V be
an open subset of U, for some a. Define 1y := ¢o|y. Then A := AU
{(V,1y)} is also a C-atlas and moreover A and A" are C-equivalent, so
they define the same manifold. This example shows that in a manifold
we can always shrink a chart to a smaller one.

Example 2.20 (Open subsets). Let U be an open subset of a C-mani-
fold M. If {(Ua, ¢a) }acr is an atlas for M, then {(UyNU, ¢ulv.nv) }acr
is a C-atlas for U. This makes U into a C-manifold with the relative
topology.

Example 2.21 (Cartesian product). Let M and N be C-manifolds.
We can make M x N into a C-manifold as follows. Let {(Uy, ¢0)}acr
be a C-atlas for M and {(Vj,v;)};es a C-atlas for N. Then (U, x
Vi, 0a X V) (aj)cixs is a C-atlas for M x N, called the product atlas.
Note that the topology it induces is the product topology.

2.1. Coordinates. Recall that an element of an open subset V' of R™ is
an n-tuple (z', ..., z") of real numbers called coordinates. We also have
maps 7: V — R, (z',...,2") — 1z called coordinate functions. One
often writes 2 instead of 7* to denote a coordinate function. Notice
that z° has then both the meaning of a coordinate (a real number) and
of a coordinate function (a function on V'), but this ambiguity causes
no problems in practice.

If (U,¢y) is a chart with codomain R™, the maps 7 o ¢p: U —
R are also called coordinate functions and are often denoted by z°.
One usually calls U together with its coordinate functions a coordinate
neighborhood.

“We will see in Example that these two CF-manifolds are anyway
Ck-diffeomorphic.
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2.2. Dimension. Recall that the existence of a C*-diffeomorphism be-
tween an open subset of R and an open subset of R™ implies m = n
since the differential at any point is a linear isomorphism of R™ and R"
as vector spaces (the result is also true for homeomorphisms, though
the proof is more difficult). So we have the

Definition 2.22. A connected manifold has dimension n if for any (and
hence for all) of its charts the target of the chart map is R™. In general,
we say that a manifold has dimension n if all its connected components
have dimension n. We write dim M = n.

2.3. The implicit function theorem. As mentioned in Example
a typical way of defining manifolds is by the implicit function theorem
which we recall here.

Theorem 2.23 (Implicit function theorem). Let W be an open subset
of Rt F: W — R™ a C*-map (k > 0) and ¢ € R*. We define
M := F~(c). If for every g € M the linear map d,F is surjective, then
M has the structure of an m-dimensional C*-manifold with topology
induced from R™*",

The proof of this theorem relies on another important theorem in
analysis:

Theorem 2.24 (Inverse function theorem). Let W be an open subset
of R® and G: W — R® a C*-map (k > 0). If d,G is an isomorphism
at ¢ € W, then there is an open neighborhood V' of q in W, such that
Gly is a C*-diffeomorphism V — G(V).

The inverse function theorem is a nice application of Banach’s fixed
point theorem. We do not prove it here (see e.g. [3, Appendix 10.1]).

Sketch of a proof of the implicit function theorem. Let ¢ € M. The

matrix with entries %(q), i=1,....m, j = 1,...,n 4+ m has by
assumption rank m. This implies that we can rearrange its rows so

that its left m x m block is invertible. More precisely, we can find a

permutation o of {1,...,m+n} such that (%(Q))i,jzl,...mwn is invert-
ible, where F=Fo ®, and ®, is the diffeomorphism of R™" that
sends (z',...,2™) to (z°MW, ... 27(m+) We then define a new map
G: W — R™™ (b 2™ e (FY L F™ g™ ™) Now
d,G is invertible, so we can apply the inverse function theorem to it.
This means that there is a neighborhood V' of ¢ in W such that G|y
is a C*-diffeomorphism V — G(V'). We then define U, := V' N M and
¢y, := mo G|y, as a chart around ¢, where m: R™*" — R" is the pro-
jection to the last n coordinates. Repeating this for all ¢ € M, or just
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enough of them for the U to cover M, we get an atlas for M. One
can finally check that this atlas is C*. Since the maps G are, in partic-
ular, homeomorphisms, the atlas topology is the same as the induced
topology. U

3. MAPS

Let F': M — N be a map of sets. Let (U, ¢y) be a chart on M and
(V,¢y) be a chart on N with V N F(U) # 0. The map

Foy = 9v i, pw, © Flu © ¢y ¢u(U) = (V)

is called the representation of F' in the charts (U, ¢y) and (Vv ).
Notice that a map is completely determined by all its representations
in a given atlas.

Definition 3.1. A map F': M — N between C-manifolds is called a
C-map or C-morphism if all its representations are C-maps.

In Proposition [5.3| we will give a handier characterization of C-maps
in the case when the target N has a Hausdorff topology.

Remark 3.2. If we pick another chart (U’,¢y) on M and another
chart (V',4y+) on N, we get

(3.1) Forvilgpwnvny = vy o Fuy|gywnury © ¢5,1U"

This has two consequences. The first is that it is enough to choose
one atlas in the equivalence class of the source and one atlas in the
equivalence class of the target and to check that all representations
are C-maps for charts of these two atlases: the condition will then
automatically hold for any other atlases in the same class. The second
is that a collection of maps between chart images determines a map
between manifolds only if equation is satisfied for all transition
maps. More precisely, fix an atlas {(Uy, ¢a)}acr of M and an atlas
{(Vj,%j)}jes of N. Then a collection of C-maps F, ;: ¢ (Us) — 1;(V;)
determines a C-map F': M — N only if

Fa’j"%/(UaﬂUa/) = jj 0 Faj’%(UaﬁUa/) © ¢;ol/? Va, o el Vj,j' € J

Definition 3.3. A C-map from a C-manifold M to R with its standard
manifold structure is called a C-function. We denote by C(M) the vector
space of C-functions on M.

Remark 3.4. In the case of a function, we always choose the standard
atlas for the target R. Therefore, we may simplify the notation: we
simply write

fo = flvooy': ou(U) = R.
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If {(Un, ®a)}acr is an atlas on M, a collection of C-functions f, on
¢a(Uy) determines a C-function f on M with fy, = f, Yo € I if and
only if

(3.2) f8(¢ap(2)) = falz)
for all o, 8 € I and for all x € ¢,(U, N Up).

Remark 3.5. Notice that a C*-map between open subsets of Cartesian
powers of R is also automatically C' VI < k, so a C*-manifold can be
regarded also as a C'-manifold VI < k. As a consequence, VI < k, we
have the notion of C'-maps between C*-manifolds and of C'-functions
on a C*-manifold.

Definition 3.6. An invertible C-map between C-manifolds whose in-
verse is also a C-map is called a C-isomorphism. A C*-isomorphism,
k > 1, is usually called a C*-diffeomorphism (or just a diffeomorphism).

Example 3.7. Let M and N be open subsets of Cartesian powers of
R with the standard C-manifold structure. Then a map is a C-map of
C-manifolds iff it is a C-map in the standard sense.

Example 3.8. Let M be a C-manifold and U an open subset thereof.
We consider U as a C-manifold as in Example [2.20] Then the inclusion
map ¢: U — M is a C-map.

Example 3.9. Let M and N be C-manifolds and M x N their Carte-
sian product as in Example [2.21] Then the two canonical projections
s M X N — M and ny: M x N — N are C-maps.

Example 3.10. Let M be R™ with the equivalence class of the atlas
{(R™, ¢)}, where ¢ is an injective map with open image. Let N be R™
with its standard structure. Then ¢: M — N is a C-map for any C
(since its representation is the identity map on open subset of R"). If
in addition ¢ is also surjective, then ¢: M — N is a C—isomorphismﬂ

Remark 3.11. Let M and N be as in the previous example with ¢
a bijection. Assume that ¢: R — R is a homeomorphism but not a
Ck-diffeomorphism. Then the given atlases are C’-equivalent but not
CF-equivalent. As a consequence, M and N are the same C°-manifold
but different C*-manifolds. On the other hand, ¢: M — N is always a
CF-diffeomorphism of C*-manifolds. More difficult is to find examples
of two CF-manifolds that are the same C°-manifold (or C%-isomorphic
to each other), but are different, non C*-diffeomorphic C*-manifolds.
Milnor constructed a C*°-manifold structure on the 7-sphere that is not

5Tn general, ¢ is a C-isomorphism from M to the open subset o(M) of R™.
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diffeomorphic to the standard 7-sphere. From the work of Donaldson
and Freedman one can derive uncountably many different C'*°-manifold
structures on R* (called the exotic R*s) that are not diffeomorphic to
each other nor to the standard R*. In dimension 3 and less, one can
show that any two C°-isomorphic manifolds are also diffeomorphic.

3.1. The pullback. If M and N are C-manifold and F': M — N is a
C-map, the R-linear map

F*: C(N) — C(M)
f = foF
is called pullback by F. If f,g € C(IN), then clearly
F*(fg) = F*(f)F"(9).
Moreover, if G: N — Z is also a C-map, then
(Go )" =F*G".

Remark 3.12. We can rephrase Remark[3.4] by using pullbacks. Namely,
if f is a function on M, then its representation in the chart (U, ¢y) is
fv = (¢5")* flu. Moreover, if {(Uy, ¢a)}acr is an atlas on M, a collec-
tion of C-functions f, on ¢,(U,) determines a C-function f on M with
fu, = foa Yo € I if and only if

(3.3) fo=dasts

for all o, € I, where, by abuse of notation, f, denotes here the
restriction of f, to ¢,(U, NUs) and fs denotes the restriction of fz to

dp(Us NUR).

Remark 3.13 (The push-forward). If F': M — N is a C-isomorphism,
it is customary to denote the inverse of F* by F, and to call it the
push-forward. Explicitly,

F.: C(M) — C(N)
f — foFT1

By this notation equation ([3.3)) reads

(3'4) fﬁ = (¢a5)*fa
Also note that

F*<fg) = F*(f>F*<g)
and that, if G: N — Z is also a C-map, then
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3.2. Submanifolds. A submanifold is a subset of a manifold that is
locally given by fixing some coordinates. More precisely:

Definition 3.14. Let N be an n-dimensional C-manifold. A k-di-
mensional C-submanifold, £ < n, is a subset M of N such that there
is a C-atlas {(Ua, ¢a)}tacr of N with the property that Vo such that
U, NM # () we have ¢o(Uy N M) = W, x {z} with W, open in R* and
2 in R"7%. Any chart with this property is called an adapted chart and
an atlas consisting of adapted charts is called an adapted atlas. Notice
that by a diffeomorphism of R"™ we can always assume that x = 0.

Remark 3.15. Let {(Ua, ¢a)}taer be an adapted atlas for M C N.
Then {(Va, ¥a) tacr, with V, := U,NM and 1, := w0 ¢aly, : Vo — RE,
where m: R® — R* is the projection to the first & coordinates, is a
C-atlas for M. Moreover, the inclusion map ¢: M — N is clearly a
C-map.

Remark 3.16. In an adapted chart (U,, ¢,) the k-coordinates of W,
parametrize the submanifold and are called tangential coordinates, while
the remaining n — k coordinates are called transversal coordinates and
parametrize a transversal neighborhood of a point of the submanifold.

Example 3.17. Any open subset M of a manifold N is a submanifold
as any atlas of N is automatically adapted. In this case, there are no
transversal coordinates.

Remark 3.18. Notice that a chart (U, ¢y ) such that ¢y (UNM) is the
graph of a map immediately leads to an adapted chart. To be precise,
assume Yy (UNM) = {(z,y) € V x R"* | y = F(z)} with V open in
R* and F' a C-map from V to R"*. Then let ®: V xR" % — V x R**
be defined by ®(z,y) = (x,y — F(x)). It is clearly a C-isomorphism.
Moreover, (U, ¢y), with ¢y := ® o)y is clearly an adapted chart (with
Pu(UNM) =V x{0}).

As a consequence, we may relax the definition by allowing adapted
charts (U, ¢a) such that ¢, (U, N M) is the graph of a map. In par-
ticulat, we have the

Example 3.19 (Graphs). Let I be a C-map from open subset V of R¥
to R"* and consider its graph M = {(x,y) € V x R"* | y = F(z)}.
Then M is a C-submanifold of N = V x R**. As an adapted atlas we
may take the one consisting of the single chart (N, ), where t: N — R"
is the inclusion map.

A further consequence is that a subset of the standard R™ defined
in terms of C*-constraints satisfying the assumptions of the implicit
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function theorem is a C¥-submanifold. There is a more general version
of this, the implicit function theorem for manifolds, which we will see
later as Theorem [6.13| on page [25]

4. TOPOLOGICAL MANIFOLDS

In this Section we concentrate on C’-manifolds. Notice however that
every C-manifold is by definition also a C°-manifold.

As we have seen, an atlas whose chart maps have open images defines
a topology. In this topology the chart maps are clearly open maps. We
also have the

Lemma 4.1. All the chart maps of a C°-atlas are continuous, so they
are homeomorphisms with their images.

Proof. Consider a chart (Uy, ¢q), ¢a: Us — R™ Let V be an open
subset of R" and W := ¢ (V). For any chart (Ug, ¢5) we have ¢g(W N
Us) = ¢ap(V). In a C’-atlas, all transition maps are homeomorphisms,
50 ¢ap(V) is open for all B, which shows that W is open. We have
thus proved that ¢, is continuous. Since we already know that it is
injective and open, we conclude that it is a homeomorphism with its
imageﬁ U

Different atlases in general define different topologies. However,

Lemma 4.2. Two C°-equivalent C°-atlases define the same topology.

P’I"OOf. Let .Al = {(Ua7¢a)}ael and AQ = {(Uj,qu)}je] be Co—equiva—
lent. First observe that by the equivalence condition ¢,(U, N U;) is
open for all @ € I and for all j € J.

Let W be open in the A;-topology. We have ¢,(W NU, NU;) =
baj(0a(W NU, NU;)). Moreover, ¢po(W NU, NU;) = ¢po(WNU,) N
¢a(Us N Uj), which is open since W is Aj-open. Since the atlases
are equivalent, we also know that ¢,; is a homeomorphism. Hence
¢;(W N U, NU,) is open. Since this holds for all j € J, we get that
WnNU, is open in the As-topology. Finally, we write W = U,e;WNU,,
i.e., as a union of As-open set. This shows that W is open in the
As-topology for all a € I. O

As a consequence a C’-manifold has a canonically associated topology
in which all charts are homeomorphism. This suggests the following

6Notice that the proof of ths Lemma does not require the condition that the
atlas be open. We only need the conditions that the chart maps be open and that
the transition functions be continuous.
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Definition 4.3. A topological manifold is a topological space endowed
with an atlas {(Uy, ¢a)taer in which all U, are open and all ¢, are
homeomorphisms to their images.

Theorem 4.4. A topological manifold is the same as a C°-manifold.

Proof. We have seen above that a C’-manifold structure defines a topol-
ogy in which every atlas in the equivalence class has the properties in
the definition of a topological manifold; so a C’-manifold is a topologi-
cal manifold. On the other hand, the atlas of a topological manifold is
open and all transition maps are homeomorphism since they are now
compositions of homeomorphisms. The C°-equivalence class of this at-
las then defines a C°-manifold. O

Also notice the following

Lemma 4.5. Let M and N be C°-manifolds and so, consequently, topo-
logical manifolds. A map F: M — N is a C°-map iff it is continuous.
In particular, a C°-isomorphism is the same as a homeomorphism.

Proof. Suppose that F is a C®-map. Let {(Us,, ¢u)}acr be an atlas on
M and {(V3,15)}ses be an atlas on N. For every W C N, Va € I and
V3 € J, we have ¢o(F~H (W N Vi) NUy) = F j(1hg(W N V). IE W is
open, then ¢z(W N Vj) is open for all 5. Since all F, 3 are continuos,
we conclude that ¢, (F~(W N V3) NU,) is open for all « and all 3.
Hence, =1 (W NVj3) is open for all 3, so F~H (W) = Uge, F~HW N Vp)
is open. This shows that F'is continuous.

On the other hand, if F' is continous, then all its representations are
also continuous since all chart maps are homeomorphisms. Thus, F' is
a C’-map. O

Remark 4.6. In the following we will no longer distinguish between
C’-manifolds and topological manifoldsﬂ Both descriptions are useful.
Sometimes we are given a set with charts (like in the example of the
manifold of lines in the plane). In other cases, we are given a topological
space directly (like in all examples when our manifold arises as a subset
of another manifold, e.g., R™).

Remark 4.7. Notice that a C-manifold may equivalently be defined
as a topological manifold where all transition functions are of class C.

In the definition of a manifold, several textbooks assume the topology
to be Hausdorff and second countable. These properties have important

"What we have proved above is that the category of C°-manifolds and the cate-
gory of topological manifolds are isomorphic, if you know what categories are.
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consequences (like the existence of a partition of unity which is funda-
mental in several contexts, e.g., in showing the existence of Riemannian
metrics, in defining integrals and in proving Stokes theorem), but are
not strictly necessary otherwise, so we will not assume them here unless
explicitly stated. Also notice that non-Hausdorff manifolds often arise
out of important, natural constructions.

Example 4.8 (The line with two origins). Let M := R U {*} where
{x} is a one-element set (and * ¢ R). Let U3 = R, ¢; = Id, and
Uy = (R\{0})U{x} with ¢: Uy — R defined by ¢o(z) = z if z € R\{0}
and ¢(*) = 0. One can easily see that this is a C’-atlas (actually a
C®-atlas, for the transition functions are just identity maps). On the
other hand, the induced topology is not Hausdorff, for 0 and % do not
have disjoint open neighborhoods.

Remark 4.9. Every manifold that is defined as a subset of R" by
the implicit function theorem inherits from R™ the property of being
Hausdorft.

4.1. Manifolds by local data. The transition maps ¢,z are actually
all what is needed to define a manifold (with a specific atlas). Namely,
assume that we have an index set [ and
(1) for each « € I a nonempty open subset V,, of R", and
(2) for each g different from « an open subset V,z of V, and a
C-map ¢op: Vag — Vaas
such that, for all o, 3,7,
(1) (baﬁ O (bﬂa = Id, and
(i) @py(Pap(2)) = Gay(x) for all x € Vog N Vs,
On the topological space M, defined as the disjoint union of all the
V.8, we introduce the relation x ~ y to hold if either x = y or, for some
aand 3, x € V,5 and y = ¢,p(x). By the conditions above this is an

equivalence relation. We then define M as the quotient space M ] ~
with the quotient topology. We denote by 7: M — M the canonical
projection and set

Uy :i=7(V,).
Note that, since 7' (Uy) = Vo U| |5, $as(Vas) and the ¢,gs are home-
omorphisms, each U, is open. Also note that for each ¢ € U, there is
a unique z, € V,, with n(z,) = ¢; we use this to define a map

o Uy — R”

which sends ¢ to x,. It is clear that this map is continuous and open
and that its image is V,,. Moreover, if x € U, N Ug, the unique z, € V,
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with 7(z,) = ¢ and the unique y, € V3 with 7(y,) = ¢ are related by
Yq = bap(xy). It then follows that ¢as(z) = ¢s(@, (z)) for all z € V4.
Hence, {(Uq, ®a)}acr is a C-atlas on M. We say that the local data
(Va, Vg, ¢ap) define the manifold M by the C-equivalence class of this
atlas.

Remark 4.10. This definition of a manifold is equivalent to the pre-
vious one. Above we have seen how to define M and assign it an atlas.
Conversely, if we start with a manifold M and a C-atlas {(Uy, ¢a) }acr
on it, we define V,, := ¢o(Us), Vap := ¢a(Us N Up) and ¢.p as the
usual transition maps. One can easily see that the two constructions
are inverse to each other.

Example 4.11. Let I = {1,2}, V; =V, =R, Vj5 = V5, = R\ {0} and
P10 = P91 = Id. Then M is the line with two origins of Example m
This example shows that manifolds constructed by local data may be
non Hausdorff.

Example 4.12. Let [ = {1,2}, V; = Vo = R", Vi3 = V5 = R"\ {0}
and ¢12(X) = ¢o1(x) = TIE- As this actually defines the atlas one gets
using the stereographic projections, we see that M is the n-sphere S™.

5. BUMP FUNCTIONS AND PARTITIONS OF UNITY

A bump function is a nonnegative function that is identically equal
to 1 in some neighborhood and zero outside of a larger compact neigh-
borhoodﬁ Bump functions are used to extend locally defined objects
to global ones. A notion that will be useful is that of support of a
function, defined as the closure of the set on which the function does
not vanish:

supp f:={z € M | f(z) #0}, feC(M).
An important fact is that bump functions exist. We start with the case
of R. Following [5], we first define

t>0,
t <0,

~

~~
~

N~—

I
—_——
) ('Dl

o

which is C* and hence C* for every k. Next we set

T
90 = s A

and finally
h(t) = g(t+2)g(2 —1).

8Definitions of bump functions vary in the literature.
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Notice that h is C*, and hence C¥ for every k, nonnegative, is identically
equal to 1 in [—1, 1] and has support equal to [—2,2]. More generally,
for every y € R™ and every R > 0, we define

byt = ().

This is a C*-function on R™ which is nonnegative, equal to 1 in the
closed ball with center y and radius R/2 and with support the closed
ball with center y and radius R.

Lemma 5.1. Let M be a Hausdorff Ck-manifold, k > 0 Then for every
qg € M and for every open U with U > q, there is a bump function
Y € C*(M) with supptp C U which is identically equal to 1 in an open
subset V' of U that contains q.

Proof. Pick an atlas {(Ua, ¢a)}acr, and let a be an index such that
Uy >q. Let U = ¢, (UNU,) and y = ¢o(q). Let R >0 and € > 0 be
such that the open ball with center y and radius R + € is contained in
U’ (this is possible, by definition, since U’ is open). Let V,, denote the
open ball with center y and radius R/2, W, the open ball with center
y and radius R and K, the closure of W,, i.e., the closed ball with
center y and radius R. Notice that by the Heine-Borel theorem K, is
compact. Then set V = ¢ 1(V,,), W = ¢;'(W,) and K = ¢, ' (K,,).
Finally, set ¢(z) = ¢y r(¢a(z)) for z € U, and ¢(x) = 0 for z € M\U,.
We claim that ¢ has the desired properties.

First, observe that 1 is identically equal to 1 in V' and that V' is open
in U, and hence in M. Next observe that by Lemma K is compact
in U, and hence in M. By the Hausdorff condition, Lemma
implies that K is also closed in M. Hence suppy = K C U,,.

Finally, observe that W is also open in U, and hence in M; hence
W NUsg is open for all 3. We also clearly have that K NUj is closed for
all f as we have already proved that K is closed. Let Wy := ¢g(WNUp)
and Kg := ¢g(K NUg). We have that Wjp is open, K3 is closed, and
K3 is the closure of Wjs. Now the representation 13 of ¢ in ¢3(Us) has
support equal to Kz, so it is zero in the complement of Kz and hence
smooth for every x in there. For x € Kz, we have ¢3(z) = ¥y r(dsa(2)).
Hence 15 is of class C* in the open subset Wjs. Finally, let x denote
g or one of its derivatives up to order k, and x, r the corresponding
derivative of ¢, g. Then x(x) = xy,r(¢pa(2)) for every x € Kg. By the
continuity of x, r and of ¢g,, we then have that x is continuous on the
whole of K. Hence 14 is of class C*. O
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Remark 5.2. In the Example 4.§| of the line with two roigins, we see
that a bump function around 0 in ¢, (U;) has a support K7, but the
corresponding K is not closed as K5 is K3 \ {0}.

As a first application, we can give the following nice characterization
of C-maps.

Proposition 5.3. Let F': M — N be a set theoretic map between
C-manifolds with N Hausdorff. Then F is a C-map iff F*(C(N)) C
C(M).

Proof. If Fis a C-map and f a C-function, we immediately see, choosing
representations in charts, that F* f is also a C-function.

If, on the other hand, F*(C(N)) C C(M), we see that I is a C-map
by the following consideration. Let Fyy be a representation. Pick any
point p € W and let ¢» be a bump function as in Lemma with
q = F(p). Define f'(z) := ¢};(z) ¢ (z) for € U and 0 otherwise. Then
fi € C(N) and hence F*f* € C(M); i.e., (F*f*)o¢; is a C-function on
¢w (W). Denoting by V' the neighborhood of ¢ where v is identically
equal to 1, for u € ¢y (F~H(V)NW) we have (F* f1)ogy! (u) = Fiy (u),
which shows that the ith component of Fy -y is a C-map in a neighbor-
hood of ¢w (p). Since both p and ¢ are arbitrary, Fyyy is a C-map. [

Remark 5.4. The condition that the target be Hausdorff is essential.
Take for example N to be the line with two origins of Example [4.8 and
M = R. Consider the map F': M — N defined by

F(w):{o <0

x x>0

This map is not continuous: in fact, the preimage of the open set
R = U; C N is the interval (—oo,0] which is not open in M. On
the other hand, the pullback of every continuous function f on N is
the constant function on M, which is continuos (even C*°). To see
this, simply observe that if zo := f(0) and x, := f(*) where distinct
points in R, then we could find disjoint open neighborhoods U, and
U, of them. But then f~'(Uy) and f~(U,) would be disjoint open
neighborhoods of 0 and *, respectively, which is impossible, since N is
not Hausdorff.

The next important concept is that of partition of unity, roughly
speaking the choice of bump functions that decompose the function
1. This is needed for special constructions (e.g., of integration or of
Riemannian metrics) and is not guaranteed unless extra topological
assumptions are made. Even with assumptions, one in general needs
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infinitely many bump functions. To make sense of their sum, one as-
sumes that in a neighborhood of each point only finitey many of them
are different from zero. To make this more precise, we say that a col-
lection {7;};c; of subsets of a topological space is locally finite if every
point in the space possesses an open neighborhood that intersects non-
trivially only finitely many T;s.

Definition 5.5. Let M be a C-manifold. A partition of unity on M is
a collection {p;};es of of C-bump functions on M such that:

(1) {supp p,};es is locally finite, and
(2) > jesps(x)=1forallz € M.

One often starts with a cover {U,}acr of M—e.g., by charts—and
looks for a partition of unity {p;};c; such that for every j € J there
is an «; € I such that supp p; C U,;. In this case, one says that the
partition of unity is subordinate to the given cover.

Theorem 5.6. Let M be a compact Hausdorff Ck-manifold, k > 0.
Then for every cover by charts there is a finite partition of unity sub-
ordinate to it.

Proof. Let {(Uy, ¢u)}acr be an atlas. For x € U,, let ¢, , be a bump
function with support inside U, and equal to 1 on an open subset V, ,
of U, containing x, see Lemma . Since {Vy o }remacr is clearly a
cover of M and M is compact, we have a finite subcover {ij,a]. Yie.
Since each z is contained in some Vj, ,,, we have 1,, o, () = 1 and

hence 3 ;1) a;(x) > 0. Thus,

¢xj,aj .
pyim e e
ZkeJ ka:ak
is a partition of unity subordinate to the cover {U, }aer- O

A more general theorem, for whose proof we refer to the literature,
e.g., [3, 5], is the following:

Theorem 5.7. Let M be a Hausdorff, second countable C*-manifold,
k > 0. Then for every open cover there is a partition of unity subordi-
nate to it.

Recall that a topological space S is second countable if there is a
countable collection B of open sets such that every open set of S can
be written as a union of some elements of B. Note that R" is second
countable with B given, e.g., by the open balls with rational radius and
rational center coordinates. As a subset of a second countable space is
automatically second countable in the relative topology, we have that
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manifolds defined via the implicit function theorem in R™ are second
countable. Hence we have

Remark 5.8. Every manifold that is defined as a subset of R" by
the implicit function theorem inherits from R™ the property of being
Hausdorff and second countable.

6. DIFFERENTIABLE MANIFOLDS

A CF-manifold with k£ > 1 is also called a differentiable manifold. If
k = oo, one also speaks of a smooth manifold. The C¥-morphisms are
also called differentiable maps, and also smooth maps in case £ = oc.
Recall the following

Definition 6.1. Let I': U — V be a differentiable map between open
subsets of Cartesian powers of R. The map F' is called an immersion if
d. F is injective Vx € U and a submersion if d,F' is surjective Vo € U.

Then we have the

Definition 6.2. A differentiable map between differentiable manifolds
is called an immersion if all its representations are immersions and a
submersion if all its representations are submersions. An embedding of
differentiable manifolds is an embedding in the topological sense, see
Definition [A.12] which is also an immersion.

Observe that to check whether a map is an immersion or a submer-
sion one just has to consider all representations for a given choice of
atlases.

One can prove that the image of an embedding is a submanifold (and
this is one very common way in which submanifolds arise in examples).

Remark 6.3. Some authors call submanifolds the images of (injective)
immersions and embedded submanifolds (or regular submanifolds) the
images of embeddings. Images of immersions are often called immersed
submanifolds. This terminology unfortunately is different in different
textbooks. Notice that only the image of an embedding is a submani-
fold if we stick to Definition [3.14]

Locally, we have the following characterization.

Proposition 6.4. Let F': N — M be an injective immersion. If M is
Hausdorff, then every point p in N has an open neighborhood U such
that F|y is an embedding.

Proof. Let (V,4) be a chart neighborhood of p. Since ¢ (V) is open, we
can find an open ball, say of radius R, centered at ¢ (p) and contained
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in ¢(V). The closed ball with radius R/2 centered at v(p) is then also
contained in ¥ (V') and is compact. Its preimage K under ® is then also
compact, as ¢ is a homeomorphism. By Lemma [A. T3] the restriction
of F' to K is an embedding in the topological sense. It follows that
the restriction of F' to an open neighborhood U of p contained in K
(e.g., the preimage under v of the open ball with radius R/4 centered
at 1 (p)) is also an embedding in the topolological sense, but it is also
an injective immersion. U

6.1. The tangent space. Recall that to an open subset of R" we
associate another copy of R", called its tangent space. Elements of
this space, the tangent vectors, also have the geometric interpretation
of velocities of curves passing through a point or of directions along
which we can differentiate functions. We will use all these viewpoints
to give different caracterizations of tangent vectors to a manifold, even
though we relegate the last one, directional derivatives, to Section [7]
In the following M is an n-dimensional C*-manifold, k > 1.

Let us consider first the case when M is defined in terms of con-
straints, i.e., as ®71(c) with ®: R® — R’ satisfying the condition of
the implicit function theorem that d,® is surjective for all ¢ € M. We
can then naturally define the tangent vectors at ¢ € M as those vectors
in R™ that do not lead us outside of M, i.e., as the directions along
which @ does not change. More precisely, a vector v € R" is tangent
to M at q if Z?Zl vj%(q) =0 for all = 1,...,[ (or, equivalently,
d,®v = 0). This viewpoint has several problems. The first is that it
requires M to be presented in terms of constraints. The second is that
it is not immediately obvious that this definition is independent of the
choice of constraints. The third is that this definition is not necessarily
the most practical way of defining the tangent vectors when one needs
to make computations. It is on the other hand useful to remark that
tangent vectors at ¢ € M, according to this definition, are also the
same as the possible velocities of curves through ¢ in M. Namely, let
~v: I — R™ be a differentiable map, with I an open interval, such that
v(I) € M. This means that ®(v(t)) = ¢ Vt € I. Let ¢ = y(u) for

some u € I. Then, by the chain rule, we get 37, %gg (q) = 0 for all

1 =1,...,1, which shows that i—z is tangent to M at q.

Notice that the last viewpoint, that of tangent vectors as possible
velocities of curves, can now be generalized also to manifolds not given
in terms of constraints. Namely, let v: I — M be a differentiable map,
where [ is an open interval with the standard manifold structure. For
a fixed w in I, we set ¢ := y(u). We wish to think of the velocity of ~
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at u as a tangent vector at q.ﬂ The problem is that we do not know
how to compute derivatives of maps between manifolds. The solution
is to pick a chart (U, ¢y) on M with U > q. We now know how yet to
differentiate ¢y o v: I — R™ and define

o = o0 O)emn

Notice that vy is an element of R” and we wish to think of it as the
tangent vector we were looking for. We now have another problem,
however; namely, the value of vy depends on the choice of chart. On
the other hand, we know exactly how to relate values corresponding to
different chart. Let in fact (V) ¢y ) be another chart with V' 5 ¢. We
define

oy = OV ) lew

For t in a neighborhood of u, we have ¢y (7(t)) = ¢u.v (o (v(t))); hence,
by the chain rule,

vy = dgy(q)Puy VU

All this motivates the following

Definition 6.5. A coordinatized tangent vector at ¢ € M is a triple
(U, ¢y, v) where (U, ¢y) is a chart with U > ¢ and v is an element of
R™. Two coordinatized tangent vectors (U, ¢y, v) and (V, ¢y, w) at ¢
are defined to be equivalent if w = dg, g ¢v,vv. A tangent vector at
q € M is an equivalence class of coordinatized tangent vectors at q.
We denote by T,M, the tangent space of M at g, the set of tangent
vectors at q.

A chart (U, ¢y) at q defines a bijection of sets

(6.1) o0 T,M - R"
[(Uv ¢va)] = v

We will also simply write ®;; when the point ¢ is understood. Using
this bijection, we can transfer the vector space structure from R" to
T, M making @ into a linear isomorphism. A crucial result is that this
linear structure does not depend on the choice of the chart:

Lemma 6.6. T, M has a canonical structure of vector space for which
®, v is an isomorphism for every chart (U, ¢y) containing q.

9For this not to be ambiguous, we should assume that u is the only preimage of
q; otherwise, we can think that « defines a family of tangent vectors at w.
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Proof. Given a chart (U, ¢y ), the bijection @ defines the linear struc-
ture

A U [(Ua ¢Uav)] = [(U> ¢U7 AU)]’
[(U7 (bU? U)] +u [(Uv (bU? UI)] = [(Uv du,v+ UI)]v

VA € R and Vv, v € R™. If (V, ¢y ) is another chart, we have

A v (U, éu,v)] = [(U, v, Av)] =
= [(V, ov,dgy g PuvAv)] = [(V, dv, Mgy, () Puvv)] =
=X v [(Vigv, dpygduvv)]l = A v (U, ¢u, )],

S0 -y = -y. Similarly,

(U, ¢v,v)] +v [(U, du, )] = [(U, du,v +0")] =
= [(V; ¢v, d¢U(Q)¢U7V(U +0")] = [(V, ¢v, dgy (@ PUv U + d¢U(q)¢U,vU/)] =
= [(V, ov, dgy (g @uvv)] +v [(V; dv, gy (g Puvv’)] =
= [(U, ¢u,v)] +v (U, ¢y, v")],

SO0 +y = +v. ]

From now on we will simply write A[(U, ¢y, v)] and [(U, ¢v,v)] +
(U, ¢u,v")] without the  label.
Notice that in particular we have

dim 7, M = dim M

where dim denotes on the left-hand-side the dimension of a vector space
and on the right-hand-side the dimension of a manifold.

Let now F': M — N be a differentiable map. Given a chart (U, ¢p)
of M containing ¢ and a chart (V,y) of N containing F'(q), we have
the linear map

dJVF = @;éq)vvd%(q)FU,Vq)q,U: T,M — Tr)N.
Lemma 6.7. The linear map dg’vF does not depend on the choice of
charts, so we have a canonically defined linear map

quZ TqM — TF(q)N

called the differential of F' at q.
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Proof. Let (U’, ¢y) be also a chart containing ¢ and (V' 1) be also
a chart containing F'(¢). Then

AV F((U, ¢u, )] = [(Vodw, day (g Fuvv)] =
= (V' o, dy(wan v doy (o Fuvv)] =
= (V' ¢vr, dgy (0 For v (dgy @ bupr) ")) =
= AV FU, gur, (dgyy gy bu,0r) " 0)] = A7V F(U, dur, 0)],
SO dg’VF = dg/’vl. O
We also immediately have the following

Lemma 6.8. Let F': M — N and G: N — Z be differentiable maps.
Then

dg(Go F) = dpG d F
forall g e M.

Remark 6.9. Notice that we can now characterize immersions and
submersions, introduced in Definition [6.2] as follows: A differentiable
map F': M — N is an immersion iff d,F' is injective Vg € M and is a
submersion iff d, [’ is surjective Vg € M.

We now return to our original motivation:

Remark 6.10 (Tangent space by constraints). Suppose M is a sub-
manifold of R™ defined by [ constraints satisfying the conditions of
the implicit function theorem. We may reorganize the constraints as
a map ®: R® — R! and obtain M = ®~1(c) for some ¢ € R'. The
conditions of the implicit function theorem are that d,® is surjective
for all ¢ € M. If we denote by ¢t: M — R" the inclusion map, we
have that ®(.(q)) = ¢ Vg € M, i.e., ® o is constant. This implies
d,(® o) = 0 and hence, by Lemma dy(q® dgt = 0, which in turns
implies dgt(T; M) C ker d,q)®. Since d,q)® is surjective, dg¢ is injective
and dim T,M = dim M = n — [, we actually get d,¢e(T;M) = kerd,,)®,
which can be rewritten as

T,M = ker d,®

if we abandon the pedantic distinction between ¢ and ¢(q) and regard
T,M as a subspace of R". This is a common way of computing the

tangent space. To be more explicit, let <I_>1, ..., ®" be the components
of ®. Then T,M = {v € R" | 377, Ol =0Vi=1,...,0} This

can also be rephrased as saying that v is tangent to M at ¢ if “q + ev
belongs to M or an infinitesimal €.” Another interpretation is that, if
M is defined by constraints, then T, M is defined by the linearization
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of the constraints at q. One often writes this also using gradients and
scalar products on R", T,M = {v e R" | V®"-v =0Vi=1,...,[}, and
interprets this by saying that v is tangent to M at ¢ if it is orthogonal
to the gradients of all contraints. This last viewpoint, however, makes
an unnecessary use of the Euclidean structure of R"™.

Example 6.11. The n-dimensional unit sphere S™ is the preimage of
1 of the function ¢(x) = 3277 (2)2. By differentiating ¢ we then get
that the tangent space at x € S™ is the space of vectors v in R"*!
satisfying Z?jll v'ax® = 0. Making use of the Euclidean structure, we
can also say that the tangent vectors at x € S™ are the vectors v in

R"*! orthogonal to .

We finally come back to the other initial viewpoint in this subsection.
A differentiable curve in M is a differentiable map ~: I — M, where [
is an open subset of R with its standard manifold structure. For ¢t € I,
we define the velocity of v at ¢ as

J(t) == diyl € TyyM

where 1 is the vector 1 in R. Notice that for M an open subset of R"
this coincides with the usual definition of velocity.

For ¢ € M, define P, as the space of differentiable curves v: I — M
such that I > 0 and 7(0) = ¢. It is easy to verify that the map
P, — T,M, v — #(0) is surjective, so we can think of T, M as the
space of all possible velocities at q.

This observation together with Remark yields a practical way
of computing the tangent spaces of a submanifold of R™.

Example 6.12. Consider the group O(n) of orthogonal n x n matrices.
Since a matrix is specified by its entries, we may identify the space of
n x n matrices with R". A matrix A is orthogonal if A'A = Id.
We can then consider the map ¢(A) = A*A — Id and regard O(n) as
the preimage of the zero matrix. We have however to be careful with
the target space: since the image of ¢ consists of symmetric matrices,
taking the whole space of n x n matrices would make some constraints
redundant. Instead we consider ¢ as a map from all n x n matrices to
the symmetric ones, hence as a map R” — R™5™. This shows that
dimO(n) = @ Alternatively, we may compute the dimension of
O(n) by computing that of its tangent space at some point, e.g., at
the identity matrix. Namely, consider a path A(t) with A(0) = Id.
Differentianting the defining relation and denoting A(O) by B, we get
B'+ B = 0. This shows that tangent vectors at the identity matrix

are the antisymmetric matrices and hence that dim 74O (n) = @
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More examples of this sort can be analyzed by considering the general
version of the implicit function theorem.

Theorem 6.13 (Implicit function theorem). Let F': Z — N be a
CF-map (k > 0) of C¥-manifolds of dimensions m +n and n, respec-
tively. Given ¢ € N, we define M := F~(c). If for every q € M the
linear map d,F is surjective, then M has a unique structure of m-di-
mensional C*-manifold such that the inclusion map v: M — Z is an
embedding.

The proof is similar to the one in Cartesian powers of R by con-
sidering local charts. See, e.g., [5] for details. The considerations of
Remark generalize to this case. Namely, the tangent space at
q € M can be realized as the kernel of d F.

6.2. The tangent bundle. We can glue all the tangent spaces of an
n-dimensional C*-manifold M, k > 1, together:

TM = Uyer, T,M

An element of T'M is usually denoted as a pair (¢,v) with ¢ € M and
vE Tqu We introduce the surjective map 7: TM — M, (q,v) — q.
Notice that the fiber T,M can also be obtained as 77'(q).

TM has the following structure of C*¥~1-manifold. Let {(Uy, ¢a)}acs

be an atlas in the equivalence class defining M. We set U, := 7 }(U,)
and

~ ~

Go: Uy — R™ x R"
(Q7 U) = (¢a(Q)> q)q,UaU)
where @,y is the isomorphism defined in (6.1]). Notice that the chart
maps are linear in the fibers. The transition maps are then readily
computed as

(6.2) G (,10) = (Gap (@), dyapw)

Namely, they are the tangent lifts of the transition maps for M and
are clearly CF=1.

Definition 6.14. The tangent bundle of the C*-manifold M, k > 1, is
the CF~!-manifold defined by the equivalence class of the above atlas.

Remark 6.15. Observe that another atlas on M in the same C*-equiv-
alence class yields an atlas on TM that is C*~'-equivalent to previous
one.

10Notice that we now denote by v a tangent vector at g, i.e., an equivalence class
of coordinatized tangent vectors at ¢, and no longer an element of R™.
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Remark 6.16. Notice that 7: TM — M is a C*¥~!-surjective map and,
if £ > 1, a submersion.

Definition 6.17. If M and N are CF-manifolds and F: M — N is a
C*-map, then the tangent lift

F:TM — TN

is the C¥~'-map
(¢,v) = (F(gq),dgFv).

6.3. Vector fields. A vector field is the attachment of a vector to each
point; i.e., a vector field X on M is the choice of a vector X, € T,M
for all ¢ € M. We also want this attachment to vary in the appropriate
differentiability degree. More precisely:

Definition 6.18. A vector field on a C*-manifold M is a C* '-map
X: M — TM such that m o X = Id,,.

Remark 6.19. In an atlas {(U,, ¢a)acr, M and the corresponding

atlas {(ﬁa, (}\a)}ae 1, a vector field X is represented by a collection of
CFlmaps X,: ¢o(U,) — R™. All these maps are related by

(6.3) Xs(¢ap(2)) = daap Xa(2)

for all a, € I and for all x € ¢,(U, NUgz). Notice that a collection of
maps X, satisfying all these relations defines a vector field and this is
how often vector fields are introduced (cf. equation (3.2)) on page @ for
functions).

Remark 6.20. The vector at ¢ defined by the vector field X is usually
denoted by X, as well as by X (g). The latter notation is often avoided
as one may apply a vector field X to a function f, see below, and in
this case the standard notation is X (f). We also use X, to denote
the representation of X in the chart with index «, but this should not
create confusion with the notation X, for X at the point g.

Note that vector fields may be added and multiplied by scalars and
by functions: if X and Y are vector fields, A a real number and f a
function, we set

(X +Y)q = Xq + Y;b
(AX), = AX,,
(fX)q = flg) X,

This way the set X*~1(M) of vector fields on M acquires the structure
of vector space over R and of module over C*~1(M).
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The explicit representation of a vector field over an open subset U
of R™ depends on a choice of coordinates. If we change coordinates
by a diffeomorphism ¢, the expression of a vector field changes by the
differential of ¢. We have already made use of this in equation (6.3]).
We now want to generalize this to manifolds.

Remark 6.21 (The push-forward of vector fields). Let F': M — N be
a C*-map of C*-manifolds. If X is a vector field on M, then d,F X, is
a vector in Tr)N for each ¢ € M. If F' is a CF-diffeomorphism, we
can perform this construction for each y € N, by setting ¢ = F~'(y),
and define a vector field, denoted by F,X, on N:

(6.4) (FuX)pq) =dgF Xy, VYge M,
or, equivalently,
(F*X)y = dF—l(y)FXF—l(y), Vy € N.

The R-linear map F,: X*=1(M) — X*1(N) is called the push-forward
of vector fields. Note the if G: N — Z is also a diffeomorphism we
immediately have

(GoF), =G.F..

We also obviously have (F,)™' = (F7!),.

In case of a change of coordinates ¢ on an open subset of R”, the
change of representation of a vector field is precisely described by the
push-forward by ¢. In particular, we have X, = (¢,).X for the chart
labeled by aH and equation can be written in the more trans-
parent form

(6.5) X5 = (Jap)sXa |

Remark 6.22. The push-forward is also natural from the point of view
of our motivation of vectors as possible velocities of curves. If 7 is a
curve in M tangent to X (i.e., $v(t) = X, for all ¢), then F o~ is
tangent to F,X (i.e., LF(y(t)) = (F.X)p() for all t), as is easily
verified.

Remark 6.23. The push-forward of vector fields is compatible with
the push-forward of functions defined in Remark Namely, a simple

HWe resort here to a very common and very convenient abuse of notation. The
precise, but pedantic expression should be X, = (¢4 )X lu, S @q is a diffeomor-
phism from U, to ¢ (Uy). Similarly, (6.5) pedantically reads

(X,B)lqgﬁ(yomyﬁ) = ((rzs(lﬂ)*(X(X)lqsa(UOmUﬁ) °
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calculation shows that, if X and f are a vector field and a function on
M and F': M — N is a diffeomorphism, then

F.(fX)=FfF.X.

Remark 6.24. If M and N are open subsets of R" and we write
X = F.X, then, regarding X and X as maps from M or N to R",
(6.4) explicitly reads

. “~ OF7 :
(6.6) X'(z) = — ()X (x), Vxe M,

B = O’
where 7 := F(x).

We finally come to a last interpretation of vector fields. If U is an
open subset of R", X a C* !-vector field and f a C*-function (k > 0),
then we can define

X(p=Yx ot

where on the right hand side we regard X as a map U — R". Notice
that the map C*(U) — C*Y(U), f — X(f), is R-linear and satisfies
the Leibniz rule

X(fg)=X(f)g+ fX(9).
This is a derivation in the terminology of subsection If we now
have a C*-manifold M and a vector field X on it, we can still define
a derivation CK(M) — CF1(M) as follows. First we pick an atlas
{(Uq, ®a) }acr- We then have the representation X, of X in the chart
(Ua, ¢a) as in Remark [6.19] If f is a function on M, we assign to it
its representation f, as in Remark [3.4, We can then compute g, :=

Xo(fa) € C* Y (pa(Uy,)) for all @ € I. From (3.4) and (6.5), we get,
using Remark [6.23] that

95 = Xp(fs) = ((Pap)+Xa) ((Pap)sfa) = (0ap)«(Xa(fa)) = (Pap)+Fa

which shows, again by , that the g,s are the representation of a
CF~!function g. We then set X (f) := g. In the k = oo case, one can
define vector fields as in Section [7.1] In this case, the interpretation of
the derivation f +— X(f) is immediate.

6.4. Integral curves. To a vector field X we associate the ODE

q=X(q)

A solution, a.k.a. an integral curve, is a path ¢: I — M such that
q(t) = X(q(t)) € TyyM for all t € I.
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Note that, by Remark [6.22] a diffeomorphism F sends a solution ~y
of the ODE associated to X to a solution v o F' of the ODE associated
to F,.X.

Assume k > 1, so the vector field is continuously differentiable. The
local existence and uniqueness theorem as well as the theorem on de-
pendence on the initial values extend immediately to the case of Haus-
dorff C*-manifolds, as it enough to have them in charts. The solution
is computed by solving the equation in a chart and, when we are about
to leave the chart, by taking the end point of the solution as a new
initial condition.

More precisely, if we want to solve the equation with initial value at
some point ¢ € M, we pick a chart (U,, ¢,) around ¢ and solve the
ODE for X, in R™ with initial condition at ¢,(q). Composing with ¢_*
then yields a solution in U, that we denote by 7,. If (Us, ¢3) is another
chart around ¢, we get in principle another solution ~5. However, by
Remark [6.22] we immediately see that v, = 75 in U, N Us. When the
solutions leave the intersection, by uniqueness of limits on a Hausdorff
space, we get a unique value that shows that the solutions keep staying
equalH The resulting solution is simply denoted by « with no reference
to the charts.

Remark 6.25. On a non-Hausdorff manifold the above construction
fails. Take the example of the line with two origins of Remark [4.8 Let
X be the vector field which in each of the two charts is the constant
vector 1. If we start with initial value ¢ & {0, *}, then we may construct
two distinct solutions: one passing through 0 but not through * and
another passing through * but not through 0.

If the vector field vanishes at a point, then the integral curve passing
through that point is constant. If the vector field does not vanish at a
point, then it does not vanish on a whole neighborhood, so that through
each point in that neighborhood we have a true (i.e., nonconstant)
curve. The neighborhood can then be described as the collection of
all these curves. By a diffeomorphism one can actually stretch these
curves to straight lines, so that the neighborhood looks like an open
subset of R™ with the integral curves being parallel to the first axis.
More precisely, we have the

Proposition 6.26. Let X be a vector field on a Hausdorff manifold M.
Let m € M be a point such that X, # 0. Then there is a chart (U, ¢y)

128et T := sup{t : ya(t) € Uy N Uz} = sup{t : y5(t) € U, N Us}. By uniqueness
of limits we have g1 := limy_,7 74 (t) = lim;—,7r y3(t). We now start again solving
the equation with initial condition at ¢;.
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with U 3 m such that (¢u)«X |v is the constant vector field (1,0,...,0).
As a consequence, if y is an integral curve of X passing through U, then
by o is of the form {x € ¢py(U) | 2*(t) = z} + t;27(t) = 0,7 > 1}
where the s are constants.

Proof. Let (V,¢y) be a chart with V' > m. We can assume that
ov(m) = 0 (otherwise we compose ¢y with the diffeomorphism of
R™ n =dimM, 2 — z — ¢y(m)). Let Xy := (¢v).X|y. We have
Xy (0) # 0, so we can find a linear isomorphism A of R” such that

AXy(0) = (1,0,...,0).

Define ¢, := Ao ¢y and X, := (¢},),X|y. Let V be an open subset
of ¢{,(V), W an open subset of the intersection of ¢{,(V) with z! =0,
and € > 0, such that the map

o: (—ee)xW — Vv
(t,ag,...,a,) <I> (O ag, ..., ap)

is defined. The differential of o at 0 is readily computed to be the
identity map. In particular, it is invertible; hence, by the inverse func—
tion theorem, Theorem we can find open neighborhoods | W of
(—e,€) x W and V of V such that the restrlctlon of o: W — Vis a
diffeomorphism. We then define (bV/ =0 o ¢, and X = ((bv/)*X =
o, ' X{,. We claim that X =(1,0,...,0). In fact, using (6.6).
;0o a@)f({/)i /\i
(0.(1,0,...,0))" = T v (Xy)"

O

6.5. Flows. An integral curve is called maximal if it cannot be further
extended (i.e., it is not the restriction of a solution to a proper subset
of its domain). On a Hausdorff manifold, through every point passes
a unique maximal integral curve and to a vector field X we may then
associate its flow ®;X (see [5, paragraph 1.48] for more details): For
x € M and t in a neighborhood of 0, ®(x) is the unique solution at
time ¢ to the Cauchy problem with initial condition at x. Explicitly,

0
0¥ (r) = X (2 (0))
and ®f (r) = z. We can rewrite this last condition more compactly as

=Idy,
and use the existence and uniqueness theorem to show that
(6.7) O () = & () (2))
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for all x and for all s and ¢ such that the flow is defined.

By the existence and uniqueness theorem and by the theorem on
dependency on the initial conditions, for each point x € M there is an
open neighborhood U > z and an € > 0 such that for all ¢ € (—¢, €) the
map @ : U — ®;(U) is defined and is a diffeomorphism.

A vector field X with the property that all its integral curves exist
for all t € R is called complete. If X is a complete vector field, then its
flow is a diffeomorphism

O M — M

for all t € R. It is often called a global flow. Equation (6.7 can then
be rewritten more compactly as

Pr . =0 o).
To see whether a vector field is complete, it is enough to check that all
its integral curves exist for some global time interval. In fact, we have
the

Lemma 6.27. If there is an € > 0 such that all the integral curves of
a vector field X exist for all t € (—e,€), then they exist for all t € R
and hence X 1s complete.

Proof. Fix t > 0 (we leave the analogous proof for ¢t < 0 to the reader).
Then there is an integer n such t/n < e. For each initial condition x, we
can then compute the integral curve up to time ¢/n and call x; its end
point. Next we can compute the integral curve with initial condition x;
up to time t/n and call x5 its end point, and so on. The concatenation
of all these integral curves is then an integral curve extending up to
time t¢. U

We then have the fundamental

Theorem 6.28. Every compactly supported vector field is complete. In
particular, on a compact manifold every vector field is complete.

The support of a vector field is defined, like in the case of functions,
as the closure of the set on which it does not vanish:

supp X :={qge M | X, # 0}.
A vector field X is called compactly supported if supp X is compact.

Proof. For every g € supp X there is a neighborhood U, > ¢ and an
€ > 0 such that all integral curves with initial condition in U, exist
for all ¢t € (—e,,¢€,). Since {U,}qesupp x 1S a covering of supp X, and
supp X is compact, we may find a finite collection of points ¢1,...,q,
in supp X such that {U,,,...,U,,} is also a covering. Hence all integral
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curves with initial condition in supp X exist for all t € (—e,€) with
€ =min{e,,,..., €, }-

Outside of supp X, the vector field vanishes, so the integral curves
are constant and exist for all ¢ in R. As a consequence, all integral
curves on the whole manifold exists for all t € (—¢,€). We finally apply
Lemma [6.27] U

Remark 6.29. For several local construction (e.g., the Lie derivative),
we will pretend that the flow of a given vector field X is complete. The
reason is that in these local constructions, we will always consider the
neighborhood of some point ¢ and we will tacitly replace X by ¥ X,
where v is a bump function supported in a compact neighborhood of

q.

7. DERIVATIONS

In this section we discuss the interpretation of tangent vectors as
directions along which one can differentiate functions. To be more
explicit, let v: I — M be a differentiable curve and let f be a differen-
tiable function on M. Then f o~ is a differentiable function on I which
we can differentiate. If u € I and (U, ¢y) is a chart with y(u) € U, we
have 1 5

G OOew = GhlooONw = b G
where fy; and vy are the representations of f and of the tangent vector
in the chart (U, ¢y), respectively. Notice that in this formula it is
enough for f to be defined in a neighborhood of ~(u).

This idea leads, in the case of smooth manifolds, to a definition
of the tangent space where the linear structure is intrinsic and does
not require choosing charts (not even at an intermediate stage). The
construction is also more algebraic in nature.

The characterizing algebraic property of a derivative is the Leib-
niz rule for differentiating products. From the topological viewpoint,
derivatives are characterized by the fact that, being defined as limits,
they only see an arbitrarily small neighborhood of the point where we
differentiate. The latter remark then suggests considering functions
“up to a change of the definition domain,” a viewpoint that turns out
to be quite useful.

Let M be a C¥-manifold, k > 0. For ¢ € M we denote by C¥(M) the
set of C*-functions defined in a neighborhood of ¢ in M. Notice that by
pointwise addition and multiplication of functions (on the intersection
of their definition domains), C¥(M) is a commutative algebra.
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Definition 7.1. We define two functions in C}(M) to be equivalent if
they coincide in a neighborhood of qF_gl An equivalence class is called
a germ of C*-functions at q. We denote by CL;“M the set of germs at ¢
with the inherited algebra structure.

Notice that two equivalent functions have the same value at ¢q. This
defines an algebra morphism, called the evaluation at g¢:

evy: CZ;M - R
/T = fl@)

where on the right hand side f denotes a locally defined function in
the class of [f]. We are now ready for the

Definition 7.2. A derivation at ¢ in M is a linear map D: CgM —R
satisfying the Leibniz rule

D(fg) = Dfqug + qung7

for all f,g € CC’;M . Notice that a linear combination of derivations at

q is also a derivation at q. We denote by Derf;M the vector space of
derivations at ¢ in M. We wish to consider this vector space, which
we have defined without using charts, as the intrinsic definition of the
tangent space: we will see in Theorem that this interpretation
agrees with our previous definition but only in the case of smooth
manifolds.

Remark 7.3. Notice that if U is an open neighborhood of ¢, regarded
as a CF-manifold, a germ at ¢ € U is the same as a germ at ¢ € M. So
we have C¥U = CYM. As a consequence we have

Der];U = Der’;M

for every open neighborhood U of ¢ in M.
The first algebraic remark is the following

Lemma 7.4. A derivation vanishes on germs of constant functions
(the germ of a constant function at q is an equivalence class containing
a function that is constant in a neighborhood of q).

Proof. Let D be a derivation at ¢. First consider the germ 1 (the equiv-
alence class containing a function that is equal to 1 in a neighborhood
of ¢). From 1-1=1, it follows that

D1 = D11+ 1D1 = 2D1,

BMore pedantically, f ~ g if there is a neighborhood U of ¢ in M contained in
the definition domains of f and g such that fj, = g, .
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so D1 = 0. Then observe that, if f is the germ of a constant function,
then f = k1, where k is the evaluation of f at q. Hence, by linearity,
we have Df = kD1 = 0. O

Remark 7.5. Notice that all the above extends to a more geneal con-
text: one may define derivations an any algebra with a character (an
algebra morphism to the ground field). The above Lemma holds in the
case of algebras with one.

Let now F': M — N be a C*-morphism. Then we have an algebra
morphism F*: Cé(q)(N) — CE(M), f+— fo lo-10y,» Where V' is the
definition domain of f. This clearly descends to germs, so we have an
algebra morphism

*, nk k

which in turn induces a linear map of derivations

der];F: Derl;M — Der’}(q)N

D — Do F*
It then follows immediately that, if G: N — Z is also a C¥-morphism,
then
der’;(G oF) = der’}(q)G derl;F.

This in particular implies that, if F' is a C*-isomorphism, then der];F
is a linear isomorphism.

Let (U,¢y) be a chart containing q. We then have an isomor-
phism derl;ngU: Der’q“U — Der];U(q)qu(U ). As in Remark , we have
Der.’;U = De.r’;M and Der’;U(q@U(U) = DerZU(q)R” Hence we have
an isomorphism

der’;gbU: Der];M = DerZU(q)R”

for each chart (U, ¢y) containing ¢. It remains for us to understand
derivations at a point of R™:

Lemma 7.6. For every y € R", the linear map
Ay: DerfR" —  R"

Dzt
D — :
Dz"
is surjective for k > 1 and an isomorphism for k = oo (here zt,... a"

denote the germs of the coordinate functions on R™).

1476 be more precise, we regard U as a submanifold of M and ¢p: U — ou(U)
as a diffeomorphism.
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Proof. For k > 1 we may also define the linear map

Y R™ — Der)R"
v=|: = Dy

with .
D =S v o),

i=1
where f is a representative of [f]. Notice that A, B, = Id, which implies
that A, is surjective.

It remains to show that, for £ = oo, we also have B,A, = Id. Let
f be a representative of [f] € C;°R". As a function of z, f may be
Taylor-expanded around y as

—~, i . 0f
i=1
where the rest can be written as

R) = Y. =6 — ) [ =05 i)

ij=1

(To prove this formula just integrate by partsED Define

oi(z) = 8:131 +Z /1—% af (y+tx —y)) dt,

SO we can write

IED BRI

Observe that, for all 4, both z* — 4’ and o; are C™-functions{| the
first vanishes at x = y, whereas for the second we have

7.y) = 2L ).

150bserve that we may write
2

Ralw) = [ 1= 557+ to =)

16Here it is crucial to work with k& = co. For k > 2 finite, in general ¢; is only
Ck=2 and for k = 1 it is not even defined.



36 A. S. CATTANEO

For a derivation D € Der;°R", we then have, also using Lemma ,

ZDw = B, Ay(D)[f],

which completes the proof. O

From now on, we simply write Der, and der, instead of Der,® and

o0
derq .

Corollary 7.7. For every q in a smooth manifold, we have

dim Der, M = dim M

We finally want to compare the construction in terms of derivations
with the one in terms of equivalence classes of coordinatized tangent
vectors.

Theorem 7.8. Let M be a smooth manifold, ¢ € M, and (U, ¢y) a
chart containing q. Then the isomorphism

TeU = (derquﬁU)_lA;(lq)qu’U: T,M = Der,M

does not depend on the choice of chart. We will denote this canonical
isomorphism simply by 7.
If F: M — N is a smooth map, we have d,F" = dequ Tq-

Proof. Explicitly we have,

(raul(U, g0, 1) = S0 22 6 ),

i=1

for every representative f of [f] € C2°M. We then have, by the chain
rule,

(v [(U, ¢u, )] = (v [(V: ¢v, Aoy uv )] =

", 0¢! : o Pt
= > 2 g gy A2 5, ) =

1,7=1

N Zvi%(%(q)) = (ru[(U; du, 0)])[f]-

The last statement of the Theorem also easily follows from the chain
rule in differentiating f o I, f € [f] € Cg,N. O
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7.1. Vector fields as derivations. We now want to show that vector
fields on a smooth Hausdorfl manifold are the same as derivations on
its algebra of functions.

Definition 7.9. A derivation on the algebra of functions C*(M) of a
smooth manifold M is an R-linear map D: C>®(M) — C>*(M) that
satisfies the Leibniz rule

D(fg) =Dfg+ f Dg.
Notice that a linear combination of derivations is also a derivation. We
denote by Der(M) the C*(M )-module of derivations on C*(M).

Remark 7.10. This construction can be generalized to any algebra A.
By Der(A) one then denotes the algebra of derivations on A. In the
case A = C>®(M), Der(M) may be used as a shorthand notation for
Der(C*®(M)).

Remark 7.11. On a C¥-manifold M, k > 1, one can define derivations
as linear maps C¥(M) — C*=1(M) that satisfy the Leibniz rule.

The first remark is that derivations, like derivatives, are insensitive
to changing functions outside of a neighborhood:

Lemma 7.12. Let M be a Hausdorff C*-manifold, k > 1. Let D be
a derivation and f a function that vanishes on some open subset U.
Then Df(q) =0 for allg € U.

Proof. Let ¢ be a bump function as in Lemma[5.1 Then f = (1—4)f.
In fact, ¥ vanishes outside of U, whereas f vanishes inside U. We then
have Df = D(1 — ) f+ (1 —¢)Df. Since f(q) =0 =1—(q), we
get Df(q) =0. O

We then want to connect derivations with derivations at a point q.
Notice that, for every C*-manifold, k& > 0, we have a linear map

Vi CH(M) = CEM
that associates to a function its germ at q.

Lemma 7.13. Let M be a Hausdorff C*-manifold. Then, for every
q € M, ~y, is surjective.

Proof. Let [f] € CgM. Let g € C*(W) be a representative of [f] in some
open neighborhood W of ¢. Then pick an atlas {(U,, ¢a)}acr, and let
a be an index such that U, > q. Let U be an open neighborhood of
q strictly contained in W N U, (simply take the preimage by ¢, of an
open ball centered at ¢,(q) strictly contained in ¢,(W NU,)) and let
1 be a bump function as in Lemma Let h := g € C*(U). Then
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[h] = [f]. Since g is identically equal to zero in the complement of U
inside U,, we can extend it by zero to get a C*-function on the whole
of M. O

Theorem 7.14. If M is a Hausdorff smooth manifold, we have a
canonical C*°(M)-linear isomorphism

7: X(M) — Der(M),
where X(M) is the C>°(M)-module of vector fields on M.

Proof. If X is a vector field and f is a function, we define ((7(X))f)(q) :=
(17,X(q))7qf- It is readily verified that 7(X) is a derivation. It is also
clear that 7 is C>(M)-linear and injective. We only have to show that
it is surjective.

If D is a derivation and [f] € C2°, we define D,[f] := (Df)(q) for
any f €~;'([f]). (By Lemma|7.13 H we know that v, is surjective.) By
Lemma this is readily seen to be independent of the choice of f
and to be a derivation at ¢. We then define X, := 7,*(D,), which is
readily seen to depend smoothly on ¢q. Hence we have found an inverse
map to 7. O

Remark 7.15. Because of the canonical identification proved above,
from now on we will use interchangeably T, M and Der,M, d,F' and
der,F', X(M) and Der(C*>*(M)). (We will also always assume M to be
Hausdorft.)

Let us now concentrate on the case where M = U is an open subset
of R™ (this is also the case of the representation in a chart). A vector

field X on U may be regarded as a map ¢ — (X'(q),..., X"(q)) or as
a derivation that we write as

X:;X ot

This useful notation also has a deeper meaning: ( 821 e ai) is a
C*(U)-linearly independent system of generators of X(U ) = Der(U)
as a module over C*(U).

Remark 7.16. A useful, quite common notation consists in defining
ox’

With this notation, a vector field on U reads X = "' | X'9;. This

notation is neater and creates no ambiguity when a single set of coor-

dinates is used. Notice that, if f is a function, we may also write 0; f

instead of the more cumbersome g L
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7.2. The Lie bracket. Derivations are in particular endomorphisms
and endomorphisms may be composed. However, in general, the com-
position of two derivations is not a derivation. In fact,

XY (fg)= XY (f)g+ fY(9) =
= XY(f)g+Y(f)X(g) + X(f)Y(g9) + [XY(g).

On the other hand, we can get rid of the unwanted terms Y (f)X(g)
and X (f)Y (g) by skew-symmetrizing. This shows that

(7.1) (X,Y] =XY -YX
is again a derivation. The operation [, | is called the Lie bracket. Note
that

(X, Y, Z||=XYZ - XZY - YZX + ZYX.
This shows that
X, Y. Z]| + [Z,[X,)Y]| +[Y,[Z,X]] =0

for all vector fields X,Y, Z.
This is just an example of a more general setting:

Definition 7.17. A Lie algebra is a vector space V' endowed with a
bilinear map [, |: V x V — V| which is skew symmetric, i.e.,

la,b] = —[b,a] Ya,b eV,
and satifies the Jacobi identity
la,[b,c]] = [[a,b],c] + [b, [a, d]], Ya,b,c e V.
The operation is usually called a Lie bracket.

Remark 7.18. Using skew-symmetry, the Jacobi identity may equiv-
alently be written

la, [b, c]] + [c, [a,b]] + [b, [c,a]] =0, Va,b,ce V.

Example 7.19. V := Mat(n x n,R) with [A,B] := AB — BA is a
Lie algebra, where AB denotes matrix multiplication. More generally,
V := End(W), W some vector space, [A, B] :== AB — BA is a Lie
algebra, where AB denotes composition of endomorphism.

Definition 7.20. A subspace W of a Lie algebra (V)| , ]) is called a
Lie subalgebra if [a,b] € W Va,b € W. Notice that W is a Lie algebra
itself with the restriction of the Lie bracket of V.

Example 7.21. Der(M) is a Lie subalgebra of Endg(C>(M))[1]

"More generally, if A is an algebra, i.e., a vector space with a bilinear operation,
we may still define derivations and Der(A) is a Lie subalgebra of End(A).
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Remark 7.22. Notice that X (M) is also a module over C*°(M); how-
ever, the Lie bracket is not C>(M)-bilinear. Instead, as follows imme-
diately from (7.1), if f is a function and X,Y are vector fields, one
has

(7.2) [X fY]=[fIX, Y]+ X(f)Y, [fX,Y]=[fIXY]-Y(f)X

If we work locally, i.e., for M = U an open subset of R"”, we can
write the Lie bracket of vector fields explicitly as follows (we use the
notation of Remark : let X =37 X0, and Y = Y " YO,
Then [X,Y] =>"" | [X,Y]'0; with

; a QY 0X"
- § J g
(7.3) (X, Y] : <X O’ Y (9:ch) '

J=1

If X and Y are CF-vector fields with 1 < k < oo we can still define
their Lie bracket by this formula, but the results will be a C¥~!-vector
field.

Remark 7.23. If X and Y are vector fields on a smooth manifold M,
their representations X, and Y, are vector fields on the open subset
¢a(Uy) of R™. The representation [X, Y], of [X, Y] is then given by

, Zn QY 0X!
7 7 o Vi &)
[X’ Y]a — (Xa al"j }/a axj_> .

j=1

This is in particular shows that the [X,Y],s transform according to
(6.2). Notice that > 7., Xg% 6?vi is also a vector field on ¢, (U,) for
each «, but in general these vector fields do not transform according

to (6.2)), so they do not define a vector field on M.

Remark 7.24. On a CF-manifold, 1 < k < oo, we can define the
Lie bracket of vector fields by the local formula. The result will be a
globally defined C*~!-vector field on M. This can be checked by an
explicit computation.

The Lie bracket of vector fields has several important applications.
It also has a geometric meaning, to which we will return in Section [7.4]

7.3. The push-forward of derivations. We will now define the push-
forward F, of derivations under a diffeomorphism F. We use the
same notation as for the push-forward of vector fields introduced in
Remark as we will show that the two notions coincide.

Let M and N be smooth manifolds and F': M — N a diffeomor-
phism. Recall from subsection that by F*: C*°(N) — C>®(M),
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g — F*g:= goF we denote the pullback of functions.ﬂ Also recall that
F* is an R-linear map and that F*(fg) = F*f F*g, Vf,g € C>®(N).
If X is a vector field on M, regarded as a derivation, we define its
push-forward F, X as a composition of endomorphisms of C*°(M):

F.X = (F*)'XF*.
Namely, if g is a function we have
F.X(g) = (F") (X (F"g)),

If G: N — Z is also a diffeomorphism, then we clearly have (Go F), =
G.F,.

Lemma 7.25. The push-forward maps vector fields to vector fields.
Proof. We just compute
FX(fg) = (F") " X(F*(fg)) = (F) ' X (F" fF*g) =
= (") {(X(F*[)Fg + F* fX(F"g)) =
= (F) " X(F ) g+ f(F)HX(Fg)) = FX(f)g + fF.X(g).
O
It is also clear that
F.: X(M) — X(N)
is an R-linear map. By we also see that
F.[X,Y] = [F.X, E.Y]

for all X,Y € X(M); one says that F. is a morphism of Lie algebras.
Moreover, for f € C*(M), we have

F(fX)(g) = (F*) 7 (fX(F"g)) = (F*) "' f F.X(9).

Using the push-forward F, of functions, defined in Remark as
(F*)~!, we then have the nicer looking formula

F.(fX)=F.fF.X.

We can summarize:

18The pullback is defined for any smooth map F, but for the following consder-
ations we need a diffeomorphism.
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Theorem 7.26. Let F': M — N be a diffeomorphism. Then the push-
forward F is an R-linear map from C>(M) to C*°(N) and from X(M)
to X(N) such that

F.(f)F.(9),
F(fX) = Fu(f)Fu(X),
F[X, [F.X,FY],

V)=
Vi, g€ C®(M) andVX,Y € X(M). If G: N — Z is also a diffeomor-
phism, then

F.(fg)
)=

The push-forward of vector fields regarded as derivations agrees with
the definition we gave in Remark [6.21}

Proposition 7.27. Let F': M — N be a diffeomorphism and X a
vector field on M. Then

(F*X)y = dF—l(y)F XF—I(y)7 Vy € N.

Equivalently,
(7.4) (F.X)p = d,F X,, Vg€ M.
Proof. We use the notations of subsection [7.1] Let [f] € Cpy)N and
f € q)[f] C C*°(N). Since 7v,(f o F) = F*[f], we get

(EX)plf] = (FX()(F(q) = (X(fo F))(q) =

= X (F"[f]) = (derg " Xo)[ f].

Finally, we recall from Theorem [7.8] on page [36] that, up to the isomor-
phism 7,: T,M = Der,M, der,F and d,F' are the same thing. O

We finish with the following important

Proposition 7.28. Let ®; denote the flow of a vector field X. Then,
for every diffeomorphism F: M — N and for every vector field X on
M, we have

FodfoF ! =aHX

Proof. Let ¥, := F o ®X o F~1. For every y € N we have ¥y(y) =y
and

d d _
q VW) = doxronF g @0 (F7' (W) = daxrap FXax ) =

dt dt
= (F*X)F({ﬁ((F*l(y))) = (F*X)\I/t(y)7
which shows that W, is the flow of F,X. O
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7.4. The Lie derivative. Vector fields may be regarded as directions
along which we can differentiate functions. The expression X (f) cor-
responds precisely to this. If we regard X, as an element of 7, M, then
we also have
X(f)g) = dgf X

More geometrically, we can define this differentiation as the change of
the function along the flow of the vector field. This viewpoint allows
extending differentiation to vector fields as well (and also more gener-
ally to other objects, like densities or tensor fields, that we will consider
in the following).

Let X be a vector field on M and let ®;¥ denote its flow (we assume
here that M is Hausdorff). The Lie derivative of a function f along the
vector field X is defined as

0
L = — X
Xf 8t t:(]f © t
or, equivalently,
Lol = Gl (P = iy =5 =l =
A simple computation shows that
(7.5) Lxf = X(f).
Namely,

Lef@ = (2] @000 = 2| j@ @) = dyf X,

We now extend this definition to vector fields. Namely, the Lie derivative
of a vector field Y along the vector field X is defined as

0 x . (X)) Y Y — (PF).Y
L= gy (@2Y = Jim == = i~ B
Lemma 7.29. For all X,Y € X(M) we have
(7.6) LyY = [X,Y].

This yields a geometric interpretation of the Lie bracket.

Proof. By definition of the push-forward of a vector field, using push-
forward of functions instead of pullback, we have

(@2).Y)(9) = (22).(Y ((2Z,) ' 9)).
Differentiation at ¢ = 0 then yields

(LxY)(g9) = Lx(Y(g9)) — Y (Lxg) = X(Y(g)) — Y (X(g)),
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where we have also used (7.5)). As this holds for all g € C*(M), the
Lemma is proved. 0

Notice that by its definition, or by the explicit formulae (7.5)) and
(7.6)), the Lie derivative Ly is R-linear. Morever, if f is a function and
= is a function or a vector field, we have

Lx(fE) =LxfE+ fLx=.

Remark 7.30. The Lie derivative is a beautiful construction that gives
a geometrical (or dynamical) meaning to algebraic concepts like the
application of a vector field to a function or the Lie bracket of two
vector fields. To make full sense of it, it seems however that we should
have assumed the flow of the vector field X to be global. The reason
why we do not need it is that in order to compute Lx= at some point
q € M we can replace X by the compactly supported vector field ¥.X,
where 1 is a bump function supported around ¢. Note that a different
bump function ¢ will yield the same result. In fact,

e Ty @y
(2 S N i h

which vanishes on the neighborhood V' of ¢ where ¥ and J coincide.
In the rest of this section, we will always assume that the flow of X is
global or it has been made global by this construction.

The composition property of flows (975, = @ o ®F) implies the
following useful

Lemma 7.31. Let = be a function or a vector field. Then

0 — — -
571, (P55 = (D). LxE = Ly (@2)).2
for all s for which the flow is defined.
Proof.
0 Xy =g (@F )= — ()2 xy o (@5).E—E
a t:s(®—t)*‘_‘ - }111_{% h - ((b—s)* }lllif(l) h
The second equality follows similarly from
(E ) E - (@F).E L (9F,).(94,).E — (2F).E
lim = lim .
h—0 h h—0 h

Corollary 7.32. Let X a be vector field. A function f is preserved
by the flow of X, i.e., (®X).f = f Vt, if and only if X(f) = 0. A
vector field Y is preserved by the flow of X, i.e., (®X),Y =Y Vt, if
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and only if [X,Y] = 0. In particular, X is preserved by its own flow:
(X)X = X Vt.

Notice that as the Lie bracket is skew-symmetric, the condition for
vector fields is symmetric: namely, Y is preserved by the flow of X if
and only if X is preserved by the flow of Y. An even more symmetric
statement is provided by the next

Proposition 7.33. The flows of two vector fields commute if and only
if the two vector fields Lie commute. In formulae:

PY 0 X = d* 0 ®) Vs, t for which the flows are defined < [X,Y] = 0.

Proof. By Proposition [7.28 we have

(q)gf)_l o q)ff o CDZ = CPE(I’ZS)*X

If [X,Y] = 0, then (®Y,),X = X and the flows commute. If on the

Y
other hand the flows commute, then we get that (ID,E@’S)*X = OX Vi, s;
by deriving at ¢t = 0, we then get (®¥ ),X = X Vs, which implies
(X, Y] =0. O
There is one more way of characterizing and computing the Lie
bracket:

Lemma 7.34. On an open subset of R™ we have
82
050t ls=t=0

Proof. Let @4, := (®;*) ' o (®Y) 1o ®;* 0 ®Y. By Proposition we
have

(@) o (25) ol 0 ®f = [V, X].

D0 = (@) o™,
Hence 9
—| D,y =—X+ (Y ). X.
at‘t:() * +(22)
Thus,
82
o, =Ly X.
050t | s=t=0 " Y

Finally, we have the following important property:

Lemma 7.35. Let = be a function or a vector field and let X and Y
be vector fields. Then

Lx+vE = Lx=+ LyE,

LxLyE — LnyE = L[X,y}E.
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These formulae say that the map X + Ly from vector fields to linear
operators (on the vector space of functions or on that of vector fields)
is R-linear and that

[I—X7 I—y] - I—[X,Y]7

where [, | on the left hand side denotes the commutator of linear
operators.

One easy way to prove them is by the the explicit formulae and
(7.6). The first identity is then obvious, whereas the second is just the
definition of the Lie bracket if = is a function and the Jacobi identity
if = is a vector field. If we are in the image of a chart (i.e., if we work
on an open subset of R"), we also have a proof based directly on the
definition of Lie derivative; this is interesting, for this proof will apply
to other cases as well.

Proof. Let U, := &Y 0 ®Y, 0 ®X,. We have ¥, = Id and %hzo = 0.
Hence

0
0=%

For the second identity consider again ®; := (®;*)1o(®Y ) LodX o dY.
We have

(W)E= Loy B LyE LE

0
—| (P44).Z = LxE — (®Y,).Lx(®)).2
ol @aE=nE-@)xe)E
SO
82
D)2 =—LyLxE+ LxLy=.
dsot s:t:0( 2 vyt baby
. o X\_1 (Y )X
Again, by Proposition [7.28| we have &g, = (P;') ' o D, , SO
0 _ — _
a t:0(®8’t)*: = LX.: — L(@ZS)*X:"

By definition of Lie derivative, (®¥,),X = X +sLy X + O(s?). By the
just proved first identity, we then have

Ly ).xZ = LxE+ sLi,xZ+ O(s?).
Finally,
82

0sot s:tzo(@S’t)*E = ~huxE =l
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7.5. Plane distributions. In this section we want to generalize the
results of Section to the case when we want to integrate several
ODEs simultaneously. For simplicity we focus on the smooth case
only. The main goal will be to prove the Frobenius theorem, which
has several applications. (We will see some in Sections [0.8.2] and
10.41)

Definition 7.36. A k-plane distribution D, or simply a k-distribution
or just a distributionEg] on a smooth n-dimensional manifold M is a
collection {D, }4enr of linear k-dimensional subspaces D, € T, M for all
q € M. (Of course we assume k < n.) The number & is also called the
rank of the distribution.

We are interested in distributions that vary smoothly over M. We
present here a preliminary definition that is enough for the applications
in this section; we will return to a nicer, equivalent characterization

later (see Corollary [8.15]).

Definition 7.37. A k-distribution D on M is called smooth if every
q in M possesses an open neighborhood U and smooth vector fields
Xi,...,X} defined on U such that

D, = span{(X1)a, ..., (Xk)a}

for all z € U. The vector fields X,..., X} are also called (local)
generators for D on U.

Remark 7.38. If one can take U to be the whole of M, one speaks
of global generators. In the definition we require the existence of local
generators only, as several interesting distributions do not admit global
generators. See the examples below.

A vector field X on M is said to be tangent to a distribution D if
X, € D, for all ¢ € M. Linear combinations of vector fields tangent
to a given distribution are also tangent to it. We denote by I'(D) the
R-vector space and C'*° (M )-module of vector fields tangent to D. Note
that I'(D) is a subspace of X(M).

Definition 7.39. A smooth distribution D on M is called involutive if
I'(D) is a Lie subalgebra of X(M); i.e., when [X,Y] € I'(D) for all X
and Y in ['(D).

Remark 7.40. Note that a distribution generated by the vector fields
Xy, ..., X} is involutive if and only if, for all 7 and j, [X;, X,] is a linear

YDistributions in this sense have nothing to do with distributions introduced in
analysis as continuous linear functionals on spaces of test functions.
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combination, over the ring of functions, of the generators. The only-
if side follows directly from the the definition. For the if-implication,
observe that a vector field tangent to the distribution is necessarily a
linear combination of the generators. Moreover, by , we have

[Z fiXi, Zngj] =Y ((£:Xilg) = 6 Xa(F)) X + figs[Xi, X))
i j ij
The first term in the sum is explicitly tangent to the distribution; the
second is so by the assumption.

Remark 7.41. The previous remark implies that a smooth distribu-
tion of rank 1 is always involutive. In fact, locally it is generated by a
single vector field, say X, and by skew-symmetry of the Lie bracket we
have [X, X] = 0.

Example 7.42. Let X be a nowhere vanishing vector field on M. Let
D, :=span X, = {A\X,, A € R}. Then D is a smooth 1-distribution.
It is also involutive by Remark [7.41] Note that different vector fields
may generate the same a 1-distribution.

Example 7.43. D = 0 (ie., D, = {0} for all ¢) is an involutive
O-distribution, and D = TM (i.e., D, = T, M for all ¢) is an involutive
n-distribution, n = dim M. Note that D = T'M may not admit global
generators. In the terminology to be introduced in Section [8.I] the
distribution 7'M has global generators if and only if M is parallelizable.
In Lemma we will see that, e.g., M = 5? is not parallelizable.

Example 7.44. Let M = R?\ {0} and D the distribution of planes
othogonal to the radial direction; i.e., Dy = {v € R® | v.-x = 0}. In
other words, Dy consists of the vectors tangent at x to the sphere of
radius ||x||. This shows that this distribution has rank 2, is smooth
and is involutive. (Another way to see that it is involutive consists in
observing that X is tangent to D if and only if X (r) = 0, where r
is the function ||x||. If X and Y are both tangent, then [X,Y](r) =
XY (r)) = Y(X(r)) = 0 as well.) This distribution has no global
generators, as T'S? does not have them either.

Example 7.45. On U = {(x,y,2) € R3 | 2 # 0} consider

0 0
X:y&—za—,
Y—Zg—x2
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Let D, := span{X,,Y,}. Then D is a smooth 2-distribution. It is
involutive by Remark [7.40} In fact,

0 0
=Y X|=0v——y—
can be written as Z = —2X — 2Y. (Geometrically observe that the

flows of X, Y, and Z are rotations around the z-, y- and z-axes, re-
spectively.)

Example 7.46. On R? consider

0 0 0
The distribution defined by span{X,Y} is smooth and of rank 2. It
is however not involutive since [X,Y] = % cannot be written as a

C>(R3)-linear combination of X and Y.

We can generalize the notion of push-forward to distributions mim-

icking the definition in Remark [6.21]

Definition 7.47. Let D be a distribution on M and let F': M — N
be a diffeomorphism. We define the push-forward F,D of D by

(FiD)y := dp-1() Dp-1y)
for all y € N.

Note that the push-forward of a smooth distribution is also smooth,
and the push-forward of an involutive distribution is also involutive.
We now come to the generalization of the notion of integral curve.

Definition 7.48. An immersion ¢¥: N — M with N connected is
called an integral manifold for a distribution D on M if

dy(T,N) = Dy for all n € N.

An integral manifold that is not a proper restriction of an integral
manifold is called maximal.

If ¢ is an embedding (which is not much of a restriction in view of
Proposition 6.4)), restricting 1: N — (V) to its image allows rewriting
the above condition as

»«(TN) = Dly,
where the fact that D may be restricted to ¢(N) (i.e., D, € T,(N)
for all ¢ € ¥(N)) is part of the condition.

Definition 7.49. A smooth distribution D on M is called integrable if
for every ¢ in M there is an integral manifold for D passing through q.
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Example 7.50. Example yields an integrable distribution with
(M,1d) as maximal integral manifold. Another example of integrable
distribution is given by Example [7.42] where the (maximal) integral
manifolds are the (maximal) integral curves of the vector field. Ex-
ample [7.45 also yields an integrable distribution where (the images of)
the maximal integral manifolds are the connected components of the
intersections of U with the spheres centered at the origin.

The fact that these examples of integrable distributions are also in-
volutive is not by chance. In fact, we have the

Lemma 7.51. If D is integrable, then D is involutive.

Proof. For each ¢ € M, we can find an integral manifold ¢: N — M
with ¢ € ¢(N). If X and Y are tangent to D, in a neighborhood of ¢ in
¥(N) we can write them as push-forwards of vector fields X and Y on
N. Since the push-forward preserves Lie bracket and T'N is involutive,
we see that in this neighborhood Z := [X,Y] is the push-forward of
[X, Y] and hence tangent to D (note that this is indeed the Lie bracket
of X and Y, as they do not have components transverse to ¢ (N) by
definition). We can compute Z by this procedure at each point of M,
which shows that D is involutive. U

We now come to the, far less trivial, converse of the Lemma:

Theorem 7.52 (Frobenius’ Theorem). Let D be an involutive k-dis-
tribution on a smooth, Hausdorff n-dimensional manifold M. Then
each point ¢ € M has a chart neighborhood (U, ¢) such that ¢.D =
span{%, . 8%,9}, where x', ... 2" are coordinates on ¢(U).

Note that, as a consequence, through each ¢ € M passes an integral
manifold ¢: N — M with N = {x € ¢(U): 27 = ¢/(q),j > k} and
Y = ¢t n. This yields the immediate

Corollary 7.53. On a smooth, Hausdorff manifold a smooth distribu-
tion is involutive if and only if it is integrable.

Another consequence is that, in a chart like the above, the images
of integral manifolds are parallel k-planes. A collection of maximal
submanifolds with this property is also called a foliation and the sub-
manifolds are called the leaves of the foliation. One can introduce an
equivalence relation ~ on the manifold by saying that two points are
equivalent if they belong to the same leaf. The quotient by this rela-
tion, denoted by M/~ or better by M /D, is called the leaf space of the
distribution D. Typically it is not a manifold and not even a Hausdorff
space.
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Example 7.54. In Example we already have all possibilities for
the leaf space: e.g., take M to be a torus realized as the square [0, 1] x
[0,1] in R? with opposite sides identified and X = % -+ aa%; one can
show that for « rational the maximal curves are embeddings of S*
and the leaf space is diffeomorphic to S*, whereas for « irrational (the
Kronecker foliation) the maximal curves are dense immersions of R
and the leaf space is not Hausdorff. In Example D = 0 induces
the trivial equivalence relation, so M/D = M, on the other hand, in
the case D = T'M all points are equivalent, so M/D is a point. In
Example [7.44] every leaf is a sphere, identified by its radius, so the leaf
space if Ryy. In Example [7.45|in each half space z > 0 and z < 0 the
leaves are characterized by the radius of the sphere, so the leaf space
is the disjoint union of two copies of R.

Proof of Frobenius’ Theorem. We prove the theorem by induction on
the rank k of the distribution. For k£ = 1, this is Proposition [6.26)

We then assume we have proved the theorem for rank k£ — 1. Let
(X1,...,Xk) be generators of the distribution in a neighborhood of g.
Note that in particular they are all not vanishing at ¢q. By Propo-
sition we can then find a chart neighborhood (V,y) of ¢ with
Xx(q) =0 and x.X; = 8%1, where y!, ..., y" are coordinates on (V).

We define new generators of y.D by

0
Yi = . X1 = —
1= X1 Byt
and, for ¢ > 1,
Yii= X Xi — (X*Xi(yl)) X+ X1
For i > 1 we then have Y;(y') = 0 and hence, for i, > 1, we have
[Y;,Y;](y') = 0; this means that the expansion of [Y;, Y]] in the Vis does
not contain Yj.
As a consequence the distribution D’ definedon S := {y € x(V) | y' =

0} as the span of Ys,...,Y} is involutive. By the induction assump-
tion, we can find a neighborhood U of 0 in S and a diffeomorphism 7
such that 7,Y; = %, i=2,...,k where w?, ..., w" are coordinates on
T(U).

Let U be U x (—¢, €) for an € > 0 such that U C (V). We then have
the projection map 7: U—U. We finally consider the diffeomorphism
7o U = 7(U)x (=€)
(wy') = (7(u)y')
and write z1 = ¢!, ' = 79(y?,...,y") = w' for i > 1. We denote by
Zi :=T.Y;, 1=1,...,k the generators of the distribution D= TeXsD.
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Since 92 i 1to 1 fori =1 and herwise, b

mee 77 18 equa to 1 for + = 1 and to 0 otherwise, by we get
Z = %. Finally, we have, for i = 2,...,k and j > 1,

D) = 2 = [, 2)) = DD ),

where the ¢ are functions that are guaranteed to exist by the involu-
tivity of the distribution (note that in the sum we do not have the term
for [ = 1 since Z;(z7) = 0). For fixed j and fixed z?,...2", we regard
these identities as ODEs in the variable 2'. Note that, for i = 2,... &
and j > k, we have Z;(27) = 0 at ' = 0 (since at ' = 0 we have
Z; = Y;). This means that Z;(z7) = 0,4 =2,...,k and j > k, is the
unique solution with this initial condition. These identities mean that
D is the distribution spanned by vector fields %, ey %. O
7.5.1. Quotients. Let m: M — N be a surjective submersion. Then
{ker d,m},enm is an integrable distribution on M of rank m — n, with
m = dimM and n = dim N (we assume M to be connected with
connected fibers), with leaves the fibers 77!(z), z € N.

If the leaf space N of an involutive distribution D on M can be
given a manifold structure such that the canonical projection 7 is
smooth (and hence a submersion by Frobenius theorem), then we have
kerdm = D. This also implies that this manifold structure is unique
up to diffeomorphism. In fact, by Frobenius theorem, locally the pro-
jection is like U x V — V for V. C R4™¥ and U ¢ RdimM-—dimN,

The vector fields tangent to kerdr are called vertical (we imagine
M projecting down to N). We denote by U(M) := I'(kerdr) the Lie
algebra of vertical vector fields. We next consider its Lie idealizer

N(O(M))={X e X(M) | [X,Y] € B(M) for all Y € T(M)},

i.e., the largest Lie subalgebra of X(M) in which B(M) sits as an ideal.
Elements of N(U(M)) are called projectable vector fields. The reason
is that there is a well defined map

¢: N(U(M)) — X(N)
defined by the assignment
Xp = dpm X,

Note that by definition the flows of vertical vector fields change X only
vertically, so its projection does not depend on the point in the fiber



NOTES ON MANIFOLDS 53

over W(p)m Also note that ¢ is surjective and that its kernel is exactly
U(M). We leave to the reader to verify that ¢ is also a Lie algebra
morphism (this is easy to see in local coordinates), so we have that
X(N) and N(U(M))/B(M) are isomorphic Lie algebras.

It is often convenient to work with generators.

Definition 7.55. A family ) of vertical vector fields generates B (M)
if every Y € U(M) can be written as a finite linear combination of

elements of ), which are hence called generators (i.e., ) generates
P(M) as a C°°(M)-module).

One can then easily see that X is projectable if and only if [X, Y] is
vertical for every Y € ).

8. VECTOR BUNDLES

The tangent bundle introduced in the previous sections is an example
of a more general structure known as a vector bundle. Many important
objects defined on manifolds (e.g., densities, tensor fields, differential
forms) are sections of vector bundles.

8.1. General definitions.

Definition 8.1. A C*-vector bundle of rank r over a CF-manifold of
dimension n is a C*-manifold E together with a surjection 7: £ — M
such that:

(1) E, := 7 *(q) is an r-dimensional vector space for all ¢ € M.
(2) E possesses a Ck-atlas of the form {(Uy,do)}tacs with U, =
77U, for a C*-atlas {(Us, ¢a) }aer of M and
o U, 5 R'xR’
(g0 € Eg) = (dalq), Aalq)v)
where A,(q) is a linear isomorphism for all ¢ € U,,.

An atlas for E like {(Uy, ¢o) }aer in this definition is called an adapted
atlas for the vector bundle. The corresponding atlas {(Uy, ¢a)}acr for
M is called a trivializing atlas.

0If Ly X = )7, with Y and Y vertical, we get

9 &y Y\ v

88 (@75)*_}( = (cbfs)*y
by Lemma Alternatively, we can observe that, in local coordinates
{xt, ... 2™yl ..., y™ "}, where the ys are the vertical coordinates, a vector

field X (z,y) = S0, Xi(z,y)52 + S " )?i(x,y)a% is projectable if and only
if %;(; = 0 for all 7,7, as follows from (|7.3). In this local picture, the projection

#(X) is the vector field on N represented by >, Xi(ac)%.
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Notice that 7 is a C¥-map with respect to this manifold structure
and that for k£ > 0 it is a submersion.
The maps
Aup(q) = Ap()Au(q) ™ R = R”
are C* in ¢ (ie., Aus: Uy NUs — End(R") is a C*-map, where we
identify End(R") with R” with its standard manifold structure) for all
a, B € I. The transition maps

Ga (1, 1) = (dap(@), Aag(d7 (x))u)

are linear in the second factor R". The point dependent linear maps
Ayp are usually called the transition functions of the vector bundle.

Example 8.2. It is readily verified that the tangent bundle T'M of a
CF-manifold M with k& > 1 is a C*~'-vector bundle where we regard the
base manifold M as a C¥~'-manifold.

Example 8.3. Let EF := M x V where V is an r-dimensional vector
space. Then F is a vector bundle of rank r over M with 7 the projection
to M. A choice of basis for V' determines an isomorphism 7: V' — R".
Given an atlas {(Ua, ¢a) taer for M, we set ¢o(q,v) = (¢a(q), 7v). Note
that then A,z(q) = Id for all o, 5, q.

Example 8.4 (The dual bundle). If E is a vector bundle over M,
as in Definition [8.1], then the union of the dual spaces Ej is also a
vector bundle, called the dual bundle of E. Namely, let E* := Ujen E .
We denote an element of £ as a pair (¢,w) with w € E;. We let

75 (q,w) = ¢. To an atlas {(Us, da)}aes of E we associate the atlas
{(Ua, ba) Yacr of E* with Uy = 75 (Ua) = Uger, E; and

~ ~

o 0., N R” x (R")*
(weE) = (da(q), (Aal(q)*) ' w)

where we regard (R")* as the manifold R” with its standard structure.
It follows that we have transitions maps

P (2, 1) = (Pas (), (Aap(a(2))*) L u).

Note that actually any linear construction on vector spaces can be
carried over to vector bundles. For example, starting from a vector
bundle £ — M we may define its endomorphism bundle End(E) with
End(F), := End(E,). If F — M is a second vector bundle over M, we
may define the direct sum F @ F' and the tensor product £ ® F' with
(E®F),:=E,®F,and (E® F), := E,® F,. We leave it to the
reader to construct the corresponding trivializing atlases.
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Example 8.5 (Pullback bundle). Let F': N — M be a C*-map and
E 5 M a CF-vector bundle. One defines F*E := {(q,e) € N x
E | F(q) = m(e)}. One can readily see that F*E is a Ck-vector bundle
over M with projection map 7pg(q,e) = ¢. In practice, the fiber of
F*E at ¢ is given by the fiber of E* at F'(¢) and the fiber transition
maps of F*FE at ¢ are given by the fiber transition maps of E at F(q).
More precisely, we pick an atlas {(V},1;)}jes of N. To the atlas in
Definition , we then associate a new atlas {(Va;, ¥aj) }(aj)erxs of N
with Vi, := F~H(U,) NV; and ¥y, = Q/Jj\v . The atlas of F*E is then

given by V,; = 15t p(Vay) = Ugeva; Er(g) and

~

{D\a]': VOéJ' - R* xR
(9,0 € Epg) = (¥a;(q), Aa(F(q)) v)
where s is the dimension of N. It follows that we have transitions maps

Y67 (@) = (Yag) (a5 (1), Aap(F (0} (2)))u).

8.1.1. Sections. We now come to the generalization of the notion of
vector fields to other vector bundles.

Definition 8.6. A section (also called a global section) of a C*-vector
bundle £ 5 M is a CF-map 0: M — E with 7 o 0 = Idy;. We denote
by I'(E) the space of sections of E. A section of the restriction of E to
an open subset U is also called a local section on U.

Remark 8.7. If o is a section of E — M, then o(q) is of the form (g, ;)
where o, € E, for all ¢ € M. We will use this notation throughout.

Remark 8.8. Notice that I'(E) is a vector space. Moreover, if o is a
section of F and f a function on M, we can define a new section fo
by letting (fo), be the product of f(q) € R and o, € E,. Hence I'(E)
is also a module over C*(M).

Example 8.9. A section of the tangent bundle T'M is then the same
as a vector field on M.

Example 8.10. A section of the vector bundle M x V' — M of Ex-
ample is a map q¢ — (¢, f(q)) where f is a map M — V. Thus,
the module of sections of M x V' — V is canonically isomorphic to the
module of maps from M to V.

Example 8.11. A section of the dual bundle E* of Example [8.4] as-
sociates to a point ¢ € M a vector in E;. Hence, if w is a section of
E* and o a section of E, we can evaluate w, on o, for each ¢. This
produces a function w(o) by w(o)(q) := wy(o,). Notice that the map
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[(E*) x T(E) — C*(M), (w,0) — w(o) is C*(M)-bilinear. This is also
called the pairing of I'(E*) with I'(E). For this reason w(o) is also often
denoted as (w, o) or (w, o).

Example 8.12. A section of the pullback bundle F*E of Example 8.5
associates to a point ¢ € M a vector in Ep).

If one picks a trivializing atlas {(Ua, ¢a) }aer as in Definition , then
a section of F is the same as a collection of Ck-mapﬂ Oo: Ga(Uy) = R”
such that

(8.1) 05(bas(2)) = Aas(dy (7)) 0u(z)
for all o, 8 € I and for all x € ¢,(U, N Up).

8.1.2. Vector subbundles. We now come to the generalization of the
notion of plane distributions to general vector bundles.

Definition 8.13. A vector subbundle of a vector bundle £ — M is a
collection {F,},en of subspaces F, C E, such that F' := UpepF), is
also a vector bundle.

Lemma 8.14. A collection {F,},enm of k-dimensional subspaces is a
vector subbundle of E — M if and only if every point p in M possesses
an open neighborhhood U and sections oy, ...,0r of the restriction of
E to U such that

F, =span{(01)s, .-, (0k)z}
for all x € U. These sections are called (local) generators of F on U.

Proof. If F' is a vector bundle, around each point p of M we may
take a chart (U, @,) as in Definition In ¢,(U,) we may take k
linearly indipendent maps 71, ..., 7 from ¢, (U,) to R*. The sections
(04)z = A (2)7;(da(x)) are then generators of F' on U,.

For the other implication the assumption is that for each p we have
an open neighborhood U, with generators o,1,...,0,,. We may also
assume that each U, is a chart domain, with a chart map denoted by ¢,.
We then consider the atlas {(Up, ¢p)}pens. We consider G := Upen F .

On ﬁp := Ugep, F; we may define the chart map
Gp(,w) = (8p(x), Ap(w)w)
with
Ap(z)w = ((w, (0p1)a), - - - (W, (Opk)a))-

This shows that G is a vector bundle and hence that its dual F' is a
vector subbundle of F. O

2IThese maps are also called local sections.
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Corollary 8.15. A plane distribution D on M is smooth if and only
Upem D, is a vector subbundle of TM.

8.1.3. Morphisms. We now come to the definition of maps compatible
with vector bundle structures.

Definition 8.16. Let E =2 M and F =5 N be CF-vector bundles. A
pair of C*-maps ¥: E — F and ¢: M — N is said to be compatible
with the bundle structure if 7p o ¥ =1 o 7.

Y

E F

TE TF

M

N

(8
This means that ¥ maps I, to Fy(, for all ¢ € M. We denote by ¥,
this map. The compatible pair (¥, ) is called a morphism of vector
bundles (or a vector bundle map) if ¥, is linear for all ¢ € M. Usually
one simply writes U: ' — F' to denote the morphism. One says that
¥ is a morphism over .

Example 8.17. If F'is a vector subbubndle of E, the inclusion map
is a morphism.

Example 8.18. If ¥ is map from M to M, then we have a morphism
U: MxV = MxV,(qv)— (¥(qg),v).

Notice that a composition of morphisms is also a morphism. A mor-
phism is called an isomorphism if it possesses an inverse. Note if ¥ is
an isomorphism, so is also .

Definition 8.19. If (W, ) is an isomorphism, we can push forward
sections of E to sections of F: for o € T'(F), we define

(Ws0)y = Wy1()0p-1(y)
for y € N.

Remark 8.20. If¢): M — N is a C**'-map, then we have a morphism,
called the tangent lift, ¥: TM — T'N by setting ¥, = d ). Notice that
V¥ is an isomorphism if and only v is a diffeomorphism and that in this
case the push-forward W, is what we have denoted by 1, so far.

Remark 8.21. If {((70“ q;a)}ae[ is an adapted atlas of a Vector~bundle
E — M over the trivializing atlas {(Ua, ¢a)tacr of M, then ¢, is an
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isomorphism from 7 (U,) to ¢o(Us) X R” for all a and ¢us is an
isomorphism from ¢, (U, NUs) X R” to ¢p(U, NUpg) x R” for all distinct
«a and .

75 (Us) — ¢a(Us) X R” ¢a(UsNUg) x R” % ¢p(Us NU3) x R”

Ua Qba(Ua) ¢a(Ua N UB)

« af

¢B(Ua n UB)

If o is a section of F, then the representation o, of o can be written
as 04 = (¢a)+0|v, . The compatibility relations ({8.1)) now read

05 = ($ap):Ta

where again, by abuse of notation, o, actually denotes the restriction
of 04 t0 ¢u(Us N Usp).

Example 8.22. Let [ E be the pullback bundle of Example|8.5] Then
we have a morphism ¥: F*E — E by setting ¥, to be the identity map
for all q.

Definition 8.23. A vector bundle £ — M is called trivial (or trivial-
izable) if it is isomorphic to a vector bundle of the form M x V — M

(see Example [8.3).

Note that the base map v of the isomorphism V: F — M x V is
also an isomorphism. So we may compose ¥V with the inverse of the
morphism defined in Example [8.18] This means that we can always
assume the trivializing isomorphism to be over the identity map.

Proposition 8.24. A rank r vector bundle is trivial if and only if it
has r R-linearly independent sections.

Proof. Choose a basis of V' to identify it with R™. The vector bundle
M x R" — M has the r linearly independent sections oy, ..., o, given
by the maps from M to each of the r components of R". If ¥ is an
isomorphism from E to M x R", then ¥ 'oy,..., ¥ 1o, are r linearly
independent sections of F.

Conversely, if 71, ..., 7. are r sections of F/, we have a map W: M X
R" — E, with ¢(¢) = ¢ and Y (e;) = (7:),, where (ey,...,e,) is the
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canonical basis of R". It the sections are linearly independent, this is
an isomorphism. Hence, E is trivial by the isomorphism ¥~ U

A manifold whose tangent bundle is trivial is called parallelizable.
Each open subset of R" is clearly parallelizable.

Lemma 8.25. The circle S is parallelizable.

Proof. The easiest way to see this is by viewing S! as a submanifold
of R?. A point ¢ in S! is then a unit vector in R? and there is a
unique rotation R, that maps ¢ to the point (1,0). We then define
U: TSt — St xR by (¢q,v) = (g, Ryv). O

In Remark [8.30] we will give another proof. We will see, Lemma[8.31]
that also the 3-sphere is parallelizable. In Section [10.1} we will recover
these statements as special cases of the fact that Lie groups are paral-
lelizable, see Lemma . On the other hand, e.g., the sphere S? is not
parallelizable: actually, one can show that S? does not even possess a
single nowhere vanishing vector field, see Lemma [8.32]

8.1.4. Vector bundles from local data. The linear maps A,g are actually
enough to specify a vector bundle. Namely, let M be a C*-manifold.
Assume we have an atlas {(Uy, ¢o) }aer for M and, for some fixed vector
space V, C*-maps A.5: U, NUs — End(V) for all o, 8 € I, a # B,
such that for all distinct o, 3,y € I:

(1) Aaﬂ(q)Aﬁa(Q) = Idy for all ¢ € U, N Uﬂ§

(2) Apy(q)Anp(q) = Auy(q) for all g € U, NUg N U,

Then we can repeat the construction of subsection [6.I]verbatim. Namely,
we define a coordinatized vector at ¢ € M as a triple (U,, ¢, v) where
(Ua, ¢a) is a chart containing ¢ and v is a vector in V. We define two
coordinatized vectors (Uy, ¢a,v) and (Ug, g5, w) at ¢ to be equivalent if
w = A,p(q)v; notice that properties (1) and (2) above ensure that this
is an equivalence relation. Finally, we define £, as the set of equiv-
alence classes of coordinatized vectors at q. A choice of basis on V
yields an isomorphism B: V — R", r = dim V, and we can define the
bijection

An(q): E, — R"

[(Ua, $asv)] = Bu

and use it to define the vector space structure on E, that makes A,(q)
into a linear isomorphism. Exactly as in the proof of Lemma we
show that this vector space structure is canonical (i.e., independent of
«). Finally, we see that E := Uyep E, is a vector bundle over M with

UO[ - quUaEQ’



60 A. S. CATTANEO

Remark 8.26. We can define the dual bundle, see Example [8.4] also
by local data. Namely, we start from the transition functions A,g for
E and define A%;(q) := ((Aap(q))*)~" for all ¢ € U, N Up. Conditions
(1) and (2) of Section are automatically satisfied.

Remark 8.27. Note the difference in the conventions in the construc-
tion of a vector bundles from local data on a given manifold and the
construction of a manifold from local data of Section Namely,
here we consider the transition functions A,ss as depending on a point
on U, N Upg, whereas there we considered the transition maps ¢.p as
functions on V,5 which, later on, turns out to be ¢,(Vas). The rea-
son is that conditions (1) and (2) above read much better with this
convention. Equivalently, we may define Avag(x) = Aup(o;t(2)) for
r € ¢o(Uy, NUg). With these new notations the condition take the
uglier form

(1) Aap(r) Apa(dap(r)) = Idgr for all z € ¢o(Ua N Up);
(2) Apy(dap(x)) As(x) = Ags(z) for all 2 € ¢o(Uy N Uz N U,).

We can express the triviality of a vector bundle in terms of local
data.

Proposition 8.28. Let E be a vector bundle defined by local data Anp
as above. Then E is trivial if and only if for each o there is a map
Ay Uy — Aut(R™) such that, on U, N Ug,

Aup = AlglAa
for all distinct a and .

Proof. Let W: E — M x R" be an isomorphism over the identity. If
{(Us, ¢a) }aer is an adapted atlas of E, we set ¥, := W o ¢;!. This
is an isomorphism from ¢,(U,) x R" to U, x R". We then have, on
U, NUs, \Ilgl oV, = 55 o %;1 = ggag. If we define A4 (q) = (Va)sa(q);
q € Uy, we then get A,p = A?Aa.

Conversely, we can use the given A,s to define the isomorphisms W,
from ¢, (Us) X R" to U, x R". The relations A,5 = AglAa show that
they patch together to an isomorphism £ — M x R". (l

Remark 8.29. If we define A,(z) := Ao (¢ (2)), the triviality rela-
tions reads

Zaﬁ(aj) = Avgl(gbaﬂ(x))ga(x)v Vz € ¢o(Ua N Up).

Example 8.30. We may use this to give another proof of Lemma [8.25
on the triviality of T'S'. Define S* as in Example [4.12| Note the in
this case we can simply write ¢12(2) = ¢21(x) = 1/x. We then have
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App(z) = dypra(z) = —1/2% By setting Ai(z) = 1/z and Ay(y) =
—1/y, we see that T'S! is trivial.
We may similarly prove the triviality of 7°53:
Lemma 8.31. The 3-sphere S® is parallelizable.

Proof. Here we use the the diffeomorphism v between R? and the space
V' of self-adjoint 2 x 2 complex matrices:

MX):( z x—l—iy) _.x

r—iy —=z

with x = (z,7,2). One can easily see that det X = —||z||*> and that
X? = —det X Id. The first consequence is that Vi = V5 = R3\ {0} is
identified with V'\ {0}. The second is that the maps ¢12(x) = ¢o91(x) =

e get identified with the maps ¥ := 1o ¢y; 0 Y vy(X) = — s

By the second identity above we get
Y12(X) = o (X) = X7,

An easy way to compute the differential of {ﬁ\u is to consider the path

v(t) := X +tB, for fixed X € V' \ {0} and B € V. We then have
ba(7(t)) = (X +tB) ' = (X(id + tX'B))™" = (id + tX 'B) ' X,
Using the geometric series > 2 (#"A™ = (id — tA)™', we get

Vi(y(H) = (id — X' B+ O(*)) X .

It follows that

d

E|t:o$12(7(t)) =-X"'50) X"

In other words, le(X ) = dx%z is the automorphism of V' defined
by A19(X)B = —X'BX~!. For X € V' \ {0} we now consider the
automorphism Lx and Rx of V defined by

LxB:=XB, RxB := BX.
Note that (Lx)™' = Ly-1 and (Rx)~! = Rx-1. Finally define
Aj(X) =Ly and  Ay(Y):= —Ry
and check that A15(X) = A7 (¢12(X))A1(X) for all X € V\ {0}. O
On the other hand, we have the following

Lemma 8.32. There is no nowhere vanishing vector field on S>.
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The following simple proof, adapted from [2], is based on the notion
of the winding number and its invariance under homotopy. (We will
introduce this in Section in the case of differentiable curves, but
the result holds also for continous curves and homotopies. In particular,
the Lemma above holds also in the case of continuous vector fields.)

Proof. We use again the description of Example which corre-
sponds to the stereographic projections. Let X be a vector a field
and assume it has no zeros apart possibly at the north pole: i.e.; its
lower emisphere representation X, in V5 = R? has no zeros.

Next consider the upper hemisphere representation X; of X in V; =
R. Outside of the origins of V; and V3, we have X7 = (¢21).Xo, i.e.,
X1 (¢21 (X)) = dx¢21X2(X>. We may compute

1 2 .2
dx¢21 = (y * Qxy ) )

[lel|* \ =22y 2% =y
with x = (z,y). We now restrict to u = (cos#,sinf) € S and get
_ [cos(260) —sin(20)\ (—1 0O
Xi(u) = (sin(?&) cos(26) 0 1 Xofu).
We may regard this as a curve y;: ST — R?\ {0}, v1(u) := X;(u). We
also define I': [0,1] x S* — R?\ {0} by

s = (Sag) eony) (0 1) elow,

where we use the fact that X, has no zeros. Note that I' is a homotopy

from ~; to
_ [cos(26) —sin(20)
Yo(u) = (sin(20) cos(20) v
with v = (%) X2(0). As 5 is a circle winding twice in the anticlock-
wise direction around the origin, we get that its winding number is 2.

By homotopy invariance we then get that also the winding number of
~1 is 2. This shows that X; must have a zero inside the disk of radius

1 centered at the origin, since otherwise I'(s,u) := X;(su) would be
a homotopy to a constant loop, which would imply that the winding
number of ~; is zero. 0

8.2. Densities and integration. We consider a simple, but very im-
portant class of examples of line bundles (i.e., rank 1 vector bundles)
associated to every manifold: the bundles of s-densities, where s is a
real number. We will show that 1-densities, usually called just densities,
are the natural objects to integrate and that nonnegative 1-densities
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define a measure. Densities with other weights s = 1/p are needed to
define the notion of LP-spaces associated to manifolds.

Let M be a Ck*l-manifold, k > 0. Fix an atlas {(Uy, o) }acs. The
differential d,¢.p of a transition map is a linear map 7,0, (U, NUs) —
Ty 5)¢8(UaNUg). However, since the chart images are open subsets of
R™, we can canonically identify their tangent spaces with R" itself. It
follows that d, ¢, is canonically given as an n x n matrix (the Jacobian
matrix of the map ¢, with respect to the given coordinates), so we
can compute its determinant. Next we fix a real number s and take
V=R and A,s3(q) := |det dg, (g Pas| . The requirements (1) and (2)
of Section are satisfied, so we get a C*-vector bundle of rank 1
denoted by |AM|* over M.

Sections of |AM|® are called s-densities. The representation o, of an
s-density o in the chart (Uy, ¢) is just a C*-function on ¢, (U,). What
distinguishes it from the representation of a function are the transition
rules:

(8.2) 08(¢ap(x)) = | det dadap| ™ 0a(),
for all ., 8 € I and for all x € ¢,(U, N Up).

Remark 8.33. Notice that the transition functions are positive, so
it makes sense to define nonnegative densities as densities that are
nonnegative in each representation (i.e., o, > 0 for all ) and positive
densities as densities that are positive in each representation (i.e., o, >
0 for all ).

Remark 8.34. There are several immediate consequences of (8.2]).
The first is that O-densities are just functions. The second is that
the product of an s;-density o, and an s-density o9 yields an (s; +
s9)-density o109. If o is a nonnegative s-density and r > 0, then o is a
nonnegative rs-density. Finally, if ¢ is a positive s-density and r € R,
then ¢" is a positive rs-density.

Remark 8.35. By looking directly into the definition of |[AM |*, by the
discussion in Section [8.1.4] one immediately sees that |AM|° = M x R
and [AM|~% = (JAM|*)*.

8.2.1. Integration. For s = 1, one simply speaks of densities. Densities
are the natural objects one can integrate on a manifold (which possesses
a partition of unity).

Let us consider first the case of a compact Hausdorff manifold M.
Let o be a density on M and {(Us,, ¢a) }aer an atlas on M. By Theo-
rem we can find a finite partition of unity {p;};es subordinate to
{Ua}aer (ie., for each j we have an «; with supp p; C U,,;). Notice
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that supp p; is compact by Lemma . Since ¢,; is a homeomor-
phism, by Lemma, we see that also ¢, (supp p;) is compact (in R",
n = dim M). Finally, observe that the representation (p;o),, of the
density p;o in the chart (U,, ¢q) is a CFk-function, so at least continuous,
in @q,(Uy, ), so it is integrable on ¢4, (supp p;). One then defines

Mi{(Ua,9a)}{pj} o (Supp p;)

jeJ
(Here d"r stands for the Lebesgue measure on R", also otherwise de-
noted by dz!---dx™.)

Lemma 8.36. This integral does not depend on the choice of atlas and
of partition of unity.

Proof. Consider an atlas {(Us, ¢s)}acr and a finite partition of unity
{P7}5e7 subordinate to it. From ) . ;p; = 1, it follows that ¢ =
Y 5c7 P70, 80 we have

J = e
M;{(Uot:d)ll)}v{pj} jeJ aj(supppj)
Y[ e, d,
a(SUPppJ

7eJd jeJ

where we have taken out the finite sum Zje ;- Next observe that

Spm [ (e ' -
ba; (supp pj)

(pjﬁja)aj d'rz =

/% ; (supp p;Nsupp py)
_ / _ (9377 0)a, d,
bar sa; ($az(supp p;Nsupp ps))

where ¢s,q, denotes the transition map ¢q,(Us,) — gba]( a]—)- Since
p;ip;0 is a densﬂ:y, we have

(0P70)a; () = | det dudasa; |(piP70)a; (T),

with T = ¢a;q,(7) and @ € ¢q, (supp p; N supp p;). By the change-of-
variables formula, we then have

$a;(supp p;Nsupp py) ba; (supp py)
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Hence

Z Siy = / (p;0)a, AT

jeJ a;(supp py)
and

=) Sy=

jeJd jeJ

o) IR
ba;(supp pz) M;{(Ua,pa)},{p5}

7eJ

/M;{(Ua,%)},{pj}

O

We can hence drop the choice of atlas and partition of unity from
the notation and simply write:

(8.3) / o= Z/ (pj0)a, d"x
M jeJ (baj(supppj)

This formula is also well defined in the case when M is a Hausdorff,
second-countable manifold and ¢ is a density with compact support.
The main point is Theorem [5.7] that ensures the existence of a partition
of unity subordinate to the given trivialing atlas. The sum over j is
well defined as in a neighborhood of each point only finitely many p;
are different from zero. The integrals on the right hand side converge as
they are actually defined on ¢, (supp p;Nsupp o) and supp p;Nsupp o is
CompactE] The proof of the independence on the choice of trivializing
atlas and partition of unity is exactly as above.

Remark 8.37. In many a situation a density ¢ on M is chosen once
and for all. In this case, one can define the integral of a function f
(compactly supported if o is not compactly supported) as the integral
of the density fo.

The integral on manifolds is additive not only with respect to the
integrating densities but also with respect to the union of integration
domains. We present a simple case that is useful for explicit compu-
tations. First, we say that a subset NV of M has measure zero if, for
some atlas {(Uy, @a)}acr, we have that ¢,(N NU,) is a Lebesgue null

22This is true since the supports are, by definition, closed. Hence their inter-
section is also closed. As this is a subset of supp o, which is compact, it is also
compact.
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set for all a € I. Let M; and M, be disjoint open subsets of M such
that M \ (M; U M) has measure zero. Then we have

/a:/ 0—1—/ o,
M My Mo

where M; and M, are now regarded as manifolds.

This property is very useful for actual computations. Suppose that
we can find finitely many mutually disjoint open subsets My, k € K,
such that their union differs from M by a set of measure zero and
such that each Mj, is entirely contained in a chart U,,. Then we can
choose an atlas for M} consisting of the single chart (Mg, (ay )|y, )- As
a partition of unity subordinate to it we take the function 1 on M.
We then have [, o= f%k(Mk) Oa, d"z for all k € K. Hence

o= Oq, d™x.
/]W Z /Q;ak(Mk) *

keK
Remark 8.38. A nonnegative density o (i.e., 0, > 0 for all « in
some atlas) defines a measure on M, which we assume to be Haus-
dorff and second countable. Namely, let B(M) be the Borel algebra
of M (i.e., the o-algebra generated by the open subsets of M). Pick
an atlas {(Us, ¢a) }aer and a partition of unity {p;},es subordinate to
it. If A € B(M), then AN suppp; is also Borel. Since ¢, is a home-
omorphism, also ¢, (A N supp p;) is Borel. Since (p;o),, is continu-
ous, it is Lebesgue-measurable; since it is nonnegative, we can define
| a; (Asupp pj)(pjo)aj d"r, which is allowed to be infinity. We then define

po(A) := Z/ (pjo)a,d.
jeJ o (ANsupp p;)
As in the proof to Lemma [8.36 one can see that u, does not depend
on the choice of atlas and of partition of unity. One can also verify
that p, is a measure on B(M). Finally, if f € Ck(M) is such that fo
has compact support, we have

[ go= [ i

We can now use the right hand side to extend the integral to all p,-in-
tegrable functions. Another advantage is that in the right hand side we
can use all measure theoretic techniques; for example, we can write M
as a countable union of mutually disjoint Borel subsets M) and write
fM fo=>, ka fdus. Notice that we no longer have to require that
the M;s be open.
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Remark 8.39. Densities appear naturally in several instances, as we
will see. For example, a Riemannian metric naturally defines a positive
density, see Remark [8.78 On the other hand, every top differential
form on a connected orientable manifold naturally defines two densities
(one for each orientation), see Section [9.4]

Remark 8.40. Using Remark [8.34] one can define the LP-space asso-
ciated to a Hausdorff, second-countable manifold as the completion of
the space of the (1/p)-densities o such [, [0’ < oo. If p and and ¢
are conjugate, i.e. 1/p+ 1/q¢ = 1, we have a pairing of o; € L? with
oy € L% by integrating o109. In particular, L*(M), the completion of
the space of half-densities on M, is a Hilbert space.

8.2.2. Densities on vector spaces. We now give a more conceptual de-
scription of densities. The idea is to define s-densities directly on vector
spaces and then to apply this to the case of the tangent space.

Definition 8.41. For s # 0, an s-density on a real vector space V' of
dimension n is a function p on V™ satisfying

(8.4) p(Avy, ..., Av,) = |det A|*u(vy, ..., v,)

for all vq,...,v, € V and all automorphisms A of V. A 0-density is
defined to be a constant function on V™.

Note that a linear combination of s-densitites is also an s-density.
We denote by |AV|* the vector space of s-densities on V. We want to
show that this space is one-dimensional. First we show that it is not
zero-dimensional.

Example 8.42. Let F = (eq,...,e,) be a frame, i.e., an ordered basis,
of V. To an n-tuple (vq,...,v,) of vectors we associate the endomor-
phism 75, . ,, that maps e; to v; for all 2. Then we define

prs(vr, .. vy) = det Ty, 0|,

which is clearly an s-density. Note that the expansions v; = Z?Zl v)e;

imply that the representing matrix of T,, _,, in the frame F is (v]).
We can then write

pFs(V1, ..., 0,) = |det (vf) |S )
We also need the following observation.

Lemma 8.43. Let i be an an s-density on V', s # 0. If the vectors
V1, ..., U, are linearly dependent, then p(v,...,v,) = 0.
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Proof. Let W be the span of vy, ..., v,. Let W’ be a complement, which
by assumption is not zero-dimensional. For some A € R\ {0,1, -1}, let
A be the automorphism defined by Aw = w if w € W and Aw' =
' if w' e W' Then we get p(vy,...,v,) = p(Avy, ..., Av,)
NP u(vr, ... v,), k= dim W’ > 0. This yields pu(vi,...,v,) =
since |A| # 1.

el

From the example and the Lemma we get the

Proposition 8.44. Let p be an s-density on V. Then, for any frame
F = (e1,...,e,) of V, we have

(v, ... 0,) = Ars(v1, ..., 0p)
with X = p(eq, ... en).

Proof. If s = 0, both sides of the equations are constant functions and
they are equal since prg = 1. If s # 0 and the vectors are linearly
dependent, then both sides vanish. If they are linearly independent,
we have

N(Ula--wvn) :,U(Tvl ..... vnela'”aTvl ..... 'L}nen) = |detTv1 ..... vnysﬂ(ela"-aen>7
which concludes the proof. U

As a consequence, a frame F of V' induces a basis (urs) of |[AV]%.
Thus,

dim [AV]* = 1

for all s.
Let now ¢: V. — W be a linear map between n-dimensional vector
spaces. If p is an s-density on W we define, on V",

(b*,u(vh s 7Un) = :u’((bvla s 7¢Un>-
Lemma 8.45. ¢*p is an s-density on V.

Proof. For s = 0 this is obvious. Consider s # 0. If ¢ not an isomor-
phism, then the vectors ¢uvy, ..., ¢v, are linearly dependent, so ¢*u is
identically equal to zero. If ¢ is an isomorphism, we have

O p(Avy, ..., Avy) = u(pAvy, ..., pAv,) =
- M(¢A¢_1¢U1, sy ¢A¢_1¢Un) = | det ¢A¢_1|S,U/(¢U1, .. ,¢Un) =
= |det Al*¢"p(vy, ..., vp).

O
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We then have a linear map ¢*: |[AW|* — |AV|*, called the pullback of
densities. Note that the product of an s;-density p; with an so-density
o is an (s1 + sg)-density g e and we have

O (H1p2) = @* 1" .

Moreover, if ¢p: W — Z is also a linear map, and dim Z = n, we have
(o) =o Y

Remark 8.46. As an s-density vanishes on linearly dependent vectors,
some textbooks prefer to define it only on linearly independent ones.
Namely, they define an s-density, for any s, as a function y on the space
F(V) of frames of V satisfying for all (vy,...,v,) € F(V) and all
automorphisms A of V. Note that with this definition the pullback ¢*
is only defined when ¢ is an isomorphism.

Suppose now that we have chosen a frame F = (ey,...,e,) of V and
a frame F = (€1,...,¢€,) of W. Then we can compute

¢*M]?,s(el7 R en) = ’ det A¢7F,];|S,

where A S F.F 18 the matrix representing ¢ in the given frames. As a
consequence, by Proposition [8.44] we have

(8.5) (b*:u]f‘,s = | det A¢,]:7f:|s,u.7:,s-

Finally, if ¢: V' — W is an isomorphism, we define the push-forward

by ¢ as
Gu = (¢*>_1'

8.2.3. Back to densities on manifolds. We may apply the above con-
struction to give an abstract definition of the density bundles. Let M
be a manifold. We now define |[AM|* as U e | AT, M|°. Given an atlas
{(Uay ®a) }acr, we have, for all ¢ € U,, the linear map

(dya)e: |AT,MJ* — |AR"]".

We also have an isomorphism |[AR"]* — R given by the frame (urs) of
|AR"|* induced by the canonical frame F of R™. The fiber component
A, (q) of the resulting adapted chart map is the composition of (d,¢q )«
with this isomorphism.

To check that this construction defines the same line bundle as we
have used before, we just have to compute the transition functions.
For ¢ € U,NUg we have that A,s(q) is the composition of (dg, (q)Pas)«
with the isomorphisms to R given by the canonical frame. By (8.5)),
we get that Aas(q) = | det dg, (g)Pap|~°, as expected.
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Remark 8.47. Note that we can avoid identifying |[AR"|* with R and

think of the chart map on U, as taking values in ¢,(Us) x |AR"[*. In
this case the transition functions are directly given by the (dg, (g)®ag)+S-

Remark 8.48 (Standard density). The s-density on R"™ determined by
the canonical basis as in Example is called the standard s-density
and is denoted by the symbol |d"z|*. The standard s-density on an
open subset U of R, also denoted by |d"z|*, is the positive s-density
that takes the value |d"z|® at each point. If s = 1, we can integrate it
and we clearly have [, |d"z| = [, d"z, where d"z denotes the Lebesgue
measure. Note that the standard 1-density and the Lebesgue measure
are conceptually two different objects that are identified in integration
just because of the definition of the integral of a density. We will
keep different notations for the sake of clarity, but there is no risk of
confusion in using the same notation.

8.2.4. Pullback and push-forward. Let M and N be manifolds of the
same dimension. Let F' be a map from M to N and let o be an s-density
on N. We define the pullback F*o of ¢ as the s-density on M given by

(F*J)q = (qu)*UF(q), qe M.

In coordinates, the pullback is then described as follows. We first pick
an atlas {(Us, o) }acr of M and an atlas {(Vj,1;)};es of N. If {o;}
denotes the representation of ¢ in the atlas for N and {F,;} denotes
the representation of I’ with respect to the two atlases, we have

(F70)a(z) = | det d, Foj|* 05 (Foj()),

for x € ¢ (Us,).
Also notice that, by construction F™ is linear and that

F*(Ulag) = F*Ul F*Ug.

Finally, if M, N, Z are manifolds of the same dimension and we have
maps F': M — N and G: N — Z, then

(G o F)* = F*G*.

Remark 8.49. In the particular case of a map F' of open subsets of
R", we have the following useful formula for the standard densities:

(8.6) Fld"f = [det dF|* [d"z|*

In this formula dF' stands for d, F’ where x is the point where we want
to evaluate the formula.
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In case F': M — N is a diffeomorphism, we can also push forward
densities from M to N, just by setting

F, = (F 1"

Of course we have that

F.(0y102) = F.o1F,09,
and, given diffeomorphisms F': M — N and G: N — Z, that

(GoF), =G.F..

Remark 8.50. Using push-forwards, we can write the representation
of an s-density o in a chart (U, ¢p) as

(Pv)<oly = ou|d"|®.
To understand this formula just notice that the left and right hand side
of this equation are both s-densities on ¢y(U) that are represented in

the standard chart of ¢y (U) by the same function op. If we pick an
atlas {(Ua, o) facr, we then have

(8.7) (0a)s0lv, = oaldz®,
for all a, and we can rewrite the compatibility equation (8.2) as

0p|d"z[* = (¢ap)+(ald"x|’)

for all o, € I, where, by abuse of notation, o, denotes here the
restriction of o, to ¢o (U, NUs) and oz denotes the restriction of o4 to
¢p(Uy NUg). Since the push-forward is an algebra morphism, we have

that (Gas)«(0ald™|?) = (¢ap)sTa(Pas)«|d™|*. By (8.6), we have that
(Pap)«|d™x|® = | det dg|~*|d"x|®, which then yields the transformation

rule (8.2)) for the coefficients o,.

Remark 8.51. If F': M — N is a diffeomorphism and ¢ a density on
M, then the change-of-variables formula immediately implies

(8.8) /M - — /N F.o

assuming that the integrals converge. If f is a function on M, we also

have
/fO':/F*fF*O':/fOF_IF*O'.
M N N

Remark 8.52. Recall that, if M and N are measurable spaces and
F: M — N is a measurable map, then we can define the push-forward
of a measure p on M to a measure F,u on N by

(Fup)(A) = p(F~H(A))




72 A. S. CATTANEO

for any measurable subset A of N. If M and N are manifolds, F' a dif-
feomorphism and ¢ a nonnegative density on M, then we immediately
get

F*:U/U = UF.o-

8.2.5. The Lie derivative. If M is Hausdorff, we may define the Lie
derivative of an s-density in complete analogy with what we did for
functions and vector fields (see also Remark . For simplicity we
are now going to consider only smooth manifolds. Namely, we set

0 0
Em o). 0= g tZO(‘I’iX)*@

for X € X(M) and o an s-density. The Lie derivative is again R-linear.
Moreover, we have

(8.9) %

for all s for which the flow is defined. The proof is exactly the same as
in Lemma [7.31] This also implies that ¢ is preserved by the flow of X
if and only if the Lie derivative vanishes:

(®;*)s0 =0 ¥Vt if and only if Lyo = 0.

L =
X t:O(

((I))ft>*0- - ((I))fs)*LXO- = LX((I))ES)*O-

t=s

Moreover, the Lie derivative satisfies the Leibniz rule
Lx(0102) = Lxoy 02 4 01 Lx0s.

Finally if F': M — N is a diffeomorphism, by the properties of the
push-forward and by Proposition [7.28] we get

(810) F*LXa' = LF*XF*O',
for all X € X(M) and all ¢ € T'(|JAM|®). Finally, exactly as in the

proof of Lemma [7.35] we get
Lxiyo =Lxo +Lyo,
LxLyo — LyLxo = Lix yo,
for any two vector fields X and Y.

A useful interpretation of the Lie derivative of densities is given by
an application of the change-of-variables formula (8.8]).

Lemma 8.53. Let U be an open subset of M, which we regard as a
submanifold. We consider ®X as a diffeomorphism from U to ®X(U).
Then

(8.11) 2/ a—/ Lxo.
ot Jox u) »X (U)



NOTES ON MANIFOLDS 73

In particular, this shows that f@X(U)U is constant for all Us, for
which the integral converges, if and only if Lxo = 0.

Proof. By the change-of-variables formula (say, for ¢; close to ¢ and 5
close to 0), we have

/ (@fg)*a—/ 0.
X (U) oX_, (U)

t1—t2
From the right hand side we see that this depends only on the difference
between t; and t,, so the derivative with respect to £; must be equal
to the derivative with respect to t. Hence, also using , we get

— o1 )o = —— o), 0= o). Lyo.
ot @fﬁ(U)( tZ) Ot <1>f§(U)( t2) <1>f§(U)( t2) *

By applying the change-of-variables formula again, we then get

0
—/ 0:/ Lxo,
ot Jax W) oX_, (V)

t1—t2
which is the equation we wanted to prove by setting ¢t = t; — t5. (More
precisely, you can make the change of variables t = t; — to, s = t1 + to,
d

and observe that 8% =5+ % and that the expression does not depend

on s.) O

This result has an even better formulation if ¢ is nonnegative, for,
as explained in Remark it defines a measure pu,. We define

Vol(U) = po(U)

where U is a Borel subset of M. If we also have a vector field X, we
define the volume at time t by

Voly(U) = 1 (9 ().

Here the intuition comes from fluid dynamics where X is interpreted
as a velocity field that prescribes the fluid motion; under this motion
the fluid region U is transformed into ®;*(U), and we are interested
in measuring the volume as the region changes with time. With these
new notations equation becomes

0
ZNol,(U) = L
ot oh(U) /@gf(U) X

for all open subsets U. The vector field X is called volume preserving if

% o Vol (U) = 0 for every open subset U. By the above formula one

sees that

X is volume preserving if and only Lxo = 0.
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In fluid mechanics where X is the velocity field of a fluid, one speaks
instead of an incompressible flow when this condition holds; typically,
liquids are incompressible as a good approximation.

We finally come to the computation of the Lie derivative of a density.
We start with the

Lemma 8.54. Let U be an open subset of R and X =Y " X'0; a
vector field on U. Then, for every s,

Lxld'|* =) 0, X"|d"x|".

i=1
Proof. By , we have

Ly|d%]® = (@X)*|d"|* = a’ | det dDX [*|d"z|*.

il
Since

(B (2))" = 2" +tX'(x) + O(t?),
we have
0; (D) = 6% +t9; X" + O(*).

Hence, by the Leibniz formula for determinants,

detd®) = 1+1t) 0,X' +O(t).
=1

Finally,

| det AP\ |* = (det d®)* =1+ st 3 9, X" + O(£),
=1
SO
—|  |detd®|® = 9, X1
t:0| € t ’ 5;

O

Proposition 8.55. Let o be an s-density and X a vector field on M,
dim M =n. In an atlas {(Us, ¢a) tacr of M, we have

n

(Lx0)o = > (X.0i00 + 50a0:X}).

i=1

In particular, if s =1 we have

(8.12) (Lx0)a = Zai(aaxg).
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Proof. By (8.7) and (8.10)), we have (Lx0o).|d"z|® = Lx,(04]|d"x|*). But

by the Leibniz rule we have
Lx, (0a|d"z]?) = Xo(0n) |d"x|® + oulx, |d"z]°.
Finally, we use Lemma O

Remark 8.56. The local formula may be used to define the Lie de-
rivative of a density also when the manifold is not Hausdorff or not
smooth.

Notice that (8.12) immediately implies that, if o is a density, X a
vector field and f a function, we then have

(813) foaz Lx(fO')

8.2.6. Positive densities and the divergence of vector fields. We now
concentrate on positive densities, for which the above results can be
refined. The crucial point is that, if ¢ is a positive density on M, then
for every density 7 on M there is a uniquely defined function f such
that 7 = fo (this is easily shown using the chart representations). As
a consequence, for every vector field X, there is a uniquely defined
function div, X, called the divergenceﬁ of X with respect to o, such
that

Lxo = divo.Xo‘

Remark 8.57. Notice that a vector field X is then volume preserving
if and only its divergence vanishes.

Remark 8.58. Notice that positive densities are rather general. An
example is the standard density |d"z| on an open subset of R™. More
generally, every Hausdorff, second-countable manifold admits a positive
density. This is easily proved. Let {p;};cs be a partition of unity
subordinate to an atlas {(Ua, ¢a) taer of M, with dim M = n. Then we
define o = 3", ; pj (¢,))+|d"|. By Proposition , |AM]|, and hence
|AM]|® for all s, is then a trivializable line bundle for every manifold M
that admits partitions of unity (so, e.g., compact Hausdorff of Hausdorff
second-countable manifolds).

Remark 8.59. From the Leibniz rule Ly (fo) = X (f)o+ fLxo, where
f is a function, we get

1
dive, X = ?X(f) + div, X

23This term also comes from fluid dynamics: if div, X # 0, the volume of open
subsets changes. This means that the fluid has to move in or out of U and hence
that the flow lines of X, for an appropriate time direction, move apart, i.e., diverge.
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for every positive function f. From the Leibniz rule and from (8.13)),
we also have

div, (fX) = X(f) + fdiv, X.

for every function f. For f positive, we then have

1
divy, X = 7divg(fX)

Remark 8.60. A nice application of these formulae occurs in fluid
dynamics where X is the velocity field. Let p be a physical density (of
matter, of charge,...). Despite the name p is a function, which is in
general also allowed to be time dependent. In addition one has a given
1-density o (in examples, often the standard density on R”).ﬁ The
integral M(U) = [ X () PO then represents the total quantity (of mass,

charge,...) in the region U at time ¢. If the quantity is conserved, then
%Mt(U ) must be zero for every open subset U. Again by the change-
of-variable formula and by , as in the proof to Lemma m,
we see that this happens if and only if %0 + Lx(po) = 0. By the
formulae above, Lx(po) = L,xo = div,(pX)o. Writing J = pX,
which represents the current of the transported quantity, we see that
the quantity is conserved if and only if
dp

E -+ diVUJ = 0.

This is called the continuity equation.

We finally come to the computation of the divergence of a vector

field. Pick an atlas {(Uy, ¢a)}acr on M. Then by (8.7) and (8.12)), we
have

n

(8.14) (diveX)a = > iai(aaXé)

o
i=1 ¢

Remark 8.61. If U is an open subset of R” and X = Y"1 | X0, is a
vector field on U, then the divergence of X with respect to the standard
density |d"z|, which we denote simply by div, has the usual form from
calculus:

n
divX =) 9,X".
=1
247 physical density, like e.g. mass per unit volume, is a ratio of 1-denstities

(in this example mass density over volume density), and hence a 0-density, i.e., a
function.
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Remark 8.62. The local formula (8.14) may be used to define the
divergence of a vector field also when the manifold is not Hausdorff.

8.3. The cotangent bundle and 1-forms. The dual bundle (see
Example of the tangent bundle T'M is denoted by T*M and is
called the cotangent bundle of M. Its fiber at ¢ is denoted by Ty M. Its
sections are called 1-forms. The space of 1-forms on M is denoted by

QY (M) == D(T*M).

If one picks a trivializing atlas {(Uy, ¢a)}acr, then a 1-form is the
same as a collection of C*-maps wy: ¢a(Uy) — R™ such that

(8.15) (dePap) ws(Pas(2)) = wa(2)

for all ., 8 € I and for all z € ¢,(U, N Up).
If F: M — N is a C*map and w € Q}(N), we may define a 1-form
F*w on M by

(Frw)g == (dgF) Wr(g)-
This is called the pullback of 1-forms and extends the pullback of func-

tions defined in subsection [3.1 The pullback of 1-forms is clearly R-lin-
ear. Moreover, if f € C¥(N) and w € Q'(N), then

F*(fw) = F*fFw.
Finally, again, if G: N — Z is also a C*-map, then
(G o F)* = F*G".

Using pullbacks, we can write the representation of w in a chart
(U, ¢v) as wy = (¢5")*w|y. Moreover, we can rewrite the compatibility

equation ({8.15)) as

Wo = ¢Zﬂwﬂ

for all a, 8 € I, where, by abuse of notation, w, denotes here the
restriction of w, to ¢, (U, NUp) and ws denotes the restriction of wg to
¢p(UyNUgz). This just extends Remark from functions to 1-forms.

The pairing (w, X) of a 1-form w and a vector field X (see Exam-
ple is often denoted by txw and called the contraction of X with
w. If F: M — N is a diffeomorphism, then we clearly have

(Frw,X) = F*(w, F.X)
for all X € X¥(M) and w € Q'(N). This may be put in a more sym-

metric way if we introduce the push-forward F, of a 1-form by a diffeo-
morphism F. Namely, for w € Q'(M) one defines

Fow:=(FYw=(F)'w.
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One then has
(8.16) Fw,X) = (Fuw, F.X)

for all X € X(M) and w € Q'(M). Using the notation with contraction
we have
F*(LX(JJ) = LF*XF*UJ.
A large class of 1-forms arise by differentiating functions. Namely, if
[ is a C*-function on M, then d,f: T,M — R can also be read as an
element of T M and hence defines a 1-form of class Ck=1 denoted by
df. We prefer not to bother with the shift in k, so for simplicity we
only consider smooth manifolds now. The map
d: C*(M) — QYM)
o= df
(a.k.a. the de Rham differential) is R-linear and satisfies the Leibniz
ruld®’
d(fg) =dfg+ fdg
for all f,g € C>®(M). Elements in the image of d are called exact
1-forms. If X is a vector field, we also clearly have

ixdf = (df, X) = X(f) = Lx f.
By the chain rule, the de Rham differential commutes with pullbacks:
Lemma 8.63. If F': M — N 1is a smooth map, then
F*df =dF*f
for all f € C*(N).
Proof. We have
4,(F*f) = dy(F o F) = de fd F = (dyF) dpi f = (F*df),.

O

If F is a diffeomorphism, then we also have
F.df =dF.,f
for all f € C®(M).

25This innocent looking formula requires some explanation. One way to get it is
to observe that for every vector field X and every function f we have X(f)(q) =
(dgf, Xy4). From X(fg) = X(f)g + fX(g) evaluated at g, noticing that we have
enough vector fields to span all directions, we get d,(fg) = dgfg(q) + f(¢)dgg-
Another way of proving the Leibniz rule consists in observing that on open subsets
of R™ it is just the rule for deriving a product. Then one uses Lemma [8.63] to
transfer it from the images of the charts to the manifold.
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If M is Hausdorff, we may define the Lie derivative of a 1-form in
complete analogy with what we did for functions and vector fields in

subsection (see also Remark [7.30]). Namely, we set

0 0
Lxw = o | (@)= 2| (@)
XY= o t:O( —t)st ot t:O( o)
for X € X(M) and w € Q'(M). The Lie derivative is again R-linear.

Moreover, we have

0

ot
for all s for which the flow is defined. The proof is exactly the same
as in Lemma [7.31] As a corollary, we then have that w is preserved by
the flow of X, i.e.,

(®;")yw =w Vt if and only if Lyw =0.
If f is a function, the properties of pullback imply

(P%)w = (2,):Lxw = Ly (PX,).w

t=s

(817) Lx(f(JJ) = LXfw—l—fLXw.
Moreover, Lemma [8.63| implies that
(8.18) [Lxdf = dLxf]

for every vector field X and every function f. From (8.16]) with F' the
flow of a vector field Y, we also get

(819) Ly(w, X) = (LyOJ,X) + (w, LyX),

orall X € X(M) and w € Q'(M). Using the notation with contraction
and Lemma [7.29, we can rewrite this as

(820) LXLYw — LyLXoJ = L[X,y]w

Finally if F' is a diffeomorphism, by the properties of the push-forward
and by Proposition [7.28] we get

(8.21) LxF*w = F*Lp, xw,
for all X € X(M) and all w € Q'(N). Equivalently,
F.lxw = Lp, xFiw,
for all X € X(M) and all w € Q'(M). Finally, we have
Lxiyw = Lxw+ Lyw,
LxLlyw — Lylxw = Lix yyw,

for any two vector fields X and Y. If we work in the image of a
chart, the proof is exactly as in the local chart proof of Lemma [7.35]
Alternatively, we may observe that since L commutes with d, in the
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case of exact 1-forms these identities immediately follow from those for
functions. The next remark is that in a local chart every 1-form is a
linear combination of products of a function and an exact 1-form, so the
result for general 1-forms in a chart image follows from linearity and
from the Leibniz rule. The global result follows from the commutativity
of L with pullbacks. (If a partition of unity subordinate to an atlas is
available, one can easily see that also globally a 1-form is a linear
combination of a product of a function and an exact 1-form.)

If V is an open subset of R", then we can consider the differentials
da’ of the coordinate functions z’. Notice that we have (using the
notation of Remark on page which comes in very handy here)

oxt
dx %
Since (0;)i=1,..n is a basis of X(V) as a module over C*(V), we see
that (dz');=1.. , is the dual basis of Q'(V). It follows that for every

w e QYV), we have
w = Zwidxi7
i=1

where wy, ..., w, are uniquely determined functions. If f is a function
on U, we also clearly have

Lo, dz’ =

i=1

The Lie derivative is easy to compute in local coordinates:

Lemma 8.64. Let U be an open subset of R™. If w ="  w;da’ is a
1-form and X =" | X'0; is a vector field, then Lxw = > | (Lxw);dz’
with

(Lxw); = Y (X70jw; + w;0,X7).

Jj=1

Proof. By (8.17)) and (8.18), we have

Lx Y wide' = (Lxwda’ + widLxa’).
i=1 i=1
From Lyw; = Y77 X70;w;, Lxa" = X' and dX* = 377 | 0;X"da’ we
get the result. 0
Remark 8.65. One can define the Lie derivative of a 1-form also on

a non-Hausdorff manifold simply using the above formula on the rep-
resentations in each chart. Namely, let w and X be a 1-form and a
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vector field on M. Let w, and X, be their representations in the at-
las {(Ua; ¢a) taer- Since the intersection chart images ¢, (U, N Up) are
Hausdorff, as subsets of R", we can use to conclude that the
collection Ly, w, represents a 1-form that we call the Lie derivative of
w by X and denote by Lxw.

If F: M — U is a smooth map to an open subset of R"”, by using all
the properties above we have

Fro = iF*widF* L= iwioFdFi

with F := 2 o F' the ith component of the map F.

8.4. The tensor bundle. If F is a vector bundle over M, we define
TF(E) as the vector bundle whose fiber at ¢ is TF(E,). (We use the
notations of Appendix ) Namely, to an adapted atlas {((7&, (Za)}ae I
of E over the trivializing atlas {(Uy, ¢a)tacr of M, we associate the
atlas {(Ua, Ga) bact of TH(E) with Uy = 77} (Ua) = Uger, TH(E,)
and N N

o U, — R"™ x TF(R")

(a.w € TH(E)) = ($ala) (Aala))sw)
where we identify T#(R") with R"*+5) Tt follows that we have transi-
tions maps R
Pas(,u) = (Pas(2), (Aap(d5 ' (2)))5 u).

We specialize this construction to the case when the vector bundle £
is the tangent bundle T'M. In this case, the transition maps are

Gap(w, 1) = (Gas(w), (dutap)s w).
A section of TFM := TF(TM) is called a tensor field of type (k,s). If
{(Us, ) }acr is an atlas on M, a (k, s)-tensor field = is represented by
a collection of maps Z,: ¢o(Uy) — TF(R™) = R™*+9) such that

(8.22) Z5(bas(2)) = (dudap)s Eal@)
for all o, 8 € I and for all z € ¢,(U, N Up).

Tensor fields of type (0,s) are also called covariant tensor fields of
order s, whereas tensor fields of type (k,0) are also known as con-
travariant tensor fields of order k. Notice that (0,0)-tensor fields are
the same as functions, (1,0)-tensor fields are the same as vector fields
and (0, 1)-tensor fields are the same as 1-forms. The tensor product
of tensors induces, by pointwise multiplication, the tensor product of
tensor fields

D(TH M) x T(T2M) — T(T8 M),

s1+s2
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which is bilinear over the ring of functions. If =; and =, are tensor
fields, their tensor product is denoted by Z; ® =s.

Remark 8.66. The notion of tensor product, which we have recalled
in Appendix Bl for vector spaces, holds more general for modules. If M,
and M, are modules over a ring R, one uses the notation M; ®g M, for
their tensor product (as M; and M, may often be regarded as modules
for some subring). The tensor product of tensor fields, being bilinear

over C*°(M), induces a C*°(M)-linear map

D(TH M) @ceoary (T2 M) — D(TE 2 M),

s1+s2

In particular, we have the canonical C*° (M )-isomorphism
TEX(M) ~T(TFM),

where TF denotes on the left hand side the C°°(M)-tensor power and
on the right hand side the fiberwise R-tensor power. As tensor fields
are tensors for the C*°(M)-module X(M), they are often simply called
tensors.

If F: M — N is a diffeomorphism, then we can define the push-
forward F, of tensor fields by pointwise application of (B.4)): namely, if
= is a tensor field of type (k, s), we define

(F*E)y = (del(y)F)]sc EFfl(y)’

for y € N. Notice that in the case of functions, vector fields and 1-forms
the push-forward coincides with the one that we have already defined.
Moreover, for any two tensor fields =; and =5 we have

Also notice that if G is a diffeomorphism from N to Z, then (Go F), =
G,oF.,.

Using push-forwards, we can write the representation of a tensor field
= in a chart (U, ¢y) as Sy = (¢v)«Z|y. Moreover, we can rewrite the
compatibility equation as

Zp = (Pap)+Za

for all a, 8 € I, where, by abuse of notation, =, denotes here the
restriction of Z, to ¢,(U, N Us) and =5 denotes the restriction of =g
to ¢p(Us N Up).

If M is Hausdorff, we may define the Lie derivative of a tensor field in
complete analogy with what we did for functions, vector fields, densities
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and 1-forms (see also Remark [7.30)). For simplicity we are now going
to consider only smooth manifolds. Namely, we set

0
—|  (®X).Z,
ot t:O( =)
for X € X(M) and = a tensor field. The Lie derivative is again R-linear.
Moreover, we have

0
| (@%).E = (22).LxE = Lx(22,).E

at t=s
for all s for which the flow is defined. The proof is exactly the same as

in Lemma [7.31] This implies the important

LXE =

Corollary 8.67. A tensor field = is preserved by the flow of a vector
field X, i.e.,
(). E=ZVt if and only if Lx= =0.
If =1 and =, are tensor fields, then (8.23)) implies the Leibniz rule
(8.24) Lx(Z1 ®EZs) =LxZE1 ® 2o + 21 ® LxEs.
Finally if F': M — N is a diffeomorphism, by the properties of the
push-forward and by Proposition [7.28, we get
(8.25) F.Lx= =Lg xF.Z,
for all X € X(M) and all tensor fields =. Finally, we have
LxvE = Lx=+ LyE,
LxLyE — Ly LxE = Lix y|E.
for any two vector fields X and Y. Again, in a chart image this may
be proved either as in the local chart proof of Lemma or observ-
ing that a tensor field is a linear combination of tensor products of

functions, vector fields and exact 1-forms, as explained in the following
remark.

Remark 8.68. On an open subset U of R™ we have a basis of the
C>(U)-module of (k, s)-tensor fields given by

0, ® - ®0;, @da’ @ --- @ da.
As a consequence, a tensor field on U is a finite linear combination of
tensor products of functions, vector fields (9;) and exact 1-forms (da?).
This is also true globally for tensor fields on a manifold with partitions

of unity (such as a Hausdorff second-countable manifold), for we can
write a tensor field = as

E= ZpZE|U% = Zpl (¢;i1)*5aia

ieJ ieJ
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where {p; }ic is a partition of unity subordinate to the atlas {(Uy, ¢a) }acr-
Hence by it is enough to know the action of the Lie derivative
on functions and on vector fields as the action on exact 1-forms can be
deduced from equation (8.18)).

Remark 8.69 (Pullback of covariant tensors fields). The push-forward
of tensor fields requires having a diffeomorphism. If = is a (0, s)-tensor
field on N, however, we can pull it back by any map F': M — N by

(F B)q := (deF))** Ere),

for ¢ € M. Notice that in the case of functions and 1-forms this
coincides with the already defined pullback. Also notice that, in case
F is a diffeomorphism, then F* = (F~1),.

8.5. Digression: Riemannian metrics. A very important example
of tensor field is the so-called Riemannian tensor, which is used to
introduce geometric properties on a manifold (this specialized part of
the theory of manifolds goes under the name of differential geometry).

Let us start recalling the notion of (Euclidean) length in R™. Let
v: I — R" be a piecewise differentiable curvem Then one sets

() = / VIGO0 dt,

where 7 denotes the Euclidean scalar product: n(v,w) = Y7 v'w’.
This definition extends the notion of Euclidean length of segments by
Pythagoras’ theorem. Actually, if one approximates v by a piecewise
linear curve, whose length is defined as the sum of the lengths of its
composing segments, then one gets ¢(y) in the limit. The main idea of
Riemannian geometry consists in replacing the fixed bilinear form n by
a point-depending one.

Definition 8.70. A Riemannian metric on a differentiable manifold is
a positive definite, symmetric (0, 2)-tensor field. If ¢ is a Riemannian
metric on M, the pair (M, g) is called a Riemannian manifold.

More explictly, a Riemannian metric g on M is a section of Ty M =
T*M ® T* M such that, for each g € M,
gq(v,w) = gg(w,v) for all v,w € T,M
and

gq(v,v) >0 forallve T,M\ {0}.

26This means that + is continuous and that I can be written as a disjoint finite
union of intervals Iy such that 7 is continuously differentiable in the interior of each
I, and the limits of its derivatives to the endpoints of each I are finite.



NOTES ON MANIFOLDS 85

Remark 8.71. In an open subset of R™ a metric g can be expanded
as g = > i, gijda’ @ da?, where for each x the matrix with entries
gij(x) is symmetric and positive definite. Typically one omits writing
the tensor product symbol, so a metric is simply written as

(8.26) g= Z gi; da'da?.
i=1

The Euclidean metric 1 then reads n = > (dz?)?. If one uses coor-
dinate functions without indices, e.g., z,v, 2, . . ., then one customarily
writes dz? instead of (dz)?, and so on, so the Euclidean metric reads
n=dx?+dy* +dz?+---.

Remark 8.72. Another notation for a metric g is by the “infinitesimal
line length” ds®. Namely, instead of (8.26) one writes

ds® = Zgij dz'da’.
i=1
In the case of the Euclidean metric,
ds? =da® +dy? +dz* + -+,

this takes the form of an “infinitesimal Pythagorean theorem.” This
notation also fits well with the general notion of product Riemannian
metric, of which this was an example. More generally, if gy, and gy
are Riemannian metrics on M and N, respectively, then one defines

IMxN = Ty gu + TGN,
where 7, and 7y are the projections from M x N to M and N. It
is readily verified that gp/«n is also a Riemannian metric. If we write
ds? instead of g and let the pullbacks be understood, then we have
dsi,, v = dsi; + dsy,
another instance of the “infinitesimal Pythagorean theorem.”

Notice that Riemannian metrics are a very general concepts:

Lemma 8.73. Every manifold with partitions of unity (e.g., a Haus-
dorff, second-countable one) admits a Riemannian metric.

Proof. Let {p;}jes be a partition of unity subordinate to an atlas
{(Ua)$a)}aer of M. Then define g = 3. ;p;j(d,)).n, where n is
the Euclidean metric and p; (gzﬁ;jl)*n is extended by zero outside of U,;.
Since a convex linear combination of positive definite bilinear forms is
positive definite, it is readily checked that g is a Riemannian metric. [J
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Definition 8.74. The Riemannian length of a piecewise differentiable
curve v: I — R" is

ly(7y) = /I\/gy(t)(ﬁ(t),ﬁ(t)) dt.

Lemma 8.75. The length of a curve does not depend on its parametriza-
tion.

Proof. Let ¢: I — J be a diffeomorphism and let ¥ := yo¢~t: J — M
be a different parametrization of . Then

t(y) = /I \/ Fiio) (DOF(D()), dEF(H(L))) dt =
= /I\/gww(t))@'(cb(t))’ () 16(8)] dt =

- / V59 (7). 3(5)) ds = £,(3).
with s = ¢(t). =

For those who know calculus of variations, we can introduce the

Definition 8.76. A geodesic on (M, g) from ¢; to ¢» is an extremal
path for £, on the space of immersed curves joining ¢; to gs.

One can use the calculus of variations to show that a geodesic is
a solution of a second-order differential equation. If M is Hausdorff
and the endpoints ¢; and ¢y are close enough, there is then a unique
geodesic joining them that minimizes length; also notice that the length
of an immersed curve is necessarily strictly positive. This result is
fundamental to prove the

Theorem 8.77. Let (M, g) be a connected Hausdorff Riemannian man-
ifold. Let

dQ(Qla QQ) = lgf Eg(’}/)a

where the infimum is taken over the set of all piecewise differentiable
curves joining qi to qa. Then dg is a distance on M which induces the
same topology as the atlas topology.

Sketch of the proof. The function d, is clearly symmetric and nonneg-
ative. We also have d,(¢,q) = 0 as we can take the constant path to
join ¢ to ¢q. The triangle inequality also follows immediately from the
definition: if we have three points ¢;, g2 and ¢3, then any curve v,
that joins ¢; to g2 may be joined to any curve 7, that joins ¢ to ¢3
to produce a curve vy that joins ¢ to ¢3. By additivity of the integral
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we have £4(y) = £y(71) + ¢4(72). On the other hand, by definition we
have d,(q1,q3) < {4(y). Taking the infimum over v, and over v,, we
finally get dy(q1,q3) < dg(q1,q2) + dg(ga, q3). What is left to prove is
that if ¢; # g2, then dy(g1,92) > 0. The idea is to take the preimage
under a chart map of a ball around ¢ not containing ¢s such that there
is a unique length-minimizing geodesic joining ¢; to any point inside
this ball. Since every path joining ¢; to g2 must go through this ball,
the infimum of the lengths is not smaller than the length of a geodesic
inside the ball, which is strictly positive. We leave to the reader to
check that the topology induced by this metric is the same as the orig-
inal topology. For more details, we refer to any book on differential
geometry, e.g., [4, Prop. 8.19]. O

Remark 8.78 (The Riemannian density). Riemannian metrics can be
used not only to define lengths, but also volumes. First, observe that if
g is a (0, 2)-tensor field then its determinant det g is a 2-density. More
precisely, pick an atlas {(Uy, ¢u)}acr and let g, be the representation
of g in the chart a. Then

((de®ap) ) gs(¢ap(x)) = ga(x)

for all a, 8 € I and for all © € ¢o(U, NUps). As go(x) is an element
of ((R™)*)®2 i.e., a bilinear form on R™ or, more concretely, an n x n
matrix, we can take its determinant. We then have

(det dygap)® det g (das(r)) = det go(z)

for all o, 8 € I and for all x € ¢,(U, N Ug). This shows that the col-
lection {det g, }acr represents a 2-density. If ¢ is a Riemannian metric,
then det g, > 0 for all a, so we can take its square root, which defines
a density since

| det dy |y det g (Gas(2)) = \/det go(2)

forall a, € I and for all x € ¢,(U,NUg). We denote by v, the positive
density that in the chart (U,, ¢,) is represented by \/det g,. This is
called the Riemannian density. Finally, we can define the Riemannian
volume of M as

Vol, (M) := / v, € Rog U {400},
M

Remark 8.79. If U is an open subset of R™ and we take the restriction

to U of the Euclidean metric n as a Riemannian metric, then Vol, (U) =

fU d™r, the usual Lebesgue volume.
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Remark 8.80. Let F: M — N be a diffeomorphism and let g be
a Riemannian metric on M. Then we have Fiv, = vp4, where on
the left hand side we use the push-forward of densities introduced in
subsubsection [8.2.4

Remark 8.81 (The divergence). Since the Riemannian density v, is
positive definite, it defines a divergence operator as explained in sub-
subsection m For simplicity of notation, we write div, instead of
div,,. Notice that by (8.14)), in an atlas {(U,, ¢a)}aecr we have

Z \/W (x/detgaXZ>

The Riemannian divergence operator will play a central role in the
theorem of Gauss.

(8.27) (div,X)

Remark 8.82 (Gradient and Laplacian). A (0,2)-tensor g establishes
a linear map T,M — Ty M at each ¢ € M by v + g4(v, ). These maps
may be assembled into a morphism

®,: TM — T*M

as in Definition [8.16| This morphism can be used to push forward
vector fields to 1-forms. If g is a Riemannian metric, this is actually
an isomorphism. In particular, to every function f we can associate a
uniquely determined vector field

grad, f == ®_'df,

called the gradient of f. The gradient of f is uniquely characterized by
the property that

g (grad,f,Y) = Y(f)

for every vector field Y. The divergence of grad, f is called the Laplacian
of f and is denoted by A, f, so

A, f = divygrad, f.
In an atlas {(Ua, ) }acr, we have

(grad, f),, Zg 0ifa 0;,

where (g%) denotes the inverse of the matrix ((gq)ij). The Laplacian
then reads

ZW (V/detga g 01t
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Notice that on an open subset of R™ with Euclidean metric we recover
the usual formulae from calculus:

gradf =Y 0;f0; and Af=> 0}f.

Finally, recall that, as in Remark [8.69] covariant tensor fields can
be pulled back. The pullback of a Riemannian metric is in general
degenerate, so not a Riemannian metric. However, if +: S — M is an
immersion, then dg(77,5) is a subspace of T, M. The restriction of a
positive definite, symmetric bilinear form to a subspace is still positive
definite. Hence, if g is a Riemannian metric on M, then gg := (*g is
a Riemannian metric on S. In particular, this is the case when S is
a submanifold and ¢ the inclusion map. The Riemannian metric gg is
called the restriction of g to S. The volume of S is then defined as

Vol,(5) ::/vgs.
S

Remark 8.83. The Riemannian density v, is positive, so it defines a
positive measure fi,, on M, see Remark If U is an open subset
of M, then Voly(U) = fi,,,(U). If on the other hand S is a submanifold
of strictly lower dimension, we have ji,,(S) = 0, but Vol,(S) > 0. The
volume defined by the induced metric generalizes, e.g., the notion of
areas of surfaces in three-dimensional Euclidean space.

Example 8.84 (Length). Let v: I — M be an immersed curve. If g
is a Riemannian metric on M, the induced metric g, is given by

9(t) = gy (F(1), A(t)) dt*.

Hence

Voly() = / ST = L,(7).

Example 8.85 (Area). Let S be an open subset of R?, M an open
subset of R” and o: S — M an immersion. We denote by z’ the
coordinates on S and by z* the coordinates on M. We then have
0¥zt = o#(x), where the o*s are components of the map o. It follows
that

2
o*dzt =do* 2t = 5 O;ot da’.
i=1

Thus,
2

(95)e = Y _ (00, 0;0), dz'da?,

4,j=1
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with (0;0,0;0), =3} ) guw(0(x)) Oioc*(x) 0j0"(x). Hence

Vol (S) = /s V(010,010) (020, 050y — ((010, 020),)? d.

Example 8.86. Pullback (or push-forward) by a diffeomorphism can
also be understood as a change of variables. Suppose for example that
we want to use polar coordinates in R?2. We actually have a map

R.o % (0,27) — R*\ D, (r,0) + (rcosf,rsind),
where D = {(x,y) € R? | y = 0, > 0}. This map can be extended
to a diffeomorphism
F:Roo x St — R*\ {0}
Denoting by = and y the coordinates on R? \ {0}, we have
F*dx = dF*z = cosf@dr — rsinf df,
F*dy = dF*y =sinfdr + rcos 6 db.

With the notations of Remark [8.71, we write the Euclidean metric as
n = dz? + dy?. Since F* is an algebra morphism, we have

F*dz* = cos? 0 dr? — rsinf cos 0 (drdf + dodr) + r*sin® 6 d§?,
F*dy* = sin? @ dr? + rsin 6 cos 0 (drdd + dédr) + 2 cos® 0 d6>.
Thus, the Euclidean metric in polar coordinates reads
F*n = dr® 4 r*d6°.
This means that in these coordinates the metric is diagonal with diago-

nal entries 1 and 72, so det F*n = r? and by (8.27) the polar coordinate
expression for the divergence of a vector field X = XT% + X@% is

or 09 ror 00

If f is a function, and df = 0,fdr + 0y fdf its differential, by Re-
mark we compute its gradient as gradp., f = 9, f0, + T%agfﬁg. It
then follows that its Laplacian is

AF*nleﬁ < 8f)+ 1 0%

1/0 0 10 0
v X = 1 (20 + 5 0X0)) = 1L 0X) 4 5%

ror \" or r2 002

Remark 8.87 (Pseudo-Riemannian metrics). Notice that for most of
the constructions in this subsection what was really needed was just
that g be nondegenerate; namely, that g, establish an isomorphism
between T, M and Ty M at each g or, equivalently, that det g, # 0 in
every representation. A symmetric (0, 2)-tensor field with this property
is called a pseudo-Riemannian metric. A pseudo-Riemannian metric g
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defines a positive density v, by +/|det g,| in each chart. By this, one
may define the notions of volume of regions and of divergence of vector
fields. Since we have an isomorphism T'M — T M, we may also define
the gradient and the “Laplacian” of functions (in the case when g
has exactly one positive eigenvalue, or exactly one negative eigenvalue,
this operator is usually called d’Alembertian). One can also define a
“length” functional £4(v) == [, v/Ig:)(¥(t),¥(t))| dt, which may now
however vanish on curves joining distinct points and does no longer
induce a distance function. One can also define geodesics as extremal
immersions for this functional, and they still turn out to be solutions
of a second-order differential equation. Notice on the other hand that,
unlike in Lemma [8.73] the existence of a pseudo-Riemannian metric,
with a prescribed signature, is in general not guaranteed. A particular
case, of great importance in physics (general relativity), is that of a
Lorentzian metric, i.e., a pseudo-Riemannian metric g such that g, has
exactly one positive eigenvalue (or, according to another convention,
exactly one negative eigenvalue) at each q. The standard example on an
open subset of R™ is that of the Minkowski metric (dz')? =" ,(dz")%

9. DIFFERENTIAL FORMS, INTEGRATION AND STOKES THEOREM

In subsection [8.3] we have seen that some 1-forms arise as the dif-
ferential of a function and we called such 1-forms exact. A natural
question is how one can characterize 1-forms. A simple answer occurs
on an open subset U of R™. Let w = >  w;dz" be an exact 1-form:
ie., w = df for some function f. This means that the components
satisfy w; = 0;f. Now, even without knowing f, we can affirm that
Ojw; = Ojw; for all ¢, j. This is a necessary condition for a 1-form to be
exact (we will see that it is not sufficient in general though). This sug-
gests defining the skew-symmetric tensor field 3, (Qiw; —djw;)da’ @da’
which vanishes if w is exact. It turns out that this construction makes
sense also for manifolds and that it can be futher extended. This leads
to the concept of differential forms (i.e., sections of the exterior algebra
of the cotangent bundle) and of the de Rham differential (a.k.a. the
exterior derivative).

A further reason for studying the de Rham differential is its intimate
connection with Stokes theorem, the higher dimensional version of the
fundamental theorem of analysis fab fl(x)de = f(b) — f(a). Just to
give a glimpse of it, consider the integration of 1-forms. If w € Q'(M)
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and 7: [a,b] = M is a piecewise differentiable curve, one defines

l o= [ o (10 .

If M is an open subset of R” and w = > | w; dz’, we just have

[o=] biww)w(w i

1=

If w=df, we then get
/ w= f(v(b) = f(r(a)).

-
On a manifold this is also true: simply split v into portions each lying
in a single chart and apply the result in charts. Finally, if v is closed
(i.e., v(a) = v(b)) we get fvw =0 if w is exact.

For simplicity in this section we will only consider smooth manifolds
an smooth differential forms on them [

9.1. Differential forms. If £ is a vector bundle over M (see Defini-
tion on page , we define A*E as the vector bundle whose fiber
at g is A*E,. (We use the notations of Appendix ) Namely, to an
adapted atlas {(Uy, ¢a)}acs of E over the atlas {(Us, ¢a)}tacr of M,
we associate the atlas {(U,, aa)}aej of AME with U, = Tomp(Us) =
Ugev, N™ B4 and

~

o U, — R" x A™R”
(qw € N"E)) = (¢alq), N"Aux(q) w)

where we regard A"R" as the manifold R(m) with its standard struc-
ture. It follows that we have transitions maps

Gas (1, 1) = (das (), N" Aap(d5 (@) u).

Definition 9.1. An m-form on a smooth manifold M is a section of
A™T*M. We denote by Q™ (M) the C*(M)-module of m-forms and by
Q* (M) = @, Q2™(M). An element of Q*(M) is called a differential form
on M.

Notice that if ¢ is an m-form, then (8.1 now reads

(A"dedap) 0s(Pas(T)) = 0alT).

2"By inspection one may see how certain definitions may be changed otherwise
and that certain results only require continuity or continuous differentiability in
low degree.
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The exterior product of the exterior algebra induces, by pointwise
multiplication, the exterior product of differential forms: (a A f8), :=
ag N\ By It follows that, if « is a k-form and S an [-form, we have

BAa=(=DFanB.

Since we regard the exterior algebra as a subspace of the tensor
algebra, we have that differential forms are a special case of covariant
tensor fields. In particular, we may restrict the pullback and the Lie
derivative to differential forms. More explicitly, if F'is a map M — N
and w € QF(N), we have

(F*W)q = (Akqu)*WF(Q)'

We also have F*(a A ) = F*a A F*f.

Using pull-backs, we can write the representation of a differential
form o in a chart (U, ¢p) as oy = (¢ )*w|y. Moreover, we can rewrite
the compatibility equation as

(9.1) Oy = ¢Zﬁ‘76

for all o, 3 € I, where, by abuse of notation, o, denotes here the
restriction of o, to ¢ (U, NUpz) and og denotes the restriction of og to
¢5(Ua N Up).

If M is Hausdorff, the Lie derivative is defined as usual:

0

Lyw:= —

X)) w = —
t:O( —t)<t Ot l=o
for X € X(M) and w € Q*(M). This immediately implies

oy 2

The Lie derivative has all the properties so far discussed for tensor
fields. We list them here:

(93&) LX+yw = LXw + Lyw,
(93b) LxLyw - LyLXw = L[X7y]w,

(97)"w,

(P%)w = (22,):Lxw = Ly (®X,).w

t=s

for every two vector fields X, Y and every differential form w. In
addition, it satisfies the Leibniz rule

Lx(a/\ﬁ):LXoé/\ﬁ—f—Oé/\Lxﬁ

for every vector field X and every two differential forms o and 5. Fi-
nally, if F': M — N is a diffeomorphism, then

(94) F*LX(U = LF*XF*W,
for all X € X(M) and all w € Q(M).
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Another useful operation is that of contraction. This is also defined
pointwise using the contraction of vectors with forms explained in Ap-
pendix Namely, if X is a vector field and w a differential form,
one defines

(txw)q = tx,Wq,
for all ¢ € M. From Lemma we immediately get

ix(aAB)=1xa B+ (=DFaAuxp,
for all X € X(M), a € QF(M) and 38 € Q(M), as well as
(9.5) Lxly O = —Lylx O
for all X,Y € X(M) and o € Q(M). Finally, if F: M — N is a
diffeomorphism, by we get
(9.6) Foxw = 1p x Fiw,
for all X € X(M) and all w € Q(M).

9.2. The de Rham differential. We now return to the problem of
extending the differential to higher forms.

We start with the case when U is an open subset of R™. Then
dat A oo Adat iy, ... d, € {1,...,n}, is a system of generators of
QF(U) over C=(U) (a basis if we take only i; < -+ < 4). We can
then expand o € Q¥(U) as a =377, _j @, da™ A Ada™. The

[

de Rham differential of « is then defined as the (k + 1)-form
da = Z Z 0,0, ...iy dz? Adz A -+ A date,
G=1 ity =1

Notice that if « is a top form, i.e., k = n, then automatically da = 0.

Lemma 9.2. The de Rham differential on an open subset U of R" is
a collection of linear maps d: QF(U) — Q¥ Y(U) for all k and satisfies
the following three properties:

(1) d: QYU) — QYU) is the usual differential of functions;

(2) d*> = 0;

(3) d(aAB) =daAB+(=1)FfaAdB for a € Q¥(U) and 5 € QU).

Proof. Linearity and property (1) are clear from the definition. For
property (2) we compute
Pa=Y"Y" Y 000, dat Adad Ada A A dah,
=1 j=1 i1,...,ip=1
This vanishes since 0,0;q,...;, is symmetric in the exchange of [ and j
whereas da! A dz? is skew-symmetric.
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Property (3) also follows from a direct computation. For simplicity
we assume o = fdz" A...dz"* and f = ¢ dz™ A...dz", the general case
following by linearity. We have aAf = fgdax" A...dz"* Adz™ A...dz".
Hence

d(a A pB) :Zaj(fg)dﬂvj/\dycil/\...dyc’"“/\dav’ﬂ1 A...da™ =

j=1

= Zﬁjfgdxj/\daz:i1 A.oodaz’t Ada™ AL daTi 4

j=1

+ (=R foigda’ AL da® Adad Ada AL da" =
j=1
=da A B+ (-1)andp.
O

Lemma 9.3. If U s an open subset of R", the de Rham differential
is uniquely determined by properties (1), (2) and (3).

Proof. Since every differential form on U is a linear combination of
wedge products of functions and exact 1-forms, (3) implies that d is
completely determined by its action on functions and exact 1-forms.
On the other hand, (1) defines d on functions and (2) says that d
vanishes on exact 1-forms. 0

Corollary 9.4. Let F' be a smooth map U — V where U and V are
open subsets of R™ and R™, respectively. Then

dF* = F*d.

Proof. We have already proved, Lemma that dF™*f = F*df for f
a function. Applying d and using d*> = 0, we get 0 = dF*df. On the
other hand, we also have F*ddf = 0. This shows that dF*a = F*da
if v is a function or an exact 1-form.

Next notice that dF*(a A B) = dF*a A F*B+ (=1)*F*a AdF*3, for
a € QFU) and 8 € Q(U), so it is enough to compute dF* on functions
and on exact 1-forms. O

We now turn to the general case. Let M be a smooth manifold and
w a k-form. Pick an atlas {(Uy, ¢a) }acr and denote by w, the represen-
tation of w in the chart a. By Corollary [9.4] the collection dw, defines
a (k+1)-form on M that we denote by dw. It then immediately follows
that d is a collection of linear maps QF(M) — QFF1(M) satisfying the
conditions
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(1) d: QM) — QY(M) is the usual differential of functions;

(2) d* = 0;

(3) d(aAB) =danB+(=1)kandB for a € QF(M) and B € Q(M).
If M is Hausdorff and second countable, then d is uniquely determined
by these properties. The proof is as for Corollary after noticing, by
using a partition of unity, that every differential form on M is a linear
combination of wedge products of functions and exact 1-forms.

Finally, if F': M — N is a smooth map, we have

(9.7) dF* = F*d.

This follows imediately from Corollary [9.4] using the chart representa-
tions of F'.

Definition 9.5. The collection QF(M) together with the de Rham
differential d is called the de Rham complex of M.

Remark 9.6. To simplify notations it makes sense to extend the defi-
nitions to negative degrees. Namely, one defines Q%(M) := {0} for k a
negative integer. Then d: QF(M) — QF1(M) is the zero map if k < 0.
Notice that we still have d? = 0.

Remark 9.7 (Vector calculus). If U is an open subset of R the
de Rham differential corresponds, in the various degrees, to gradient,
curl and divergence. Divergence and gradient are defined in terms of
the Euclidean metric as a special case of Remarks and [8.82] They
simply read

3 3
gradf =Y 0if0;,  divX =) 0,X",
=1

i=1

where we use the expansion X = Z?:l X'9;. In addition one defines

3
curlX = Z €ijk 0, X7 0y,.
irj k=1
One can easily verify that curl o grad = 0 and div o curl = 0. All
this is actually equivalent to de Rham. The point is that dim A2R3 =
3 = dim A'R3. This allows us to define an isomorphism from the
C*°(U)-module of 2-forms to that of 1-forms and to that of vector
fields. More generally, we define isomorphisms ¢;: QY(U) — X(U),
b QA(U) — X(U), ¢3: Q3(U) — C>=(U) by specifying them on pure
forms:
3

$1(dz") == 05, ¢o(da'Ada?) := Z%‘kak, ¢3(dz Adxd Ada?) = €ijk-
k=1



NOTES ON MANIFOLDS 97

One can easily see that grad = ¢1d, curl = ¢odo;*, div = ¢3dp, ' and
one sees that the identities of vector calculus are equivalent to d? = 0.

9.2.1. The de Rham cohomology. The equation d?> = 0 implies that
the image of d: Q¥1(M) — QF(M) lies in the kernel of d: Q*(M) —
QF1(M). Differential forms in the image of d are called exact, those
in the kernel of d are called closed. Thus, every exact form is closed.
To measure the failure of the converse statement, one introduces the
de Rham cohomology groups:

H*(M) :=ker(d: QF(M) — Q¥ (M))/im(d: Q¥ (M) — QF(M)).

These groups have a lot of interesting properties. One can e.g. show
(even though we will not do it here) that, under mild assumptions,
they are finite dimensional, which makes them very managable.

Since the pullback F*: Q(N) — Q(M) by a map F': M — N com-
mutes with d, it descends to the quotient: i.e., we can define F*|w] :=
[F*w] where w is any closed form representing the class [w].

If I is a diffeomorphism, then F™ is an isomorphism. This implies
that if dim H*(M) # dim H*(N) for some k, then M and N cannot
be diffeomorphic. One can actually prove that it is enough to have a
homeomorphism for the cohomology groups to be isomorphic.

There are several techniques to compute cohomology groups. We
refer to texts on algebraic topology for this. In particular, in the context
of differential forms we recommend [I]. We present just a fundamental
result known as the Poincaré Lemma.

Definition 9.8. A subset U of R" is called star shaped if it possesses
a distinguished point x( such that for every x € U the segment joining
xo to z is entirely contained in U.

Lemma 9.9 (Poincaré Lemma). Let U be an open star-shaped subset
of R™ (e.g. R™ itself). Then

H(U) =R, H*(U) = {0} for k #0.

Proof. For simplicity we assume gy = 0 (otherwise just observe that a
translation that moves ¢y to 0 is a diffeomorphism). The star shape
condition means that for every x € U also tx € U for all ¢t € [0, 1].

If f€Q°0U) is closed, then 9;f(x) =0 for all i and all z. Then

f(x) — f(0) = /0 %f(ta:)dt: /0 Z@if(tx)xidtzo.

This means that a closed zero form is completely specified by its value
at 0. Hence the linear map H°(U) — R, f +— f(0), is an isomorphism.



98 A. S. CATTANEO

To explain the general method we consider first the case of a 1-form
w = ) wida" as the general case will be just a generalization of this.
First observe that

wi(z) = /0 %(twi(t:v))dt: /0 (wi(ta:)—l—tzajwi(tx)ﬂ) dt.

If w is closed, then we have d;w; = d;w;. Hence

wi(z) = /0 (wi(tas) +1 Z Oiw, (tx):z:j> dt.

The idea now is to define K: QY (U) — Q°(U) by

Kw(z) :/o ij(ta:) 2 dt.

We then have 0; Kw = w;, which shows that w is exact.

The extension to the general case is similar but requires more compu-
tations and some guesswork. This will become more clear with the Car-
tan calculus. We present it here anyway for completeness, but will re-
turn to it in subsubsection|9.3.3} Let w =3, Wiy i AT A Adt®
be a k-form with £ > 0. We have

1
d
1
0 -

J

If w is closed, assuming we already took its components to be skew-
symmetric in the indices, we have

k
OjWiy iy, = E Oi Wiy i 1 fimp1--ig
r=1

This suggests defining K: QF(U) — Q¥ 1(U) by
(9.8)

k 1
Kw= Z Z(_l)rfl (/ Wiy (tﬂf)m”dt> dz* A- - -Adzir Adx*.
i1, =1 0

One can then easily check that dKw = w, which shows that w is exact.
O
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Example 9.10. As a simple application we may show that R? is not
diffeomorphic to R?\ {0} (actually, they are not even homeomorphic).
By the Poincaré Lemma H'(R?) = {0}. On other hand, the 1-form
w = (zdy — ydz)/(2? + y*) on R?\ {0} is closed but [ w = 27, where
v is a circle around the origin. This shows that w is not exact, so

dim H'(R?\ {0}) > 0.

9.3. Graded linear algebra and the Cartan calculus. We have
seen several relations satified by the Lie derivative, the contractions
and the de Rham differential. Even more hold and they make working
with differential forms much handier than with general tensor fields.
One can summarize these relations nicely by using the language of
graded Lie algebras. We thus make a short digression on graded linear
algebra.

9.3.1. Graded linear algebra. In graded linear algebra one generalizes
the usual concepts of linear algebras to collections of vector spaces.

Definition 9.11. A graded vector space V* is a collection {V*}cz of
vector spaces. A morphism ¢: V* — W* is a collection of linear maps
¢F: VF — Wk for all k. A graded morphism ¢: V* — W* of degree r is
a collection of linear maps ¢*: V¥ — WK for all k. If W* = V*, we
call ¢ a graded endomorphism.

Example 9.12. The vector spaces VE* A*V and QF(M) define graded
vector spaces T°(V), A*V and Q°(M). The de Rham differential is
an example of graded morphism of degree +1, the contraction by a
vector (field) is an example of graded morphism of degree —1, the Lie

derivative by a vector field is an example of graded morphism of degree
0.

Example 9.13. Notice that the set Hom"(V*, W*) of graded mor-
phisms of degree r is a vector space for each r € Z. Hence we have a
new graded vector space Hom®(V*, W?*). In case V* = W*, we write

End*(V*).

Remark 9.14. Sometimes one also uses the realization V := @, ., V*
of a graded vector space V*. We have used this notation, e.g., for
Q(M). Notice that, if infinitely many V* are not zero dimensional, a
graded morphism in general does not define a linear map between the
realizations.

Definition 9.15. A graded endomorphism of degree —1 that squares
to zero is called a boundary operator. A graded endomorphism of degree
+1 that squares to zero is called a coboundary operator. A graded vector
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space endowed with a boundary or a coboundary operator is called a
complex.

We have already seen the example of the de Rham complex (Q2*(M),d).

Definition 9.16. A graded algebra is a graded vector space A® together
with a collection of bilinear maps A* x Al — A* (a,b) — ab, for all
k,l. The graded algebra is called associative if (ab)c = a(bc) for all
a, b, c. It is called graded commutative if

ab = (—1)"ba, for a € AF, b e Al
It is called graded skew-commutative if
ab = —(—1)"ba, for a € A* be Al

Example 9.17. (A*V,A) and (Q°*(M), A) are examples of associative
graded commutative algebras.

Example 9.18. The composition ¢ of two graded endomorphisms ¢
and v of V'* of degree r and s, respectively, is defined as the collection of
linear maps ¢FT5y*: VF — Vk++s Tt is then a graded endomorphism
of degree r+s. This makes End®(V'*) into an associative graded algebra.

Definition 9.19. A graded derivation D of degree r on a graded algebra
A* is a graded morphism of degree r satisfying the graded Leibniz rule

D(ab) = Dab+ (=1)*a Db,  fora € A*, be A"
Notice that r enters both as the degree of D and in the sign factor.
Example 9.20. The de Rham differential is a graded derivation of
degree +1 on Q°(M), the contraction by a vector (field) is a graded

derivation of degree —1, and the Lie derivative by a vector field is a
graded derivation of degree 0.

Definition 9.21. A coboundary operator that is also a derivation is
called a differential.

The standard example for us is the de Rham differential.

Remark 9.22. Notice that the set Der"(A®) of graded derivations of
degree r on a graded algebra A® is a vector space, actually a subspace
of End"(A®), for all r, so we have a new graded vector space Der®(A®).

Definition 9.23. A graded Lie algebra is a graded algebra g® whose
product, usually denoted by [, |, is graded skew-commutative and
satisfies the graded Jacobi identity

[a, b, d]] = [[a, D], c] + (—=1)b, [a, ]], foraegh, beg, cegm
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Example 9.24. The graded commutator of a € A¥ and b € A!, where
A® is an associative graded algebra, is defined by

[a,b] := ab — (—1)"ba.

One can easily verify that (A®,[, ]) is a graded Lie algebra. In partic-
ular, (End®*(V*),[, ]), where V* is a graded vector space, is a graded
Lie algebra.

Remark 9.25. An element of even/odd degree of a graded vector space
is called even/odd. Notice then that, in the above example, if both a
and b are odd, then we have

la,b] = ab+ ba,

the so-called anti-commutator; otherwise [a,b] = ab — ba, the usual
commutator.

Definition 9.26. A graded subspace W* of a graded vector space V*
is a collection W* C V* of subspaces for all k. A graded subalgebra B*
of a graded algebra A® is a graded subspace that is closed under the
product. Usually a graded subalgebra of a graded Lie algebra is called
a graded Lie subalgebra.

Example 9.27. One can verify, exactly as in the non graded case, that
(Der®(A®),[, ]) is a graded Lie subalgebra of (End®(A®),[, |), where
A® is a graded algebra.

Remark 9.28. The choice of Z for the grading and the sign conven-
tions we have used are those needed for differential forms. More gen-
erally, one may define a G-graded vector space as a collection {V*},cq
of vector spaces, where G is a set. In order to define graded morphisms
we have to assume that a composition law G x G — G is given. If we
want to view morphisms as a special case of graded morphisms we have
to assume that G possesses a special element. In order to define the no-
tion of associative graded algebra (and also to give the space of graded
endomorphisms the structure of a graded algebra), we need G to be
a group. In order to define graded commutivity, for whatever choice
of signs, we have to assume that G is abelian. The choice of signs in
the definition of graded commutativity is a map s: G x G — {—1,1}.
Compatibility between associativity and graded commutativity give
conditions on this map s. Typical examples for G and s are G = Z
and s(k,l) = (=1)¥ (which is what we have done here), G = Z and
s(k,l) =1, G =17Z/27 and s(k,l) = (=), G = Z/27 and s(k,l) = 1,
G =17/27 x Z and s((k, k'), (1,I')) = (—1)k.
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9.3.2. Cartan calculus. We now come to the fundamental

Theorem 9.29. The span over R of the set {d,tx,Lx : X € X(M)}
is a graded Lie subalgebra of Der'(Q'(M)). More precisely,

[d,d} =

d,ex] = LX,

[d, Lx] =

[ex, o] =

[LX, Y] = LX)y,
| =

[I—Xa I—Y - I—[XY]7
for all X, Y € X(M).

The second relation is known as Cartan’s formula and is very useful
to compute the Lie derivative of a differential form.

Proof. The proof is very simple since these are all identities between
derivations, so it is enough to check them on functions and exact
l-forms.ﬁ Some identities are actually already known for all differ-
ential forms or follow easily from the other identities.

The first identity is just d> = 0. The second identity for functions is
just the fact that Ly f = X(f) = «xdf = [d,tx]f. On exact 1-forms
we have

[d, Lx]df = dbxdf = def
which is the same as Lxdf by on page 79, The third identity
follows from the second and the graded Jacobi identity

[d7 I—X] = [d, [d7 LXH = Hd, d]; LX] - [d, [dwx]] = _[da LX]-

One can also directly prove it using Corollary with F' the flow of
X.

The fourth identity is equation (9.5)). The fifth identity is obvious on
functions (as the contraction kills functions) and for 1-forms is equation

(8.20) on page H Finally, the last identity is just (9.3b)), but it can

28Even if M does not have a partition of unity subordinate to an atlas, this is
still ok, as we can actually first prove this theorem on open subsets of R”, where it is
true that a differential form is a linear combination of wedge products of functions
and exact 1-forms, and then use the transformation properties , and
under push-forward by the chart maps.

29We can also obtain it on exact 1-forms using the third and fifth equations:

[tx,Ly]df = ixLydf — Lyexdf = uxdly f — Lylx f =
=LxLlyf—Lylxf = [Lx,Ly]f = Lixyvif = tx,y1df.
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also be obtained from the second, the third and the fifth by using the

graded Jacobi identity:

Lixy) = [dsex )] = [d, [ex, Ly]] = [[d, ex], Ly] =[x, [d, Ly]] = [Lx, Ly].
O

We will see several application of the Cartan calculus in general and
of Cartan’s formula in particular.

Remark 9.30. A simple consequence is that the Lie derivative of a
closed differential form w is simply
Lyw = dexw.

In particular this is true when w is a top form.

Another application is a very explicit formula for computing the
de Rham differential. We start with an iteration of the fifth identity of
the Cartan calculus.

Lemma 9.31. Given k + 1 vector fields Xo, X1,... Xg, k> 1,

k
[LXk T lXyg, LXO] = Z(_l)i—HLXk ' L/X\z Tl X, X))
i=1
Proof. The proof is by induction on the number of vector fields. For
k =1 this is the fifth identity in the Cartan calculus. Now suppose it
has been proved for £ — 1. Since the graded Lie bracket is a graded
commutator, we have

[LXk cixy, Ly = 12 R, ¢ [tx1, Lxo] + [LXk e Uxg, Lxolex, -
Inserting the formulae for two vector fields and for k vector fields yields
then the identity for k + 1 vector fields. U

If w is a k-form, we use the notation
w(Xy, .. Xg) =tx, - lx,w,
where on the left hand side w is regarded as an alternating multilinear

form on vector fields. Notice that w(X, ..., X}) is a function.

Proposition 9.32. Given k+1 vector fields Xo, X1,... Xy, k>0, and
a k-form w, we have

dw(Xo, -+, Xp) = D (~1) Xi(w(Xo, ... X, ..., Xi)+

1

e~ o~

=0
+ (—1)Z+JW([X“X]],X0,,XZ,X],,X]C)

0<i<j<k
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Proof. This is also proved by induction on k. For k = 0 it is just the
formula ¢ x,dw = Xo(w). By induction we can apply the formula to the
(k — 1)-form ¢x,w:

k
dLXOUJ(Xla T :Xk) = Z<_1)i+1Xi(LXow(X17 Xy an>>+
i=1
+ Z (—1)i+jLXOu}([XZ‘, Xj], Xl, ce ,Xi, Ce Xj, N ,Xk) =
1<i<j<k
k —
== (' Xi(w(Xo,... X, .., Xp))+
i=1
= Y D)X X, Xos o X X, X
1<i<j<k

On the other hand, by Cartan’s formula,

dexow (X, -, Xi) = 1x, - ix, dex,w =

= —lx, " lx,dw + tx, - ux, Lx,w

Finally, observe that ¢y, - - - tx,dw is the quantity dw(Xj,..., Xs) that
we want to compute. By Lemma the last term finally yields the
remaining terms of the formula. U

9.3.3. The Poincaré Lemma. As promised, we return to the proof of
Lemma[9.9] Its proof reduces to proving the following

Lemma 9.33. Let U be an open star-shaped subset of R™. Then there
is a graded endomorphism K of degree —1 on Q®*(U) such that

dKw+ Kdw = w
for all w of positive degree.

Notice that, if w is closed, then we get w = dKw, which shows that
it is also exact, thus proving the Poincaré Lemma.

To get a clue at the construction of K in the Lemma, we first consider
polynomial forms. A k-formw =3, Wiy iy Az A+ Ada's on R™ is
called polynomial of degree r if all its coefficients wj, ...;, are polynomials
of degree r. We let Q%"(R") denote the vector space of k-forms of
degree r on R” and set QW(R") := @y y,— Q%" (R"). The de Rham
differential and the contraction ¢g by the Euler vector field £ =", 20,
are endomorphism of QU for every [, and, consequently, so is Lg. Since
Lga® = 2° for each coordinate x* and since it is a derivation commuting
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with d, we have that Lpw = lw for w € QW(R™). By the Cartan formula
we then have

dLE + LEd =[1d
on Q(R™). We then define K := 1.5 for [ # 0. It follows that

dK + Kd = 1d,

which in particular shows that the polynomial cohomology is trivial
unless [ = 0, i.e., for constant zero-forms.

We now want to extend K to nonhomogeneous polynomial forms.
The trick is to observe that, for w € QW(R™), we have (¢¥)*w = elsw
This is easily follows from observing that ¢¥(z) = e*z. Using 7 =

ffoo el* ds, we see that

(9.9) Kw= /0 (¢5)*1pw ds

for every polynomial form. (Note that this extends the definition of
K to the case | = 0 where K must be the zero operator for degree
reasons.) The proof of Lemma essentially follows from extending
such a K to all forms.

Proof of Lemma[9.33 Let U be an open star-shaped subset of R". For
simplicity assume that we have already translated the distinguished
point to 0. Notice that ¢SE is defined for all s < 0 since U is star
shaped, so the integrand in is defined. We claim that the integral
converges. In fact,

k
Lpw = Z Z(—l)’"_lwh...ikx“dx“ A - Adair A dz.

1] 4eeeylfe T=1

Hence
(9F)*tew)( Z Z i, (@) e atrdat A - Adzir Ada™.

By the change of variable ¢ = e, assuming k£ > 0, we get which
shows that Kw is the integral of a smooth function on a compact
interval; thus, the integral converges, the result is smooth and one
can differentiate through the integral.

We now have to check that this K satsifes the identity stated in the
Lemma. Since we can differentiate through the integral, by the Cartan
formula we have

0
dKw+ Kdw = / (¢F) Lpw ds.

—00
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By (9.2), writing (¢£)* instead of (¢,)., we then have
0
dKw+ Kdw = / %(d)f)*w ds = () 'w — lim (¢F)*w.
oo s——00

Since ¢f = Id, the first term is w, so we just have to prove that the
second term vanishes. If we expand w = Zil i Wiy iy da™ A - Ada',
we get

(¢9)w)(@) = Y wii(e®x) e da™ A= Ada',
B1 eyl
which implies
lim (¢¥)*w =0

s——o0 °
if k> 0.
O

9.3.4. Quotients. We return to the setting of Section to give an
algebraic characteration of forms on a quotient. Let 7: M — N be a
surjective submersion with connected fibers. The pullback by ,

™ QY(N) — Q* (M),

is injective. To show this, assume « is a k-form with 7*a = 0. Then,
for all g € M and all vy,...,v, € T, M, we have

0= ((7")gv1 A=+ Avg) = (), AFdym v A Ay).

Since d 7 is surjective, arq = 0. Since 7 is surjective, we conclude
that a = 0.

A differential form in the image of 7
characterize basic forms.

*

is called basic. We wish to

Definition 9.34. A differential form « on M is called horizontal if
tya = 0 for every vertical vector field Y and invariant if Lya = 0 for
every vertical vector field Y.

Proposition 9.35. A differential form on M is basic if and only it is
horizontal and invariant.

Proof. If a = 7*3, then « is clearly horizontal. Moreover, since the flow
of a vertical vector field Y preserves the fibers (i.e., m o ®} = 1), we
have (®))*a = a, which implies Lya = 0. Hence, « is also invariant.
Conversely, assume that « is a horizontal and invariant k-form.
Given vector fields Xy,..., X} on N, let Xi,..., X} be projectable
vector fields on M with ¢(X;) = X; for all i (see Section for nota-
tions). Since « is horizontal, the function ¢, ...tz o does not depend
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on the choice of the )Zs. Let Y be now a vertical vector field. Since «
is invariant, by Lemma we get

k

Lytg, - tz,0= Z(—l)%ik iz, L%, YR v

i=1
Since X; is projectable and « is horizontal, we conclude that the func-
tion ¢g, ... 5 o is invariant. We may then define a k-form § on N by
setting vx, -+ - tx, B(2) = L5, - . tz,a(q) for any q € 77 1(z). Tt then
also follows that a = 7*(. U

By Cartan’s formula we then get the following

Corollary 9.36. A closed form on M is basic if and only it is hori-
zontal.

On a Hausdorff manifold, invariance under all vertical vector fields
actually implies horizontality. In fact, if Y is vertical, then so is fY
for every function f. Since Lyyw = fLyw + df A tyw, the invariance
conditions imply that df A tyw = 0 for every function f. In particular,
for every p € M we have d,f A (tyw), = 0. By Lemma , we can
get all germs of functions at p and, in particular, d, f spans the whole
cotangent space, so (tyw), = 0. The two conditions must however be
imposed separately if we restrict ourselves to generators.

Definition 9.37. Let ) be a family of generators of the vertical vector
fields. A differential form o on M is called Y-horizontal if tya = 0 for
every Y € ) and Y-invariant if Ly = 0 for every Y € ). (One often
simply says horizontal and invariant when it is clear that a certain
family ) is understood.)

Lemma 9.38. Let Y be a family of generators of the vertical vector
fields. A differential form is Y-horizontal and Y-invariant if and only
if it is horizontal and invariant, and hence if and only if it is basic.

Proof. 1f w is horizontal and invariant, then it is obviously Y-horizontal
and Y-invariant.

Conversely, if w is Y-horizontal, then for every vertical vector field
Y with expansion ). f;Y;, Y € Y, we get tyw = ), fity,w = 0; so w
is horizontal. It follows that Lyw = ), fiLy,w, which vanishes if w is
also Y-invariant.

O

9.4. Orientation and the integration of differential forms. In
subsection [8.2] we defined the integration of densities. We now turn to
the problem of extending integration to differential forms. An n-form
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on an n-dimensional manifold is called a top form. Let v be a top
form and v, its representations in an atlas {(Ua, ¢a)}acr. If we write
Vo = vada! A -+ Adz”, by (B.8) the functions v, transform as

Vo (@) = det dyap v5(Pas(@)).

for all o, 8 € I and for all x € ¢,(U, NUp). This is almost the same as
the transformation rule for a density, see , apart from the missing
absolute value of the determinant.

One way out is to consider, if possible, a special atlas where the
determinants of the differentials of all transition maps are positive: in
such an atlas a top form is the same as a density. We will return to
this approach in Section [9.4.1] where we will also show that, in positive
dimension, it is equivalent to the second approach.

The main idea of the second approach consists in taking the absolute
value of the representations v,. More precisely, we define the absolute
value [v] as the density with representations |v,|. Notice that there
are in general two problems if v, changes sign somewhere. The first
problem is that then the absolute value does not produce a smooth
density in general. This is not a problem as long as only integration
is concerned, but without differentiation we lose the power of Stokes
theorem. The second problem is that in general we want to keep track
of the values with signs as this may be some very relevant information.

To avoid this problems we restrict first to top forms that do not
change sign (at least locally).

Definition 9.39. A volume form on a manifold M is a nowhere vanish-
ing top form. A manifold admitting a volume form is called orienta blem

If v is a smooth volume form, then |v| is a smooth density. A volume
form v establishes a C*°(M )-linear isomorphism

¢y : QP(M) — Dens(M)

between the module of top forms and the module of densities as follows:
since v is nowhere vanishing, for every top form w there is a uniquely
defined function f such that w = fv; the corresponding density is then
defined to be f|v|. Formally we may write

Py = w|v—|.

v

Notice that two volume forms v and v yield the same isomorphism (i.e.,
¢, = ¢3) if and only if there is a positive function g such that v = gv.
This establishes an equivalence relation on the set of volume forms.

30We will see below that there are manifolds on which volume forms do not exist.
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Definition 9.40. An equivalence class of volume forms on an ori-
entable manifold M is called an orientation. An orientable manifold
with a choice of orientation is called oriented.

We denote by [v] an orientation, by (M, [v]) the corresponding ori-
ented manifold and by ¢y, the isomorphism given by ¢, for any v € [v].
If M admits a partition of unity, we can finally define the integral of a

top form w by
/ w = / W,
(M,[v]) M

where we use the already defined integration of densities. (We assume
the integral on the right hand side to make sense. Typically we work
with compactly supported top forms.)

Remark 9.41. Notice that unlike the integration of densities, the inte-
gration of top forms requires an orientation. This allows integrating top
forms only on orientable manifolds. Moreover, the result of integration
in general depends on the choice of orientation.

Lemma 9.42. A connected orientable manifold admits two orienta-
tions

Proof. Let [v] be an orientation. Then —[v] = [—v] is a different orien-
tation, so every orientable manifold has at least two orientations. Now
let M be connected. Let [v] and [0] be orientations. Choose represen-
tatives v € [v] and v € [v]. Since v is a volume form, there is a uniquely
defined function g such that v = gv. Since v is a volume form, then
g is also nowhere vanishing. Since M is connected, we then have only
two possibilities: () g > 0, and in this case [v] = [v], or (i) g < 0, and
in this case [v] = [—v]. O

Remark 9.43. Notice that ¢_,; = —¢y,, hence

o™
(M,—[v]) (M, [v])

Suppose F': M — N is a diffeomorphism. If [uy] is an orientation
on N, then F*v, is a volume form on M for any vy € [vy]. Its class
does not depend on the choice of representative, so we write

F*[UN] = [F*'UN].

for every w.

If M is oriented, we can compare its orientation with F*[vy]:
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Definition 9.44. A diffeomorphism F of connected oriented manifolds
(M, [vp]) and (N, [uy]) is called orientation preserving if F*[uy]| = [vp]
and orientation reversing if F*[vy] = —[vp].

Proposition 9.45 (Change of variables). Let (M, [vy]) and (N, [vn])
be connected oriented manifolds, F': M — N a diffeomorphism and w
a top form on N. Then

/ Frw = i/ w,
(M,[vpm]) (N,[vn])

with the plus sign if F' is orientation preserving and the minus sign if
F' is orientation reversing.

Proof. This follows immediately from the definitions and from the change
of variables for densities, see equation (8.8) on page |71} O

Remark 9.46. An interesting application is a technique for proving
that the integral of some w on an oriented manifold M vanishes. The
trick consists in finding an orientation-reversing diffeomorphism F' of
M such that F*w = w or an orientation-preserving diffeomorphism F
of M such that F*w = —w. (Of course one has to verify first that the
integral converges.)

Example 9.47. Let M = {pt} be the connected 0-dimensional mani-
fold. Top forms are in this case the same as functions, i.e., real numbers.
There are two orientations: the class of +1 and the class of —1. If f a
top form, then we have ¢ 1) f = f and ¢_;1f = —f, so

/ f=7 / f=—f
({pt},[+1]) ({pt},[—l])

Notice that orientation in this case corresponds just to evaluation up
to sign. This sign, as we will see studying Stokes theorem, is the same
that appears in the fundamental theorem of analysis: f; flz)dx =
f(b) — f(a). Here f(b) and f(a) are both functions on a point, but we
should think of {b} as having the positive orientation and of {a} as
having the negative orientation. These orientations, as we will see, are
induced from the orientation of the interval (a, b).

Example 9.48. Let U = (a, b) be a connected open subset of R, with
coordinate x'. We have two orientations: the class of dz' and that of
—dz!. We might think of the first as the geometric orientation given
by moving along U from left to right (in the usual graphical description
of the real line), the second as moving from right to left. You may see
that with the first orientation we move away from the boundary point
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{a} and approach the boundary point {b}. This is the origin of the
two orientations of the two boundary points.

Example 9.49. Let U be a connected open subset of R?, with coor-
dinates 2!, 22. Here the two orientations are the classes of da! A da?
and of —dz! Adz?. As —da! Ada? = dz? A dz!, we might think of the
orientations as giving the moving directions along the axes but also the
ordering of the axes.

As on R™ we have distinguished coordinates, with a given ordering,
we also have a distinguished volume form:

d"z :=daz' Ao Ada”,

called the standard volume form. Its class is called the standard orien-
tation. The integral of the top form fd"x on an open subset U of R"
with the standard orientation is

[raa= [ = [ g

It is worth recalling that in this funny looking formula d"x denotes the
standard volume form, |d"z| the standard density and d"z the Lebesgue
measure. The open subset U of R™ here plays three different roles: in
the first integral it is understood as an oriented manifold, in the second
as a manifold and in the third as a measure space. In each case its
structure is induced from the corresponding standard structure on R™.

As the pullback of the standard volume form is the standard volume
form multiplied by the Jacobian of the transformation, we immediately
get the

Lemma 9.50. Let F': U — V be a diffeomorphism of open subsets
of R™. Then F is orientation preserving (orientation reversing), with
respect to the standard orientation, if and only if det dF > 0 (det dF <

0).

Remark 9.51. For n = 0 the statement has to be interpreted. On
R? = {0}, the standard volume form is +1. There is a unique map
R° — R°. This map is linear and orientation preserving with respect
to the standard orientation. Its determinant is by definition +1. What
sets this case apart is that there is no orientation-reversing diffeomor-
phism of R? with the standard orientation. On the other hand, R",
n > 0, has orientation reversing diffeomorphisms, e.g.,
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9.4.1. Orientation by atlases. The last Lemma naturally leads to a sec-
ond notion of orientation.

Definition 9.52. An atlas of a manifold is called oriented if all its
transition maps are orientation preserving.

Lemma 9.53. An orientable manifold possesses an oriented atlas.

Proof. Let M be an n-dimensional orientable manifold, v a volume
form and {(Ua,, ¢a) aer an atlas with connected charts. If n = 0 there
is nothing to prove, so assume n > 0. For every « there is a uniquely
defined nowhere vanishing function v, € C*(¢o(U,)) such that v, =
va d"x. Since ¢, (U, ) is connected, then necessarily either v, > 0 or
Vo < 0. In the second case we change the chart (Us,, ¢o) to the chart
(Ua, T 0 ¢o) where T is an orientation-reversing diffeomorphism of R"
(e.g., the one defined in Remark [9.51)). Notice that the atlas obtained
by changing charts this way is C*°-equivalent to the previous one.

Thus, we have an atlas, which we still denote by {(Ua, ¢a)}acr, such
that v, = v, d"x with v, > 0 for all . The transition rules for the v,s
imply

Va(7) = det dadap v5(das(2)).

for all o,8 € I and for all x € ¢,(U, NUg). It then follows that
detd,¢qp > 0 for all o, 3, 2. O

Using partition of unity, which is necessary anyway if we want to
integrate, we also get the converse statement:

Lemma 9.54. A Hausdorff, second-countable manifold with an ori-
ented atlas 1s orientable.

Proof. As pointed out in Remark on page[75] under these assump-
tions we can construct a positive density o starting from any atlas
{(Uq, @a) }acr- If the atlas is oriented, the transition rules for the rep-
resentations o, are the same as for a top form. Hence, the o,s define
a volume form. O

There is a natural equivalence relation of oriented atlases which turns
out to correspond to the previously introduced equivalence relation of
volume forms.

Definition 9.55. Two oriented atlases are equivalent if their union is
an oriented atlas.

Lemma 9.56. Let M be a Hausdorff, second-countable, orientable
manifold of positive dimension. Then there is a one-to-one correspon-

dence between orientations of M and equivalence classes of oriented
atlases of M.
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Proof. The proof of Lemma for n > 0 produces a map from ori-
entations to equivalence classes of oriented atlases. In fact any two
atlases produced by the construction in the proof starting from the
same v are equivalent to each other. On the other hand, if we rescale v
by a positive function, we produce an oriented atlas in the same class.

The proof of Lemma [9.54] yields a map in the other direction. Notice
that an equivalent oriented atlas produces an equivalent volume form.

Finally observe that the two maps are inverse to each other. 0

Remark 9.57. In zero dimensions this Lemma fails. We have seen
that {pt} has two orientations, like every orientable connected mani-
fold, but has only one atlas (which is obviously oriented). What does
not work in the proof is that we do not have an orientation-reversing
diffeomorphism of RY, so we cannot make the map from orientations
to atlases injective.

Remark 9.58. If one only works with Hausdorff, second-countable
manifolds of positive dimension, because of this equivalence of the two
notions one may define a manifold to be orientable if it possesses an
oriented atlas and one may define an orientation as an equivalence class
of oriented atlases. This is done in several textbooks.

Lemma 9.59. Let F': M — N be a diffeomorphism of oriented man-
ifolds of positive dimension. Then F' is orientation preserving (orien-
tation reversing) if and only if detdF > 0 (detdF < 0), where these
determinants are computed using representations in any oriented at-
lases defining the orientation.

Proof. Let vy, and vy be representatives of the given orientations. Pick
oriented atlases {(Uy, ¢a) }acr of M and (V;,4;)es of N corresponding
to the orientations: i.e., (var)a = vo A"z and (vy); = g; d"x with v, > 0
and g; > 0. Let F,;s denote the representations of F'. We have

(F*(un))a(z) = det d, Fay g5(Fay(2)) d"

for all a, 7, z, and we see that F' is orientation preserving (reversing) if
and only if all the det d, F},; are positive (negative). O

Remark 9.60. Notice that in an oriented atlas the representations of
a top form transform like the representations of a density. One can also
easily see that the density defined by a top form w in the oriented atlas
corresponding to an orientation [v] is exactly ¢pjw. More explicitly,
in an atlas {(Uq, ¢a)}aer we have the representations w, = w,d"x, for
uniquely defined functions wy, and we get (Ppjw)a = wa|d™x|. It then



114 A. S. CATTANEO

follows that the integral of w on an oriented manifold M is given by

w= (Pi)a, Wa, d'r,
/<M7[v1> Z/ S (supp p;) —

where {(Uy, ¢u)}acr is an oriented atlas corresponding to [v] (i.e., in
which any v € [v] is represented by a positive volume form) and {p; };es
is a partition of unity {p;};es subordinate to {U,}aer. If the identi-
fcation between differential forms and densitites on ¢,,(Us,) is under-
stood, then we can also write

W = (pjw)ay-
/(M,[vb Z/ S (supp p;) ’

Remark 9.61. Typically the chosen orientation is understood, so one
simply writes [ I

In the following we will need the following useful remark:

Lemma 9.62 (Localization). Let {(Uy, ¢u) tacr be an oriented atlas of
(M, [v]) and {p;};es a partition of unity subordinate to it. Let w be a
top form with support contained in U,, for some k € J. Then

[ R S
(M,[’U]) ¢ak(Uak)
Proof. We have

o= [ (=
/(M [v]) Z ; (supp pj)

jeJ
-/ @>=/ (03 ), =
]GJ ay SuPpmesuppw) Ua mUak)
jeJ /ak(Ua mUak ]EJ /d)ak Uak)
:/ Z<pj W), :/ Way, -
¢ak(Uak) je] ¢ak(Uak)

U

9.4.2. FExamples. Open subsets of R™ are clearly examples of orientable
manifolds.  More generally, every parallelizable manifold is orientable.
In fact, an isomorphism of T'M with M x R™ induces, after a choice
of basis, an isomorphism ¢: A"IT*M — M x R. If f is any nowhere
vanishing function (e.g., f constant and different from zero), then ¢* f
is a volume form.



NOTES ON MANIFOLDS 115

S™ is also orientable. For n = 1, we easily see it as the top form dé,
where 6 is the angle parametrizing S*, is a volume form. For higher
dimensional spheres, we may for example observe that there is an atlas
with two charts whose intersection is connected (take, e.g., the atlas
defined by the stereographic projection). If this atlas is not oriented,
i.e., if the determinant of the Jacobian of the transition map is nega-
tiveﬂ then we change one of the two chart maps by composing it with
an orientation-reversing diffeomorphism of R™ (e.g., the one defined in
Remark . Another way to see that S™ is oriented is by construct-
ing a volume form explicitly. We may start from the standard volume
form on R™"!, write it in polar coordinates and contract it with the
vector field %, obtaining a volume form v. Equivalently, we may ob-
serve that the Euler vector field, whose flow in polar coordinates clearly
just rescales the radius, is r%. Therefore, we have v = %LEd"“a:. We
may also get rid completely of the radius dependence if we rescale v by
r™. Namely, we have the volume form

(9.10)
1 4l — Z?Ill(—l)”lxidxl Ao Adzt Ao Ada™ Tt
et BT o+ |

W =

where the restriction to S™ is understood.
Another example is the tangent bundle T'M of any manifold, also a
non orientable one. If {(Uy, ¢a)}acr is any atlas of M, then the atlas

([/ja, aa)ae 7 introduced in subsection is oriented. In fact, by (6.2),

we have det d,¢ns = (det d,¢ns)?. Similarly, one shows that T*M is
also orientable.

An example of non orientable manifold is the Mobius band. This is
obtained by quotienting [0, 1] x R by the equivalence relation (0,y) ~
(1, —y). There is an atlas with two charts: one having domain (0, 1) xR,
the other having domain ([0,1/4) U (3/4,1]) x R. On (0,1) x R and
on [0,1/4) x R the chart maps are defined to be the inclusions into
R x R. The chart map on (3/4,1] x R is defined by (z,y) — (z, —y).
The intersection of the two chart domains is ((0,1/4) U (3/4,1)) x R
and one easily sees that this atlas is not oriented. More precisely, one
sees that the transition map corresponding to (0,1/4) x R is orien-
tation preserving (actually, the identity), whereas the transition map
corresponding to (3/4,1) x R is orientation reversing. To prove that
the Mobius strip is not orientable, we show that it does not possess
a volume form. Assume on the contrary that we had a volume form

31This is actually the case of the stereographic projection with atlas as in Ex-

ample
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v. On the first chart it would be represented by fdx A dy and on the
second by gdx Ady where f and g are nowhere vanishing functions. As
the charts are connected (notice that ([0,1/4) U (3/4,1]) x R is con-
nected in the atlas topology), they have a definite sign. Suppose e.g.
that f > 0. Using the transition map corresponding to (0,1/4) x R
we would conclude that also g > 0. However, using the transition map
corresponding to (3/4,1) x R we would conclude that g < 0, which is
a contradiction.

A typical way to generate nonorientable manifolds is by a suitable
quotient. An involution on a manifold M is a map ¥: M — M sat-
isfying ¢ o9 = Id. An involution ¢ defines an equivalence relation
by @ ~y yif v =y or x = ¢(y). If M is Hausdorff and ¢ has no
fixed points (i.e., ¢(z) # « for all z), then the quotient M/ ~, has a
smooth structure for which the canonical projection w: M — M/ ~y, is
a smooth submersion. (Note that this structure is unique up to diffeo-
morphisms since 7 is then a surjective submersion.) In fact, we can pick
an atlas {(Us, ¢a) faer on M with the property that U, Ny (U,) = ( for
all of7 Observe then that 7 restricted to U, defines a diffeomorphism
with its image U, = 7(U,). We then define an atlas {(Uy, ¢a) }acr on
M/ ~y by setting ¢, = ¢, © 7r_1 Note that the transition map ¢z
is equal to ¢§1 0 ¢y if Uy NUg # 0 and to gbgl 01 o ¢, otherwise. Also
notice that the quotient manifold is also Hausdorff.

Lemma 9.63. Let M be a connected orientable manifold and v an
involution with no fived points. Then M/ ~y is orientable if and only
Y 1s orientation preserving.

Proof. If v is a volume form on M/ ~, then 7*v is a volume form
on M. If ¢) were orientation reversing, then we would have —[r*v] =
*[r*v] = [*r*v] = [7*v], which is a contradiction.

For the other implication, assume that 1 is orientation preserving.
Then, using an oriented atlas on M for the construction of the atlas
of M/ ~y, we get that the transition maps ¢,3 are also orientation
preserving. Hence, M is orientable. U

32For example, observe that for each z € M we can find disjoint open neigh-
borhoods N, and Oy, of x and 9 (x), respectively. It follows that W, := N, N
wil(Ow(x)) is an open neighborhood of x with the property that W, Ny(W,) = 0
(in fact W, is contained in N, and (W) is contained in Oy (). As a consequence,
if we start with any atlas {(V},%;)},cs, we may define an equivalent atlas with the
desired property by setting I = J x M and Uy ) = V; N W,.

33This construction is a particular instance of a general construction to define a
smooth structure on a quotient by a properly discontinuous, free action of a discrete
group.
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As an application of this construction we consider the real projective
space RP", i.e., the space of lines through the origin in R***. We may
realize RP™ as the quotient of R"*! by the equivalence relation x ~ \x
for all A # 0. Alternatively, we may first quotient just by using positive
As, thus getting the sphere S™, and then quotienting by A = £1. That
is, we get RP" = S/ ~, where ¢p: S® — S™ is the antipodal map
sending x to —x. By the above construction this shows that RP™ is
a smooth manifold. Using the volume form of equation ({9.10f), we see
that v is orientation preserving if and only if n is odd. Therefore, RP™
is orientable if and only if n is odd.

9.4.3. Restriction and integration. Recall that differential forms may
be pulled back. If F': M — N is a smooth map and w is an n-form
on N, with n = dim M, then F*w is a top form on M which can be
integrated, provided we have an orientation and a partition of unity on
M.

A particular case is the inclusion of an oriented submanifold ¢: S —
M. If wis an s-form on M, s = dim S, one then simply writes fsw
to denote the integral of the pullback of w by ¢ over S with its given
orientation.

One usually also defines [¢w = 0 when the degree of w is different
form the dimension of S.

Remark 9.64 (Integration of 1-forms). If w =Y " | w;da’ is a 1-form
on an open subset U of R” and v: I — U is a differentiable curve, then
Yw(t) = > i, wi(y(t))3dt. Using the standard orientation of I C R,
we identify dt with the Lebesgue meaure dt. Hence we get the familiar

formula "
Jo=[ru=[Yutuia
g I Ii=1

9.4.4. Computing the divergence. We now show how Cartan’s formula
may be used to simplify the derivations in subsubsection [8.2.6[ on an
oriented manifold and to recover the local formula for the diver-
gence of a vector field.

First observe that using an orientation [v] we can easily compute the
divergence of a vector field by Cartan’s formula.

Lemma 9.65. Let [v] be an orientation. Then
Lxdp) = éplx
for all vector fields X .

Proof. Let v € [v] and w = fv a top form. Then Lxw = X(f)v+ fLxv.
Since v is a volume form, there is a uniquely defined function g such
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that Lxv = gv. Hence ¢pLxw = (X(f) + fg)|v|. On the other hand,
¢w = flv|. Hence Lxdpjw = X(f)|v] + fLx|v|. Thus, we have just
to show that Lx|v| = g|v|. This is clear if we go in a chart where we
have |v,| = £v,. O

Once an orientation [v] is fixed, we identify top forms and densities
by ¢p. If o is a density, by abuse of notation we denote by o also the
corresponding top form (i.e., (¢p)) 'o). Then by the above Lemma
and by Remark on page [103], we have

Lyo = dixo.
This immediately implies
Lixo =Lx(fo) = X(f)o + fLxo.

Remark 9.66 (The divergence in a chart). If U is an open subset of
R", we can write every top form w as w = fd"z for a uniquely defined
function f. Then
LxWw = Z(—l)”leidxl A Adat A Ada™
i=1

Hence
Lyw=>_ 0i(fX")d"z.
=1

Notice that on U we can identify top forms and densities, using the
atlas with one chart. If w is a positive density, we then have

div, X = % i B:(fX7).
=1

In particular, we can apply this to a density o on a (possibly non
orientable) manifold M. In a chart (U,, ¢), the representation o, of
o defines a top form o,d"x. From this we recover equation (8.14)).

9.4.5. Integration of vector fields. Using a Riemannian metric g on a
manifold M, one can define the integral of a vector field X on a curve
v: I — M by

/X -dx = /g'y(t)(X'y(t)aj/(t)) dt.
. I

This integral is usually called the work of X along ~ (this term comes
from the application in mechanics when X is a force field). By Re-
mark we can reduce this to the integral of 1-forms. Let wyx :=
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®,(X) with @, the isomorphism between T'M and T*M defined in
Remark B.821 Then we have

(9.11) /X-dx = /wX.

Given orientations one can also integrate vector fields on hypersur-
faces (i.e., embedded submanifolds of codimension one) in Riemannian
manifolds. This is called the flux of the vector field through the hyper-
surface.

To do this, we have to introduce some notations. Let (M, g) be a Rie-
mannian manifolds and S a hypersurface. Using g, we can define the
orthogonal complement (7,5)* of T,,S in T,M for all p € S. A normal-
ized vector n, in (T,59)* is called a normal vector at p. Explicitly, n,
satisfies the equations g,(n,,u) = 0 Yu € T,,S and g,(n,,n,) = 1. No-
tice that, since dim(7,S)* = dim T, M —dim T,,S = 1, there are exactly
two normal vectors at each p (related to each other by multiplication
by —1). Using orientations we can select one of them. Namely, let [v]
be an orientation on M and [w] an orientation on S. If we denote by
ts the inclusion of S into M, we say that n, is compatible with orien-
tations if v§t,,v, = cw, Wlth v € [v], w € [w] and ¢ a positive constant
(notice that this does not depend on the choices of v and w)" The
map p — n, is called the normal vector field to S (notice that it is not
a vector field on S nor on M, but a section of the pullback of T'M to
S). If X is a vector field on M, then we denote by X - n the function
on S defined by

(X - n)(p) == gp(Xp, np).-
Finally, the integral [, ¢ X Ny, where vy, denotes the Riemannian
density of the restriction of gg of g to S, is called the flux of X through
S.

We now want to relate the flux to the integral of a differential form.
Notice that using the orientation of M we may identify the Riemannian
density v, with a top form on M. Using the orientation of S we can
then integrate the top form txv, on S.

Proposition 9.67. Let S be an oriented hypersurface of an oriented
Riemannian manifold (M, g). Then, for every X € X(M), we have

/X nng:/Lng.

z)’ZLConversely7 if S is orientable, then a continuous choice of n,s induces an orien-
tation [w] of S by wy, := t§t,,v, for all p € S. This also shows that S is orientable
if and only it possesses a continuous choice of normal vectors.
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It is worth noticing that on the left hand side we have the integra-
tion of a density on the manifold S (and the orientations are used to
determine n) whereas on the right hand side we have the integration
of a top form on the oriented manifold S (and the orientation of M is
used to identify the Riemannian density with a top form).

Proof. To prove this result we just show that the integrands are equal
in every chart images, where we used an adapted atlas.

Let (U, ¢) be an adapted chart of M around a point p € S. Recall
that this means that we have a chart (V,%) of S around p with V' =
o {2, ..., x") € ¢(U) | 2" = 0}) and ¢ = ¢|y,. We expand

n—1 n—1
gy =Y hijda'da’ +) b (da'da” + da"da’) + o (d2")’,
i=1 i=1
That is, we write the components of gy as a block matrix

h b
g:(bt a)-

The first remark is that (gs)y = Z?:_ll h;;jdz'da?. In particular, h is
positive definite. Moreover, (v,,)y = Vdeth. Next we compute n. In
the chart image we write it as a block vector (b) We have

h b\ (kK\ [ hk+pub
b' a)\p) \bk+pa/’

Requiring n to be orthogonal to vectors tangent to S then yields hk +
ub = 0 which can be solved to give k = —ph~'b and hence

(5 ) (2) = G ).

The normalizing condition finally gives p?(a — bth™'b) = 1, which in
particular shows that e — b*th™'b > 0. Finally, we write Xy also as a
block vector (¢ ) and hence we have

(X -n)y = &u(a —bh™'b) = %

Finally,
(X -nug)y = §\/det h.
i

Notice that p is a function of the components of gy. To make this
explicit we have to extract a square root whose sign choice is determined
by the orientations. Namely, let v be a representative of [v] such that
vy = eda' A+ Adz™ with e = 1 and let w be a representative of [w]
such that wy = edz! A --- Ada™ ! with € = +1. Since (Lot vp)v =
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(=) tpedat A -+ Ada™ !, we get that the sign of p is (—1)"lee.
Hence
(—1)"tee

= /e —bh1b’

(X -nuvg)y = (—1)" teeéVdethvVa — bth—1b.

We now consider the right hand side of the equation in the Proposi-
tion. Using the orientation of M we may identify the Riemannian den-
sity v, with a volume form and we have (v,)y = e/det gda' A---Adz™.
Hence (tiixvy)y = (=1)"te&/detgda® A --- A da"'. We finally
have to use the orientation on S to regard it as a density and get
(—1)" e & y/det g. The proposition is now proved sinceF_gI

detg = (a — b’h~'b) det h.

Notice that from the positivity of g and the consequent positivity of h
we conclude again that o — b'th='b > 0. O

SO

9.5. Manifolds with boundary and Stokes theorem. We finally
return to Stokes theorem, the higher dimensional generalization of the
fundamential theorem of analysis. Our goal is to show that if w is a
smooth (n — 1)-form with compact support on an oriented n-dimen-
sional manifold with boundary M, then

/dw:/ w
M oM

To do this we will have to introduce the notion of manifolds with bound-
ary, define the boundary and show that it is a manifold, discuss ori-
entation and finally prove the formula. As for the formula itself, it is
actually enough to understand the local case.

As a warm up we start with the two-dimensional case, which basically
presents all the features of the general case. Let H? := {(z,y) €
R? | y > 0} be the upper half plane. Let w = w,dx +w,dy be a smooth
1-form on H?: by this we mean that w is the restriction to H? of a
smooth form defined on an open neighborhood of H? in R%. We want

35This follows from the general rule
A B _
det (c D) = det(D — CA™'B) det A,

where (2 B) is a block matrix with A invertible. This formula follows immediately

from the decomposition

(€ 5)=(car V)0 o-cae) (o 1):
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to consider the integral of dw on H?. To be sure of convergence we
assume that w, and hence dw, has compact support. First observe that
dw = (Opwy — 8ywz )dz A dy. Thus,

/ dw—/ Opwy — Oywy) dx dy.
H2 H2

By Fubini’s theorem we have

+o00o +oo
/ Opwy d dy = / (/ Oy dx) dy.
H?2 0 —o0

By the fundamental theorem of analysis we have f Opwy dx = 0 since
w has compact support. Again by Fubini’s theorem we have

+00 +oo
Oywy dx dy = / ( / Oywy dy) dx.
H?2 —00 0

The fundamental theorem of analysis and the fact that w has compact
support now imply that fo Oywy dy = —wy|y—o. If we denote by
OH? = {(x,y) € R? | y = 0} the boundary of H? (i.e., the z-axis), we

finally get
/ dw = / w
H?2 OH2

This result can easily be generalized to the upper half spaces
H" .= {(z',...,2") € R" | 2™ > 0}.

Again by a smooth differential form on H" we mean the restriction
to H™ of a smooth differential form defined on an open neighborhood
of H” in R™. To integrate dw on H" (or, if you prefer to work with
manifolds and use the theory developed so far, on the interior of H")
we pick the standard orientation d"x. In order to avoid signs in the
Stokes theorem, on the boundary

OH" = {(z*,...,2") € R" | 2" =0}
we take the orientation induced by the outward pointing vector field
—0Op, 1.e.,
[i*1_p,d"z] = (=1)"[dz' A -+ Ada" ],

where i denotes the inclusion map of OH" into H”m We then have a
first version of Stokes theorem:

361f we had been working with lower half spaces, defined by the condition ™ < 0,
we would have chosen the boundary orientation also by the outward pointing vector
field, which in this case would have been 0,,, without an extra sign.
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Lemma 9.68. Let w be a smooth (n — 1)-form on H" with compact
support. Then, using the orientations defined above, we have

/dw:/ w.

Proof. We write w = 7" (=1)/ 1w’ da'A-- Az A- - Ada, (Notice

that the components w’ are related by a sign to the components w;, ;. _,
of the usual notation.) Then dw = > ", 9;w’ d"z. Hence, using the
standard orientation,

/ dw = Z 8jwj d™r.

By Fubini’s theorem we can integrate the jth term first along the jth
axis. Since w has compact support, for j < n we get

/ Ojw’ dx? = 0,

o0

whereas for j = n we get

“+00
/ Opw" dz"™ = —w"|,, —o-
0

/ dw:—/ W dV

On the other hand 7*w = (=1)""tw"|,, —gdz' A--- Adz""!. Using the
orientation of OH" defined above, we finally see that also

/ w:—/ whd" e,
OH™ OH

which concludes the proof. O

Thus,

By the same argument one proves the following

Lemma 9.69. If w is a smooth (n — 1)-form on R"™ with compact

support, then
/ dw = 0.
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9.5.1. Manifolds with boundary. To extend this result to manifolds we
first have to extend the notion of manifolds allowing charts to take
values in H" (with the topology induced from R™). This results in
the notion of manifold with boundary. This is the standard, though
very unfortunate, terminology, since a manifold with boundary is not
a manifold with extra structure (a boundary), but a generalization: it is
a manifold instead that is a special case of a manifold with boundary.
As we will see below a manifold is a manifold with boundary whose
boundary is empty.

Since we want to consider charts with image in H", we also have to
understand the properties of the corresponding transition maps. We
focus only on the smooth case for simplicity. On H"” we always use the
topology induced from the standard topology on R".

Definition 9.70. A map U — H™, where U is an open subset of H",
is called smooth if it is the restriction to U of a smooth map defined on
an open neighborhood of U in R™. A diffeomorphism U — V', where
U and V are open subsets of H", is a smooth invertible map whose
inverse is smooth.

We call OH" := {(2',...,2") € R" | 2" = 0} the boundary of H"

and

H" = {(2',...,2") e R" | 2" > 0}
the interior of H". If U is a subset of H" we define its interior and
boundary as

U:=UnNH" and oU := U N oH".
Elements of these sets are called interior and boundary points of U,
respectively.

Lemma 9.71. Let F': U — V be a diffeomorphism of open subsets
of H™. Then F maps interior points to interior points and boundary
points to boundary points. Moreover,

Fl;: U =V and Floy: 0U — 9V

are diffeomorphisms. If v is a vector in R™ and p € OU, then the sign
of the last component of v is equal to the sign of the last component of
dp,Fv. Finally, if F' is orientation preserving, then also the restrictions
Fl|y and F|py are so.

Proof. Recall that, by definition, F' is the restriction of a diffeomor-
phism F: U — R" with U an open neighborhood of U in R™.

Fix a point ¢ in U. Let W be an open neighborhood of ¢ in R™. Since
Flisin particular continuous, F (W) is open in R". Now assume that
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F(q) € 0V. Then every open neighborhood of F'(g) in R" contains
points not belonging to V. In particular, this is true for F(W), so W
does also contain points not belonging to U. Since this is true for every
open neighborhood W of ¢ in R™, this implies that also ¢ is a boundary
point.

Next observe that the restriction of a dlffeomorphlsm to an open
subset is still a diffeomorphism, so F|g: U—Visa diffeomorphism.
This restriction is of course orientation preserving if F is.

Let us now write I in components F!,... F" Since I maps the
boundary to the boundary, we have that F™(z!,... "' 0) = 0. This
implies that 0;F"|;n—g = 0,7 =1,...,n— 1. The Jacobian of F' on the
boundary can then be written as a block matrix

(aiFj>i,j:1,...,n—1 (anFj>j:1,...,n—1
0! O, F™ ’

Moreover, since F' maps interior points to interior points we have
that 0, F™|zn—0 > 0. Since dF is invertible, it then follows that also
(0:F7); j=1. .n—1|an=o is invertible. But this is the Jacobian of the re-
striction of F to dU.

If v = (vl,...,v") is a vector and p € U, then we have (d,Fv)" =
On F™(p) v™. Since 0, F™(p) > 0, the signs of the last components agree.

Finally, notice that, if F' is orientation preserving, then det dF’ > 0.
From the above block form and from the remark that 0, F™|n—¢ > 0 it
follows that also det((9;FY); j=1, .n—1|zn—0) is positive, so F' restricted
to the boundary is also orientation preserving. 0

We now extend the notion of a chart on a set M as a pair (U, ¢)
where U is a subset of M and ¢ is an injective map from U to H" for
some n. We extend the notion of transition map, atlas, open atlas.
We say that an atlas is smooth if all transition maps are smooth as
in Definition [0.70] Two smooth atlases are defined to be equivalent if
their union is a smooth atlas.

Definition 9.72. An n-dimensional smooth manifold with boundary is
an equivalence class of smooth atlases whose charts take values in H".

Let M be a manifold with boundary and ¢ a point in M. If ¢ is
sent by a chart map to an interior point of H", then by Lemma [9.71
it will be sent to an interior point by every chart map; on the other
hand, if ¢ is sent to a boundary point by a chart map, then it will
be sent to a boundary point by every chart map. This means that
we have the notion of interior and boundary points of a manifold with
boundary: interior points are mapped to interior points of H" by chart
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maps and boundary points to boundary points. We denote by M the
set of interior points of M and by M the set of boundary points of M.
Lemma implies that M and M get a manifold structure, with
dim M = dim M = dim M + 1, just by restricting atlases of M. The
manifold OM is called the boundary of M. A compact manifold with
boundary M with OM = () is also called a closed manifold. Notice that
this terminology is a bit confusing: closed here has a different meaning
than in point-set topology.

Example 9.73. Any open subset U of H" is a smooth manifold with
boundary with the equivalence class of the atlas consisting of a single
chart and the inclusion map to H" as the chart map. We have U =
UNH* and 9U = U N OH".

Example 9.74. Every smooth manifold M is also a smooth manifold
with boundary. Namely, to any atlas {(Uy, ¢a)}acr of M we associate
an atlas (U,, EBQ) with 504 .= Fo¢, and F a diffeomorphism R — H"
(e.g., F:(x',...,2") — (z1,... 2" e™")). We have M = M and
OM = (), so we have a one-to-one correspondence between manifolds
and manifolds with boundary whose boundary is empty.

Example 9.75. An interval [ in R is an example of a one-dimensional
manifold with boundary. If I = [a,b], then I = {a}U{b}; if I = [a,b),
then 0I = {a}; if I = (a,b], then 0I = {b}; if I = (a,b), then I = 0.

In all cases, I = (a,b).

Example 9.76. If M is a manifold and N is a manifold with boundary,
then M x NV is a manifold with boundary by using a product atlas. The
interior of M x N is M x N, and (M x N) = M x ON.

Example 9.77. Let M be an oriented manifold and S an oriented
hypersurface in M. Pick a Riemannian structure on M (recall that this
is always possible if M is Hausdorff and second countable) and let n
denote the normal vector field to S (see subsection for notations).
An adapted oriented atlas {(Usy, o) taer for M yields an oriented atlas
(Vs Ya)aer with V,, := ¢ ({(z!,...,2") € ¢o(U,) | 2" = 0}) and
VYo = Ty o Gy, with Ty: (2t ... 2" o) w— (2. 2" —2n) if
the nth component of the normal vector field in this chart is negative
and the identity map otherwise (we assume for simplicity that the Vs
are connected). (Notice that some V,, may be empty). Pick a collection
€a € RogU{+o00} and let W, := ¢ ({(z,...,2") € ¢o(Uy) | 0 < 2™ <
€a}). Then S, :=J, W, is a manifold with boundary whose interior is
an open subset of M and whose boundary is S.
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Example 9.78. Let W be an open subset of R"™! and F: W — R
a smooth map. Assume that for all ¢ € M := F~1(0) the map d.F'
is surjective. Then, for all € € Ryq U {+o0}, M, := F~([0,¢)) is a
smooth manifold with boundary with 0M, = M and interior the open
subset F71((0,¢)) of R,

As a particular case we have the

Example 9.79. The closed n-dimensional ball

B" = {(:pl,...,m”) e R" | Z:(a:’)2 < 1}

is a smooth manifold with boundary. Its interior is the open n-dimen-
sional ball and its boundary is the (n — 1)-dimensional sphere S"!.
(Notice that the closed ball is not a closed manifold.)

What we have defined for manifolds can be extended to manifolds
with boundary. We start with maps. If M and N are manifolds with
boundary and F': M — N a set-theoretic map, we can represent it in
charts by composing with chart maps. We say that F'is smooth if all its
representations are smooth according to Definition [9.70] Lemma [9.71
imediately implies

Lemma 9.80. Let F': M — N be a diffeomorphism of manifolds with
boundary. Then F maps interior points to interior points and boundary
points to boundary points. Moreover, F|;: M — N and Floy: OM —
ON are diffeomorphisms.

Vector bundles are defined exactly as in Section [§ A smooth sec-
tion of a vector bundle 7: E — M is defined again as a smooth map
o: M — FE such that m oo = Idy,.

In particular we are interested in the tangent bundle T'M of a smooth
manifold with boundary M. It is defined again as the union of the
tangent spaces T,M, p € M, the tangent space T,M at p being defined
exactly as in subsection Notice that for p € OM the tangent
space T,0M is a subspace of codimension one of T,M. A vector field
is defined as a section of TM and a k-form as a section of AFT*M.
Notice that in an atlas {(Uy, ¢a)}acr a vector field X and k-form w
are represented by collections X, and w, of smooth vector fields and
smooth k-forms on open subsets ¢, (U,) of H", n = dim M. This means
that the components of X, and w, are restrictions to ¢, (U, ) of smooth
functions defined on open neighborhoods of ¢, (U,) in R™.
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9.5.2. Stokes theorem. We are now ready to prove Stokes theorem.
What we still have to discuss is only orientations. An orientation of a
manifold with boundary is again defined as the choice of an equivalence
class of volume forms.

If M is a manifold with boundary, a vector n, € T,M, p € OM,
is called outward pointing if the last component of its representation in
any chart is negative (by Lemmal0.71|this notion is chart independent).
An orientation [v] of M then induces an orientation [w]| of OM with
the property that for any p € M we have that %, v, = cw, with
v € [v], w € [w] and ¢ a positive constant, where ¢ denotes the inclusion
of OM into M (notice that it is enough to check this condition for a
single p in each connected component of OM). This is called the in-
duced orientation of M. In a chart the induced orientation is obtained
by contracting the representation of [v] with the outward pointing vec-
tor field. That this procedure is consistent is again a consequence of

Lemma [0.71]

Theorem 9.81 (Stokes Theorem). Let M be an oriented, Hausdorff,
second-countable, n-dimensional manifold with boundary, n > 0, and
w a smooth (n — 1)-form on M with compact support. Then

/dw:/ w,
M oM

where on OM we use the induced orientation.
Remark 9.82. In particular, if M has no boundary, then fM dw = 0.

Proof. Let {(Ua, ¢a)}acr be an oriented atlas of M corresponding to
the given orientation and let {p;} ;e be a partition of unity subordinate
to it. First observe that

dw=d (Z pjw> = Z d(p;w).
jeJ jeJ

Next notice that supp(p;w) C U,,. Thus, by the localization Lemmam

we have
/ d(pjw) :/ d(pjw)a,; -
M ba; (Ua;)

If ¢o,(Us,) is contained in the interior of H", then we regard d(p;w)a,

as a compactly supported top form on R" (extending it by zero outside

ot its support); hence, by Lemma [9.69, we get f¢ w )d(pjw)aj =
a;j (Uay

0. Otherwise, we regard d(p;w).,; as a compactly supported top form



NOTES ON MANIFOLDS 129

on H" (again extending it by zero outside of its support); hence, by
Lemma [9.68] we get

/ d(pjw)aj = / (pjw>aj'

Noticing that 9(da, (Us;)) = ¢, (0Us,) by definition and that both are
oriented by outward pointing vectors, we get, again by the localization

Lemma, that
[ o) = [ o
M oM

Summing over j yields the result. O

Remark 9.83. Using equation , Remark and the the def-
inition of the flux right before Proposition we can recover the
original version of Stokes theorem: If U is an open subset of R3, X a
vector field on U and ¥ C U an orientable surface with boundary 0%,
then

X-dx:/cur1X~nv,

o5 b

where v denotes the Riemannian density associated to the restriction
to ¥ of the Euclidean metric on R? and n is the normal vector field
to ¥ that 0% encircles with the anticlockwise orientation (equivalently,

the vector product of the tangent vector at p € 9% with n, is outward
pointing).

Using Proposition [9.67, Remark [0.30/ and the definition of the diver-

gence of a vector field, we immediately]’’| get a further consequence:

Theorem 9.84 (Gauss Theorem). Let M be a smooth manifold with
boundary, g a Riemannian metric on M and X a vector field with
compact support. Then

X -nug,,, :/ divy X vy,
oM M

where n s the outward pointing normal vector field.

Example 9.85. Consider the m-dimensional ball of radius R,
BY = {(xl, 2™ e R™ ‘ Z(m’)Q < RQ} ,
i=1

3"The immediate proof following these steps actually requires orientability of M,
but the theorem is true in general, as we will explain in Section (see also, e.g.,
[, Sect. 14]).
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and its boundary, the (m — 1)-dimensional sphere of radius R,

Spt = {(Jcl,...,xm) eR™ ‘ i(m’l)2 = RQ} :
i=1

We regard them both as endowed with the restriction of the Euclidean
metric on R™. Let £ = > 2'0; denote the Euler vector field. We
have divE = m. The outward pointing vector field on S§~" is .

R
Hence F - n = R. The Gauss theorem then yields
m Vol(BR) = RVol(SE™).

By a simple change of variables, we also have Vol(BY},) = A™ Vol(B%)
for all A > 0. Hence, R:% Vol(B}y) = m Vol(B}). Thus, we get
o)

Vol(Sp—) = 3R Vol(B).

If we regard again the sphere as the boundary of the ball and write 0
for 2, we get the more suggestive equation

OR’
Vol(dB}) = 0 Vol(Bp).

9.5.3. The winding number. We consider a simple application of Stokes
theorem. Consider on R?\ {0} the 1-form

rdy —ydx
wi=——""
2?2 + y?
One can easily see, by an explicit computation, that w is closed. One
can also go to polar coordinates, F': Ry x ST — R?\ {0}, and easily

compute F*w = df. Given a differentiable loop v: S' — R?\ {0} we
define its winding number around 0 as

) 1 / 1 .
w(y) i =— [ wi=— w.
i 27 J, 2m Js1 7

Note that this definition has the following immediate generalizations.
First, it is enough to assume that v be piecewise deifferentiable as the
integral along ~ can be defined as the sum of the integrals over the
pieces where ~ is differentiable. Second, we can define the winding
number around any point p € R? for loops that miss that point just by
translating the above expression.

Remark 9.86. Note that working in polar coordinates shows that
w(7y) is an integer that measures how many times the curve v winds
around 0 in the counterclockwise direction. In fact, fix a point ¢, € S*
and remove from R?\ {0} the half line that passes through 0 and ().
In this complement the angle 6 € [0, 27] is a coordinate. We split the
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image of v into the portions that start and end on the removed line but
do not cross it. The integral of w along v is the sum of the integrals
on each of these portions, and each of these integrals is equal to 0, 27
or —2m. Note that one may take this as the definition of the winding
number, show that it does not depend on the choice of the initial point
to, and extend it to continuous loops 7.

We now want to show that the winding number is a “homotopy
invariant.” Namely, given two loops 7y and 7; as above, we say that a
differentiable map I': [0, 1] x S* — R?\ {0} is a homotopy from 7, and
v if, for all t € ST, T(0,t) = yo(t) and T'(1,¢) = (). We also say, in
this case, that vy and v, are homotopic.

Lemma 9.87. If vy and v, are homotopic, then w(yy) = w(7y1).

Proof. By Stokes theorem we have 0 = f[(ll]Xsl dl™w = W W

One may show that this result extends to the setting of continuous
curves and continuous homotopies. For more details, see, e.g., [2].

9.6. Singular homology. Stokes theorem may be formulated on much
more general objects than manifolds with boundary. A far reaching
generalization are manifolds with corners, i.e., spaces locally modeled
on open subsets of R¥ x RL,. We do not present the general theory,
but focus on the very important example of simplices. The standard
p-simplex is the closed subset[g_gl

p
AP = {(a:l,...,xp) € RP le <1, 2'>0 Vi}

i=1
of RP. Notice that the interior of AP is a p-dimensional manifold. The
0-simplex is just a point, the 1-simplex is an interval, the 2-simplex is
a triangle, and the 3-simplex is a tetrahedron.

A smooth differential form on A? is by definition the restriction to
AP of a smooth differential form defined on an open neighborhood of
AP in RP. We can integrate top forms on AP just identifying them with
densities by the standard orientation of RP.

Let now w be a smooth (p—1)-form on AP. The integral of dw on AP
can then be computed, by Fubini’s theorem and by the fundamental

38The p-simplex is also defined by some authors as

P
AP = {(mo,...,xp) e RrF! ’ inzl, zt >0Vi}.

=0
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theorem of analysis, as a sum of integrals of w on the faces of AP. Notice
that each of these faces is a (p — 1)-simplex (related to the standard
one by a diffeomorphism; see below).

Explictly, we write w = 37w/ dz! A ..dad A --- A dazP. Then
dw =320 (=1)*! 9jw’ dPx and

P
dw = —1)i ! 0w’ dPr.
| aw=3 v [ o

j=1
By Fubini’s theorem, we can integrate the jth term first in the jth
coordinate; by the fundamental theorem of analysis we then get

d Ard — 4T R A
Ojw’ da? = w ]zgzl_zz;:lzz W’ | zizo-

Aar i)
Hence
p . . _
(9.12) / dw = (—1)3“/ w!dzt - dad - daP+
AP jzl arn{¥yr_, zi=1}
p
+Z(—1)j/ wldzt - dad - daP
j=1 APm{xﬁ':()}

We may rewrite this formula in a more readable way if we regard the
faces on which we integrate as images of (p — 1)-simplices; namely, for
1=20,...,p, we define smoothﬁ maps

kPl APTL 5 AP

by
p—1
kg_l(al,...,ap_l) = (1 — a’,al,...,ap_l)
i=1
and
1,1 -1 1 i—1 ' -1
ke ar,..,aP ) = (a',...,d?7,0,a7, . 0P ),
for j > 0.

The jth integral in the second line of (9.12)) is just the integral on
AP~ of the pullback of w by A” ~!. In fact,

p
(k:?_l)*w = (k;’_l)* Zwi dz' AL dai A AdaP =
i=1

=w(a',...,a?0,d,...,a" ") d" a.

39Again, smooth means that these maps are restrictions of smooth maps defined
on open neighborhoods.
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We then integrate by the standard orientation on AP~! and rename
variables: 2! = a for i < j and 2 = a**! for i > j.

The jth integral in the first line is on the ﬂler hand the integral on
AP~ of the pullback of (—1)71widz! A...dai A--- Ada? by kb~ In
fact,

(kg_l)*wjdxl/\...EJ?/\---/\dxp:
- i(1— P R inda* A Adai—A- - - AdaP~! =
w’( Zia,a, ,Q )Zida/\da/\ Adad=tA---Ada
= (=1 wi(1 - tat, . aP Y dP .
(=Y dal, @ d
We then integrate by the standard orientation on AP~! and rename
variables: 2! = a' for 1 < j and 2° = a*! for i > j.

Summing up all contributions, we finally get the Stokes theorem for
a simplex:

(9.13) /A dw = i(—nj /Apl(kf_l)*w

j=0
where the term with 7 = 0 corresponds to the whole sum in the first
line of (9.12)) and each other term corresponds to a term in the second
line.
Things become more interesting if we consider a smooth map
o: AP — M,

where M is a smooth manifold (again, we mean that o is the restriction
of a smooth map defined on an open neighborhood of AP). If « is a
smooth p-form on M, one defines

/a::/ o*a.
o AP

If we define 07 := 0 o kfflz AP=Y — M then (9.13)) implies

/wa = Z;(—l)j /Uj w.

This equation gets an even better form if we introduce the notion of
chains.

Definition 9.88. A p-chain with real coefficients in a smooth manifold
M is a finite linear combination ), ayoy, ar € R for all k, of smooth
maps oy: AP — M. If o is a smooth p-form on M, one defines

(9.14) / w = Zak/ w.
2k OkOK k ok
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We then have the Stokes theorem for chains

/dw—/w
o do

p
(9.15) do = Z(—l)jaj.
=0
We let ,(M,R) denote the vector space of p-chains in M with real
coefficients and extend O to it by linearity. We then have, with the
terminology of subsection [0.3] that 9 is an endomorphism of degree —1
of the graded vector space Q4(M,R). By a simple calculation, one can
actually verify that 0 is a boundary operator, see Definition [9.15; i.e.,

000 =0.
For o € Q,(M,R) and w € QP(M) we define

()= [

This is a bilinear map Q,(M,R) x QP(M) — R. Stokes theorem for
chains now reads

where

(0,dw) = (o, w).

A chain in the kernel of 0 is called a cycle, a chain in the image of 0 is
called a boundary. One defines H,(M,R) as the quotient of p-cycles by
p-boundaries. The graded vector space Hq(M,R) is called the singular
homology with real coefficients of M.

Notice that a smooth map F': M — N induces a graded linear map
F.: Qo(M,R) — Q4(N,R), 0 — F oo. We clearly have 0F, = F.0,
which implies that F, descends to a graded linear map

F.: Hy(M,R) = H,(N,R).

If F is a diffeomorphism, then F, is an isomorphism in singular ho-
mology. This shows that the singular homology is also an invariant of
manifolds.m Another important remark is that

(Fio,w) = (0, F*w)
for all 0 € Qe(M,R) and all w € Q°*(N).

40Notice that one can also define C!-chains, for any [, just by requiring the maps
to be C!. One can prove that the Cl-singular homologies are all isomorphic to
each other. In particular, one can work with continuos maps. This shows that
homeomorphic manifolds have the same singular homology. Also observe that to
define continuous maps we just have to assume that M is a topological space. This
means that one can define singular homology for topological spaces as well.
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Finally, the Stokes theorem for chains implies that the above bilinear
map pairing chains to differential forms descends to a bilinear map

H,(M,R) x H?(M) — R.

The most important result in this context is the de Rham theorem
that asserts that this induced pairing is nondegenerate. Notice that
this implies that HP(M) is isomorphic to H,(M,R)* for all p.

Remark 9.89. One can define chains with coefficients in any unital
ring R: A p-chain o with coefficients in R is a finite linear combination
> 1w @k0k, a € R for all k, of maps o,: AP — M. One denotes by
Q,(M, R) the R-module of p-chains in M with coefficients in R and
defines 0 by formula . One still has that 0 is a boundary operator
on the graded R-module Q4(M, R) and one can define the singular
homology He(M, R) of M with coefficients in R. Again amap F': M —
N induces an R-linear map in homology and a homeomorphism induces
an isomorphism. Notice that the pairing with differential forms is
not defined if we do not specify a homomorphism R — R to make sense
of the right hand side. In the special case R = Z, one simply writes
Q,(M) and H,(M) instead of Q,(M,Z) and H,(M,Z). The latter is
usually called that pth homology group of M. Using the inclusion
homomorphism Z — R one can pair chains with integral coefficients
with differential forms. Notice however that, in general, the induced
pairing H,(M) x HP?(M) — R is degenerate.

9.7. The nonorientable case. Differential forms, unlike densities, re-
quire an orientation to be integrated; they are, however, more flexible
as they can be restricted and integrated on (oriented) submanifolds
and form a complex. This in particular leads to Stokes theorem. In
this section we want to see what can be saved of the theory of differ-
ential forms without orientation. We will see that there is a variant of
Stokes theorem and that, in particular, Gauss theorem holds also on
nonorientable manifolds.

Recall that a top form, in local coordinates, transforms with the
determinant of the Jacobian of the transformation maps, whereas a
density transforms with its absolute value. To keep track of this twist
we introduce the orientation bundle or(M) of a manifold M: this is the
line bundle whose transition functions are given by the signs of the
Jacobians. Namely, if we fix an atlas {(Ua, o) taer, We set Ayp(q) =
sgndet dg, () @ap, in the notations of Section [8.1.4] Note that the tran-
sition functions of the orientation bundle are locally constant. We now
come to the central
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Definition 9.90. A twisted differential form on M is a section of A*T*M &
or(M).

Note that a twisted top form is the same as a density (they both
transform with the absolute value of the determinant of the Jacobian).

Lemma 9.91. Let M be Hausdorff and second countable. Then or(M)
1s trivial if and only if M s orientable.

Proof. If M is orientable, then or(M) is trivial by Proposition [8.28]
Vice versa, if or(M) is trivial, we have global sections. A choice
of global section allows identifying top forms and twisted top forms,
i.e., densities. If M is Hausdorff and second countable, we may pick a
positive density which in turns defines a volume form. 0

Notice that choosing a global section of or(A/), in the orientable
case, yields an identification between differential forms and twisted
differential forms.

On twisted differential forms we may define the twisted de Rham
differential just by letting it operate on the differential form factor.
This makes sense, since the transition functions of the orientation bun-
dle are locally constant. More explictly, a twisted differential form w
is represented in the atlas {(Ua, ¢u)tacr by differential forms w, on
¢a(Uy) transforming as

Wo = sgnd@as @psws-

Since sgn dgqg is locally constant, we have
dws = sgndoas ¢ sdws,

which shows that the collection of the dw,s defines a twisted differential
form. One can define the twisted de Rham cohomology, which coincides
with the usual one if M orientable. Also note that we can analogously
define contractions and Lie derivatives by vector fields and the whole
Cartan’s calculus extends to the twisted setting. In particular, if we
regard a density o as a twisted top form, we have Lyoc = dixo, a
crucial fact for the proof of Gauss theorem.

Twisted top forms, being the same as densities, can be integrated on
the whole manifold (if the integral converges). To define integration
on (appropriate) submanifolds, we have to understand how to restrict
twisted forms. Note that, if .: S — M is a submanifold and u a section
of or(M), the restriction of u to S is a section of the pullback bundle
t*or(M).
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Definition 9.92. A submanifold ¢: S — M is called co-orientable if
t*or(M) is isomorphic to or(S). A choice of isomorphism is called a
co-orientation and S with this choice is called co-oriented.

Note then that, if w is a twisted differential form on M, the restriction
of wto S, t*w, is a twisted differential form on S. In particular, if the
form degree of w is equal to the dimension of S, then (*w is a density
on S and can be integrated. We have thus defined a pairing between
twisted k-form and k-dimensional co-oriented submanifolds.

In a local adapted atlas, we have tangential coordinates !,...,x
and transversal coordinates 4, . .., y", with ¥ = dim S and r = dim M —
k. We assume that S is determined by setting the ys to zero. When
we pass to a different adapted chart, we write ¢os = (Yus, Xag), Where
1ap consists of the first & components and x.s of the last r compo-
nents. On S we have x,3 = 0. As a consequence, for each point
(z,y) on ¢o(S N U, N Us), the differential of ¢,z is the block ma-

trix <d”6w jz;ﬁ . It follows that the transition functions of (*or(M) are

sgnd,Yap sgndyxas. Since the 1,ss are the transition maps for S in
the induced atlas, we see that S is co-orientable if and only if the line
bundle on .S with transition functions sgnd,xa.s, at y = 0, called the
co-orientation bundle, is trivial.

This immediately implies that a submanifold of an orientable mani-
fold is co-orientable if and only if it is orientable.

It also shows that in the definition of the flow of a vector field through
a hypersurface S, see Section [9.4.5] what is needed is actually just a
co-orientation of S: this is equivalent to choosing one normal vector
field. The proof of Proposition [9.67| can easily be adapted to prove its
following more general version:

k

Proposition 9.93. Let S be a co-oriented hypersurface of a Riemann-
ian manifold (M, g). Then, for every X € X(M), we have

/X-nvgsz/bxvg,
S S

where the co-orientation of S is used on the left hand side to define n
and on the right hand side to define the restriction of the twisted form
to S.

Let us now come to the case of a manifold with boundary M. By
inspection in the proof of Lemma [9.71] we see that M is always co-
orientable. We will always assume its standard co-orientation, the one
given by taking the last component of an outward pointing vector as
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a section of the co-orientation bundle. Repeating the same steps as in
the proof of the non-twisted Stokes theorem, we get its twisted version:

Theorem 9.94. Let M be a Hausdorff, second-countable, n-dimen-
stonal manifold with boundary, n > 0, and w a smooth twisted (n —
1)-form on M with compact support. Then

b= e

From Proposition [9.93] Theorem [9.94] and the Cartan formula for
the Lie derivative of a twisted top form, we get the proof to Gauss
theorem, see page [129] without having to assume orinetability of the
manifold.

Example 9.95. Consider the Mobius band M again, presented as
[0,1] x R with (0,y) identified with (1, —y) for all y € R. The curve
Yo: [0,1] = M, t +— (¢,0) is not co-orientable. On the other hand, for
each h # 0, we have the co-orientable curve ~,: [0,1] — M given by

[tn) te0,1/2]
(1) = {(2t —1,—h) te[1/2,1]

Take h > 0 and consider the region M) enclosed by the curve (the
one containing 7). This is a nonorientable manifold with boundary.
As an example for the Gauss theorem, consider the Euclidean metric
dx? + dy? and the vector field X = ya%. The flow of X through OM,
is 2h. On the other hand, the divergence of y is 1, and the Euclidean
area of M), is also 2h.

9.8. Digression: Symplectic manifolds. A symplectic form w on a
manifold M is by definition a closed, nondegenerate 2-form. Nonde-
generate means that for all p € M we have

wp(v,w) =0V € T,M <= w = 0.

Equivalently, the determinant of the matrix representing w in a chart is
nonzero at every point. A pair (M,w), where M is a smooth manifold
and w a symplectic form on M, is called a symplectic manifold.

Remark 9.96. Notice that a 2-form w on M establishes a morphism
w!: TM — T*M of vector bundles by sending v € T,M to the linear
form w — w,(v,w). This morphism is an isomorphism if and only if
w is nondegenerate. Hence, if w is symplectic, to every function H we
can associated a unique vector field Xy such that

Lx,w = —dH.
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The vector field Xy is called the Hamiltonian vector field of H (the
minus sign on the r.h.s. is purely conventional and not used by all
authors). On the other hand, a vector field X is called Hamiltonian
if it is the Hamiltonian vector field of a function (which is uniquely
defined up to the addition of a locally constant function); any of these
function is called a Hamiltonian function for X. Since w is closed, by
Cartan’s formula we get

LXHOU = 0.
Equivalently, w is invariant under the flow of Xy, which is called the
Hamiltonian flow of H.

Example 9.97. Symplectic geometry arises in mechanics. Consider,
e.g., Newton’s equation for one particle in R?,

mi' = F'(x,1,1),

where I, the force, is a given function and m, the mass, is a given pos-
itive number. As usual, one replaces this system of three second-order
ODEs by an equivalent system of six first-order ODEs by introducing
the momentum p; = ma*:

i’ = p;/m.
A system is called conservative if F' does not depend on time and
velocities and is minus the gradient of a function U, the potential, of the

coordinates: F* = —9;U. In a conservative system, Newton’s equations
in the p, x variables turn out to be the ODE of the Hamiltonian vector

field of the function H = ), % + U with respect to the symplectic
form w =Y, dp;dq’".

More generally,

Example 9.98. Let N be an open subset of R?" with coordinates
qu s anv Py Pn- Then

(9.16) w= Z dp; A dg'
i=1

is a symplectic form on N.

Example 9.99. The cotangent bundle T* M of any manifold possesses
a natural symplectic form defined as follows. First one defines the
Liouville 1-form € (a.k.a. the Poincaré 1-form or the tautological 1-form).
The easiest way to define it is by choosing an atlas {(Us, @a) }acr for M
and the corresponding trivializing atlas for TM. We denote by ¢', the
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coordinates in the charts U, and by p{* the coordinates on the fibers.
They satisfy the transition rules

QE = gﬁ(Qa)?
n 8¢j
[l § ap B
Jj=1 O, !

This implies that the collection of 1-forms 6,,,

O = Z p? dqg,
=1

defines a 1-form 6 on M since 0, = ¢} 405 for all o, 3. Its differen-
tial w = df is nondegenerate, since in charts it reads Y ., dp®dg.,
and hence is a symplectic form on T*M. There is also a coordinate-
independent definition of 6. Namely, denote by (¢,p), ¢ € M and
p € (T,M)*, the points in T*M and let 7: T*M — M, w(q,p) = q be
the projection map. For v € Tig,nT* M, define 0, ,)v := p(dgp7v).

Remark 9.100. Darboux’s Theorem, which we will prove later (The-
orem [9.107)), asserts that every symplectic manifold possesses an atlas
such that the symplectic form in each chart is as in (9.16)).

From now on, let (N,w) be a symplectic manifold. We want to
draw a few consequences. The first remark follows from linear algebra:
a vector space admits a skew-symmetric nondegenerate bilinear form
only if it has even dimension. This implies that dim N = 2m, for
some integer m. The nondegeneracy of w implies that the top form
p = w™/(m!), called the Liouville volume form, is nowhere vanishing.
This in turn implies that a symplectic manifold is always orientable
(and actually oriented by p). The integral | 1z P 1s called the symplectic
volume (we put on M the orientation [p], so this number is strictly
positive, possibly infinite.) This has an interesting corollary: If N is
compact, then w is not exact. To prove this assume on the contrary
that w is exact. This implies that p is also exact and by Stokes theorem
that [,, p = 0; but this is impossible.

Observe that, since w is invariant under the flow of a Hamiltonian
vector field, then so is p. This means that the p-divergence of a Hamil-
tonian vector field is always zero.

If H and F' are two functions on N, then one can easily see that

(9.17) Xu(F)=—-Xp(H)

as both are equal to —tx,, tx,w. This has two important consequences.
The first is Noether’s theorem. We need first the
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Definition 9.101. A Hamiltonian system is a pair ((N,w), H) where
(N,w) is a symplectic manifold and H is a function on N. A constant
of motion for the Hamiltonian system ((N,w), H) is a function that
is constant on the orbits of Xy. An infinitesimal symmetry for the
Hamiltonian system ((N,w), H) is a Hamiltonian vector field X on N
such that X (H) = 0.

Theorem 9.102 (Noether’s Theorem). A Hamiltonian vector field is
a symmetry for the Hamiltonian system ((N,w), H) if and only if any
of its Hamiltonian functions is a constant of motion.

Proof. Let F' be a Hamiltonian function for the vector field at hand,
which we denote by Xr. Being a symmetry means Xz(H) = 0. On
the other hand, F' is a constant of motion if and only if Xy (F) = 0.
The Theorem then follows from (9.17]). U

The second consequence of (9.17) is that the bracket
{H,F} = Xu(F),
called the Poisson bracket on (N, w), is skew-symmetric.

Lemma 9.103. The Poisson bracket { , } is a Lie bracket on C*>°(M)
that in addition satisfies the Leibniz rule {f,gh} = {f,g}th + g{f, h}
for all f,g,h, € C*(M). Moreover, the map f — X is a Lie algebra
morphism from C*(M) to X(M).

Proof. The Leibniz rule follows immediately from the Leibniz rule for
vector fields and from the definition of the Poisson bracket. Differ-
entiating the defining relation {f,g} = tx,dg and using Cartan cal-
culus, we get, d{f,g} = Lx,dg. From the definition of the Hamil-
tonian vector field for g, and again using Cartan calculus, we get
d{f,9} = —Lx,ix,w = [ix,,Lx;Jw = tx, x,;w, where we have also
used that w is Xy-invariant. This shows that the Hamiltonian vector

field of {f, g} is [ Xy, X,]:
Xipgy = [ X5, Xg|.
We then have
{f7 {g7h}} = _{{g7h}af} - _[X97Xh](f> -

= Xn(Xof) = Xg(Xuf) = {h,{g, f}} = {9, {h. f}},

which is the Jacobi identity. The previous identity also shows that
f +— Xy is a Lie morphism. 0
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We can use the Poisson bracket to rephrase Noether’s theorem: A
function F is a constant of motion for H if and only {F, H} = 0. Skew-
symmetry immediately implies that F'is a constant of motion for H if
and only if H is a constant of motion for F. In addition we have the

Proposition 9.104. If F' and G are constants of motion for H, then
so are FG and {F,G}. Hence the constants of motion for a given
Hamiltonian system form a Poisson subalgebra.

Proof. By Noether’s theorem we have {H,F} = {H,G} = 0. The
Leibniz and the Jacobi identities imply {H, FG} = 0 = {H,{F,G}}.
U

Remark 9.105. Note that, more generally, any Lie bracket on a com-
mutative algebra that also satisfies the Leibniz rule is called a Poisson
bracket.

9.8.1. Normal form. Symplectic manifold locally look all alike. This is
the content of Darboux’s theorem. We start with a very useful technical
Lemma.

Lemma 9.106 (Moser’s trick). Let wy and wy be symplectic forms on
an open subset U of R™ that coincide at some point q. Then there are
open neighborhoods Vo and Vi of q and a diffeomorphism ¢: Vo — Vi
such that ¢(q) = q and

wo\vo = ¢*w1\vl-

Proof. Consider the convex combination w; := (1 —t)wg+twy, t € [0, 1].
Observe that %wt = w; — wy. Let U’ be an open ball around ¢ inside
U. Since wy and w; are closed, by the Poincaré Lemma we then have a
1-form 6 on U’ such that there %wt = df. Note that @ is defined up to
the differential of a function, and we may always choose it such that 6
vanishes at ¢[]

Next we choose a neighborhood U” of ¢ in U’ where w; is nonde-
generate for all ¢ € [0,1]. To see that this is possible, consider the
map [0,1] x U" — R that assigns to (¢,x) the determinant of w; at .
Let C' be the preimage of 0, which is closed since this map is continu-
ous. Its complement contains [0, 1] x {q} (since at ¢ we have, for all ¢,
w; = wop = w; which is nondegenerate), so in particular it contains an
open subset of the form [0, 1] x U".

On U” then we have, for each ¢, a unique vector field X; such that
tx,wy = df, which implies Lx,w; = 0. Note that by the assumption on 6
also X; vanishes at ¢. Finally we denote by ®;(y) € U” the solution to

Urite § = >, 0:dat. Set f(z) = =3, 0;(¢)z". Then 6 + df vanishes at g.
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the ODE & = X;(z) with initial condition y. As ®,(q) = ¢ for all ¢, we
may find a neighborhood U" of ¢ in U” such that ®,(y) is defined for
all y € U"” and for all t € [0, 1]. One can then show that w; = (®}) lwy
for all t. In fact, define w(t) := ®jw;. We have

o e — O
%w@:mm theide 7 Tyl

e—0 €

The main remark is now that ®;,.(y) = ®X(®;(y)) + O(¢*). Hence

(I)Xt * o
O 55(t) = @; 1o (2w

a e—0 € - Cbt LXtWt =0
Since w(0) = wp, we get that w(t) = wy for all . To complete the proof
we set Vo =U", Vi = @ (U") and ¢ = ;. O

One application of Moser’s trick is

Theorem 9.107 (Darboux’s Theorem). Let (M,w) be a 2n-dimen-
sitonal symplectic manifold. Then every point m of M is contained in

a chart (V,T) such that T.w has the form of equation (9.16]).

Proof. Let (W,1) be a chart containing m. The representation of w in
this chart at the point ¢ (m) is a nondegenerate skew-symmetric matrix
which can hence be put in the form ( _, %) by a linear transformation
A. We set ¢/ := Aoy, U =¢'(W), wy = Y.w|w and wy the restriction
to U of the 2-form of equation (9.16). By Moser’s trick, with the
same notations, we conclude the proof by setting V' = (¢')~*(V;) and

T=¢ loy O

9.8.2. The degenerate case. In the study of Hamiltonian systems, the
nondegeneracy of the symplectic form is used to guarantee existence
and uniqueness of Hamiltonian vector fields. Most of the other proper-
ties, however, only rely on the fact that the symplectic form is closed.
We highlight in this section what survives if we drop the nondegen-
eracy condition. This is relevant to study “subsystems” defined by
submanifolds of a symplectic manifold, as nondegeneracy is in general
not preserved by restriction.

Definition 9.108. Let w be a closed 2-form on a manifold M. We
say that a vector field X is vertical if t.xw = 0. A function f is called
invariant if X (f) = 0 for every vertical vector field X. A function f is
called Hamiltonian if there is a vector field X such that tx,w = —df;
such a vector field is called a Hamiltonian vector field for f.

Note that any two Hamiltonian vector fields for the same Hamilton-
ian function differ by a vertical vector field. Thus, if f is Hamiltonian
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and ¢ invariant, we may define the action of f on g by

gt = X;(9).

Notice that we have the Leibniz rule f{gh} = f{g}h+gf{h} for every
Hamiltonian function f and all invariant functions g and h.

Also note that a Hamiltonian function is automatically invariant, so
in particular we have an action of Hamiltonian functions on Hamilton-
ian functions that we denote by a bracket: If f and g are Hamiltonian,
we set

{f, 9} = flg}-

Note that the product fg of two Hamiltonian functions is also Hamil-
tonian (e.g., with Xy, = fX, + gXy). By inspecting the proof of
Lemma we see that also {f, g} is Hamiltonian and that { , } is
a Poisson bracket on the algebra of Hamiltonian functions.

Note that the Lie bracket of two vertical vector fields X and Y is
also vertical: in fact,

Uxyw = [tx, LyJw = ixdiyw — Lytxw = 0.

(More generally, this computation shows that the Lie bracket of a ver-
tical vector field X with a vector field Y that preserves the symplectic
form, e.g., a Hamiltonian vector field, is vertical.)

This points at some form of involutivity. To make this more pre-
cise, let us introduce the kernel A of the bundle map w* introduced
in Remark [9.96] In other words, the kernel A, at ¢ € M consists of
all tangent vectors v at ¢ such that w,(v,w) = 0 for all w € T,M. A
vector field X is then vertical if and only if X, € A, Vg € M. If A'is
a regular distribution, it is then involutive by the above formula.

Definition 9.109. A 2-form w on M is called presymplectic if it has
constant rank, i.e., if dimw*(T,M) is the same for all ¢ € M. A
manifold endowed with a presymplectic form is called a presymplectic
manifold.

Lemma 9.110. The kernel of a presymplectic form is an involutive
distribution.

Proof. By the previous discussion, what is left to show is just the
smoothness of A or, equivalently, that A is a subbundle of TM. This
follows from the implicit function theorem if we regard A as the preim-
age of M under w*. We may see this in charts. There w¥ yields a map
U 0a(Uy) X R* = R, (z,v) = (wh),(v), and we have A, = u_'(0)
which is a submanifold, as u, has constant rank by assumption. O
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By Frobenius’ theorem A is then also integrable. If the leaf space N
admits a smooth structure for which the canonical projection 7: M —
N is smooth, we then see that the vertical vector fields for the presym-
plectic form w are the same as the vertical vector fields for the projec-
tion 7. Since w is closed and invariant, by Corollary it is basic.
Let w be the uniquely defined 2-form on N with w = 7*w. Since 7* is
injective, w is closed. It is also nondegenerate, since we have modded
out precisely by the kernel. The symplectic manifold (N,w) is called
the symplectic reduction of (M, w).

Next let X be a symplectic vector field, i.e., Lyw = 0. Then, for
every vertical vector field Y and by Cartan’s calculus we get ¢(x yjw =
—[Lx, ty|w = 0. This means that X is projectable. It also follows that
¢(X) is symplectic. If X is Hamiltonian, i.e., txw = —df, then f is
invariant. If we write f = 7" f, then we also get t4x)w = —df.

Finally, suppose we have an invariant function f = 7*f. We then
have df = n*df = —7*(1x,w), where X is the uniquely defined Hamil-
tonian vector field of f. Let now X be a projectable vector field with
#(X) = Xy. We then have df = —txw, so f is Hamiltonian.

This is the lucky situation. However, even if the leaf space is not
smooth, a presymplectic manifold still has nice features:

Proposition 9.111. On a presymplectic manifold every invariant func-
tion is Hamiltonian.

Proof. By Frobenius theorem, in a chart image the kernel distribu-
tion is spanned by the vector fields %, cee %. This implies that the
presymplectic form reads %Zi,pk wi;dz’ A da?, where at each point
the coefficients w;; are the entries of a nondegenerate skew-symmetric
(n—k) x (n— k)-matrix. A function g is on the other hand invariant if

it does not depend of the first & coordinates. As a Hamiltonian vector

field X for g we may take a solution to the equation y,_, X'w;; = %,
J >k, which exists since (w;;); j>x is nondegenerate. O

10. LIE GROUPS

Definition 10.1. A Lie group is a smooth Hausdorff manifold G with
a group structure such that the multiplication

GxdEG = d
(g,h) +— gh

and the inversion

- G
|_>71

G
g g
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are smooth maps?|

Example 10.2 (The general linear group). Consider the group
GL(n) := {4 € Mat(n x n,R) | det A # 0}

of invertible n X m-matrices with real coefficients. The vector space
Mat(n xn,R) can be identified with R”* with each entry being a coordi-
nate and gets as such a standard manifold structure. The group GL(n)
inherits a manifold structure being an open subset of Mat(n x n,R).
Since each entry in the product of two matrices is a polynomial in
the entry of its factors, matrix multiplication is a smooth map. By
Cramer’s rule, each entry of the inverse of a matrix is the ratio of
the corresponding adjugate matrix over the determinant of the given
matrix; as such it is a rational function and, therefore, a smooth func-
tion on the complement of matrices with determinant zero. Hence,
GL(n) is a Lie group. Similarly, the group GL(n,C) is an open sub-
set of Mat(n x n,C), which can be identified with R?** with standard
manifold structure, and as such it is a Lie group.

Example 10.3 (Matrix Lie Groups). The classical matrix groups SL(n),
O(n), SO(n), SL(n,C), U(n) and SU(n) arise as subsets of Mat(n x

n,R) or Mat(n x n,C) defined by constraints satisfying the conditions

of the implicit function theorem:

SL(n) = {A € Mat(n x n,R) | det A =1},
O(n) = {A € Mat(n x n,R) | A'A —1d = 0},
SO(n) = {A € Mat(n x n,R) | AYA—1d =0 and det A = 1},
SL(n,C) = {A € Mat(n x n,C) | det A =1},
U(n) = {A € Mat(n x n,C) | ATA —1d = 0},
SU(n) = {A € Mat(n x n,C) | ATA —1d = 0 and det A = 1}.

Multipication and inversion are smooth as in Example [10.2l Hence
they are Lie groups.

10.1. The Lie algebra of a Lie group. Lie groups have an “infinites-
imal version” which is a Lie algebra (recall Definition on page

421 several textbooks, Lie groups are equivalently defined by requiring that the
combined map
GxG — G
(9;h) = gh!

be smooth.
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and the subsequent examples). Indeed we will show that the tangent
space at the identity e of a Lie group G,

g:=1T.G,
has a natural Lie algebra structure.

Remark 10.4. It is customary to denote a Lie group by a capital ro-
man leter and its tangent space at the identity, viewed as a Lie algebra,
by the corresponding letter in lowercase gothic.

First notice that, if G is a Lie group, then left multiplication by g

ly: G = G
h +— gh

is a smooth map (actually, a diffeomorphism) for each g € G. Notice
that the differential of [, at h yields a linear map

dhlgi ThG — TghG.
A vector field X on G is called left invariant if
(10.1) X(gh) = dpl, X (h)

for all h, g € G. Equivalently,
()X =X
for all g € G. If X and Y are left-invariant vector fields, then
(lg)«[X, Y] = [(Ig)- X, (Ig). Y] = [X, Y],

so also [X,Y] is left invariant. Hence, the R-vector space X(G)¢ of
left-invariant vector fields is a Lie algebra.

Notice that by specializing at h = e, where e is the identity
element, we get

X(g) = deng(e)'
This shows that a left-invariant vector field is completely determined
by its value at the identity. More precisely, we have an isomorphism of
R-vector spaces
g — X(G)°
§ = X
with X¢(g) = d.,&, with inverse

X(G)Y - g
X = X(e
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Definition 10.5. The Lie algebra of a Lie group is its tangent space
at the identity with the Lie bracket induced by its identification with
the vector space of left-invariant vector fields. Namely,
(10.2) Xiem = [Xe, X3
for all £, € g.

We end this section by the following observation.

Lemma 10.6. Every Lie group is parallelizable (and hence orientable).

Proof. The map
Gxg — TG

(9:6) = (g,delyf)
is an isomorphism of vector bundles. U

This yields a new proof of the fact that S' and S are parallelizable,
see Lemmata and . In fact, S! is diffeomorphic to SO(2) by
the map

St — SO(2)

0 cosf) —sind
sinf cos6
On the other hand:

Lemma 10.7. S® is diffeomorphic to SU(2).

a B

5 5) with determinant 1.

Proof. Consider a complex 2 x 2 matrix A = (

e
sure that A is in SU(2), yields 6 = a and v = —f3. As a consequence,

our matrix A has the form (_QB g) with |a|?+3]? = 1. We have hence

Its inverse is then ( 0 _6). Equating it to its adjoint (% }), to make

proved that

SU(2) = {(_aﬁ g) € Mat(2 x 2,C) | |a* +|8|* = 1} :
If we identify C? with R*, we see that the equation |a|? + |3]> = 1, for
(a, B) € C?, defines S3. O

10.1.1. The Lie algebra of matriz Lie groups. Consider first the case
G = GL(n). First observe that, since GL(n) is an open subset of
Mat(n x n,R) with its standard manifold structure, we have

gl(n) :== T.GL(n) = Mat(n x n,R),

where e now denotes the identity matrix. Since the group multiplica-
tion is a linear map, its differential is exactly the same linear map; so
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the left-invariant vector field X¢, as a map from GL(n) to Mat(nxn,R),
corresponding to a matrix & € gl(n) is simply given by

(10.3) Xe(A) = AE, A€ GL(n),

where on the left hand side we just use matrix multiplication. Left-
invariance is just given by X¢(AB) = AX(B) VA, B € GL(n). As a
derivation, X, can be written as

u 0
Xe(A)= > A&k,
j,kz—l O
so [Xe, Xy] = Xpe, with [§,9] = &y — né the usual commutator in
Mat(n x n,R). Hence we have proved that the Lie algebra of GL(n)
is the vector space of n X m-matrices with Lie bracket given by the
commutator.

Similarly, the Lie algebra of GL(n,C) is Mat(n x n,C), regarded as
an R-vector space, with Lie bracket given by the commutator.

If G is a submanifold of GL(n) (or GL(n,C)) given by constraints
satisfying the conditions of the implicit function theorem, then its tan-
gent space as the identity may be computed as in Remark [6.10] In
particular, it is a subspace of Mat(n x n,R) (or Mat(n x n,C)) and the
Lie bracket is still given by the commutator.

For the matrix Lie groups introduced in Example we have to
linearize the determinant and the quadratic functions A*A and A'A at
the identity. Notice that

det(e +t£+O(t?)) = 1+t Tr & + O(t?),
(e+tE+0)) (e +tE+0OY)) = e+t +€) +O(
(e+tE+0E) (e +tE+0(t) =e+t(E +&) + O

Hence,

t%),
t2).

sl(n) = {{ € Mat(n x n,R) | Tr{ =0},
o(n) = {¢£ € Mat(n x n,R) |¢" + & = 0},
so(n) = {A € Mat(n x n,R) [ +&=0and Tré =0},

sl(n,C) = {£ € Mat(n x n,C) | Tr¢ =0},
u(n) = {€ € Mat(n x n,C) | € +€ = 0},
su(n) = {¢€ € Mat(n x n,C) |¢" + & =0 and Tré = 0}.

Notice that, since the trace of a skew-symmetric matrix vanishes auto-
matically, we have



150 A. S. CATTANEO

for all n.

10.2. The exponential map. A map ¢: G — G is called left invari-
ant if ¢(gh) = go(h) Vg, h € G.

Proposition 10.8. The flow ®X of a left-invariant vector field X is
left invariant.
Proof. Fix g € G and define v¢;(h) := g~ 1®X(gh). We have 1y = Id
and

0

0
awt(h) = dq>tx(gh)lg—1§<1>f{(gh) = d@ff(gh)lg—lX(q)%X(gh)) =

= dgyu(nylg-1 X (9¥e(h)) = dgyemylg-1dyumylg X (Ye(h)) = X (e (R)).

By the uniqueness of solutions to ODEs, we get ¢, = ®;X, which com-
pletes the proof. O

As a consequence we have
(10.4) ©;* (9) = 9@ (e),
so it is enough to understand the flow starting at e.

Lemma 10.9. A left-invariant vector field is complete: i.e., its flow is
defined for all time.

Proof. By the existence and uniqueness theorem, there is an € > 0 such

that ®X(e) is defined for all t € (—e,¢). By (10.4) we conclude that
;X (g) is defined for all t € (—¢,¢€) and for all ¢ € G. Next observe

that for every ¢ € R we can always find an n € N such that % < €.
As a consequence, ¢y :(g) is defined for all g € G. By left invariance

of the flow, we get that ®;X(e) = &% o--- 0 d¥(e) = (@f(e))n, which

shows that ®;X(e) is defined for all ¢+ € R. Finally, by (10.4)) again, we
conclude that ®X(g) is defined for all ¢ € R and for all g € G. O

Definition 10.10. For £ € G we define
X
exp& = ¢ “(e).
The smooth map exp: g — G is called the exponential map.

Notice that the exponential map is in general neither injective nor
surjective.

Lemma 10.11.
exp(t&) := @, (e), VteR, VE€Eqg.
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Proof. This follows from a general property of flows. Namely, let X
be a vector field on some manifold M and let z(¢) be a solution of the
ODE & = X(z). Then xz,(t) := x(At) solves the ODE i, = AX (z) and
has the same initial value at ¢ = 0. It follows that ®}M = &5 for all A

and t for which the flow is defined. In our case, ®; ¢(e) = ;% (e) for
all ¢. The thesis now follows from linearity: tX = X. U

Proposition 10.12.
exp((t + $)&) = exp(t&) exp(s€), Vt,s € R, V¢ € g.

This explains the name of exponential map. Notice however that in
general exp(§ + 1) # exp&expn.

Proof. We have

exp((t + 5)€) = By 5, (e) = B (B < (e)) =

= @, ()3 () = exp(t€) exp(s€).
O
We can also recover the Lie bracket in g from the exponential map:
Lemma 10.13. For all £,m € g we have
(10.5) exp(sn) exp(t€) exp(—sn) exp(—t€) = exp(st[n, ] + O(*, s%)).

In particular,

82
D0t |y CXP(57) exp(tE) exp(—sn) exp(—t€) = [1, £].
Proof. Let @, := exp(sn) exp(t&) exp(—sn) exp(—tE).
Since &, = e for all s, we have %‘ ®,, = 0. Similarly, we see
s=t=0
that 2 D, =0
s=t

By Lemma 10.11} we have
By = 01 (0) 2, ()27 () 275 (e)
By iterating ((10.4)), we then have
1 (e)P;“(e)271(e) % () = D271 (817 (e)))).
By Lemma we finally get
o2
0sot

O (DN(R (DX (e)))) = [Xo, Xel(e) = [Xpe)(e) = [n.€].

s=t=0
O
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Remark 10.14. There are several equivalent ways to rewrite ({10.5).
For example,

1
expln) exp(te) = exp (s +16-+ Sl €] + O, 7) ).

or
exp(sn) exp(t€) exp(—sn) = exp(t€ + stn, &] + O(1%, 5%)),

Remark 10.15 (The BCH formula). Since the differential of the ex-
ponential map at 0 is the identity map (this follows immediately from
Lemma , the exponential map is a diffeomorphism from a neigh-
borhood of 0 in g to a neighborhood of e in G. This means that for
e small enough, the will be a unique ¢ with exp(en) exp(e€) = exp(().
the Baker—-Campbell-Hausdorff (BCH) formula is the Taylor expansion
BCH(n, ) of ¢ with respect to €. By the above Remark it starts with

2
€
BCH(, &) = en+ e+ S [n. &+
Another useful formula is the following:

Lemma 10.16. For every £ € g and for every t, we have

0
(10.6) 7 XP() = delexpee) €

Proof.

0 0
57 CXP(1E) = 207 () = Xe(@(6)) = Xe(exp(t6)) = dulpi €

O

10.2.1. The exponential map of matrices. Consider the group GL(n).
By ({10.3), the ODE associated to X is A = A, whose solution with
initial condition A(0) = Ay is A(t) = Age’® with

e_N¢"
e = Zm
n=0

The flow is then ®; ¢(A) = Aefé. We clearly have ®; ¢(AB) = ABe'¢ =
AfIDtXE(B), which shows left invariance. Moreover, we have exp{ = e
for all € € Mat(n xn,R). Similarly, for G = GL(n, C) we get exp & = et
for all £ € Mat(n x n,C)

If G is subgroup of GL(n) or GL(n, C) given by the implicit function
theorem as in subsection [10.1.1, we then have exp ¢ = e for all £ € g.
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Finally note that Lemma has a very simple interpretation in
this case. Namely, interpreting n and £ as matrices,
exp(sn) exp(t&) = (1 +sn + O(s*))(1 + & + O(t?)) =
=1+ sn+ &+ stné + O(12, %),
exp(—sn) exp(—t&) = (1 — sy + O(s*))(1 — t& + O(t*)) =
=1 — sn —t& + stné + O(t%, s%).
Hence,
exp(sn) exp(t€) exp(—sn) exp(—t€) = 1+ st[n, ] + O(£*, 5%).

10.3. Morphisms. Let GG; and G5 be Lie groups. A Lie group mor-
phism ¥: G; — Gy is a group morphism that is also a smooth map.
Let ¥ :=d.V: g; — go.

Lemma 10.17. For every £ € g1 and for every t, we have
W(exp(t§)) = exp(tv(§)).
Proof. For fixed &, define
U := V(exp(t€)) and Vi(g) := exp(ty(§)).
We have Uy = e = V5. We want to show that U and V satisfy the
same differential equation, so they must be equal by uniqueness of

solutions. To compute their time derivatives, we use (10.6) and the
identity W ol = lg) o % for all h € Gy, which yields

dpWdely, = delypyde V.
Then both U and V' solve the equation

0
—X; =d.l .
(9t t th/]<§>
U
Proposition 10.18. ¢ is a morphism of Lie algebras.
Proof. Apply W to ((10.5)) and use Lemma [10.17] U

In the language of categories, this shows that there is a functor Lie
from the category of Lie groups to the category of Lie algebra. With
the previous notations, Lie(G) = g and Lie(V) = .

The interesting question is whether we have some sort of inverse to
this. The passage from Lie groups to Lie algebras is sometimes called
differentiation and the inverse process integration. We start with the
special case when we have an injective morphism h — g; i.e., b is a Lie
subalgebra of g. We may expect this to be integrable to a Lie subgroup.
This is indeed the case if we define this in an appropriate way.
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Definition 10.19. A Lie subgroup of a Lie group G is a Lie group H
together with a Lie group morphism /: H — G which is an immersion.

Note that a Lie subgroup is not necessarily closed.

Theorem 10.20 (Lie I). Let t: h — g be a Lie subalgebra. Then
there is a unique connected Lie subgroup H of G with Lie(H) = b and
Lie(I) = ¢.

Proof. Let A, := d.lgh. This is clearly an involutive distribution
spanned by the left invariant vector fields corresponding to elements of
h. By the Frobenius theorem, there is then a unique maximal integral
submanifold I: H — G passing through e. Also note that, by defini-
tion, the differential of I at the identity is precisely ¢. It remains to
show that H is a subgroup.

By left invariance, the maximal integral submanifold passing through
g is Iy o I. This means that, for each h in H, gh belongs to the leaf
through ¢g. If g is also in H, this leaf is H itself. Thus, H is closed
under multplication. If ¢ = h™!, then e = h™'h belongs to the leaf
through h~!, which shows that h=! € H. O

Example 10.21. Let G = SO(2) = S' € C. Then g = R. Let h be
also R and ¢ be the identity map. Then H = R and I(t) = e".

If ¢ is also surjective, then [ is also a submersion. If G is connected,
this means that [ is a local diffeomorphism. If G is simply connected,
then [ is a diffeomorphism. This will be important in the proof of the
next theorem.

Theorem 10.22 (Lie IT). Let Gy and Gy be Lie groups with Gy simply
connected. Let 1: g1 — go be a Lie algebra morphism. Then there is a
unique Lie group morphism V: G; — Go with ¢ = Lie(V).

Proof. The product GG; x G5 is also a Lie group and the projections
IT;: Gy xGy — G; are Lie group morphisms. The Lie algebra of G x Gy
is g1 @ g2 and the projections are m; = Lie(IL;).

The graph T' of ¢ is a Lie subalgebra of g; & go. Denoting by ¢ the
inclusion of I', we have that v¢; := m¢ is an isomorphism and that
Tt = .

Bye Lie I there is a Lie subgroup I: H — G x G4 corresponding
to I". Since Lie(Il; o I) = #; and G; is simply connected, we have
that W, :=II; o [ is an isomorphism. We then get a group morphism
U: Gy — Gy by W:=1Il,0 ¥, and we clearly have Lie(¥) =«. O

To complete the picture we add the following theorem (without
proof).
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Theorem 10.23 (Lie III). Let g be a finite dimensional Lie algebra
over R. Then there is a Lie group G with Lie(G) = g. One can choose
G to be simply connected and under this assumption it is unique up to
isomorphisms (by Lie II).

The complete proof of this last theorem is due to E. Cartan.

Remark 10.24 (Representations). Let V' be a finite dimensional vec-
tor space. Then Aut(V) is a Lie group (isomorphic to GL(n) with
n = dimV). A representation of G on V is a Lie group morphism
R: G — Aut(V). The Lie algebra of Aut(V') is End(V'), so the above
construction associates to R a Lie algebra morphism r: g — End(V),
i.e., a Lie algebra representation. Lie II implies that Lie algebra rep-
resentations can be lifted to Lie group representations if the Lie group
is simply connected.

Example 10.25. Let G be an (n x n)-matrix Lie group. The defining
representation of G is the inclusion of G into GL(n); i.e., one regards
each element of G as a matrix acting on R" (or C" in the complex
case). The corresponding Lie algebra representation is the inclusion of
g into gl(n).

Example 10.26 (The adjoint representation). Consider the conjuga-
tion Cy: G — G, h — ghg™'. Let Ad, := d.C,. Since C,(e) = e, Ad,
is an automorphism of g. Differentiating C,,4, = Cy, o Cy, shows that
Ad is a representation, called the adjoint representation. The induced
Lie algebra representation, denoted by ad, turns out to be given by

ad’?§ = [777 g]

In fact, let Wy, := Coxpsn) exp(t€). Then 2| W, = Adep(sy &, S0
t=0

0s0t

ad, § = 8—2) U, ;. On the other hand, W, ; = exp(sn) exp(t§) exp(—sn).
—t=0

The statement now follows essentially from Lemma [10.13] see Re-

mark [10.141

10.4. Actions of Lie groups. Recall that the action of a group G on
a set M is a group homorphism

G — Iso(M)

g — v,
where Iso(M) is the group of invertible maps M — M. Explicitly, ¥,
is a map M — M for all g € G satisfying ¥, = Id and ¥, = ¥, 0 ¥,
for all g,h € G. There is also an associated map

U GxM = M
(g;m) = Ty(m)
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Definition 10.27. An action of a Lie group G on a smooth manifold
M 1is an action as above where U is smooth.

Notice that it follows that ¥ is a diffeomorphism of M for all g € G.
An example of action is a representation (where the restriction is that
the manifold acted upon is a vector space and the maps are linear).

Lemma 10.28. For all £ € g, the map \AI}E = Werpte) 15 a flow on M.

Proof. We have ‘ng = Vepo = Ve = Id and ‘Tj§+s = Voxp((t+s)e) =
\I]exp(tg) exp(s§) — \Ilexp(tﬁ) © \IIBXP(SQ = \ij © \Pg D

Let ¢ denote the vector field on M that generates the flow vt

Namely, ¢ = %\t:o\i}f and U = @F%.

Proposition 10.29. The map : g — X(M) is a Lie algebra mor-
phism; i.e., ¥ is linear and satisfies

[Ve, Yl = Ve, VEm € g

A Lie algebra morphism g — X(M) is called an infinitesimal action
of g on M.

Proof. Apply ¥ to (10.13) and use Lemma [7.34] O

If G acts freely on M (ie. ¥y(m) = m = g = e), then for each
m € M we have an injective immersion O,,: G — M, g — ¥ym
(the orbit through m). The corresponding integrable distribution is
Ay, = spangg, Ye(m). In this case, as a set of generators for the
vertical vector fields one may choose 1(g). Also note that the leaf
space for this distribution is the same as the quotient M /G (i.e., the
quotient by the equivalent relation: m ~ m’ if and only if g € G
m = ¥,m'). Distributions that come from Lie group actions are under
better control.

Definition 10.30. An action ¥ of a Lie group G on a manifold M is
called proper if the map

GXxM~—MxM
(gvm) = (\I/g<m)7m)
is properff]

Theorem 10.31. If the action of G on M 1is free and proper, then
G/M has a manifold structure for which the canonical projection map
s a submersion.

437 map is called proper if the preimages of compact sets are compact.
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Not that the action of a compact Lie group is automatically proper.
Another class of examples is the action of a closed Lie subgroup H of a
Lie group G on G itself: ¥,(g) = gh™" (conventionally one chooses the
action from the right). In this case, the quotient manifold G/H still has
a transitive G-action (if we let H act from the right, we may let G act
from the left; transitive means that any two points can be related by
the action of some element of G) and is called a homogeneous space. If
H is normal, then G/H inherits a Lie group structure. The Lie algebra
h of H is a Lie ideal in g, and the Lie algebra of G/H is g/b.

10.5. Left invariant forms. A differential form w on G is called left
invariant if [fw = w for all g € G. We denote by QOF(G)Y the space of
left invariant k-forms. A left invariant form is completely determined
by its value at e. Thus, the map

p: Q*(G)Y — A°g*
is an isomorphism.
A nonzero element of A*Pg* then defines a left invariant volume form

w. If we choose the element to be positive, then we have a left invariant
measure p(A) = [, w. If G is compact we may produce a biinvariant

measure w by averaging:
w= / rowdpu(g).
G

We clearly see that w is positive and left invariant. Moreover,
3= [ rirgedute) = [ riwdnl) =3,
G a

so it is also right invariant. By rescaling we may also assume |, cw=1
The corresponding probability measure is known as Haar measure.

The wedge product of two left invariant differential forms is left in-
variant. Moreover, by the Cartan calculus, the de Rham differential
maps 2(G)Y to itself. This induces a differential § = ¢dp~! on A®g*.
Applying the formula in Proposition to left invariant vector fields,
we get

5("’)(”0’ SR 7Uk> = Z (_1)i+jw([vi7vj]7U07 s 7{)\1'7 s 6}? SR 7Uk)a
0<i<j<k

for every w € AFg* and every vy, ..., v € gEI] Note, in particular, that
dw = 0 if w € A°% = R and that for w € Alg = g we have

dw(vg,v1) = —w([ve, v1]).

4“The first term in the formula is not there, for Lemma implies that the
contraction of a left invariant form with left invariant vector fields is left invariant.
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That is, 6: g* — A2g* is minus the transposition of the Lie bracket (as
a linear map A%g — g). As § is a derivation, it is enough to know its
action in degree zero and one.

APPENDIX A. TOPOLOGY
We recall a few facts about topology.

Definition A.1. A topology on a set S is a collection O(S) of subsets
of S such that
(1) 0,5 € O(8);
(2) YU,V € O(S) we have UNV € O(5);
(3) if (Uy)aer is a family indexed by I with U, € O(S) Va € I, we
have UaerU, € O(S).

A set with a topology is called a topological space.

Example A.2. The collection of the usual open subsetﬁ of R" forms
a topology on R", called its standard topology.

In general, elements of a topology are called open sets and elements
of a topological space are called points. A neighborhood of a point is
a set containing an open set that contains the given point. An open
cover of a topological space S is a collection {U, }.cr of open sets in S
such Upe U, = S.

Definition A.3. A map F': S — T between topological spaces (S, O(5))
and (T, O(T)) is called continuous if F~1(U) € O(S) YU € O(T). A
continous invertible map whose inverse is also continuous is called a

homeomorphism. A map that maps open sets to open sets (i.e., in the
abve notation, F'(U) € O(T) YU € O(S)) is called open.

Topologies may often be derived from other topologies.

Example A.4. Let (S,0(S)) be a topological space and let T be a
subset. Then

Os(T):={UCT|3VeOlS):U=VnNT}

is a topology on 7T'. With this topology, called the induced topology or
the relative topology, the inclusion map ¢: T" < S is continuous.

This is in particular the topology one usually considers on subsets of
R"™ with its standard topology.

45Recall that a subset U of R™ is defined to be open if for each g € U there is
an R > 0 such that the open ball
{z e R" | ||l — x0|| < R}

is contained in U.
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Example A.5. Let (S, O(5)) be a topological space and 7: S — T be
a surjective map. Then

Osn(T) = {U C T |7 (U) € O(S)}

is a topology on T. With this topology, called the quotient topology, 7
is continuous.

Notice in particular that 7 arises when we have a quotient relation
on S and define T as the set of equivalence classes.

Remark A.6. Unless stated otherwise, when we speak of R”, we tac-
itly assume the standard topology; when speaking of a subset of a
topological space or a quotient of a topological space, we tacitly as-
sume the induced topology.

For some consideration on manifolds, we also need the notion of
compactness, which we briefly recall. First, recall that a subcover of
an open cover {U, }aer of S is a subcollection {Uy }acs, J C I, that is
still a cover (i.e., Uae U, = S). If J is finite, then the subcover is also
called finite.

Definition A.7. A topological space K is called compact if every open
cover of K possesses a finite subcover. A subset K of a topological space
T is called compact if it is compact in the induced topology.

Recall that by the Heine-Borel theorem a subset of R" is compact if
and only if it is closed and bounded (i.e., contained in a ball of finite
radius). Compact sets have a lot of important properties, for which we
refer to textbooks in topology (or analysis). We only recall those that
we are using in these notes.

Lemma A.8. Let F': S — T be a continuous map of topological spaces.
If K is compact in S, then F(K) is compact in T. In particular, if a
set is compact in a subset S of a topological space T (with respect to
the induced topology), then it is compact also in T.

Proof. Let {U,}aer be an open cover of F(K). Then {F~Y(Uy)}aer
is an open cover of K. Since K is compact, there is a finite subcover
{Us}aecy, J a finite subset of I. But then {U,}4ecy is a finite subcover

of F(K).
For the second stament, just recall that the inclusion map of a subset
is continuous with respect to the induced topology. ([l

Lemma A.9. A closed subset of a compact set is compact.

Proof. Let K be compact and C C K closed. Then K \ C is by
definition open. Let {U,}er be an open cover of C. Then {U,}aer U
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K \ C is an open cover of K and hence possesses a finite subcover.
Removing K\ C from it (if contained) yields a finite subcover of C. [

Notice that in R™ a compact set is automatically closed, but this
may not be true for a general topology. It is true if we assume the
Hausdorft separability condition:

Definition A.10. A topological space S' is called Hausdorff if for any
two distinct points x and y of S one has an open neighborhood U of x
and an open neighborhood V of y with U NV = ().

Notice that R™ is Hausdorff. Also notice that a subset of a Haus-
dorff space is automatically Hausdorff (with respect to the induced

topology).

Lemma A.11. A compact subset of a Hausdorff space is closed.

Proof. Let S be a Hausdorff topological space and let K C S be closed.
We want to prove that A := S\ K is open. For this it is enough to prove
that for every a € A there is an open neighborhood U, of a entirely
contained in A.

Given a € A, for every x € K we have, by the Hausdorff condition,
an open neighborhood U, of x and and open neighborhood V,, of a with
U, NV, =0. Since {U, N K },cx is an open cover of K in the induced
topology and K is compact, we have a finite subcover {U,, N K };c;. We
then define U, = M;c;V,,, which is open since it is a finite intersection
of open sets. It also clearly contains a as a is contained in each V.
Finally, let ' € U,. Then by definition a' € V,, for all i and hence
a' & U,, for all i, which implies o’ € K; so U, C A.

O

An important notion, also for manifolds, is that of embedding:

Definition A.12. A continuous map between topological spaces is
called an embedding if it is a homeomorphism to its image.

Note that equivalently a map is an embedding if it is continuous,
open and injective. A useful criterion, which often applies, is the fol-
lowing.

Lemma A.13. An injective continuous map from a compact space to
a Hausdorff space is an embedding.

Proof. We have to prove that the map is open or, equivalently passing
to complements, that it maps closed subsets to closed subsets. Let
F: S — T be the given map with S compact and 7" Hausdorff. if
K is closed in S, then by Lemma it is also compact. Since F' is
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continuous, by Lemma F(K) is compact, and by Lemma it
is also closed. Hence, F' maps closed sets to closed sets. 0

APPENDIX B. MULTILINEAR ALGEBRA

We recall a few basic notions from linear algebra. We consider vector
spaces over a ground field K. For the applications in these notes the
ground field will be R and the vector spaces will be finite dimensional [

We begin by recalling that a map V. x W — Z, where V, W and
Z are vector spaces, is called bilinear if it is linear with respect to
each argument when the other argument is kept fixed. Notice that the
set Bil(V, W; Z) of bilinear maps V' x W — Z inherits a vector space
structure from Z. If (e;);es is a basis of V and (f;);es is a basis of W, a
blinear map ¢ is completely determined by its values {(e;, f;). This also
shows that dim Bil(V, W; Z) = dim V dim W dim Z. The main idea of
the tensor product consists in replacing bilinear maps by linear maps:

Definition B.1. Thﬂ tensor product of two vector spaces V and W is
a pair (V®@W,n), where V@W is a vector space and n: VW — VW
is a bilinear map, such that for every vector space Z and every bilinear
map £: V. x W — Z there is a unique linear map {g: VO W — Z
such that & = &g on. This property is called the universal property of
the tensor product.

V xW

VeWw

§ e

A

Before we show the existence of the tensor product, let us draw
some consequences of this definition. First, observe that the association
& — &g is linear and has an inverse: to any linear map ¢: VoW — Z
we associate the bilinear map ¢gon: V x W — Z. This shows that we
have an isomorphism Bil(V,W; Z) ~ Hom(V ® W, Z). In particular,

46Unless explicitly stated otherwise, the results in this appendix also hold for
infinite dimensional spaces. The proofs are exactly the same if we assume the
existence of a basis (which is guaranteed by the axiom of choice). In this case, a
sum over an index set is understood to have only finitely many nonvanishing terms.

4T"We are actually defining “a” tensor product, but we will see in Lemma
that all definitions are canonically equivalent.



162 A. S. CATTANEO

for Z = K we have Bil(V,W;K) ~ (V @ W)*. If V and W are finite
dimensional, we finally have
(B.1) VoW ~Bil(V,W;K)".

This is one possible way of constructing the tensor product. The im-
portant point is that it does not really matter which construction we
use as they are all equivalent:

Lemma B.2. Suppose (V& W)1,m1) and ((V ® W)a,m2) both sat-
1sfy the universal property. Then there is a canonical™® isomorphism
Fio: (V & W)l — (V X W)Q such that Mo = F12’I71.

Proof. Since 1 is a bilinear map, there is a uniquely defined linear map
that we denote by Fio with the property stated in the Lemma.

VX W n V &W),

T2 Fy Fis

(VoW),

We have to prove that it is an isorphism. To do this, we reverse the
role of 1 and 2, and get a linear map Fo;: (V@ W)y — (V& W)y such
that n = Fyimo. Hence, m1 = Fy F1om;. This shows that Fb Fis is the
linear map (V@ W); — (V ® W); corresponding to ;. By uniqueness
we have [y Fi5 = Id;. Analogously, we prove FisF5 = Ids. O

We now turn to the existence of the tensor product, also for infinite-
dimensional vector spaces. As the actual construction does not matter,
we may pick one in particular; e.g., using bases.

Lemma B.3. The tensor product of any two vector spaces V and W
ex1Sts.

Proof. Let (e;);er be a basis of V and (f;),e; a basis of W. Recall that a
basis allows identifying vectors with their coefficients. More precisely,
let Map(/,KK) denote the vector space of maps@ I — K. To a map
i — v’ we associate the vector >, ; v'e;. Vice versa to a vector v € V
that we expand as ), _; v'e; we associate the map ¢ — v'. Hence, the
choice of a basis establishes an isomorphism Map(/,K) ~ V. Also

48Canonical means that no choice is required to define it.
4911 the infinite dimensional case we only consider maps that do not vanish at
finitely many points.
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notice that to the basis element e, corresponds the map i — d°. By
abuse of notation, this map is also denoted by e, and the maps (€;);er
are clearly a basis of Map(/, K). This suggests defining

VoW =Map(I x J,K).

To show that this is the correct choice, we only have to define n and
prove the universal property. First observe that the maps

e ® fi: (r,8) = 6,63,
for i € I and j € J, form a basis of Map(I x J,K).

As 7 is bilinear, it is enough to define it on basis elements. Following
the analogy of a single vector space, we set n(e;, f;) = €; ® f;. Finally,
if £ is a bilinear map V x W — Z, we define {g(e; ® f;) := {(e;, f;) and
we immediately see that ¢ = &g on, as it enough to check this identity
on basis vectors. On the other hand, &g is uniquely determined. In
fact, the difference ¢ of any two maps {g and & corresponding to the
same &, satisfies ¢ on = 0. Applying this to basis vectors, we get
¢(e; ® f;) =0 for all 4, j, and hence ¢ is the zero map. O

Remark B.4. Since (e; ® f;)ier jes is a basis, every vector z of V@ W

can be written as
S IELEY

icl jeJ

for uniquely determined scalars z¥/. Notice that in this representation
the components of the vector z have two indices.

It is customary to denote with v ® w the value of  on (v, w):
v@w = n(v,w).

Vectors in V @ W are usually called tensorsm Tensors of the form
v®w (i.e., tensors in the image of 1) are called pure tensors. With this
notation, the universal property reads more clearly as

€a(v @ w) = &(v, w)

50Vectors owe their name to the fact that they were originally introduced to
define actual displacements: vector in Latin means carrier. Tensors owe their name
to the fact that they were originally introduced to describe tensions in an elastic
material as linear relations, i.e. matrices, between the vectors that describe internal
forces and deformations.
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for all v € V and all w € W. The fact that 7 is a bilinear map is
encoded in this new notation by the formulae

(B.2a) (v + 1) QW =1 W+ vy @ w,
(B.2b) VR (wy +we) = v @ w; + v wa,
(B.2¢) M) @w=v® (M) =Av®w,

for all v,vy,v € V, w,wy,wy € W and X € K.

Remark B.5. These formulae lead to yet another construction of the
tensor product. Namely, one considers the free vector space generated
by the elements of V' x W, writing v ® w instead of (v,w) € V x W,
and imposes the formulae (B.2) (i.e., one quotients by the subspace
generated by them).ﬂ The advantage of this construction is that it
does not require introducing bases (so it does not need the axiom of
choice). See, e.g., [5 paragraph 2.1] for more details.

Notice that any linear map on V®W is completely determined by its
values on all pure tensors v®w as this in particular entails evaluation on
the basis vectors (e; ® f;)ier jes (or, more abstractly, since pure tensors
are the image of 1 and a linear map &g, is completely determined by
the bilinear map £ = £z on). This also means that to define a map on
V ® W we can specify it on all pure tensors v ® w and check that it is
compatible with . For example, we have a canonical isomorphism

VoW = WeV
VRW = wU
and a canonical isomorphism

VoK S5 V
VRN = A\

with inverse V — V @ K, v — v ® 1. (Notice that Av is mapped to
(M) ® 1 which is however the same as v ® \.) If we have a third vector
space Z, then we have a canonical isomorphism

VeW)ewZ = Ve (WeZ)
RUW)Rz = 1R (WK z)

5IMore neatly, one quotients span(V x W) by the relations

((v1 +v2),w) = (vi,w) + (va, w),
(U’ (wl + wQ)) = (anl) + (’U’w2)7
(Av,w) = (v, \w) = A (v, w),
(

and denotes the equivalence class of (v, w) by v ® w.
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For this reason one usually writes V ® W ® Z without bracketing.
One also says that the tensor product of vector spaces is associative.
Another useful map is the canonical inclusion

VEeW < Hom(V,W)
a®@uw = (v a(v)w)

To see that it is injective observe that, if a(v)w = 0 for all v € V', then
w =0 or a =0, and in either case a @ w = 0. If V and W are finite
dimensional, then this is also an isomorphism since

dim(V* @ W) = dim V dim W = dim Hom(V, W).

If we choose a basis (e;);e; of V, a basis (f;)ses of W, and denote by
(€");er the dual basis of V*, then a vector A in V*@W can be expanded

as
A=>"N Al

icl jeJ

The coefficients A{ are also the components of the matrix that repre-
sents the corresponding linear map on right hand side:

e Y Alf;
jed
Similarly, we have a canonical inclusion
VEW* — (Ve Ww)*
a®f = (vew— a()b(w))

which is an isomorphism if V' and W are finite dimensional. Moreover,
(B.1)) shows that, if V' is finite dimensional, then V*® VV* is canonicaly
isomorphic to the space Bil(V,V;K) of bilinear forms on V.

If we have linear maps ¢: V — V' and ¢: W — W', then we canon-
ically have a linear map

pRY: VoW — VW
vRw = (v) ®P(w)

If we have bases (e;)icr of V, (f;)jes of W, (e})irer of V' and (fj,) e
of W', we may represent the maps ¢ and i by matrices: ¢(e;) =

Siep el and G(f;) = 3 e ) fh. Tt follows that

PR Y(e; ® fj) = Z Z o jf'e;, ® fi

del jle!
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B.1. Tensor powers. Let V be a vector space. Its kth tensor power
is by definition

v®k = V ® e ® V
where we have k copies of V' on the right hand side. The definition is
actually by induction:

Ve .=V and VOKHD . Yok oy

As the tensor product of tensor spaces is associative the bracketing is
not important. By convention one then also sets

Ve .— K.

Observe that
dim V¥ = (dim V)"

An element of V®* is called a tensor of order k. If we pick a basis (e;)ier
on V, then (e;,® -+ ® €;, )iy iper is a basis of V®* and a tensor T of
order k may be uniquely written as

T — Z Tzlzk €i1®"'®eik-

i1yl €1

Moreover, we have V&1 @ V®k — V@ki+ka) for all ki, ky. (We write
equal instead of isomorphic, as the isomorphism is canonical.) This
corresponds to a bilinear map

R: V®k1 X V®k2 — V®(k1+k2)
(M@ @V, W1 @ QW) = VI Q- QU Quy & -+ @ W,

called the tensor product of tensors. It is clearly associative: namely,
(@)1 =T @ (T, ®13)

for all T; € V®* and any choice of k;. Usually one then omits brack-
eting. One also extends the tensors product to scalars. Namely, if
acV® =K and o € V® one defines a ® o := aae =: a ® a. Notice
that 1 € K is then a unit: 1® a =a ® 1 = « for all a.

If we pick a basis, then the components of a tensor product of tensors
are just the products of the components of the two factors. The tensor
product of tensors then makes

o0

T(V):=Pve*

k=0
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into an associative algebra called the tensor algebra of Vﬂ An element

of T'(V) is sometimes called a nonhomogenous tensor, but often just a

tensor. Elements of a single V®* are also called homogenous tensors.
A linear map ¢: V — W canonically induces linear maps

(B.3) ¢®k . V®I<: N W@k
VIR U = Q) @ @ P(vk)

for all k. Notice that if 7} and T} are in V®* and V®*2 then
RN (T @ Ty) = ¢*M(T1) ® 6% (T3).

This construction may be repeated with the dual space V* of V.
More generally, one considers the tensor product

THV) == V& @ (V)%

An element of T#(V) is called a tensor of type (k,s). Tensors of type
(0, s) are also called covariant tensors of order s, whereas tensors of
type (k,0) are also known as contravariant tensors of order kﬂ As the
notation suggests, by convention we put the linear forms to the right.
Hence, if we pick a basis (e;);e; on V, then

j1 s
(6 ® - ®e; @ @ ® €™ )iy g ji,.dsel

is a basis of T#(V'), where (e’),c; denotes the dual basis. A tensor T
of type (k, s) can then be uniquely written as
T= ) Tt ®e6,0d @ -6
01 yeenylfsJ1ye--Js €1
Remark B.6. Particularly important are the tensor spaces T} (V) and
TY(V) for V finite dimensional. In this case, T} (V) is canonically
identified with the space of endomorphisms of V. In a basis we write
FeTl V) as
F = Z F ; e ® el
ijel
The coefficients F; are also the entries of the matrix representing the
corresponding endomorphism, which we keep denoting by F"

F(e) =) Fles

icl

%2The T in T(V) stands for “tensor” and should not be confused with the T
denoting the tangent bundle of a manifold.

53This terminology refers to the fact that, if we change basis by some matrix, the
components of a vector change by application of the inverse matrix (hence the name
contravariant), whereas the components of a linear form change by the application
of the matrix itself (hence the name covariant).
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The tensor space T3 (V) is instead canonically identified with the space
of bilinear forms on V. In a basis we write B € Ty (V) as

ijel
The coefficients B;; are also the entries of the matrix representing the
corresponding bilinear form, which we keep denoting by B:

B(GZ‘, ej) = BZJ
Remark B.7 (Einstein’s convention). A useful habit, which we implic-
itly used above, consists in taking care of the position of the indices.

We use lower indices to denote basis vectors (e;) and upper indices to
denote the components v* in the expansion of a vector

v = E v'e;.
i

For the dual basis we use the same letters as for the basis but with
upper indices: (e'). For the components of a linear form we then use

lower indices:
w= E wie'.
i

Consequently a vector in T will have k upper and s lower indices.
This notation allows recognizing at a glance the type of a tensor. A
further convention, due to Einstein, tacitly assumes a summation over
every repeated index, once in the upper and once in the lower position.
For example, with this convention the expansion of a vector v and of a
linear form w read v = v'e; and w = w;e’. This very useful convention
requires some training. As in these notes we only occasionally work
with coordinates, we prefer not to make use of it.

A tensor of type (k,s) may be written, by definition, as a linear
combination of tensors of the form T'® S where T is of type (k,0) and
S is of type (0, s). The tensor product of tensors extends to the general
case by

THV)GTE(Y) = THEY)

S1+52
(T1®Sl>®(T2®SQ) —> T1®T2®51®SQ
Similarly, an isomorphism ¢: V' — W induces canonically isomor-
phismﬂ
(B.4) ot THV) — THW)

s

T®S — ¢=H(T)® ((¢*)"1)®(S)

5411 this case, ¢ must be an isomorphism because we have to define an associated
map V* — W*.
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for all k,s. Again, if Uy € T (V) and Us € T¥(V), we have
G152 (U @ Us) = ¢ (Uh) @ ¢z (Us).

2

Finally, observe that the pairing V @ V* — K, (v, @) — «a(v) canon-
ically induces linear maps

L TH(V) = TEEH(W),

forall 1 <m <k and 1 < n < s, obtained by pairing the mth vector
with the nth linear form in the tensor. These linear maps are called
contractions.

B.2. Exterior algebra. For applications in the theory of manifolds
(viz., differential forms), we also need the concept of exterior algebra.
For simplicity, we develop it in the case when the ground field K has
characteristic zero (e.g., K = R)ﬁ The objects of interest are then
the skew-symmetric tensors. In terms of a basis, these are the tensors
whose components are skew-symmetric with respect to the exchange of
indices.

More invariantly, we proceed as follows. First observe that a permu-
tation o on k elements defines an endomorphism of V®* given by

V1@ QU = V(1) &+ @ Ug(r)-

on pure tensors. We denote the so defined endomorphism also by o.
In particular, if (e;) is a basis and o = 37, . atv'e; ®@---®e;, is a
k-tensor, then

(B5) oo = Z ail"'i’“ei0<1> K& Gia(k) =
_ Z aio—l(m...igfl(k)eil R ® Ciy -
U15eenylk
Notice that this defines a representation of the symmetric group Sk
(i.e., the group of permutations over k elements) on V®*: namely,

(0109)a = 01(09c¢)  and Ida =«

for all 01,09 € S and a € V& (we denote by Id the identity permu-
tation).

Since we are interested in skew-symmetric tensors, we twist this rep-
resentation by the sign:@ a k-tensor is called skew-symmetric if

o = SgNo o

55Fot the general case, see subsection
56 A parallel discussion, without this twist, leads to the symmetric algebra.
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for all 0 € Sj. Since the symmetric group is generated by transposi-
tions, we also have that « is skew-symmetric if and only if 7 = —«
for every transposition 7. We denote by AV the vector space of skew-
symmetric k-tensors.

If we expand « in a basis, we see that a is skew-symmetric if and
only if its components change sign by the exchange of any two indices.
More generally, by , we see that « is skew-symmetric if and only
if
(B.6) Qe iet) = ggng it

for all o and all 74, ..., 4.
Notice that the map ¢®* defined in equation (B.3) commutes with
the action of the permutation group:

¢®ka — U(b@k

for all o € Sj,. This implies that ¢®* maps skew-symmetric tensors
to skew-symmetric tensors. The restriction of ¢®* to A*V is usually
denoted by A*¢. In summary, a linear map ¢: V — W canonically
induces linear maps

Ao APV — AP
for all k.

The tensor product of two skew-symmetric tensors is in general no
longer skew-symmetric. However, one can always skew-symmetrize it
and define the wedge product of a; € A¥'V and o, € A*2V by
(B?) ap A\ Qg = Altk<051 X 062),

with k& = k1 + ko, where

Lemma B.8. The alternating map Alt® has image equal to A*V'. More-
over, if € A*V, then AltFa = o

Proof. For 7 € S, let us compute

1 1
T AltPo = T Z 8GN0 TOQ = SgNT Z sgn(to) Toa.

o€ESy, €Sk
By the change of variable & = 70 we then get
1
ko 4 ~n k
TAlt" a = SgnT Z sgno oo = sgnt Alt" a,
oESE

for all 7 € Sy, which proves that the image of Alt¥ is in A*V.
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We then move to the second statement. From oca = sgno a we get
Alt*(a) == L > scs, @ = a. This also proves that the image of AltF is

the whole of AFV. O
If ¢ is a linear map as above, then we clearly have
Ard(ag A ay) = (A ay) A (AP2ay).
We extend the wedge product to the direct sum AV := @,- , AFV.
Lemma B.9. (AV, A) is an associative algebra with unit 1 € A°V =K.
This algebra is called the exterior algebra of V.

Proof. We compute

1
(o1 A ag) A g = m Z sgnoo(a; @ ag) | ANas =
1 2/ UESlier
1 ~ ~
= ' ' Z sgno sgno o (oo ® as) @ ag).
(kl T kQ T k3)<k1 T kQ) EESk1+k2+k3
UGSk1+k2

Let o x Idg, be the permutation over ky + ko + k3 elements that is the
identity on the last k3 element and o on the first ky + ko elements.
Then o(a; ® ag) @ az = (0 X Idg, ) (a1 ® as @ ag). Notice that sgno =
sgn(o xIdyg,). We then make the change of variable ¢ +— ¢ = 7 (0 xIdy,)
and get

1 ~
a1 N\ag) Ny = E seno oo Ras@as ).
(1 2)/\ag (k1 + ko + k3)!(k1 + ko)! & (a1®as@as)
TESky +hotky
O'Eslier

If we perform the sum over o, we finally obtain

1 ~
(g ANag) Nag = CETE Z sgno oo ® as ® as).

T€Sky +hothy

By an analogous computation, one sees that this is also the expression
for ay A (e A aig).

We next check that 1 € K is the unit. Since 1 ® o = a and o € A*V
is skew-symmetric, we have

INa= 'ngnaal® k'ngnaaa— !Za—a
o€S oc€SK €Sk

Similarly, one sees that a A 1 = a.
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Notice that dividing by the order of the group of permutations in
the definition of the wedge product is fundamental for this Lemma to
hold. O

Remark B.10. By induction, using the first part of this proof, one
can also prove that for oy € A¥V,i=1,...,r, we have

1
OélA...Aar:gngngo—(oq@...@ar).

" 0€Sy
with & =>""_ ki.
Lemma B.11. The wedge product is graded commutative, 1.e.,
as Aoy = (=1)F*20, Ay
for all oy € AV and ay € A2V . In particular, a Ao = 0 if « € AFV
with k odd.

Proof. Let 7 € Sy, k = k1 + ko, denote the permutation that exchanges
the first k; elements with the last ko elements. We have ay ® oy =

T(a1 ® ag). Then, by , we have

1
s N\ oy = o Z sgno oT(a ® o).
’ oES

By the change of variables o — o = o7, we get
1 ~
g Aoy = sgnTH Z sgno ooy ® az).
oESE
This completes the proof since sgnt = (—1)*1*2, O
Lemma B.12. If (e;)icr s a basis of V, then (ej, A+ Aej)ji<<ivel
is a basis of A*V/.
k k _ ..

Proof. We expand o € A"V C V& asa =37, . a'te, @@,
Since a = sgno o« for all o, we can also write o = % > sgno oa.

We then get, by Remark [B.10]
o= Z Qe A Ney,,

i1, ik €1

oESE

which shows that (e;;, A---Ae;, )i, ier is a system of generators for
ARV

These generators are however linearly dependent. By the graded
commutativity we have e; A e; = 0 for all 7. This implies that, if an
index is repeated, then e;; A---Ae; = 0, since we can use the graded
commutativity to move the two e;’s with the same index next to each
other. If all the indices are different from each other, then there is a
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unique permutation o such that i,(1) < ig@) < -+ <igr). We can then
write

010k N SR 7R _
o e, N Ney, =« Sgno €;, ) VANRIERIAY Cigy =

— o) la(k) o, . — 1Tk AL .
=arWe®e; NN, = o € N Nej,

where we have used and have set j, = i,qy, 7 = 1,..., k. By
construction we have j; < jo < --- < jg. Notice that if we fix the
ordered j,’s there are k! corresponding unordered ¢,’s. Hence

- E Ladtdk e A -ei A e
o= k!l ey, N Nej,

J<<jrel

which shows that (ej, A -+ A e€j,)ji<..<jeer is also a system of gen-
erators for A*V. We want to prove that they are linearly indepen-
dent. Let M7k be a collection of scalars for j; < --- < jj such that
D jicmcjer N e Ao Aej = 0. For iy, ..., i pairwise distinct,
define 't = sgno\w)*) where ¢ is the unique permutation such
that iy(1) < -+ < iyp; if an index is repeated, we define o' = 0.
We then have 37, . . a"" e, A---Aey = 0. By Remark this
implies Zil,...,ikel a'tte; @ ---®e;, = 0. Hence o = 0 for all
i1, ..,1g, which implies M1-7& =0 for all j; < --- < jg. O

This implies that to define a linear map on A*V it is enough to define
it on pure elements, i.e., elements of the form vy A --- A v, checking
that it is multilinear and alternating in the vectors vy,. .., v,.

Corollary B.13. If dimV = n, then dim A¥V = (}). In particular,
APV = {0} if k > n.

Observe that A"V is one-dimensional if n = dim V. This means,
that if ¢ is an endomorphism of V', then A"¢ is the multiplication by
a scalar. It turns out that this scalar is the determinant of ¢:

(B.8) [A"¢pa =detgal

for all a € A™V.

Proof. Let (eq,...,e,) be a basis of V. We have
A'per A New = dler) A~ Aole,) = Z szf"'ﬁbfz"@il Ao Neg,
11 5eeeyln

where (gzﬁf ) is the matrix representing ¢ in this basis. If any index is
repeated, the contribution vanishes. If all indices are pairwise different,
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we let o be the permutation with o(j) = ;. Then

An¢61A"'A€n: Z Sgno’gb?(l)...qﬁZ(n)el/\.../\en,
0ESH

which completes the proof by the Leibniz formula for the determinant.
O

B.2.1. Contractions. The pairing between a vector space and its dual
extends to the exterior algebra. We describe its most important ap-
pearance. To fit with the application to differential forms we use the
exterior algebra of the dual here.

An element of AV* is called a form and an element of A*V* a k-form.
A k-form a; A --- A ap with a; € V* for all 7 is called pure. A linear
map defined on A*V* is completely determined by its values on the
pure forms (as in particular basis elements are pure forms). On the
other hand, a map defined on pure forms extends to a linear map if it
is multinear and alternating on the pure forms.

A vector v in V defines a linear map t,: A*V* — A*1V* called
contraction, for all k, defined on pure forms by

(ar A+ ANag) =ar(v)ag A+~ ANag —az(v)ag Aag A+ Nag+ -+ =
k
=Y (=) (w)ar A A A A,
r=1

where the caret " indicates that the factor a, is omitted. On A°V* the
contraction ¢, is defined as the zero map.

Lemma B.14. The contraction has the following important properties.
First, for all o € AFV*, B € A'V* and v € V, one has

L(a A B) = t,a A B+ (1) a A B
Second, for allv,w €V and o € AV*, one has
Lol = —LylyQL

Proof. Tt is enough to check the first identity when a and g are pure,
and this follows immediately from the definition.

The second identity can also be easily checked on pure forms. In fact,
one can use the first identity to show that I, ., := tyty + Ly, satisfies

ILw(aNB)=1,aNB+aAl,,[

for all a and . By induction one then sees that I, ,, is determined by
its actions on 1-forms. Since I, ,, is clearly zero on A'V*| it is then zero
on the whole AV*. U
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Let finally ¢ be a linear map V' — W. Since the the transpose of a
linear map is defined exactly so as to preserve the pairing of a vector
with a linear form, (¢*a)(v) = a(¢v) for all @ € W* and v € V, we
have

(B.9) A\ p*a = A 1o% g0,
for all v in V and all o € A*V*.

B.2.2. The exterior algebra as a quotient. In the above description of
the exterior algebra, we had several denominators, which is ok if the
ground field K has characteristic zero. For a general ground field, one
can use another definition of the exterior algebra (which is canonically
isomorphic to the previous one if the field has characteristic zero).

To start with, we recall a basic construction. An algebra A is a
vector space endowed with a bilinear map A x A — A, usually denoted
by (a,b) — ab. The algebra is called associative if (ab)c = a(bc) for
all a,b,c € A. A two-sided ideal of an algebra A is a subspace [ with
the property that ax € I and xa € I for all a € A and Vx € I. The
quotient space A/ then inherits an associative algebra structure by

[a][b] := [ab], a € lal,b € [b].

Notice that the class [ab] does not depend on the choice of representa-
tives a and b since [ is a two-sided ideal.

We now apply this construction to the algebra T'(V) := @, V&*,
where V' is a vector space on some ground field K, of any characteristic,
and the associative algebra structure is defined by the tensor product
of tensors. We let I be the two-sided ideal generated by elements of
the form v ® v with v € V. More explictly I is the span of elements of
the form a @ v®v®b with a,b € T(V) and v € V. The exterior algebra
AV of V is then defined as the quotient algebra T'(V')/I. The induced
associative product is denoted by A and is called the exterior product:

[a] Ab] :=[a®D],  ac€ld],be Y.
Notice that I is a graded ideal, i.e., I = @, I with

Ly =INV® =
=span{a@vRVvRb:v eV, a €V be Vo2 k +ky=k—2}.
One then defines A*V = V® /I, and one gets AV = @2, A*V. Ob-
serve that A°V =K and A'V = V.

The kth tensor power ¢®* of a linear map ¢: V — W clearly sends
the kth component of the ideal of T'(V) to the kth component of
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the ideal of T'(W), so it descends to the quotients. We denote it by
Arg: APV — ARV,

One can prove that the so defined exterior algebra has the same prop-
erties as the one we have defined above in terms of skew-symmetric
tensors. In the case of characteristic zero the two constructions are
equivalent. Namely, let A,: V® — V® be the map defined by
Apa = % ZUESk sgno oa. One can see that I, = ker Ay and that the
image of Ay is the space of skew-symmetric k-tensors. The canonical
isomorphism between T'(V) /I and @0, A, (V) is also compatible with
the wegde products.

Finally observe that in the general construction the exterior algebra
is a quotient of the tensor algebra, whereas in the special construction
with skew-symmetric tensors it is a subspace.
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